
Fakultät für Informatik
Lehrstuhl für Logik und Verifikation

Types, Abstraction and Parametric Polymorphism
in Higher-Order Logic

Ondřej Kunčar

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Dr. h.c. Javier Esparza

Prüfer der Dissertation:

1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Prof. Lawrence C. Paulson, Ph.D.
University of Cambridge, Vereinigtes Königreich

Die Dissertation wurde am 09.12.2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 05.03.2016 angenommen.

ABSTRACT

Thinking and working abstractly has been one of the most fruitful instru-
ments of modern society. This thesis aims to promote types as a powerful
tool for abstraction in the interactive theorem prover Isabelle/HOL by
making them definitional and easy to use.
In order to keep our prover trustworthy, we are allowed to define new

types on the logical level by only one elementary rule.
Our first contribution is to have made this rule consistent. This is a

prerequisite to use types as a tool for abstraction. Isabelle extends its
higher-order logic (HOL) with Haskell-like type classes, which require
overloaded constants. It was an open question under which criteria over-
loaded constant definitions and type definitions can be combined together
while still guaranteeing consistency. We have defined such criteria (which
are even decidable), developed novel semantics, and provided a semantic
explanation of the correct interplay of these features.
Our second contribution is an automation for building libraries of

abstract types (subtypes or quotients). This is a tedious task if using only
the elementary rule. Therefore we developed two new tools—Transfer
and Lifting. A novel aspect of Transfer, which transfers propositions
across related types, is that the transferring can be organized and largely
automated using Reynolds’s relational parametricity. Lifting, which auto-
matically lifts operations across partial quotients, is the first quotient tool
that supports the whole type universe of HOL.
We also studied how to make abstraction more concrete (data refine-

ment) and how to make types more widely usable (local type definitions
in proofs).
About 3500 uses of Transfer and Lifting in Isabelle’s theories confirm

that Isabelle’s users started reasoning more abstractly thanks to our work.

ACKNOWLEDGMENTS

First, I would like to thankTobiasNipkow for givingme the opportunity to
work in his group, for creating an open and relaxed working environment,
and the freedom that allowed me to work on my ideas without pressure.
I was delighted to hear that the father of the next 700 theorem provers,

Larry Paulson, accepted to referee my thesis.
It was a pleasure tomeet andwork with all these people that were or still

are part of the Isabelle group inMunich: JasminBlanchette, Sascha Böhme,
Julian Brunner, Lukas Bulwahn,Martin Desharnais, Manuel Eberl, Holger
Gast, Florian Haftmann, Johannes Hölzl, Brian Huffman, Lars Hupel,
Fabian Immler, Cezary Kaliszyk, Gerwin Klein, Alexander Krauss, Peter
Lammich, Silke Müller, Eleni Nikolaou-Weiß, Lars Noschinski, Helma
Piller, Andrei Popescu, Chris Poskitt, Dmitriy Traytel, Thomas Türk,
Christian Urban, Makarius Wenzel, and SimonWimmer.
I would like to express my gratitude to my family and my friends

(especially Silke Müller) for their unfailing and selfless support.
Jasmin Blanchette, Manuel Eberl, Johannes Hölzl, Fabian Immler, To-

bias Nipkow and Dmitriy Traytel read parts of the draft of my thesis and
provided many helpful comments, for which I thank them.
A special appreciation goes to two people that I worked closely with:

Brian Huffman and Andrei Popescu. I started working with Brian on
Transfer and Lifting tools soon after my move to Munich and thanks to
him I learned how to stop worrying and tame Isabelle. After Brian left,
I adapted to the Romanian time zone and worked with Andrei on the
foundations of Isabelle/HOL.They both inspired me by their ability to get
out of a shell of technocratic engineering and see the forest for the trees.
Dmitriy Traytel, my officemate for the longest part of my Ph.D., de-

serves a special thanks for being a great listener when I kept rambling
on about philosophical problems, local_theories and a small kernel. He
always provided first feedback on my ideas and answered my questions.
Although none of our individual discussions was worth publishing in
Revue de métaphysique et de morale, they meant a lot to me as a whole.
Cezary Kaliszyk and Christian Urban reimplemented Peter Hommier’s

Quotient package in Isabelle. Alexander Krauss came up with the idea to
use it to automate Florian Haftmann’s approach to executing subtypes.
Andreas Lochbihler and RenéThiemann were among the first users of

Transfer and Lifting packages and provided helpful feedback.
My research was financed by the Deutsche Forschungsgemeinschaft

from the grants NI 491/10-2, NI 491/13-2 and NI 491/13-3.

v

CONTENTS

1 introduction 1
1.1 Motivation 1
1.2 Contributions 6

1.2.1 Consistent Foundation for Isabelle/HOL 6
1.2.2 Automation for Building Abstract Types 7
1.2.3 Use Cases of Transfer and Lifting 8

1.3 Publications 8
1.4 Structure of This Thesis 9

2 isabelle/hol 11
2.1 Isabelle Simplified 11

2.1.1 The Metalogic 11
2.1.2 Type Classes 12

2.2 Syntax 13
2.3 Deduction System 15
2.4 Definitional Principles 17

2.4.1 Overloaded Constant Definition 17
2.4.2 Type Definition 19
2.4.3 Derived Definitional Principles 20

2.5 Tactics, Methods and Attributes 22
2.6 Sets and Binary Relations 23

3 higher-order logicwith adhocoverloading consistently 25
3.1 HOL with Ad Hoc Overloading Inconsistently 25
3.2 Related Work 28
3.3 The Consistency Problem 30

3.3.1 Built-In andNon-Built-InTypes andConstants 30
3.3.2 Definitional Theories 32
3.3.3 The Consistency Problem 33

3.4 The Solution toThe Consistency Problem 34
3.4.1 Definitional Dependency Relation 34
3.4.2 The ConsistencyTheorem 35
3.4.3 Inadequacy of the Standard Semantics of Poly-

morphic HOL 36
3.4.4 Ground, Fragment-Localized Semantics 38
3.4.5 Soundness 42
3.4.6 The Model Construction 42

3.5 Deciding Well-Formedness 43
3.5.1 The Termination Problem 44

vii

Contents

3.5.2 Preliminaries 45
3.5.3 From Termination to Acyclicity 46
3.5.4 From Acyclicity to a Decision Procedure 56
3.5.5 Issues with the Original Algorithm 63

3.6 Discussion 65

4 relational parametricity implemented: transfer 67
4.1 Types as Relations 69

4.1.1 Relational Parametricity 69
4.1.2 Representation Independence 70
4.1.3 Example: int/nat Transfer 71

4.2 Transfer Algorithm 72
4.3 Parametrized Transfer Relations 75
4.4 Transfer Rules with Side Conditions 77

4.4.1 Conditional Parametricity 78
4.4.2 Handling Equality Relations 81

4.5 Proving Implications Instead of Equivalences 82
4.6 Proving Parametricity Transfer Rules 83
4.7 Transferable Type Constructors 85
4.8 Interfaces 89
4.9 Limitations and Future Work 90
4.10 Related Work 93

5 abstract types uniformly: lifting 95
5.1 Motivational Examples 95
5.2 Lifting Algorithm 99
5.3 Setup Interface 104
5.4 Readable Form of Respectfulness Theorems 106
5.5 Modular Design of Transfer and Lifting 109
5.6 Implementation 110
5.7 Coercion Equations 111
5.8 Related Work 113

6 use case: data refinement 115
6.1 Background 115
6.2 Data Refinement with Invariants 118

6.2.1 Standard Method without Invariants 118
6.2.2 Adding Invariants 119
6.2.3 Using Transfer and Lifting 123

6.3 Data Refinement for Type Expressions 124
6.4 Compound Return Types 127
6.5 Related Work 131

7 use case: from types to sets 133
7.1 Motivation 133

viii

contents

7.2 Proposal of a Logic Extension: Local Typedef 135
7.3 Translation Algorithm 139
7.4 Further Extensions 141

7.4.1 Local Type Classes 141
7.4.2 Local Overloading 142
7.4.3 General Case 145

7.5 Conclusion 146

8 conclusion 149
8.1 Results 149
8.2 Future Work 151

8.2.1 Foundations and Trustworthiness 151
8.2.2 Transfer and Lifting 152

ix

1 INTRODUCTION

Science is interesting, and if you don’t agree
you can f*** off.

—Richard Dawkins (2006)1

This thesis describes work on making types a powerful definitional
tool for abstraction in the interactive theorem prover Isabelle/HOL.

1.1 motivation

When somebody utters the term types, the association that most probably
comes to mind is types in programming languages as a tool to rule out
certain (malformed) programs. For example, if you try to assign 5 (a value
of type integer) to a variable of type string, the compiler must emit an
error, or alternatively an implicit conversion must be used. In either case,
we have to know the corresponding types. B. Pierce [80] gives this as a first
example of what types are good for: detecting errors. Other applications
that he mentions are abstraction, documentation and efficiency.
Types (or type systems) in general is a broad field of study, which, be-

sides computer science, comprises fields such as philosophy, logic and
mathematics. In this thesis, I concentrate on types in the context of theo-
rem proving, which can be seen as a boundary field of logic, mathematics
and computer science.
What are types good for when we use Isabelle/HOL?There is a slight

shift from the world of programming languages. I argue that detecting
errors is not the main usage of types in higher-order logic. We could
remove all the custom types from our formalizations and use only the
built-in function and infinite type, and the correctness of our results
would still be guaranteed by the inference kernel. We use types as a tool
for abstraction instead. When I create the type of rational numbers in
Isabelle/HOL, I do not do it because I am afraid that mischief could
happen without this type. I do it because I want to carve out the very
concept of rational numbers from the chaos of all elements of my logic
and encode the precondition that the denominator should be nonzero
into the type.
We have to ensure that our terms are type correct, i.e., the usage of the

introduced abstractions is sound. In this sense, types still help to rule out

1 Richard Dawkins was quoting a former editor of New Scientist Magazine, who is as yet
unidentified.

1

introduction

flawed inputs, but the existence of type checking is just a consequence of
the primary motivation (abstraction) and is not the reason for having the
concept of types in the first place.
Another (but tightly connected) way to view an abstraction is to see it

as a tool for hiding implementation details. Without the type of rational
numbers, I would have to work with the pair of integer numbers (a, b)
such that if a ∗ d = b ∗ c for some other pair (c, d), then I would think of
(a, b) and (c, d) as elements representing the same number.
There exist many ways of achieving abstraction via types. I will concen-

trate on two most prominent ones in my thesis: subtypes and quotients.
Let me briefly introduce them:

● subtypes – it is a concept for creating types with invariants (or
specializing/restricting already existing types). Examples include
types such as lists with nonrepetitive elements, binary trees with a
restricted shape or functions that are constant almost everywhere.
The invariant is encoded in the type and therefore we do not have
to carry it around as an explicit assumption in our theorems. For
example, removing the first occurrence of a specified element from
a list gives us a list without this element only under the assumption
that the list does not contain repetitive elements. Encoding this
assumption into a type as an invariant and working with lists of
this type gives us a theorem without the extra assumption.

● quotients – they allow us to replace a comparison for equivalence
on the original type by a comparison for equality on the quotient
type. Equality reasoning is well understood and usually better
supported than reasoning modulo equivalence relations.

We will encounter two additional cases of abstract types in my thesis:
partial quotients and type copies. Partial quotients are a combination
of subtypes and quotients, i.e., we will define equivalence classes only
for a strict subset of the original elements. Type copies are merely a tool
to create a new name for an already existing type, which is useful in a
situation when we want to treat the type differently in different contexts.
A typical example is the type of partial functions, which we, depending
on the context, can treat as an ordinary function or, for example, an
abstraction of a hash table.
Interactive theorem proving systems based on higher-order logic à la

Gordon [24] offer only one primitive way to definitionally introduce a
new type (or rather a type constructor). Using Figure 1 on the facing page,
I will describe this mechanism informally for the moment: let us consider
a type σ and a set of its elements S ∶ σ set2 such that S is nonempty (which

2 Most oftenwe specify S as {x ∶ σ ∣ inv x} by a unary predicate inv ∶ σ → bool representing
an invariant on σ .

2

1.1 motivation

σ

S
x

τ

y

Figure 1: Creating a subtype

is witnessed by x in the picture). The mechanism declares a new type τ
and defines τ as S. Thus τ is a restriction of σ and morally, all elements of
type τ could be seen as elements of σ .
The complication is that the type system of Isabelle/HOL does not

contain any notion that would capture the fact that τ is a specialization (a
subtype) of σ . The types τ and σ are logically independent entities, whose
parts just happen to be isomorphic; more precisely, τ is isomorphic to
S. Practically, that means if we have y ∶ τ, we cannot obtain y ∶ σ and
similarly if x ∶ σ and moreover x ∈ S, we cannot obtain x ∶ τ.
Therefore, if I define, for example, a type of lists with nonrepetitive

elements as a restriction of the type list—let us call the new type dlist—we
cannot automatically obtain functions operating on dlist as a restriction
of the functions on list. For example, head ∶ α list → α cannot be used
for values of type α dlist. A similar restriction applies to theorems about
lists, which we cannot directly use for lists with nonrepetitive elements
since they talk about a different type.
How do we then proceed if we want to use a new abstract type? I

mentioned that we define τ as S. Let me state this more precisely: in fact,
we postulate that there exist two functions Abs ∶ σ → τ and Rep ∶ τ → σ
such that Abs and Rep are isomorphisms between τ and S; see Figure 2
on the next page. This means that if we want to transform values from
τ to σ and backwards, we have to explicitly use the morphisms Abs and
Rep. For example, dhead x = head(Rep x) is a definition of the head
function for dlist in terms of head for list. The need to use the morphisms
explicitly leads to a tedious work, and in a higher-order setting, it can be
difficult to even find the right combination of the morphisms.
Going back to the beginning of the chapter, where we talked about

how types are an important technique for achieving abstraction in HOL,
we realize that the explicit casting through the morphisms is a major
hindrance for the usage of this technique. It was the main objective
of mine to create new definitional commands and proof methods that
would allow us to lift the limitation. I developed such commands and
methods together with collaborators. In order to present the essence of

3

introduction

σ

S

τ

Abs

Rep

Figure 2:A subtype and its morphisms

the complication, I showed you only the case where we deal with subtypes,
but we focused on a uniform solution for other ways of abstraction as well,
especially for quotients. We grouped our new definitional commands
and proof methods into two tools—Transfer and Lifting.
If we look at the title of this thesis, "Types, Abstraction and Parametric

Polymorphism in Higher-Order Logic", we can see that besides types and
abstraction it also mentions parametric polymorphism. It is a crucial part
of our solution, which I will demonstrate informally now. We already
saw that theorems about lists cannot be used for dlist directly. Let us
consider a theorem ∀x ∶ α list. x ≠ [] Ð→ (head x) # (tail x) = x, which
says that destructing a nonempty list [a1, . . . , an] into its first element
a1 (by head) and the rest of it [a2, . . . , an] (by tail) and prepending a1
back to [a2, . . . , an] by the cons operator # is the identity. Using that
theorem about list, we wish to obtain an analogous theorem for dlist:
∀x ∶ α dlist. x ≠ []d Ð→ (dhead x) #d (dtail x) = x. In order to do
so, we have to know not only that the list operations are related to dlist
operations, such as head is related to dhead or [] to []d, but also that
universal quantification ∀ and equality = behave nicely, i.e., they behave
in essentially the same way for list and dlist. This is where a notion of
restricted parametricity for ∀ and = comes into play.
Besides the direct use case—building an abstraction—there are two

other nonobvious use cases that I describe in this thesis.
The Isabelle/HOL users like to define specifications and prove their

correctness only later to obtain an executable version of the specification
possessing the same correctness guarantees. In principle, any theorem
with = at the top can be used as an executable equation but not a con-
ditional theorem of the form inv x Ð→ c = t(x). I already mentioned
that encoding an invariant into a type removes an assumption about this
invariant from the theorem statement, which is exactly what we would
do here. In fact, this use case was the first motivation that triggered my
study of types in Isabelle/HOL.

4

1.1 motivation

The other use case comes from the observation that type-based theo-
rems are easier to prove whereas set-based theorems are more general
and easier to apply. Let me explain the statement on this example: Con-
sider the following HOL statements, where we explicitly indicate the top
quantification over types:3

1. ∀α. ∃xs ∶ α list. P xs

2. ∀β. ∀A ∶ β set. A ≠ ∅ Ð→ (∃xs ∈ lists A. P xs)

We call 1. a type-based theorem and 2. a set-based theorem. Type-based
theorems are easier to prove than the set-based ones because types are
more rigid than sets and therefore enjoy better automation. Set-based
theorems are more flexible because users often define their structures
(measure functions, algebras, etc.) only on a particular subset of their
types, not necessarily on the whole type. From the set-theoretic semantics
point of view, the two statements are equivalent.
Ideally, the users would develop their theories in a type-based fashion,

and then export the main theorems as set-based statements. Unfortu-
nately, this operation is not supported by the current system—let us
assume 1. and try to prove 2: we would fix A ∶ β set and assume that A is
nonempty and define a new type α corresponding to A. Now we are in a
standard subtype situation and we could complete the proof by Transfer
and Lifting. Unfortunately, the current system does not allow us to define
a type (depending on local data—A) inside of a proof. My main goal was
to develop an extension of the logic (in the form of a new rule) that would
allow us to simulate a local typedef with some restrictions4 that would
still permit our use case of exporting set-based statements.
While working on this extension, I discovered that typedef in Isabelle/

HOL is not a definitional extension. What does it mean? As I already
mentioned, typedef is the only way to introduce new types definitionally
(i.e., not axiomatically) in the family of HOL-based provers. A. Pitts [81]
proved that the traditional typedef is a consistency preserving and con-
servative theory extension. But Isabelle/HOL diverges from the standard
HOL-based systems and brings its own touch to HOL: ad hoc overloaded
constant definitions. Briefly, overloading allows us to introduce inde-
pendent definitions for different type instances of the given (declared)
constant; e.g., let us declare a new constant c ∶ α and define its meaning
for nat and bool separately: c ∶ nat ≡ 42 and c ∶ bool ≡ True. This feature
allows us to implement Haskell-like type classes in Isabelle/HOL.
Unfortunately, the combination of ad hoc overloading and typedef

causes problems—I could prove False in Isabelle/HOL.The proof exploits

3 Recall that the Isabelle/HOL constant lists ∶ α set→ α list set takes a set A and returns
the set of lists whose elements are in A.

4 There are no dependent types in Isabelle/HOL and we do not want to step outside this
restriction.

5

introduction

the fact that we are allowed to create a cycle in definitions: first we declare
a constant c ∶ bool, then we define a type σ in terms of the constant, and
then we overload c ∶ bool in terms of σ . Thus we have a cycle c ∶ bool↝
σ ↝ c ∶ bool. With a little bit of inventiveness, we can define c and σ such
that c = ¬c.
This is not an acceptable situation for most Isabelle users. The users

expect that when they define new constants and types, they cannot intro-
duce inconsistency into the system. This is in accordance with the best
traditions of the LCF methodology [25]. Putting the definitional mecha-
nism of Isabelle onto firm (foundational) ground became a major goal of
my thesis. If we want to promote types as good tools for abstraction in
HOL, our types must be defined only in a consistent manner.

1.2 contributions

This section describes contributions of this thesis. The listed contributions
were achieved by me and my collaborators, and the particular credit is
given separately in each chapter.

1.2.1 Consistent Foundation for Isabelle/HOL

The first contribution of this thesis is a development of a consistent foun-
dation for Isabelle/HOL. This contribution comprises the following parts:

● A custom semantics for polymorphicHOLwith ad hoc overloading,
which is a variation of the HOL standard model specifically to cater
for overloading.

● A new well-formedness criterion for definitions: they must not
overlap and the substitutive closure of the definition-dependency
relation, which now factors in dependencies between types and
constants as well, must terminate.

● A proof that our notion of well-formedness implies the existence
of a model with respect to our custom semantics and thus ensures
relative consistency of Isabelle/HOL.

● An additional restriction (a certain notion of composability) under
which the well-formedness check is decidable. Termination of
the definition-dependency relation is not, in general, decidable,
but under composability it is equivalent to acyclicity, which is a
decidable problem.

6

1.2 contributions

● A quadratic algorithm (in the size of the dependency relation) that
decides the well-formedness and composability criterion and a
proof of its completeness and correctness.

1.2.2 Automation for Building Abstract Types

The second contribution is the development of tools that streamline the
process of building abstract types in Isabelle/HOL. We created two tools
called Transfer and Lifting.
The approach crucially depends on additional structure on type con-

structors and builds an infrastructure for tracking it: for example, we
need a notion of a map function, a relator and a predicator associated to a
type constructor and how these functions are connected, or distributivity
and monotonicity of the relator.
As a part of Transfer, we developed proof tactics that can derive theo-

rems about the abstract types from the theorems about the original type
and the other way around. Themain contribution of Transfer is that trans-
ferring of properties across related types can be organized and largely
automated using Reynolds’s relational parametricity.
As a part of Lifting, we developed a command that is responsible for

defining a new constant on the abstract type in terms of a corresponding
operation on the original type. The main contribution of Lifting is that
lifting of operations to abstract types is largely independent of the con-
struction of these types— whether it is a subtype or a quotient type, for
example. Other contributions are:

● We support type copies, subtypes, quotients and partial quotients.
There is no limitation on the structure of the type: higher-order
types are supported as well as arbitrary nesting of abstract types.

● Automation: the correctness proof obligation that the original
operation respects the abstraction is proved automatically in many
cases by our reflexivity prover. For type copies, the automation is
guaranteed to succeed. For subtypes, the obligation is rewritten
from a general statement into the form using only invariants, which
is simpler to prove.

● Integration with the Transfer tool: a transfer rule relating the new
constant with the original one is automatically proved; if the user
can prove that the original operation is parametric, the tool proves
a fully parametrized transfer rule.

● Integration with the code generator: code equations for the new
constant are proved if they lie in the supported fragment of the code
generator. Moreover, we developed a procedure that by introducing

7

introduction

additional types and transforming the equations, enables us to
execute broader set of functions than it is directly supported by the
code generator.

1.2.3 Use Cases of Transfer and Lifting

The third contribution is two inventive deployments of types (andTransfer
and Lifting) in addition to the direct use cases—building abstraction.
Firstly, this thesis demonstrates how the problem of performing data

refinement for code generation via a data structure that possesses an
invariant, can be solved by creating an auxiliary subtype. Moreover, as
already mentioned, it is sometimes necessary to distinguish between,
for example, the type of partial functions α → β option as a type of an
ordinary function and an abstraction of a table that should be refined to
a red-black tree. We propose to address this issue by introducing a new
type constructor for α → β option (a type copy). Transfer and Lifting
provide a crucial automation for both problems here.
Secondly, we proposed a technique to automatically prove set-based

theorems from type-based ones. On this account, we formulated an
extension of Isabelle/HOL’s logic in the form of a new rule, proved its
soundness and provided a prototypical implementation of it.

1.3 publications

Most of the contributions included here have been published in confer-
ence and workshop papers. This thesis is based on the following ones:

● F. Haftmann, A. Krauss, O. Kunčar, and T. Nipkow. Data Re-
finement in Isabelle/HOL. in S. Blazy, C. Paulin-Mohring, and
D. Pichardie, editors, ITP 2013. Vol. 7998, in LNCS, pp. 100–115.
Springer, 2013

● B.Huffman andO.Kunčar. Lifting andTransfer: AModularDesign
for Quotients in Isabelle/HOL. in G. Gonthier and M. Norrish,
editors, CPP 2013. Vol. 8307, in LNCS, pp. 131–146. Springer, 2013

● O. Kunčar and A. Popescu. From Types to Sets in Isabelle/HOL. in,
Isabelle Workshop 2014, 2014. url: http://www21.in.tum.de/
~kuncar/documents/kuncar-popescu-itp2014.pdf

● O. Kunčar. Correctness of Isabelle’s Cyclicity Checker: Implemen-
tability of Overloading in Proof Assistants. In X. Leroy and A. Tiu,
editors, CPP 2015, pp. 85–94. ACM, 2015

8

http://www21.in.tum.de/~kuncar/documents/kuncar-popescu-itp2014.pdf
http://www21.in.tum.de/~kuncar/documents/kuncar-popescu-itp2014.pdf

1.4 structure of this thesis

● O. Kunčar and A. Popescu. A Consistent Foundation for Isabelle/
HOL. in C. Urban and X. Zhang, editors, ITP 2015. Vol. 9236, in
LNCS, pp. 234–252. Springer, 2015

1.4 structure of this thesis

Although the history of achieving the results in this thesis went chrono-
logically from problems involved in data refinement to creating general
tools for abstraction in HOL and continued with a detour into dangerous
waters of models and cyclic definitions, I present the results in a more
traditional theory–tools–use-cases manner:

● Chapter 2 introduces syntax, inference rules and definitional prin-
ciples of Isabelle/HOL.

● Chapter 3 shows how to make the definitional principles consistent
and provides semantics of Isabelle/HOL.

● Chapter 4 describes the Transfer tool and its connection to rela-
tional parametricity.

● Chapter 5 presents the Lifting tool, its integration with the code gen-
erator and partial quotients representing abstract types uniformly.

● Chapter 6 shows how to use abstract types and Transfer and Lifting
for data refinement for code generation.

● Chapter 7 formulates an extension of Isabelle/HOL’s logic to auto-
matically prove set-based theorems from type-based ones.

● Chapter 8 summarizes our work and proposes future work.

Related work is listed in each chapter separately.

9

My God—it’s full of stars!
—Arthur C. Clarke (1968)

Okay, but it seems to me there’s a
meta-something in there.

—Gottfried Barrow (2012)

2 ISABELLE/HOL

Isabelle/HOL [72] is an interactive theorem prover that implements clas-
sical higher-order logic based on Church’s simple type theory [17] with
Hilbert choice, the axiom of infinity, rank-1 polymorphism, axiomatic
type classes, ad hoc overloaded constant definitions and type definitions.
As in many PhD theses and papers concerned with Isabelle, it is not

my primary goal to provide an accurate description of all the minutiae
of the system here. I will follow a general rule of thumb and focus on
the aspects that matter for my thesis, gloss over unimportant ones and
abstract over technicalities.

2.1 isabelle simplified

Since it is my goal to provide a model for the logic of Isabelle/HOL in the
next chapter, this chapter has to prepare the ground for this. Therefore
the description must be more precise in many regards and focused on
the fundamental level of the system than the usual Isabelle/HOL’s intro-
ductory text. In order to keep mine and reader’s sanity, I will compensate
for the increased complexity by leaving out the metalogic of Isabelle and
axiomatic type classes. Let me briefly explain what these two features of
Isabelle are and argue why omitting them is admissible.

2.1.1 The Metalogic

Isabelle was designed by Larry Paulson [79] to be a generic interactive
theorem prover, in which the user could define its own logics of interest.
This can be done by using the metalogic of Isabelle, called Isabelle/Pure,
which serves here as a natural deduction framework that can embed other
object logics, for example HOL or Zermelo–Fraenkel set theory.
Let me give you a taste of the metalogic by utilizing a simple example:

we take one of the basic rules of HOL, modus ponens. In another repre-
sentative of the family of HOL-based provers, HOL4, which implements
the HOL logic directly in comparison to Isabelle, modus ponens is a
function in the inference kernel. On the other hand in Isabelle/HOL, this
rule is stated as a formula and introduced as an axiom when one defines
HOL. The metalogic has its own set of operators representing universal

11

isabelle/hol

quantification, implication and equality: ⋀,Ô⇒ and ≡. Then the for-
mula expressing modus ponens reads ⋀ P Q . (P Ð→ Q) Ô⇒ PÔ⇒ Q,
whereÐ→ is the HOL implication.
The mechanism of specifying and embedding Isabelle/HOL in the Isa-

belle/Pure is merely a technical detail. In the following development,
we will abstract over this detail and take Isabelle/HOL as a standalone
logic without inspecting how this logic was bootstrapped and describe
it in the usual Hilbert-system style of rules. Furthermore, we will use
HOL formulas exclusively even at places where Isabelle experts would
expect formulas with the metalogical operators. We cannot cause any
harm by this abstraction in terms of what can or cannot be proved since
Isabelle/Pure is an intuitionistic fragment of higher-order logic and Isa-
belle/HOL provides a strictly stronger logic. Thus, any reasoning carried
out in Isabelle/Pure can be also internalized in our abstraction.

2.1.2 Type Classes

Type classes were introduced in Haskell by Wadler and Blott [94]—they
allow programmers to write functions that operate generically on types
endowed with operations. For example, assuming a type α which is a
semigroup (i.e., comes with a binary associative operation +), one can
write a program that computes the sum of all the elements in a nonempty
α-list. Then the program can be run on any concrete type T that replaces
α if T provides this binary operation +. Prover-powered type classes in
Isabelle were introduced by Nipkow and Snelting [74] —they additionally
feature verifiability of the type-class conditions upon instantiation: a type
T is accepted as a member of the semigroup class only if associativity can
be proved for its + operation.
Isabelle’s type classes rely on arbitrary ad hoc overloading and axiomatic

type classes, two primitives of Isabelle’s logic, as follows: to introduce
the semigroup class, the system declares a global constant + ∶ α → α →
α and defines an axiomatic type class that consists of the associativity
predicate; then different instance types T are registered after defining the
corresponding overloaded operation + ∶ T → T → T and verifying the
condition.
Overloading is most useful in conjunction with axiomatic type classes,

but it really is an orthogonal feature, which is used also independently
of type classes in Isabelle. Furthermore, it is overloading that has been
causing consistency problems in Isabelle/HOL, not the axiomatic type
classes. For these two reasons, we study overloading separately from the
axiomatic type classes. Moreover, Wenzel [99] showed how to compile
out axiomatic type classes by interpreting them as predicates on types in
Isabelle/Pure and therefore, as he argues, this mechanism turns out to
be just an addition to user convenience, without really changing expres-

12

2.2 syntax

siveness of the logic. This is why we will not deal with them in this text
anymore.

2.2 syntax

In what follows, by “countable” I mean “either finite or countably infinite.”
Throughout the development, we fix the following:

● A countably infinite set TVar, of type variables, ranged over by
α, β, γ.

● A countably infinite set Var, of (term) variables, ranged over by
a, A, P, p, q, x , y, z.

● A countable set K of symbols, ranged over by k, called type con-
structors, containing four special symbols: “bool”, “ind”, “set” and
“→” (aimed at representing the type of booleans, an infinite type, a
set type and the function type constructor, respectively).

We also fix a function arOf ∶ K → N associating an arity to each type
constructor, such that arOf(bool) = arOf(ind) = 0, arOf(set) = 1 and
arOf(→) = 2. We define the set Type, ranged over by σ , τ, of types,
inductively as follows:

● TVar ⊆ Type

● (σ1, . . . , σn) k ∈ Type if σ1, . . . , σn ∈ Type and k ∈ K such that
arOf(k) = n

We use postfix notation for the application of an n-ary type constructor k
to the types σ1, . . . , σn. If n = 1, instead of (σ)k we write σ k (e.g., σ list).
A typed variable is a pair of a term variable x and a type σ , written

xσ . Given T ⊆ Type, we write VarT for the set of typed variables xσ with
σ ∈ T . Finally, we fix the following:

● A countable setConst, ranged over by c, of symbols called constants,
containing seven special symbols: “Ð→”, “=”, “ε”, “∈”, “Collect”,
“zero”, “suc” (aimed at representing logical implication, equality,
Hilbert choice of some element from a type, set membership, set
comprehension, zero and successor, respectively)

● A function tpOf ∶ Const → Type associating a type to every con-
stant, such that:

tpOf(Ð→) = bool→ bool→ bool
tpOf(=) = α → α → bool
tpOf(ε) = (α → bool) → α

13

isabelle/hol

tpOf(∈) = α → α set→ bool
tpOf(Collect) = (α → bool) → α set
tpOf(zero) = ind
tpOf(suc) = ind→ ind

We define the type variables of a type, TV ∶ Type → P(TVar), as
expected: TV(α) = {α}, TV((σ1, . . . , σn) k) = ⋃1≤i≤n TV(σi).
A type substitution is a function ρ ∶ TVar → Type; we let TSubst

denote the set of type substitutions. Each ρ ∈ TSubst extends to a
homonymous function ρ ∶ Type→ Type by defining ρ((σ1, . . . , σn) k) =
(ρ(σ1), . . . , ρ(σn)) k. We write τ[σ/α] for ρ(τ) where ρ is a type substi-
tution that sends each αi to σi and every β ≠ αi to β.
We say that σ is an instance of τ via a substitution of ρ ∈ TSubst, written

σ ≤ρ τ, if ρ(τ) = σ . We say that σ is an instance of τ, written σ ≤ τ, if
there exists ρ ∈ TSubst such that σ ≤ρ τ.
Two types τ1 and τ2 are called orthogonal, written τ1 # τ2, if they have

no common instance; i.e., for all τ it holds that τ /≤ τ1 or τ /≤ τ2.
Given c ∈ Const and σ ∈ Type such that σ ≤ tpOf(c), we call the pair
(c, σ), written cσ , an instance of c. A constant instance is therefore any
such pair cσ . We let CInst be the set of all constant instances, and we
extend the notions of being an instance (≤) and being orthogonal (#)
from types to constant instances, as follows:

cτ ≤ dσ iff c = d and τ ≤ σ cτ # dσ iff c ≠ d or τ # σ

We also extend tpOf to constant instances by tpOf(cσ) = σ .
The tuple (K , arOf , Const, tpOf), which will be fixed in what follows,

is called a signature. This signature’s pre-terms are defined by the grammar:

t = xσ ∣ cσ ∣ t1 t2 ∣ λxσ . t

Thus, a pre-term is either a typed variable, or a constant instance, or an
application, or an abstraction. As usual, we identify pre-terms modulo
alpha equivalence.
The typing relation for pre-terms t ∶ σ is defined inductively in the

expected way:

xσ ∶ σ cσ ∶ σ
t1 ∶ σ → τ t2 ∶ σ

t1 t2 ∶ τ
t ∶ τ

λxσ . t ∶ σ → τ

A term is a well-typed pre-term, and Term, ranged over by f , g, S, s
and t, denotes the set of terms. Given t ∈ Term, we write tpOf(t) for
its (uniquely determined) type and FV(t) for the set of its free (term)
variables. We call t closed if FV(t) = ∅. We let TV(t) denote the set of
type variables occurring in t.
We can apply a type substitution ρ to a term t, written ρ(t), by applying

ρ to all the type variables occurring in t with the proviso that if two

14

2.3 deduction system

distinct bound variables become identified, we replace the term by an
alpha-equivalent term where the variables stay distinct.
We say that a function δ ∶ VarType → Term is a term substitution if

t ∶ σ whenever δ(xσ) = t. We write δ(t) for an application of a term
substitution δ to a term t and define it as a simultaneous replacement of
each free variable xσ in t by δ(xσ) with the usual renaming of bounded
variables if they get captured.1 If si ∶ σi , we write t[s/xσ] for δ(t) where
δ is a term substitution sending each xiσi to si and every yτ ≠ xiσi to yτ .
A formula is a term of type bool. We let Fmla, ranged over by φ and χ,

denote the set of formulas. When writing concrete terms or formulas, we
take the following conventions:

● We omit redundantly indicating the types of the variables, e.g., we
shall write λxσ . x instead of λxσ . xσ .

