
Correctness of Isabelle’s Cyclicity Checker
Implementability of Overloading in Proof Assistants

Ondřej Kunčar
Technische Universität München

kuncar@in.tum.de

Abstract
Overloaded constant definitions are an important feature of the
proof assistant Isabelle because they allow us to provide Haskell-
like type classes to our users. There has been an ongoing question
as to under which conditions we can practically guarantee that over-
loading is a safe theory extension, i.e., preserves consistency or is
conservative. The natural condition is that a rewriting system gener-
ated by overloaded definitions must always terminate. The current
system imposes restrictions on accepted overloaded definitions and
decides the termination by an algorithm that is part of the trusted
code base of Isabelle. Therefore we aim to prove its correctness.

Thanks to our work we discovered not only completeness short-
comings but also a correctness issue—we could prove False. In our
paper we present a modified version of the algorithm together with
a proof of completeness and correctness of it.

Although our work deals with Isabelle, our paper provides a
more general result: how to practically implement overloading in
proof assistants.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs; F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems—Decision problems

Keywords Isabelle; overloading; overloaded constant definition;
termination; cyclicity checker; interactive theorem proving; higher-
order logic

1. Introduction
Isabelle introduces two important features: overloaded constant
definitions (or overloading) and axiomatic type classes. Both are
described by Wenzel [7]. Although these two features are usually
used in Isabelle together to create Haskell-like type classes in the
user space, we study overloading separately since we approach this
feature from the foundational (logical) perspective.

Overloading is an integral part of Isabelle. Without it, it would
not be possible to implement usable Haskell-like type classes, a
feature that brings flexibility and reusability to the formalization
work and has been therefore used by Isabelle users on a daily basis
for more than 20 years.

[Copyright notice will appear here once ’preprint’ option is removed.]

Yet there exists also a certain price that must be paid for the
flexibility of overloading. The consistency preservation (or conser-
vativity) argument for overloading (seen as a theory extension) is
not as straightforward as it is for plain constant definitions. We can-
not argue that the symbol that is being defined has never been used
before. This brings questions about the trustworthiness for one of
the most fundamental features of the system—constant definitions.

Overloading was originally introduced by Nipkow and Qian [4]
together with axiomatic type classes in Isabelle91. In 1997, Wen-
zel [7] provided a new definition of a safe theory extension and
showed under which conditions the overloading mechanism meets
this safeness criterion. But he assumed a simplified version of the
system where the user must provide all the overloadings for a cer-
tain constant c at once.

Obua [5] noticed that although different overloadings for the
same constant are not allowed to overlap in Isabelle2005, there
does not exist any other guarantee for the consistency. Overloaded
definitions are treated as pure axioms and the user is responsible
for their consistency. He provided an example, which is accepted
by Isabelle2005:

consts
c :: ’a ⇒ bool

defs
c (x :: ’a list × ’a) ≡ c (snd x # fst x)
c (x :: ’a list) ≡ ¬c (tl x, hd x)

The two definitions do not overlap but they lead to an inconsistency:

c[x] = ¬c([], x) = ¬c[x]

Obua identified that if we see the definitions as a rewriting sys-
tem, this system has to terminate, otherwise preservation of consis-
tency cannot be guaranteed. He implemented a private extension to
Isabelle, which uses either an internal termination checker or ex-
ternal termination checkers to prove that the provided overloading
definitions terminate. But as Obua noted, the termination of such a
rewriting system is not semi-decidable if we allow full generality.

Wenzel proposed another solution: he imposed a certain well-
formedness restriction (composability, see Definition 5.7) on the
definitions such that termination becomes decidable and the users
can still obtain enough flexibility. Using some work of Haftmann,
Obua, Urban and others, he implemented a decision procedure,
which has been a part of the kernel since Isabelle2007 without any
significant changes.

Although Haftmann and Wenzel [3] described very abstractly
some parts of this solution, there exists no convincing, complete
proof that the algorithm decides termination of the corresponding
rewriting system. Yet this algorithm is part of the trusted code of
Isabelle and guarantees preservation of consistency of the system.
This paper aims to close this gap. As explained in Section 7, thanks
to our work we identified three issues in the original algorithm,

1 2014/12/25

one of which allowed us to prove False in Isabelle and two others
were sources of non-termination of the algorithm.1 Based on this,
we present a modified version of the algorithm that does not suffer
from these issues. The inconsistency issue was already addressed
in Isabelle2014 and we plan to amend the other two issues.

Although our paper concentrates on the system that we work
with, only a little is specific to Isabelle and thus our paper provides
more general result: how to practically implement overloading in
proof assistants.

Concerning other proof assistants, to the best of our knowledge,
there exists no notion of overloading in ACL2, HOL4, HOL Light
and PVS. Mizar provides overloading for functions, types and other
entities of the system (see a description by Grabowski et al. [2]).
Moreover, there are two types of overloading: ad-hoc and param-
eter overloading. The whole mechanism of retrieving the meaning
of an overloaded symbol is involved but it holds that after the the-
ory is processed, each overloaded symbol has been resolved to a
unique logical symbol. Overloading in Coq was implemented by
Sozeau and Oury [6] in the context of first-class type classes. The
approach uses the dictionary construction, i.e., during processing a
theory, a type class function call is replaced by a projection from a
certain dependent record, which represents a type class and whose
concrete instance is found by a special tactic for an instance search.

In this context, let us briefly discuss design decisions that led to
the current implementation of overloading in Isabelle. One could
argue that using the dictionary approach (e.g., done by Sozeau and
Oury [6] in Coq) is a better choice because this reduces the amount
of trusted code. But the dictionary approach is not expressible in
all possible logics that are implemented in Isabelle; notably in the
most prominent one — Isabelle/HOL. The obstacle is types that
use overloaded constants in their definitions. There are many such
types in Isabelle/HOL; let us mention one as an example: a type of
all red-black trees (αlinorder×β) rbt, which is defined by a restriction
on all binary trees. As it is indicated in the type, the definition
of rbt depends on a linear order for α, i.e., on a definition of the
overloaded constant ≤α→α→bool from the type class linorder. If we
used the dictionary construction, the type rbt would depend on a
term, which is not expressible in Isabelle/HOL.

Another alternative would be to use external termination provers
for term rewriting systems. But our internal implementation pre-
sented in this paper is more efficient than invoking the machinery
of an external tool and moreover, it is proved to always terminate
for the class of applications of overloading that we consider in this
paper and use in Isabelle.

The paper is organized as follows: Section 2 presents informally
overloading in Isabelle and how this translates to a termination
problem. Section 3 introduces formal background for our proof.
Section 4 states formally what we want to prove. The actual proof is
distributed over Sections 5 and 6. The former reduces a termination
of an infinite relation to a finite problem and the latter shows how
to decide the finite problem. Section 7 lists the issues that we found
in the original algorithm during our work and finally Section 8
concludes the paper.

2. Overloading and Dependency Relation
Let us informally introduce overloading and how this relates to
termination. Let us assume we have declared a constant 0 of type
α; we write 0α. Overloading means that we define the meaning of
0 for different type instances separately. Let us take an example

1 The original algorithm was primarily designed to achieve consistency
preservation. Termination was not guaranteed and non-termination was
meant as a last resort measure against introducing inconsistency. Our work
identifies these non-terminations and shows how to eliminate them and yet
still preserve consistency.

introduced by Wenzel [7]:

0nat = zero

0α×β = (0α, 0β)

0α→β = λxα. 0β

Notice that for example 0 for products is specified only partially—
we do not know how 0 is defined for α and β. One can get quickly
into trouble; e.g., consider this example:

0nat = . . . 0int . . .

0int = . . . 0nat . . .

The two definitions are cyclic. In general, we can misuse a cycle
to create an inconsistency in the system: just define cbool = ¬cbool.
Another example causing trouble is

0α×β = . . . 0(α×β)×β

This example leads to an infinite descent if we try to figure out the
meaning of the constant by unfolding. Definitions are justified by
the notion that they can be eliminated by unfolding them, yielding
a finite (even if huge) term that contains no defined constant. Al-
though it may be harmless, infinite descent breaks that argument.
How can we detect such definitions?

We define a dependency relation as a binary relation on con-
stants as follows: if c = t is an overloaded definition of c, where t
is a term, then we define c d for all constants d in t. Intuitively
speaking, c d states that c depends on d meaning c was defined
in terms of d. The relation is then a transitive and substitutive
closure of . As Obua [5] described, a natural condition for over-
loading to be a safe theory extension is the fact that terminates,
i.e., there exists no infinite sequence ci such that c0 c1 In
our case, 0nat 0int 0nat . . . is the infinite sequence for the
cycle example and 0α×β 0(α×β)×β 0((α×β)×β)×β . . . for the
infinite descent example. Our main theorem (Theorem 1) states that
under certain assumptions,2 we can decide when terminates.

