
Lifting and Transfer: A Modular Design for
Quotients in Isabelle/HOL

Brian Huffman and Ondřej Kunčar

Technische Universität München
{huffman,kuncar}@in.tum.de

Abstract. Quotients, subtypes, and other forms of type abstraction are
ubiquitous in formal reasoning with higher-order logic. Typically, users
want to build a library of operations and theorems about an abstract
type, but they want to write definitions and proofs in terms of a more
concrete representation type, or “raw” type. Earlier work on the Isabelle
Quotient package [3, 4] has yielded great progress in automation, but it
still has many technical limitations.
We present an improved, modular design centered around two new pack-
ages: the Transfer package for proving theorems, and the Lifting package
for defining constants. Our new design is simpler, applicable in more situ-
ations, and has more user-friendly automation. An initial implementation
is available in Isabelle 2012.

1 Introduction

Quotients and subtypes are everywhere in Isabelle/HOL. For example, basic
numeric types like integers, rationals, reals, and finite words are all quotients.
Many other types in Isabelle are implemented as subtypes, including multisets,
finite maps, polynomials, fixed-length vectors, matrices, and formal power series,
to name a few.

Quotients and subtypes are useful as type abstractions: Instead of explicitly
asserting that a function respects an equivalence relation or preserves an invari-
ant, this information can be encoded in the function’s type. Quotients are also
particularly useful in Isabelle, because reasoning about equality on an abstract
type is supported much better than reasoning modulo an equivalence relation.

Building a theory library that implements a new abstract type can take a lot
of work. The challenges are similar for both quotients and subtypes: Isabelle re-
quires explicit coercion functions (often “Rep” and “Abs”) to convert between old
“raw” types and new abstract types. Definitions of functions on abstract types
require complex combinations of these coercions. Users must prove numerous
lemmas about how the coercions interact with the abstract functions. Finally, it
takes much effort to transfer all the interesting properties of raw functions up
to the abstract level. Clearly, there is a need for good proof automation for this
process.



1.1 Related Work

Much previous work has been done on formalizing quotients in theorem provers.
Slotosch [8] and Paulson [6] each developed techniques for defining quotient types
and defining first-order functions on them. They provided limited automation for
transferring properties from raw to abstract types in the form of lemmas that
facilitate manual proofs. Harrison [2] implemented tools in the HOL theorem
prover for lifting constants and transferring theorems automatically, although
this work was still limited to first-order constants and theorems. In 2005, Homeier
[3] published a design for a new HOL package, which was the first system capable
of lifting higher-order functions and transferring higher-order theorems.

Isabelle’s Quotient package was implemented by Kaliszyk and Urban [4],
based upon Homeier’s design. It was first released with Isabelle 2009-2, in June
2010. The Quotient package implements a collection of commands, proof meth-
ods, and theorem attributes. The primary ones are as follows:

– quotient type command: Defines a new quotient type, based on a user-
specified raw type and a (total or partial) equivalence relation.

– quotient definition command: Defines a function on a quotient type, based
on a user-provided function on a raw type.

– descendingmethod: Replaces a proof goal containing operations on a quotient
type with a goal about the corresponding raw operations.

– lifting method: Solves a proof goal about a quotient type, using the given
theorem about raw types.

The Quotient package is designed around the notion of a quotient, which
involves two types and three constants: First we have a raw type ’a with a
partial equivalence relation R :: ’a ⇒ ’a ⇒ bool. Next we have the abstract type
’b, whose elements are in one-to-one correspondence with the equivalence classes
of R: The abstraction function Abs :: ’a ⇒ ’b maps each equivalence class of R
onto a single abstract value, and the representation function Rep :: ’b ⇒ ’a takes
each abstract value to an arbitrary element of its corresponding equivalence class.

Given a raw type and a relation R, the quotient type command introduces a
new type with Abs and Rep that form a quotient. Given a function g on the raw
type, the quotient definition command then defines a new abstract function g′
in terms of g, Abs, and Rep. The user must also provide a respectfulness theorem
showing that g respects R. Finally the descending and liftingmethods can transfer
propositions between g and g′. Internally, this involves respectfulness theorems,
the definition of g′, and the quotient properties of R, Abs and Rep.

1.2 Limitations of the Quotient package

We decided to redesign the existing Quotient package after identifying several
limitations of its implementation. While some are relatively superficial and could
be remedied with minor changes, others have deeper roots. A few such technical
limitations were described by Alex Krauss [5]:



1. The quotient relation R must be a dedicated constant. This is inconvenient
when we want to use equality, since it requires an extra constant that must
be unfolded frequently.

2. Using quotient definition, one can only lift constants, not arbitrary terms.
This prevents the use of the tool on things like locale parameters and some
definitions in a local theory.

3. One cannot turn a type defined by other means into a quotient afterwards.
4. One cannot declare a user-defined constant on the quotient type as the lifted

version of another constant.