● We omit redundantly indicating the types of the variables and
constants in terms if they can be inferred by typing rules, e.g., we
shall write λx . (yσ→τ x) instead of λxσ . (yσ→τ x) or ε(λxσ . P x)
instead of ε(σ→bool)→σ(λxσ . Pσ→bool x).

● We write λxσ yτ . t instead of λxσ . λyτ . t

● We apply the constants Ð→, = and ∈ in an infix manner, e.g., we
shall write tσ = s instead of = tσ s. We use ε as a binder, i.e., we shall
write εxσ . t instead of ε (λxσ . t). Finally, we shall write {xσ ∣ t}
instead of Collect (λxσ . t).

● Wemay write←→ for =bool→bool→bool.

2.3 deduction system

The formula connectives and quantifiers are defined in the standard way,
starting from the implication and equality primitives:

True = (λxbool. x) = (λxbool. x)
All = λpα→bool. (p = (λx . True))
Ex = λpα→bool. All (λq. (All (λx . p x Ð→ q)) Ð→ q)
False = All (λpbool. p)
not = λp. p Ð→ False

and = λp q. All (λr. (p Ð→ (q Ð→ r)) Ð→ r)
or = λp q. All (λr. (p Ð→ r) Ð→ ((q Ð→ r) Ð→ r))

1 Isabelle uses de Bruijn indices to represent bound variables, therefore no renaming is
needed. But this is just an implementation detail.

15

isabelle/hol

It is easy to see that the above terms are closed and well typed as follows:

● tpOf(True) = tpOf(False) = bool

● tpOf(not) = bool→ bool

● tpOf(and) = tpOf(or) = bool→ bool→ bool

● tpOf(All) = tpOf(Ex) = (α → bool) → bool

As customary, we shall write:

● ∀xα . t instead ofAll (λxα . t)

● ∃xα . t instead of Ex (λxα . t)

● ¬ φ instead of not φ

● φ ∧ χ instead of and φ χ

● φ ∨ χ instead of or φ χ

We consider the following formulas:

refl = xα = x
subst = xα = y Ð→ P x Ð→ P y
iff = (p Ð→ q) Ð→ (q Ð→ p) Ð→ (p = q)
True_or_False = (b = True) ∨ (b = False)
some_intro = pα→bool x Ð→ p (ε p)
mem_Collect_eq = a ∈ {xσ ∣ P x} ←→ P a
Collect_mem_eq = {xσ ∣ x ∈ A} = A
suc_inj = suc x = suc y Ð→ x = y
suc_not_zero = ¬ (suc x = zero)

We let Ax denote the set of the above formulas, which we call axioms. The
formulas refl and subst axiomatize equality and iff ensures that equality on
the bool type behaves as a logical equivalence. The formulaTrue_or_False
makes the logic classical, some_intro axiomatizes Hilbert choice, and
mem_Collect_eq and Collect_mem_eq postulate the set type is isomor-
phic to the type of unary predicates (α → bool). Finally, suc_inj and
suc_not_zero ensure that ind is an infinite type.
A theory D is a set of formulas and a context Γ is a finite set of formulas.

The notation α ∉ S (or x ∉ S) means that the variable α (or x) is not
free in any of the formulas in the set S. We define deduction as a ternary
relation ⊢ between theories, contexts and formulas by the following set
of deduction rules:

[φ ∈ Ax ∪D] (Fact)
D, {} ⊢ φ

(Beta)
D, Γ ⊢ (λxσ . t) s = t[s/xσ]

16

2.4 definitional principles

(Assum)
D, {φ} ⊢ φ

D, Γ1 ⊢ φ Ð→ χ D, Γ2 ⊢ φ (MP)D, Γ1 ∪ Γ2 ⊢ χ

D, Γ ⊢ χ
(ImpI)

D, Γ ∖ {φ} ⊢ φ Ð→ χ
D, Γ ⊢ f xσ = g xσ

[xσ ∉ Γ] (Ext)D, Γ ⊢ f = g

D, Γ ⊢ φ
[α ∉ Γ; xτ ∉ Γ; t i ∶ τ i] (Inst)

D, Γ ⊢ (φ[σ/α])[t/xτ]

Isabelle also contains a powerful higher-order resolution rule as another
primitive. We will not deal with the rule here since it can be simulated by
aforementioned rules. A motivated reader can find more about this rule
and other references on this topic in Wenzel’s thesis [98].
If Γ is empty, we will simply write D ⊢ φ. If a theory D is fixed (notice

that it does not change in the deduction rules), we will write Γ ⊢ φ.
A theory D is called consistent if there exists φ such that D /⊢ φ (or

equivalently if D /⊢ False).

2.4 definitional principles

Isabelle/HOL provides two primitives for making definitions: an over-
loaded constant definition primitive and a type definition primitive. Fol-
lowing the LCFmethodology [25], we require that all the other definitional
principles of Isabelle/HOL have to be defined in terms of these two.

2.4.1 Overloaded Constant Definition

In order to use overloading, the user has to first declare a constant. This
is done in Isabelle as follows:

consts c ∶ σ

With the proviso that c is a fresh constant symbol, the command extends
the signature by a new uninterpreted constant c and sets tpOf(c) = σ .
Overloading allows us to define the meaning of a declared constant for

different type instances separately. The respective command is defs:

defs c ∶ τ = t

As usual, there are some restrictions under which this definition is ac-
cepted and the theorem cτ = t is introduced. Let me first state conditions
that the system can check without looking at other definitions—we call
them local conditions: it must hold that c is a declared constant with type

17

isabelle/hol

σ , τ is an instance of σ , t is a closed term of type τ, and finally all type
variables in t are present in τ. Let me highlight that we do not forbid that
c occurs in t.
Before we proceed to the global conditions, examples of overloading

could be helpful at this stage. Let us overload the symbol 0, aimed to
represent a neutral element, for natural numbers, products and functions:

Example 2.1.

consts 0 ∶ α
defs 0nat = zero
defs 0α×β = (0α , 0β)
defs 0α→β = λxα . 0β

Notice that the definition of 0 for products contains 0 on the right-hand
side and that it is not fully specified: we do not know how 0 is defined for
α and β. This depends on what α and β are.
This way, one can get quickly into trouble. Without further constraints,

nothing prevents us from conducting the following definitions:

Example 2.2.

defs 0nat = zero
defs 0α×nat = (0α , one)
defs 0nat×α = (one, 0α)

This leads to an inconsistency: (zero, one) = 0nat×nat = (one, zero).
Another example causing a trouble is cycles in definitions:

Example 2.3.

defs 0nat = . . . 0int . . .
defs 0int = . . . 0nat . . .

In general, we can misuse a cycle to create the following inconsistency:
just define cbool = ¬cbool.
And finally let us consider the following example:

Example 2.4.

defs 0α×β = . . . 0(α×β)×β

This example leads to an infinite descent if we try to figure out the
meaning of the constant by unfolding. Definitions are traditionally justi-
fied by the notion that they can be eliminated by unfolding them, yielding
a unique, finite (even if huge) term that contains no defined constant.
Although it may be harmless, infinite descent breaks that argument.

18

2.4 definitional principles

In the systems where overloading is not supported, none of the harmful
Examples 2.2 to 2.4 is accepted. They are disallowed by (1) an additional
local condition that c cannot occur on the right side of its definition
and (2) not allowing to separate declaration and definition of c (that is
to say, we force a global condition (the only one) that when c is being
defined, it must be a fresh symbol). Then one can straightforwardly use
the unfolding argument to justify correctness of such definitions.
Isabelle has been using the following global conditions to make over-

loading a safe theory extension:

1. The definitions cannot overlap—their left-hand sides are not unifi-
able after renaming. This prevents Example 2.2 because α × nat
and nat × α are unifiable.

2. If we treat the definitional equations as rewriting rules (oriented
from left to right), this rewriting system has to terminate. This
prevents Examples 2.3 and 2.4.

The two conditions guarantee that we can again use the unfolding argu-
ment and produce a unique, finite term that contains no defined constant.
But does this guarantee correctness? I wrote a whole chapter (Chapter 3)
to answer this question.

2.4.2 Type Definition

The type definition principle (or typedef) allows us to define a new type
that is isomorphic to a nonempty subset of an already existing type. This
is achieved by the typedef command

typedef α k = S ⟨proof ⟩

where S has type σ set and α is a sequence of distinct type variables. If S
is a closed term, k a fresh type constructor and all type variable in S are
among variables in α, the command opens a proof environment and the
user is required to prove that S is a nonempty set, i.e., ∃xσ . x ∈ S.
If the the proof obligation could be discharged, the command extends

the signature by a new type constructor k of arity ∣α∣ and declares two
constants Absσ→τ and Repτ→σ where τ denotes the new type α k. Finally,
the command postulates that Abs and Rep are isomorphisms between S
and τ, i.e., the following axioms are added to the system:

∀xτ . Rep x ∈ S
∀xτ . Abs (Rep x) = x
∀xσ . x ∈ S Ð→ Rep (Abs x) = x

The interplay between σ , τ and the morphisms Abs and Rep can be seen
in Figure 2 on page 4.

19

isabelle/hol

2.4.3 Derived Definitional Principles

Life of the working formalizer would be hard if they had to use only
the two definitional primitives. Isabelle/HOL contains a whole range of
derived definitional commands.

(co)inductive datatypes [12]. The command datatype and its cousin
codatatype define types similar to (co)datatypes in functional program-
ming languages by specifying their constructors. For example, we can
define natural numbers, (finite) lists and streams:

datatype nat = Zero ∣ Suc nat
datatype α list = Nil ∣ Cons α (α list)
codatatype α stream = Stream α (α stream)

We use the following syntactic sugar for lists: [] isNil, x # xs is Cons x xs
and [x1, . . . , xn] is x1 # . . . # xn # [].
Nested and mutually recursive (co)datatypes are supported as well.

quotients [48]. Provided R is a binary relation of type σ → σ → bool,
all type variables in σ are present in α, a sequence of distinct type variables,
and k is a fresh type constructor, the following command

quotient type α k = σ / R ⟨proof ⟩

opens a proof environment and asks the user to prove that R is an equiv-
alence relation on σ . Only then the command defines a new type con-
structor k of arity ∣α∣ and introduces Abs and Rep with the following
properties (τ again denotes the new type α k):

∀xτ . Abs (Rep x) = x
∀xσ yσ . R x y ←→ (Abs x = Abs y)

In other words, Abs is a left inverse for Rep and two elements are in the
same equivalence class of R if and only if they are mapped to the same
representative on τ—this is nothing else than to say that τ is a quotient of
σ under R. Internally, Rep x is defined by Hilbert choice, which choses
some element from x’s corresponding equivalence class.
We define the type of integer numbers as follows

quotient type int = nat × nat / intrel ⟨proof ⟩ (1)

where intrel (x , y) (u, v) ←→ x + v = u + y. Thus we interpreted the
representation value (u, v) as the integer number u − v.

20

2.4 definitional principles

The quotient type can also construct partial quotients when the user
provides a partial equivalence relation (and proves this fact). The newly
defined type is then described by the following properties:

∀xτ . R (Rep x) (Rep x)
∀xτ . Abs (Rep x) = x
∀xσ yσ . R x y ←→ (R x x ∧ R y y ∧Abs x = Abs y)

Thus, the reflexive part of R implicitly specifies for which elements of
the representation type σ the quotient is constructed. As an example, we
define the type of rational numbers as a partial quotient of integer pairs

quotient type rat = int × int / partial ∶ ratrel ⟨proof ⟩ (2)

where ratrel r s = (snd r ≠ 0 ∧ snd s ≠ 0 ∧ fst r ∗ snd s = fst s ∗ snd r).
The quotient is partial as we do not allow the denominator to be zero.

simple definitions [73, §2.7.2]. Simple definitions are the most basic
tool to introduce a new constant. The user just specifies that c equals a
term:

definition c ∶ σ where c x = t
Under the condition that c is not in t, the definition is simply translated
to definitional primitives as follows:

consts c ∶ σ
defs cσ = λx . t

The translation gives us the usual correctness proviso: c is fresh, λx . t is a
closed term of type σ and all its type variables are in σ . The definition
command is usually preferred to the consts and defs primitives.

(co)recursive functions [12, 51]. The primrec command defines primi-
tive recursive functions on datatypes; e.g., the reverse functions for lists,
where @ is the concatenation operator for lists:

primrec reverse ∶ α list→ α list where

reverse [] = []
reverse (x # xs) = reverse xs @ [x]

The main correctness condition is that each recursive call on the right
side must strip one constructor from the argument. Then the recursion is
well founded and the command can reduce the list of defining equations
to a single equation via a corresponding datatype recursion combinator.
If the primrec condition is too strict, the user can resort to the fun

command, which supports a larger class of terminating recursive func-
tions with pattern matching by constructing explicit function graphs.
The primcorec is dual to primrec in the sense that each equation has

to produce one constructor immediately before each co-recursive call.

21

isabelle/hol

other principles. There are other derived definitional principles in
Isabelle/HOL; let me name inductive definitions, which allow us to specify
sets and predicates by their introduction rules [76], and truly extensible
records as a generalization of tuples [68].

2.5 tactics, methods and attributes

If we view Isabelle from the user’s perspective, we cannot expect that the
users prove new theorems by using directly the deduction system from
Section 2.3. One of the often-used possibilities is to use more complex
proof procedures called tactics. A tactic is a procedure that transforms
proof states, which can have multiple goals. Tactic’s complexity can range
from single rules to sophisticated proof-search algorithms. One of the
styles of proving theorems in Isabelle is the goal-oriented approach—first
state what you want to prove as a proof state with one goal and then reason
backwards by tactics until no goals are left.
In the proof text, we set a proof state by the command lemma, e.g.,

lemma 1nat = 1, (3)

and we transform proof goals bymethods, which, roughly speaking, we
can view as tactics that are available from the proof text. The proof state
(3) can be transformed into an empty state by applying the method simp:

apply simp

Themethod simp is Isabelle’s simplifier, which knows about reflexivity. In
this thesis, we developed a newmethod called transfer, which transforms
a goal into an equivalent goal along a pair of related types.
One of the distinctive features of Isabelle is schematic proof states. A

schematic proof state is a proof state that contains term (or type) schematic
variables. Schematic variables are variables that are not fixed during
proving and therefore tactics are allowed to substitute terms (or types) for
them. Thus the statement we want to prove is effectively not known/fixed
before we carry out the proof and we can synthesize the statement. We
distinguish schematic variables from regular variables by prefixing their
names by "?", for example ?a. We did not introduce schematic variables
in Section 2.2 because logically they are equivalent with nonschematic
variables (one can transform the former to the latter and vice verse).
They are different only operationally. The method transfer establishes a
schematic proof state internally to synthesize the new equivalent goal.
Besides obtaining new theorems by reasoning backwards, we can also

reason forwards. Oneway to do that is to use attributes. An attribute (used
as a theorem transformer) is a procedure that transforms a theorem into

22

2.6 sets and binary relations

another theorem. For example, if we have a theorem called less−add−one,
we can apply the attribute simplified to it as follows:

less−add−one[simplified]

The attribute transforms the given theorem into its normal form (if there
is one). In this thesis, we developed the attribute transferred, which
transforms the given theorem into an equivalent theorem along a pair of
related types but in the opposite direction than the method transfer.

2.6 sets and binary relations

Sets and binary relations are one of the most basic concepts in mathemat-
ics. In my thesis, I represent binary relations by the type α → β → bool.
I will present how some basic constants on those types are defined in
Isabelle/HOL. Let us start with the set operations:

∅ ∶ α set
UNIV ∶ α set
Ball ∶ α set→ (α → bool) → bool

∪ ∶ α set→ α set→ α set
∩ ∶ α set→ α set→ α set
− ∶ α set→ α set→ α set

insert ∶ α → α set→ α set

These constants are supposed to represent the empty set, the universal
set, i.e., the set containing all elements of its element type, bounded
quantification, the (set) union, the (set) intersection, the set difference and
the addition of an element into a set. Their definitions are straightforward:

∅ = {x ∣ False}
UNIV = {x ∣ True}

Ball A P = ∀x . x ∈ AÐ→ P x
A∪ B = {x ∣ x ∈ A∨ x ∈ B}
A∩ B = {x ∣ x ∈ A∧ x ∈ B}
A− B = {x ∣ x ∈ A∧ x /∈ B}

insert a A = {x ∣ x = a} ∪ A

As customary, we shall write ∀x ∈ A. t instead of Ball A (λx . t) and
{a1, . . . , an} instead of insert a1 (. . . (insert an ∅) . . .).

23

isabelle/hol

The binary relation operations that we use in the thesis are as follows:

.−1 ∶ (α → β → bool) → β → α → bool

○○ ∶ (α → β → bool) → (β → γ → bool) → α → γ → bool

⊑ ∶ (α → β → bool) → (α → β → bool) → bool

Domp ∶ (α → β → bool) → α → bool

These constants represent the relational converse and composition, the
subrelation comparison and the domain operator. Their characterizations:

R−1 x y ←→ R y x
(R ○○ S) x z ←→ ∃y. R x y ∧ S y z

R ⊑ S ←→ ∀x y. R x y Ð→ S x y
Domp R x ←→ ∃y. R x y

24

Look! A trickle of water running through
some dirt! I’d say our afternoon just got
booked solid!

— Bill Watterson, Calvin and Hobbes

3
HIGHER-ORDER LOGIC WITH AD HOC
OVERLOADING CONSISTENTLY

In this chapter, I will provide semantics of Isabelle/HOL in terms of set
theory with the axiom of choice. This is not meant to be a pretentious
exercise to cover 40 pages with formulas but a practically motivated deed.
The recently discovered consistency issues arising from the combination
of overloading and typedef in Isabelle/HOL called us to arms to develop
the first (semantic) explanation of the correct interplay of these features.
First, I present the discovered inconsistency (Section 3.1) and previous

attempts to settle this problem (Section 3.2). Then we will formally define
the consistency problem by defining a notion of a definitional theory (Sec-
tion 3.3). We will define a definitional dependency relation, which gives a
rise to well-formed definitional theories, and show that well-formedness
implies consistency by means of our novel, ground, fragment-localized
semantics (Section 3.4). On the practical side, I will present an algorithm
(together with its soundness and completeness proof) that decides if the
given theory is well formed (Section 3.5). I will conclude the chapter with
some assessing remarks (Section 3.6).
This chapter is based on joint work with Andrei Popescu [53, 54].

3.1 hol with ad hoc overloading inconsistently

Polymorphic HOL, more precisely, Classic Higher-Order Logic with In-
finity, Hilbert Choice and Rank-1 Polymorphism, endowed with a mech-
anism for constant and type definitions, was proposed in the nineties
as a logic for interactive theorem provers by Mike Gordon, who also
implemented the seminal HOL theorem prover [24]. This system has pro-
duced many successors and emulators known under the umbrella term
“HOL-based provers” (e.g., HOL4 [89], HOL Light [32], ProofPower [6]
and HOL Zero [2]), launching a very successful paradigm in interactive
theorem proving.
Amain strength of HOL-based provers is a sweet spot in expressiveness

versus complexity: on the one handHOL is sufficient formostmainstream
mathematics and computer science applications, but on the other, it is
a well-understood logic. In particular, the consistency of HOL has a
standard semantic argument, comprehensible to any science graduate:
one interprets its types as sets, in particular the function types as sets of

25

higher-order logic with ad hoc overloading consistently

functions, and the terms as elements of these sets, in a natural way; the
rules of the logic are easily seen to hold in this model. The definitional
mechanism has two flavors:

● New constants c are introduced by equations c ≡ t, where t is a
closed term not containing c

● New types τ are introduced by typedef equations τ ≡ t, where
t ∶ σ → bool is a predicate on an existing type σ (not containing τ
anywhere in the types of its subterms)

Again, this mechanism is manifestly consistent by an immediate seman-
tic argument [81]; alternatively, its consistency can be established by
regarding definitions as mere abbreviations (which here are acyclic by
construction).
As we already saw, Isabelle/HOL adds its personal touch to the afore-

mentioned sweet spot: it extends polymorphic HOL with a mechanism
for (ad hoc) overloading. As an example, consider the following Nominal-
style [92] definitions, where prm is the type of finite-support bijections on
an infinite type atom, and where we write apply π a for the application
of a bijection π to an atom a and π−1 for the inverse of π. The intended
behavior of the constant ● ∶ prm→ α → α (we use it as an infix operator)
is the application of a permutation to all atoms contained in an element
of a type α:

Example 3.1.

consts ● ∶ prm→ α → α
defs ●prm→atom→atom = λπ a. apply π a
defs ●prm→nat→nat = λπ n. n
defs ●prm→α list→α list = λπ xs.map (λx . π ● x) xs
defs ●prm→(α→β)→α→β = λπ f x . π ● f (π−1 ● x)

For atoms, ● applies the permutation; for numbers (which don’t have
atoms), ● is the identity function; for α list and α → β, the instance of ●
is defined in terms of the instance for the components α and β. All these
definitions fulfill the conditions that we stated in Section 2.4.1 on page 19:
they are nonoverlapping and their type-based recursion is terminating,
hence Isabelle is fine with them.
Of course, one may not be able to specify all the relevant instances

immediately after declaring a constant such as ●. At a later point, a user
may define their own atom-container type, such as

datatype myTree = A atom ∣ LNode atom list ∣ FNode nat→ atom

and instantiate ● for this type. (In fact, the Nominal tool automates in-
stantiations for user-requested datatypes, including terms with bindings.)

26

3.1 hol with ad hoc overloading inconsistently

To support such delayed instantiations, which are also crucial for the im-
plementation of type classes, Isabelle/HOL allows intermixing definitions
of instances of an overloaded constant with definitions of other constants
and types. Unfortunately, the improper management of the intermixture
leads to inconsistency: Isabelle/HOL accepts the following definitions1

Example 3.2.

consts c ∶ α
typedef τ = {True, cbool} by blast

defs cbool = ¬ (∀xσ y. x = y)

which immediately yield a proof of False:

lemma L ∶ (∀xσ y. x = y) ←→ c

using Repτ Repτ inject Absτ inject by (cases cbool) force+
theorem False

using L unfolding c bool def by auto

The inconsistency argument takes advantage of the circularity τ ↝
cbool ↝ τ in the dependencies introduced by the definitions: one first
defines τ to contain only one element just in case cbool is True, and then
defines cbool to be True just in case τ contains more than one element.
Before we start settling the consistency problem of the overloading

mechanism, we should ask ourselves three motivational/design decision
questions.
Do we need overloading? Yes. We do because it would not be possible to

implement usable type classes without it. Substantial developments such
as the Nominal [41, 92] andHOLCF [66] tools and Isabelle’s mathematical
analysis library [38] rely heavily on type classes. One of Isabelle’s power
users writes [60]: “Thanks to type classes and refinement during code
generation, our light-weight framework is flexible, extensible, and easy to
use.”
Do we need types depending on overloaded constants?This is apparently

the offending feature in Example 3.2. But this feature allows us to define
many concepts in a natural way. Let me mention one as an example: the
type of all red-black trees (α, β) rbt, which is defined by a restriction on all
binary trees. The definition requires that rbt is a search tree, which means
that the definition depends on a linear order on α, i.e., on a definition of
the overloaded constant ≤α→α→bool:

typedef (α, β) rbt = {t(α×β) binary tree ∣ . . . ≤α→α→bool . . .}

1 This example works in Isabelle2014 and Isabelle2015. My correction patch [1] based on
the results of our papers [53, 54] was accepted by the Isabelle headquarters for the next
official release, Isabelle2016.

27

higher-order logic with ad hoc overloading consistently

There are many types like this one in Isabelle/HOL and therefore the
answer to the question is yes.
Could not we make overloading a derived definitional mechanism? If

so, this would mean that any conceptual or implementation issue could
not lead to an inconsistency. One could take an example from another
proof assistant, Coq. Overloading in Coq—implemented by Sozeau and
Oury [87] in the context of first-class type classes—uses the dictionary
construction, i.e., during processing a theory, a type-class operation call
is replaced by a projection from a certain dependent record, which rep-
resents a type class and whose concrete instance is found by a special
tactic for an instance search. But we cannot use this approach because
the dictionary construction is not expressible in Isabelle/HOL. If we used
it, the type rbt would have to be parametrized by the linear order; that is
to say, it would depend on a term parameter le:

typedef (α, β, leα→α→bool) rbt = {t(α×β) binary tree ∣ . . . le . . .}

But since dependent types are not supported in HOL, we cannot use this
approach. Tomy best knowledge, there is no other technique how tomake
overloading a derived definitional mechanism in HOL and therefore the
answer to our question is no.

3.2 related work

overloading. I have already mentioned that overloading was intro-
duced by Nipkow and Snelting [74] in Isabelle/HOL and by Sozeau and
Oury [87] in Coq.
Mizar provides overloading for functions, types and other entities of

the system (see a description by Grabowski et al. [26]). Moreover, there
are two types of overloading: ad hoc and parameter overloading. The
whole mechanism of retrieving the meaning of an overloaded symbol is
involved but it holds that after the theory is processed, each overloaded
symbol has been resolved to a unique logical symbol.
Concerning other proof assistants, to the best of my knowledge, there

exists no notion of overloading in ACL2, HOL4, HOL Light or PVS.

previous consistency attempts. The settling of the consistency of the
mechanism of ad hoc overloading has been previously attempted by Wen-
zel [99] and Obua [75]. In 1997, Wenzel defined a notion of a safe theory
extension and showed that overloading conforms to this notion. But he
did not consider type definitions and worked with a simplified version
of the system where all overloadings for a constant c are provided at
once. Years later, when Obua took over the problem, he found that the

28

3.2 related work

overloadings were almost completely unchecked—the following trivial
inconsistency was accepted by Isabelle2005:

Example 3.3.

consts c ∶ α → bool

defs cα list×α→bool = λx . c(snd x # fst x)
defs cα list→bool = λx . ¬ c(tail x , head x)
lemma c [x] = ¬ c([], x) = ¬ c[x]

Obua noticed that the rewrite system produced by the definitions has
to terminate to avoid inconsistency, and implemented a private extension
based on a termination checker. He did consider intermixing overloaded
constant definitions and type definitions but his syntactic proof sketch
failed to consider inconsistency through type definitions.
Triggered by Obua’s observations, Wenzel implemented a simpler

and more structural solution based on work of Haftmann, Obua and
Urban: fewer overloadings are accepted in order to make the consis-
tency/termination problem decidable (which Obua’s original problem
is not). Wenzel’s solution has been part of the kernel since Isabelle2007
without any important changes—parts of this solution (which still does
not consider dependencies through types) are described by Haftmann
and Wenzel [30].
In 2014, I discovered that dependencies through types are not covered

(Example 3.2 on page 27), and Andrei Popescu discovered an unrelated
issue in the termination checker that caused an inconsistency evenwithout
exploiting types. I amended the latter issue by presenting a modified
version of the termination checker and proving its correctness [53] and
later worked with Andrei on the proof that termination of the definition
dependency relation through types guarantees consistency [54].

inconsistency club. Inconsistency problems arise quite frequently with
provers that step outside the safety of a simple and well-understood logic
kernel. The various proofs of False in the early PVS system [84] are
folklore. Coq’s [9] current stable version2 is inconsistent in the presence
of Propositional Extensionality; this problem stood undetected by the
Coq users and developers for 17 years; interestingly, just like the Isabelle/
HOL problem under scrutiny, it is due to an error in the termination
checker [21]. Agda [15] suffers from similar problems [64]. The recent
Dafny prover [58] proposes an innovative combination of recursion and
corecursion whose initial version turned out to be inconsistent [13].
Of course, such “dangerous” experiments are often motivated by better

support for the users’ formal developments. As I already mentioned, the
Isabelle/HOL type class experiment was practically successful.

2 Namely, Coq 8.4pl6; the inconsistency is fixed in Coq 8.5 beta1.

29

higher-order logic with ad hoc overloading consistently

consistency club. Members of this select club try to avoid inconsisten-
cies by impressive efforts of proving soundness of logics and provers by
means of interactive theorem provers themselves. Harisson’s pioneering
work [34] uses HOL Light to give semantic proofs of soundness of the
HOL logic without definitional mechanisms, in two flavors: either after
removing the infinity axiom from the object HOL logic, or after adding a
“universe” axiom to HOL Light; a proof that the OCaml implementation
of the core of HOL Light correctly implements this logic is also included.
Kumar et al. [52] formalize in HOL4 the semantics and the soundness

proof of HOL, with its definitional principles included; from this formal-
ization, they extract a verified implementation of a HOL theorem prover
in CakeML, an ML-like language featuring a verified compiler. None of
the above verified systems factor in ad hoc overloading, the starting point
of our work.
Krauss and Schropp [50] implemented an automated translation of

theories from Isabelle/HOL to Isabelle/ZF—Zermelo–Fraenkel set theory
with the axiom of choice. They translate recorded proof terms (the trans-
lated proofs are rechecked) and in principle follow the standard semantics
approach [81]. Overloaded constants are compiled out by the dictionary
construction but their implementation does not support types depending
on overloaded constants.
Outside the HOL-based prover family, there are formalizations of Mi-

lawa [67], Nuprl [3] and fragments of Coq [7, 8].

3.3 the consistency problem

In this section, we will move on from destruction (inconsistency) to
restoration: we will define what it means to be consistent and what should
be consistent. On this account, we will come up with a notion of a defini-
tional theory, which is for us just a set of certain formulas, and observe a
useful trick that allows us to separate definitions from proving.

