
Lifting and Transfer: A Modular Design for Quotients
in Isabelle/HOL

Brian Huffman1 and Ondřej Kunčar2

1 Galois, Inc.
2 Technische Universität München

Abstract. Quotients, subtypes, and other forms of type abstraction are ubiqui-
tous in formal reasoning with higher-order logic. Typically, users want to build a
library of operations and theorems about an abstract type, but they want to write
definitions and proofs in terms of a more concrete representation type, or “raw”
type. Earlier work on the Isabelle Quotient package has yielded great progress in
automation, but it still has many technical limitations.
We present an improved, modular design centered around two new packages:
the Transfer package for proving theorems, and the Lifting package for defining
constants. Our new design is simpler, applicable in more situations, and has more
user-friendly automation.

1 Introduction

Quotients and subtypes are everywhere in Isabelle/HOL. For example, basic numeric
types like integers, rationals, reals, and finite words are all quotients. Many other types
in Isabelle are implemented as subtypes, including multisets, finite maps, polynomials,
fixed-length vectors, matrices, and formal power series, to name a few.

Quotients and subtypes are useful as type abstractions: Instead of explicitly assert-
ing that a function respects an equivalence relation or preserves an invariant, this infor-
mation can be encoded in the function’s type. Quotients are also particularly useful in
Isabelle, because reasoning about equality on an abstract type is supported much better
than reasoning modulo an equivalence relation.

Building a theory library that implements a new abstract type can take a lot of work.
The challenges are similar for both quotients and subtypes: Isabelle requires explicit co-
ercion functions (often “Rep” and “Abs”) to convert between old “raw” types and new
abstract types. Definitions of functions on abstract types require complex combinations
of these coercions. Users must prove numerous lemmas about how the coercions inter-
act with the abstract functions. Finally, it takes much effort to transfer the properties of
raw functions to the abstract level. Clearly, this process needs good proof automation.

1.1 Related Work

Much previous work has been done on formalizing quotients in theorem provers. Slo-
tosch [12] and Paulson [10] each developed techniques for defining quotient types and
defining first-order functions on them. They provided limited automation for transfer-
ring properties from raw to abstract types in the form of lemmas that facilitate manual

proofs. Harrison [3] implemented tools for lifting constants and transferring theorems
automatically, although this work was still limited to first-order constants and theorems.
In 2005, Homeier [4] published a design for a new HOL package, which was the first
system capable of lifting higher-order functions and transferring higher-order theorems.

Isabelle’s Quotient package was implemented by Kaliszyk and Urban [5], based
upon Homeier’s design. It was first released with Isabelle 2009-2. The Quotient pack-
age is designed around the notion of a quotient, which involves two types and three
constants: a raw type ’a with a partial equivalence relation R :: ’a ⇒ ’a ⇒ bool and
the abstract type ’b, whose elements are in one-to-one correspondence with the equiv-
alence classes of R. The abstraction function Abs :: ’a ⇒ ’b maps each equivalence
class of R onto a single abstract value, and the representation function Rep :: ’b ⇒ ’a
takes each abstract value to an arbitrary element of its corresponding equivalence class.

The Quotient package implements a collection of commands, proof methods, and
theorem attributes. Given a raw type and a (total or partial) equivalence relation R, the
quotient type command defines a new type with Abs and Rep that form a quotient.
Given a function g on the raw type and an abstract type, the quotient definition com-
mand defines a new abstract function g′ in terms of g, Abs, and Rep. The user must
provide a respectfulness theorem showing that g respects R. Finally the descending and
lifting methods can transfer propositions between g and g′. Internally, this uses respect-
fulness theorems, the definition of g′, and the quotient properties of R, Abs and Rep.

Lammich’s automatic procedure for data refinement [7] was directly inspired by our
packages, especially by the idea to represent types as relations.

In Coq, implementations of generalized rewriting by Coen [1] and Sozeau [13] are
similar to our Transfer method—in particular, Sozeau’s “signatures” for higher-order
functions are like our transfer rules. Sozeau’s work has better support for subrelations,
but our Transfer package is more general in allowing relations over two different types.

Magaud [8] transfers Coq theorems between different types, but unlike our work,
his approach is based on transforming proof terms.

1.2 Limitations of the Quotient package

We decided to redesign the Quotient package after identifying several limitations of its
implementation. A few such limitations were described by Krauss [6]: 1.) The quotient
relation R and raw function f must be dedicated constants, not arbitrary terms. Thus
the tool cannot be used on locale parameters and some definitions in a local theory. 2.)
One cannot turn a pre-existing type into a quotient afterwards; nor can one declare a
user-defined constant on the quotient type as the lifted version of another constant.

To solve problem 1 does not require major organizational changes. However, prob-
lem 2 has deeper roots and suggested splitting the Quotient package into various layers:
By having separate components with well-defined interfaces, we could make it easier
for users to connect with the package in non-standard ways.

Besides the problems noted by Krauss, we have identified some additional problems
with the descending/lifting methods. Consider ’a fset, a type of finite sets which is a
quotient of ’a list. The Quotient package can generate fset versions of the list functions
map :: (’a ⇒ ’b) ⇒ ’a list ⇒ ’b list and concat :: ’a list list ⇒ ’a list, but it has dif-
ficulty transferring the following theorems to fset:

concat (map (λx. [x]) xs) = xs
map f (concat xss) = concat (map (map f) xss)
concat (map concat xsss) = concat (concat xsss)

The problem is with the user-supplied respectfulness theorems. Note that map oc-
curs at several different type instances here: It is used with functions of types ’a ⇒ ’b,
’a ⇒ ’a list, and ’a list ⇒ ’b list. Unfortunately a single respectfulness theorem for
map will not work in all these cases—each type instance requires a different respect-
fulness theorem. On top of that, the user must also prove additional preservation lem-
mas, essentially alternative definitions of map fset at different types. These rules can
be tricky to state correctly and tedious to prove.