To solve problems 1 and 2 does not require major organizational changes,
just local internal ones (see Section 3.2 for details). However, problems 3 and
4 suggested to us that splitting the Quotient package into various layers might
make sense: By having separate components with well-defined interfaces, we
could make it easier for users to connect with the package in non-standard ways.

Besides the problems noted by Krauss, we have identified some additional
problems with the descending/lifting methods ourselves. Consider ’a fset, a type
of finite sets which is a quotient of ’a list. The Quotient package can gen-
erate fset versions of the list functions map :: (’a ⇒ ’b) ⇒ ’a list ⇒ ’b list and
concat :: ’a list list ⇒ ’a list, but it has difficulty transferring the following col-
lection of theorems to fset:
concat (map (λx. [x]) xs) = xs
map f (concat xss) = concat (map (map f) xss)
concat (map concat xsss) = concat (concat xsss)
The problem is with the user-supplied respectfulness theorems. Note thatmap

occurs at several different type instances here: It is used with functions of types
’a ⇒ ’b, ’a ⇒ ’a list, and ’a list ⇒ ’b list. Unfortunately a single respectfulness
theorem for map will not work in all these cases—each type instance requires
a different respectfulness theorem. On top of that, the user must also prove
additional preservation lemmas, essentially alternative definitions of map fset at
different types. These rules can be tricky to state correctly and tedious to prove.

The Quotient package’s complex, three-phase transfer procedure was another
motivation to look for a new design. We wanted to have a simpler implemen-
tation, involving fewer separate phases. We also wanted to ease the burden of
user-supplied rules, by requiring only one rule per constant. Finally, we wanted
a more general, more widely applicable transfer procedure that did not have so
many hard-wired assumptions about quotients.

1.3 Overview
Our new system uses a layered design, with multiple components and inter-
faces that are related as shown in Figure 1. Each component depends only on
the components underneath it. At the bottom is the Transfer package, which is
responsible for transferring propositions between raw and abstract types (Sec-
tion 2). Note that the Transfer package has no dependencies; it does not know
anything about Rep and Abs functions or quotient predicates.



Above Transfer is the Lifting package, which lifts constant definitions from
raw to abstract types (Section 3). It configures each new constant to work with
Transfer. At the top are commands that configure new types to work with Lifting,
such as setup lifting and quotient type (Section 3). We expect that additional
type definition commands might be implemented later; we discuss this and other
ideas for future work in the conclusion (Section 4).

Transfer package

Lifting package

User-defined
transfer
rules

User-defined
quotient +
setup-lifting

typedef +
setup-lifting
commands

quotient-
type

command
. . .

Fig. 1. Modular design of packages for formalizing quotients

2 Transfer package

The Transfer package allows users to establish connections between pairs of
related types or constants, by registering transfer rules. The core functionality
of the Transfer package is then to use these rules to prove equivalences between
pairs of related propositions.

The Transfer package provides the transfer proof method, which replaces the
current subgoal with a logically equivalent one that uses different types and
constants. In the context of quotient types, transfer reduces a subgoal about a
quotient type to a subgoal about the underlying raw type. But it is not restricted
to quotients; it works more generally to transfer between any combination of
types, if it is configured with an appropriate set of transfer rules.

Types as relations. The design of the Transfer package is based on the idea
of types as binary relations. This concept comes from work on relational para-
metricity by Reynolds [7] and the “free theorems” of Wadler [9].

Relational parametricity tells us that different type instances of a parametri-
cally polymorphic function must behave uniformly—that is, they must be related
by a binary relation derived from the function’s type. For example, the standard
filter function on lists satisfies the parametricity property shown below in Eq. (2).
The relation is derived from filter’s type by replacing each type constructor with
an appropriate relator; Figure 2 gives the definitions of a few standard relators.



definition prod rel ::
"(’a1 ⇒ ’a2 ⇒ bool) ⇒ (’b1 ⇒ ’b2 ⇒ bool) ⇒ ’a1 × ’b1 ⇒ ’a2 × ’b2 ⇒ bool"

where "(prod rel A B) x y ≡ A (fst x) (fst y) ∧ B (snd x) (snd y)

definition fun rel ::
"(’a1 ⇒ ’a2 ⇒ bool) ⇒ (’b1 ⇒ ’b2 ⇒ bool) ⇒ (’a1 ⇒ ’b1) ⇒ (’a2 ⇒ ’b2) ⇒ bool"
(infixr " Z⇒" 55)

where "(A Z⇒ B) f g ≡ (∀x y. A x y −→ B (f x) (g y))"

definition list all2 :: "(’a1 ⇒ ’a2 ⇒ bool) ⇒ ’a1 list ⇒ ’a2 list ⇒ bool"
where "(list all2 A) xs ys ≡ length xs = length ys ∧ (∀(x, y) ∈ set (zip xs ys). A x y)"

definition set rel :: "(’a1 ⇒ ’a2 ⇒ bool) ⇒ ’a1 set ⇒ ’a2 set ⇒ bool"
where "(set rel A) X Y ≡ (∀x∈X. ∃y∈Y. A x y) ∧ (∀y∈Y. ∃x∈X. A x y)"

Fig. 2. Definitions of relators for various type constructors

For base types like bool or int we use identity relations (←→ or =).

filter :: (’a ⇒ bool) ⇒ ’a list ⇒ ’a list (1)
∀A. ((A Z⇒ op ←→) Z⇒ list all2 A Z⇒ list all2 A) filter filter (2)

This parametricity property means that if predicates p1 and p2 agree on related
inputs (i.e., A x1 x2 implies p1 x1 ←→ p2 x2) then filter p1 and filter p2 applied
to related lists will yield related results. (Wadler-style free theorems are derived
by instantiating A with the graph of a function f; in this manner, we can obtain
a rule stating essentially that filter commutes with map.)