3.3.1 Built-In and Non-Built-In Types and Constants

The distinction between built-in and non-built-in types and constants
will be important, since we will employ a slightly nonstandard semantics
only for the latter.
A built-in type is any type of the formbool, ind, σ set, or σ → τ for σ , τ ∈

Type. We let Type● denote the set of non-built-in types, i.e., types that are
not built-in. Note that we look only at the topmost type constructor to
decide if the given type is built-in or non-built-in. Therefore, a non-built-
in type can have a built-in type as a subexpression, and vice versa; e.g., if

30

3.3 the consistency problem

list is a type constructor, then bool list and (α → β) list are non-built-in
types, whereas α → β list is a built-in type.
Given a type σ , we define types●(σ), the set of non-built-in types of σ ,

as follows:

types●(bool) = ∅
types●(ind) = ∅
types●(σ set) = types●(σ)
types●(σ1 → σ2) = types●(σ1) ∪ types●(σ2)
types●(α) = ∅
types●(σ k) = {σ k}, if k ≠ bool, ind, set,→

Thus, types●(σ) is the smallest set of non-built-in types that can produce
σ by repeated application of the built-in type constructors. For example,
if the type constructors prm (0-ary) and list (unary) are in the signature
and if σ is (bool → α list) → prm → (bool → ind) list, then types●(σ)
has three elements: α list, prm and (bool→ ind) list.
A built-in constant is a constant of the form→, =, ∈, Collect, ε, zero or

suc. We let CInst● be the set of constant instances that are not instances
of built-in constants.
In our semantics (Section 3.4.4 on page 38), we will stick to the standard

interpretation of built-in items, whereas for non-built-in items we will
allow an interpretation looser than customary. The standardness of the
bool, ind, set and function-type interpretation will allow us to always
automatically extend the interpretation of a set of non-built-in types to
the interpretation of its built-in closure.
Given a term t, we let consts●(t) ⊆ CInst● be the set of all non-built-in

constant instances occurring in t and types●(t) ⊆ Type● be the set of all
non-built-in types that compose the types of non-built-in constants and
(free or bound) variables occurring in t. Note that the types● operator is
overloaded for types and terms.

types●(xσ) = types●(σ)
types●(cσ) = types●(σ)
types●(t1 t2) = types●(t1) ∪ types●(t2)
types●(λxσ . t) = types●(σ) ∪ types●(t)
consts●(xσ) = ∅

consts●(cσ) =
⎧⎪⎪⎨⎪⎪⎩

{cσ} if cσ ∈ CInst●

∅ otherwise

consts●(t1 t2) = consts●(t1) ∪ consts●(t2)
consts●(λxσ . t) = consts●(t)

31

higher-order logic with ad hoc overloading consistently

Note that the consts● and types● operators commute with ground type
substitutions (and similarly with type substitutions, of course):

Lemma 3.3.1. (1) consts●(θ(t)) = {cθ(σ) ∣ cσ ∈ consts●(t)}
(2) types●(θ(t)) = {θ(σ) ∣ σ ∈ types●(t)}

3.3.2 Definitional Theories

We are interested in the consistency of theories arising from constant-
instance and type definitions, which we call definitional theories.
Given cσ ∈ CInst● and a closed term t ∶ σ , we let cσ ≡ t denote the

formula cσ = t. We call cσ ≡ t a constant-instance definition provided
TV(t) ⊆ TV(cσ) (i.e., TV(t) ⊆ TV(σ)).
Given the types τ ∈ Type● and σ ∈ Type and the closed term t whose

type is σ set, we let τ ≡ t denote the formula

(∃xσ . x ∈ t) Ð→
∃repτ→σ . ∃absσ→τ .
(∀xτ . rep x ∈ t) ∧
(∀xτ . abs (rep x) = x) ∧
(∀yσ . y ∈ t Ð→ rep (abs y) = y).

We call τ ≡ t a type definition, provided TV(t) ⊆ TV(τ) (which also
implies TV(σ) ⊆ TV(τ)).
Note that we defined τ ≡ t not to mean:

(*): The type τ is isomorphic, via abs and rep, to t, the subset of σ.

as customary in most HOL-based systems, but rather to mean:

If t is a nonempty subset of σ, then (*) holds

Moreover, note that we do not require τ to have the form (α1, . . . , αn)k,
as is currently required in Isabelle/HOL and the other HOL provers, but,
more generally, allow any τ ∈ Type●.3 This enables an interesting feature:
ad hoc overloading for type definitions. For example, given a unary type
constructor tree, we can have totally different definitions for nat tree,
bool tree and α list tree.
In general, a definition will have the form u ≡ t, where u is either a con-

stant instance or a type and t is a term (subject to the specific constraints
of constant-instance and type definitions). Given a definition u ≡ t, we
call u and t the left-hand and right-hand sides of the definition. In what
follows, we are interested only in theories that consist solely of definitions.
We call such a theory D a definitional theory.

3 To ensure consistency, we will also require that τ has no common instance with the
left-hand side of any other type definition.

32

3.3 the consistency problem

3.3.3 The Consistency Problem

In this section, we will precisely define the consistency problem for Isa-
belle/HOL. Let us recall that a (definitional) theory D is consistent if
D /⊢ False.
Let us first inspect what a development in Isabelle/HOL looks like.

Every step in the development falls in one of the following three categories:

1. declaring constants and types

2. defining constant instances and types

3. stating and proving theorems using the deduction rules of poly-
morphic HOL

Consequently, at any point in the development, one has:

1. a signature (K , arOf ∶ K → N, Const, tpOf ∶ Const→ Type)

2. a definitional theory D

3. other proved theorems

In our abstract formulation of Isabelle/HOL’s logic, we do not represent
explicitly point 3, namely the stored theorems that are not produced as a
result of definitions, i.e., are not in D. The reason is that, in Isabelle/HOL,
the definitional theorems in D are not influenced by the other theorems.
Note that this is not the case of the other HOL provers, due to the

type definitions: there, τ ≡ t, with tpOf(t) = σ set, is introduced in the
unconditional form (*), and only after the user has proved that t is a
nonempty subset (i.e., that ∃xσ . x ∈ t holds).4 Of course, Isabelle/HOL’s
behavior converges with standard HOL behavior since the user is also
required to prove nonemptiness, after which (*) is inferred by the system—
however, this last inference step is normal deduction, having nothing to
do with the definition itself. This very useful trick, due to Wenzel, cleanly
separates definitions from proofs.
In summary, we only need to guarantee the consistency of D:

TheConsistency Problem: Find a sufficient criterion for a
definitional theoryD to be consistent (while allowing flexible
ad hoc overloaded constant definitions).

4 In other HOL provers, sets are usually represented by unary predicates (i.e., terms of type
σ → bool). Therefore, typedef takes a term t of type σ → bool and the user has to show
that t gives a nonempty set by proving ∃xσ . t x. Since sets are defined axiomatically to be
isomorphic to unary predicates in Isabelle/HOL, we can happily ignore this discrepancy.

33

higher-order logic with ad hoc overloading consistently

3.4 the solution to the consistency problem

Assume for a moment that we have a proper dependency relation between
defined items, where the defined items can be types or constant instances.
Recall that the closure of this relation under type substitutions needs
to terminate, otherwise inconsistency arises immediately, as shown in
Example 3.3 on page 29. We also already saw that it is clear that the left-
hand sides of the definitions need to be orthogonal to prevent examples
such as Example 2.2 on page 18.
It turns out that these necessary criteria are also sufficient for con-

sistency. This was also believed by Wenzel and Obua; what they were
missing was a proper dependency relation and a transparent argument
for its consistency, which is what we provide next.

3.4.1 Definitional Dependency Relation

Given any binary relation R on Type● ∪ CInst●, we write R+ for its
transitive closure, R∗ for its reflexive-transitive closure and R↓ for its
(type-)substitutive closure, defined as follows: p R↓ q iff there exist p′, q′
and a type substitution ρ such that p = ρ(p′), q = ρ(q′) and p′ R q′. We
say that a relation R is terminating if there exists no sequence (pi)i∈N
such that pi R pi+1 for all i.
Let us fix a definitional theory D. We say D is orthogonal if for all

distinct definitions u ≡ t and u′ ≡ t′ in D, one of the following cases
holds:

● either one of {u, u′} is a type and the other is constant instance

● or both u and u′ are types and are orthogonal (u # u′)

● or both u and u′ are constant instances and are orthogonal (u # u′)

We define the binary relation↝ on Type● ∪CInst● by setting u ↝ v iff
one of the following holds:

1. there exists a (constant-instance or type) definition in D of the
form u ≡ t such that v ∈ consts●(t) ∪ types●(t)

2. u = ctpOf(c) and v ∈ types●(tpOf(c)) for some c ∈ Const●

We call↝ the dependency relation (associated to D).
Thus, when defining an item u by means of t (as in u ≡ t), we naturally

record that u depends on the constants and types appearing in t (clause
1); moreover, any constant c should depend on its type (clause 2). But
notice the bullets! We only record dependencies on the non-built-in items,
since intuitively the built-in items have a predetermined semantics which

34

3.4 the solution to the consistency problem

cannot be redefined or overloaded, and hence by themselves cannot in-
troduce inconsistencies. Moreover, we do not dig for dependencies under
any non-built-in type constructor—this can be seen from the definition of
the types● operator on types which yields a singleton whenever it meets a
non-built-in type constructor; the rationale for this is that a non-built-in
type constructor has an “opaque” semantics which does not expose the
components (as does the function type constructor). These intuitions will
be made precise by our semantics in Section 3.4.4.
Consider the following example, where the definition of α k is omitted:

Example 3.4.

consts c ∶ α
consts d ∶ α
typedef α k = . . .
defs cind k→bool = dbool k k→ind k→bool dbool k k

We record that the constant cind k→bool depends on the non-built-in
constants dbool k k→ind k→bool and dbool k k, and on the non-built-in types
bool k k and ind k. We do not record any dependency on the built-in
types bool k k → ind k → bool, ind k → bool or bool. Also, we do not
record any dependency on bool k, which can only be reached by digging
under k in bool k k.

3.4.2 The Consistency Theorem

We can now state our main result. We call a definitional theory D well
formed if it is orthogonal and the substitutive closure of its dependency
relation,↝↓, is terminating.
Note that a well-formed definitional theory is allowed to contain defi-

nitions of two different (but orthogonal) instances of the same constant—
this ad hoc overloading facility is a distinguishing feature of Isabelle/HOL
among the HOL provers.

Theorem 1. If D is well formed, then D is consistent.

Previous attempts to prove consistency employed syntacticmethods [75,
99]. Instead, we will give a semantic proof:

1. We define a new semantics of Polymorphic HOL that is suitable
for overloading and in which False is not a valid formula (Sec-
tion 3.4.4).

2. We prove that models of our semantics are preserved by Isabelle’s
deduction rules—soundness (Section 3.4.5).

35

higher-order logic with ad hoc overloading consistently

3. We prove that D has a model according to our semantics (Sec-
tion 3.4.6).

Then 1-3 immediately imply consistency.

3.4.3 Inadequacy of the Standard Semantics of PolymorphicHOL

But why define a new semantics? Recall that our goal is to make sense of
definitions as in Example 3.1 on page 26. In the standard (Pitts) seman-
tics [81], one chooses a universe collection of sets U closed under suitable
set operations (function space, an infinite set, etc.) and interprets:

1. the built-in type constructors and constants as their standard coun-
terparts in U :

● [bool] and [ind] are some chosen two-element set and infinite
set in U

● [→] ∶ U → U → U takes two sets A1, A2 ∈ U to the set of
functions A1 → A2

● [set] ∶ U → U maps a set A ∈ U to a power set P(A).
● [True] and [False] are the two distinct elements of [bool],
etc.

2. the non-built-in type constructors and constants similarly (we
interpret prm and ● introduced in Example 3.1 on page 26):

● a defined type prm or type constructor list as an element
[prm] ∈ U or operator [list] ∶ U → U , produced according to
their typedef definition

● a polymorphic constant such as ● ∶ prm→ α → α as a family
[●] ∈ ∏A∈U([prm] → A→ A)

In standard polymorphic HOL, ● would be either completely unspecified,
or completely defined in terms of previously existing constants—this
has a faithful semantic counterpart in U . But now how to represent the
overloaded definitions of ● from Example 3.1? In U , they would become:

[●][atom] π a = [apply] π a

[●][nat] π n = n

[●][list](A) π xs = [map]A ([●]A π) xs

[●]A→B π f x = [●]B π (f ([●]A ([inv] π) x))

There are two problems with these semantic definitions. First, given B ∈ U ,
the value of [●]B varies depending on whether B has the form [atom], or

36

3.4 the solution to the consistency problem

[nat], [list](A) or A→ B for some A, B ∈ U ; hence the interpretations of
the type constructors need to be nonoverlapping—this is not guaranteed
by the assumptions about U , so we would need to perform some low-level
set-theoretic tricks to achieve the desired property. Second, even though
the definitions are syntactically terminating, their semantic counterparts
may not be: unless we again delve into low-level tricks in set theory (based
on the axiom of foundation), it is not guaranteed that decomposing a set
A0 as [list](A1), then A1 as [list](A2), and so on (as prescribed by the
third equation for [●]) is a terminating process.
Even worse, termination is in general a global property, possibly in-

volving both constants and type constructors, as shown in the following
example where c and k are mutually defined (so that a copy of ebool kn is
in bool kn+1 iff n is even):

Example 3.5.

consts c ∶ α → bool d ∶ α e ∶ α
typedef α k = {dα} ∪ {eα ∣ c dα}
defs cα k→bool = λxα k. ¬ (c dα)
defs cbool→bool = λx . True

The above would require a set-theoretic setting where such fixpoint
equations have solutions; this is, in principle, possible, provided we tag
the semantic equations with enough syntactic annotations to guide the
fixpoint construction. However, such a construction seems excessive
given the original intuitive justification: the definitions are “OK” because
they do not overlap and they terminate. On the other hand, a purely syn-
tactic (proof-theoretic) argument also seems difficult due to the mixture
of constant definitions and (conditional) type definitions.
Therefore, we decide to go for a natural syntactic-semantic blend, which

avoids stunt performance in set theory: we do not semantically interpret
the polymorphic types, but only the ground types—a type σ is called
ground if TV(σ) = ∅ and we let GType be the set of ground types. We
think of polymorphic types as “macros” for families of the ground types.
For example, α → α list represents the family (τ → τ list)τ∈GType. Con-
sequently, we think of the meaning of α → α list not as ∏A∈U(A →
[list](A)), but rather as∏τ∈GType([τ] → [τ list]). Moreover, a polymor-
phic formula φ of type, say, (α → α list) → bool, is considered true if and
only if all its ground instances of types (τ → τ list) → bool are true.
Another (small) departure from standard HOL semantics is motivated

by our goal to construct a model for a well-formed definitional theory.
Whereas in standard semantics, one first interprets all type constructors
and constants and only afterwards extends the interpretation to terms,
here we need to interpret some of the terms eagerly before some of the

37

higher-order logic with ad hoc overloading consistently

types and constants. Namely, given a definition u ≡ t, we interpret t
before we interpret u (according to t). This requires a straightforward
refinement of the notion of semantic interpretation: to interpret a term,
we only need the interpretations for a sufficient fragment of the signature
containing all the items appearing in t.

3.4.4 Ground, Fragment-Localized Semantics

Let me start with definitions regarding the ground part of the semantics.
Recall that a type σ is called ground ifTV(σ) = ∅ and GType is the set of
ground types. We let GType● = GType ∩Type● denote the set of ground
non-built-in types. Clearly GType● ⊂ Type. We let GCInst be the set of
constant instances whose type is ground and GCInst● = GCInst ∩ CInst●

be its subset of ground non-built-in instances. As a general notation
rule: the prefix “G” indicates ground items, whereas the superscript ●
indicates non-built-in items, where an item can be either a type or a
constant instance.
A ground type substitution is a function θ ∶ TVar → GType, which

again extends to a homonymous function θ ∶ Type→ GType.
A term t is called ground if TV(t) = ∅. Thus, closedness refers to the

absence of free (term) variables in a term, whereas groundness refers
to the absence of type variables in a type or a term. Note that, for a
term, being ground is a stronger condition than having a ground type:
(λxα . cbool) xα has the ground type bool, but is not ground.
Recall that we can apply a type substitution ρ to a term t, written ρ(t),

by applying ρ to all the type variables occurring in t; we use the same
notation for ground type substitutions θ; note that θ(t) is always a ground
term.
Given T ⊆ Type, we define Cl(T) ⊆ Type, the built-in closure of T ,

inductively as follows:

T ⊆ Cl(T)
{bool, ind} ⊆ Cl(T)
σ set ∈ Cl(T) if σ ∈ Cl(T)
σ → τ ∈ Cl(T) if σ ∈ Cl(T) and τ ∈ Cl(T)

This means that Cl(T) is the smallest set of types built from T by repeat-
edly applying built-in type constructors.
A (signature) fragment is a pair (T , C) with T ⊆ GType● and C ⊆

GCInst● such that σ ∈ Cl(T) for all cσ ∈ C.
Let F = (T , C) be a fragment. We write:

● TypeF, for the set of types generated by this fragment, namelyCl(T)

38

3.4 the solution to the consistency problem

● TermF, for the set of terms that fall within this fragment, namely
{t ∈ Term ∣ types●(t) ⊆ T ∧ consts●(t) ⊆ C}

● FmlaF, for Fmla ∩TermF

Lemma 3.4.1. The following hold:

(1) TypeF ⊆ GType

(2) TermF ⊆ GTerm

(3) If t ∈ TermF , then tpOf(t) ∈ TypeF

(4) If t ∈ TermF , then FV(t) ⊆ TermF

(5) If t ∈ TermF , then each subterm of t is also in TermF

(6) If t1, t2 ∈ TermF and xσ ∈ VarTypeF , then t1[t2/xσ] ∈ Term
F

The above straightforward lemma shows that fragments F include only
ground items (points (1) and (2)) and are autonomous entities: the type of
a term from F is also in F (3), and similarly for the free (term) variables
(4), subterms (5) and substituted terms (6). This autonomy allows us to
define semantic interpretations for fragments.
For the rest of this section, we fix the following:

● a singleton set {∗}

● a two-element set {true, false}

● a global choice function, choice, that assigns to each nonempty set
A an element choice(a) ∈ A

Let F = (T , C) be a fragment. An F-interpretation is a pair I =
(([τ])τ∈T , ([cτ])cτ∈C) such that:

1. ([τ])τ∈T is a family such that [τ] is a nonempty set for all τ ∈ T .
We extend this to a family ([τ])τ∈Cl(T) by interpreting the built-in
type constructors as expected:

[bool] = {true, false}
[ind] = N (the set of natural numbers)5

[σ set] = P([σ]) (the set of all subsets of [σ]).
[σ → τ] = [σ] → [τ] (the set of functions from [σ] to [τ])

2. ([cτ])cτ∈C is a family such that [cτ] ∈ [τ] for all cτ ∈ C

5 Any infinite (not necessarily countable) set would do here; we only chooseN for simplicity.

39

higher-order logic with ad hoc overloading consistently

(Note that, in condition 2 above, [τ] refers to the extension described at
point 1.)
Let GBIF be the set of ground built-in constant instances cτ with τ ∈

TypeF . We extend the family ([cτ])cτ∈C to a family ([cτ])cτ∈ C ∪ GBIF , by
interpreting the built-in constants as expected:

● [Ð→bool→bool→bool] as the logical implication on {true, false}

● [=τ→τ→bool] as the equality predicate in [τ] → [τ] → {true, false}

● [ε(τ→bool)→τ] as the following function, where, for each f ∶ [τ] →
{true, false}, we let A f = {a ∈ [τ] ∣ f (a) = true}:

[ε(τ→bool)→τ](f) = {
choice(A f) if A f is nonempty
choice([τ]) otherwise

● [∈τ→σ set→bool] as the set membership

● [Collect(τ→bool)→σ set](P) as {a ∈ [τ] ∣ P a} for every function
P ∶ [τ] → {true, false}

● [zeroind] as 0 and [sucind→ind] as the successor function for N

To summarize, given an interpretation I , which is a pair of families

(([τ])τ∈T , ([cτ])cτ∈C),

we can always obtain an extended pair of families

(([τ])τ∈Cl(T), ([cτ])cτ∈ C ∪ GBIF).

Now we are ready to interpret the terms in TermF according to I . A
valuation ξ ∶ VarTypeF → Set is called I-compatible if ξ(xσ) ∈ [σ]I for
each xσ ∈ VarGType. We write CompI for the set of compatible valuations.
For each t ∈ TermF , we define a function

[t] ∶ CompI → [tpOf(t)]

recursively over terms as expected:

[xσ](ξ) = ξ(xσ)

[cσ](ξ) = [cσ]

[t1 t2](ξ) = [t1](ξ) ([t2](ξ))

[λxσ . t](ξ) = Λ
a∈[σ]
[t](ξ[xσ ← a])

The termΛa∈[σ]([t](ξ[xσ ← a])) is the function sending each a ∈ [σ]
to [t](ξ[xσ ← a]), where ξ[xσ ← a] is ξ updated with a at xσ . Note that

40

3.4 the solution to the consistency problem

the recursive definition of [t] is correct thanks to Lemma 3.4.1.(5). The
above concepts are parametrized by a fragment F and an F-interpretation
I . If I or F are not clear from the context, we may write, e.g., [t]I or
[t]F ,I .

Lemma 3.4.2. For each t ∈ TermF , the interpretation function [t] is
a function that only depends on the restriction of its inputs to FV(t),
which means for all ξ, ξ′ ∈ CompI if ξ(x) = ξ′(x) for all x ∈ FV(t), then
[t](ξ) = [t](ξ′).

Therefore, if t is a closed term, then [t] does not truly depend on ξ and
hence we can simplify the definition of [.] and assume [t] ∶ [tpOf(t)].
We will use the fragment interpretations to interpret only definitions,
which are closed terms.
Note that the pairs (F , I) are naturally ordered: Given fragments F1 =
(T1, C1) and F2 = (T2, C2), F1-interpretation I1 and F2-interpretation I2,
we define (F1, I1) ≤ (F2, I2) to mean T1 ⊆ T2, C1 ⊆ C2 and [u]I1 = [u]I2
for all u ∈ T1 ∪ C1.

Lemma 3.4.3. If (F1, I1) ≤ (F2, I2), then the following hold:

(1) TypeF1 ⊆ TypeF2

(2) TermF1 ⊆ TermF2

(3) [τ]F1 ,I1 = [τ]F2 ,I2 for all τ ∈ TypeF1

(4) [t]F1 ,I1 = [t]F2 ,I2 for all closed t ∈ TermF1

The total fragment ⊺ = (GType●, GCInst●) is the top element in this
order. Note that Type⊺ = GType and Term⊺ = GTerm.
So far, the notion of I interpreting φ was only defined for (closed)

formulas φ that belong to TermF , in particular, that are ground formu-
las. In the following, we will extend this to polymorphic formulas (in
a context) by quantifying universally over all ground type substitutions.
We only care about such an extension for the total fragment: Given a
⊺-interpretation I , a context Γ, a polymorphic formula φ, a ground type
substitution θ, and a valuation ξ ∈ CompI , we say that I satisfies φ under
the valuations θ and ξ, written I ⊧θ ,ξ φ, if [θ(φ)]I(ξ) = true. We extend
the notion to a set of formulas Γ as expected: I ⊧θ ,ξ Γ if I ⊧θ ,ξ φ for
every φ ∈ Γ. Finally, we define I ⊧θ ,ξ (Γ, φ) to mean I ⊧θ ,ξ Γ implies
I ⊧θ ,ξ φ.
We say I is amodel of (Γ, φ), written I ⊧ (Γ, φ), if I ⊧θ ,ξ (Γ, φ) for

all ground type substitutions θ and valuations ξ ∈ CompI . If Γ = [], we
simply write I ⊧ φ. Furthermore, this extends to a set of (polymorphic)
formulas D: I ⊧ D is defined as I ⊧ φ for all φ ∈ D. Finally, we define
I ⊧ (D, Γ, φ) to mean I ⊧ D implies I ⊧ (Γ, φ).

41

higher-order logic with ad hoc overloading consistently

3.4.5 Soundness

We say that a deduction rule

D, Γ1 ⊢ φ1 . . . D, Γn ⊢ φn
D, Γ ⊢ φ

preserves models (or is sound) if for every ⊺-interpretation I , it holds that
I ⊧ (D, Γ, φ) whenever I ⊧ (D, Γi , φi) holds for all 1 ≤ i ≤ n.

Theorem 2. The deduction rules of Isabelle/HOL preserve models.

Proof. It is routine to verify that the deduction rules for Isabelle/HOL are
sound w.r.t. our ground semantics.

Corollary 3.4.4. Let D be a definitional theory that has a total-fragment
model, i.e., there exists a ⊺-interpretation I such that I ⊧ D. Then D is
consistent.

3.4.6 The Model Construction

The only missing piece from the proof of consistency is the following:

Theorem 3. Assume D is a well-formed definitional theory. Then it has
a total-fragment model, i.e., there exists a ⊺-interpretation I such that
I ⊧ D.

Proof. For each u ∈ GType● ∪ GCInst●, we define [u] by well-founded
recursion on ↝↓+, the transitive closure of ↝↓; indeed, the latter is a
terminating (well-founded) relation by the well-formedness of D, hence
the former is also terminating.
We assume [v] has been defined for all v ∈ GType● ∪ GCInst● such

that u ↝↓+ v. In order to define [u], we first need some terminology: We
say that a definition w ≡ s matches u if there exists a type substitution θ
with u = θ(w). We distinguish the following two cases:

1. There exists no definition in D that matches u. Here we have two
subcases:

● u ∈ GType●. Then we define [u] = {∗}.
● u ∈ GCInst●. Say u has the form cσ . Then u ↝↓ σ , and hence
[σ] is defined; we define [u] = choice([σ]).

2. There exists a definition w ≡ s in D that matches u. Then let θ
be such that u = θ(w), and let t = θ(s). Let Vu = {v ∣ u ↝↓+
v}, Tu = Vu ∩ Type and Cu = Vu ∩ CInst. It follows from the
definition of↝ that Fu = (Tu , Cu) is a fragment; moreover, from
the definition of↝ and Lemma 3.3.1, we obtain that types●(t) ⊆ Tu

42

3.5 deciding well-formedness

and consts●(t) ⊆ Cu, which implies t ∈ TermFu ; hence we can
speak of the value [t]Fu ,Iu obtained from the Fu-interpretation
Iu = (([v])v∈Tu , ([v])v∈Cu). We have two subcases:

● u ∈ GCInst●. Then we define [u] = [t]Fu ,Iu .
● u ∈ GType●. Then t ∶ σ set for some σ and therefore [t]Fu ,Iu ∈
P([σ]Fu ,Iu).6 We have two subsubcases:
– [∃xσ . x ∈ t] = false. Then we define [u] = {∗}.
– [∃xσ . x ∈ t] = true. Then we define [u] = [t]Fu ,Iu .

Having defined the ⊺-interpretation

I = (([u])u∈GType● , ([u])u∈GCInst●),

it remains to show that I ⊧ D. To this end, let w ≡ s be in D and let
θ′ be a ground type substitution. We need to show I ⊧θ′ w ≡ s, i.e.,
[θ′(w) ≡ θ′(s)]I = true.
Let u = θ′(w); then u matches w ≡ s, and by orthogonality this is the

only definition in D that it matches. So the definition of [u] proceeds
with case 2 above, using w ≡ s—let θ be the ground type substitution
considered there. Since θ′(w) = θ(w), it follows that θ′ and θ coincide
on the type variables of w, and hence on the type variables of s (because,
in any definition, the type variables of the right-hand side are included in
those of the left-hand side); hence θ′(s) = θ(s).
That means, we have to prove [u ≡ v]I = true, where u = θ(w)

and v = θ(s). The desired fact follows from the definition of I by a
case analysis matching the subcases of the above case 2. (Note that the
definition operates with [t]Fu ,Iu , whereas we need to prove the fact for
[t]⊺,I ; however, since (Fu , Iu) ≤ (⊺, I), by Lemma 3.4.3 the two values
coincide and similarly for [σ]Fu ,Iu vs. [σ]⊺,I .)

3.5 deciding well-formedness

We proved that every well-formed theory is consistent. But we should
not forget that we have a real-life proof assistant in our hands—we have
to be able to check if a theory is well formed after we extend it by new
definitions. We can check that D is definitional and orthogonal by simple
polynomial algorithms. On the other hand, Obua [75] showed that a
dependency relation generated by overloaded definitions can encode the
Post correspondence problem and therefore termination of such a relation
is not even a semi-decidable problem.
As I already mentioned, Wenzel proposed and implemented a solu-

tion that imposes a restriction on the definitions such that termination
becomes decidable while preserving flexibility of overloading.

6 The interpretation [σ]Fu ,Iu is well defined since σ ∈ types●(t) ⊆ TypeFu .

43

higher-order logic with ad hoc overloading consistently

Back in 2014, there did not exist any convincing, complete proof that
the algorithm decides termination of the corresponding rewriting system
even though this algorithm should guarantee preservation of consistency
of the system. Andrei Popescu triggered this work when he found out that
the algorithm is not sound—he could prove False in Isabelle by misusing
the discovered issue. Later I found out that the algorithm is not complete
either—there are two independent issues that cause the algorithm not to
terminate.7 Based on this, I present a modified version of the algorithm
and prove its soundness and completeness.

3.5.1 The Termination Problem

Recall that we have a dependency relation ↝ on Type● ∪ CInst● and
that a theory D is well formed if D is definitional, orthogonal and↝↓ is
terminating. We have to work out how to decide the termination:

The Termination Problem: Find a predicate P on binary
relations on Type● ∪ CInst● such that for finite relations↝
the following holds:

● P(↝) is decidable
● P(↝) implies that↝↓ terminates
● P contains interesting relations↝

It is helpful to viewThe Termination Problem as an optimization prob-
lem; namely, we have to find a solution P between two extremities: P could
either admit all terminating inputs (but then, as Obua showed, P cannot
be decidable) or be false for all inputs (but then, while trivially decidable,
no overloadings would be accepted). In other words, P should cover all
of our use cases of overloading in Isabelle/HOL while still decidable. Our
attack plan toThe Termination Problems is as follows:

● We introduce an additional technical background (Section 3.5.2).

● We define composability (the main component of P) and show that
under composability termination of↝↓ is equivalent to acyclity of
↝ (Section 3.5.3).

● We present an algorithm that can decide composability and acy-
clity of↝ and resolves the original problem—decidability of well-
formedness (Section 3.5.4).

7 The original algorithm was primarily designed to achieve consistency preservation. Ter-
mination was not guaranteed and nontermination was meant as a measure of last resort
against introducing inconsistency [31]. My work identifies these instances of nontermina-
tion and shows how to eliminate them and still preserve consistency.

44

3.5 deciding well-formedness

● Finally, we look at the three issues of the original algorithm and
how the modified one solves them (Section 3.5.5).

3.5.2 Preliminaries

We use the notation (pi , qi)i≤n for sequence (p0, q0), . . . , (pn , qn). The
image of a function under a set is defined as f [A] = { f (x) ∣ x ∈ A}. If
f ∶ A→ B and C ⊆ A, the restriction of f to C is a function f ↾C ∶ C → B
defined as f ↾C (x) = f (x) for all x ∈ C.
Recall that we have a fixed signature (K , arOf , Const, tpOf) and a type

substitution is a function ρ ∶ TVar → Type that is almost everywhere the
identity. We range over type substitutions by ρ, σ , η.
The size function counts the number of type constructors in a type:

size(α) = 0 and size((τ1, . . . , τn)k) = 1 + Σ1≤i≤n size(τi).
For a substitution σ , a domain is a (finite) set of variables dom(σ) =
{α ∣ σ(α) ≠ α}, and an image is a set of types img(σ) = σ[dom(σ)].
A renaming is a substitution σ such that dom(σ) = img(σ) (and there-

fore each renaming is a bijection).
We assume that we have a functionRen(R, C) that gives us a renaming

σ such that dom(σ) = R ∪ σ[R] and σ[R] ∩ C = ∅ (i.e., σ renames
variables in R not to clash with variables in C). If R and C are finite,
Ren(R, C) is always defined since TVar is infinite.
We write that ρ =τ ρ′ if ρ(α) = ρ′(α) for all α ∈ TV(τ). We say that ρ

is equivalent to ρ′ and write ρ ≈ ρ′ if there exists a renaming η such that
ρ = η ○ ρ′. We write that ρ ≈τ ρ′ if there exists a renaming η such that
ρ =τ η ○ ρ′.

Lemma 3.5.1. a) size((η ○ ρ)(τ)) = size(ρ(τ)) if η is a renaming.
b) size(ρ(τ)) > size(τ) if ρ /≈τ′ id and TV(τ′) ⊆ TV(τ).

Proof. A substitution that is not equivalent to the identity on τ has tomap
at least one type variable of τ to a type constructor, whereas a renaming
cannot.

Lemma 3.5.2. If η is a renaming, then η[TV(τ)] = TV(η(τ)).

Proof. Straightforward from definitions.

Recall that two types τ1 and τ2 are called orthogonal, written τ1 # τ2, if
they have no common instance, i.e., for all τ it holds that τ /≤ τ1 or τ /≤ τ2.
Or equivalently, τ1 and τ2 are orthogonal if and only if τ1 and τ2 cannot
be unified after renaming variables in τ1 and τ2 apart.
Two types τ1 and τ2 have a nontrivial instance, written τ1 ↓ τ2, if there

exists τ′ such that τ′ ≤ τ1, τ′ ≤ τ2 and τ1 /≤ τ2 and τ2 /≤ τ1. Notice if τ1 ↓ τ2
and τ′ ≤ρ τ1 and τ′ ≤ρ′ τ2, then ρ /≈ id and ρ′ /≈ id.

45

higher-order logic with ad hoc overloading consistently

Lemma 3.5.3. Let ρ ≈τ1 ρ′; then ρ(τ1) ≤ τ2 ←→ ρ′(τ1) ≤ τ2, ρ(τ1) ≥
τ2 ←→ ρ′(τ1) ≥ τ2, ρ(τ1) # τ2 ←→ ρ′(τ1) # τ2 and ρ(τ1) ↓ τ2 ←→
ρ′(τ1) ↓ τ2.

Proof. It can be proved by an easy manipulation with substitutions.

