
Adding Soft Types to Isabelle

Alexander Krauss

2010

This note describes how I would like to approach the “soft type challenge” in
Isabelle. It collects ideas that emerged in discussions with many people includ-
ing Jeremy Avigad, John Matthews, Tobias Nipkow, Larry Paulson, Andreas
Schropp, and Makarius Wenzel. Some of these ideas were previously summa-
rized by notes by Larry Paulson (in 2007) and Jeremy Avigad (in May 2010).
Here, I am trying to be more specific and concrete where possible, and to outline
a concrete research program.

Slogan: This work is not about inventing a logic or type theory. This is about
making sets more convenient to use than types are today, by building powerful
tools.

1 Motivation

Almost all major proof assistants are based on some form of type theory, where
the concepts of type and type checking are fundamental primitives that are
fixed once and for all. While types have many advantages, using them as a
foundation deviates from the de-facto standard in mathematics, where a set-
theoretic foundation is taken for granted. Moreover, types can become a serious
limitation when the studied concepts are not easily expressible within their
limits. There are many examples of theories that have to be tuned significantly
to make them compatible with the type discipline.

• Proof assistants based on higher-order logic cannot express the type of all
n× n-matrices naturally, since types may not depend on values.

• While dependent type theories (e.g., CIC) can express strong specifica-
tions within the type system, their handling of equality is problematic:
Definitional equality, which is typically used for type checking, is quite
weak. For example, the types T (1 + n) and T (n + 1) are regarded as
different in an intensional type theory.

In particular, the definition of some object is treated in a fundamentally
different way than other properties of the object which are derived from
the definitions. This makes it harder to build abstractions, where objects

1



are characterized in terms of their properties and not by their construc-
tion. Here, the extensional type theory of the NuPRL system is a notable
exception.

• Many proof assistants cannot express subtyping naturally, even though
it is very natural to assume that, e.g., the different sets of numbers are
subtypes of one another: N ⊆ Z ⊆ Q ⊆ R ⊆ C. Moreover, subtyping is
useful to express invariants of data structures.

• While the Isabelle system has a native implementation of type classes as
part of the foundation, it lacks useful extensions such as multi-parameter
type classes and constructor classes.

Most of these concrete deficiencies of existing systems can be addressed by
modifications and extensions to the type system. However, in practice this
rarely happens, because the type system is rigidly connected with the logical
foundations of the theorem prover. Changing it raises meta-theoretical issues
about the soundness of the modified system, and also requires significant mod-
ifications to the implementation of the theorem prover, which typically renders
existing developments incompatible. Moreover, there is no single system that
handles all these issues well.

As a result of this dilemma, users of theorem provers accumulate elaborate
tricks to partly circumvent certain limitations. For example, Harrison’s formal-
ization of n-ary cartesian products [2] encodes the number n as a type (which
seriously complicates induction proofs over n), and Huffman et al. encode con-
structor classes as values in HOLCF [3] (the approach was never actively used,
due to its complexity). Such tricks can be useful, but they are more often in
the way.

2 Our vision: soft types

This project will take a radically different approach: Rather than hard-wiring
types into the calculus, we aim to create a proof assistant with “soft types”, as
a flexible and extensible infrastructure on top of untyped set theory.

In set theory, the equivalent of a typing judgement a : A can be expressed
as set (or class) membership assertion a ∈ A. Thus, types become first-class
citizens, and a “type checker” is nothing more than a procedure that proves
statements about sets automatically. Depending on the application, this can be
a straightforward implementation of simply-typed lambda calculus, or a more
sophisticated tool, which allows for dependent types, and incorporates other
automated reasoning procedures.

This approach has the potential to result in a proof assistant which is more
powerful and more flexible than all systems currently in existence.

In addition to the advantages of typed systems, we gain

Power More expressive forms of typing can be added by users or libraries.
Types are always explained in terms of the underlying set theory, which

2



gives these extensions a clear semantics. Since type checking is not differ-
ent from other reasoning, existing automated proof tools can be used.

Flexibility For different applications, or in different places within a single ap-
plication, different forms of typing may be used. This is important, since
no single procedure can suit all applications.

Safety Proofs produced by the type checker are treated in the same way as
other proofs: the system’s minimal trusted kernel checks them for correct-
ness. Thus, errors in the type checker cannot accidentally make the whole
system unsound.

Simpler Foundation The logical foundation of the whole system becomes
much simpler, and closer to standard mathematics.

3 Basic Approach

Since introducing soft types touches many areas of the system, it is hard to
find a place to start. It is important not to do too many things at once. The
following route may be a suitable way to get started.