The Transfer package uses parametricity rules in the style of Eq. (2) as
transfer rules. However, we also generalize the scheme a bit—not every transfer
rule is simply a parametricity rule derived from a single polymorphic constant.
In general, a transfer rule may relate two different constants, and in addition to
identity relations and the standard relators, it may also use transfer relations
between distinct types or type constructors.

Example: Int/nat transfer. We consider a simple use case, transferring propo-
sitions between the integers and natural numbers. To specify the connection
between the two types, we define a transfer relation ZN :: int ⇒ nat ⇒ bool.

ZN x n ≡ (x = int n) (3)

We can then use ZN to express relationships between constants in the form of
transfer rules. Obviously, the integer 1 corresponds to the natural number 1.
Integer addition corresponds to addition on naturals, in that related arguments
are mapped to related results. Similarly, less-than on integers corresponds to less-
than on naturals. Finally, bounded quantification over the non-negative integers



corresponds to universal quantification over type nat.

(ZN) (1::int) (1::nat) (4)
(ZN Z⇒ ZN Z⇒ ZN) (op +) (op +) (5)
(ZN Z⇒ ZN Z⇒ op =) (op <) (op <) (6)
((ZN Z⇒ op =) Z⇒ op =) (Ball {0..}) All (7)

The Transfer package can use the transfer rules above, along with introduc-
tion and elimination rules for Z⇒, to derive equivalences like the following. The
derivation follows the syntactic structure of the terms.

(∀x::int ∈ {0..}. x < x + 1) ←→ (∀n::nat. n < n + 1) (8)

If we apply the transfer method to a subgoal of the form ∀n::nat. n < n + 1, the
Transfer package will prove the equivalence above, and then use it to replace
the subgoal with ∀x::int ∈ {0..}. x < x + 1. In general, transfer can handle any
lambda term constructed from constants for which it has transfer rules.

2.1 Parameterized transfer relations

The design of the new Transfer package generalizes easily to transfer relations
with parameters. As an example, we define a relation between lists and a finite
set type; it is parameterized by a relation on the element types. We assume a
function Fset :: ’a list ⇒ ’a fset that converts the given list to a finite set.

LF :: (’a1 ⇒ ’a2 ⇒ bool) ⇒ ’a1 list ⇒ ’a2 fset ⇒ bool (9)
(LF A) xs Y ≡ ∃ys. list all2 A xs ys ∧ Fset ys = Y (10)

If we define versions of the functions map and concat that work on finite sets,
we can relate them to the list versions with the transfer rules shown here.

((A Z⇒ B) Z⇒ LF A Z⇒ LF B) map map fset (11)
(LF (LF A) Z⇒ LF A) concat concat fset (12)

These rules allow the transfer method to work on formerly problematic goals
such as map fset f (concat fset xss) = concat fset (map fset (map fset f) xss) and
concat fset (map fset concat fset xsss) = concat fset (concat fset xsss), as long as
appropriate transfer rules for equality are also present. Unlike the Quotient pack-
age, the same transfer rules work for all type instances of these constants.

2.2 Bi-total and bi-unique relations

Some polymorphic functions in Isabelle require side conditions on their para-
metricity theorems. For example, consider the equality relation =, which has



the polymorphic type ’a ⇒ ’a ⇒ bool. Its type would suggest the parametric-
ity property (A Z⇒ A Z⇒ op ←→) (op =) (op =), but this does not hold for all
relations A—it only holds if A is bi-unique, i.e., single-valued and injective.

bi unique A =⇒ (A Z⇒ A Z⇒ op ←→) (op =) (op =) (13)

As pointed out by Wadler [9], this restriction on relations is akin to an eqtype
annotation in ML, or an Eq class constraint in Haskell. While Haskell allows
users to provide Eq instance declarations, the Transfer package allows us to
provide additional rules about bi-uniqueness that serve the same purpose.

bi unique A =⇒ bi unique (set rel A) (14)
bi unique A =⇒ bi unique (list all2 A) (15)
bi unique ZN (16)

Using the above rules, the Transfer package is able to relate equality on lists of
integers with equality on lists of naturals, using the relation list all2 ZN. It can
similarly relate equality on sets, lists of sets, sets of lists, and so on.