Since the dependency relation↝ relates elements of typeType●∪CInst●,
we will in general work with elements of this type, ranged over by p, q, r
and s. We defined all of the aforementioned functions and relations TV,
dom, img, Ren, ≤, ≈, # , ↓ and size for elements of Type. But we want to
apply all of these concepts to Type● ∪ CInst●, which means that we want
to lift these functions and relations from Type to Type ∪ CInst. We do
not have to do the lifting separately for each of them because there exists
a more elegant way: all of these functions and relations were defined in
terms of three concepts: equality =, application of a substitution and the
size function.8 Therefore in order to complete the lifting from Type to
Type ∪ CInst, it suffices if we define = ∶ Type ∪ CInst→ Type ∪ CInst→
bool, App ∶ (Type → Type) → Type ∪ CInst → Type ∪ CInst and size ∶
Type ∪ CInst→ N, which we do as follows:

● Two elements of Type ∪ CInst are equal iff they are both constant
instances and they are equal or they are both types and they are
equal.

● App ρ τ = ρ(τ) and App ρ cτ = cρ(τ).

● size(cτ) = size(τ).

For readability reasons, we still write ρ(p) for App ρ p.
Recall that the substitutive closure was defined as follows: p R↓ q iff

there exist p′, q′ and a type substitution ρ such that p = ρ(p′), q = ρ(q′)
and p′ R q′.
Recall that we say that a relation R is terminating if there exists no

sequence (pi)i∈N such that pi R pi+1 for all i.

3.5.3 From Termination to Acyclicity

Since ↝↓ is the substitutive closure of ↝, ↝↓ is generally infinite even
if↝ is finite. In this section, we show that the problem of termination
of infinite ↝↓ is equivalent to a finite problem on ↝, namely that ↝ is
acyclic. We will define cyclicity formally later, but informally it means
that we can find a finite sequence r0 ↝↓ r1 ↝↓ . . . ↝↓ rn such that rn ≤ r0.
If we find a cycle, it is easy to show that↝↓ does not terminate. To prove
the other direction is involved.

8 Notice thatTV ∶ Type→ P(TVar) can be formally defined asTV(τ) = {α ∣ ∃β. ρ(τ) ≠
τ where ρ = α ↦ β}.

46

3.5 deciding well-formedness

If ↝↓ does not terminate, it means there exists an infinite sequence
(pi)i∈N such that p0 ↝↓ p1 ↝↓ p2 ↝↓ We could hope that we could
find a cycle as a subsequence of (pi)i∈N but the following example shows
that this is not always the case: consider↝ defined as α ↝ α list. Now
nat↝↓ nat list↝↓ nat list list↝↓ . . . is a nonterminating sequence but
no subsequence of it is a cycle since all elements of this sequence are
incomparable. But another sequence α ↝↓ α list ↝↓ α list list ↝↓ . . .
contains many cycles (e.g., α list ≤ α). Our intuition is that if we want
to find a cycle, we have to search in sequences of instances that are as
general as possible. We formalize this intuition now.

Definition 3.5.4. ↝ ismonotone if for each p, q such that p ↝ q, we have
TV(q) ⊆ TV(p).

Lemma 3.5.5. Let us assume that

● pi ↝ qi for all i ≤ n,

● ↝ is monotone.

If (ρi)i≤n is a sequence of substitutions such that we have ρi(qi) =
ρi+1(pi+1) for all i < n, thenTV(ρi(pi)) ⊇ TV(ρi(qi)) ⊇ TV(ρ j(p j)) ⊇
TV(ρ j(q j)) holds for all 0 ≤ i < j ≤ n.

Proof. IfTV(p) ⊇ TV(q), thenTV(ρ(p)) ⊇ TV(ρ(q)) for any ρ. There-
fore it suffices to prove TV(ρi(qi)) ⊇ TV(ρ j(p j)), which can be done
by backward induction.

Monotonicity is a natural notion if we remember the original motiva-
tion for ↝: given a definition of an overloaded constant c = t, it must
hold that TV(t) ⊆ TV(c). Monotonicity gives↝more regular structure,
which allows us to simplify some definitions, and is crucial in some com-
ing proofs—especially the following consequence of Lemma 3.5.5: if we
know that ρ′ has some effect on ρn(qn) (i.e., dom(ρ′) ∩TV(ρn(qn)) ≠
∅)), we know that ρ′ has also some effect on ρ0(p0).

Definition 3.5.6. We say that a sequence of substitutions (ρi)i≤n is a
solution to the sequence (pi , qi)i≤n if ρi(qi) = ρi+1(pi+1) for all i < n.
We say that a solution (ρi)i≤n to (pi , qi)i≤n is the most general solution

if for any other solution (ρ′i)i≤n there exists a sequence of substitutions
(ηi)i≤n such that ρ′i(pi) = (ηi ○ ρi)(pi).

Thanks to monotonicity, we can talk only about pis and omit qis in the
last definition becausewewill be able to derive from ρ′i(pi) = (ηi○ρi)(pi)
also ρ′i(qi) = (ηi ○ ρi)(qi) provided↝ is monotone and pi ↝ qi .

Lemma 3.5.7. If (ρi)i≤n and (ρ′i)i≤n are both the most general solutions
to the sequence (pi , qi)i≤n, then ρi ≈p i ρ′i for all i ≤ n.

47

higher-order logic with ad hoc overloading consistently

Proof. Since (ρi)i≤n and (ρ′i)i≤n are both the most general solutions,
there exist (ηi)i≤n and (η′i)i≤n such that ρi(pi) = (ηi ○ ρ′i)(pi) and
ρ′i(pi) = (η′i ○ρi)(pi) for all i ≤ n. Now ρi(pi) = ((ηi ○η′i)○ρi)(pi) and
ρ′i(pi) = ((η′i ○ ηi) ○ ρ′i)(pi). Thus ηi ○ η′i =ρ i(p i) id and η

′
i ○ ηi =ρ′i(p i)

id and therefore ηi ↾TV(ρ′i(p i)) is a bijection between TV(ρ′i(pi)) and
TV(ρi(pi)). There surely exists a bijection η̂ between TV(ρi(pi)) ∖
TV(ρ′i(pi)) andTV(ρ′i(pi))∖TV(ρi(pi)). Then the following function
ηi ↾TV(ρ′i(p i)) ○ η̂ is a renaming that witnesses ρi ≈p i ρ

′
i .

We defined a notion of a most general solution and proved that most
general solutions are unique modulo renaming. This notion formalizes
our intuition that we should look for cycles in sequences that are as gen-
eral instances as possible. Most general solutions define such sequences.
Let us get back to our example: let (pi , qi)i≤1 = (α, α list), (α, α list).
Then (ρi)i≤1 = α ↦ α list, α ↦ α list list is the most general solution to
(pi , qi)i≤1 and yields a sequence α ↝↓ α list ↝↓ α list list, which con-
tains cycles. On the other hand, (ρ′i)i≤1 = α ↦ nat list, α ↦ nat list list is
only a solution but not the most general one. (ρ′i)i≤1 yields this sequence
nat↝↓ nat list↝↓ nat list list, which does not contain any cycle.
Given a nonterminating sequence p0 ↝↓ p1 ↝↓ p2 ↝↓ . . . , how do

we construct a most general solution to its subsequences? And does a
most general solution always exist? We will show that under an additional
restriction (composability) we can always extend a most general solution
to first n elements of the infinite sequence to n + 1 elements. This means
that we will provide an inductive description of most general solutions. In
order to achieve this, we need to first introduce some additional notions.

Definition 3.5.8. We say that sequences (pi , qi)i≤n and (ρi)i≤n form a
path starting at k under↝ and write (pi , qi , ρi)↝k≤i≤n if

● pi ↝ qi for all k ≤ i ≤ n,

● ρk ≈pk id,

● (ρi)k≤i≤n is a solution to (pi , qi)k≤i≤n.

If k = 0, we usually omit this index.

A path is a sequence together with its solution, which is allowed to only
rename the first element of the sequence (i.e., not to apply a nontrivial
substitution).

Definition 3.5.9. We say that↝ is a cyclic relation if there exists a path
(pi , qi , ρi)↝i≤n and ρn(qn) ≤ p0.

The formal definition of a cycle admits only a strict subset of cycles
that we informally introduced at the beginning of this section, namely

48

3.5 deciding well-formedness

those that are paths. For example, if α ↝ α list, then β, β list is a cycle9,
whereas α list, α list list is not.

Definition 3.5.10. ↝ is composable if for all p and q such that p ↝ q
and for each path (pi , qi , ρi)↝i≤n, it holds that either ρn(qn) ≤ p, or p ≤
ρn(qn), or ρn(qn) # p.

Composability is an important restriction on↝. It reduces the search
space when we are looking for a most general solution. Later we will
prove that each sequence defined by a most general solution has a path as
a suffix. Therefore if we already have a most general solution to the n first
elements, composability tells us that there exist three cases concerning
the extension of this most general solution: in two cases we can still
(possibly) extend the sequence (ρn(qn) ≤ p or p ≤ ρn(qn)) and in one
case we cannot (ρn(qn) # p). We prove in the following lemma that if
there exists already some solution, the case ρn(qn) # p cannot occur.

Lemma 3.5.11. Let us assume that

● (ρi)i≤n+1 is a solution to (pi , qi)i≤n+1,

● pi ↝ qi for all i ≤ n + 1,

● ↝ is monotone and composable,

● (ρ′i)i≤n is the most general solution to (pi , qi)i≤n,

● there exists k ≤ n such that (pi , qi , ρ′i)↝k≤i≤n.

Then ρ′n(qn) ≤ pn+1 or pn+1 ≤ ρ′n(qn).

Proof. From composability it follows that ρ′n(qn) ≤ pn+1, or pn+1 ≤
ρ′n(qn), or ρ′n(qn) # pn+1. Since (ρ′i)i≤n is the most general solution,
there exists (ηi)i≤n such that ρi(pi) = (ηi ○ ρ′i)(pi) for all i ≤ n and by
monotonicity also ρi(qi) = (ηi ○ ρ′i)(qi) for all i ≤ n. Therefore we can
rewrite ρn(qn) = ρn+1(pn+1) to ηn(ρ′n(qn)) = ρn+1(pn+1), which means
there exists a common instance of ρ′n(qn) and pn+1 and thus only two
cases ρ′n(qn) ≤ pn+1 or pn+1 ≤ ρ′n(qn) can occur.

The last lemma shows that the existence of some solution (see this
solution as a subsequence of our nonterminating sequence) and com-
posability guarantee that we are left with two cases. The two following
lemmas show that the extension is always possible in either of the cases
and give us concrete instructions how to do it; i.e., how to extend a most
general solution from n to n + 1 elements.

9 We should write a path formally as (β, β list, α ↦ β)↝ but we simplify our (heavy)
notation in an informal description.

49

higher-order logic with ad hoc overloading consistently

Lemma 3.5.12. Let

● (ρi)i≤n be the most general solution to (pi , qi)i≤n,

● pi ↝ qi for all i ≤ n,

● ↝ be monotone,

● ρn(qn) ≤ρ′ pn+1.

Then (ρi)i≤n , ρ′ is the most general solution to (pi , qi)i≤n+1.

Proof. The sequence (ρi)i≤n , ρ′ is a solution to (pi , qi)i≤n+1. We prove
that it is the most general solution. Let (ρ′i)i≤n+1 be a solution to the
sequence (pi , qi)i≤n+1. Then (ρ′i)i≤n is surely a solution to (pi , qi)i≤n.
Therefore there exists (ηi)i≤n such that ρ′i(pi) = (ηi ○ρi)(pi) for all i ≤ n
and by monotonicity also ρ′i(qi) = (ηi ○ ρi)(qi). From this and ρ′n(qn) =
ρ′n+1(pn+1) (since (ρ′i)i≤n+1 is a solution), it follows that ηn(ρn(qn)) =
ρ′n+1(pn+1) and since ρn(qn) = ρ′(pn+1), we get finally ηn(ρ′(pn+1)) =
ρ′n+1(pn+1). Define ηn+1 ∶= ηn.

Lemma 3.5.13. Let

● (ρi)i≤n be the most general solution to (pi , qi)i≤n,

● pi ↝ qi for all i ≤ n,

● ↝ be monotone,

● ρn(qn) ≥ρ′ pn+1.

There exists a substitution ρ̂ such that the sequence (ρ̂ ○ ρi)i≤n , id is the
most general solution to (pi , qi)i≤n+1 and ρ̂ =ρn(qn) ρ′.

Proof. Since the formal proof is technical, we explain some ideas of it first
on a little example: Let us have:

(pi , qi)i≤1 = (α × β, β), (α list, α)
(ρi)i≤0 = id

(ρi)i≤0 is trivially the most general solution to (pi , qi)i≤0. q0 ≤ρ′ p1,
where ρ′ = β ↦ α list. Let us define (ρ?i)i≤1, a candidate for a most
general solution to (pi , qi)i≤1, as (ρ?i)i≤1 = ρ′ ○ ρ0, id, i.e., we try setting
ρ̂ = ρ′. (ρ?i)i≤1 is a solution to (pi , qi)i≤1 because it yields a sequence

(α × α list, α list), (α list, α). (4)

But in general it is not a most general solution: Let us take (ρ′i)i≤1 = [α ↦
int, β ↦ nat list], α ↦ nat, which is a solution to (pi , qi)i≤1 because it
yields this sequence

(int × nat list, nat list), (nat list, nat). (5)

50

3.5 deciding well-formedness

If (ρ?i)i≤1 were the most general solution, we should be able to find (ηi)i≤1
such that ρ′i(pi) = (ηi ○ ρ?i)(pi) for all i = 0, 1. But this is not possible
since by comparing sequences (4) and (5) we derive η0(α) = int and
η0(α) = nat.
We have to first rename the type variable from p0 that is not in q0

such that it does not clash with variables from ρ′(q0) and q0: we use a
renaming σ = α ↦ γ. Observe that (σ ○ ρi)i≤0 is a solution to (pi , qi)i≤0.
We define ρ̂ = ρ′ ○ σ and then a new candidate for the most general
solution ρ̂ ○ ρ0, id yields

(γ × α list, α list), (α list, α).

Now we can find (ηi)i≤1: we obtain η(γ) from comparing (σ ○ ρi)i≤0 and
(ρ′i)i≤0 (the former is a most general solution and the latter a solution)
and η(α) from comparing ρ′(q0) = p1 and ρ′1(p1) (which trivially yields
η(α) = ρ′1(α)).
Now we proceed to carry out the formal proof. Assume

dom(ρ′) ⊆ TV(ρn(qn)). (6)

If it were not the case, we would use ρ′ ↾TV(ρn(qn)) instead of ρ′.
Let R ∶= TV(ρ0(p0))∖TV(ρn(qn)) andC ∶= TV(ρn(qn))∪TV((ρ′○

ρn)(qn)). We define σ ∶= Ren(R, C) and obtain the two following prop-
erties of σ from the definition of Ren:

dom(σ) ∩TV(ρn(qn)) = ∅ (7)
σ[R] ∩TV((ρ′ ○ ρn)(qn)) = ∅ (8)

Let ρ̃i ∶= σ ○ ρi for each i ≤ n. Obviously (ρ̃i)i≤n is a solution to the
sequence (pi , qi)i≤n. Now we prove that it is the most general solution:
let us take another solution (ρ′i)i≤n; thus there exists (ηi)i≤n such that
ρ′i(pi) = (ηi ○ ρi)(pi). Define η̃i ∶= ηi ○σ−1. Then ρ′(pi) = (η̃i ○ ρ̃i)(pi).
From (7) it follows that ρ̃n(qn) ≥ρ′ pn+1. Let (ρi)i≤n+1 ∶= (ρ

′○ρ̃i)i≤n , id.
The sequence (ρi)i≤n+1 is clearly a solution to (pi , qi)i≤n+1. We prove that
it is the most general solution. Let (ρ′i)i≤n+1 be a solution to (pi , qi)i≤n+1
then (ρ′i)i≤n is clearly a solution to (pi , qi)i≤n. Thus (ηi)i≤n exists such
that

ρ′i(pi) = (ηi ○ ρ̃i)(pi) for all i ≤ n. (9)

We define (η)i≤n+1 as follows: if i = n + 1 then ηn+1 ∶= ρ
′
n+1, otherwise

(i ≤ n)

ηi(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

ρ′n+1(x) if x ∈ TV((ρ′ ○ ρn)(qn))
ηi(x) otherwise.

We prove by backward induction that ρ′i(pi) = (ηi ○ ρi)(pi) for all
i ≤ n + 1. Base case (i = n + 1): Since ρn+1 = id, we get immediately

51

higher-order logic with ad hoc overloading consistently

ρ′n+1 = ηn+1 ○ ρn+1. Inductive step: 0 ≤ i < n + 1 and ρ′i+1(pi+1) =
(ηi+1 ○ ρi+1)(pi+1). We prove

ηi(x) = (ηi ○ ρ
′)(x) for all x ∈ TV(ρ̃i(pi)) (10)

by the case distinction:

a) x ∈ TV(ρ̃i(pi)) ∖ TV(ρn(qn)): therefore ρ′(x) = x by (6) and
since x ∈ σ[R] (by Lemmas 3.5.2 and 3.5.5), ηi(x) = ηi(x) follows
from (8). Therefore ηi(x) = (ηi ○ ρ

′)(x).

b) x ∈ TV(ρn(qn)): (ηi ○ ρ̃i)(qi) = (ηi+1 ○ ρ
′ ○ ρ̃i)(qi) holds since

(ηi ○ ρ̃i)(qi) = ρ′i(qi) by mon. and (9)
= ρ′i+1(pi+1) (ρ′i)i≤n+1 is sol.
= (ηi+1 ○ ρi+1)(pi+1) by IH
= (ηi+1 ○ ρ

′ ○ ρ̃i)(qi) (ρi)i≤n+1 is sol.

Thus ηi(y) = (ηi+1○ρ
′)(y) for all y ∈ TV(ρ̃i(qi)). By Lemma 3.5.5

and by (7) x ∈ TV(ρ̃i(qi)). Therefore ηi(x) = (ηi+1 ○ ρ
′)(x) =

(ρ′n+1 ○ ρ′)(x) = (ηi ○ ρ
′)(x).

We know that ρ′i(pi) = (ηi ○ ρ̃i)(pi) and by using (10) we get ρ′i(pi) =
(ηi ○ρ

′○ ρ̃i)(pi) = (ηi ○ρi)(pi), which concludes the proof that (ρi)i≤n+1
is the most general solution.
Let ρ̂ ∶= ρ′ ○ σ then obviously (ρi)i≤n+1 = ((ρ

′ ○ ρ̃i)i≤n , id) = ((ρ̂ ○
ρi)i≤n , id). The equality ρ̂ =ρn(qn) ρ′ follows from (7).

Now nothing prevents us from combining the previous results and
proving that there is always a most general solution if some solution
already exists.

Lemma 3.5.14. Let us assume that

● (ρi)i≤n is a solution to (pi , qi)i≤n,

● pi ↝ qi for all i ≤ n,

● ↝ is monotone and composable,

then there exist a most general solution (ρ′i)i≤n to (pi , qi)i≤n and k ≤ n
such that (pi , qi , ρ′i)↝k≤i≤n.

Proof. By induction on the length of the sequence. Base case n = 0: define
ρ′0 = id. Inductive step n = i + 1: we assume that (ρ j) j≤i+1 is a solution to
(p j , q j) j≤i+1. Then (ρ j) j≤i is surely a solution to (p j , q j) j≤i and thus by
the induction hypothesis we obtain the most general solution (ρ′j) j≤i to
(p j , q j) j≤i and k ≤ i such that (p j , q j , ρ′j)↝k≤ j≤i .
By Lemma 3.5.11, only two cases can occur:

52

3.5 deciding well-formedness

a) ρ′i(qi) ≤ρ′ pi+1, then by Lemma 3.5.12 (ρ′j) j≤i , ρ′ is themost general
solution to (p j , q j) j≤i+1 and still ρ′k ≈pk id.

b) ρ′i(qi) ≥ρ′ pi+1, then by Lemma 3.5.13 there exists ρ̂ such that
the sequence ρ̂ ○ ρ′1, . . . , ρ̂ ○ ρ′i , id is the most general solution
to (p j , q j) j≤i+1. Then k = i + 1 and obviously ρ′k ≈pk id.

We proved even more: a sequence defined by a most general solution
has always a path as a suffix. This is an important result because we
claimed that we can look for cycles in sequences produced bymost general
solutions and we did define a cycle such that each cycle is a path. Thus
this suffix is a candidate for a cycle. To find a real cycle among these
candidates, we extend this suffix potentially ad infinitum in our proof, i.e.,
we find an infinite sequence where each prefix is a path. To capture this
idea we introduce new notions.

Definition 3.5.15. We write (pi , qi)i≤n ⪯ p if there exists a most general
solution (ρi)i≤n to (pi , qi)i≤n and if ρn(qn) ≤ p. We define (pi , qi)i≤n ⪰
p analogously.

Corollary 3.5.16. Let↝ be composable and monotone, and let us have
sequences (pi , qi)i≤n+1 and (ρi)i≤n+1 such that (ρi)i≤n+1 is a solution to
(pi , qi)i≤n+1 and pi ↝ qi for all i ≤ n + 1. Then (pi , qi)i≤n ⪯ pi+1 or
(pi , qi)i≤n ⪰ pi+1.

Proof. From Lemmas 3.5.11 and 3.5.14.

Definition 3.5.17. A sequence (p0, q0), (p1, q1), . . . is called ascending
if (p0, q0), . . . , (pi−1, qi−1) ⪯ pi holds for all i ≥ 1.

A sequence (α, α list), (α, α list), . . . is an example of an ascending
sequence. A most general solution (ρi)i≤n to a prefix of length n + 1 of
this sequence is defined as ρi = α ↦ α listn for all i ≤ n.

Lemma 3.5.18. Let↝ be monotone, (p0, q0), (p1, q1), . . . be an ascend-
ing sequence and pi ↝ qi for all i. Then for all n it holds that there exists
the most general solution (ρi)i≤n to (pi , qi)i≤n such that (pi , qi , ρi)↝i≤n.

Proof. We fix n. Let (ρi)i≤n be the most general solution to (pi , qi)i≤n.
(ρi)i≤n always exists because of (pi , qi)i≤n ⪯ pn+1.
We prove by backward induction on n that (ρ j) j≤i is the most general

solution to (p j , q j) j≤i for all i ≤ n. Base case: trivial. Inductive step
(n = i, i > 0): (ρ j) j≤i is the most general solution to (p j , q j) j≤i . From
(p0, q0), . . . , (pi−1, qi−1) ⪯ pi it follows that there exists (ρ′j) j≤i−1, amost
general solution to (p0, q0), . . . , (pi−1, qi−1) such that ρ′i−1(qi−1) ≤ρ′ pi .
By Lemma 3.5.12 we know that (ρ′j) j≤i−1, ρ′ is the most general solution to

53

higher-order logic with ad hoc overloading consistently

(p j , q j) j≤i but then Lemma 3.5.7 gives us ρ j ≈p j ρ′j for all j ≤ i − 1. Hence
(ρ j) j≤i−1 is the most general solution to (p0, q0), . . . , (pi−1, qi−1).
Now we can see that ρ0 ≈p0 id since ρ0 is the most general solution to
(p0, q0).

An ascending sequence is a formalization of the notion that we men-
tioned before, i.e., a sequence whose each prefix is a path. Lemma 3.5.14
tells us that in a sequence given by a most general solution, there always
exists a suffix that is a path. But this lemma does not say much about
the length of such a suffix. Let us inspect the proof of Lemma 3.5.14:
there are two cases in which we extend the most general solution. In the
first case, we also extend the suffix that is a path. But in the second case
(ρ′i(qi) ≥ρ′ pi+1), the path gets reset to a sequence of length one. The
following lemma shows that the second case can happen only finitely
many times and thus we can always find an ascending sequence.

Lemma 3.5.19 (The Key Technical Lemma). Assume that↝ is compos-
able and monotone, and that (pi)i∈N, (qi)i∈N and (ρi)i∈N are sequences
such that pi ↝ qi and ρi(qi) = ρi+1(pi+1) for all i. Then there exists k
such that the sequence (pk , qk), (pk+1, qk+1), . . . is ascending.

Proof. First informally: When we construct a most general solution to
a prefix of (pi , qi)i≤N, each extension done by Lemma 3.5.13 means that
we apply a substitution ρ̂ to the first element of the sequence. This means
that the size of the first element increases (because of monotonicity). But
the size of the first element cannot increase ad infinitum for this reason:
(ρ̂1 ○ . . . ○ ρ̂k)(p0) ≥ ρ0(p0) must hold since a prefix of (ρi)i≤N is a
solution to a corresponding prefix of (pi , qi)i≤N and ρ̂1 ○ . . . ○ ρ̂k is from
a most general solution.
We proceed by contradiction. No such k exists; thus, there exists an in-

finite sequence (i j) j∈N such that i0 = 0 and (p0, q0), . . . , (pi j−1, qi j−1) ⪯̸
pi j for all j > 0 and (i j) j∈N iterates all these cases (maximality). By
Corollary 3.5.16 we get that (p0, q0), . . . , (pi j−1, qi j−1) ⪰ pi j . Let (ρ

j
i)i≤ j

denote the most general solution to (p0, q0), . . . , (p j , q j), which always
exists by Lemma 3.5.14. Let Q j denote ρ

i j−1
i j−1(qi j−1). And finally let ρ

′
0 = id

and ρ′j denote the substitution such that Q j ≥ρ′j pi j for all j > 0.
Now we prove by induction on j that ρi0 ≈p0 ρ̂′j ○ ⋅ ⋅ ⋅ ○ ρ̂′0 for all i j ≤

i < i j+1 and for some ρ̂′l such that ρ̂
′
l ≈Q l ρ

′
l for all l ≤ j. Base case j = 0:

from the maximality of (i j) j∈N it follows that i1 is the first index i when
(p0, q0), . . . , (pi−1, qi−1) ⪰ pi . Therefore (p0, q0), . . . , (pi−1, qi−1) ⪯
pi for all i < i1 and therefore ρi0 ≈p0 id = ρ′0 for all i < i1 (formally by
induction and Lemmas 3.5.7 and 3.5.12). Inductive step j = l and l > 0:
ρi0 ≈p0 ρ̂′l−1○⋅ ⋅ ⋅○ ρ̂

′
0 for all il−1 ≤ i < il . Thus (p0, q0), . . . , (pi l−1, qi l−1) ⪰

pi l holds and by Lemmas 3.5.7 and 3.5.13 we obtain ρ
i l
0 ≈p0 ρ̂′l ○⋅ ⋅ ⋅○ ρ̂

′
0 such

54

3.5 deciding well-formedness

that ρ̂′l ≈Q l ρ
′
l . Because (i j) j∈N is maximal, (p0, q0), . . . , (pi−1, qi−1) ⪯

pi for all il < i < il+1 and ρi0 ≈p0 ρ̂′l ○ ⋅ ⋅ ⋅ ○ ρ̂
′
0 (again formally by induction

and Lemmas 3.5.7 and 3.5.12).
We reason for each j > 0: (p0, q0), . . . , (pi j−1, qi j−1) ⪯̸ pi j and also
(p0, q0), . . . , (pi j−1, qi j−1) ⪰ pi j gives us that ρ′j /≈Q j id. By Lemma 3.5.5

we get that TV(Q j) ⊆ TV(ρi j−10 (p0)). Using this, the fact that ρ̂′j ≈Q j

ρ′j /≈Q j id and Lemma 3.5.1 we obtain size(ρ
i j
0 (p0)) > size(ρ

i j−1
0 (p0)) and

finally again from Lemma 3.5.1 and ρi j−10 ≈p0 ρ
i j−1
0 , it follows that

size(ρi j0 (p0)) > size(ρ
i j−1
0 (p0)). (11)

But since each (ρi ji)i≤i j is the most general solution to a prefix of the
sequence (p0, q0), . . . , there exist η j for each (ρ

i j
i)i≤i j such that ρ0(p0) =

η j(ρ
i j
0 (p0)). Since size(ρ0(p0)) is already fixed and (11) tells us that

size(ρi j0 (p0)) is an increasing sequence (in j), there must be j′ such that
size(ρi j′0 (p0)) > size(ρ0(p0)), which prevents the existence of η j

′ and
is a contradiction to the fact that (ρi)i≤i j′ is a solution to the sequence
(p0, q0), . . . , (pi j′ , qi j′).

Please note that composability is crucial for the last lemma. Consider
this example: the dependency relation↝ is defined as (α × nat) list ↝
(nat × α) list and we take an infinite sequence ((α × nat) list, (nat ×
α) list), ((α × nat) list, (nat × α) list), There is a most general solu-
tion (ρi)i≤n to any prefix of this sequence defined as ρi = α ↦ nat for all
i ≤ n. But there is no ascending sequence since a prefix of an ascending
sequence must be a path. However,↝ is not composable since the only
path is ((α×nat) list, (nat×α) list, id)↝ and (α×nat) list ↓(nat×α) list.
We can view the last lemma also from a different perspective: if there

exists a nonterminating sequence, we can find p and q such that p ↝ q
and such that there exists a nonterminating sequence starting from p. We
have to consider only finitely many such p’s and q’s since↝ is finite, so
there is no need to consider the infinitely many possible instantiations.
An ascending sequence is a key ingredient that allows us to prove the

main result of this section because an ascending sequence always gives
rise to a cycle.

Lemma 3.5.20. Let us assume that↝ is finite, monotone and composable,
then the following statements are equivalent:

1. ↝↓ is nonterminating
2. ↝ is cyclic

Proof. 2. implies 1. There exists a path (pi , qi , ρi)↝i≤n. Since ↝↓ is the
substitutive closure of↝, it must hold that ρi(pi) ↝↓ ρi(qi) for all i ≤ n

55

higher-order logic with ad hoc overloading consistently

and ρi(qi) = ρi+1(pi+1) for all i < n. Thus p0 ↝↓ q0 ↝↓ ρ1(q1) ↝↓
⋅ ⋅ ⋅ ↝↓ ρn−1(qn−1) ↝↓ ρn(qn). Since ρn(qn) ≤ρ p0, we have p0 ↝↓+
ρ(p0) and thus we can conclude p0 ↝↓+ ρ(p0) ↝↓+ ρ(ρ(p0)) ↝↓+
ρ(ρ(ρ(p0))) ↝↓+ ⋅ ⋅ ⋅. Therefore↝↓ is nonterminating.
1. implies 2. If↝↓ does not terminate, there exists a nonterminating

sequence. Thus there exist sequences (p′i)i∈N and (q′i)i∈N such that p′i ↝↓
q′i and q

′
i = p′i+1 for all i. The nonterminating sequence is then p′0 ↝↓

p′1 ↝↓ p′2 ↝↓ ⋅ ⋅ ⋅. From the definition of ↝↓ follows that there exist
sequences (pi)i∈N, (qi)i∈N and (ρi)i∈N such that pi ↝ qi and ρi(pi) = p′i
and ρi(qi) = q′i and since q′i = p′i+1, ρi(qi) = ρi+1(pi+1) holds for all i.
Thekey step is to find an ascending sequence (pk , qk), (pk+1, qk+1), . . .

such that there exists also k′ > k and (pk , qk) = (pk′ , qk′): We define
Θk = {(pl , ql). l ≥ k}. Since↝ is a finite relation, Θk is a finite set for
all k (recall pi ↝ qi) and is never empty. We use Lemma 3.5.19 to obtain
k1 such that the sequence (pk1 , qk1), (pk1+1, qk1+1), . . . is ascending. If
there does not exist a k′1 > k1 such that (pk1 , qk1) = (pk′1 , qk′1), we use
Lemma 3.5.19 for subsequences (pi)i>k1 , (qi)i>k1 and obtain the respec-
tive k2. Because Θk1 ⊋ Θk2 , the whole process must stop after at most ∣Θ0∣
steps by finding k and k′ > k such that (pk , qk), (pk+1, qk+1), . . . is an
ascending sequence and (pk , qk) = (pk′ , qk′).
We define sequences (ri)i≤n and (si)i≤n as following: n = k′ − k − 1,

ri = pk+i and si = qk+i for all i ≤ n. Since (pk , qk), (pk+1, qk+1), . . . is an
ascending sequence, we get themost general solution (ρi)i≤n to (ri , si)i≤n
such that (ri , si , ρi)↝i≤n (by Lemma 3.5.18). From (pk , qk) = (pk′ , qk′), it
follows that (r0, s0), . . . , (rn , sn) ⪯ r0 and finally we get ρn(sn) ≤ r0 by
Lemmas 3.5.3 and 3.5.7. This concludes the proof that↝ is cyclic.

3.5.4 From Acyclicity to a Decision Procedure

Since acyclicity of a finite↝ is a finite problem, there should be a decision
procedure for this problem. We introduce this procedure in Algorithm 1
and prove it correct.

Definition 3.5.21. We say that ↝ is orthogonal if for all p, q, p′ and q′
such that (p, q) ≠ (p′, q′) it holds that if p ↝ q and p′ ↝ q′ then p # p′.

Orthogonality is another restriction on↝. As we prove in the following
lemma, this constraint guarantees that if two paths start from the same
value p0, then these paths are the same modulo equivalent substitutions.
We need this property to restrict once more the search space of our
algorithm.

Lemma 3.5.22. Let ↝ be orthogonal and monotone. If there exist two
paths (pi , qi , ρi)↝i≤n and (p′i , q′i , ρ′i)↝i≤n such that p0 = p′0, then pi = p′i ,
qi = q′i and ρi ≈p i ρ′i for all i ≤ n.