1. Represent soft types in Pure as predicates (of type α ⇒ prop, or maybe
α⇒ bool/o). Π-types can be expressed in Pure already, whereas Σ-types
can only be added in the object logics, since they depend on a notion of
pair.

2. Implement a simple type checker as a proof procedure similar to the
typecheck tactic in ZF, but in a way that it can solve systems of con-
straints. Like typecheck, it will use information declared in the context.

This type checker is only a basis for experimenting with the framework,
and we will probably refine it continuously as we go on, and re-do it several
times. Being able to do this flexibly is the main advantage of soft types.

3. Using the existing check/uncheck infrastructure by Makarius, implement
implicit arguments, which are inserted with the help of the type checking
procedure. While the general idea of implicit arguments seems simple,
there may be some tricky bits in the implementation, and documentation
on this seems to be weak. We might want to interview some people that
know about the implementation in other systems (Coq/Agda/Matita/?).

4. Build variants of the rule, erule tactics that solve typing assumptions
automatically. This is to support single-step apply-style proofs without
typing conditions getting in the way.

5. Instrument a few automated tools to use type information from the con-
text. We might start with simp and auto. Other tools like blast should
probably be ignored for the moment; at a later stage we may need a general
way of dealing with type-unaware tools, but this requires experimentation.

3



At this point, we have gained basic soft type checking and convenient syntax
through implicit arguments. The implicit syntax is important: it hides type
arguments from polymorphic functions and can later help to resolve ambiguous
notation and hide dictionary arguments when a type class mechanism is added.

Ideally, most of this can be done generically in Pure and instantiated for
object logics. This lets us experiment with the tools in HOL, where we can
play with existing formalizations, and then move on to ZF, which is our actual
target.

4 Case Studies

We should play with applications early in the process. A few things immediately
come to mind, in increasing difficulty.

• Vectors of length n (simple dependent type). We should be able to
state and prove associativity of append without running into the typing
issues commonly encountered in Coq. This probably requires including
the simplifier into the type checking phase.

• As a slight generalization, we can look at n × m-matrices, which have
been challenging in HOL: While the set of n ×m matrices forms a ring,
the set of all matrices does not, since there is no finite matrix that is
a multiplicative unit for all dimensions. With soft types the situation is
better, since we can specifically consider n×m matrices.

• Also related to vectors of fixed length, we should see if we can get a faithful
model of Cryptol’s sized types. This could considerably improve the
shallow embedding of Cryptol in Isabelle.

• Constructor Polymorphism. This requires ZF. Monads can be mod-
elled generically by specifying a set operator M in a locale. This is already
possible today, but it is not practical, since there is just too much typing
clutter in the way. Soft types should be able to hide most of this.

• Subtypes. This can be predicate subtypes in the PVS sense, but we
should experiment with other systems: In Mizar, types can be modified
by “attributes” (e.g., nonzero, positive, nonempty). It seems that by
declaring such subsets explicitly and by giving appropriate rules, one can
avoid generating arbitrary type checking conditions, which would arise
from the general {x ∈ A | P (x)}. Here we must experiment and learn
from Mizar.

5 Challenges

5.1 ZFisms

A few specific issues arise when using ZF.

4



Sets vs. classes It is natural to permit that types can be classes, which arises
from the use of predicates in Pure. It also allows us to write things like
the type of all groups, as a dependent tuple containing the carrier set and
the operations.

In some situations, types may need to be “internalized” into sets. For
example, the type of all groups can be restricted to the set of all groups
whose carrier is a subset of the natural numbers. We must find out when
this is necessary, and provide tools that make the conversion smooth.
However, this is not entirely new: even in HOL, one regularly applies
atomize and rulify conversions to expressions, which convert meta logic
to object logic and back. The class/set transition could be similar.

Object vs. meta functions This is essentially the same issue as above, just
for functions instead of relations. As noted by Larry, working with meta
functions is more convenient, so we should try to stick with them whenever
possible. Note that meta functions can still be typed in the Pure soft type
framework. If for a function f :: i⇒ i we use the syntax f :: [A]⇒ [B] to
express that ∀x ∈ A.f(x) ∈ B then the application operator ‘ and the ZF
abstraction operator Lambda can be soft-typed as

‘ :: [A→ B]⇒ [A]⇒ [B] .

Lambda :: [A]⇒ ([A]⇒ [B])⇒ [A→ B] .

This also works in the dependently typed versions.

5.2 Type Inference

If we want to support some sort of dependent types or even just a combination
of polymorphism and subtyping, we must end up with general type inference
being undecidable.