The universal quantifier requires a different side condition on its parametric-
ity rule. While equality requires bi-uniqueness, the universal quantifier requires
the relation A to be bi-total—i.e., A must be both total and surjective.

bi total A =⇒ ((A Z⇒ op ←→) Z⇒ op ←→) All All (17)

Like bi-uniqueness, bi-totality is preserved by many relators, including those for
lists and sets. The relation ZN is not bi-total, but transfer relations induced by
total quotient types are.

2.3 Proving implications instead of equivalences

If supplied with appropriate transfer rules, the Transfer package can be made
to prove implications instead of logical equivalences. We provide a variant proof
method transfer′ for this purpose. While transfer always replaces a proof goal
with an equivalent one, transfer′ is free to replace a goal with a stronger one.

Using implication, we can state transfer rules for equality and universal quan-
tification with weaker side conditions, namely right-uniqueness and right-totality.
A relation is right-unique if it is single-valued, and right-total if it is surjective.
Both properties are preserved by relators for many type constructors.

right unique A =⇒ (A Z⇒ A Z⇒ op −→) (op =) (op =) (18)
right total A =⇒ ((A Z⇒ op −→) Z⇒ op −→) All All (19)

Our example relation ZN is not bi-total, but it is right-total. This means
that the Transfer package can prove implications like the one here, stating that
a universally quantified proposition on type int implies a related one on nat.

(∀x::int. x + 0 = x) −→ (∀n::nat. n + 0 = n) (20)



Similarly, our example relator LF from Section 2.1 does not preserve bi-
uniqueness, but it does preserve right-uniqueness. In particular, the relation
LF (LF (op =)) is right unique, which means that an equality on ’a list list implies
a corresponding equality on ’a fset fset. If the Transfer package were restricted
to ←→, then we would have to find a relation on ’a list list that is logically
equivalent to equality on ’a fset fset. Such a relation is awkward to state and to
reason about, so implication-based rules are very convenient in this case.

3 Lifting package

The Lifting package allows users to lift functions operating on the raw level to the
abstract level. Doing this lifting manually usually implies tedious, uninteresting
work—the main point of the Lifting package is to automate this work as much as
possible. Besides defining the constant, another non-trivial feature is to generate
a code equation for the lifted constant.

The Lifting package provides two main commands: setup lifting for initial-
izing the package to work with a new type (Section 3.1), and lift definition for
actually lifting constants (Section 3.2).

3.1 Setting up the Lifting package

There is a small, well-defined interface for setting up the Lifting package via ML.
The setup requires only a quotient theorem of the form Quotient R Abs Rep T,
which captures the fact that the partial equivalence relation R and the abstrac-
tion and representation functions Abs and Rep form a quotient. The predicate
Quotient is similar to the predicate used in the original Quotient package [4] (see
also Section 1.1) but an additional fourth parameter T has been added. T is a
transfer relation relating the raw type and the quotient (abstract) type. (For
details see Section 2.) The transfer relation appears in the generated transfer
rule for each lifted constant, which is used by the Transfer package. The full,
updated definition of the Quotient predicate in Isabelle 2012 is as follows:

definition
"Quotient R Abs Rep T ←→
(∀a. Abs (Rep a) = a) ∧
(∀a. R (Rep a) (Rep a)) ∧
(∀r s. R r s ←→ R r r ∧ R s s ∧ Abs r = Abs s) ∧
T = (λx y. R x x ∧ Abs x = y)"

The setup interface also accepts an additional optional argument: a theorem
reflp R that witnesses that R is reflexive, and thus that it is a total equivalence
relation. The Lifting package generates a different set of transfer rules and dif-
ferent kinds of code equations depending on whether R is total, and also on
whether R is a subset of the identity relation; see Table 1 for a comparison of
the four recognized categories of quotients.
1 ratrel x y ≡ snd x 6= 0 ∧ snd y 6= 0 ∧ fst x ∗ snd y = fst y ∗ snd x



total equivalence relation partial equivalence relation

tr
iv
ia
lr

el
at
io
n
(s
ub

se
t
of

=
) type copy subtype

rep eq: yes rep eq: yes
abs eq: yes abs eq: only with assumptions
code: abs eq code: rep eq
relation: bi-unique, bi-total relation: bi-unique, right-total
example: Executable Relation example: Lift Dlist

’a rel = (’a × ’a) set ’a dlist = {x :: ’a list. distinct x}

no
n-
tr
iv
ia
lr

el
at
io
n total quotient partial quotient

rep eq: no rep eq: no
abs eq: yes abs eq: only with assumptions
code: abs eq code: none
relation: right-unique, bi-total relation: right-unique, right-total
example: Lift FSet example: Rat

’a fset = ’a list / (λx y. set x = set y) ’a rat = int × int / ratrel1

Table 1. Categorization of quotients and respective equations

Setting up the code generator Our ML interface also sets up the code
generator [1] for the new type. For a total quotient or type copy we use the
standard code generator setup, i.e. the abstraction function Abs is registered
as a code datatype contructor. For these types, we use an abstraction function
equation (expressed in terms of Abs) as a code equation for each lifted constant.
For a subtype, an advanced mode of the code generator is used where the quotient
type is registered as an abstract type. In this setting, a representation function
equation2 (expressed in terms of Rep) is used as a code equation. See Table 1
for an overview of code setup; we discuss generation of the abstraction and
representation function equations in Section 3.2.