56

3.5 deciding well-formedness

Proof. By contradiction: Let k ≤ n be the smallest k such that:

● Either pk ≠ p′k : k > 0, ρk−1 ≈pk−1 ρ
′
k−1, ρk−1(qk−1) ≤ρk pk and

ρ′k−1(qk−1) ≤ρ′k p
′
k . But this contradicts pk # p′k (by Lemma 3.5.3).

● Or qk ≠ q′k : but pk = p
′
k , which contradicts pk # p′k .

● Or ρk /≈pk ρ′k : a) k = 0: contradiction to ρ0 ≈p0 id and ρ
′
0 ≈p0 id.

b) k > 0: ρk−1 ≈pk−1 ρ′k−1, ρk−1(qk−1) ≤ρk pk and ρ
′
k−1(qk−1) ≤ρ′k pk .

By Lemma 3.5.3 we get a contradiction to uniqueness of ≤ρ, i.e., if
p ≤ρ q and p ≤ρ′ q, then ρ =q ρ′.

We assume that we have a unification algorithm on types, which we
again extend to UΣ. This algorithm is used internally in function Has-
CommonInst in Algorithm 1. Function HasCommonInst is used to test
composability and orthogonality.

Lemma 3.5.23. ¬HasCommonInst(p, q) iff p # q.

Proof. p and q have a common instance iff there exists p′ such that p′ ≤ρ
p and p′ ≤ρ′ q. Since ρ and ρ′ can be different, we have to rename
variables in q in the procedure. The unification then decides if there exists
a common instance.

Let us somewhat informally describe the cyclicity decision procedure
presented in Algorithm 1. First of all, a syntactic comment: the algorithm
contains ghost variables, which help us analyze the algorithm but are not
used during the real computation. Commands where the ghost variables
are used are always prefixed by character #. We use two ghost variables i
and Ri , whose meaning will be explain later.
The core of the computation of the program happens in the main loop,

i.e., between lines 48 and 58. We call the loop reduction phase. The value
of i is an iteration counter of the reduction phase.
The variable dep is the only input of the algorithm and does not get

changed during the whole computation. This is the relation for which
we must check whether it contains a cycle or not. In order to do that,
we start by discovering for each p from dep10 a path starting from p and
we store the beginning and end of such a path in dep+. That is to say, if
(p, q) ∈ dep+, this means we have discovered a path from p to q. This
path is a candidate for a cycle and therefore after each iteration we check
if q ≤ p in the function IsAcyclic. Moreover, we store in dep+ only
the longest path from p that we have discovered so far. The function
ReduceStep extends all paths from dep+ by one step if it is possible. If

10 More precisely, for each p such that there exists q and (p, q) ∈ dep.

57

higher-order logic with ad hoc overloading consistently

not, p is marked as final. Thanks to Lemma 3.5.22, there always exists a
unique extension of dep+ modulo renaming. That is to say, when we look
for (p′, q′) on line 24, there is at most one such pair.
We store only the beginning and end of a path starting from p in dep+

because this is enough information for the algorithm to check if this path
comprises a cycle. But for the analysis of the algorithm, we also want
to know intermediate steps of such a path and therefore we store these
steps in ghost variable Ri(p). The two following lemmas show that Ri(p)
gets defined in the ith iteration if p is not final and that Ri(p) is a path
starting from p of length i + 1 and that the algorithm does not miss any
path. If dep+ does not change after ReduceStep, it means no further
cycle candidate exists and we can report that dep is acyclic.

Lemma 3.5.24. Let p0 ↝ q. Then p0 is not final in the nth iteration of
Check(↝) iff Rn(p0) gets defined in the nth iteration of Check(↝).
Moreover, if Rn(p0) is defined, there exists a path (pi , qi , ρi)↝i≤n such
that Rn(p0) = (pi , qi , ρi)i≤n.

Proof. Rn(p0) can get defined only in the nth iteration of the algorithm,
since the ghost variable i is strictly increasing. Each p is not final at the
beginning of computation and when it gets final, it stays final for the rest
of computation. Then clearly p0 gets final in the nth iteration iff Rn(p0)
does not get defined in the nth iteration.
We prove that defined Rn(p0) comprises a path by induction on n.

Base case (n = 0): R0(p0) is defined at the beginning of the algorithm
and defines a trivial path. Inductive step (n = i + 1): p0 does not get final
in the (i + 1)st step of the algorithm and therefore it was not final in the
ith step either. We take the sequence Ri(p0) = (p j , q j , ρ j) j≤i defined in
the ith step and we know that (p j , q j , ρ j)↝j≤i . We take q that is considered
on line 23 in the (i + 1)st step such that (p0, q) ∈ dep+. It is clear that
q = ρi(qi) and there must ρi+1 and pi+1 such that ρi(qi) ≤ρ i+1 pi+1,
otherwise p0 would get final. Then Ri+1(p0) gets defined in the (i + 1)st
step to (p j , q j , ρ j) j≤i+1 and (p j , q j , ρ j)↝j≤i+1.

In the light of the previous lemma we will write Rn(p) = (pi , qi , ρi)↝i≤n
from now on.

Lemma 3.5.25. Let ↝ be orthogonal and monotone. If there exists a
path (pi , qi , ρi)↝i≤n, then Rn(p0) gets defined in the nth iteration of
Check(↝).

Proof. We do the proof by induction on n. Base case (n = 0): R0(p0)
is defined at the beginning of the algorithm. Inductive step n = i + 1:
Let (p j , q j , ρ j)↝j≤i+1, then (p j , q j , ρ j)↝j≤i is also a path and we can use the
induction hypothesis and obtain by Lemma 3.5.24 the path Ri(p0) =
(p′j , q′j , ρ′j)↝j≤i defined in the ith step. We take q that is considered on

58

3.5 deciding well-formedness

Algorithm 1Themain algorithm
1: functionHasCommonInst(p, q)
2: p′ , q′ ← rename variables in p and q apart
3: return p′ and q′ can be unified
4: end function
5:
6: function IsOrthogonal(dep)
7: return ∀(p, q), (p′ , q′) ∈ dep. (p, q) = (p′ , q′)∨¬HasCommonInst(p, p′)
8: end function
9:
10: function IsMonotone(dep)
11: return ∀(p, q) ∈ dep. TV(q) ⊆ TV(p)
12: end function
13:
14: function IsAcyclic(dep+)
15: return ∀(p, q) ∈ dep+ . q ≰ p
16: end function
17:
18: function IsComposable(q, dep)
19: return ∀(p′ , q′) ∈ dep. q ≥ p′ ∨ ¬HasCommonInst(q, p′)
20: end function
21:
22: function ReduceStep(dep, dep+)
23: for all (p, q) ∈ dep+ such that final(p) = false do
24: if can find (p′ , q′) ∈ dep such that q ≤ρ p′ then
25: dep+ ← dep+ ∖ (p, q) ∪ (p, ρ(q

′))
26: #R i(p) ← R i−1(p), (p′ , q′ , ρ)
27: else
28: final(p) ← true
29: if ¬IsComposable(q, dep) then
30: return fail
31: end if
32: end if
33: end for
34: return dep+
35: end function
36:
37: function Check(dep)
38: #i = 0
39: for all (p, q) ∈ dep. final(p) ← false
40: #for all (p, q) ∈ dep. R0(p) ← (p, q, id)
41: if ¬IsOrthogonal(dep) then
42: return fail
43: end if
44: if ¬IsMonotone(dep) then
45: return fail
46: end if
47: dep+ ← dep
48: loop
49: #i ← i + 1
50: dep′+ ← ReduceStep(dep, dep+)
51: if dep+ = dep

′
+ then

52: exit loop
53: end if
54: dep+ ← dep′+
55: if ¬IsAcyclic(dep+) then
56: return fail
57: end if
58: end loop
59: return success
60: end function

59

higher-order logic with ad hoc overloading consistently

line 23 in the (i + 1)st step such that (p0, q) ∈ dep+. It is clear that
q = ρ′i(q′i). By Lemma 3.5.22 we get that p j = p′j, q j = q′j and ρ j ≈p j ρ′j for
all j ≤ i and from the definition of (p j , q j , ρ j)↝j≤i+1 that ρi(qi) ≤ρ i+1 pi+1.
By Lemma 3.5.3 we can finally derive that ρ′i(q′i) ≤ pi+1 and therefore p0
cannot get final in the (i + 1)st step and Ri+1(p0) gets defined in this step
(by Lemma 3.5.24).

Algorithm 1 can either return success (we write Check(↝) = success)
or fail (we write Check(↝) = fail) or not terminate (we write Check(↝)
= ↑).
As we know from Section 3.5.3, we reduce termination to cyclicity only

under some assumptions, where the most important one is composability.
Our algorithm also checks composability of dep, which is done during
the reduction phase for two reasons: 1) It is too late to do it after the phase
because when the composability does not hold, the reduction phase may
fail to terminate. 2) We cannot do it before because composability must
be checked for all possible paths and we have to be sure that there exists
no infinite path by checking also acyclicity dynamically, which is the goal
of the reduction phase.
In order to make our algorithm more efficient, we check composability

only for paths that start at some p that is final. The next lemma shows
that this suffices. The key observation is that if we can extend a path,
composability still holds locally.

Lemma 3.5.26. If Check(↝) ≠ fail, then↝ is monotone, composable,
orthogonal and acyclic.

Proof. ↝ is monotone, since this property is checked directly at the be-
ginning of the algorithm. The same holds for orthogonality by using
Lemma 3.5.23.
We prove composability by contradiction: There must exist a path
(pi , qi , ρi)↝i≤n and p and q such that p ↝ q and ρn(qn) ↓ p. Then from
Lemmas 3.5.24 and 3.5.25 it follows that Rn(p0) = (p′i , q′i , ρ′i)↝i≤n was
defined in the nth iteration of Check(↝) and by Lemma 3.5.22 that
pi = p′i , qi = q′i and ρi ≈p i ρ′i for all i ≤ n. Then ρ′n(q′n) ↓ p follows from
Lemma 3.5.3. In the (n + 1)st iteration two cases can occur:

● There do not exist any p′ and q′ such that p′ ↝ q′ and ρ′n(q′n) ≤ p′.
Then IsComposable(ρ′n(q′n),↝) is executed. This function checks
that ρ′n(q′n) ≥ p′ or ρ′n(q′n) # p′ (by Lemma 3.5.23) for all (p′, q′)
such that p′ ↝ q′. This is in contradiction to ρ′n(q′n) ↓ p.

● There exist p′ and q′ such that p′ ↝ q′ and ρ′n(q′n) ≤ p′. But
then for all p′′ ≠ p′ and q′′ such that p′′ ↝ q′′, ρ′n(q′n) # p′′
holds (otherwise↝ would not be orthogonal). But this is again a
contradiction to ρ′n(q′n) ↓ p.

60

3.5 deciding well-formedness

We prove acyclicity by contradiction as well: If↝ is cyclic, there exists
a path (pi , qi , ρi)↝i≤n such that ρn(qn) ≤ p0. By Lemmas 3.5.24 and 3.5.25
we obtain another path Rn(p0) = (p′i , q′i , ρ′i)↝i≤n defined in the nth step
of the algorithm and by Lemmas 3.5.3 and 3.5.22 finally ρ′n(q′n) ≤ p′0. But
this means that the cyclicity check on line 55 returns fail.

Let P(↝) abbreviate the conjunction of the following properties:

● ↝ is monotone,

● ↝ is composable,

● ↝ is orthogonal,

● ↝ is acyclic.

Lemma 3.5.27. If↝ is finite then the following holds:

● Check(↝) always terminates,

● Check(↝) = success if and only if P(↝).

Proof. We start by proving termination by contradiction. The only way
how Check(↝) can fail to terminate is when the program never exits
the reduction phase. This happens when the check on line 51 is always
false,11 i.e., when the function ReduceStep always changes dep+, which
means we can always find (p′, q′) ∈ dep on line 24 such that q ≤ρ p′. That
means there exists an infinite sequence R0(p), R1(p), . . . for a certain
p. From this sequence, we can easily construct an infinite sequence
ρ0(p0) ↝↓ ρ1(p1) ↝↓ ρ2(p2) ↝↓ ⋅ ⋅ ⋅. Since Check(↝) does not return
fail,↝ is monotone, composable, orthogonal and acyclic by Lemma 3.5.26
and thus we can invoke Lemma 3.5.20 and get that↝ is cyclic, which is a
contradiction.
Now we continue by the proof of the equivalence. Left-to-right: By

Lemma 3.5.26. Right-to-left: Since we proved that the algorithm termi-
nates, we know that Check(↝) ≠ fail implies Check(↝) = success and
therefore it suffices to prove that Check(↝) ≠ fail. The algorithms can
return fail only on lines 42, 45, 30 and 56. We prove by contradiction that
the program cannot return fail on any of those lines:

● If fail is returned on line 42, it means that↝ is not orthogonal (by
Lemma 3.5.23).

● If fail is returned on line 45, it means that↝ is not monotone.

11 And when the check on line 55 does not detect a cycle.

61

higher-order logic with ad hoc overloading consistently

● If fail is returned on line 30 in the nth iteration, there exist p and
a path Rn−1(p) = (pi , qi , ρi)↝n−1 by Lemma 3.5.24 such that for all
p′ and q′ such that p′ ↝ q′, we have ρn−1(qn−1) /≤ p′. Moreover,
it has to hold that ¬IsComposable(ρn−1(qn−1),↝) and therefore
there exist p′ and q′ such that p′ ↝ q′ and ¬(ρn−1(qn−1) # p′)
and ρn−1(qn−1) /≥ p′. But this means ρn−1(qn−1) ↓ p′ and therefore
↝ is not composable.

● If fail is returned on line 56 in the nth iteration, there exist p0 that
is not final12 and a path Rn(p0) = (pi , qi , ρi)↝n (by Lemma 3.5.24)
such that ρn(qn) ≤ p0. But this means that↝ is cyclic.

Now we can formulate a theorem that we found a solution to The
Termination Problem.

Theorem 4. There exists a predicate P on binary relations on Type● ∪
CInst● such that for finite relations↝ the following holds:

● P(↝) is decidable

● P(↝) implies that↝↓ terminates

● P contains interesting relations↝

Proof. Lemma 3.5.27 shows that P is decidable by the program Check.
Lemma 3.5.20 shows that P(↝) implies termination of↝↓.
Now we proceed to the last question: do the restrictions to relations↝

that are monotone, composable, and orthogonal still allow for suitable
expressiveness for overloaded definitions? Monotonicity and orthogonal-
ity are such natural conditions that one would expect that any reasonable
(overloaded) definitions must fulfill them. We will argue now that com-
posability still admits all main use cases of overloading in Isabelle:

● In the context of type classes, only what Haftmann andWenzel [30]
call restricted overloading is allowed: constants can be declared only
with a linear polymorphic type, e.g., cα τ . Overloaded definitions
have this form c(α k) τ = . . . cα i τ . . . , i.e., if c appears on the right
hand side, it uses some αi from α. Such definitions generate only
composable dependency relations.

● Our experience shows that all cases of unrestricted overloading
that have been required by users so far also fulfill composability. A
classical example would be a basic concept of nth power of compo-
sition of fα (written f n) defined in Isabelle/HOL.This operation
is then overloaded for unary functions (fα→α), binary relations
(fα→α→bool) and relations as sets (f(α×α) set).

12 Otherwise the cycle would have been detected in the previous iteration.

62

3.5 deciding well-formedness

Finally, we can state the main result of this section.

Theorem 5. The property of D of being composable and well formed is
decidable.

Proof. The algorithm Check checks that D is definitional, orthogonal
and composable, and that↝↓ terminates. Thus, Check decides whether
D is composable and well formed.

3.5.5 Issues with the Original Algorithm

During inspection of the original cyclicity checker and during the subse-
quent formalization, we identified three issues:

● Completeness issue: The original algorithm (Isabelle2014) does not
always terminate because the cyclicity check (function IsAcyclic)
misses some cycles and therefore the reduction phase might loop.
Leaving out details, consider this minimal example:

aα list×β ↝ aα list×α .

The algorithm concludes that↝must be acyclic since α in aα list×α
is also contained in aα list×β. But↝ is obviously cyclic. Instead, we
use solely an instance test (q /≤ p) in our modified algorithm. The
issue was resolved for the Isabelle2015 release.

● Completeness issue: In the original algorithm (Isabelle2015), com-
posability is checked13 at the end of the algorithm after the reduc-
tion phase is finished. But if the composability does not hold, the
reduction phase may fail to terminate, as in the following example:

aint ↝ bint×nat, bα×nat ↝ cα×nat, cint×α ↝ bint×α

↝ is not composable because cα×nat ↓ cint×α . But this is never de-
tected in the original algorithm for this reason: starting from aint
the reduction phase does not terminate since no cycle is detected
(c? /≤ aint and b? /≤ aint).
We modified the algorithm such that composability is checked
during the reduction phase. But the change is subtler than just
moving the original test into the reduction phase because then
the complexity increases fromO(∣dep∣2) toO(∣dep∣3). Therefore
we test composability only for p’s that are final, i.e., for which the
reduction phase terminates. This suffices by Lemma 3.5.26 and
preserves quadratic complexity.

13 By ∀(p, q) ∈ dep+ . IsComposable(q, dep).

63

higher-order logic with ad hoc overloading consistently

● Correctness issue: Andrei Popescu found the following soundness
issue caused by the cyclicity checker:

consts c ∶ α → bool

consts d ∶ (α × β) → bool

defs cα→bool = λx . d anyα×α

defs d(α×nat)→bool = λx . ¬ (c anyα)

This input is accepted by Isabelle2013-2 and leads to an inconsis-
tency since the following can be proved:

c anynat = ¬ (c anynat)

The derived dependency relation is as follows:

cα→bool ↝ d(α×α)→bool, d(α×nat)→bool ↝ cα→bool

↝ is not composable since d(α×α)→bool ↓ d(α×nat)→bool. There exists
a cycle (substitute nat for α) but this cycle is not detected by the
cyclicity check and the reduction phase terminates. The issue is that
the composability check (function IsComposable) in the original
algorithm was implemented as follows:

type of q has the same shape as tpOf(q) ∨
∀(p′, q′) ∈ dep. ¬HasCommonInst(q, p′)

And indeed the type of d(α×α)→bool has the same shape as d’s de-
clared type (α × β) → bool.
The issue was amended for Isabelle2014 release by changing the
condition from having the same shape to

type of q is alpha equivalent to tpOf(q).

Our work clarifies this issue in two ways:
– The proof shows that the check from Isabelle2014 is correct
because it is strictly stronger than the check that I propose in
this thesis: if the type of q is alpha equivalent to tpOf(q) and
q and p′ have a common instance, then q ≥ p′.

– The current composability check can be generalized to

∀(p′, q′) ∈ dep. q ≥ p′ ∨ ¬HasCommonInst(q, p′),

which allows more instances of overloading to be accepted
and does not require any other change of the algorithm.

At the time of writing this thesis (Isabelle2015), the second completenesses
issue was still unresolved and was still under scrutiny at the Isabelle
headquarters. Isabelle theory files illustrating all three issues can be found
on my web page [46].

64

3.6 discussion

3.6 discussion

After this laborious work, let me add my last thought on this topic. I
would like to argue that we should not regard the inconsistency that I
found as just another bug that had to be solved, but we can learn a more
general lesson from this: in my opinion, the main factor why this issue
managed to escape from being discovered for so many years is usage of
syntactic methods to justify correctness of overloading.
Apparently it is tempting to persuade yourself that we can remove over-

loaded constants from any term by unfolding their occurrences according
to their definitions and thus produce a unique, finite term without these
constants. One just easily misses that the term still contains types whose
meanings can still depend on the overloaded constants in question.
The semantic approach goes in the other direction—bottom-up. It

forces us first to explain the meaning of these types before we move on to
an interpretation of terms. This approach is more rigid, thus less error
prone, or if you forgive me this analogy, it is strongly “type checked”.
I can still remember many afternoons (see the quote from the begin-

ning of the chapter) when Andrei Popescu and I worked together on the
interpretation of types and overloaded constants and when our solutions
just did not want to start working. We were literally going round in circles.

65

Write down the definition of a polymorphic
function on a piece of paper. Tell me its type,
but be careful not to let me see the function’s
definition. I will tell you a theorem that the
function satisfies.

— Philip Wadler (1989)

4
RELATIONAL PARAMETRICITY IMPLEMENTED:
TRANSFER

The primary function of the Transfer tool is to transfer theorems from
one type to another, by proving equivalences between pairs of related
propositions. Let us consider a series of motivational examples:

● Natural numbers are carved out from the axiomatic infinite type
ind and integer numbers are defined as a quotient of pairs of natural
numbers (see (1) on page 20). Thus, those two types were defined
independently and although each has its own implementation of
numerals, arithmetic operations, comparisons, etc., we would still
expect that they are related. For example, we would expect that we
can derive the following two theorems from each other:1

∀xnat. ∀ynat. x + y = 0Ð→ x = 0 ∧ y = 0 (12)
∀xint ∈ {0..}. ∀yint ∈ {0..}. x + y = 0Ð→ x = 0 ∧ y = 0 (13)

Another example: we would like to obtain from the following theo-
rem about integers

∀xint. x < x + 1 (14)

the corresponding theorem about natural numbers

∀nnat. n < n + 1. (15)

● We define the type of finite sets α fset as a restriction of the set type
α set. Assuming that we have already defined the fset-version of
image and union operators

fimage ∶ (α → β) → α fset→ β fset

⋃̃ ∶ α fset fset→ α fset,

we would like to reduce a proof of the statement

∀Sα fset. ⋃̃ fimage (λxα . {x}) S = S (16)

to a proof of the equivalent statement for α set

∀Sα set. finite S Ð→⋃ image (λxα . {x}) S = S . (17)
1 The term {0..} denotes the set of all integer numbers greater or equal to 0.

67

relational parametricity implemented: transfer

● We defined rational numbers as a partial quotient of integer pairs
(see (2) on page 21). We want to reduce the proof of the statement

1rat =
2int
2int

(18)

to the proof of the statement

ratrel (1int, 1int) (2int, 2int). (19)

Notice that we can naturally relate the pairs of the involved types in
each of the examples: obviously, we can relate 0int to 0nat, 1int to 1nat
and so on; since the type of finite sets is a subtype of the set type, the
relation is a restricted identity here; and finally, every rational number
could be related to any representative in the corresponding equivalence
class (e.g., 1rat relates to (1int, 1int), (2int, 2int), . . .). To represent types
as relations is the key technique that enables us to perform the above
theorem transformations. I will make this observation more formal in
Section 4.1.
The process of transferring theorems fromone type to another is guided

by an extensible collection of transfer rules, which establish connections
between pairs of related types or constants (e.g., 0int and 0nat, or image
and fimage). I will present the transfer algorithm in Section 4.2.
Transferring (16) to (17) poses an extra challenge because of nesting of

types—we transfer α fset fset to α set set. For this we need parametrized
transfer rules, which I will explain in Section 4.3.
Notice that we transfer = to = in the fset example, but in the example

with rational numbers, we want to replace = by the equivalence relation
ratrelwhile transferring (18) to (19). Thus, we need multiple transfer rules
for equality for different situations, which yields the notion of transfer
rules with side conditions, the topic of Section 4.4.
Observe that (14) and (15) are not equivalent (unlike other examples),

but the former is stronger than the latter since we do not require that
xint ≥ 0. We will explore the possibility to prove an implication instead of
an equivalence between the pair of theorems in Section 4.5.
In Section 4.6, I will present the automation for proving transfer rules—

the transfer provermethod.
To make transferring work, we need some additional properties of the

type constructors involved in the transferring. I will define a class of type
constructors possessing these properties in Section 4.7 and show that the
class is a very large class—in particular it contains all (co)datatypes.
Section 4.8 briefly introduces the interface of the Transfer tool, i.e.,

which methods and attributes it offers.
In Section 4.9, we will explore the limitation of the Transfer tool and

the corresponding future work. We finally conclude by related work in
Section 4.10.

68

4.1 types as relations

The original idea and initial implementation of the Transfer tool is due
to Brian Huffman. I contributed by various improvements and extensions
later. This chapter is based on our joint paper [40].

4.1 types as relations

The design of the Transfer tool is based on the idea of viewing types as
binary relations. The notions of relational parametricity by Reynolds [83],
free theorems by Wadler [95], and last but not least, representation inde-
pendence by Mitchell [65] were primary sources of inspiration.
I will explain the notions of relational parametricity and representation

independence now.

4.1.1 Relational Parametricity

Relational parametricity tells us that different type instances of a para-
metrically polymorphic function must behave uniformly—that is, they
must be related by a binary relation derived from the function’s type. For
example, the standard filter function on lists satisfies the parametricity
property shown below in (21).

filter ∶ (α → bool) → α list→ α list (20)
∀Aα→β→bool. ((A Z⇒=) Z⇒ list all2 A Z⇒ list all2 A) filter filter (21)

This parametricity property means that if predicates P1 and P2 agree on
related inputs, i.e., A x1 x2 implies P1 x1 = P2 x2, then filter P1 and
filter P2 applied to related lists will yield related results.2 Theparametricity
property formally captures our intuition that different instances of a
polymorphic function must behave essentially in the same way. Thus for
example the following behavior of filter is ruled out by its parametricity
property: if α = int, filter P xs filters out the integer number 42 from xs
even if P 42 = True.
In general, we derive the statement of the parametricity property for

term t ∶ σ by generating a corresponding binary relation from its type.
First, we assume that there exists a relator for every nonnullary type
constructor in σ . Relators lift relations over type constructors: Related
data structures have the same shape, with pointwise-related elements, and
related functions map related input to related output (see Figure 3 on the
next page). The derivation is done purely syntactically. We start with σ
and replace every nullary type constructor (e.g., bool or int) by the identity
relation =, every nonnullary type constructor by its corresponding relator

2 Wadler-style free theorems are derived by instantiating Awith the graph of a function f ;
in this manner, we can obtain a rule stating essentially that filter commutes withmap.

69

relational parametricity implemented: transfer

rel prod ∶ (α → γ → bool) → (β → δ → bool) → α × β → γ × δ → bool

Z⇒ ∶ (α → γ → bool) → (β → δ → bool) → (α → β) → (γ → δ) → bool

rel set ∶ (α → β → bool) → α set→ β set→ bool

list all2 ∶ (α → β → bool) → α list→ β list→ bool

(rel prod A B) x y = A (fst x) (fst y) ∧ B (snd x) (snd y)
(A Z⇒ B) f g = ∀x y. A x y Ð→ B (f x) (g y)
(rel set A) X Y = (∀x ∈ X . ∃y ∈ Y . A x y) ∧

(∀y ∈ Y . ∃x ∈ X . A x y)
(list all2 A) xs ys = (length xs = length ys) ∧

(∀(x , y) ∈ set (zip xs ys). A x y)

Figure 3: Relators for various type constructors

(e.g.,→ by Z⇒ or list by list all2) and finally every type variable α by a term
variable Aα1→α2→bool. We call any relation that is derived by this process
a parametricity relation. We derived the relation in (21) from filter’s type
(20) by the same process.
If the parametricity property holds for some t, we say that t is paramet-

ric. Not every constant in Isabelle/HOL is parametric. We will explore
this in Section 4.4.

4.1.2 Representation Independence

Representation independence is one useful application of relational para-
metricity. Mitchell [65] used it to reason about data abstraction in func-
tional programming. Imagine we have an interface to an abstract datatype
(e.g. queues) with two different implementations. We would hope for
any queue-using program to behave identically no matter which queue
implementation is used—i.e., that the two queue implementations are
contextually equivalent. Representation independence implies that this
is so, as long as we can find a relation between the two implementation
types that is preserved by all the corresponding operations.
The Transfer tool is essentially a working implementation of the idea

of representation independence, but in a slightly different setting: Instead
of a typical functional programming language, we use higher-order logic;
and instead of showing contextual equivalence of programs, we show
logical equivalence of propositions.

70

4.1 types as relations

In order to show that some propositions are related by the logical
equivalence relation, we need facts that witness that smaller parts of the
propositions (usually constants) are related by some relation as well. We
call such facts transfer rules. Formally, any theorem of the form R t t′
where R is a binary relation of the type σ → τ → bool is a transfer rule.
Usually t and t′ are two different constants and σ and τ are of the form
α κ for some type constructors κ. Given the transfer rule R t t′, we call t
the left-hand side and t′ the right-hand side of the rule and we call R a
transfer relation. Thus every parametricity property is a transfer rule and
every parametricity relation is a transfer relation. The converse does not
hold. Motivated by this terminology, we also call a parametricity property
a parametricity rule.
A trivial example of a transfer rule is the reflexivity t = t. A more

involved example would be the transfer rule

(ZN Z⇒ ZN Z⇒ ZN) (+int→int→int) (+nat→nat→nat),

which relates the addition on integer numberswith the addition on natural
numbers. The relation ZN ∶ int → nat → bool, whose definition is not
important here, relates corresponding integer and natural numbers.
We can view transfer rules as generalization of parametricity rules.

Transfer rules may relate two different constants, and in addition to iden-
tity relations and the standard relators, it may also use specific relations
between distinct types or type constructors as for example ZN.

4.1.3 Example: int/nat Transfer

We consider the example from the beginning of this chapter and transfer
propositions between the integer and natural numbers. Recall that these
types were logically defined independently, but we can still think of type
int as a concrete representation of the more abstract type nat. To specify
the connection between the two types, we define a transfer relation ZN ∶
int→ nat→ bool as

ZN x n = (x = int n), (22)

where the conversion function int ∶ nat→ int is defined as

int 0 = 0
int (Suc n) = int n + 1.

We can then use ZN to express relationships between constants in the
form of transfer rules. Obviously, the integers 0 and 1 corresponds to the
natural numbers 0 and 1. The respective addition operators map related
arguments to related results. Similarly, order operators (less-than and

71

relational parametricity implemented: transfer

less-than-or-equal-to) on integers are related to corresponding operators
on naturals. Finally, bounded quantification over the nonnegative integers
corresponds to universal quantification over type nat.

ZN 0int 0nat (23)
ZN 1int 1nat (24)
(ZN Z⇒ ZN Z⇒ ZN) + + (25)
(ZN Z⇒ ZN Z⇒=) < < (26)
(ZN Z⇒ ZN Z⇒=) ≤ ≤ (27)
((ZN Z⇒=) Z⇒=) (Ball {0..}) All (28)

Those rules allow us to replace 0nat in a term by 0int,+ on natural numbers
by + on integer numbers, quantification over all natural numbers by
bounded quantification and so on. However, this replacement is not
simple term replacement, we replace the subterms such that the resulting
term after the replacement is provably equivalent to the original one.
Thus the Transfer tool can use the rules above to derive equivalences

like the following:

(∀xint ∈ {0..}. x < x + 1) ←→ (∀nnat. n < n + 1) (29)

Using the replacement analogy, we can imagine that the subterms on
the right-hand side of the equivalence got replaced by the corresponding
terms on the left-hand side. In general, Transfer can handle any lambda
term constructed from constants for which it has transfer rules. In other
words, we can prove that two terms are equivalent if there are correspond-
ing transfer rules enabling the replacement between both sides.

4.2 transfer algorithm

Thecore functionality of theTransfer tool is to prove equivalence theorems
in the style of (29). To derive an equivalence theorem, the Transfer tool
uses transfer rules for constants, along with elimination and introduction
rules for Z⇒.

(A Z⇒ B) f g A x y
(Z⇒-Elim)

B (f x) (g y)
∀x y. A x y Ð→ B (f x) (g y)

(Z⇒-Intro)
(A Z⇒ B) f g

Alternatively, these rules can be restated in the form of structural typing
rules, similar to those for the simply typed lambda calculus. A typing
judgment here involves two terms instead of one, and a binary relation

72

4.2 transfer algorithm

takes the place of a type. The environment Γ collects the local assumptions
for bound variables.

A x y ∈ Γ
(Var)Γ ⊢ A x y

Γ1 ⊢ (A Z⇒ B) f g Γ2 ⊢ A x y
(App)

Γ1 ∪ Γ2 ⊢ B (f x) (g y)
Γ, A x y ⊢ B (f x) (g y)

(Abs)
Γ ⊢ (A Z⇒ B) (λx . f x) (λy. g y)

To transfer a theorem requires us to build a derivation tree using these
rules, with transfer rules for constants at the leaves of the tree. For the
transfermethod, we are given only the abstract right-hand side; for the
transferred attribute, only the left-hand side. The job of the Transfer tool
is to fill in the remainder of the tree—essentially a type inference problem.
Our implementation splits the process into two steps:

1. Skeleton step. This step is to determine the overall shape of the
derivation tree: the arrangement of App, Abs, and Var nodes,
and the pattern of unknown term and relation variables. The step
starts by building a skeleton term s of the known term t—a lambda
term with the same structure, but with constants replaced by fresh
variables. Using Isabelle’s standard type inference algorithm, we
annotate s with types; the inferred types determine the pattern of
relation variables in the derivation tree.

2. Search step. This step is to fill in the leaves of the tree using the
collection of transfer rules, at the same time instantiating the un-
known variables. We set up a schematic proof state with one goal
for each leaf of the tree, and thenmatch transfer rules with subgoals.
We use backtracking search in case multiple transfer rules match a
given left- or right-hand side.

