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1 Introduction

Ben-Amram and Codish described SCNP [2], a subclass of the size-change termination criterion SCT
[8l], which permits efficient certificate checking. Termination problems in this class have a global ranking
function of a certain form, which can be found using SAT solving.

This note describes an automated proof reconstruction for this certificate scheme, implemented in the
theorem prover Isabelle/HOL [9]. In previous work [6], we have shown how to use the full size-change
principle for termination proofs of recursive function definitions in Isabelle. Although the certificate-
based approach is less powerful in theory, it has practical advantages:

e The transitive closure computation in [§] is an efficiency bottleneck, and optimizing it is hard since

the code must be proved correct and executed within the logical system.

o Certificates can be stored, which makes proof checking easier when the proof script is re-run.

e Much less logical infrastructure is necessary. In particular, no formalization of Ramsey’s theorem

is required, which makes the approach portable to theorem provers with a constructive foundation,
such as Coq [3].
Our method is included in the recent release of Isabelle 2009 (http://isabelle.in.tum.de).

2 Termination Goals

Isabelle termination goals arise from recursive function definitions and express the wellfoundedness of
the call relation extracted from the definition. The induction principle encoded in this relation is then
used internally to construct an explicit model of the function.

Termination goals in Isabelle have the following form:

wf ({(re, ) [T} U U (s ) | Ta})

Here, each recursive call in the function definition is expressed as a relation comprehension { (r;, [;) | I';},
where /; is the argument from the left hand side of the definition, r; is the argument of the recursive call,
and I'; is the condition that leads to the recursive call. The goal is to prove that the union of these relations
is wellfounded[1]

Example. The function perm below is taken from [8]. The corresponding termination goal consists of
two calls:

perm (m, n, r) = (if 0 < r then perm (m, r — 1, n) else if 0 < n then perm (r,n — 1, m) else m)

wf ({((myr—1,n),(myn,r) |0<r}U{((r,n—1,m),(myn,r))|—=0<rA0<n})

This kind of proof obligation is typical for the tradition of modelling programs as functions in higher-
order logic. In this shallow embedding, where the syntax of programs is not modelled explicitly, our
setting differs from that of the CoLoR [4] and A3PAT [5]] projects and the recent CeTA tool [[10]. How-
ever, our proof reconstruction should be applicable in that context, too.

For this presentation, we ignore many issues that tend to complicate things, like mutual and nested
recursion, and just focus on the reconstruction.

*http://wuw.in.tum.de/~krauss
!The wellfoundedness predicate wf is defined in such a way that the “smaller” element is written left, contrary to conven-
tions in rewriting.
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Figure 1: The size-change graphs generated for perm and the underlying theorems

3 SCNP = Size-Change Termination in NP

The SCNP criterion uses the abstraction known from size-change termination: A termination problem is
represented as an abstract control-flow graph, whose edges carry information about the relative sizes of
data in the transitions, depicted as size-change graphs. In Isabelle, this information is derived using off-
the-shelf theorem proving methods, producing a theorem for each edge in a size-change graph. Figure|]
shows the size-change graphs generated for the function perm and the underlying theorems.

Instead of computing the transitive closure of the set of size-change graphs, the SCNP approach is
based on orderings. It uses the following extensions of wellfounded relations to finite multisets:

Definition 1 (Max-, min-, and multiset extension).

max-ext R={(X,Y) | Y A0 A (VxeX. JyeY. (x,y) €ER)}

min-ext R = {(X,Y) | X #0 A (VyeY. IxeX. (x,y) €R)}

ms-extR ={(X,Y)|3aZK.Y=ZU{a} NX=ZUKA (Vx€K. (x,a) €R)}"

Intuitively, max-ext and min-ext compare sets by their maximum or minimum, and ms-ext is the standard
multiset order [1]. Ben-Amram and Codish also use a fourth extension called dual multiset order, but
experiments show that it contributes very little to the power of the approach, and we decided not to
include it. The extensions above are applied to the lexicographic order on pairs of natural numbers.
Formally:

lexe = {((a,b),(c,d)) |la<cVa<cAb<d}, lex< = lex- U Id,
max. = max-ext lex., min. = min-ext lex, ms. = ms-ext lex,
max< = max-ext lex< U {(0,0)}, min< = min-ext lex< U {(0,0)}, ms< =ms. UId.

Using our comprehension notation, a call {(r;, ;) | I';} is said to be R-decreasing under a map f
if {(fri,f1;) | i} CR or, equivalently, I => (f r;, fI;) € R. We are looking for a map under which
some calls are t-decreasing and the remaining calls are p<-decreasing for some y € {max, min, ms}.
Then the u -decreasing calls can be removed from the termination problem and the process is repeated
(possibly with a different ordering) until no calls are left.