Transfer rules Various transfer rules are generated during the setup process.
The set of generated rules depends on which category of quotient we have.

2 In the context of the code generator, representation function equation is also called
a code certificate.



Given a quotient theorem Quotient R Abs Rep T, we can always prove that T is
right-unique and right-total. If we have a subtype or a type copy, we generate
bi unique T as a transfer rule. In case of a type copy or a total quotient then
bi total T is generated. Special transfer rules for equality and quantifiers are gen-
erated if appropriate. For example, partial and total quotients get a transfer rule
relating R to equality. For subtypes and partial quotients, we generate a transfer
rule for the universal quantifier, where Respects R is defined as {x. R x x}.

(T Z⇒ T Z⇒ op ←→) R (op =)
((T Z⇒ op ←→) Z⇒ op ←→) (Ball (Respects R)) All

Theory file interface We provide multiple ways to access the described setup
interface from a theory file; these will be described in the following paragraphs.

The command setup lifting with a quotient theorem. One can use the command
setup lifting, which is an Isar counterpart of the ML interface described above. It
takes a quotient theorem Quotient R Abs Rep T as a first argument and reflp R
as an optional second argument.

A good example of this usage is the formalization of the Isabelle word type,
which is a type of finite bit strings. The idea is that we may not want to define
this type using the standard quotient construction, in terms of equivalence classes
of integers modulo 232. Instead, note that we have a normalizing function mod
that maps each equivalence class onto a single well-determined representative
between 0 and 232 − 1. This means that we can define type word in a simpler
way, using typedef.

typedef (open) word = "{(0::int) ..< 2ˆ32}"
morphisms uint Abs word

definition word of int :: "int ⇒ word"
where "word of int k ≡ Abs word (k mod 2ˆ32)"

definition cr word :: "int ⇒ word ⇒ bool"
where "cr word ≡ (λx y. word of int x = y)"

lemma Quotient word:
"Quotient (λx y. x mod 2ˆ32 = y mod 2ˆ32) word of int uint cr word"

lemma reflp word: "reflp (λx y. x mod 2ˆ32 = y mod 2ˆ32)"

setup lifting (no code) Quotient word reflp word

Fig. 3. Definition of word type and manual configuration of Lifting package



As shown in Figure 3, we can state the quotient theorem using the normaliz-
ing function mod, a new abstraction function word of int, and a transfer relation
cr word.3

With the setup lifting command, we can use the simplest construction of
type word, and we still get to take advantage of the automation of the Lifting
package for defining word operations. One can imagine that the whole process
can be automatized by a new command that would allow a user to specify a
normalizing function.

The command setup lifting with a typedef theorem. The command setup lifting
is overloaded: It can be also used with a typedef theorem instead of a quotient
theorem. Internally, the typedef theorem is used to derive a quotient theorem,
which is then used to set up the Lifting package as usual. An example of the
described usage is a formalization of distinct lists4:

typedef (open) ’a dlist = "{xs::’a list. distinct xs}"
morphisms list of dlist Abs dlist

The theorem type definition dlist is generated by the typedef command and this
theorem can be used for setting up the Lifting package:

setup lifting type definition dlist

In order to state a quotient theorem using the Quotient predicate, we have to
encode the invariant distinct as a partial equivalence relation. The corresponding
relation is invariant distinct, where invariant is defined as follows:5

definition invariant :: "(’a ⇒ bool) ⇒ ’a ⇒ ’a ⇒ bool"
where "invariant P = (λx y. P x ∧ x = y)"

Besides the partial equivalence relation, a transfer relation T between ’a list
and ’a dlist has to be defined. A canonical name cr dlist is chosen for this relation,
and it is defined in terms of the representation function list of dlist:

cr dlist ≡ λx y. x = list of dlist y

The definition of the Quotient predicate specifies the transfer relation in terms of
the abstraction function, T = (λx y. R x x ∧ Abs x = y). For a partial quotient
the definition would take that form, but for a subtype the above definition using
the representation function is equivalent. (Generally it is nicer to work with Rep
than Abs from a typedef, because Rep is completely specified, while Abs is an
underspecified function.)

3 This is a simplification of the type defined in Isabelle’s Word library, which has a
variable size determined by a type parameter.

4 A distinct list is defined as a list with no repeated elements.
5 The short name invariant is hidden outside the Lifting package; users must refer to
the fully qualified name Lifting.invariant.



The command quotient type. The last possibility is to use the good old com-
mand quotient type from the Quotient package. This command defines a new
type using the standard quotient construction and proves a quotient theorem.
For Isabelle 2012 we have patched the original quotient type command so that
it registers the quotient theorem with the Lifting package, saving the user from
having to do this manually.