As an example, we will transfer the proposition that the ≤ relation on
natural numbers is reflexive: ∀nnat. n ≤ n. This is actually syntax for

All (λnnat. le n n),

so its skeleton has the form t (λx . u x x). Type inference yields a most
general typing with t ∶ (α → β) → γ and u ∶ α → α → β, where α, β, and
γ are fresh type variables. We generate fresh relation variables ?A, ?B, and
?C corresponding to these, and use them to build an initial derivation
tree following the skeleton’s structure and inferred types:

⊢ ((?A Z⇒ ?B) Z⇒ ?C) ?t All

⊢ (?A Z⇒ ?A Z⇒ ?B) ?u le ?A x n ⊢?A x n
?A x n ⊢ (?A Z⇒ ?B) (?u x) (le n) ?A x n ⊢?A x n

?A x n ⊢?B (?u x x) (le n n)
⊢ (?A Z⇒ ?B) (λx . ?u x x) (λn. le n n)

⊢?C (?t (λx . ?u x x)) (All (λn. le n n))

73

relational parametricity implemented: transfer

For nonleaf inference steps, we used rules App and Abs. Note that the
leaves with ?A x n are solved with rule Var, but the leaves with constants
All and le (depicted in red) are as yet unsolved. Therefore this derivation
tree yields a theorem with two hypotheses

((?A Z⇒ ?B) Z⇒ ?C) ?t AllÐ→
(?A Z⇒ ?A Z⇒ ?B) ?u leÐ→
?C (?t (λx . ?u x x)) (All (λn. le n n)).

In step two, we set up a proof state with the hypotheses as subgoals. The
first goal is matched by (28)

((ZN Z⇒=) Z⇒=) (Ball {0..}) All,

and the second goal by (27)

(ZN Z⇒ ZN Z⇒=) ≤ ≤.

Thus, we instantiate the variables as follows ?A← ZN, ?B ← ?C ← (←→),
?t ← Ball {0..}, and ?u ← ≤, which transforms the conclusion into the
final equivalence theorem:

(∀xint ∈ {0..}. x ≤ x) ←→ (∀nnat. n ≤ n) (30)

In general, the search for matching transfer rules in the second step
of the transfer algorithm is very simple: we go trough the list of transfer
rules from the most newly introduced ones to older ones and if we do
not succeed, we backtrack. After the tool finds a solution, we can also
ask it explicitly to backtrack. This forces the tool to select an older rule
from the list. Notice that we used the second step for two purposes: to dis-
charge the hypotheses, and also (more importantly) to synthesize the final
equivalence theorem or to be more precise its (concrete representation)
left-hand side.
Let me stress the connection with typing: we do not see the ZN relation

in the final equivalence theorem; it was used only during the intermediate
matching/discharging of hypothesis (or typing if you want) and since the
right side of the final theorem has type bool and the left side’s type was
synthesized (typed) to the same type, both sides were related by a trivial
relation, namely by the equivalence relation←→.
We generalize the rules App, Abs, and Var such that Γ can contain

arbitrary transfer rules, not only assumptions of the form A x y where A
is a variable. We use the symbol T to denote a set of transfer rules. We
are interested in statements of the form T ⊢ s ←→ t, whose meaning is
that the equivalence s ←→ t was derived from the transfer rules in T by
the rules App, Abs, and Var.

74

4.3 parametrized transfer relations

Let us consider the following example: let T be a set of the transfer
rules (23)–(28), then we can derive the formula (29)

T ⊢ (∀xint ∈ {0..}. x < x + 1) ←→ (∀nnat. n < n + 1).

Let us define the set of all terms that can be proved to be equivalent with
term t by using transfer rules from T : TransT (t) = {s ∣ T ⊢ s ←→ t}.
Now we can state the correctness property of the transfer algorithm.

Theorem 6. Let T be a set of transfer rules with the following property:
if the right-hand sides of two rules from T are overlapping, these right-
hand sides must be the same terms. Let t be a term. Then the set of all
results3 of transferring t with T is TransT (t).

Proof. The property of T guarantees that the constants that are supposed
to be replaced by fresh variables in the the first step of the transfer al-
gorithm (during creation of the skeleton) are not in conflict and thus
uniquely determined. The search for transfer rules in the second step
iterates over all proof trees for all statements T ⊢ s ←→ t such that
s ∈ TransT (t).

4.3 parametrized transfer relations

Parametrized transfer relations are generalization of the notion of transfer
rules to cater for transferring of propositions with nested types. Let me
motivate the need for parametrized transfer relations by the fset example
from the beginning of this chapter. Since the type of finite sets is defined
as a subtype of the set type by typedef, we could use the representation
function

Repfset ∶ α fset→ α set

to define the transfer relation SF ∶ α set→ α fset→ bool as follows:

SF S F = (Repfset F = S)

SF is an inverted graph of Repfset. Since we want to transfer (16) to (17),
we need transfer rules for fimage and ⋃̃. With the current definition of
SF, we can prove the following transfer rule for fimage:

((= Z⇒=) Z⇒ SF Z⇒ SF) image fimage (31)

Although this rule works in most situations, it is not general enough since
it can only transfer between the following instances of fimage and image:

fimage ∶ (α → β) → α fset → β fset
image ∶ (α → β) → α set → β set

3 This means that we ask the algorithm to backtrack as long as it is possible and collect all
the generated results.

75

relational parametricity implemented: transfer

In other words, using this rule we are not allowed to change the element
types of the used sets. However, this is exactly what we need in our
example (transferring (16) to (17)) because of the nesting of the transferred
types—we wanted to transfer between the following instances of fimage
and image:

fimage ∶ (α → α fset) → α fset → α fset fset
image ∶ (α → α set) → α set → α set set

With the rule (31), the transferring process will fail. Moreover, we cannot
even state any transfer rule relating ⋃ and ⋃̃ for similar reasons.
Luckily, the design of the Transfer tool generalizes easily to transfer

relations with parameters. To allow to change the element type, we will
define a parametrized version of SF as follows:

SFp ∶ (α → β → bool) → α set→ β fset→ bool (32)
(SFp A) S F = (∃Yβ set. rel set A S Y ∧ SF Y F) (33)

Recall that rel set was defined in Figure 3 on page 70. Using the relation
composition operator ○○, we can alternatively define SFp as

SFp A S F = (rel set A ○○ SF) S F . (34)

Notice that rel set A relates α set to β set according to A and SF relates
β set to β fset. The parametrized transfer relation SFp allows us to state
(and prove) the transfer rules for fimage and ⋃̃ that correspond to the
most general type instances of these constants:

((A Z⇒ B) Z⇒ SFp A Z⇒ SFp B) image fimage (35)

(SFp (SFp A) Z⇒ SFp A) ⋃ ⋃̃ (36)

While transferring (16) to (17), we use the following instances of the rules
(35) and (36):

((= Z⇒ SFp =) Z⇒ SFp = Z⇒ SFp (SFp =)) image fimage (37)

(SFp (SFp =) Z⇒ SFp =) ⋃ ⋃̃ (38)

The above-described generalization of the fset transfer relation by
adding parameters is an instance of a general principle. I will sketch it
now. Let us assume that we work only with unary type constructors; the
generalization to n-ary constructors is straightforward. For every transfer
relation T ∶ σ[β] → τ[β] → bool, we can define its parametrized version

Tp ∶ (α → β → bool) → σ[α] → τ[β] → bool

Tp A x y = (R A ○○ T) x y,
(39)

76

4.4 transfer rules with side conditions

where R ∶ σ[α] → σ[β] → bool is a relator expression for σ . If σ is a
single type constructor κ, R = relκ ; if σ is a type expression, R is the
corresponding relator expression. In the fset example (34),R = rel set.
I implemented a procedure that automatically defines the parametrized
transfer relations.
The transfer rules (35) and (36) follow a general principle as well. We

can automatically prove each of them from their nonparametrized rules
and from the parametricity rules for their representation constants. For
example, from the nonparametrized rule (31) for fimage and the para-
metricity rule for image

((A Z⇒ B) Z⇒ rel set A Z⇒ rel set B) image image, (40)

we can automatically prove the parametrized version (35). As the first
step, we transitively connect (40) and (31) by ○○ and obtain:

(((A Z⇒ B) Z⇒ rel set A Z⇒ rel set B) ○○
((= Z⇒=) Z⇒ SF Z⇒ SF)) image fimage

Now, by propagating ○○ over relators and pushing it inside the relation by
rules of the following style4

relκ R ○○ relκ S = relκ (R1 ○○ S1) . . . (Rn ○○ Sn) (41)

and using the terminal rules (R ○○ =) = (= ○○ R) = R and the definition
of SFp (34) (rel set A○○SF) = SFp A, we can derive (35). I implemented
a procedure that can do all of those steps automatically.

4.4 transfer rules with side conditions

We will generalize the notion of a transfer rule R t t′ by allowing side
conditions on relations in R, e.g., P AÐ→ R[A] t t′ where A is a relation.
This allows us to transfer constants that are not parametric or positively
expressed, relations that are parametric only under certain conditions.
That is, we want to have a notion of parametricity modulo a restricted
class of relations, e.g. single valued and injective.
We will also inspect limitations of transfer rules with equalities in their

transfer relations and how the transfer rules with side conditions can help.

4 Such rules hold for natural functors, as we will learn later. However the corresponding
rule for the function type does not hold unconstrained. Therefore we generalized the
whole procedure such that we can also use rules with side conditions. For example, the
rule for the function type holds when S are equalities.

77

relational parametricity implemented: transfer

4.4.1 Conditional Parametricity

In the int/nat example, we used only those transfer rules that we specifi-
cally proved for constants on integer and natural numbers—they contain
the transfer relation ZN. But it is a common situation that the term (that
we want to transfer) contains polymorphic constants that are not con-
nected to integer and natural numbers. However, those constants can still
change their types while we transfer between the concrete and abstract
types. Therefore we will also need transfer rules for such polymorphic
constants in general. We typically use a parametricity rule for such con-
stants as a transfer rule. For example: we want to prove that if the sum of
a list of natural numbers is zero then all the numbers in the list must be
zero as well—basically an iterated version of (12):5

∀xsnat list. listsum xs = 0Ð→ list all(λx . x = 0) xs

If we use the transfer algorithm to prove that this statement is equivalent
to the corresponding statement about integers, we would have to relate
list all(int→bool)→int list→bool to list all(nat→bool)→nat list→bool. This can be
done by using its parametricity rule (where we substitute ZN for A):

∀Aα→β→bool. ((A Z⇒=) Z⇒ list all2 A Z⇒=) list all list all (42)

If we try to argue similarly for other polymorphic constants in the state-
ment (=, ∀ or listsum), the proposed approach fails because these con-
stants are not parametric. I will explain in the rest why they are not
parametric and how to address this issue.
The need for transfer rules with side conditions starts right at this

observation that some polymorphic functions in Isabelle are not para-
metric. Wadler already pointed out in his seminal paper [95, §3.4] that
polymorphic equality = is not a parametric function. Let us look more
closely why this is the case. Its type α → α → bool would suggest that the
following parametricity rule should hold: (A Z⇒ A Z⇒=) = =. If we unfold
the function relator in it, we obtain an equivalent statement

∀x x′ y y′. A x x′ ∧ A y y′ Ð→ x = y ←→ x′ = y′.

This does obviously not hold for all relations A but only for A that is single
valued and injective. Such A is called bi-unique in our terminology. Thus,
we use the following transfer rule with a side condition:

bi unique AÐ→ (A Z⇒ A Z⇒=) = = (43)

In fact, the statement holds also in the other direction, i.e., the relation A
is bi-unique if and only if it preserves equality.

5 The function list all(α→bool)→α list→bool P xs is defined as ∀x ∈ set xs. P x.

78

4.4 transfer rules with side conditions

Wadler argues that = not being parametric is not a contradiction to
his parametricity theorem; rather, it is a proof that polymorphic equality
cannot be defined in the pure polymorphic lambda calculus. Polymorphic
equality can be added as an axiomatic constant, but then parametricity
will not typically hold for terms containing the constant.
Indeed, for example the function that removes the first occurrence of

the given element from a list remove1 ∶ α → α list→ α list defined as

remove1 x [] = []
remove1 x (y # xs) = (if x = y then xs else y # remove1 x xs)

uses = in its definition and therefore has this conditional transfer rule

bi unique AÐ→ (A Z⇒ list all2 A Z⇒ list all2 A) remove1 remove1.

The rule is not provable without the bi-uniqueness assumption.
As pointed out again by Wadler, this restriction on relations is akin to

an eqtype annotation inML, or an Eq class constraint in Haskell: in these
languages, we restrict the polymorphic type of equality only to types for
which equality is defined. In our relational setting, we restrict ourselves
only to relations that respect equality, or equivalently that are bi-unique.
Stretching the analogy a bit further, while Haskell allows users to pro-

vide Eq instance declarations, the Transfer tool allows us to provide addi-
tional rules about bi-uniqueness that serve the same purpose:

● rules for abstract types: e.g., bi unique ZN or bi unique SF. Every
abstract type defined by typedef yields a bi-unique transfer relation.

● rules for polymorphic type constructors: e.g., bi unique A Ð→
bi unique (rel set A), bi unique AÐ→ bi unique (list all2 A) or
bi unique AÐ→ bi unique SFp A. Every type constructor that is
a natural functor yields such a bi-uniqueness rule, see Section 4.7.

Using the above rules and the rule (43), the Transfer tool is able to relate
equality on lists of integers with equality on lists of naturals, using the
relation list all2 ZN. It can similarly relate equality on sets, lists of sets,
sets of lists, and so on.
It is usually enlightening to consider the case of the function type: under

which condition in terms of A and B does it hold that bi unique(A Z⇒B)?
Unlike bi-unique rules for lists or sets, the condition is not that A and B
have to be bi-unique, but we have to come up with a new condition: we
say that a relation is bi-total if it is both total and surjective. We obtain

bi total AÐ→ bi unique B Ð→ bi unique(A Z⇒ B). (44)

79

relational parametricity implemented: transfer

We find a similarly prominent constant for bi-totality as the equality is for
bi-uniqueness in (43): the parametricity rule of the universal quantifier
requires the relation A to be bi-total:

bi total AÐ→ ((A Z⇒=) Z⇒=) All All (45)

Similarly as for bi-uniqueness, the statement holds also in the other di-
rection, i.e., preservation of the universal quantification is equivalent
to bi-totality. If we view the definition of the universal quantifier All =
λpα→bool. (p = (λx . True)) in the light of the rule (44), the parametricity
theorem for All is not so surprising—we compare functions for equality
here.
Universal quantifiers appear in most propositions used with transfer;

however, many transfer relations (including ZN) are not bi-total, but
only right-total, i.e., surjective. In this case, the universal quantification
relates to a bounded quantification, where the bound is the domain of
the right-total relation:6

right total AÐ→ ((A Z⇒=) Z⇒=) (Ball {x ∣ Domp A x}) All (46)

Because it is inconvenient to work with expressions such as Domp T in
the transferred goal, we extended the transfer algorithm such that Domp
expressions are replaced with equivalent but more convenient predicates.
This is configured by registering a transfer domain rule: e.g.,

Domp ZN = (λx . x ≥ 0).

We provide transfer domain rules for lists and other types, for example:

Domp (list all2 A) = list all (Domp A) (47)

Thus we can replace, e.g., Domp (list all2 ZN) by list all (λx . x ≥ 0).
The use of Domp is not limited to the universal quantifier as there are
other constants, such as UNIV, Collect or set intersection ⋂, that require
bi-totality in their parametricity rules. We providemore widely applicable
transfer rules using Domp for those constants as well.
The last condition that we use and that is connectedwith = is being right-

unique, i.e., single valued. Bi-totality, right-totality and right-uniqueness
are just as bi-uniqueness preserved by many relators, including those
for lists and sets (see Section 4.7). We mentioned that ZN is not bi-total
but, for example, total quotients yield bi-total transfer relations; see the
overview in Table 1 on page 112.

6 Strictly speaking, this rule does not capture parametricity because we do not relate
different type instances of the same constant. Nevertheless, we still consider the rule to
be a parametricity rule because the used transfer relation is a parametricity relation—in
particular, the relation does not contain any specific transfer relations (e.g., ZN or SF).

80

4.4 transfer rules with side conditions

Notice that every bi-total (or bi-unique) relation is also right-total (or
right-unique). We prefer bi-rules to right-rules (if it possible), which we
technically realize by registering the bi-rules later than the right-rules.
Thus, we try the bi-rules during the second step of the transfer algorithm
first and move to the right-rules by backtracking only if the give relation
is neither bi-total nor bi-unique.
So far we have addressed only =; what about other constants? Just as Eq

is not the only class constraint in Haskell, there exist other polymorphic
constants belonging to type classes in Isabelle/HOL. These constants are
defined by overloading. As we saw in Example 2.1 on page 18, where we
overloaded 0α for various types, we can think of 0α as a constant that
does case distinction on its type instance—a highly nonparametric op-
eration. The approach with side conditions that we adopted because of
nonparametricity of = easily generalizes to any overloaded constant: we
will restrict our relations only to those that respect the overloaded con-
stant. An example follows: listsumα list→α sums all elements in the given
list, for which it uses monoid operations 0α and +α→α→bool. Therefore,
the listsum parametricity rule requires preservation of these operations:

A 0 0Ð→ (A Z⇒ A Z⇒=) + + Ð→
(list all2 A Z⇒ A) listsum listsum

(48)

While using this rule in the transfer algorithm, we apply the algorithm
recursively to the assumptions. Thus for example, if we use the rules (23)
and (25), we can relate listsum on integers with listsum on naturals.

4.4.2 Handling Equality Relations

Many propositions that we want to transfer contain nonpolymorphic
constants that remain unchanged by the transfer procedure, e.g., boolean
operations. We would like to avoid the necessity for lots of trivial transfer
rules such as the rule for the boolean conjunction: (= Z⇒ = Z⇒ =) ∧ ∧.
Instead we define a predicate is equality A, which holds if and only if
A is the equality relation on its type, and keep a database of theorems
that witnesses which relators preserve equality. For the function type, the
theorem looks like as follows:

(= Z⇒=) = (=) (49)

Besides functions, such theorems hold for every natural functor (e.g., lists,
sets, pairs, . . .). From these theorems we straightforwardly derive that the
given relator preserves the is equality predicate. For example:

is equality AÐ→ is equality B Ð→ is equality (A Z⇒ B) (50)

81

relational parametricity implemented: transfer

We register a single reflexivity transfer rule

is equality AÐ→ A x x . (51)

Now, if we are looking for the transfer rule for ∧ in the second phase of
the transfer algorithm (i.e., we are trying to discharge this goal ?A ?a ∧),
and there does not exist any other transfer rule that would match, we
use the reflexivity transfer rule (51). This sets ?a to ∧ and leaves us with
the goal is equality ?A. By using the is equality preservation rules (such
as (50)) first and discharging the unsolved goals by is equality =, we
synthesize the appropriate transfer relation (= Z⇒= Z⇒=) for ∧.
The predicate is equality is useful for expressing transfer relations that

do not correspond to the most general type instances of the related con-
stant. Let me explain this with an example: in Section 4.3, we saw that the
rule (31) was not strong enough to transfer certain goals. The standard
technique how to obtain the stronger rule (35) from the weaker one is
to prove parametricity of the concrete constant—here image. But some
unnecessary work can be saved (especially when prototyping) if we use
the weaker rules until it turns out this is not enough. In our example, we
would use the following rule, which is equivalent to the weak rule (31):

((= Z⇒=) Z⇒ SFp = Z⇒ SFp =) image fimage (52)

But this form of the rule can lead to problems: suppose fimage ∶ (α →
β) → α fset → β fset in the rule and we want to use the rule at a more
specific type, say β ← α set; this can cause that discharging another goal
might instantiate the goal for fimage to ((?A Z⇒ (rel set =)) Z⇒ ?C Z⇒
?D) ?a fimage. Although rel set = is equivalent to =, we cannot use the
rule (52). An equivalent conditional transfer rule

is equality AÐ→ is equality B Ð→
((A Z⇒ B) Z⇒ SFp A Z⇒ SFp B) image fimage

(53)

avoids such difficulties. Transfer rules that mention equality relations are
conveniently preprocessed in this manner: the user enters (52) but we
internally derive and use (53).

4.5 proving implications insteadof equivalences

The transfer proof method can replace a universal with an equivalent
bounded quantifier: e.g., (∀nnat. n < n + 1) is transferred to (∀xint ∈
{0..}. x < x+ 1). This yields a useful extra assumption in the new subgoal.
With the transferred attribute, however, it may be preferable to start with

82

4.6 proving parametricity transfer rules

a stronger theorem (∀xint. x < x + 1), without the bounded quantifier. In
this case, the Transfer tool can prove an implication:

(∀xint. x < x + 1) Ð→ (∀nnat. n < n + 1) (54)

The Transfer algorithm works exactly the same; we just need some new
transfer rules that encode monotonicity. We provide rules for quantifiers
and implication, using various combinations ofÐ→,←Ð, and =; a few are
shown here.

right total AÐ→ ((A Z⇒Ð→) Z⇒Ð→) All All (55)
right total AÐ→ ((A Z⇒=) Z⇒Ð→) All All (56)
(←Ð Z⇒Ð→ Z⇒Ð→) Ð→ Ð→ (57)

The derivation of (54) uses transfer rule (56); rule (55) comes into play
when quantifiers are nested. These rules are applicable to relation ZN
because it is right-total. Further variants of these rules (involving reverse
implication) are used to transfer induction and case analysis rules, which
have many nested implications and quantifiers.
Having many different transfer rules for the same constants would tend

to introduce a large amount of backtracking search in step two of the
transfer algorithm. To counter this, we preinstantiate some of the relation
variables toÐ→,←Ð, or =, guided by a simple monotonicity analysis.

4.6 proving parametricity transfer rules

As we have already seen, parametricity rules are an important class of
transfer rules. It is noteworthy to ask the question how difficult it is to
prove them, or more specifically, to which extent we can automate this
task. On this account, we implemented a proof method transfer prover
that allows us to automatically prove that a term t is related to t′ by a given
relation. The method works under the condition that we have transfer
rules relating corresponding constants from t and t′ and matching with
the given relation. In the case of parametricity, t′ is just a different type
instance of t.
Thus, we can automatically prove parametricity for a derived operation,

say cα τ , as follows: let us assume that cα τ was defined as cα τ = t. We can
prove the parametricity rule R cα τ cβ τ by unfolding c using its definition
and proving R t t[α ← β] by the transfer prover provided there is an
appropriate transfer rule for every constant in t.
To prove R t t′, the transfer prover proceeds as follows: it generates

the skeleton for t′ and its derivation tree in the same way as I explained in
Section 4.2. In this setting, we know the transfer relation R and therefore
we can preinstantiate a lot of schematic relation variables in the skeleton

83

relational parametricity implemented: transfer

to reduce the search space in the step two. In the step two, the tool follows
the same procedure as for transfer and synthesize the left-hand size by
matching with the existing transfer rules. There is an additional third
step: we compare the synthesized left-hand size with t and if they differ,
the tool backtracks. Why we do not preinstantiate the left-hand side in
the step one (it is known too) and follow a seemingly more complicated
way, I will explain with an example.
Assume we would like to prove parametricity of list all, that is (42).

The function list all is defined as λP xs. ∀x ∈ set xs. P x, which is only
syntax for λP xs. Ball (set xs) (λx . P x). Thus, we want to prove the
following equivalent theorem:

∀Aα→β→bool. ((A Z⇒=) Z⇒ list all2 A Z⇒=)
(λPα→bool xsα list. Ball (set xs) (λx . P x))
(λPβ→bool xsβ list. Ball (set xs) (λx . P x))

We infer the derivation tree for λPβ→bool xsβ list. Ball (set xs) (λx . P x)
and obtain the following schematic theorem:

(?E Z⇒ ?C Z⇒ ? f) ?t BallÐ→
(?D Z⇒ ?E) ?u setÐ→
(?C Z⇒ ?D Z⇒ ? f)
(λP x . ?t (?u x) P)
(λPβ→bool xsβ list. Ball (set xs) (λx . P x))

Since the schematic relation (?C Z⇒ ?D Z⇒ ? f) is always a first-order term,
we can always easily preinstantiate it by matching it against the known
transfer relation ((A Z⇒=) Z⇒ list all2 A Z⇒=). But this is not the case for
the schematic left-hand side λP x . ?t (?u x) P. The schematic variable
?t of the function type at the head yields an undecidable unification
problem. Instead, as I already described, we synthesize the left-hand
side and compare it with the expected result, which does not require the
undecidable fragment of the higher-order unification.7 The comparison
is technically achieved by adding an extra assumption in the schematic

7 All the assumptions in the schematic theorem are in principle again first order terms.
Because of the corner case, when the schematic transfer relation is just a single schematic
variable (i.e., no function type and thus no Z⇒), for example ?R, we rewrite all the transfer
rules and assumptions into an equivalent statements using an identity tag: e.g., ?R ?t c
into Rel ?R ?t c, where Rel = id.

84

4.7 transferable type constructors

theorem. I marked the assumption by red color. Thus, in the end we will
try to discharge assumption of this schematic theorem

(?E Z⇒(A Z⇒=) Z⇒=) ?t BallÐ→
(list all2 A Z⇒ ?E) ?u setÐ→
(λP x . ?t (?u x) P) = (λPα→bool xsα list. Ball (set xs) (λx . P x)) Ð→
((A Z⇒=) Z⇒ list all2 A Z⇒=)
(λP x . ?t (?u x) P)
(λPβ→bool xsβ list. Ball (set xs) (λx . P x)).

The first two assumption are discharged by the parametricity rules for
Ball (from a library) and set (generated by the datatype command)

(rel set A Z⇒(A Z⇒=) Z⇒=) Ball Ball,
(list all2 A Z⇒ rel set A) set set

and the third assumption by the reflexivity transfer rule (51).

4.7 transferable type constructors

We have seen several times within this chapter that we need to keep track
of some semantic information (or impose additional structure) on our
constants and type constructors to make the transferring work. Although
parametricity of constants might seem to be the most prominent one, we
should not forget the additional structure that we impose on the type
constructors. For example, we needed relators for type constructors to
formulate parametricity rules; we also needed a couple of properties
connected to type constructors, e.g., (41), (44), (47) or (49). We have
treated this structure rather implicitly so far and therefore I will describe
it more explicitly in this section.
A transferable type constructor is a type constructor equipped with

a relator and a predicator8 that satisfy certain properties. Formally, a
transferable type constructor is a tuple (κ, relκ , predκ), where

● κ is an n-ary type constructor,

● relκ ∶ (α1 → β1 → bool) → . . . → (αn → βn → bool) → α κ →
β κ → bool,

● predκ ∶ (α1 → bool) → . . . → (αn → bool) → α κ → bool,

satisfying the following properties:

8 A predicator is to a predicate what a relator is to a relation.

85

relational parametricity implemented: transfer

● identity rule:
(relκ = . . . =) = (=)

● distribution of Domp over the relator:

Domp (relκ R1 . . . Rn) = predκ (Domp R1) . . . (Domp Rn)

● compositionality and transitivity of the relator:

relκ R ○○ relκ S = relκ (R1 ○○ S1) . . . (Rn ○○ Sn)

● monotonicity of the relator:

R1 O1 S1 Ð→ . . . Ð→ Rn On Sn Ð→ relκ R ⊑ relκ S ,

whereOi is either ⊑ or ⊒.

● preservation of the transfer rule side conditions by the relator:

C1 R1 Ð→ . . . Ð→ Cn Rn Ð→ C (relκ R),

where C is any of these predicates: bi total, bi unique, right total,
right unique, left total, left unique (thus, the scheme yields six
rules) and C1 to Cn can be in general any combination of these six
predicates but typically they are all the same as C.

Let me clarify that the above notion of a transferable type constructor
represents themaximal possible extent of the additional structure that can
be provided by a user. The infrastructure that we implemented to store the
semantic information is more flexible and does not strictly prescribe how
much of it must be provided—the extent is configured by a user-supplied
set of rules. This is a design decision motivated by two factors: 1) some
type constructors can possess only a strict subset of possible properties;
2) we do not want to force the user to prove all the properties if some of
them are not needed for their use case. For example, if the user does not
provide a rule that the right-totality is preserved by a relator in question,
transferring will fail for a certain class of problems but the user is not
stopped from using the tool; if the compositionality does not hold, the
user cannot use the prover for parametrization of transfer rules but the
transferring process is not affected. Thus, any subset of provided rules
represents a legitimate state of the tool but it might weaken its strength.
Now we will focus on the maximal extent of the structure: transferable

type constructors. As I already mentioned, numerous common type
constructors conform to this specification such as sets, lists, pairs or
options. Of course, we would like tomake our observation less intensional
and find a natural class of type constructors that would be transferable.

86

4.7 transferable type constructors

Traytel, Popescu and Blanchette [91] came up with a notion of an n-
ary bounded natural functor as a type constructor equipped with a map
function, n set functions, a relator and a cardinal bound that satisfy certain
conditions. Their motivation was to create modular definitional datatype
and codatatype commands that would allow nested (co)recursion not
only through other datatypes and the positive position in the function
type (as in the previous implementation), but also through a broader class
of well-behaved type constructors (e.g., finite sets). In their approach, the
class of such type constructors is the class of bounded natural functors.
I proved that any bounded natural functor defines a transferable type

constructor. This is particularly exciting since the class of bounded natu-
ral functors contains not only various nonfree types (e.g., finite sets or
multisets) but most importantly all datatypes and codatatypes that are de-
finable in Isabelle/HOL [12]. Moreover, we do not need the bound in the
proof of the statement and therefore I will present a more general result
here—every natural functor defines a transferable type constructor9. Let
me start with a formal definition of a natural functor.
An n-ary natural functor is a tuple (κ,mapκ , (setκi)i≤n , rel

κ), where

● κ is an n-ary type constructor,

● mapκ ∶ (α1 → β1) → . . . → (αn → βn) → α κ → β κ,

● setκi ∶ α κ → αi set,

satisfying the following properties:

● (κ,mapκ) is an n-ary functor:

mapκ id . . . id = id
mapκ (f1 ○ g1) . . . (fn ○ gn) = mapκ f ○mapκ g

● for each i the set function setκi is a natural transformation into the
powerset functor (set, image):

setκi ○map f = image fi ○ setκi

● a congruence rule for the map function:

∀x ∈ setκ1 xs. f1 x = g1 x . . . ∀x ∈ setκn xs. fn x = gn x
mapκ f xs = mapκ g xs

● transitivity of the relator:

relκ R ○○ relκ S ⊑ relκ (R1 ○○ S1) . . . (Rn ○○ Sn)
9 The type of sets is a natural functor, but it is obviously not bounded.

87

relational parametricity implemented: transfer

● the relator is an extension of the map function:

relκ R xs ys =
(∃zs. setκ1 zs ⊆ {(x , y) ∣ R1 x y} ∧ ⋅ ⋅ ⋅ ∧ setκn zs ⊆ {(x , y) ∣ Rn x y}
∧map fst zs = xs ∧map snd zs = ys)

Theorem 7. Let (κ,mapκ , (setκi)i≤n , rel
κ)) is an n-ary natural functor,

then (κ, relκ , predκ) is a transferable type constructor, where

predκ P xs = ∀x1 ∈ setκ1 xs. P1 x1 ∧ ⋅ ⋅ ⋅ ∧ ∀xn ∈ setκn xs. Pn xn .

Proof. First of all, the basic properties of relκ as the identity rule, composi-
tionality, monotonicity and the converse rule (relκ R)−1 = relκ R−11 . . . R−1n
follow easily from the natural functor axioms [11, 12]. To prove preserva-
tion of the side conditions, we use their alternatives definitions:

right total R ←→ R−1 ○○ R ⊒ =
right unique R ←→ R−1 ○○ R ⊑ =

left total R ←→ R ○○ R−1 ⊒ =
left unique R ←→ R ○○ R−1 ⊑ =

Thus, if we want to prove, for example, preservation of right-totality of a
unary natural functor, we have to prove:

R−1 ○○ R ⊒ = Ð→ (rel R)−1 ○○ rel R ⊒ =

We use the identity rule to expand the last = to rel = and then the converse
rule, compositionality and monotonicity. The same approach works for
the other constraints. Preservation of bi-totality follows from the preser-
vation of left-totality and right-totality. Analogously for bi-uniqueness.
The distribution of Domp over the relator is proved as follows: we

unfoldDomp using its definition and the relator using its characterization
in terms of the map and set functions; after simplification, we are required
to prove that the following equivalence holds for all xs α κ :

(∃z. setκ z ⊆ {(x , y). R x y} ∧mapκ fst z = xs) ←→
(∀x ∈ setκ xs. ∃y. R x y)

This is proved by using the basic properties of the map and set functions.

From the implementation point of view, each time when the user ex-
plicitly proves that a type constructor is a bounded natural functor (as it is
done for example for types of finite sets, countable sets, multisets, associa-
tion lists, or various probability mass functions), or when the user defines

88

4.8 interfaces

a datatype or a codatatype, the plugin that I implemented automatically
proves that the type constructor is transferable as well.10
Except that we proved that every natural functor is transferable, the

other main result of this section is that we can confirm the experience of
the authors of the new (co)datatype commands [91]: it is helpful to see
types as richly structured objects rather than mere collections of elements.