The Quotient package’s complex, three-phase transfer procedure was another moti-
vation to look for a new design. We wanted to have a simpler implementation, involv-
ing fewer separate phases. We also wanted to ease the burden of user-supplied rules, by
requiring only one rule per constant. Finally, we wanted a more general, more widely
applicable transfer procedure without so many hard-wired assumptions about quotients.

1.3 Overview

Our new system uses a layered design, with multiple components and interfaces that
are related as shown in Fig. 1. Each component depends only on the components under-
neath it. At the bottom is the Transfer package, which transfers propositions between
raw and abstract types (§2). Note that the Transfer package has no dependencies; it does
not know anything about Rep and Abs functions or quotient predicates.

Above Transfer is the Lifting package, which lifts constant definitions from raw to
abstract types (§3). It configures each new constant to work with Transfer. At the top
are commands that configure new types to work with Lifting, such as setup lifting and
quotient type. We expect that additional type definition commands might be imple-
mented later. We conclude with the contribution and results of our packages (§4).

Our work was released in Isabelle 2013-1.

Transfer package

Lifting package
User-defined
transfer rules

User-defined
quotient +

setup-lifting

typedef +
setup-lifting
commands

quotient-type
command

. . .

Fig. 1. Modular design of packages for formalizing quotients

2 Transfer package

The primary function of the Transfer package is to transfer theorems from one type
to another, by proving equivalences between pairs of related propositions. This pro-
cess is guided by an extensible collection of transfer rules, which establish connections
between pairs of related types or constants.

The Transfer package provides multiple user interfaces: The transfer proof method
replaces the current subgoal by a logically equivalent subgoal—typically, it replaces a
goal about an abstract type by a goal about the raw type. The package also provides
the transferred theorem attribute, which yields a theorem about an abstract type when
given a theorem involving a raw type.

2.1 Types as relations

The design of the Transfer package is based on the idea of types as binary relations. The
notions of relational parametricity by Reynolds [11], free theorems by Wadler [14], and
representation independence by Mitchell [9] were primary sources of inspiration.

Relational parametricity tells us that different type instances of a parametrically
polymorphic function must behave uniformly—that is, they must be related by a binary
relation derived from the function’s type. For example, the standard filter function on
lists satisfies the parametricity property shown below in Eq. (2). The relation is derived
from filter’s type by replacing each type constructor with an appropriate relator. Rela-
tors lift relations over type constructors: Related data structures have the same shape,
with pointwise-related elements, and related functions map related input to related out-
put (see Fig. 2). For base types like bool or int we use identity relations (←→ or =).

filter :: (’a ⇒ bool) ⇒ ’a list ⇒ ’a list (1)
∀A. ((A Z⇒ op ←→) Z⇒ list all2 A Z⇒ list all2 A) filter filter (2)

This parametricity property means that if predicates p1 and p2 agree on related inputs
(i.e., A x1 x2 implies p1 x1 ←→ p2 x2) then filter p1 and filter p2 applied to related
lists will yield related results. (Wadler-style free theorems are derived by instantiating
A with the graph of a function f; in this manner, we can obtain a rule stating essentially
that filter commutes with map.) Parametricity rules in the style of Eq. (2) can serve as
transfer rules, relating two different type instances of the same polymorphic function.

Representation independence is one useful application of relational parametricity.
Mitchell [9] used it to reason about data abstraction in functional programming. Imagine

(prod rel A B) x y≡ A (fst x) (fst y) ∧ B (snd x) (snd y)
(A Z⇒ B) f g≡ (∀x y. A x y −→ B (f x) (g y))

(set rel A) X Y≡ (∀x ∈ X. ∃y ∈ Y. A x y) ∧ (∀y ∈ Y. ∃x ∈ X. A x y)
(list all2 A) xs ys≡ length xs = length ys ∧ (∀(x, y) ∈ set (zip xs ys). A x y)

Fig. 2. Relators for various type constructors

we have an interface to an abstract datatype (e.g. queues) with two different implemen-
tations. We would hope for any queue-using program to behave identically no matter
which queue implementation is used—i.e., that the two queue implementations are con-
textually equivalent. Representation independence implies that this is so, as long as we
can find a relation between the two implementation types that is preserved by all the
corresponding operations. In our work, we refer to such a relation as a transfer relation.

The Transfer package is essentially a working implementation of the idea of repre-
sentation independence, but in a slightly different setting: Instead of a typical functional
programming language, we use higher-order logic; and instead of showing contextual
equivalence of programs, we show logical equivalence of propositions.

Example: Int/nat transfer. We consider a simple use case, transferring propositions be-
tween the integers and natural numbers. We can think of type int as a concrete represen-
tation of the more abstract type nat; each type has its own implementation of numerals,
arithmetic operations, comparisons, and so on. To specify the connection between the
two types, we define a transfer relation ZN :: int ⇒ nat ⇒ bool.

ZN x n ≡ (x = int n) (3)

We can then use ZN to express relationships between constants in the form of trans-
fer rules. Obviously, the integer 1 corresponds to the natural number 1. The respective
addition operators map related arguments to related results. Similarly, less-than on in-
tegers corresponds to less-than on naturals. Finally, bounded quantification over the
non-negative integers corresponds to universal quantification over type nat.

(ZN) (1::int) (1::nat) (4)
(ZN Z⇒ ZN Z⇒ ZN) (op +) (op +) (5)
(ZN Z⇒ ZN Z⇒ op ←→) (op <) (op <) (6)
((ZN Z⇒ op ←→) Z⇒ op ←→) (Ball {0..}) All (7)

The Transfer package can use the rules above to derive equivalences like the following.