In the rest of the paper, it will not be important for us how we
got , i.e., we forget our original motivation with overloading. We
will work with abstractly and focus only on the question under
which conditions we can decide that this relation terminates. We
also abstract from the type of the relation. Here we related constants
but as we argue in the next section, the relation can be of any type
as long as a certain abstract interface is provided on this type.

3. Formal Background
We use the notation (pi, qi)i≤n for sequence (p0, q0), . . . , (pn, qn).
The image of a function under a set is defined as f [A] = { f (x) |
x ∈ A}. If f : A → B and C ⊆ A, the restriction of f to C is a
function f �C : C → B defined as f �C (x) = f (x) for all x ∈ C.

We fix a countably infinite set of type variables TVar, ranged
over by α, β and γ. A type signature is a pair (K, arOf), where:

• K is a finite set of symbols called type constructors
• arOf : K → N is a function associating an arity with each type

constructor

We often write K instead of (K, arOf) to indicate a type signa-
ture. The set TypeK , ranged over by τ, of types associated with a
type signature K is defined inductively as follows:

• If α ∈ TVar, then α ∈ TypeK

• If τ1, . . . , τn ∈ TypeK and k ∈ K such that arOf(k) = n, then
(τ1, . . . , τn)k ∈ TypeK

2 Termination of is in general not decidable because for example the
Post correspondence problem can be encoded [5].

2 2014/12/25

The size function counts the number of type constructors in a
type: size(α) = 0 and size((τ1, . . . , τn)k) = 1 + Σ1≤i≤n size(τi).

A (type) substitution is a function ρ : TVar → TypeK that is
almost everywhere the identity. We let TSubstK denote the set of
(type) substitutions, ranged over by ρ, σ, η. Each ρ ∈ TSubstK is
naturally extended to a function ρ : TypeK → TypeK by defining
ρ((τ1, . . . , τn) k) = (ρ(τ1), . . . , ρ(τn)) k.

The identity substitution id is defined as expected: id(x) = x.
FV(τ) denotes the set of type variables of τ—formally FV(τ) =
{α | ∃β. ρ(τ) 6= τ where ρ = α 7→ β}.

For a substitution σ, a domain is a (finite) set of variables
dom(σ) = {α | σ(α) 6= α}, and an image is a set of types
img(σ) = σ[dom(σ)].

A renaming is a substitution σ such that dom(σ) = img(σ)
(and therefore each renaming is a bijection).

We assume that we have a function Ren(R, C) that gives us a
renaming σ such that dom(σ) = R ∪ σ[R] and σ[R] ∩C = ∅ (i.e.,
σ renames variables in R not to clash with variables in C). If R and
C are finite, Ren(R, C) is always defined since TVar is infinite.

We write that ρ =τ ρ
′ if ρ(α) = ρ′(α) for all α ∈ FV(τ). We

say that ρ is equivalent to ρ′ and write ρ ≈ ρ′ if there exists a
renaming η such that ρ = η ◦ ρ′. We write that ρ ≈τ ρ

′ if there
exists a renaming η such that ρ =τ η ◦ ρ′.
Lemma 3.1. a) size((η ◦ ρ)(τ)) = size(ρ(τ)) if η is a renaming.
b) size(ρ(τ)) > size(τ) if ρ 6≈τ′ id and FV(τ′) ⊆ FV(τ).

Proof. A substitution that is not equivalent to the identity on τ has
to map at least one type variable of τ to a type constructor, whereas
a renaming cannot.

Lemma 3.2. If η is a renaming, then η[FV(τ)] = FV(η(τ)).

Proof. Straightforward from definitions.

We say that τ1 is an instance of τ2 via a substitution of ρ, written
τ1 ≤ρ τ2, if ρ(τ2) = τ1. We say that τ1 is an instance of τ2, written
τ1 ≤ τ2, if there exists ρ such that τ1 ≤ρ τ2.

Two types τ1 and τ2 are called orthogonal, written τ1 # τ2, if
they have no common instance, i.e., for all τ it holds that τ 6≤ τ1 or
τ 6≤ τ2. Or equivalently, τ1 and τ2 are orthogonal if and only if τ1

and τ2 cannot be unified after renaming variables in τ2 apart from
variables in τ1.

Two types τ1 and τ2 have a non-trivial instance, written τ1 ↓ τ2,
if there exists τ′ such that τ′ ≤ τ1, τ′ ≤ τ2 and τ1 6≤ τ2 and
τ2 6≤ τ1. Notice if τ1 ↓ τ2 and τ′ ≤ρ τ1 and τ′ ≤ρ′ τ2, then ρ 6≈ id
and ρ′ 6≈ id.

Lemma 3.3. Let ρ ≈τ1 ρ′; then ρ(τ1) ≤ τ2 ←→ ρ′(τ1) ≤ τ2,
ρ(τ1) ≥ τ2 ←→ ρ′(τ1) ≥ τ2, ρ(τ1) # τ2 ←→ ρ′(τ1) # τ2

and ρ(τ1) ↓ τ2 ←→ ρ′(τ1) ↓ τ2.

Proof. It can be proved by an easy manipulation with substitutions.

A signature Σ is a tuple (K, arOf, C, tyOf) where:

• (K, arOf) is a type signature
• C is a finite set of constants
• tyOf : C → TypeK is a function associating a type with every

constant

A constant instance is a pair of a constant c and a type τ ≤ tyOf(c),
written cτ. We write CI↓Σ for the set of constant instances of a
signature Σ.

Now we can easily lift the functions and relations FV, dom,
img, Ren,≤,≈, # , ↓ and size from TypeK to CI↓Σ. We do not have

to do the lifting separately for each of them because there exists a
more elegant way: all of these functions and relations were defined
in terms of three concepts: equality =, application of a substitution,
and the size function. Therefore in order to complete the lifting
from TypeK to CI↓Σ, it suffices if we define = : CI↓Σ → CI↓Σ → bool,
App : (TypeK → TypeK) → CI↓Σ → CI↓Σ and size : CI↓Σ → N,
which we do as follows:

1. cτ1 = dτ2 iff c = d and τ1 = τ2.

2. App ρ cτ = cρ(τ)
3. size(cτ) = size(τ)

For readability reasons, we still write ρ(p) for App ρ p.
We can generalize the construction that we did now for CI↓Σ even

more: we can replace CI↓Σ by a general universe UΣ as long as three
functions = : UΣ → UΣ → bool, App : (TypeK → TypeK) →
UΣ → UΣ and size : UΣ → N are provided.3 The reason why we
care so much about this generality is that although the dependency
relation in Isabelle2014 relates constants (CI↓Σ), we would like to
propose to track richer dependencies, namely constants and types
(CI↓Σ] TypeK).4 Therefore we use UΣ (ranged over by p, q, r and
s) instead of CI↓Σ in the rest of our text.

Given any binary relation R on a set UΣ, we write R+ for its
transitive closure and R↓ for its substitutive closure, defined as
follows: p R↓ q iff there exist p′, q′ ∈ UΣ and ρ ∈ TSubstΣ such
that p = ρ(p′) , q = ρ(q′) and p′ R q′. We say that R is substitutive
if it closed under substitution, i.e., p R↓ q implies ρ(p) R↓ ρ(q) for
all substitutions ρ.

Lemma 3.4. R↓ includes R and is substitutive.

Proof. Immediate using the identity and composition of substitu-
tions.

Let be ↓+, i.e., the transitive closure of ↓.

Lemma 3.5. is substitutive (and hence so is the transitive,
substitutive closure of).

Proof. By induction on the definition of transitive closure.

We say that a relation R on a set UΣ terminates if there exists no
sequence (pi)i∈N such that pi R pi+1 for all i.

4. What We Want to Prove
Theorem 1. There exists a predicate P on binary relations on UΣ

such that for finite relations the following holds:

• P() is decidable
• P() implies that terminates
• P contains interesting relations

The last condition is a bit vague. We will make it more precise
later. Intuitively, we are not interested in P that is false everywhere
but P should cover all of our use cases of overloading in Isabelle.

3 Strictly speaking, in full generality, =, App and size have to fulfill some
assumptions; e.g., App id = id and App (ρ ◦ σ) = (App ρ) ◦ (App σ),
and size has properties like in Lemma 3.1.
4 Without going much into the details, tracking dependencies of constants
and types would allow us to implement type definitions in Isabelle/HOL as
a consistency preserving theory extension. We plan this for future work.