4.8 interfaces

The Transfer tool provides multiple user interfaces. The transfer proof
method is the main one and replaces the current subgoal by a logically
equivalent subgoal; typically, it replaces a goal about an abstract type
by a goal about the representation type. For instance, using one of the
introductory examples about finite sets

lemma ∀Sα fset. ⋃̃ fimage (λxα . {x}) S = S
apply transfer,

the invocation of transfer turns the lemma statement to the following
equivalent proof obligation

∀Sα set. finite S Ð→⋃ image (λxα . {x}) S = S .

The method internally proves an equivalence between the two subgoals
(as we saw in Section 4.2) and then use it to replace the initial subgoal by
the new one.
The tool also provides the transferred theorem attribute, which yields

a theorem about an abstract type when given a theorem involving a
representation type. For example, let us assume we stored the following
theorem

∀xint. x < x + 1

in our system under the name less−add−one. Then the following theorem
less−add−one[transferred] reads

∀nnat. n < n + 1.

As we discussed in Section 4.5, the source theorem (on the representation
type) can be in general stronger then the produced theorem about the
abstract type, which is also the case in this example.

10 There is not yet any infrastructure for natural functors without a bound, therefore the
Transfer tool must be set up manually for the set type. Generalizing the current infras-
tructure in this manner is merely an engineering task.

89

relational parametricity implemented: transfer

Finally, the tool also provides the inverse to the attribute transferred,
namely the attribute untransferred, which yields a theorem about a repre-
sentation type given a theorem about an abstract type. Using again integer
and natural numbers, let us call the following theorem nat−add−zero:

∀xnat. ∀ynat. x + y = 0Ð→ x = 0 ∧ y = 0

Then the following theorem nat−add−zero[untransferred] reads

∀xint ∈ {0..}. ∀yint ∈ {0..}. x + y = 0Ð→ x = 0 ∧ y = 0.

Also the attribute untransferred internally proves the equivalence as
we saw in the case of the method transfer.
Last but not least, there are methods for debugging the transferring

process to easily discover, for example, which transfer rules are missing.

4.9 limitations and future work

I will describe limitations of the Transfer tool in this section.

order of instantiations During the second phase of the transfer algo-
rithm, whenwe look for transfer rules and synthesize the transferred term,
the algorithm might produce a result that most users find unexpected
and are not satisfied with. To demonstrate the problem, we start with a
simple example:
We consider again the type of finite sets α fset andwould like to transfer

the following goal:11

finite UNIVα fset set

The expected result after applying transfer is

finite {Sα set ∣ finite S}

but the actual result that we obtain is an unchanged goal—transfer seems
to have done nothing. Let us inspect the skeleton theorem to identify
what happened in this example:

?R ?t UNIVα fset set Ð→
(?R Z⇒=) ?u finiteÐ→
?u ?t

11 If we assume that α can be instantiated only to finite types (via a type class constraint on
α), the goal is provable.

90

4.9 limitations and future work

This means we have to find two transfer rules; one for UNIV and one for
finite. As I already mentioned in Section 4.4 on page 77, there are two
transfer rules for UNIV—the first one

∀Aα→β→bool. bi total AÐ→ (rel set A) UNIV UNIV (58)

works for bi-total relations and relates UNIVα set to UNIVβ set. The other

right total AÐ→ (rel set A) {x ∣ Domp A x} UNIV (59)

works for right-total relations and if A equals SFp = (which is right-total),
the rule relates {Sα set ∣ finite S} to UNIVα fset set because it holds that
Domp (SFp =) is equal to finite.
Of course we would like to use the transfer rule (59) but as we learned

in Section 4.4, we will try the bi-unique rule (58) first. This requires us to
discharge the assumption bi total ?A and since ?A is still an unknown re-
lation we can discharge the obligation by the transfer rule bi total =. Thus
?R is set to the trivial relation rel set =, which causes that UNIVα fset set

is transferred to itself. This propagates through the whole step two and
causes that transfer transfers the goal to itself and effectively does not
change it at all. If we had already known that ?R should be SFp ?B, we
could have not discharged the bi-uniqueness assumption, backtracked
and chosen the rule (59).
Let us move from the concrete example to a general description of

the problem: in rare cases it might happen, that 1) we are transferring a
polymorphic constant (e.g.,UNIV) whose transfer rules are of the form of
conditional parametricity rules and 2) the partially synthesized transfer
relation is yet underspecified such that we cannot decide the validity of
the side conditions without instantiating the transfer relation to a more
specific relation (typically by instantiating the trivial transfer relation =).
This leads to results where less is transferred than the user expects.
Please notice that this problem does not reduce the theoretical strength

of the tool because the user can always get the desired result by asking
the tool to backtrack. The problem is a practical one: explicitly to ask a
tool to backtrack does not produce robust and readable proofs.
We can formally see the output of transfer as a list of the synthesized

left-hand sides where the head of the list is the result that is produced first
if we apply transfer to a goal and the next elements in the list represent the
results of backtracking. The limitation that we are looking at here, does
not influence the set of elements in this list but the order in which the
elements of the list are produced. If the order produced by the algorithm
from Section 4.2 does not meet the expectation of the users in rare cases,
we should try to formalize the expectation of the users.
In the motivational example, we were disappointed that transfer syn-

thesized for ?R a transfer relation that is equivalent to =. Intuitively, if

91

relational parametricity implemented: transfer

we can choose between transferring less or more, we go for transferring
more; i.e., we are aiming at a certain concept of eagerness.
First some definitions, we say that a constant cτ is an atomic relation if

τ ≤ α → β → bool. We say that a constant cτ is a parametrized relation if
τ = (α1 → β1 → bool) → . . . → (αn → βn → bool) → σ1[α] → σ2[β] →
bool for some σ1, σ2 types and where n > 0. Now we define a partial order
⊑T on relations with respect to transfer rules T inductively as follows (T
denotes an n-ary parametrized relation from T):

(=) ⊑T R if R is an atomic relation from T
(=) ⊑T T = . . . =
T R ⊑T T S if R1 ⊑T S1, . . . , Rn ⊑T Sn
R ⊑T T if T = R ○○ S for some S

We also close ⊑T under substitution. Thus, we defined = as smaller than
all atomic transfer relations (e.g., ZN) and lifted this order over all relators
and parametrized transfer relations in T .
We use ⊑T to capture our preference of the rule (59) over the rule (58)

in our example since the former instantiates ?R to SFp = and the latter to
= and we have (=) ⊑T SFp = for an appropriate T . In a general setting,
we could use ⊑T to define a partial order on the list of left-hand sides
produced by transfer and accept only the lists that observe this order.
How to modify the current transfer algorithm to always observe the order
while keeping the algorithm efficient is future work.
The current workarounds contain either usage of explicit backtracking,

as I mentioned above, or locally changing T to prioritize some rules. In
our example, we could locally redeclare the rule (59) as a transfer rule
and thus force transfer to use it before the rule (58).

format of transfer rules The alpha and omega of the transfer tool is
transfer rules. We already observed that some constants (e.g., equality
or universal quantification) are not in general parametric in HOL and
therefore we came up with side conditions on a transfer relation: e.g.,
bi-uniqueness or bi-totality. In general, the side condition under which
the constant is parametric can become arbitrarily complex. The typical
example is parametricity of the head function for lists headα list→α . Its
type suggests the following parametricity rule

(list all2 R Z⇒ R) head head

but this theorem does not hold since head is underspecified for empty
lists and in general we cannot prove R (head []) (head []).

92

4.10 related work

Wewould have to assume that the lists that we work with are nonempty
but that would mean to break the point-free/higher-order style of our
transfer rules and work with rules such as the following:

x ≠ [] Ð→ list all2 R x y Ð→ R (head x) (head y)

Lammich’s automatic procedure for data refinement [56] allows such
first-order rules. In order to discharge arbitrary conditions (such as
x ≠ []), the tool tries to collect facts established either locally (e.g., by
a condition of an if statement) or globally (e.g., as an assumption of
the whole theorem). Various automatic procedures (e.g., auto or simp)
use those facts and try to discharge these arbitrary conditions within a
timeout. This approach seems to work well in his setting.
Another option how to address this problem is to encode the condition

in the relator: in our example we would use a variant of list all2 that
relates only nonempty lists.
It is our future work to explore possibilities how to support broader

class of conditional parametricity theorems while still keeping predictive
behavior of transferring.

4.10 related work

As I already mentioned, relational parametricity by Reynolds [83], free
theorems byWadler [95], and representation independence byMitchell [65]
were primary theoretical sources of inspiration.
First tools for transferring related theorems in theorem provers arose

from the need to provide an automation for defining quotients—a ubiqui-
tous mathematical concept. The typical task reads: how to define rational
numbers as a partial quotient and prove their properties in terms of the
representation type.
Much previous work has been done on formalizing quotients in theo-

rem provers. Slotosch [85] and Paulson [78] each developed techniques
for defining quotient types provided limited automation for transferring
first-order properties from representation to abstract types in the form
of lemmas that facilitate manual proofs. Harrison [33] implemented
tools for transferring theorems automatically, although this work was
still limited to first-order constants and theorems. In 2005, Homeier [39]
published a design for a newHOL tool, which was the first system capable
of transferring higher-order theorems.
In 2011, Kaliszyk and Urban [48] implemented a new quotient tool for

Isabelle/HOL, based upon Homeier’s design with some improvements.
The main difference between our solution and their solution is that they
do not use the relational view on transferring but more rewriting oriented
approach. This leads to the following deficiency: consider α fset, a type

93

relational parametricity implemented: transfer

of finite sets, this time defined as a quotient of α list. Provided that we
already defined fset versions of the list functions map(α→β)→α list→β list
and concatα list list→α list, the tool has difficulty transferring the following
theorems to fset:

concat (map (λx . [x]) xs) = xs
map f (concat xss) = concat (map (map f) xss)
concat (map concat xsss) = concat (concat xsss)

To allow transferring over a quotient, the user has to supply a respectfulness
theorem for every constant, a fact that the given constant respects the
equivalence relation used in the definition of the quotient. Note thatmap
occurs at several different type instances here: It is used with functions
of types α → β, α → α list, and α list → β list. Unfortunately a single
respectfulness theorem for map will not work in all these cases—each
type instance requires a different respectfulness theorem. On top of that,
the user must also prove additional preservation lemmas, essentially a
restricted version of parametricity. These rules can be tricky to state
correctly and tedious to prove. In our relational approach, we would
provide only one (parametrized) transfer rule per constant (map and
concat). Finally, our transfer procedure is more general and more widely
applicable without so many hard-wired assumptions about quotients.
Stepping outside of the world of quotients, a lot of work has been done

in different contexts as generalized rewriting or data refinement, which
share a lot of similar ideas to our solution. In Coq, implementations of
generalized rewriting by Coen [19] and Sozeau [86] are similar to our
transfer method—in particular, Sozeau’s “signatures” for higher-order
functions are like our transfer rules. Sozeau’s work has better support for
subrelations, but our Transfer tool is more general in allowing relations
over two different types.
Magaud [61] transfers Coq theorems between different types, but unlike

our work, his approach is based on transforming proof terms.
Lammich’s automatic procedure for data refinement [56] was inspired

by our work, especially by the idea to represent types as relations. I already
mentioned in the previous section that his solution supports arbitrary
assumptions for transfer rules and his transfer algorithm works with
first-order rules. In Coq, Cohen et al. [20] implemented a similar data
refinement framework with the same objectives as Lammich’s work.
Zimmermann and Herbelin [100] recently reported on their first steps

to turn Cohen et al.’s work on data refinement into a general-purpose
transferring plugin for Coq with similar goals as our tool. They write
about our work: Nothing going as far as their Transfer package has yet been
created for Coq.

94

All along it’s been, "Something’s being lifted
from somewhere, to some thing, but what’s
being lifted is not clear to me, and neither
are the restrictions on what the some thing
can be."

—Gottfried Barrow (2013)

5 ABSTRACT TYPES UNIFORMLY: LIFTING

The main objective of the Lifting tool is to allow us to easily define op-
erations on newly created abstract types, which is a necessary step in
building a library for an abstract type. As I already elaborated on this
in the introduction, there exists no formal notion of subtyping in the
type system of Isabelle/HOL.Therefore when I define a new abstract type,
there are no operations on this type unless I explicitly define them. More-
over, a definition is not enough. We would like to obtain some properties
of the newly defined constant, for which exactly we created the Transfer
tool; i.e., we want to acquire a transfer rule for the constant.
To automate this process, Lifting provides the lift definition com-

mand and works with four kinds of type abstraction: type copies, sub-
types, total quotients and partial quotients (see Table 1 on page 112 for an
overview of these). Although we could see type copies as a special case
of subtypes (and subtypes and total quotients as a special case of partial
quotients) and although this is exactly what the internal construction
does, I explicitly name type copies here because in some cases we can
provide more specific (and thus better) procedures for them than for
subtypes.
The Lifting tool is my work and builds on previous work on quotient

tools by Peter Homeier, Cezary Kaliszyk and Christian Urban and is
meant to conclude the effort to build a quotient tool supporting the whole
type universe of higher-order logic. This chapter is partly based on my
and Brian Huffman’s joint paper [40].
In the next section, I will go through some motivational examples to

get the first glimpse of the tool and in the light of the examples I will
outline the rest of this chapter.

5.1 motivational examples

finite sets Let us recall the typedef command, which was introduced
in Section 2.4.2: it allows us to define a new type that is isomorphic to a
nonempty subset of an already existing type. Let us use it to define the
type of finite sets α fset:

typedef α fset = {Sα set ∣ finite S} ⟨proof ⟩ (60)

95

abstract types uniformly: lifting

Having defined the new abstract type fset, we would like to define some
operations on it; let us say ∪̃α fset→α fset→α fset, the union operation. Let
us assume that the abstraction and representation functions that we get
from typedef are called abs fsetα set→α fset and rep fsetα fset→α set. If we
want to define ∪̃ in terms of operations on the representation type (and
this is what we do most of the time), there is no way to get around it than
using the abstraction and representation functions as explicit coercion
functions to convert between the old and the new type and vice versa:

Xα fset ∪̃ Yα fset = abs fset ((rep fset X) ∪ (rep fset Y)) (61)

Thus we defined ∪̃ in terms of the set union ∪α set→α set→α set. Working
directly with definitions that use coercion functions (such as the definition
(61)), requires to prove numerous lemmas how the coercions interact
with the new function and it takes much effort to prove properties of
the function. Moreover, for functions with more involved abstract types
(especially using nested types), even to work out the right definitionmight
be elaborate since it requires a complex combination of the coercions.
Let me show you how we can completely shield the user from the

trauma of working with the coercions by using the Lifting tool:

lift definition ∪̃ ∶ α fset→ α fset→ α fset is ∪ ⟨proof ⟩

We specified the name of the new abstract function, its (abstract) type and
which term on the representation level the new function corresponds to.
We had to also provide a proof of a certain statement, which I introduce
later. First, let us observe effects of the invocation of lift definition.
The definition that lift definition used to define ∪̃ is equivalent to
(61) but this time it was generated by the tool. More importantly, the tool
also automatically proved the following transfer rule

(SF Z⇒ SF Z⇒ SF) ∪ ∪̃ (62)

and if the user can provide a parametricity theorem for ∪, this stronger
parametrized transfer rule is proved

(SFp A Z⇒ SFp A Z⇒ SFp A) ∪ ∪̃. (63)

See Section 4.3 on page 75 for definitions of SF and SFp and more about
parametrized transfer rules. In fact, the Lifting tool also automatically
defines SF and SFp from the definition of fset (60).
The transfer rule allows us to prove properties of ∪̃, e.g., commutativity:

lemma ∀Aα fset Bα fset. A ∪̃ B = B ∪̃ A
apply transfer

96

5.1 motivational examples

The call of transfer turns the goal into an equivalent goal about sets

∀Aα set Bα set. A∪ B = B ∪ A,

which is a known fact from the set library and therefore easily provable.
This brings us to the first important feature of the Lifting tool: Lifting is
the main provider of transfer rules for Transfer.
Let us finally inspect the obligation that we had to prove when we used

lift definition to define ∪̃:

∀Xα set Yα set. finite X Ð→ finite Y Ð→ finite (X ∪ Y) (64)

We call this formula a respectfulness theorem, which states that the rep-
resentation term of the newly defined function must respect the type
abstraction. In our example, we have to make us sure that if we take two
elements from the subset representing fset and union them, the result
still stays in the subset; in other words, forming the union of two finite
sets produces a finite set. We can see the respectfulness theorem as a
correctness condition under which the definition makes sense.1

integer numbers Let us recall the definition (1) of integer numbers:

quotient type int = nat × nat / intrel ⟨proof ⟩

where intrel (x , y) (u, v) ←→ x + v = u + y. This means that int was
defined as a quotient of pairs of natural numbers nat × nat such that if
x+v = u+ y, the pairs (x , y) and (u, v) are in the same equivalence class;
e.g., (3, 5) and (0, 2) represent the same integer number, namely −2.
Now we want to define addition on integer numbers, plus iint→int→int.

On the concrete level, we define the addition as plus nn (x , y) (u, v) =
(x+u, y+v), where plus nn has the type nat×nat→ nat×nat→ nat×nat.
The respective lifted definition is straightforward:

lift definition plus i ∶ int→ int→ int is plus nn ⟨proof ⟩ (65)

The respectfulness theorem that we have to prove here is as follows:

∀x x′ y y′. intrel x x′ Ð→ intrel y y′ Ð→
intrel (plus nn x y) (plus nn x′ y′)

(66)

1 The role of the respectfulness theorem as a correctness condition is subtle. Looking at the
logical definition of ∪̃ (61), the respectfulness theorem guarantees that the value to which
abs fset is applied lies in the fragment for which abs fset is well defined. Surprisingly,
we could make a plain definition of ∪̃ even if the representation term did not respect
the abstraction; e.g., X ∪̃ Y = abs fset ((rep fset X) ∪ (rep fset Y) ∪ ind). Such a
definition is a valid definition in Isabelle/HOL because HOL is a logic of total functions
and therefore abs fset applied to an infinite set still represents some value in the logic. But
we do not know which value since the axiomatization of typedef abstraction functions
(see Section 2.4.2 on page 19) leaves this unspecified. Therefore we cannot prove any
interesting properties of such functions (e.g., a transfer rule) and want to prevent the user
from making such useless definitions by the command lift definition.

97

abstract types uniformly: lifting

The high-level description of the condition is the same as in the previous
example: we want to guarantee that the concrete representation respects
the type abstraction. Applied to this specific example, we want plus nn
to respect the equivalence relation intrel such that the choice of different
elements from the same equivalence class does not produce results from
different equivalence classes.2 Once this is proved, the Lifting tool defines
plus i as a certain combination of coercions produced by quotient type
and proves the respective transfer rule, which we can again use to prove
properties of plus i (for example again commutativity).
It is not a coincidence that I presented these two examples of type

abstraction here: one for a subtype (α fset) and one for a total quotient
(int). Although the different forms of the respectfulness theorems in
these two examples and seemingly different reasons why we need them
could give the impression that we need two different implementations of
the Lifting tool, this is not the case. Except for some thin presentation
and setup layers, internally we do not distinguish between subtypes and
quotients in the Lifting tool. This is the second important feature of the
Lifting tool: Lifting treats type abstractions uniformly.
In Section 5.2, I will explain how the Lifting tool treats type abstrac-

tion uniformly. This section presents the main theoretical results of this
chapter.
The following two sections (Sections 5.3 and 5.4) describe the two

above-mentioned thin layers that depend on the used type abstraction
and surround the independent core. I will explain how to set up the
Lifting tool and how we achieve that the respectfulness theorem for ∪̃
(64) can look differently from the respectfulness theorem for plus i (66).
Section 5.5 provides a bird’s eye view on how the Transfer and Lifting

tools build a platform for creating abstract types and how their layered
design provides flexibility.
I will mention some interesting aspects of the implementation of the

lifting algorithm in Section 5.6.
Section 5.7 prepares the ground for the next chapter by defining coer-

cion equations that we use as code equations in Chapter 6.
In the last section (Section 5.8), we will compare the Lifting tool with

previous quotient tools and conclude the chapter.

2 As in the case of subtypes, we could define plus i in terms of a function that does not
respect the equivalence classes, but then again we could not prove anything interesting
about plus i. The reason is that the representation function for a quotient maps an
abstract value to the concrete value that is selected by the Hilbert choice operator from
the corresponding equivalence class. This means that the concrete value is left unspecified
within the equivalence class and if the definition of plus i depended on the choice of such
a value, the result would be left completely unspecified too.

98

5.2 lifting algorithm

5.2 lifting algorithm

We abstract from the presented examples now and give a description
that covers the general case of what the Lifting tool does. The input
of the lifting is a term t ∶ τ1 on the representation level, an abstract
type τ2 and a name f of the new constant. In the first example, t = ∪,
τ1 = α set → α set → α set, τ2 = α fset → α fset → α fset and f = ∪̃. We
work generally with types τ that are composed from type constructors κ
and other types ϑ. Then we write τ = ϑ κ. Each type parameter of κ can
be either covariant (we write +) or contravariant (−). For example, in the
function type α → β, α is contravariant whereas β is covariant.
In this section, we will define three functionsMorphp, Relat andTrans.

Morphp is a combination of abstraction and representation functions and
gives us the definition of f . The polarity superscript p (+ or −) encodes if
an abstraction or a representation function should be generated. Relat
is a combination of equivalence relations and allows us to describe that
t behaves correctly—respects the equivalence classes. Finally, Trans is a
composed transfer relation and describes how t and f are related. More
formally, if the user proves the respectfulness theorem Relat(τ1, τ2) t t,
the Lifting tool will define the new constant f as f = Morph+(τ1, τ2) t
and proves the transfer rule Trans(τ1, τ2) t f .
For now we will not distinguish between type copies, subtypes, total

quotients and partial quotients. Instead we unify all these four kinds of
type abstraction with a general notion of an abstract type.

Definition 5.2.1. We say that κ2 is an abstract type based on κ1 if there is
a transfer relation Tκ1 ,κ2 ∶ ϑ κ1 → α κ2 → bool associated with κ1 and κ2
(see also Figure 4a on the next page) such that

1. Tκ1 ,κ2 is right-total and right-unique,

2. all type variables in ϑ are in α, which is a sequence of distinct type
variables.

We say that τ2 = ρ κ2 is an instance of an abstract type of τ1 = σ κ1 if

1. κ2 is an abstract type based on κ1 given by Tκ1 ,κ2 ∶ ϑ κ1 → α κ2 →
bool,

2. σ = θ ϑ, where θ = match(ρ, α) 3.

In the introductory examples, the Lifting tool internally generated
transfer relations between the representation types and the abstract types:
between α set and α fset for the finite set example and between nat× nat

3 The functionmatch is the usual matching algorithm, i.e.,match(τ, σ) yields a substitu-
tion θ such that τ i = θ σi for all i ∈ {1, . . . , n}.

99

abstract types uniformly: lifting

Tκ1 ,κ2

(a)

Rκ1 ,κ2

(b)

Absκ1 ,κ2

(c)

Repκ1 ,κ2

(d)

Figure 4: Components of an abstract type

and int for the integer example. In principle, such a transfer relation alone
is sufficient to characterize all four kinds of type abstraction: type copies,
subtypes, total and partial quotients. The other components that we can
derive from every transfer relationTκ1 ,κ2 and associate with every abstract
type are:

● Partial equivalence relation Rκ1 ,κ2 (Figure 4b), defined as Rκ1 ,κ2 =
Tκ1 ,κ2 ○○ (Tκ1 ,κ2)−1.

● Abstraction function Absκ1 ,κ2 (Figure 4c), conditionally specified
by Tκ1 ,κ2 a b Ð→ Absκ1 ,κ2 a = b.

● Representation function Repκ1 ,κ2 (Figure 4d), specified by the for-
mula Tκ1 ,κ2 (Repκ1 ,κ2 a) a.

Since Tκ1 ,κ2 is right-total and right-unique, there always exist some Abs
and Rep functions that meet the above given specification. On the other
hand, given a partial equivalence relation R, and functions Abs and Rep,
the specification defines a unique T , which is right-total and right-unique.
The reflexive part of the partial equivalence relation Rκ1 ,κ2 implicitly

specifies which values of the concrete type are used for the construction
of the abstract type.4 The representation and abstraction functions map
abstract values to concrete values and vice versa. Absκ1 ,κ2 is underspecified
outside of a range of Tκ1 ,κ2 (dashed lines in Figure 4c) and Repκ1 ,κ2 can
select only one of the values in the corresponding class.
From a theoretical standpoint, we do not need the other components.

We could build compound transfer relations for compound types and
derive the other components from this relation (using the choice operator
for the morphismsMorphp). But it turns out that it is useful to have these
other components explicitly: we need the morphisms for generating code
equations (which I will explain in Chapter 6) and the equivalence relation
is good for presenting the respectfulness theorem in a readable way.

4 We omitted the reflexive edges of Rκ1 ,κ2 in Figure 4b.

100

5.2 lifting algorithm

Now we come to the key definition of this section. We derived R,
Abs and Rep only for transfer relations that are associated with a type
constructor. But later on, we build compound transfer relations for general
types. What are R, Abs and Rep in this case? Again any functions meeting
the above given specification. The following quotient predicate captures
this idea and bundles all the components together.

Definition 5.2.2. We define a quotient predicate with the syntax ⟨., ., ., .⟩
and we say that ⟨R, Abs, Rep, T⟩ if

1. R = T ○○ T−1,

2. T a b Ð→ Abs a = b and

3. T (Rep a) a.

The following definition requires that ⟨., ., ., .⟩ is preserved by going
through the type universe using map functions and relators.

Definition 5.2.3. We say that mapκ is a quotient-friendly map function
for κ and relκ is a quotient-friendly relator for κ, where κ has arity n, if the
assumptions ⟨R1, m+1 , m−1 , T1⟩, . . . , ⟨Rn , m+n , m−n , Tn⟩ imply

⟨relκ R1 . . . Rn ,

mapκ mp1κ
1 . . . mpnκ

n ,

mapκ m−p
1
κ

1 . . . m−p
n
κ

n ,
relκ T1 . . . Tn⟩

for some p1κ . . . pnκ .5

Indexes piκ encode which arguments of the map function are covariant
(+) or contravariant (−). The −p is a flipped variance of p. For example,
the map function and the relator for the function type6 are quotient
friendly since the following holds:

⟨R1, Abs1, Rep1, T1⟩ Ð→
⟨R2, Abs2, Rep2, T2⟩ Ð→
⟨R1 Z⇒ R2, Rep1 ↦ Abs2, Abs1 ↦ Rep2, T1 Z⇒ T2⟩,

(67)

We can see that p1→ = − and p2→ = +. From now on, we will assume that
everymapκ and relκ are quotient friendly.

5 The implementation of the lifting algorithm is more general: it allows reshuffling of argu-
ments of relκ andmapκ , andmapκ can take up to 2n arguments because type arguments
of κ can be in general covariant and contravariant at the same time, e.g., α in the type
α → α. This definition aims to be a sweet spot between generality and clarity.

6 The map function for the function type↦(α→β)→(γ→δ)→(β→γ)→α→δ is defined as (h ↦
g) f = g ○ f ○ h.

101

abstract types uniformly: lifting

Now we finally defineMorphp, Relat and Trans, as I promised to be
the main goal of this section. First, let us define auxiliary functions
morphp, relat and trans, which will be used as the single step functions
in the main inductive definition ofMorphp, Relat and Trans. Functions
morphp, relat and trans are defined for all types τ1 = σ κ1 and τ2 = ρ κ2
such that τ2 is an instance of an abstract type based on τ1, as follows:

● morph+(τ1, τ2) = Absκ1 ,κ2τ1→τ2

● morph−(τ1, τ2) = Repκ1 ,κ2τ2→τ1

● relat(τ1, τ2) = Rκ1 ,κ2τ1→τ1→bool

● trans(τ1, τ2) = Tκ1 ,κ2τ1→τ2→bool

Now we extend the simple step functions morphp, relat and trans
defined only for abstract types to functions Morphp, Relat and Trans,
which take general types τ1 and τ2. We extend them inductively on the
structure of the two types (τ1, τ2) by distinguishing three cases:

● Base case: τ1 = τ2. Then we define

Morphp(τ1, τ2) = idτ1→τ1 ,
Relat(τ1, τ2) = (=)τ1→τ1→bool,
Trans(τ1, τ2) = (=)τ1→τ1→bool.

● Nonabstract type case: τ1 = σ κ and τ2 = ρ κ. Then we define

Morphp(τ1, τ2) = mapκ Morphp
1
κ p(σ1, ρ1) . . .Morphp

n
κ p(σn , ρn),

Relat(τ1, τ2) = relκ Relat(σ1, ρ1) . . . Relat(σn , ρn),
Trans(τ1, τ2) = relκ Trans(σ1, ρ1) . . . Trans(σn , ρn),

where mapκ is a map function for κ, the term piκp is the usual
multiplication of polarities (+ ⋅ − = − ⋅ + = − and + ⋅ + = − ⋅ − = +)
and finally relκ is a relator for type κ.

● Abstract type case: τ1 = σ κ1, τ2 = ρ κ2 and κ1 ≠ κ2. Additionally,
we require two well-formedness conditions:

1. κ2 is an abstract type based on κ1 given by Tκ1 ,κ2 ∶ ϑ κ1 →
α κ2 → bool.

2. σ = θ ϑ, where θ = match(ρ, α).7

7 Definition 5.2.1 guarantees that all type variables in ϑ are in α and thus ρ uniquely
determines θ ϑ.

102

5.2 lifting algorithm

Then we define these equations

Morph+(τ1, τ2) =morph+(σ κ1, τ2) ○Morph+(τ1, σ κ1),
Morph−(τ1, τ2) =Morph−(τ1, σ κ1) ○morph−(σ κ1, τ2),

Relat(τ1, τ2) =Trans(τ1, σ κ1) ○○ relat(σ κ1, τ2)
○○Trans(τ1, σ κ1)−1,

Trans(τ1, τ2) =Trans(τ1, σ κ1) ○○ trans(σ κ1, τ2).

By inspecting the above three cases, we will find out that the following
two cases are not covered:

1. τ1 or τ2 is a type variable and τ1 ≠ τ2 or

2. the well-formedness conditions 1. and 2. in the abstract type case
are not fulfilled.

Thus, we also implicitly defined for which (τ1, τ2) the functionsMorphp,
Relat and Trans are undefined and we cannot do the lifting. Notice that
these cases represent inherent problems: either the types are structurally
different or the required abstraction was not defined. In such cases the
Lifting tool reports an error. Let us assume for the rest that we work only
with such (τ1, τ2) thatMorphp, Relat and Trans are defined for.

Theorem 8. Morphp, Relat and Trans have the following types:

Morph+(τ1, τ2) ∶ τ1 → τ2,
Morph−(τ1, τ2) ∶ τ2 → τ1,

Relat(τ1, τ2) ∶ τ1 → τ1 → bool,
Trans(τ1, τ2) ∶ τ1 → τ2 → bool.

Proof. By induction on defining equations ofMorphp, Relat and Trans.

Thus in our context, where t ∶ τ1, the terms Relat(τ1, τ2) t t, f =
Morph+(τ1, τ2) t and Trans(τ1, τ2) t f are well-typed terms and f has
the desired abstract type τ2. The respectfulness theorem Relat(τ1, τ2) t t
has to be proved by the user. We obtain the definitional theorem f =
Morph+(τ1, τ2) t as the result of Isabelle’s internal definitional mecha-
nism. The remaining task is to get the transfer rule Trans(τ1, τ2) t f . The
two following theorems give us the desired transfer rule.

Theorem 9. If ⟨R, Abs, Rep, T⟩, f = Abs t and R t t, then T t f .

Proof. Because R = T ○○T−1, and R t t, we have ∃x . T t x. Let us denote
this x by g. Thus Abs t = g follows from T t g. But from f = Abs t we
can derive f = g and thus T t f .

103

abstract types uniformly: lifting

The followingTheorem 10 is the key theorem of this section: it proves
that our definitions ofMorphp, Relat and Trans are legal, i.e., they have
the desired property that they still form a (compound) abstract type, i.e.,
they meet the quotient predicate. First a technical lemma.

Lemma 5.2.4. The quotient predicate is preserved through the composi-
tion of abstract types: ⟨R1, Abs1, Rep1, T1⟩ and ⟨R2, Abs2, Rep2, T2⟩ imply
⟨T1 ○○ R2 ○○ T−11 , Abs2 ○Abs1, Rep1 ○ Rep2, T1 ○○ T2⟩.

Proof. Directly from the definition of ⟨., ., ., .⟩ and basic facts about func-
tions and relations.

Theorem 10.

⟨Relat(τ1, τ2),Morph+(τ1, τ2),Morph−(τ1, τ2), Trans(τ1, τ2)⟩

Proof. By induction on defining equations ofMorphp, Relat and Trans:

● Base case: ⟨=, id, id, =⟩ holds.