(∀x::int ∈ {0..}. x < x + 1) ←→ (∀n::nat. n < n + 1) (8)

If we apply the transfer method to a subgoal of the form ∀n::nat. n < n + 1, the Trans-
fer package will prove the equivalence above, and then use it to replace the subgoal with
∀x::int ∈ {0..}. x < x + 1. The transferred attribute works in the opposite direction:
Given the theorem ∀x::int ∈ {0..}. x < x + 1, it would prove the same equivalence,
and return the theorem ∀n::nat. n < n + 1. In general, the Transfer package can han-
dle any lambda term constructed from constants for which it has transfer rules.

2.2 Transfer algorithm

The core functionality of the Transfer package is to prove equivalence theorems in the
style of Eq. (8). To derive an equivalence theorem, the Transfer package uses transfer
rules for constants, along with elimination and introduction rules for Z⇒.

(A Z⇒ B) f g A x y
B (f x) (g y)

(Z⇒-ELIM)
∀x y. A x y−→ B (f x) (g y)

(A Z⇒ B) f g
(Z⇒-INTRO)

Alternatively, these rules can be restated in the form of structural typing rules, similar
to those for the simply typed lambda calculus. A typing judgment here involves two
terms instead of one, and a binary relation takes the place of a type. The environment Γ
collects the local assumptions for bound variables.

APP
Γ ` (A Z⇒ B) f g Γ ` A x y

Γ ` B (f x) (g y)

ABS
Γ, A x y ` B (f x) (g y)

Γ ` (A Z⇒ B) (λx. f x) (λy. g y)

VAR
A x y ∈ Γ
Γ ` A x y

To transfer a theorem requires us to build a derivation tree using these rules, with
transfer rules for constants at the leaves of the tree. For the transfer method, we are
given only the abstract right-hand side; for the transferred attribute, only the left-hand
side. The job of the Transfer package is to fill in the remainder of the tree—essentially
a type inference problem.

Our implementation splits the process into two steps. Step one is to determine the
overall shape of the derivation tree: the arrangement of APP, ABS, and VAR nodes,
and the pattern of unknown term and relation variables. Step two is then to fill in the
leaves of the tree using the collection of transfer rules, at the same time instantiating the
unknown variables.

Step one starts by building a “skeleton” s of the known term t—a lambda term
with the same structure, but with constants replaced by fresh variables. Using Isabelle’s
standard type inference algorithm, we annotate s with types; the inferred types deter-
mine the pattern of relation variables in the derivation tree. For step two, we set up a
schematic proof state with one goal for each leaf of the tree, and then match transfer
rules with subgoals. We use backtracking search in case multiple transfer rules match a
given left- or right-hand side.

As an example, we will transfer the proposition ∀n::nat. n ≤ n. This is actually syn-
tax for All (λn::nat. le n n), so its skeleton has the form t (λx. u x x). Type inference
yields a most general typing with t :: (’a ⇒ ’b) ⇒ ’c and u :: ’a ⇒ ’a ⇒ ’b, where ’a,
’b, and ’c are fresh type variables. We generate fresh relation variables ?a, ?b, and ?c
corresponding to these, and use them to build an initial derivation tree following the
skeleton’s structure and inferred types:

` ((?a Z⇒ ?b) Z⇒ ?c) ?t All

?a x n ` (?a Z⇒ ?a Z⇒ ?b) ?u le ?a x n ` ?a x n
?a x n ` (?a Z⇒ ?b) (?u x) (le n) ?a x n ` ?a x n

?a x n ` ?b (?u x x) (le n n)
` (?a Z⇒ ?b) (λx. ?u x x) (λn. le n n)

` ?c (?t (λx. ?u x x)) (All (λn. le n n))
Note that the leaves with ?a x n are solved with rule VAR, but the leaves with con-

stants All and le are as yet unsolved. Therefore this derivation tree yields a theorem with
two hypotheses, ((?a Z⇒ ?b) Z⇒ ?c) ?t All and (?a Z⇒ ?a Z⇒ ?b) ?u le, and a conclu-
sion ?c (?t (λx. ?u x x)) (All (λn. le n n)). In step two, we set up a proof state with
the hypotheses as subgoals. The first goal is matched by Eq. (7), and the second goal
by (ZN Z⇒ ZN Z⇒ op ←→) (op ≤) (op ≤). Similarly instantiating the schematic vari-
ables in the conclusion yields the final equivalence theorem:

(∀x::int ∈ {0..}. x ≤ x) ←→ (∀n::nat. n ≤ n) (9)

2.3 Parameterized transfer relations

The design of the Transfer package generalizes easily to transfer relations with pa-
rameters. As an example, we define a transfer relation between lists and a finite set
type; it is parameterized by a relation on the element types. We assume a function
Fset :: ’a list ⇒ ’a fset that converts the given list to a finite set.

LF :: (’a1 ⇒ ’a2 ⇒ bool) ⇒ ’a1 list ⇒ ’a2 fset ⇒ bool (10)
(LF A) xs Y ≡ ∃ys. list all2 A xs ys ∧ Fset ys = Y (11)

If we define versions of the functions map and concat that work on finite sets, we
can relate them to the list versions with the transfer rules shown here.

((A Z⇒ B) Z⇒ LF A Z⇒ LF B) map map fset (12)
(LF (LF A) Z⇒ LF A) concat concat fset (13)

These rules allow the Transfer package to work on formerly problematic goals such
as map fset f (concat fset xss) = concat fset (map fset (map fset f) xss), as long as
appropriate transfer rules for equality are also present. The same transfer rules work for
all type instances of these constants.