3 2014/12/25

5. From Non-Termination to Cyclicity
Since is the transitive and substitutive closure of , is
generally infinite even if is finite. In this section, we show that
the problem of termination of infinite is equivalent to a finite
problem on , namely that is acyclic. We will define cyclicity
formally later, but informally it means that we can find a finite
sequence r0 r1 . . . rn such that rn ≤ r0. If we find a cycle,
it is easy to show that does not terminate. To prove the other
direction is involved.

If does not terminate, it means there exists an infinite se-
quence (pi)i∈N such that p0 p1 p2 We could hope that
we could find a cycle as a subsequence of (pi)i∈N but the following
example shows that this is not always the case: consider de-
fined as α α list. Now nat nat list nat list list . . . is a
non-terminating sequence but no subsequence of it is a cycle since
all elements of this sequence are incomparable. But another se-
quence α α list α list list . . . contains a lot of cycles (e.g.,
α list ≤ α). Our intuition is that if we want to find a cycle, we have
to search in sequences that are as general instances as possible. We
formalize this intuition now.

Definition 5.1. is monotone if for each p, q such that p q,
we have FV(q) ⊆ FV(p).

Lemma 5.2. Let us assume that

• pi qi for all i ≤ n,
• is monotone.

If (ρi)i≤n is a sequence of substitutions such that we have ρi(qi) =
ρi+1(pi+1) for all i < n, then FV(ρi(pi)) ⊇ FV(ρi(qi)) ⊇
FV(ρ j(p j)) ⊇ FV(ρ j(q j)) holds for all 0 ≤ i < j ≤ n.

Proof. If FV(p) ⊇ FV(q), then FV(ρ(p)) ⊇ FV(ρ(q)) for any ρ.
Therefore it suffices to prove FV(ρi(qi)) ⊇ FV(ρ j(p j)), which can
be done by backward induction.

Monotonicity is a natural notion if we remember the original
motivation for : given a definition of an overloaded constant c =
t, it must hold that FV(t) ⊆ FV(c). Monotonicity gives more
regular structure, which allows us to simplify some definitions
and is crucial in some coming proofs—especially the following
consequence of Lemma 5.2: if we know that ρ′ has some effect
on ρn(gn) (i.e., dom(ρ′) ∩ FV(ρn(gn)) 6= ∅)), we know that ρ′ has
also some effect on ρ0(p0).

Definition 5.3. We say that a sequence of substitutions (ρi)i≤n is
a solution to the sequence (pi, qi)i≤n if ρi(qi) = ρi+1(pi+1) for all
i < n.

We say that a solution (ρi)i≤n to (pi, qi)i≤n is the most general
solution if for any other solution (ρ′i)i≤n there exists a sequence of
substitutions (ηi)i≤n such that ρ′i (pi) = (ηi ◦ ρi)(pi).

Thanks to monotonicity, we can talk only about pis and omit
qis in the last definition because we will be able to derive from
ρ′i (pi) = (ηi ◦ ρi)(pi) also ρ′i (qi) = (ηi ◦ ρi)(qi) provided is
monotone and pi qi.

Lemma 5.4. If (ρi)i≤n and (ρ′i)i≤n are both the most general
solutions to the sequence (pi, qi)i≤n, then ρi ≈pi ρ

′
i for all i ≤ n.

Proof. Since (ρi)i≤n and (ρ′i)i≤n are both the most general solu-
tions, there exist (ηi)i≤n and (η′i)i≤n such that ρi(pi) = (ηi ◦ρ′i)(pi)
and ρ′i (pi) = (η′i ◦ ρi)(pi) for all i ≤ n. Now ρi(pi) = ((ηi ◦ η′i) ◦
ρi)(pi) and ρ′i (pi) = ((η′i ◦ ηi) ◦ ρ′i)(pi). Thus ηi ◦ η′i =ρi(pi) id
and η′i ◦ ηi =ρ′i (pi) id and therefore ηi �FV(ρ′i (pi)) is a bijection be-
tween FV(ρ′i (pi)) and FV(ρi(pi)). There exists surely a bijection
η̂ between FV(ρi(pi)) \ FV(ρ′i (pi)) and FV(ρ′i (pi)) \ FV(ρi(pi)).

Then the function ηi �FV(ρ′i (pi)) ◦ η̂ is a renaming that witnesses
ρi ≈pi ρ

′
i .

We defined a notion of a most general solution and proved
that most general solutions are unique modulo renaming. This
notion formalizes our intuition that we should look for cycles in
sequences that are as general instances as possible. Most general
solutions define such sequences. Let us get back to our example:
let (pi, qi)i≤1 = (α, α list), (α, α list). Then (ρi)i≤1 = α 7→
α list, α 7→ α list list is the most general solution to (pi, qi)i≤1 and
yields a sequence α α list α list list, which contains cycles. On
the other hand, (ρ′i)i≤1 = α 7→ nat list, α 7→ nat list list is only a
solution but not the most general one. (ρ′i)i≤1 yields this sequence
nat nat list nat list list, which does not contain any cycle.

Given a non-terminating sequence p0 p1 p2 . . . , how
do we construct a most general solution to its subsequences? And
does a most general solution always exist? We will prove that if
we already have a most general solution to first n elements of the
infinite sequence, we can always extend this most general solution
to n + 1 elements. I.e., we will provide an inductive description
of most general solutions. In order to achieve this, we need to first
introduce some additional notions.

Definition 5.5. We say that sequences (pi, qi)i≤n and (ρi)i≤n form
a path starting at k under and write (pi, qi, ρi)

k≤i≤n if

• pi qi for all k ≤ i ≤ n,
• ρk ≈pk id,
• (ρi)k≤i≤n is a solution to (pi, qi)k≤i≤n.

If k = 0, we usually omit this index.

A path is a sequence together with its solution, which is allowed
to only rename the first element of the sequence (i.e., not to apply
a non-trivial substitution).

Definition 5.6. We say that is cyclic if there exists a path
(pi, qi, ρi)

i≤n and ρn(qn) ≤ p0.

The formal definition of a cycle admits only a strict subset
of cycles that we informally introduced at the beginning of this
section, namely they have to be paths. For example, if α α list,
then β, β list is a cycle5 for us, whereas α list, α list list is not.

Definition 5.7. is composable if for all p and q such that p q
and for each path (pi, qi, ρi)

i≤n, it holds that either ρn(qn) ≤ p, or

p ≤ ρn(qn), or ρn(qn) # p.

Composability is an important restriction on . It reduces the
search space when we are looking for a most general solution.
Later we will prove that each sequence defined by a most general
solution has as a suffix a path. Therefore if we already have a
most general solution to n first elements, the composability tells
us that there exist three cases concerning the extension of this most
general solution: in two cases we can still (possibly) extend the
sequence (ρn(qn) ≤ p or p ≤ ρn(qn)) and in one case we cannot
(ρn(qn) # p). But we prove in the following lemma that if there
exists already some solution, the case ρn(qn) # p cannot occur.

Lemma 5.8. Let us assume that

• (ρi)i≤n+1 is a solution to (pi, qi)i≤n+1,
• pi qi for all i ≤ n + 1,
• is monotone and composable,
• (ρ′i)i≤n is the most general solution to (pi, qi)i≤n,
• there exists k ≤ n such that (pi, qi, ρ

′
i)

k≤i≤n.

5 We should write a path formally as (β, β list, α 7→ β) but we simplify
our (heavy) notation in an informal description.

4 2014/12/25

Then ρ′n(qn) ≤ pn+1 or pn+1 ≤ ρ′n(qn).

Proof. From composability it follows that ρ′n(qn) ≤ pn+1, or
pn+1 ≤ ρ′n(qn), or ρ′n(qn) # pn+1. Since (ρ′i)i≤n is the most gen-
eral solution, there exists (ηi)i≤n such that ρi(pi) = (ηi ◦ ρ′i)(pi)
for all i ≤ n and by monotonicity also ρi(qi) = (ηi ◦ ρ′i)(qi)
for all i ≤ n. Therefore we can rewrite ρn(qn) = ρn+1(pn+1) to
ηn(ρ

′
n(qn)) = ρn+1(pn+1), which means there exists a common in-

stance of ρ′n(qn) and pn+1 and thus only two cases ρ′n(qn) ≤ pn+1

or pn+1 ≤ ρ′n(qn) can occur.

The last lemma shows that an existence of some solution (see
this solution as a subsequence of our non-terminating sequence)
and composability guarantee that we are left with two cases. The
two following lemmas show that the extension is always possible
in either of the cases and give us concrete instructions how to do it;
i.e., how to extend a most general solution from n to n+1 elements.