3.2 Lifting functions

The command lift definition f :: τ is t defines a new function f with the abstract
type τ in terms of a corresponding operation t on a representation type, using an
appropriate combination of abstraction and representation functions. The term t
does not have to be necessarily a constant but it can be any term. The following
theorems are usually generated when using lift definition, although f.rep eq and
f.abs eq are generated conditionally on the category of quotient (see Table 1).

– f def – definition of f
– f.rsp – respectfulness theorem in its internal form
– f.transfer – transfer rule for the Transfer package
– f.rep eq – representation function equation, relates the lifted function and

the raw function using only representation functions
– f.abs eq – abstraction function equation, relates the lifted function and the

raw function using only abstration functions6

Definition and respectfulness theorem We will present how the lifting
process works on a running example. Let us use the type ’a dlist of distinct lists
defined in the previous section, and define an abstract insert operation. We do
it by lifting an insert operation on normal lists List.insert:

lift definition insert :: "’a ⇒ ’a dlist ⇒ ’a dlist" is List.insert

The command lift definition opens a proof environment where a user has
to prove the respectfulness theorem. The respectfulness theorem is a correct-
ness condition certifying that it makes sense to lift this particular function to
the abstract level. In its internal form, the respectfulness theorem consists of a
combination of equivalence relations. For insert it is this theorem:

(op = Z⇒ invariant distinct Z⇒ invariant distinct) List.insert List.insert

However, the user does not see this—the Lifting package does some preprocessing
to present a proof goal in a user-friendly, readable form. The level of preprocess-
ing depends on the style of quotient involved: For non-trivial quotients, the goal
is processed so that users do not see Z⇒, and for type copies we have implemented
a procedure that discharges the entire proof automatically. In our insert example,
we must prove the following respectfulness obligation:
6 Available in post–Isabelle 2012 development versions



∧
a list. distinct list =⇒ distinct (List.insert a list)

Because the type ’a dlist is defined as a subtype, the respectfulness obligation is
simpler than it would be for a non-trivial quotient type. The processing ensures
that the relation constructor invariant is not visible to users.7 The presented goal
says merely that List.insert preserves the subtype invariant.

After the respectfulness obligation is proved, a new constant insert is defined
and its type is ’a ⇒ ’a dlist ⇒ ’a dlist. The definition is the following:

insert ≡ (id 7→ list of dlist 7→ Abs dlist) List.insert

This slightly cryptic definition uses a map operator 7→ for the function type8.
(We will explain the reason for this odd style of definition shortly.) We can get
a more familiar-looking definition by unfolding the definitions of 7→, ◦, and id:

insert x y ≡ Abs dlist (List.insert x (list of dlist y))

One can see that the definition of insert is a straightforward composition of the
abstraction and representation functions Abs dlist and list of dlist.

lemma indentity quotient: "Quotient (op =) id id (op =)"

lemma fun quotient:
assumes "Quotient R1 abs1 rep1 T1"
assumes "Quotient R2 abs2 rep2 T2"
shows "Quotient (R1 Z⇒ R2) (rep1 7→ abs2) (abs1 7→ rep2) (T1 Z⇒ T2)"

lemma Quotient list [quot map]:
assumes "Quotient R Abs Rep T"
shows "Quotient (list all2 R) (map Abs) (map Rep) (list all2 T)"

lemma Quotient dlist:
Quotient (invariant distinct) Abs dlist list of dlist cr dlist

Fig. 4. Rules for building compound Quotient theorems

How lifting works: Compound quotient theorems We now make a small
detour and sketch how lifting is implemented. The process of lifting is based on
generating a compound quotient theorem that relates the type of the raw term
with the type of the new abstract function. With our insert example, we need a
quotient between types ’a ⇒ ’a list ⇒ ’a list and ’a ⇒ ’a dlist ⇒ ’a dlist.
7 The only case when invariant is visible is if a composition of two quotients is used;
see Section 3.3.

8 (f 7→ g) h ≡ g ◦ h ◦ f



We prove compound quotient theorems using a syntax-driven procedure that
recursively traverses the structures of the raw type and the abstract type. Quo-
tient theorems are built using the rules in Figure 4. With a bottom-up traversal,
we start with theorems Quotient dlist (obtained from the setup lifting command)
and indentity quotient, which relate the the basic types. For each function type,
we combine quotient theorems using rule fun quotient. (Support for the func-
tion type is pre-configured, but a user may provide additional quotient rules
for other type constructors and register them with the quot map attribute, like
Quotient list in Figure 4.) The end result is the following theorem:

Quotient
(op = Z⇒ invariant distinct Z⇒ invariant distinct)
(id 7→ list of dlist 7→ Abs dlist)
(id 7→ Abs dlist 7→ list of dlist)
(op = Z⇒ cr dlist Z⇒ cr dlist)

(21)

The Quotient theorem in Eq. (21) is central to the lifting of insert. The first
argument of the Quotient predicate is the relation used in the respectfulness
theorem for insert, and the second argument is precisely the abstraction function
used in the definition theorem. The last argument will be used to derive the
transfer rule, as we will see shortly.