2.4 Transfer rules with side conditions

Some polymorphic functions in Isabelle require side conditions on their parametricity
theorems. For example, consider the equality relation =, which has the polymorphic
type ’a ⇒ ’a ⇒ bool. Its type would suggest (A Z⇒ A Z⇒ op ←→) (op =) (op =), but
this does not hold for all relations A—it only holds if A is bi-unique, i.e., single-valued
and injective.

bi unique A =⇒ (A Z⇒ A Z⇒ op ←→) (op =) (op =) (14)

As pointed out by Wadler [14], this restriction on relations is akin to an eqtype an-
notation in ML, or an Eq class constraint in Haskell. While Haskell allows users to
provide Eq instance declarations, the Transfer package allows us to provide additional
rules about bi-uniqueness that serve the same purpose, for example: bi unique ZN,
bi unique A =⇒ bi unique (set rel A) and bi unique A =⇒ bi unique (list all2 A).

Using the above rules, the Transfer package is able to relate equality on lists of
integers with equality on lists of naturals, using the relation list all2 ZN. It can similarly
relate equality on sets, lists of sets, sets of lists, and so on.

The universal quantifier requires a different side condition on its parametricity rule.
While equality requires bi-uniqueness, the universal quantifier requires the relation A
to be bi-total—i.e., A must be both total and surjective.

bi total A =⇒ ((A Z⇒ op ←→) Z⇒ op ←→) All All (15)

Universal quantifiers appear in most propositions used with transfer; however, many
transfer relations (including ZN) are not bi-total, but only right-total, i.e., surjective.
The following transfer rule can then be used if no other specialized rule is provided:

right total A =⇒ ((A Z⇒ op ←→) Z⇒ op ←→) (Ball {x. Domainp A x}) All (16)

The predicate Domainp is defined as Domainp T x ≡ ∃y. T x y. Because it is awk-
ward to work with expressions like Domainp T in the transferred goal, we imple-
mented a post-processing step that can replace Domainp expressions with equivalent
but more convenient predicates. This is configured by registering a transfer domain
rule: Domainp ZN = (λx. x ≥ 0). We provide transfer domain rules for lists and other
types; thus we can replace, for example, Domainp (list all2 ZN) by list all (λx. x ≥ 0).
The use of Domainp is not limited to quantifiers—the usual parametricity rules for con-
stants like UNIV, Collect, and set intersection

⋂
require bi-totality, but we also provide

more widely applicable transfer rules using Domainp.
The last condition we can use to restrict relations is being right-unique, i.e., single-

valued. Bi-totality, right-totality and right-uniqueness are like bi-uniqueness preserved
by many relators, including those for lists and sets. We mentioned that ZN is not bi-total
but, e.g, total quotients yield bi-total transfer relations; see the overview in Tab. 1.

Handling equality relations Many propositions contain non-polymorphic constants that
remain unchanged by the transfer procedure, e.g., boolean operations. We would like to
avoid the necessity for lots of trivial transfer rules like the rule for the boolean conjunc-
tion: (op ←→ Z⇒ op ←→ Z⇒ op ←→) (op ∧) (op ∧). Instead we define a predicate
is equality A, which holds if and only if A is the equality relation on its type, and regis-
ter a single reflexivity transfer rule is equality A =⇒ A x x. The is equality predicate is
preserved by all of the standard relators, including lists, sets, pairs, and function space.

2.5 Proving implications instead of equivalences

The transfer proof method can replace a universal with an equivalent bounded quan-
tifier: e.g., (∀n::nat. n < n + 1) is transferred to (∀x::int ∈ {0..}. x < x + 1). This
yields a useful extra assumption in the new subgoal. With the transferred attribute, how-
ever, it may be preferable to start with a stronger theorem (∀x::int. x < x + 1), without
the bounded quantifier. In this case, the Transfer package can prove an implication:

(∀x::int. x < x + 1) −→ (∀n::nat. n < n + 1) (17)

The Transfer algorithm works exactly the same; we just need some new transfer rules
that encode monotonicity. We provide rules for quantifiers and implication, using vari-
ous combinations of −→,←−, and←→; a few are shown here.

right total A =⇒ ((A Z⇒ op −→) Z⇒ op −→) All All (18)
right total A =⇒ ((A Z⇒ op ←→) Z⇒ op −→) All All (19)
(op ←− Z⇒ op −→ Z⇒ op −→) (op −→) (op −→) (20)

The derivation of Eq. (17) uses transfer rule (19); rule (18) comes into play when
quantifiers are nested. These rules are applicable to relation ZN because it is right-
total. Further variants of these rules (involving reverse implication) are used to transfer
induction and case analysis rules, which have many nested implications and quantifiers.

Having many different transfer rules for the same constants would tend to introduce
a large amount of backtracking search in step two of the transfer algorithm. To counter
this, we pre-instantiate some of the relation variables to −→,←−, or←→, guided by a
simple monotonicity analysis.

3 Lifting package

The Lifting package allows users to lift terms of the raw type to the abstract type,
which is a necessary step in building a library for an abstract type. Lifting defines a
new constant by combining coercion functions (Abs and Rep) with the raw term. It also
proves an appropriate transfer rule for the Transfer package and, if possible, an equation
for the code generator. Doing this lifting manually is mostly tedious and uninteresting;
our goal is to automate as much as possible, so users can focus on the interesting bits.

The Lifting package provides two commands: setup lifting for initializing the
package to work with a new type, and lift definition for lifting constants. The Lifting
package works with four kinds of type abstraction: type copies, subtypes, total quotients
and partial quotients. See Tab. 1 for an overview of these.