Lemma 5.9. Let

• (ρi)i≤n be the most general solution to (pi, qi)i≤n,
• pi qi for all i ≤ n,
• be monotone,
• ρn(qn) ≤ρ′ pn+1.

Then (ρi)i≤n, ρ
′ is the most general solution to (pi, qi)i≤n+1.

Proof. The sequence (ρi)i≤n, ρ
′ is a solution to (pi, qi)i≤n+1. We

prove that it is the most general solution. Let (ρ′i)i≤n+1 be a solution
to (pi, qi)i≤n+1. Then (ρ′i)i≤n is surely a solution to (pi, qi)i≤n.
Therefore there exists (ηi)i≤n such that ρ′i (pi) = (ηi ◦ ρi)(pi) for
all i ≤ n and by monotonicity also ρ′i (qi) = (ηi ◦ ρi)(qi). From this
and ρ′n(qn) = ρ′n+1(pn+1) (since (ρ′i)i≤n+1 is a solution), it follows
that ηn(ρn(qn)) = ρ′n+1(pn+1) and since ρn(qn) = ρ′(pn+1), we
get finally ηn(ρ

′(pn+1)) = ρ′n+1(pn+1). Define ηn+1 := ηn.

Lemma 5.10. Let

• (ρi)i≤n be the most general solution to (pi, qi)i≤n,
• pi qi for all i ≤ n,
• be monotone,
• ρn(qn) ≥ρ′ pn+1.

There exists a substitution ρ̂ such that the sequence (ρ̂ ◦ ρi)i≤n, id
is the most general solution to (pi, qi)i≤n+1 and ρ̂ =ρn(qn) ρ

′.

Proof. Since the formal proof is technical, we explain some ideas
of it first on a little example: Let us have:

(pi, qi)i≤1 = (α× β, β), (α list, α)

(ρi)i≤0 = id

(ρi)i≤0 is trivially the most general solution to (pi, qi)i≤0. q0 ≤ρ′

p1, where ρ′ = β 7→ α list. Let us define (ρ?
i)i≤1, a candidate for a

most general solution to (pi, qi)i≤1, as (ρ?
i)i≤1 = ρ′ ◦ ρ0, id. That

is to say, we try setting ρ̂ = ρ′. (ρ?
i)i≤1 is a solution to (pi, qi)i≤1

because it yields a sequence

(α× α list, α list), (α list, α). (1)

But in general it is not a most general solution: Let us take
(ρ′i)i≤1 = [α 7→ int, β 7→ nat list], α 7→ nat, which is a solu-
tion to (pi, qi)i≤1 because it yields this sequence

(int× nat list, nat list), (nat list, nat). (2)

If (ρ?
i)i≤1 were the most general solution, we should be able to find

(ηi)i≤1 such that ρ′i (pi) = (ηi ◦ ρ?
i)(pi) for all i = 0, 1. But this

is not possible since by comparing sequences (1) and (2) we derive
η0(α) = int and η0(α) = nat.

We have to first rename the type variable from p0 that is not in
q0 such that it does not clash with variables from ρ′(q0) and q0: we
use a renaming σ = α 7→ γ. Observe that (σ ◦ ρi)i≤0 is a solution
to (pi, qi)i≤0. We define ρ̂ = ρ′ ◦ σ and then a new candidate for
the most general solution ρ̂ ◦ ρ0, id yields

(γ × α list, α list), (α list, α).

Now we can find (ηi)i≤1: we obtain η(γ) from comparing (σ ◦
ρi)i≤0 and (ρ′i)i≤0 (the former is a most general solution and the
latter a solution) and η(α) from comparing ρ′(q0) = p1 and ρ′1(p1)
(which trivially yields η(α) = ρ′1(α)).

Now we proceed to carry out the formal proof. Assume

dom(ρ′) ⊆ FV(ρn(qn)). (3)

If it were not the case, we would use ρ′ �FV(ρn(qn)) instead of ρ′.
Let R := FV(ρ0(p0)) \ FV(ρn(qn)) and C := FV(ρn(qn)) ∪

FV((ρ′ ◦ ρn)(qn)). We define σ := Ren(R, C) and obtain the two
following properties of σ from the definition of Ren:

dom(σ) ∩ FV(ρn(qn)) = ∅ (4)

σ[R] ∩ FV((ρ′ ◦ ρn)(qn)) = ∅ (5)

Let ρ̃i := σ ◦ ρi for each i ≤ n. Obviously (ρ̃i)i≤n is a solution
to the sequence (pi, qi)i≤n. Now we prove that it is the most general
solution: let us take another solution (ρ′i)i≤n; thus there exists
(ηi)i≤n such that ρ′i (pi) = (ηi ◦ ρi)(pi). Define η̃i := ηi ◦ σ−1.
Then ρ′(pi) = (η̃i ◦ ρ̃i)(pi).

From (4) it follows that ρ̃n(qn) ≥ρ′ pn+1. Let (ρi)i≤n+1 :=
(ρ′ ◦ ρ̃i)i≤n, id. The sequence (ρi)i≤n+1 is clearly a solution to
(pi, qi)i≤n+1. We prove that it is the most general solution. Let
(ρ′i)i≤n+1 be a solution to (pi, qi)i≤n+1 then (ρ′i)i≤n is clearly a
solution to (pi, qi)i≤n. Thus (ηi)i≤n exists such that

ρ′i (pi) = (ηi ◦ ρ̃i)(pi) for all i ≤ n. (6)

We define (η)i≤n+1 as follows: if i = n + 1 then ηn+1 := ρ′n+1,
otherwise (i ≤ n)

ηi(x) :=

{
ρ′n+1(x) if x ∈ FV((ρ′ ◦ ρn)(qn))

ηi(x) otherwise.

We prove by backward induction that ρ′i (pi) = (ηi ◦ ρi)(pi) for
all i ≤ n + 1. Base case (i = n + 1): Since ρn+1 = id, we get
immediately ρ′n+1 = ηn+1 ◦ ρn+1. Inductive step: 0 ≤ i < n + 1
and ρ′i+1(pi+1) = (ηi+1 ◦ ρi+1)(pi+1). We prove

ηi(x) = (ηi ◦ ρ
′)(x) for all x ∈ FV(ρ̃i(pi)) (7)

by the case distinction:

a) x ∈ FV(ρ̃i(pi)) \ FV(ρn(qn)): therefore ρ′(x) = x by (3) and
since x ∈ σ[R] (by Lemmas 3.2 and 5.2), ηi(x) = ηi(x) follows
from (5). Therefore ηi(x) = (ηi ◦ ρ

′)(x).
b) x ∈ FV(ρn(qn)): (ηi ◦ ρ̃i)(qi) = (ηi+1 ◦ ρ

′ ◦ ρ̃i)(qi) holds since

(ηi ◦ ρ̃i)(qi) = ρ′i (qi) by mon. and (6)

= ρ′i+1(pi+1) (ρ′i)i≤n+1 is sol.
= (ηi+1 ◦ ρi+1)(pi+1) by IH

= (ηi+1 ◦ ρ
′ ◦ ρ̃i)(qi) (ρi)i≤n+1 is sol.

Thus ηi(y) = (ηi+1 ◦ ρ
′)(y) for all y ∈ FV(ρ̃i(qi)). But by

Lemma 5.2 and by (4) x ∈ FV(ρ̃i(qi)). Therefore ηi(x) =
(ηi+1 ◦ ρ

′)(x) = (ρ′n+1 ◦ ρ′)(x) = (ηi ◦ ρ
′)(x).

We know that ρ′i (pi) = (ηi ◦ ρ̃i)(pi) and by using (7) we get
ρ′i (pi) = (ηi ◦ ρ

′ ◦ ρ̃i)(pi) = (ηi ◦ ρi)(pi), which concludes the
proof that (ρi)i≤n+1 is the most general solution.

5 2014/12/25

Let ρ̂ := ρ′ ◦ σ then obviously (ρi)i≤n+1 = ((ρ′ ◦ ρ̃i)i≤n, id) =
((ρ̂ ◦ ρi)i≤n, id). The equality ρ̂ =ρn(qn) ρ

′ follows from (4).

Now nothing prevents us from combining the previous results
and proving that there is always a most general solution if some
solution already exists.

Lemma 5.11. Let us assume that

• (ρi)i≤n is a solution to (pi, qi)i≤n,
• pi qi for all i ≤ n,
• is monotone and composable,

then there exist a most general solution (ρ′i)i≤n to (pi, qi)i≤n and
k ≤ n such that (pi, qi, ρ

′
i)

k≤i≤n.