The SCNP approach uses maps which assign a multiset of pairs to each argument vector. The first
component of the pairs is the size of some argumen and the second is a fixed natural number called a
tag. A function of this kind is called a level mapping. There is no intuitive motivation for the tags, but
they add an extra degree of freedom to the analysis, thus making it slightly more powerful in some cases.

Example (cont’d). The termination proof for the function perm above uses the level mapping A (m, n, r).
{(m, 0), (n, 0), (r, 0)}. Both calls are ms_-decreasing under that level mapping.

2Isabelle generates size measures heuristically based on the types. The size of a natural number is the number itself.
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max<: (1) Y#0= (0,Y) € max
2) yeY= (x,y) €lexc = (X,Y) € max. = ({x} UX,Y) € max-
ms<:  (3) (Z,Z') € pairwise<« = (A, B) e max. = (ZUA,Z'"UB) € ms—
pairwise<: (4) (0, 0) € pairwise<
B)  (x,y) €lex< = (X, Y) € pairwise<« = ({x} UX, {y} UY) € pairwise<
lex.j<: (6) a<b=((a,5),(b,1)) € lex<
(7 a<b=s<t= ((a,s), (b, 1)) € lex<
8) a<b= ((a,s), (b,1)) € lex<
9 a<b=s<t= ((a,s), (b, 1)) € lex<

Figure 2: Introduction rules for proof reconstruction

Certificates A certificate is the justification for removing some calls from a termination problem. It
contains the following information:
1. The ordering u € {max, min, ms},
2. the level mapping f, which maps the argument vectors to multisets,
3. the calls that are t-decreasing under f, and
4. a covering function for each call, which contains information required in the proof that the call is
decreasing. If u € {max, min}, the function provides the instantiations of the existential quantifiers
in Def. |1} If u = ms, it provides the decomposition of the multisets used in rule (3) below.
To construct certificates, we use the SAT-encoding given by Ben-Amram and Codish [2]]. By calling an
external SAT solver, we obtain a satisfying assignment from which we obtain the information above.

4 Proof Reconstruction

The main task in the proof reconstruction is to formally derive the inclusions {(fr;, f ;) | Ii} €t /<
that are postulated by the certificate. For this purpose we derive a set of simple facts about max_ =
min_ /<, ms_ /<, and lex_ ), which serve as introduction rules for the respective relations. Figurel%]
shows some of the rules; the complete list can be found in [7]. The actual reconstruction consists o
applying these rules in a controlled manner. To express intermediate subgoals, we must introduce the
auxiliary relation (X, Y) € pairwise< which expresses that there is a one-to-one correspondence between
the respective elements of X and Y, such that corresponding elements (x, y) € lex<.

Proving that two given sets are max.-decreasing amounts to showing that for each x € X there is a
y € Y such that x < y using rules (1) and (2). At each application of rule (2), the variable y must be
instantiated with an element of Y, which is given by the covering function in the certificate. Multiset
descent can be reduced to max-descent using rule (3), which decomposes the multisets into two parts.
The decomposition is part of the certificate.

Example (cont’d). To illustrate the automated proof reconstruction, we show a detailed proof that the first
call of perm is ms.-decreasing. Thus we start with the following goal, which we will refine gradually:

0<r= ({(m,0),(r—1,0),(n,0)},{(m,0),(r,0), (n,0)}) € ms<
We rewrite the multisets using associativity and commutativity to split them into two parts, as in rule (3):
0<r= ({(m,0),(n,0)}U{(r—1,0)},{(m,0), (n,0)} U{(r,0)}) € ms<
After applying rule (3), we get two subgoals:
0<r= ({(m,0),(n,0)}, {(m0),(n, 0)}) € pairwise<
O0<r= ({(r—1,0)},{(r,0)}) € max-
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We apply the introduction rules for pairwise< to the first subgoal, obtaining the following goal state:
0<r= ((m,0),(m,0)) € lex<
0<r=((n,0),(n,0)) € lex<
0<r=({(r—1,0}{(r,0)}) € max<
Then we apply the introduction rules for lex<:
O<r=m<m

O0<r=0<0
O<r=n<n
O0<r=0<0

O0<r= ({(r—1,0)},{(r,0)}) € max.
Now, subgoals 1 and 3 are precisely the local descent properties (L1) and (L2) that we have already
proved (cf. Fig.[I). Subgoals 2 and 4 are trivial inequalities between number literals (the tags) and are
easily discharged. For the last subgoal, we apply rule (2), instantiating y with (r, 0). This yields
0<r=((r—1,0),(r,0)) € lex<
0<r=(0,{(r,0)}) € max-
Then, using rule (6), we can apply the local descent property (L3). Rule (1) solves the last subgoal.
Fortunately, these tedious proofs are fully automated and invisible to the user.

Acknowledgements We thank Amir Ben-Amram and Michael Codish for answering all our questions
on SCNP details.
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