Example: finite sets. Let us define a type of finite sets as a quotient of lists, where two
lists are in the same equivalence class if they represent the same set:

quotient type ’a fset = ’a list / (λxs ys. set xs = set ys)

Now we can define the union of two finite sets as a lifted function of concatenation of
two lists append :: ’a list ⇒ ’a list ⇒ ’a list, which has infix syntax @ :

lift definition funion :: ’a fset ⇒ ’a fset ⇒ ’a fset" is append

The command opens a proof environment with the following obligation:∧
l1 l2 l3 l4. set l1 = set l2 =⇒ set l3 = set l4 =⇒ set (l1 @ l3) = set (l2 @ l4)

The obligation is called a respectfulness theorem and says that append respects the
equivalence relation that defines ’a fset. When the user proves the obligation, the new
function funion is defined as follows:

funion A B ≡ abs fset ((rep fset A) @ (rep fset B))

The package also generates a code equation for the code generator:

funion (abs fset A) (abs fset B) = abs fset (A @ B)

And finally, because the package proved internally a corresponding transfer rule, we can
prove, e.g., that funion commutes: lemma funion A B = funion B A. If we apply the
method transfer, we get

∧
A B. set (A @ B) = set (B @ A), which is easily provable.

If we defined ’a fset by typedef ’a fset = {A :: ’a set. finite A}, i.e., as a subtype
of sets, and funion as a lifted function of the set union ∪, we would get the proof
obligation

∧
s1 s2. finite s1 =⇒ finite s2 =⇒ finite (s1 ∪ s2) and the code equation

rep fset (funion A B) = rep fset A ∪ rep fset B.3

3.1 General Case

We abstract from the presented example now and give a description that covers the gen-
eral case of what the Lifting package does. The input of the lifting is a term t :: τ1 on

3 See §3.3 for more about what the code equations are and how they are derived.

the concrete level, an abstract type τ2 and a name f of the new constant. In our ex-
ample, t = append, τ1 = ’a list ⇒ ’a list ⇒ ’a list, τ2 = ’a fset ⇒ ’a fset ⇒ ’a fset
and f = funion. We work generally with types τ which are composed from type con-
structors κ and other types ϑ. Then we write τ = ϑ κ. Each type parameter of κ can be
either co-variant (we write +) or contra-variant (−). E.g., in the function type α → β,
α is contra-variant whereas β is co-variant.

In this section, we define three functions Morphp, Relat and Trans. Morphp is a
combination of abstraction and representation functions and gives us the definition of
f . The polarity superscript p (+ or−) encodes if an abstraction or a representation func-
tion should be generated. Relat is a combination of equivalence relations and allows us
to describe that t behaves correctly—respects the equivalence classes. Finally, Trans is a
composed transfer relation and describes how t and f are related. More formally, if the
user proves the respectfulness theorem Relat(τ1, τ2) t t, the Lifting package will define
the new constant f as f =Morph+(τ1, τ2) t and proves the transfer rule Trans(τ1, τ2) t f .

For now we will not distinguish between quotients, subtypes, etc. Instead we unify
all four kinds of type abstraction with a general notion of an abstract type.

Definition 1. We say that κ2 is an abstract type of κ1 if there is a transfer relation Tκ1,κ2 ::
(ϑ) κ1→ (α) κ2→ bool associated with κ1 and κ2 (see also Fig. 3a) such that

1. Tκ1,κ2 is right-total and right-unique,
2. all type variables in ϑ are in α, which contains only distinct type variables.

We say that τ2 = (ρ) κ2 is an instance of an abstract type of τ1 = (σ) κ1 if

1. κ2 is an abstract type of κ1 certified by Tκ1,κ2 :: (ϑ) κ1→ (α) κ2→ bool,
2. σ= θ ϑ, where θ = match(ρ,α) 4.

In our finite sets example, the quotient type command internally generates a trans-
fer relation between the concrete type ’a list and the abstract type ’a fset. In principle,
such a transfer relation alone is sufficient to characterize all four kinds of type ab-
straction: type copies, subtypes, total and partial quotients. We could build compound
transfer relations for compound types and get other components (e.g., the morphisms
Morphp for the definition) from this relation using the choice operator. But it turns out
that it is useful to have these other components explicitly, e.g. for generating code equa-
tions. The other components that we can derive from each transfer relation Tκ1,κ2 and
associate with each abstract type are (◦◦ is the relation composition):

– Partial equivalence relation Rκ1,κ2 (Fig. 3b), specified by Rκ1,κ2 = Tκ1,κ2 ◦◦T−1
κ1,κ2

.
– Abstraction function Absκ1,κ2 (Fig. 3c), specified by Tκ1,κ2 a b−→ Absκ1,κ2 a = b.
– Representation function Repκ1,κ2 (Fig. 3d), specified by Tκ1,κ2 (Repκ1,κ2 a) a.

Since Tκ1,κ2 is right-total and right-unique, there always exist some Abs and Rep func-
tions that meet the above given specification. On the other hand, given R, Abs and Rep,
the specification allows only right-total and right-unique T .

The reflexive part of the partial equivalence relation Rκ1,κ2 implicitly specifies which
values of the concrete type are used for the construction of the abstract type.5 The

4 match is a usual matching algorithm, i.e., match(β,α) yields a substitution θ such that β= θ α.
5 We omitted reflexive edges of Rκ1,κ2 in Fig. 3b.

Tκ1,κ2

(a)

Rκ1,κ2

(b)

Absκ1,κ2

(c)

Repκ1,κ2

(d)

Fig. 3. Components of an abstract type

representation and abstraction functions map abstract values to concrete values and vice
versa. Absκ1,κ2 is underspecified outside of a range of Tκ1,κ2 (dashed lines in Fig. 3c) and
Repκ1,κ2 can select only one of the values in the corresponding class.

Now we come to the key definition of this section. We derived R, Abs and Rep
only for transfer relations that are associated with a type constructor. But later on, we
build compound transfer relations for general types. What are R, Abs and Rep in this
case? Again any functions meeting the above given specification. The following quo-
tient predicate captures this idea and bundles all the components together.

Definition 2. We define a quotient predicate with the syntax 〈., ., ., .〉 and we say that
〈R,Abs,Rep,T 〉 if 1. R = T ◦◦T−1, 2. T a b−→ Abs a = b and 3. T (Rep a) a.

The following definition requires that 〈., ., ., .〉 is preserved by going through the type
universe using map functions and relators.