But there is hope that a reasonably well-behaved partial type inference can
be built, which only rarely requires explicit annotations. In dependent type
theories this is common practice and successful, although the details are tricky,
and not very well-documented. A good source of information is a recent draft
by Pientka, who had to implement type reconstruction for LF, and documented
some tricky parts in good detail [7]. Norell’s thesis [5] describes the inference
mechanism used in Agda. It is interesting and potentially helpful that a similar
mechanism already exists in Isabelle: The reconstruction process which restores
the information elided from proof terms is nothing but a type inference mecha-
nism for the language of proof terms.

On the programming language side, the situation is similar: full type re-
construction for polymorphism plus subtyping is undecidable, but using local
type inference [8, 6], it seems that practical inferences can be built. The Scala
language uses them successfully.

Interestingly, in both worlds, some form “bidirectional” type checking algo-
rithm is used, even though the type systems are quite different.

5



5.3 Isar Integration

The basic setup can be implemented without making any fundamental changes
to the system’s architecture. For initial experiments, this is acceptable but it
has a few limitations. Most importantly, it requires that the type of all variables
is written explicitly in the Isar text:

fix x
assume [type]: x ∈ A 1

...

Similarly, the typing assumptions will be visible in top-level theorem statements.
For more concise specifications and proofs, we would like to apply type inference
here.

A consequence for the Isar architecture is that reading a term may extend the
context with additional assumptions like x ∈ A above. In principle, the existing
declare_term operations could be used to implement this, but at the moment
they only add non-logical constraints to the context that affect subsequent type
inference. Reinterpreting these operations to do anything logically significant
will require a careful reexamination of the places where it is used. Similar
“refactorings” happen regularly in the normal Isabelle development process,
but they require time and significant effort.

We therefore postpone these issues until we have a clearer understanding of
the other components of the infrastructure, and until we have done some of the
case studies.

5.4 Structures and Type Classes

While it is not new that a combination of implicit arguments and clever type
inference can implement type classes (Coq does it this way [9], and Scala does
too [1]), we still do not know how to combine the parts into a coherent whole.
In Coq, there seem to be multiple ways of using type classes to model algebraic
structures. While both techniques use some form of dependent tuple/record, the
question is which components are modelled as record components and which are
parameters. Spitters and van der Weegen [10] explore these design considera-
tions in Coq.

We will have to address similar questions in the context of Isabelle and soft
types. The approach using unification hints mentioned in Avigad’s notes seems
to be one way of doing it, but there may be others.

5.5 Users and Libraries

We cannot expect to build a system that can replace Isabelle/HOL within the
next years. Thus, the soft type project will remain a minority interest for
some time. As pointed out by Avigad, this can be an advantage, since we

1The more concise fix x ∈ A suggests itself, of course.

6



can concentrate on the fundamental issues without worrying about breaking
anybody’s large developments. However, at some point, significant porting of
theories will be required.

However, given the excitement that the soft type discussion often generates,
I have no doubt that once we get the fundamentals of the system right, it will
be easy to find people to help with the porting. Recent ports of theories from
HOL Light to Isabelle show that porting theories is hard but feasible, and the
results are often better than the original.

References

[1] B. C. d. S. Oliveira, A. Moors, and M. Odersky. Type classes as objects
and implicits. In OOPSLA/SPLASH 2010, 2010. To appear.

[2] J. Harrison. A HOL theory of euclidean spaces. In Hurd and Melham [4],
pages 114–129.

[3] B. Huffman, J. Matthews, and P. White. Axiomatic constructor classes in
Isabelle/HOLCF. In Hurd and Melham [4], pages 147–162.

[4] J. Hurd and T. F. Melham, editors. Theorem Proving in Higher Order
Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, Au-
gust 22-25, 2005, Proceedings, volume 3603 of Lecture Notes in Computer
Science. Springer Verlag, 2005.

[5] U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, September 2007.

[6] M. Odersky, M. Zenger, and C. Zenger. Colored local type inference. In
Proc. ACM Symposium on Principles of Programming Languages, pages
41–53, 2001.

[7] B. Pientka. An insider’s look at lf type reconstruction: Everything you
(n)ever wanted to know. submitted, Aug 2010.

[8] B. C. Pierce and D. N. Turner. Local type inference. ACM Trans. Program.
Lang. Syst., 22(1):1–44, January 2000.

[9] M. Sozeau and N. Oury. First-class type classes. In O. Ait Mohamed,
C. Muñoz, and S. Tahar, editors, Theorem Proving in Higher Order Logics
(TPHOLs 2008), volume 5170 of Lecture Notes in Computer Science, pages
278–293. Springer Verlag, 2008.

[10] B. Spitters and E. van der Weegen. Developing the algebraic hierarchy
with type classes in Coq. In M. Kaufmann and L. C. Paulson, editors,
Interactive Theorem Proving (ITP 2010), volume 6172 of Lecture Notes in
Computer Science, pages 490–493. Springer Verlag, 2010.

7