Transfer rule The lift definition command generates a transfer rule for every
newly defined constant. This rule is declared to the Transfer package to enable
transferring propositions involving the new constant. The transfer rule for insert
is as follows:

(op = Z⇒ cr dlist Z⇒ cr dlist) List.insert insert

The transfer rule is derived using the following theorem:

lemma Quotient to transfer:
assumes "Quotient R Abs Rep T" and "R c c" and "c′ ≡ Abs c"
shows "T c c′"

The first assumption is instantiated by the compound quotient theorem for insert
(see Eq. (21)), the second one by the respectfulness theorem, and the last one
by the definition theorem. The derivation of the transfer rule is one of the main
reasons why we added the fourth parameter T to the Quotient predicate: With
the four-parameter predicate, the transfer relation is built automatically (using
Z⇒) as a side effect of the lifting procedure.

Abstraction and representation function equations Besides the definition
theorem, two other important user-relevant equations are also generated. The
former is called the abstraction function equation (abs eq for short) and relates
the lifted function and the raw function using only abstraction functions. For
our insert it is the following equation:



distinct y =⇒
insert x (Abs dlist y) = Abs dlist (List.insert x y)

The latter is called the representation function equation (rep eq for short)
and relates the lifted function and the raw function using only representation
functions. For insert:

list of dlist (insert x y) = List.insert x (list of dlist y)

Observe that abs eq has an additional assumption distinct y. It is because
’a dlist is a proper subtype, and thus the function Abs dlist is not a totally-
specified function. Therefore we need that extra assumption to make abs eq
meaningful. In general, abs eq will always have extra assumptions in the case
of a partial quotient or subtype. Conditional equations cannot be used as code
equations in the code generator, but fortunately, we can still use rep eq as a code
equation.

Either equation could be used as a code equation in the case of a type copy.
But we prefer abs eq because usage of rep eq depends on an extension of the
code generator, which steps outside of the Isabelle logic in the generated code
(and requires a subtle meta argument for correctness). The whole situtation with
abs eq, rep eq, and code generation is summarized in Table 1.

3.3 Composition of quotients

Things get more complicated when we start lifting constants with more demand-
ing types. The most interesting case is a composition of quotients when a type
variable of a quotient type is instantiated again to a quotient type. A good
example for ’a dlist is a concat function:

lift definition concat :: "’a dlist dlist ⇒ ’a dlist" is "remdups ◦ List.concat"

Note that to construct a quotient between ’a list list and ’a dlist dlist, we must
use a composition of quotients: first from ’a list list to ’a dlist list, and then to
’a dlist dlist. This explains the appearance of ◦ in the constant definition:

concat ≡ (map list of dlist ◦ list of dlist 7→ Abs dlist) (remdups ◦ List.concat)

Relation composition (◦◦) also appears in the respectfulness theorem:∧
list1 list2.

(list all2 cr dlist ◦◦ invariant distinct ◦◦ (list all2 cr dlist)−1) list1 list2
=⇒ invariant distinct ((remdups ◦ concat) list1) ((remdups ◦ concat) list2)

We used a different relator for a quotient composition than it was used in [4].
Kaliszyk and Urban would use this respectfulness theorem:∧

list1 list2. (list all2 R ◦◦ R ◦◦ list all2 R) list1 list2
=⇒ invariant distinct ((remdups ◦ concat) list1) ((remdups ◦ concat) list2)

where R = invariant distinct. Unfortunately that proof obligation is not provable;
as they noticed, “unfortunately a general quotient theorem for R1 ◦◦ R2 ◦◦ R1



would not be true in general”. But if we choose a different relator T1 ◦◦ R2 ◦◦ T1
−1,

we do have a general quotient theorem for a quotient composition. We proved
the following theorem in Isabelle:

lemma Quotient compose:
assumes "Quotient R1 Abs1 Rep1 T1"
assumes "Quotient R2 Abs2 Rep2 T2"
shows
"Quotient (T1 ◦◦ R2 ◦◦ T1

−1) (Abs2 ◦ Abs1) (Rep1 ◦ Rep2) (T1 ◦◦ T2)"

Because R1 ◦◦ R2 ◦◦ R1 and T1 ◦◦ R2 ◦◦ T1
−1 could be equivalent under cer-

tain conditions for total quotients, Kaliszyk and Urban were able to work with
quotient compositions in the case of total quotients. Further discussion of this
issue would be beyond the scope of this paper.

Other equations and theorems for concat are also accordingly complicated.
For example, consider the transfer rule:

(list all2 cr dlist ◦◦ cr dlist Z⇒ cr dlist) (remdups ◦ List.concat) concat

With the presence of the composition operator (◦◦) this rule will not work very
well with the Transfer package. However, it is easy to define a parameterized
transfer relation as presented in Section 2.1.

definition "cr dlist′ A ≡ list all2 A ◦◦ cr dlist"

We can then rephrase the transfer rule in terms of the new relation:

(cr dlist′ (cr dlist′ (op =)) Z⇒ cr dlist′ (op =)) (remdups ◦ List.concat) concat

In this form, the transfer rule will already work in many situations. The next
step would be to combine this with a parametricity property of List.concat to
get a more general rule (where = is replaced by a variable A). We have not
automated this process yet, but it is a possible direction for future work.