Definition 3. We say that mapκ is a map function for κ and relκ is a relator for κ,
where κ has arity n, if the assumptions 〈R1,m+

1 ,m
−
1 ,T1〉, . . . ,〈Rn,m+

n ,m
−
n ,Tn〉 implies

〈relκR1 . . . Rn,mapκ mp1
κ . . . mp2n

κ ,mapκ m−p1
κ . . . m−p2n

κ , relκ T1 . . . Tn〉.

Indexes pi
κ encode which arguments of the map function are co-variant (+) or contra-

variant (−). The map function can in general take 2n arguments because each type
parameter of κ can be co-variant and contra-variant at the same time, e.g., α κ≡ α→ α.

Now we finally define Morphp, Relat and Trans, as we promised to be the main goal
of this section. First, let us define auxiliary functions morphp, relat and trans, which are
going to be used as the single step in the main definition of Morphp, Relat and Trans.
Functions morphp, relat and trans are defined for all types τ1 = (σ) κ1 and τ2 = (ρ) κ2,
where τ2 is an instance of an abstract type of τ1, as follows:

– morph+(τ1, τ2) = Absκ1,κ2 :: τ1→ τ2
– morph−(τ1, τ2) = Repκ1,κ2 :: τ2→ τ1

– relat(τ1, τ2) = Rκ1,κ2 :: τ1→ τ1→ bool
– trans(τ1, τ2) = Tκ1,κ2 :: τ1→ τ2→ bool

Now we extend the simple step functions morphp, relat and trans defined only for
abstract types to functions Morphp, Relat and Trans, which take general types τ1 and
τ2, by doing induction and case split on the type structure:

– Base case. If τ1 = τ2, then

Morphp(τ1, τ2) = id :: τ1→ τ1,

Relat(τ1, τ2) = op =:: τ1→ τ1→ bool,
Trans(τ1, τ2) = op =:: τ1→ τ1→ bool.

– Non-abstract type case. If τ1 = (σ) κ and τ2 = (ρ) κ, then

Morphp(τ1, τ2) = mapκMorphp1
κ p(σ1,ρ1) . . . Morphp2n

κ p(σn,ρn),

Relat(τ1, τ2) = relκRelat(σ1,ρ1) . . . Relat(σn,ρn),

Trans(τ1, τ2) = relκTrans(σ1,ρ1) . . . Trans(σn,ρn),

where mapκ is a map function for κ and pi
κp is a usual multiplication of polarities:

+ ·−=−·+=− and + ·+=−·−=+. The function relκ is a relator for type κ.
– Abstract type case. If τ1 = (σ) κ1, τ2 = (ρ) κ2, κ1 6= κ2, and κ2 is an abstract type

of κ1 certified by Tκ1,κ2 :: (ϑ) κ1 → (α) κ2 → bool, let us define σ′ = θ ϑ, where
θ = match(ρ,α). 6 Then we define these equations

Morph+(τ1, τ2) = morph+((σ′) κ1, τ2)◦Morph+(τ1,(σ′) κ1),

Morph−(τ1, τ2) = Morph−(τ1,(σ′) κ1)◦morph−((σ′) κ1, τ2),

Relat(τ1, τ2) = Trans(τ1,(σ′) κ1)◦◦ relat((σ′) κ1, τ2)◦◦Trans(τ1,(σ′) κ1)
−1,

Trans(τ1, τ2) = Trans(τ1,(σ′) κ1)◦◦ trans((σ′) κ1, τ2).

The functions Morphp, Relat and Trans are undefined if κ2 is not an abstract type for
κ1 in the abstract type case. In such a case the Lifting package reports an error. Let us
assume for the rest that we work only with such τ1 and τ2 that this does not happen.

Theorem 1. Morphp, Relat and Trans have the following types: Morph+(τ1, τ2) :: τ1→
τ2, Morph−(τ1, τ2) :: τ2→ τ1, Relat(τ1, τ2) :: τ1→ τ1→ bool and Trans(τ1, τ2) :: τ1→
τ2→ bool.

Proof. By induction on defining equations of Morphp, Relat and Trans. ut

Thus in our context, where t :: τ1, the terms Relat(τ1, τ2) t t, f = Morph+(τ1, τ2) t
and Trans(τ1, τ2) t f are well-typed terms and f has indeed type τ2. The respectful-
ness theorem Relat(τ1, τ2) t t has to be proven by the user. The definitional theorem
f = Morph+(τ1, τ2) t is proven by Isabelle. The remaining question is how we get the
transfer rule Trans(τ1, τ2) t f . Two following theorems give us the desired transfer rule.

Theorem 2. If 〈R,Abs,Rep,T 〉, f = Abs t and R t t, then T t f .

Proof. Because R = T ◦◦T−1, and R t t, we have ∃x. T t x. Let us denote this x as g.
Thus Abs t = g follows from T t g. But from f = Abs t we have f = g and thus T t f . ut

6 Definition 1 guarantees that all type variables in ϑ are in α and thus ρ uniquely determines σ′.

The following theorem is the key theorem of this section: it proves that our definitions
of Morphp, Relat and Trans are legal, i.e., they have the desired property that they still
form a (compound) abstract type, i.e., they meet the quotient predicate.