Proof. By induction on the length of the sequence. Base case n =
0: define ρ′0 = id. Inductive step n = i + 1: we assume that
(ρ j) j≤i+1 is a solution to (p j, q j) j≤i+1. Then (ρ j) j≤i is surely a
solution to (p j, q j) j≤i and thus by the induction hypothesis we
obtain the most general solution (ρ′j) j≤i to (p j, q j) j≤i and k ≤ i
such that (p j, q j, ρ

′
j)

k≤ j≤i.

By Lemma 5.8, only two cases can occur:

a) ρ′i (qi) ≤ρ′ pi+1, then by Lemma 5.9 (ρ′j) j≤i, ρ
′ is the most

general solution to (p j, q j) j≤i+1 and still ρ′k ≈pk id.
b) ρ′i (qi) ≥ρ′ pi+1, then by Lemma 5.10 there exists ρ̂ such that

the sequence ρ̂ ◦ ρ′1, . . . , ρ̂ ◦ ρ′i , id is the most general solution
to (p j, q j) j≤i+1. Then k = i + 1 and obviously ρ′k ≈pk id.

We proved even more: a sequence defined by a most general
solution has always as a suffix a path. This is an important result
for us because we claimed that we can look for cycles in sequences
produced by most general solutions and we did define a cycle
such that each cycle is a path. Thus this suffix is a candidate for
a cycle. To find a real cycle among these candidates, we extend
this suffix potentially ad infinitum in our proof, i.e., we find an
infinite sequence where each prefix is a path. To capture this idea
we introduce new notions.

Definition 5.12. We write (pi, qi)i≤n � p if there exists a most
general solution (ρi)i≤n to (pi, qi)i≤n and if ρn(qn) ≤ p. We define
(pi, qi)i≤n � p analogously.

Corollary 5.13. Let be composable and monotone, and let us
have sequences (pi, qi)i≤n+1 and (ρi)i≤n+1 such that (ρi)i≤n+1 is
a solution to (pi, qi)i≤n+1 and pi qi for all i ≤ n + 1. Then
(pi, qi)i≤n � pi+1 or (pi, qi)i≤n � pi+1.

Proof. From Lemmas 5.8 and 5.11.

Definition 5.14. A sequence (p0, q0), (p1, q1), . . . is called as-
cending if (p0, q0), . . . , (pi−1, qi−1) � pi holds for all i ≥ 1.

A sequence (α, α list), (α, α list), . . . is an example of an as-
cending sequence. A most general solution (ρi)i≤n to a prefix of
length n + 1 of this sequence is defined as ρi = α 7→ α listn for all
i ≤ n.

Lemma 5.15. Let be monotone, (p0, q0), (p1, q1), . . . be an
ascending sequence and pi qi for all i. Then for all n it holds
that there exists the most general solution (ρi)i≤n to (pi, qi)i≤n such
that (pi, qi, ρi)

i≤n.

Proof. We fix n. Let (ρi)i≤n be the most general solution to
(pi, qi)i≤n. (ρi)i≤n always exists because of (pi, qi)i≤n � pn+1.

We prove by backward induction on n that (ρ j) j≤i is the most
general solution to (p j, q j) j≤i for all i ≤ n. Base case: triv-
ial. Inductive step (n = i, i > 0): (ρ j) j≤i is the most general

solution to (p j, q j) j≤i. From (p0, q0), . . . , (pi−1, qi−1) � pi

it follows that there exists (ρ′j) j≤i−1, a most general solution
to (p0, q0), . . . , (pi−1, qi−1) such that ρ′i−1(qi−1) ≤ρ′ pi. By
Lemma 5.9 we know that (ρ′j) j≤i−1, ρ

′ is the most general so-
lution to (p j, q j) j≤i but then Lemma 5.4 gives us ρ j ≈p j ρ

′
j for

all j ≤ i − 1. Hence (ρ j) j≤i−1 is the most general solution to
(p0, q0), . . . , (pi−1, qi−1).

Now we can see that ρ0 ≈p0 id since ρ0 is the most general
solution to (p0, q0).

An ascending sequence is a formalization of the notion that we
mentioned before, i.e., a sequence whose each prefix is a path.
Lemma 5.11 tells us that in a sequence given by a most general
solution, there always exists a suffix that is a path. But this lemma
does not say much about the length of such a suffix. Let us inspect
the proof of Lemma 5.11: there are two cases in which we extend
the most general solution. In the first case, we extend also the suffix
that is a path. But in the second case (ρ′i (qi) ≥ρ′ pi+1), the path gets
reset to a sequence of length one. The following lemma shows that
the second case can happen only finitely many times and thus we
can always find an ascending sequence.

Lemma 5.16 (The Key Technical Lemma). Assume that is com-
posable and monotone, and that (pi)i∈N, (qi)i∈N and (ρi)i∈N are se-
quences such that pi qi and ρi(qi) = ρi+1(pi+1) for all i. Then
there exists k such that the sequence (pk, qk), (pk+1, qk+1), . . . is
ascending.

Proof. First informally: When we construct a most general solution
to a prefix of (pi, qi)i≤N, each extension done by Lemma 5.10
means that we apply a substitution ρ̂ to the first element of the
sequence. This means that the size of the first element increases
(because of monotonicity). But the size of the first element cannot
increase ad infinitum for this reason: it must hold (ρ̂1 ◦ . . . ◦
ρ̂k)(p0) ≥ ρ0(p0) since a prefix of (ρi)i≤N is a solution to a
corresponding prefix of (pi, qi)i≤N and ρ̂1 ◦ . . . ◦ ρ̂k is from a most
general solution.

We do the proof by contradiction. No such k exists, which
means there exists an infinite sequence (i j) j∈N such that i0 = 0
and (p0, q0), . . . , (pi j−1, qi j−1) � pi j for all j > 0 and (i j) j∈N
iterates all these cases (maximality). By Corollary 5.13 we get that
(p0, q0), . . . , (pi j−1, qi j−1) � pi j . Let (ρ j

i)i≤ j denote the most
general solution to (p0, q0), . . . , (p j, q j), which always exists by
Lemma 5.11. Let Q j denote ρi j−1

i j−1(qi j−1). And finally let ρ′0 = id

and ρ′j denote the substitution such that Q j ≥ρ′j
pi j for all j > 0.

Now we prove by induction on j that ρi
0 ≈p0 ρ̂′j ◦ · · · ◦ ρ̂′0 for

all i j ≤ i < i j+1 and for some ρ̂′l such that ρ̂′l ≈Ql ρ
′
l for all l ≤ j.

Base case j = 0: from the maximality of (i j) j∈N it follows that i1
is the first index i when (p0, q0), . . . , (pi−1, qi−1) � pi. Therefore
(p0, q0), . . . , (pi−1, qi−1) � pi for all i < i1 and therefore ρi

0 ≈p0
id = ρ′0 for all i < i1 (formally by induction and Lemmas 5.4
and 5.9). Inductive step j = l and l > 0: ρi

0 ≈p0 ρ̂
′
l−1◦· · ·◦ρ̂′0 for all

il−1 ≤ i < il. Thus (p0, q0), . . . , (pil−1, qil−1) � pil holds and by
Lemmas 5.4 and 5.10 we obtain ρil

0 ≈p0 ρ̂
′
l◦· · ·◦ρ̂′0 such that ρ̂′l ≈Ql

ρ′l . Because (i j) j∈N is maximal, (p0, q0), . . . , (pi−1, qi−1) � pi

for all il < i < il+1 and ρi
0 ≈p0 ρ̂′l ◦ · · · ◦ ρ̂′0 (again formally by

induction and Lemmas 5.4 and 5.9).
We reason for each j > 0: (p0, q0), . . . , (pi j−1, qi j−1) � pi j

and (p0, q0), . . . , (pi j−1, qi j−1) � pi j gives us that ρ′j 6≈Q j id.
By Lemma 5.2 we get that FV(Q j) ⊆ FV(ρ

i j−1

0 (p0)). Using
this, the fact that ρ̂′j ≈Q j ρ

′
j 6≈Q j id and Lemma 3.1 we obtain

size(ρ
i j
0 (p0)) > size(ρ

i j−1

0 (p0)) and finally again from Lemma 3.1

6 2014/12/25

and ρi j−1

0 ≈p0 ρ
i j−1

0 , it follows that

size(ρ
i j
0 (p0)) > size(ρ

i j−1

0 (p0)). (8)

But since each (ρ
i j
i)i≤i j is the most general solution to a prefix of

(p0, q0), . . . , there exists η j for each (ρ
i j
i)i≤i j such that ρ0(p0) =

η j(ρ
i j
0 (p0)). Since size(ρ0(p0)) is already fixed and (8) tells us that

size(ρ
i j
0 (p0)) is an increasing sequence (in j), there must be j′ such

that size(ρ
i j′
0 (p0)) > size(ρ0(p0)), which prevents an existence of

η j′ and is a contradiction with the fact that (ρi)i≤i j′ is a solution to
(p0, q0), . . . , (pi j′ , qi j′).