4 Conclusions and Future Work

We have presented a new design for automation of quotients in Isabelle/HOL,
consisting of cleanly separated components that interact through well-defined in-
terfaces: The Transfer package is configured using transfer rules, and the Lifting
package is configured using quotient theorems.

The modular design yields flexibility—having well-defined interfaces makes
it possible to connect the packages together in non-standard ways. In particu-
lar, the Lifting package is not limited to types defined by quotient type; types
defined by other means can be configured using a quotient rule. It would also
be feasible to implement new type definition commands on top of the Lifting
package, e.g. a command for defining a type from a normalization function.

Similarly, Transfer is not limited to constants defined by lift definition; us-
ing easy-to-state transfer rules, one may configure constants defined by other
means. Neither is the Transfer package limited to transfer relations produced by



quotient type or setup lifting. Transfer rules do not refer to the Quotient pred-
icate, and the Transfer package imposes no restrictions on transfer relations;
users may therefore define and use transfer relations between any two types.

The Lifting and Transfer packages are still in development; some features
(such as abs eq) were completed after the Isabelle 2012 release, and other planned
features have yet to be implemented. In particular, the Quotient package [4]
supports some features that we have not yet added to the Transfer package:

– regularization phase for descending method: Transfer currently has limited
support for proving implications (Section 2.3), handling only equality and
quantifiers. The Quotient package’s regularization phase handles more com-
plex propositions, including case analysis rules.

– lifting method: The Quotient package can solve goals about quotient types
using given theorems about raw types.

– lifted theorem attribute: The Quotient package can automatically transform
the given theorem from raw to abstract types.

Paulson’s quotient library [6] provides a desirable feature that the Quotient
package does not have: When defining a partial quotient, the domain of the
partial equivalence relation is explicit. For example, since 2010 type real is defined
as {x. cauchy x} // realrel, which specifies a partial quotient of nat ⇒ rat. On the
other hand, the domain is implicit with the quotient type command:

quotient type real = "nat ⇒ rat" / (partial) realrel

All abs eq rules generated by the Lifting package for type real have assumptions
like realrel x x, but it would be more useful to have cauchy x instead. We envision
a new partial quotient definition command that lets users specify a domain pred-
icate like cauchy and a proof that realrel x x ←→ cauchy x. The Lifting package
could then generate conditional rules with the preferred predicate.

In the post–Isabelle 2012 development version, we have converted the nu-
meric types int, rat, and real to use Lifting and Transfer. (Previously they were
constructed as quotients with typedef, in the style of Paulson [6].) The conversion
yielded significant code savings: Int.thy went from 1770 lines to 1665 (−105),
Rat.thy from 1262 to 1210 (−52), and RealDef.thy from 1808 to 1703 (−105).
Automatically-generated abs eq lemmas accounted for a significant portion of
the savings. We can conclude that the packages are effective at reducing the
amount of effort and boilerplate needed to define quotient types.

References

1. Florian Haftmann and Tobias Nipkow. Code Generation via Higher-Order Rewrite
Systems. In Matthias Blume, Naoki Kobayashi, and Germán Vidal, editors, Func-
tional and Logic Programming: 10th International Symposium: FLOPS 2010, volume
6009 of Lecture Notes in Computer Science. Springer, 2010.

2. John Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.



3. Peter V. Homeier. A Design Structure for Higher Order Quotients. In Proc. of
the 18th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs), volume 3603 of LNCS, pages 130–146, 2005.

4. Cezary Kaliszyk and Christian Urban. Quotients revisited for Isabelle/HOL. In
William C. Chu, W. Eric Wong, Mathew J. Palakal, and Chih-Cheng Hung, editors,
Proc. of the 26th ACM Symposium on Applied Computing (SAC’11), pages 1639–
1644. ACM, 2011.

5. Alexander Krauss. Simplifying Automated Data Refinement via Quotients. Tech-
nical report, Technische Universität München, July 2011. http://www21.in.tum.
de/~krauss/papers/refinement.pdf.

6. Lawrence C. Paulson. Defining functions on equivalence classes. ACM Trans. Com-
put. Logic, 7(4):658–675, October 2006.

7. John C. Reynolds. Types, Abstraction and Parametric Polymorphism. In IFIP
Congress, pages 513–523, 1983.

8. Oscar Slotosch. Higher Order Quotients and their Implementation in Isabelle/HOL.
In Elsa L. Gunter and Amy P. Felty, editors, Theorem Proving in Higher Order
Logics, 10th International Conference (TPHOLs’97), volume 1275 of Lecture Notes
in Computer Science, pages 291–306, Murray Hill, NJ, USA, August 1997. Springer.

9. Philip Wadler. Theorems for free! In Functional Programming Languages and Com-
puter Architecture, pages 347–359. ACM Press, 1989.