Theorem 3. 〈Relat(τ1, τ2),Morph+(τ1, τ2),Morph−(τ1, τ2),Trans(τ1, τ2)〉

Proof. By induction on defining equations of Morphp, Relat and Trans: Base case:
〈op =, id, id,op =〉 holds. Non-abstract type case: 〈., ., ., .〉 is preserved as it is required
in Definition 3. Abstract type case: for all τ2, an instance of the abstract type of τ1,
〈relat(τ1, τ2),morph+(τ1, τ2),morph−(τ1, τ2), trans(τ1, τ2)〉 holds by construction. And
finally, the key fact that we need: 〈R1,Abs1,Rep1,T1〉 and 〈R2,Abs2,Rep2,T2〉 implies
〈T1 ◦◦R2 ◦◦T−1

1 ,Abs2 ◦Abs1,Rep1 ◦Rep2,T1 ◦◦T2〉, i.e., 〈., ., ., .〉 is preserved through
the composition of abstract types. We proved this key fact in Isabelle/HOL. ut

If we compose Theorem 3 with the Theorem 2 and use f = Morph+(τ1, τ2) t and
Relat(τ1, τ2) t t, we get the desired transfer rule Trans(τ1, τ2) t f .

In the original Quotient package, Relat(τ1, τ2) in the abstract type case was defined
as Relat(τ1,(σ′) κ1)◦◦ relat((σ′) κ1, τ2)◦◦Relat(τ1,(σ′) κ1). Although Theorem 1 still
holds, Theorem 3 cannot be proven and thus the Quotient package does not cover the
whole possible type universe. As a consequence, transferring of theorems did not work
for general case of composed abstract types, but the package was still a great progress.

3.2 Implementation

In Isabelle/HOL, 〈., ., ., .〉 is defined as the Quotient predicate, whose definition is equiv-
alent to Definition 2. A new abstract type can be registered by a command setup lifting
by providing such a Quotient R Abs Rep T theorem, which certifies that the given com-
ponents R, Abs, Rep and T constitute an abstract type. Quotient theorems for relators
and map functions are registered by the attribute quot map. Such a theorem for the
function type is the most prominent one; another example is a theorem for the list type:

lemma fun quotient: Quotient R1 abs1 rep1 T1 =⇒ Quotient R2 abs2 rep2 T2 =⇒
Quotient (R1 Z⇒ R2) (rep1 7→ abs2) (abs1 7→ rep2) (T1 Z⇒ T2)

lemma Quotient list: Quotient R Abs Rep T =⇒
Quotient (list all2 R) (map Abs) (map Rep) (list all2 T)

We implemented a syntax-driven procedure that proves a Quotient theorem for
a given pair of types τ1 and τ2. This procedure recursively descends τ1 and τ2 to
prove Theorem 3 for τ1 and τ2 and the implementation basically follows our induc-
tion definition of Morphp, Relat and Trans in the previous section. The advantage is
that this procedure not only proves the compound Quotient theorem in order to de-
rive the transfer theorem, but it also synthesizes the terms Morphp(τ1, τ2), Relat(τ1, τ2)
and Trans(τ1, τ2) as a side effect. This approach was not used in the Quotient package;
thanks to it, we got a simpler implementation and managed to remove many technical
limitations of the original Quotient package with surprising ease.

Users generally will not prove the Quotient theorem manually for new types, as
special commands exist to automate the process. The command quotient type defines
a new quotient type, internally proves the corresponding Quotient theorem and reg-
isters it with setup lifting. We also support types defined by the command typedef.

The theorem type definition Rep Abs {x. P x}, which axiomatizes the newly defined
subtype, can be supplied to setup lifting. It then internally proves the quotient the-
orem Quotient (invariant P) Abs Rep T, where the transfer relation T is defined as
T x y ≡ Rep y = x and the equivalence relation invariant P ≡ (λx y. x = y ∧ P x).

Since the respectfulness theorem is the only proof obligation presented to the user,
we also implemented a procedure that does some preprocessing to present this obliga-
tion in a user-friendly, readable form in lift definition. The procedure also simplifies
the goal if the involved relations come from a subtype. Then the user gets predicates and
predicators (e.g., list all for ’a list) instead of relations and relators. If the relation comes
only from type copies, the respectfulness theorem is fully proven by our procedure.

We also implemented a procedure that automatically proves a parameterized trans-
fer rule, which is a stronger transfer rule (see §2.3), in lift definition if the user pro-
vides a theorem certifying that the concrete term used in the definition is parametric.

3.3 Code Equations

The code generator is a central component in Isabelle/HOL and is used in a lot of
projects for algorithm verification. That is why when we define a new constant by
lift definition, we are concerned with how to execute the new constant provided the
concrete term is also executable. This can be done by providing code equations. See [2]
for more about the code equations and how Lifting and Transfer provide efficient code
for operations on abstract types. The code generator accepts two types of equations:

– Representation function equation has form Rep f = t, where Rep is not in t and
Abs (Rep x) = x holds, which is provable for any abstract type in our context.

– Abstract function equation has form f (Abs1 x1) . . .(Absn xn) = t.

Here we give only a glimpse how the equations are proven. We assume the usual
map function 7→ ((f 7→ g) h = g◦h◦ f) and relator Z⇒ (as in Fig. 2) for function type.
Let us have the definition f = Abs t, f ::σ1→···→σn→σn+1 and the proven respect-
fulness theorem R t t. Then from the Quotient theorem for the function type and from
the construction described in §3.1 it easily follows that R = R1 Z⇒ . . . Z⇒ Rn Z⇒ Rn+1,
Abs = Rep1 7→ . . . 7→ Repn 7→ Absn+1 and Rep = Abs1 7→ . . . 7→ Absn 7→ Repn+1.

Representation function equation. By unfolding the map function 7→ in the definition
of f and using simple facts we get Repn+1 (f x1 . . . xn) = Repn+1 (Absn+1 T), where
T = t (Rep1 x1) . . .(Repn xn). If Rn+1, Repn+1 and Absn+1 represent a subtype or a type
copy, the relation Rn+1 is a subset of the equality and thus Repn+1 (Absn+1 T) = T and
finally Repn+1 (f x1 . . . xn) = t (Rep1 x1) . . .(Repn xn).