Please note that composability is crucial for the last lemma.
Consider this example: the dependency relation is defined as
(α × nat) list (nat × α) list and we have a non-terminating
sequence ((α × nat) list, (nat × α) list), ((α × nat) list, (nat ×
α) list), There is a most general solution (ρi)i≤n to any prefix
of this sequence defined as ρi = α 7→ nat for all i ≤ n. But there
is no ascending sequence since a prefix of an ascending sequence
must be a path. But is not composable since the only path is
((α×nat) list, (nat×α) list, id) and (α×nat) list ↓(nat×α) list.

We can look at the last lemma also from a different perspective:
if there exists a non-terminating sequence, we can find p and q
such that p q and such that there exists a non-terminating
sequence starting from p. We have to consider only finitely many
such p’s and q’s since is finite, so there is no need to consider
the infinitely many possible instantiations.

An ascending sequence is a key ingredient that allows us to
prove the main result of this section because an ascending sequence
always gives rise to a cycle.

Lemma 5.17. Let us assume that is finite, monotone and com-
posable, then the following statements are equivalent:

1. is non-terminating
2. is cyclic

Proof. 2. ⇒ 1. There exists a path (pi, qi, ρi)

i≤n. Since is

the transitive and substitutive closure of , it must hold that
ρi(pi) ρi(qi) for all i ≤ n and ρi(qi) = ρi+1(pi+1) for all
i < n. Thus p0 q0 ρ1(q1) · · · ρn−1(qn−1) ρn(qn).
Since ρn(qn) ≤ρ p0, we have p0 ρ(p0) and thus we can con-
clude p0 ρ(p0) ρ(ρ(p0)) ρ(ρ(ρ(p0))) · · ·.

1.⇒ 2. If does not terminate, there exists a non-terminating
sequence. We unfold transitive edges in this sequence and work
only with ↓. Thus there exist sequences (p′i)i∈N and (q′i)i∈N
such that p′i

↓ q′i and q′i = p′i+1 for all i. The non-terminating
sequence is then p′0

↓ p′1
↓ p′2

↓ · · ·. From the definition of
 ↓ follows that there exist sequences (pi)i∈N, (qi)i∈N and (ρi)i∈N
such that pi qi and ρi(pi) = p′i and ρi(qi) = q′i and since
q′i = p′i+1, ρi(qi) = ρi+1(pi+1) holds for all i.

The key step of the proof is to find an ascending sequence
(pk, qk), (pk+1, qk+1), . . . such that there exists also k′ > k and
(pk, qk) = (pk′ , qk′): We define Θk = {(pl, ql). l ≥ k}. Since
 is a finite relation, Θk is a finite set for all k (recall pi qi)
and is never empty. We use Lemma 5.16 to obtain k1 such that
the sequence (pk1 , qk1), (pk1+1, qk1+1), . . . is ascending. If there
does not exist a k′1 > k1 such that (pk1 , qk1) = (pk′1

, qk′1
), we

use Lemma 5.16 for subsequences (pi)i>k1 , (qi)i>k1 and obtain
the respective k2. Because Θk1) Θk2 , the whole process must
stop after at most |Θ0| steps by finding k and k′ > k such that
(pk, qk), (pk+1, qk+1), . . . is an ascending sequence and (pk, qk) =
(pk′ , qk′).

We define sequences (ri)i≤n and (si)i≤n as following: n =
k′ − k − 1, ri = pk+i and si = qk+i for all i ≤ n. Since

(pk, qk), (pk+1, qk+1), . . . is an ascending sequence, we get the
most general solution (ρi)i≤n to (ri, si)i≤n such that (ri, si, ρi)

i≤n

(by Lemma 5.15). From (pk, qk) = (pk′ , qk′), it follows that
(r0, s0), . . . , (rn, sn) � r0 and finally we get ρn(sn) ≤ r0 by Lem-
mas 3.3 and 5.4. This concludes the proof that is cyclic.

6. From Cyclicity to a Decision Procedure
Since acyclicity of a finite is a finite problem, there should be
a decision procedure for this problem. We introduce this procedure
in Algorithm 1 and prove it correct.

Definition 6.1. We say that is orthogonal if for all p, q, p′ and
q′ such that (p, q) 6= (p′, q′) it holds that if p q and p′ q′

then p # p′.

Orthogonality is another restriction on . As we prove in the
following lemma, this constraint guarantees that if two paths start
from the same value p0, then these paths are the same modulo
equivalent substitutions. We need this property to restrict once more
the search space of our algorithm.

Lemma 6.2. Let be orthogonal and monotone. If there exist
two paths (pi, qi, ρi)

i≤n and (p′i , q′i , ρ

′
i)

i≤n such that p0 = p′0, then

pi = p′i , qi = q′i and ρi ≈pi ρ
′
i for all i ≤ n.

Proof. By contradiction: Let k ≤ n be the smallest k such that:

• Either pk 6= p′k: k > 0, ρk−1 ≈pk−1 ρ′k−1, ρk−1(qk−1) ≤ρk pk

and ρ′k−1(qk−1) ≤ρ′k
p′k. But this contradicts pk # p′k (by

Lemma 3.3).
• Or qk 6= q′k: but pk = p′k, which contradicts pk # p′k.
• Or ρk 6≈pk ρ′k: a) k = 0: contradiction with ρ0 ≈p0 id and
ρ′0 ≈p0 id. b) k > 0: ρk−1 ≈pk−1 ρ

′
k−1, ρk−1(qk−1) ≤ρk pk and

ρ′k−1(qk−1) ≤ρ′k
pk. By Lemma 3.3 we get a contradiction with

uniqueness of ≤ρ, i.e., if p ≤ρ q and p ≤ρ′ q, then ρ =q ρ
′.

We assume that we have a unification algorithm on types, which
we again extend to UΣ. This algorithm is used internally in function
HASCOMMONINSTANCE in Algorithm 1. Function HASCOM-
MONINSTANCE is used to test composability and orthogonality.

Lemma 6.3. ¬HASCOMMONINSTANCE(p, q) iff p # q.

Proof. p and q have a common instance iff there exists p′ such that
p′ ≤ρ p and p′ ≤ρ′ q. Since ρ and ρ′ can be different, we have to
rename variables in q in the procedure. The unification then decides
if there exists a common instance.

Let us somewhat informally describe our cyclicity decision pro-
cedure presented in Algorithm 1. First of all, a syntactic comment:
our algorithm contains ghost variables, which help us analyze the
algorithm but are not used during the real computation. Commands
where the ghost variables are used are always prefixed by charac-
ter #. We use two ghost variables i and Ri, whose meaning we will
explain later.

The core of the computation of the program happens in the
main loop, i.e., between lines 48 and 58. We call the loop reduction
phase. The value of i is an iteration counter of the reduction phase.

The variable dep is the only input of our algorithm and does
not get changed during the whole computation. This is the relation
that we are supposed to check whether it contains a cycle or not.
In order to do it, we start discovering for each p from dep6 a path
starting from p and we store the beginning and end of such a path

6 more precisely, for each p such that there exists q and (p, q) ∈ dep

7 2014/12/25

in dep+. That is to say, if (p, q) ∈ dep+, this means we have
discovered a path from p to q. This path is a candidate for a cycle
and therefore after each iteration we check if q ≤ p in the function
ISACYCLIC. Moreover, we store in dep+ only the longest path
from p that we have discovered so far. The function REDUCESTEP
extends all paths from dep+ by one step if it is possible. If not, p is
marked as final. Thanks to Lemma 6.2, there always exists a unique
extension of dep+ modulo renaming. That is to say, when we look
for (p′, q′) on line 24, there is at most one such a pair.

We store only the beginning and end of a path starting from p
in dep+, because this is enough information for the algorithm to
check if this path comprises a cycle. But for the analysis of the
algorithm, we want to know also intermediate steps of such a path
and therefore we store these steps in ghost variable Ri(p). The two
following lemmas show that Ri(p) gets defined in the ith iteration
if p is not final and that Ri(p) is a path starting from p of length
i + 1 and that the algorithm does not miss any path. If dep+ does
not change after REDUCESTEP, it means no further cycle candidate
exists and we can report that dep is acyclic.