Abstraction function equation. By unfolding Z⇒ in R and 7→ in Rep and using simple
facts we get this equation R1 x1 x1 −→ . . .−→ Rn xn xn −→ f (Abs1 x1) . . .(Absn xn) =
Absn+1 (t x1 . . . xn). If R1 to Rn are relations that are composed from relators that pre-
serve reflexivity (e.g., holds for any datatype relator) and the abstract types that are in-
volved are total (i.e., a type copy or a total quotient), the procedure that we implemented
discharges automatically each of these assumptions and gives us a plain equation.7

7 The function relator Z⇒ does not preserve reflexivity in the negative position. But this is not
a limitation in practice, because there is hardly a function with a functional parameter that

Thus we can generate representation function equations for type copies and sub-
types and abstraction function equations for any abstract type, but we can discharge the
extra assumptions only for total types. See Tab. 1 for an overview.

total equivalence relation partial equivalence relation

tr
iv

ia
lr

el
at

io
n

(s
ub

se
to

f=
) type copy subtype

rep eq: + code: abs eq rep eq: + code: rep eq
abs eq: + relation: bi-unique, bi-total abs eq: ∼ relation: bi-unique, right-total
example: Mappings example: Lift Dlist

(’a, ’b) mapping = ’a ⇒ ’b option ’a dlist = {x :: ’a list. distinct x}

no
n-

tr
iv

ia
lr

el
at

io
n total quotient partial quotient

rep eq: − code: abs eq rep eq: − code: none
abs eq: + relation: right-unique, bi-total abs eq: ∼ relation: right-unique, right-total
example: Lift FSet example: Rat

’a fset = ’a list / (λx y. set x = set y) ’a rat = int × int / ratrel8
+ . . . yes − . . . no ∼ . . . only with assumptions

Table 1. Categorization of abstract types and respective equations

4 Conclusion

We have presented a new design for automation of abstract types in Isabelle/HOL. The
distinctive features and the main contributions are:

– The modular design of cleanly separated components with well-defined interfaces
yields flexibility, i.e., Lifting is not limited to types defined by quotient type and
similarly Transfer to constants defined by lift definition.

– Only one transfer rule is needed for different instances of polymorphic constants
like fmap :: (’a ⇒ ’b) ⇒ ’a fset ⇒ ’b fset.

– The Lifting package supports arbitrary type constructors, rather than only co-variant
ones plus hard-coded function type.

would have an abstract type in the negative position. Because Z⇒ preserves equality, we can
still discharge functional parameters using type copies or non-abstract functional parameters.

8 ratrel x y ≡ snd x 6= 0 ∧ snd y 6= 0 ∧ fst x ∗ snd y = fst y ∗ snd x

– The Lifting package can handle a composition of abstract types in all cases.
– The Lifting package generates code equations for the code generator.
– The package generates the statement of the respectfulness theorem, discharges it

automatically for type copies, and simplifies it to user-friendly form in other cases.

In Isabelle 2013, we have converted the numeric types int, rat, and real to use Lifting
and Transfer (Previously they were constructed as quotients with typedef, in the style
of Paulson [10].). This reduced the amount of boilerplate. But what has greater merit
is that we can conclude that the packages singificantly improve the level of abstraction
when building abstract types and moving terms and lemmas between different types.

Our packages are used in many theories by the Isabelle community: there are almost
400 calls of lift definition and over 900 calls of transfer.9 Besides other things, they
are used to define various executable data structures: e.g., numerals, red-black trees,
distinct lists, mappings, finite sets, associative lists, intervals, floats, multisets, finite bit
strings, co-inductive streams, almost constant functions and others. We can conclude
that our packages have found their users and become a standard part of Isabelle/HOL.

References

1. Coen, C.S.: A Semi-reflexive Tactic for (Sub-)Equational Reasoning. In: TYPES. LNCS,
vol. 3839, pp. 98–114. Springer (2004)

2. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data Refinement in Isabelle/HOL. In: ITP
2013. LNCS, vol. 7998, pp. 100–115

3. Harrison, J.: Theorem Proving with the Real Numbers. Springer-Verlag (1998)
4. Homeier, P.V.: A Design Structure for Higher Order Quotients. In: TPHOLs’05. LNCS, vol.

3603, pp. 130–146 (2005)
5. Kaliszyk, C., Urban, C.: Quotients revisited for Isabelle/HOL. In: Proc. of the 26th ACM

Symposium on Applied Computing (SAC’11). pp. 1639–1644. ACM (2011)
6. Krauss, A.: Simplifying Automated Data Refinement via Quotients. Tech. rep., TU München

(2011), http://www21.in.tum.de/~krauss/papers/refinement.pdf
7. Lammich, P.: Automatic data refinement. In: ITP 2013. LNCS, vol. 7998, pp. 84–99
8. Magaud, N.: Changing data representation within the Coq system. In: Basin, D., Wolff, B.

(eds.) TPHOLs’03. LNCS, vol. 2758, pp. 87–102. Springer-Verlag (2003)
9. Mitchell, J.C.: Representation Independence and Data Abstraction. In: POPL. pp. 263–276.

ACM Press (January 1986)
10. Paulson, L.C.: Defining functions on equivalence classes. ACM Trans. Comput. Logic 7(4),

658–675 (Oct 2006)
11. Reynolds, J.C.: Types, Abstraction and Parametric Polymorphism. In: IFIP Congress. pp.

513–523 (1983)
12. Slotosch, O.: Higher Order Quotients and their Implementation in Isabelle/HOL. In:

TPHOLs’97. LNCS, vol. 1275, pp. 291–306. Springer (1997)
13. Sozeau, M.: A New Look at Generalized Rewriting in Type Theory. 1st Coq Workshop

proceedings (2009)
14. Wadler, P.: Theorems for free! In: Functional Programming Languages and Computer Ar-

chitecture. pp. 347–359. ACM Press (1989)

9 Isabelle distribution and Archive of Formal Proofs (http://afp.sf.net), release 2013-1.