Lemma 6.4. Let p0 q. Then p0 is not final in the nth iter-
ation of CHECK() iff Rn(p0) gets defined in the nth iteration
of CHECK(). Moreover, if Rn(p0) is defined, there exists a path
(pi, qi, ρi)

i≤n such that Rn(p0) = (pi, qi, ρi)i≤n.

Proof. Rn(p0) can get defined only in the nth iteration of the algo-
rithm, since the ghost variable i is strictly increasing. Each p is not
final at the beginning of computation and when it gets final, it stays
final for the rest of computation. Then clearly p0 gets final in the
nth iteration iff Rn(p0) does not get defined in the nth iteration.

We prove that defined Rn(p0) comprises a path by induction on
n. Base case (n = 0): R0(p0) is defined at the beginning of the
algorithm and defines a trivial path. Inductive step (n = i + 1):
p0 does not get final in the (i + 1)st step of the algorithm and
therefore it was not final in the ith step either. We take the sequence
Ri(p0) = (p j, q j, ρ j) j≤i defined in the ith step and we know that
(p j, q j, ρ j)

j≤i. We take q that is considered on line 23 in the (i+1)st

step such that (p0, q) ∈ dep+. It is clear that q = ρi(qi) and
there must ρi+1 and pi+1 such that ρi(qi) ≤ρi+1 pi+1, otherwise
p0 would get final. Then Ri+1(p0) gets defined in the (i + 1)st step
to (p j, q j, ρ j) j≤i+1 and (p j, q j, ρ j)

j≤i+1.

In the light of the previous lemma we will write Rn(p) =
(pi, qi, ρi)

i≤n from now on.

Lemma 6.5. Let be orthogonal and monotone. If there exists a
path (pi, qi, ρi)

i≤n, then Rn(p0) gets defined in the nth iteration of

CHECK().

Proof. We do the proof by induction on n. Base case (n = 0):
R0(p0) is defined at the beginning of the algorithm. Inductive step
n = i + 1: Let (p j, q j, ρ j)

j≤i+1, then (p j, q j, ρ j)

j≤i is also a path

and we can use the induction hypothesis and obtain by Lemma 6.4
the path Ri(p0) = (p′j, q′j, ρ

′
j)

j≤i defined in the ith step. We take

q that is considered on line 23 in the (i + 1)st step such that
(p0, q) ∈ dep+. It is clear that q = ρ′i (q′i). By Lemma 6.2 we
get that p j = p′j, q j = q′j and ρ j ≈p j ρ′j for all j ≤ i and
from the definition of (p j, q j, ρ j)

j≤i+1 that ρi(qi) ≤ρi+1 pi+1. By

Lemma 3.3 we can finally derive that ρ′i (q′i) ≤ pi+1 and therefore
p0 cannot get final in the (i + 1)st step and Ri+1(p0) gets defined
in this step (by Lemma 6.4).

Algorithm 1 can either return success (we write CHECK() =
success) or fail (we write CHECK() = fail) or not terminate (we
write CHECK() = ↑).

As we know from Section 5, we reduce termination to cyclicity
only under some assumptions, where the most important one is

Algorithm 1 The main algorithm
1: function HASCOMMONINSTANCE(p, q)
2: q′ ← rename q apart from p
3: return p and q′ can be unified
4: end function
5:
6: function ISORTHOGONAL(dep)
7: return ∀(p, q), (p′, q′) ∈ dep. if (p, q) 6= (p′, q′) then

¬HASCOMMONINSTANCE(p, p′)
8: end function
9:

10: function ISMONOTONE(dep)
11: return ∀(p, q) ∈ dep. FV(q) ⊆ FV(p)
12: end function
13:
14: function ISACYCLIC(dep+)
15: return ∀(p, q) ∈ dep+. q � p
16: end function
17:
18: function ISCOMPOSABLE(q, dep)
19: return ∀(p′, q′) ∈ dep.

HASCOMMONINSTANCE(q, p′)⇒ q ≥ p′

20: end function
21:
22: function REDUCESTEP(dep, dep+)
23: for all (p, q) ∈ dep+ such that final(p) = false do
24: if can find (p′, q′) ∈ dep such that q ≤ρ p′ then
25: dep+ ← dep+ \ (p, q) ∪ (p, ρ(q′))
26: #Ri(p)← Ri−1(p), (p′, q′, ρ)
27: else
28: final(p)← true
29: if ¬ISCOMPOSABLE(q, dep) then
30: return fail
31: end if
32: end if
33: end for
34: return dep+

35: end function
36:
37: function CHECK(dep)
38: #i = 0
39: for all (p, q) ∈ dep. final(p)← false
40: #for all (p, q) ∈ dep. R0(p)← (p, q, id)
41: if ¬ISORTHOGONAL(dep) then
42: return fail
43: end if
44: if ¬ISMONOTONE(dep) then
45: return fail
46: end if
47: dep+ ← dep
48: loop
49: #i← i + 1
50: dep′+ ← REDUCESTEP(dep, dep+)
51: if dep+ = dep′+ then
52: exit loop
53: end if
54: dep+ ← dep′+
55: if ¬ISACYCLIC(dep+) then
56: return fail
57: end if
58: end loop
59: return success
60: end function

8 2014/12/25

composability. Our algorithm also checks composability of dep,
which is done during the reduction phase for two reasons: 1) It is
too late to do it after the phase because when the composability
does not hold, the reduction phase may fail to terminate. 2) We
cannot do it before because composability must be checked for all
possible paths and we have to be sure that there exists no infinite
path by checking also acyclicity dynamically, which is the goal of
the reduction phase.

In order to make our algorithm more efficient, we check com-
posability only for paths that start at p that is final. The next lemma
shows that this suffices. The key observation is that if we can extend
a path, the composability still locally holds.

Lemma 6.6. If CHECK() 6= fail, then is monotone, compos-
able, orthogonal and acyclic.

Proof. is monotone, since this property is checked directly at
the beginning of the algorithm. The same holds for orthogonality
by using Lemma 6.3.

We prove the composability by contradiction: There exist a path
(pi, qi, ρi)

i≤n and p and q such that p q and ρn(qn) ↓ p. Then

from Lemmas 6.4 and 6.5 it follows that Rn(p0) = (p′i , q′i , ρ
′
i)

i≤n

was defined in the nth iteration of CHECK() and by Lemma 6.2
that pi = p′i , qi = q′i and ρi ≈pi ρ

′
i for all i ≤ n. Then ρ′n(q′n) ↓ p

follows from Lemma 3.3. In the (n + 1)st iteration two cases can
occur:

• There does not exist any p′ and q′ such that p′ q′ and
ρ′n(q′n) ≤ p′. Then ISCOMPOSABLE(ρ′n(q′n),) is executed.
This function checks that ρ′n(q′n) ≥ p′ or ρ′n(q′n) # p′ (by
Lemma 6.3) for all (p′, q′) such that p′ q′. This is a
contradiction with ρ′n(q′n) ↓ p.
• There exist p′ and q′ such that p′ q′ and ρ′n(q′n) ≤ p′. But

then for all p′′ 6= p′ and q′′ such that p′′ q′′, ρ′n(q′n) # p′′

holds (otherwise would not be orthogonal). But this is again
a contradiction with ρ′n(q′n) ↓ p.

We prove the acyclicity by contradiction as well: If is cyclic,
there exists a path (pi, qi, ρi)

i≤n such that ρn(qn) ≤ p0. By Lem-

mas 6.4 and 6.5 we obtain another path Rn(p0) = (p′i , q′i , ρ
′
i)

i≤n

defined in the nth step of the algorithm and by Lemmas 3.3 and 6.2
finally ρ′n(q′n) ≤ p′0. But this means that the cyclicity check on
line 55 returns fail.

Let P() abbreviate the conjunction of the following proper-
ties:

• is monotone,
• is composable,
• is orthogonal,
• is acyclic.

Lemma 6.7. If is finite then the following holds:

• CHECK() always terminates,
• CHECK() = success if and only if P().

Proof. We start by proving termination by contradiction. The only
way how CHECK() can fail to terminate is when the pro-
gram never exits the reduction phase. This happens when the
check on line 51 is always false,7 i.e., when the function RE-
DUCESTEP always changes dep+, which means we can always
find (p′, q′) ∈ dep on line 24 such that q ≤ρ p′. That means
there exists an infinite sequence R0(p), R1(p), . . . for a certain p.

7 and also the check on line 55 is always false

From this sequence, we can easily construct an infinite sequence
ρ0(p0) ρ1(p1) ρ2(p2) · · ·. Since CHECK() does not re-
turn fail, is monotone, composable, orthogonal and acyclic by
Lemma 6.6 and thus we can invoke Lemma 5.17 and get that is
cyclic, which is a contradiction.

Now we continue by the proof of the equivalence. Left-to-right:
By Lemma 6.6. Right-to-left: Since we proved that the algorithm
terminates, we know that CHECK() 6= fail implies CHECK() =
success and therefore it suffices to prove that CHECK() 6= fail.
The algorithms can return fail only on lines 42, 45, 30 and 56. We
prove by contradiction that the program cannot return fail on any
of those lines:

• If fail is returned on line 42, it means that is not orthogonal
(by Lemma 6.3).
• If fail is returned on line 45, it means that is not monotone.
• If fail is returned on line 30 in the nth iteration, there exist p and

a path Rn−1(p) = (pi, qi, ρi)

n−1 by Lemma 6.4 such that for all

p′ and q′ such that p′ q′, we have ρn−1(qn−1) 6≤ p′. More-
over, it has to hold that ¬ISCOMPOSABLE(ρn−1(qn−1),)
and therefore there exist p′ and q′ such that p′ q′ and
¬(ρn−1(qn−1) # p′) and ρn−1(qn−1) 6≥ p′. But this means
ρn−1(qn−1) ↓ p′ and therefore is not composable.
• If fail is returned on line 56 in the nth iteration, there exists

p0 that is not final8 and a path Rn(p0) = (pi, qi, ρi)

n (by

Lemma 6.4) such that ρn(qn) ≤ p0. But this means that
is cyclic.

Theorem 1. There exists a predicate P on binary relations on UΣ

such that for finite relations the following holds:

• P() is decidable
• P() implies that terminates
• P contains interesting relations

Proof. Lemma 6.7 shows that P is decidable by the program
CHECK. Lemma 5.17 shows that P() implies termination of .

Now we proceed to the last question: do the restriction to rela-
tions that are monotone, composable, and orthogonal still allows
for suitable expressiveness for overloaded definitions? Monotonic-
ity and orthogonality are such natural conditions that one would ex-
pect that any reasonable (overloaded) definition must fulfill them.
We will argue now that composability still admits all main use cases
of overloading in Isabelle:

• In the context of type classes, only what Haftmann and Wen-
zel [3] call restricted overloading is allowed: constants can be
declared only with a linear polymorphic type, e.g., cα τ. Over-
loaded definitions have this form c(α k) τ = . . . cαi τ . . . , i.e., if
c appears on the right hand side, it uses some αi from α. Such
definitions generate only composable dependency relations.
• Our experience shows that all cases of unrestricted overloading

that have been required by users so far also fulfill composability.
A classical example would be a basic concept of nth power of
composition of fα (written f n) defined in Isabelle/HOL. This
operation is then overloaded for unary functions (fα→α), binary
relations (fα→α→bool) and relations as sets (f(α×α) set).

8 Otherwise the cycle would have been detected in the previous iteration.

9 2014/12/25

7. Issues with the Original Algorithm
During inspection of the original cyclicity checker and during the
subsequent formalization, we identified three issues:

• Completeness issue: The original algorithm (Isabelle2014) does
not always terminate because the cyclicity check (function
ISACYCLIC) misses some cycles and therefore the reduction
phase might loop. Leaving out details, consider this minimal
example:

aα list×β aα list×α.

The algorithm concludes that must be acyclic since α in
aα list×α is also contained in aα list×β. But is obviously cyclic.
We use instead solely an instance test (q 6≤ p) in our modified
algorithm.
• Completeness issue: In the original algorithm (Isabelle2014),

composability is checked9 at the end of the algorithm after
the reduction phase is finished. But if the composability does
not hold, the reduction phase may fail to terminate, as in the
following example:

aint bint×nat, bα×nat cα×nat, cint×α bint×α

 is not composable because cα×nat ↓ cint×α. But this is never
detected in the original algorithm for this reason: starting from
aint the reduction phase does not terminate since no cycle is
detected (c? 6≤ aint and b? 6≤ aint).
We modified the algorithm such that composability is checked
during the reduction phase. But the change is subtler than
just moving the original test into the reduction phase because
then the complexity increases from O(|dep|2) to O(|dep|3).
Therefore we test composability only for p’s that are final,
i.e., for which the reduction phase terminates. This suffices by
Lemma 6.6 and preserves quadratic complexity.
• Correctness issue: Our colleague Andrei Popescu found the

following soundness issue caused by the cyclicity checker:

consts c :: ’a ⇒ bool
consts d :: (’a × ’b) ⇒ bool

defs c def: c (x::’a) ≡ d (undefined:: (’a × ’a))
defs d def: d (x::(’a × nat)) ≡ ¬c (undefined::’a)

This input is accepted by Isabelle2013-2 and leads to an incon-
sistency since the following can be proved:

c(undefined::nat) = ¬c(undefined::nat)

The derived dependency relation is as follows:

cα→bool d(α×α)→bool, d(α×nat)→bool cα→bool

 is not composable since d(α×α)→bool ↓ d(α×nat)→bool. There
exists a cycle (substitute nat for α) but this cycle is not de-
tected by the cyclicity check and the reduction phase terminates.
The issue is that the composability check (function ISCOMPOS-
ABLE) in the original algorithm was implemented as follows:

∀(p′, q′) ∈ dep. HASCOMMONINSTANCE(q, p′)⇒
type of q has the same shape as tyOf(q)

And indeed the type of d(α×α)→bool has the same shape as d’s
declared type (α× β)→ bool.
The issue was amended for Isabelle2014 release by changing
the condition from having the same shape to

type of q is alpha-equivalent to tyOf(q).

9 By ∀(p, q) ∈ dep+. ISCOMPOSABLE(q, dep).

Our work clarifies this issue in two ways:

The proof shows that the check from Isabelle2014 is correct
because it is strictly stronger than the check that we propose
in this paper: if q and p′ have a common instance and the
type of q is alpha-equivalent to tyOf(q), then q ≥ p′ by
orthogonality.

The current composability check can be generalized to q ≥
p′, which would allow more instances of overloading to
be accepted and does not require any other change of the
algorithm.

We plan to address all of the described issues in the next release
of Isabelle. Isabelle theory files illustrating all three issues can be
found on the author’s web page [1].

8. Conclusion
We have seen that the question as to when overloaded constant
definitions are a safe theory extension is a subtle problem. The
key property is to prove that the dependency relation generated by
these definitions terminates. We inspected Isabelle’s algorithm that
checks the termination property and identified two sources of non-
termination and a soundness issue.

We presented a modified algorithm in this paper and proved its
completeness and correctness. Thus we improved trustworthiness
of Isabelle. Our proof uses hardly any specific features of Isabelle
and therefore we presented a general approach how to implement
overloading in proof assistants.

Our future work is to formalize the theory that we presented
here in Isabelle/HOL and obtain verified code by Isabelle’s code
generator.

Acknowledgments
I would like to thank Andrei Popescu for inspiration, support and
letting me present the soundness bug. Jasmin Blanchette, Johannes
Hölzl, Tobias Nipkow, Dmitriy Traytel and Makarius Wenzel read
earlier versions of this paper on short notice and made helpful
comments. Remarks and questions of anonymous referees led to
several improvements and corrections.

References
[1] URL http://www21.in.tum.de/~kuncar/documents/issues.
[2] A. Grabowski, A. Kornilowicz, and A. Naumowicz. Mizar in a Nut-

shell. J. Formalized Reasoning, 3(2):153–245, 2010.
[3] F. Haftmann and M. Wenzel. Constructive Type Classes in Isabelle. In

T. Altenkirch and C. McBride, editors, TYPES, volume 4502 of Lecture
Notes in Computer Science, pages 160–174. Springer, 2006.

[4] T. Nipkow and Z. Qian. Reduction and Unification in Lambda Calculi
with Subtypes. In D. Kapur, editor, CADE, volume 607 of Lecture Notes
in Computer Science, pages 66–78. Springer, 1992.

[5] S. Obua. Checking Conservativity of Overloaded Definitions in Higher-
Order Logic. In F. Pfenning, editor, RTA, volume 4098 of Lecture Notes
in Computer Science, pages 212–226. Springer, 2006.

[6] M. Sozeau and N. Oury. First-Class Type Classes. In O. A. Mohamed,
C. M. Muñoz, and S. Tahar, editors, Theorem Proving in Higher Order
Logics, volume 5170 of Lecture Notes in Computer Science, pages 278–
293. Springer, 2008.

[7] M. Wenzel. Type Classes and Overloading in Higher-Order Logic. In
E. L. Gunter and A. P. Felty, editors, Theorem Proving in Higher Order
Logics, volume 1275 of Lecture Notes in Computer Science, pages 307–
322. Springer, 1997.

10 2014/12/25