● Nonabstract type case: ⟨., ., ., .⟩ is preserved through this case as it
is required by Definition 5.2.3. We obtain the assumptions of the
condition in Definition 5.2.3 from the induction hypothesis.

● Abstract type case: We use Lemma 5.2.4, which shows that ⟨., ., ., .⟩
is preserved through the composition of abstract types. The first
assumption is obtained from the induction hypothesis (notice that
we use simpler types here) and the second assumption is

⟨relat(τ1, τ2),morph+(τ1, τ2),morph−(τ1, τ2), trans(τ1, τ2)⟩,

which holds by construction.

Nowwe can composeTheorem 9 andTheorem 10 together with the def-
initional theorem f =Morph+(τ1, τ2) t and the respectfulness theorem
Relat(τ1, τ2) t t and obtain the desired transfer rule Trans(τ1, τ2) t f .

5.3 setup interface

A new abstract type κ2 of κ1 is registered in the Lifting tool by provid-
ing a quotient theorem ⟨R, Abs, Rep, Tϑ κ1→α κ2→bool⟩ such that TV(ϑ) ⊆
TV(α) and α contains only distinct type variables. This defines

Rκ1 ,κ2 = R,
Absκ1 ,κ2 = Abs,
Repκ1 ,κ2 = Rep,
Tκ1 ,κ2 = T .

104

5.3 setup interface

Users generally will not prove the quotient theorem manually for new
types because the Lifting tool automates the process for the twomost com-
mon commands that can define a new abstract type—quotient type
and typedef command.
quotient type: Let us recall how the quotient typeworks: it takes

as an input a (partial) equivalence relation R, defines the demanded quo-
tient type and it provides the coercions Abs and Rep with the properties
that I described in Section 2.4.3 on page 20. The tool defines the corre-
sponding transfer relation T as the graph of the well-defined part of Abs:
T x y = (Abs x = y) for total quotients and T x y = R x x ∧ (Abs x = y)
for partial quotients. Using the definition of T and the properties of Abs
and Rep, the tool automatically proves ⟨R, Abs, Rep, T⟩.
typedef: The typedef command takes a nonempty set S and defines

a type isomorphic to the set, which is witnessed by the pair of coercions
Abs and Rep—see Section 2.4.2 on page 19. We define T to be again
the graph of the well-defined part of Abs but for subtypes we can do it
in a more uniform way via Rep: T x y = (x = Rep y) for both type
copies and proper subtypes. How we define R, depends on how the set
S was expressed. If S = UNIV, we set R = (=); if S = {x ∣ P x}, we set
R = (=on) P; otherwise we set R = (=on) (λx . x ∈ S), where =on is the
restricted equality defined as

=on P x y = (P x ∧ x = y).

Thus we encode a subset S by an equivalence relation that contains only a
diagonal on S. Finally, the Lifting tool automatically proves the quotient
predicate ⟨R, Abs, Rep, T⟩ (regardless of the variant of R).
During the setup, there are more theorems that get automatically

proved. I will mention only the most prominent ones here—transfer
rules. Since we defined the transfer relation T in this step, the tool proves
properties of it such as bi-uniqueness or bi-totality. See the Table 1 on
page 112 for an overview which properties for which cases of type abstrac-
tion are proved. Last but not least, if T is not bi-unique, the tool proves
the following transfer rule for =:

(T Z⇒ T Z⇒=) R =

This rule certifies that the equality on a quotient type transfers to the
corresponding equivalence relation on the representation type.
The interface that we use for setting up the Lifting tool from the proof

text comprises the command setup lifting. The user has to supply
the respective theorem: either a quotient theorem or a typedef theo-
rem. For example, the typedef command in (60) generated the theorem
type-definition-fset witnessing that fset is indeed a subtype. We can use
this theorem to set up the Lifting tool as follows:

setup lifting type-definition-fset

105

abstract types uniformly: lifting

A similar theorem is generated by the quotient type command. As we
will see in Section 5.5, not only theorems from these two commands could
be used. It can be any quotient theorem, for example, proved manually.

5.4 readable form of respectfulness theorems

Since the respectfulness theorem is the only proof obligation presented to
the user, I also implemented a procedure that rewrites the internal point-
free form into an equivalent, user-friendly, readable form, which the tool
presents in lift definition. We distinguish three cases of abstract
types in this section: quotients, (proper) subtypes and type copies.

quotients The procedure is rather simple here—e.g., this is the internal
form of the respectfulness theorem for plus i (defined on page 97):

(intrel Z⇒ intrel Z⇒ intrel) plus nn plus nn

In order to obtain the readable form (66), we unfold the definition of Z⇒.

subtypes Let us have an abstract function of the type σ1 → . . . →
σn → σn+1 (where σn+1 is not a function) with the respectfulness theorem
(R1 Z⇒ . . . Rn Z⇒Rn+1) t t. For the start, let us assume that every σi is either
a subtype without nesting or a nonabstract type. Then the respectfulness
theorem has a special form

(=on P1 Z⇒ . . . =on Pn Z⇒=on Pn+1) t t. (68)

Using two rewriting rules

(=on P Z⇒ R) f f ←→ (∀x . P x Ð→ R (f x) (f x)) and
=on P x x ←→ P x ,

we can rewrite (68) into a more readable form

∀x1 . . . xn . P1 x1 Ð→ . . . Ð→ Pn xn Ð→ Pn+1 (t x1 . . . xn).

This procedure already covers the example with a definition of union on
finite sets (62). It rewrote the internal respectfulness theorem

(=on finite Z⇒=on finite Z⇒=on finite) ∪ ∪

into a more readable form

∀Xα set Yα set. finite X Ð→ finite Y Ð→ finite (X ∪ Y).

106

5.4 readable form of respectfulness theorems

Naturally, we would like to cover a broader class of respectfulness
theorems than just theorems of the form (68): we want to have abstract
types not only at the top of σi (e.g., α fset option) and we want to nest
the abstract types (e.g., α fset fset). To achieve the generalization, we
proceed as follows: we rewrite every Ri corresponding to σi into the form
=on t, where t is considered to be readable, and thus rewrite the more
general respectfulness theorem into the form (68). Concretely, we use the
following rewriting rules to gradually move =on to the top of the relation:

1. For every type constructor κ that is a natural functor we automati-
cally prove and use the following rule:

relκ (=on P) = (=on) (predκ P)

2. For the function type, we use the built-in rule

(= Z⇒=on P) = (=on) (∀x . P x).

3. For the abstract type composition, we use the built-in rule

Domp T = P1 bi unique T (T Z⇒=) P2 P′2
(T ○○ =on P′2 ○○ T−1) = (=on) (∀x . P1 x ∧ P2 x)

.

The third rather complicated rule deserves an explanation. We discharge
the first and the second assumption by the transfer algorithm from the
Transfer tool. The first assumption is used to replace Domp T by a more
readable term. This is a mechanism of the Transfer tool and was explained
in Section 4.4 on page 77; e.g., we replace Domp SF by finite. The last
assumption requires that the defining predicate of the inner type must be
parametric (for bi-unique relations) and is discharged by transfer prover.
Let me demonstrate the meaning of the last assumption by an example.
Let us define the union operator on finite sets:

lift definition ⋃̃ ∶ α fset fset→ α fset is ⋃ ⟨proof ⟩

The internal respectfulness theorem is the following beast

(rel set SF ○○ =on finite ○○ (rel set SF)−1 Z⇒=on finite) ⋃ ⋃,

which gets rewritten by our procedure to an equivalent statement, which
one would expect from looking at the type of ⋃̃:

∀SSα set set. (∀Sα set ∈ SS. finite S) ∧ finite SSÐ→ finite (⋃ SS) (69)

The twist is that the finite predicates that aremarked red in both statements
have different types: α fset set → bool vs. α set set → bool. This is

107

abstract types uniformly: lifting

the place where parametricity comes into play: these two different type
instances of finite are not equivalent unless finite is parametric. At the
end, notice how many different concepts we had to use to obtain (69):
parametricity, transfer prover, transfer rules, natural functors (we needed
the rule for rel set).
Let me conclude: the introduced procedure can rewrite any respectful-

ness theorem into a readable form under the following mild assumptions,
which stem from the above-mentioned three categories of rewriting rules:

1. Nonabstract type constructors must be natural functors.8

2. If σi is a function type, the abstract type can be only in the positive
position. This condition is hardly violated in practice.

3. The defining predicate of the subtype must be parametric for bi-
unique9 relations.

type copies Also here we rewrite the respectfulness theorem to a more
readable form; in this case to an extremely readable form: True. I im-
plemented a procedure that can prove the respectfulness theorem auto-
matically if all involved abstract types are type copies. Observe that a
respectfulness theorem R f f is true if and only if R is reflexive, which is
if and only if = ⊑ R. I built a more generalmonotonicity prover that can
prove statements such as = ⊑ R or R ⊑ =.
The prover is a simple prover that repeatedly applies the following

monotonicity rules:

1. Each time a total quotient ⟨R, Abs, Rep, T⟩ is registered, we register
the following monotonicity rule:

= ⊑ R

2. There are trivial rules

= ⊑ = =on P ⊑ =

and rules for relations from the composition of quotients:10

bi total T = ⊑ R
= ⊑ T ○○ R ○○ T−1

bi unique T R ⊑ =
T ○○ R ○○ T−1 ⊑ =

8 Or the user provides a manually proved theorem of the form relκ (=on P) = (=on) t,
where t is considered to be readable.

9 In fact, the strictly weaker left-uniqueness suffices but this is not relevant in our use case.
10 Left-totality (left-uniqueness respectively) would suffice here but this is not relevant in

our use case.

108

5.5 modular design of transfer and lifting

3. For any type constructor κ for which we store the monotonicity
rule

R1 O1 S1 Ð→ . . . Ð→ Rn On Sn Ð→ relκ R ⊑ relκ S ,

whereOi is either ⊑ or ⊒ and for which we store11 the identity rule

(relκ = . . . =) = (=),

we derive the following two rules for the prover:

R1 O1 = . . . Rn On =
relκ R ⊑ =

= O1 R1 . . . = On Rn
= ⊑ relκ R

Let me remind you that since the monotonicity and identity rules
are automatically proved for any κ that is a natural functor or the
function type, we obtain the two above-stated rules for any natural
functor as well.

5.5 modular design of transfer and lifting

In the introduction, I mentioned that the Lifting tool is the main provider
of transfer rules for the Transfer tool. Let me elaborate on this slogan.

Transfer tool

Lifting tool

user-defined
transfer
rules

manually
defined
quotients

typedef quotient type . . .

Figure 5:Modular design of tools for abstract types

When we decided to build a platform that would support creating type
abstraction, we came up with a solution that uses a layered design, with
multiple components and interfaces that are related as shown in Figure 5.
Each component depends only on the components underneath it. At the

11 We store monotonicity and identity rules in the Transfer tool’s infrastructure. See Sec-
tion 4.7 on page 85.

109

abstract types uniformly: lifting

bottom is the Transfer tool, which transfers propositions between concrete
and abstract types. Note that theTransfer tool has no dependencies; it does
not know anything about the representation and abstraction functions or
quotient predicates. It is configured by an extensible set of transfer rules.
Above Transfer is the Lifting tool for defining constants on abstract

types. It configures each new constant to work with the Transfer tool by
providing a transfer rule for it. At the top are commands that configure
new types to work with Lifting, such as typedef and quotient type
as I explained in Section 5.3. In principle, additional type definition
commands might be implemented later. The Lifting tool is configured by
quotient theorems.
The Lifting tool is the main provider of transfer rules for the Transfer

tool but it is not the only one. As we saw in Chapter 4, the user can setup
transferring between two existing types that were defined independently
on each other, including their operations. As an example, we transferred
propositions between natural and integers numbers by means of the user-
defined transfer rules (23) to (28).
Similarly, typedef and quotient type are the main providers of

quotients for the Lifting tool but the user can prove manually their own
quotient theorem if they need a special construction. There exist examples
(e.g., the library of finite bit strings) where this flexibility is needed.

5.6 implementation

The implementation of the lifting algorithm roughly follows the abstract
descriptions from Section 5.2. There are some interesting implementation
aspects worth mentioning here.
Theorem 9 tells us how to obtain the transfer rule for a newly defined

constant: we have to discharge the three assumptions of the theorem.
We already know that we get the respectfulness theorem proved by the
user and the definitional theorem from the kernel of the system. Finally,
Theorem 10 gives us a recipe how to prove the quotient theorem.
I implemented a syntax-driven procedure that proves a quotient theo-

rem for a given pair of types τ1 and τ2 by following the induction proof
of Theorem 10: if the types τ1 and τ2 are the same, the procedure re-
turns the trivial quotient theorem ⟨=, id, id, =⟩; in the abstract type case,
we use a quotient theorem from the recursive call, the quotient theo-
rem ⟨relat(τ1, τ2),morph+(τ1, τ2),morph−(τ1, τ2), trans(τ1, τ2)⟩12 and
Lemma 5.2.4; in the nonabstract case, the procedure uses a theorem that
certifies that the quotient predicate is preserved by the type constructor

12 The theorem is an instance of the quotient theorem registered by the user for the abstract
type in question—see Section 5.3.

110

5.7 coercion equations

in question, i.e., a theorem in the style of Definition 5.2.3 on page 101.
We already saw such a theorem for the function type ((67) on page 101).
Another example of such a theorem this time for α list:

⟨R, Abs, Rep, T⟩ Ð→
⟨list all2 R,map Abs,map Rep, list all2 T⟩

(70)

These theorems are either already part of the library (e.g., for the function
type) or are proved automatically (for any natural functor) or must be
provided by the user.
Now comes themain twist. Notice that we do not provide the statement

of the quotient theorem and let the procedure prove it, but we provide
only a pair of types as an input and the procedure synthesize and proves
the corresponding quotient theorem. Thus we do not only prove the
compound quotient theorem to derive the transfer rule but also to synthe-
size the termsMorphp(τ1, τ2), Relat(τ1, τ2) and Trans(τ1, τ2) as a side
effect. Thanks to this approach, I managed to get a simple implementation,
which does not suffer from various technical limitations of the original
quotient tool [48].13

5.7 coercion equations

There is another category of theorems that the lift definition com-
mand proves. They show how the newly defined abstract function inter-
acts with the coercions of the abstract type. I claimed in the introduction
that we want to shield the user from the coercion functions and this
section does not contradict the objective. The users do not usually en-
counter the coercion equations. Their main role is that they can be used
as code equations for the code generator under some restrictions. The
code generator is a central component in Isabelle/HOL and is used in a lot
of projects for program and algorithm verification. I will explain the role
of the Lifting tool in code generation in a separate chapter—Chapter 6.
For the present, I will define the format of the coercion equations and

sketch how to prove them. Let us assume that the abstract function is
called f and its type is σ1 → . . . → σn → σn+1, where σn+1 is not a function
type. From Section 5.2 we know that f was defined as f = Abs t, the
respectfulness theorem was R t t and there is a corresponding coercion
Rep such that ⟨R, Abs, Rep, T⟩ for some transfer relation T . Now using
our knowledge of the lifting algorithm and of the quotient theorem for

13 The main advantage is that we do not need any formal notion of covariant and contravari-
ant parameters of a type constructor and also any complicated procedures for building
terms. All of this is implicitly encoded in the quotient theorems from Definition 5.2.3 on
page 101—we can see this in the concrete examples (67) and (70).

111

abstract types uniformly: lifting

total equivalence relation partial equivalence relation

tr
iv
ia
lr
el
at
io
n
(s
ub
se
to
f=
) type copy subtype

transfer relation: transfer relation:
bi-unique, bi-total bi-unique, right-total

rep eq: + abs eq: + rep eq: + abs eq: ∼
example: mappings example: finite sets
(α, β)mapping = α ⇀ β14 α fset = {Sα fset ∣ finite S}

no
nt
riv
ia
lr
el
at
io
n total quotient partial quotient

transfer relation: transfer relation:
right-unique, bi-total right-unique, right-total

rep eq: − abs eq: + rep eq: − abs eq: ∼
example: integer numbers example: rational numbers
int = nat × nat/intrel α rat = int × int/ratrel
+ . . . yes − . . .no ∼ . . . only with assumptions

Table 1: Categorization of type abstractions

the function type (67), we can conclude that R = R1 Z⇒ . . . Z⇒ Rn Z⇒ Rn+1,
Abs = Rep1 ↦ ⋅ ⋅ ⋅ ↦ Repn ↦ Absn+1 and Rep = Abs1 ↦ ⋅ ⋅ ⋅ ↦ Absn ↦
Repn+1 for some Ri , Absi and Repi , whose form is not important here.
There exist two coercion equations associated with f :

● Representation function equation has form

Repn+1 (f x1 . . . xn) = t (Rep1 x1) . . . (Repn xn).

● Abstraction function equation has form

f (Abs1 x1) . . . (Absn xn) = Absn+1 (t x1 . . . xn).

representation function equation. By unfolding the map function↦
in the definition of f and using simple facts we get Repn+1 (f x1 . . . xn) =
Repn+1 (Absn+1 t′), where t′ = t (Rep1 x1) . . . (Repn xn). From the

14 The type α ⇀ β is syntax for α → β option.

112

5.8 related work

respectfulness theorem it follows that Rn+1 (Repn+1 (Absn+1 t′)) t′. If we
were able to prove that the relation Rn+1 is a subset of the equality, we could
conclude that Repn+1 (Absn+1 t′) = t′ and obtain the desired equation
Repn+1 (f x1 . . . xn) = t (Rep1 x1) . . . (Repn xn). The monotonicity
prover from Section 5.4 can prove that Rn+1 ⊑ = if Repn+1 and Absn+1
represent a subtype or a type copy.

abstraction function equation. It holds that R (Rep f) t. By unfolding
Z⇒ in R and↦ in Rep and using the fact that∀x y. Rn+1 (Repn+1 x) y Ð→
x = Absn+1 y, we get this conditional equation R1 x1 x1 Ð→ . . . Ð→
Rn xn xn Ð→ f (Abs1 x1) . . . (Absn xn) = Absn+1 (t x1 . . . xn). We will
try to discharge the assumptions by the monotonicity prover. If R1 to
Rn are relations that are composed from relators that preserve reflexivity
(e.g., any natural functor relator) and the abstract types that are involved
are total (i.e., a type copy or a total quotient), the monotonicity prover
succeeds for every assumption and gives us a plain equation.15
Overall, we can generate representation function equations for type

copies and subtypes, and abstraction function equations with extra as-
sumptions for any abstract type. We can discharge the extra assumptions
for total abstract types and thus obtain plain equations. See Table 1 for an
overview, for which type abstractions which coercion equations we get.

5.8 related work

The related work coincides with the related work about quotients that I
presented in Chapter 4. Slotosch [85], Paulson [78] and Harrison [33]
implemented tools that can define first-order functions on quotients.
In 2005, Homeier [39] published the first system capable of defining
higher-order functions. In 2011, Kaliszyk and Urban [48] identified a
limitation of Homeier’s tool: although it can work with higher-order
functions, it still does not support a composition of quotient types. For
example, the union operator on finite sets (defined as a quotient on lists)
⋃̃ ∶ α fset fset→ α fset cannot be defined by Homeier’s tool.
Kaliszyk and Urban’s tool improved on Homeier’s tool: it can produce

the right definition for functions with nested quotients in their types
(e.g., ⋃̃) but the compound equivalence relation for nested quotients was
defined differently from our solution. In the Abstract type case in the
Lifting algorithm on page 102, they would use the following definition:

Relat(τ1, τ2) = Relat(τ1, σ κ1) ○○ relat(σ κ1, τ2) ○○ Relat(τ1, σ κ1)

15 The function relator Z⇒ does not preserve reflexivity in the negative position (but it still
preserves (=), i.e., type copies). This does not limit us in practice, as there is hardly a
function with a functional parameter with an abstract type in a negative position.

113

abstract types uniformly: lifting

AlthoughTheorem 8 still holds, Theorem 10 cannot be proved as Kaliszyk
and Urban noticed themselves [48, end of §2]: Unfortunately a general
quotient theorem . . . would not be true in general.The reason is that their
version of the lemma stating that the quotient predicate is preserved
through the composition of abstract types (Lemma 5.2.4 in our setting)

⟨R1, Abs1, Rep1, T1⟩ Ð→
⟨R2, Abs2, Rep2, T2⟩ Ð→
⟨R1 ○○ R2 ○○ R1, Abs2 ○Abs1, Rep1 ○ Rep2, T1 ○○ T2⟩

does not hold. Thus their quotient tool still does not cover the whole pos-
sible type universe because it requires to prove unprovable respectfulness
theorems for some functions (using composed quotient types) that still
respect the corresponding equivalence relations. The Lifting tool does
not suffer from this problem.
This is the main theoretical contribution of my work on the Lifting

tool: considering tools for quotients in higher-order logic, the Lifting
tool is the first tool that covers the whole type universe (especially higher-
order types and compositions of quotients). This claim is supported by
Theorem 10. The definition of an abstract function fails only when this
is inherently impossible: either the representation and abstract types are
structurally different or the required abstraction is not defined.
I will quickly list other differences of the Lifting tool (and also the

Transfer tool) from the tool by Kaliszyk and Urban:

● Themodular design yields flexibility, i.e., Lifting is not limited to
types defined by quotient type and similarly Transfer to con-
stants defined by lift definition.

● The Lifting tool supports arbitrary type constructors, rather than
only covariant ones plus the hard-coded function type.

● The respectfulness theorem is generated by the tool and is presented
in the user-readable form. Moreover, the theorem is automatically
discharged for type copies.

● TheLifting tool proves the coercion equations and is thus integrated
with the code generator.

114

The problems are solved, not by giving new
information, but by arranging what we
have known since long.

— Ludwig Wittgenstein (1953)

6 USE CASE: DATA REFINEMENT

Data refinement is an important technique that allows us to reason ab-
stractly and yet obtain efficient code. Our methodology reduces data
refinement to code generation by means of only small enlargement of the
trusted code base thanks to using abstract types at various levels.

6.1 background

Algorithm (or program) verification is one of the main usage scenarios
of Isabelle/HOL. In this scenario, the user defines a specification of an
algorithm and proves desired correctness properties of it. The last step
is to extract executable code from the specification by using the code
generator, which guarantees that the generated code possesses the same
correctness properties as the specification.
Isabelle/HOL supports code generation for a number of functional pro-

gramming languages (SML, OCaml, Haskell, Scala). Basically, equational
theorems inHOL, called code equations, are translated into function defini-
tions in the target languages. Amathematical treatment of this translation
process, including correctness proofs, can be found elsewhere [29]. We
stay on the level of code equations here and do not need to worry about
the further translation steps. The semantics of the generated code is that
we will see evaluations of it as rewriting steps in a certain higher-order
rewrite system that is an abstraction of all the target languages. The key
correctness property with respect to this semantics is that any rewriting
step s ↝ t in this system must be a provable equality s = t in HOL.
When we want to generate code for some function f , any list of equa-

tions of the form f . . . = . . . (with pattern matching on the lhs) can
(in principle) serve as code equations, not just the original definition of
f . Thus we are free to define a second, more efficient function g, prove
f (x) = g(x), and use this equation (together with the ones for g) as
the code equations for f . Algebraic datatypes in HOL are turned into
equivalent algebraic datatypes in the target language. Interestingly, the
correctness proof revealed that in fact any function in HOL can in princi-
ple become a constructor function in the target language (but of course
not a defined function at the same time).

115

use case: data refinement

inv

C A

representable
elements

Abs

Figure 6:Data refinement

Algorithm verification is most convenient at a high level of abstraction,
reasoning about data in terms of sets, functions and other mathematical
concepts. However, when running the verified code we want to replace
sets and functions by lists and trees, to make them efficiently executable.
This replacement is called data refinement, and the ideal theorem prover
should do this fully automatically once we prove that the concrete repre-
sentation is adequate.
More formally, data refinement replaces an abstract datatype A by

a more concrete one C in the generated code. The typical example is
the implementation of sets by lists. The concrete type is also called the
implementation or representation. Refining A by C requires an abstraction
function Abs ∶ C → A (e.g., mapping [1, 2] to {1, 2}) and an invariant
inv ∶ C → bool (e.g., ruling out lists with duplicates). The basic picture is
shown in Figure 6.
The standard approach is to demand that Abs is a homomorphism: for

every operation f ∈ Σ (the primitive operations that need implementing)
on the abstract type and its concrete implementation f ′ it must be shown
that f (Abs(x)) = Abs(f ′(x)). A system supporting data refinement on
this basis will require the user to prove the homomorphism property for
all operations to ensure soundness of the refinement step. This means that
a new trusted component is added to the system: the refinement manager.
A typical example for this approach is the KIV system [82].
When we design an extension of our proof assistant, we always try

to find a sweet spot between trustworthiness and usability. We measure
trustworthiness in terms of howmuch codemust be trusted, how complex
the code is and how complex the correctness argument for the code is.
We followed the same approach when we planned to add support for data
refinement into the code generator.
In order to add as little trusted code as possible, we turn the standard

approach to data refinement on its head: Rather than check that the correct

116

6.1 background

homomorphism theorems have been proved before code is generated, the
homomorphism theorems themselves are the glue code between f and f ′.
More precisely, we instruct the code generator to view A as an algebraic
datatype with the single (uninterpreted!) constructor Abs ∶ C → A.
Now f (Abs(x)) = Abs(f ′(x)) is a code equation that performs pattern
matching on Abs to turn a call of f into a call of f ′. This is the key point
of our approach: We generate code for the actual function f , not for
some other function f ′ for which some additional theorems show that
it implements f in the correct manner. This form of data refinement is
completely automatic: Once a particular refinement of A by C has been
set up, generating code involving functions on A involves no further input
by the user. Moreover, this approach is covered by the original semantics
and no new trusted extension is needed.
Unfortunately it breaks down once we have a nontrivial invariant and

can only prove inv(c) Ð→ f (Abs(c)) = Abs(f ′(c)). This is a conditional
equation and thus unsuitable for generating code. As I stressed a couple
of times in this text, we can introduce a new subtype defined by inv to
make the equation unconditional and thus to make our trick work even
when we have a nontrivial invariant. At this point we need to introduce a
minimal extension of the code generator to execute functions defined on
subtypes. This is the content of Section 6.2.
We call a type σ basic if σ contains an abstract type constructor either

only at the top or not at all. More formally: let the abstract type be α κ
then either σ = τ κ where each τi does not contain κ or σ does not contain
κ at all.
To keep our methodology simple, as well as its correctness proof, our

approach assumes two restrictions:

1. The refinement happens on a per type constructor basis, i.e., the
type that is being refined has to be of the form α κ. We propose
this workaround: if we want to refine a general type expression τ
(e.g., α → β option), we will create a type copy of τ and transfer our
specification to the new type. This is the subject of Section 6.3.

2. Using the extension for invariants and given a function f ∶ σ1 →
. . . → σn → σ (where σ is not a function type) that is being executed
as primitive operation, the return type σ must be basic. Thus σ
can be α fset but not α fset option. A workaround: I implemented
a fully automated procedure that defines a provably equivalent
specification for f such that f is not a primitive operation anymore
and can be executed, provided the outer nonabstract type in σ is
a (co)datatype. The procedure introduces auxiliary subtypes that
are isomorphic to the types violating the restriction and defines
appropriate projection functions that conform the restriction. See
Section 6.4 for details.

117

use case: data refinement

Thus we can keep the sweet spot between trustworthiness and usability:
the trusted extension (and its proof of correctness) is small and at the
same time its restrictions can be lifted both thanks to abstract types.
Needless to say, we use the Transfer and Lifting tools in all cases when

we use abstract types in our methodology. Let me note that we should
not view the role of Transfer and Lifting in our approach as follows: there
is a methodology for reducing data refinement to code generation and
later somebody implemented an automation for a part of it to make the
life of the users easier. We treat the automation rather as an integral part
of the methodology because it makes our solution viable in practice.
The code generator together with the methodology for data refinement

was developed by Florian Haftmann and Tobias Nipkow. Alexander
Krauss came up with the idea to use quotient tools for automating parts of
Florian and Tobias’s approach. My contribution was to make Alexander’s
idea come into existence and to develop the technique to lift one of the
main limitation of the approach, the return type limitation (Section 6.4).
This chapter is based on our joint paper [28].

6.2 data refinement with invariants

I will explain how to perform data refinement with invariants by first
considering the case without invariants and then later bring invariants
into play. The last part shows how to automate our approach by the
Transfer and Lifting tools.

6.2.1 Standard Method without Invariants

The standard example for refinement without invariants is the implemen-
tation of sets by lists with no restrictions on the order or multiplicity of
the elements in the lists.
The relation between lists and sets is an instance of Figure 6 where C =

α list, A = α set, inv is true everywhere (every list is a valid representation)
and Abs = set, a predefined function that returns the set of elements in a
list. Infinite sets are, in general, not representable.
As explained in Section 6.1, we will now consider the abstraction func-

tion set as the single constructor of type α set for code generation pur-
poses. Arbitrary constants (of an appropriate type) can be turned into
datatype constructors in the generated code. We call such constants
pseudo constructors. Like ordinary constructors, they have no defining
code equations, but other code equations can use them in patterns on the
left-hand side. There are no particular logical properties that such pseudo
constructors have to satisfy—they do not have to be injective or exhaust

118

6.2 data refinement with invariants

the abstract type. We have to only instruct the code generator to view the
function setα list→α set as a pseudo constructor.
In the generated code, the type α set will become a datatype whose

elements are, in fact, lists, but wrapped up in the constructor set. For the
primitive set operations, we can easily prove alternative equations that
pattern-match on set. Here are some examples:

{} = set []
Set.insert x (set xs) = set (List.insert x xs)
Set.remove x (set xs) = set (List.removeAll x xs)

If we register these theorems as code equations, the code generator will use
them instead of the original definition of the function involved. Thus if we
want to execute Set.insert 4 (Set.insert 2 {}), we obtain the following
evaluation by using the above-stated code equations:

Set.insert 4 (Set.insert 2 {}) ↝
Set.insert 4 (Set.insert 2 (set [])) ↝
Set.insert 4 (set (List.insert 2 [])) ↝

Set.insert 4 (set [2]) ↝
set [4, 2]

The function set is a datatype constructor and thus the term set [4, 2] is
already in normal form and represents the set {2, 4}.
This technique, which we call standard method, allows the replacement

of one type by another type with surprising ease, based purely on the
equational semantics of the code generator. The description shows here
why the refinement can happen only on a per type constructor basis:
when we instruct the code generator to see Abs ∶ C → A as a pseudo
constructor, it produces the datatype definition

datatype A = Abs C

in the code and therefore Amust be a type of the form α κ. Moreover, we
require that for every f ∈ Σ of the type τ1 → ⋅ ⋅ ⋅ → τn → τ (where τ is not
a function type) it holds that all τi are basic. Otherwise, we could not use
pattern matching in the code equation for f .

6.2.2 Adding Invariants

Implementing sets by lists with possibly repeated elements is inefficient.
Therefore we now impose the invariant that all elements of the represent-
ing lists are distinct and call such lists distinct lists. The situation is again
the one in Figure 6 on page 116 with C = α list, A = α set, Abs = set, but

119

use case: data refinement

α list

distinct lists

α dlist α set

finite sets

Figure 7: Sets by distinct lists using α dlist

now inv = distinct, which is a predefined function that tests if all elements
of a list are distinct.
But now there is the problem that the function set can also be applied

to lists that are not distinct. As a consequence, some equations for the
primitive set operations only hold conditionally, for example

distinct xsÐ→ Set.remove x (set xs) = set (List.remove1 x xs).

This conditional theorem will be rejected as a code equation by the code
generator. For soundness reasons, the precondition cannot simply be
dropped, but without it, the theorem does not hold because List.remove1
removes at most one occurrence of x from xs and not all of them like
List.removeAll. Our solution is to introduce an intermediate type α dlist
for distinct lists (see Figure 7). Thus we split the implementation into two
steps: the new subtype step from α list to α dlist, where α dlist is a new
type that is isomorphic to a subset of α list, the distinct lists, followed by
the basic data refinement of α set by α dlist, which does not involve an
invariant anymore and can be dealt with by the standard method.
The new subtype with an invariant is defined by typedef:

typedef α dlist = {xsα list ∣ distinct xs}

We assume that the command produced the coercions

list ∶ α dlist→ α list and
Dlist ∶ α list→ α dlist,

which were defined by the following axiomatization, which is equivalent
to the standard one presented in Section 2.4.2:

Dlist (list dxs) = dxs (71)
distinct xs←→ list (Dlist xs) = xs (72)

120

6.2 data refinement with invariants

Using the two coercions, we can define all primitive operations on
dlist by using the corresponding operations on list, as we already learned
in Chapter 5. For example, this is the definition of Dlist.remove ∶ α →
α dlist→ α dlist:

Dlist.remove x dxs = Dlist (List.remove1 x (list dxs)) (73)

Then we bridge the gap between α set and α dlist by a new pseudo con-
structor dset ∶ α dlist→ α set defined as

dset dxs = set (list dxs).

If we assume that we already have all primitive operations on α dlist
together with the necessary properties, it is again straightforward to prove
code equations implementing set operations, for example for Set.remove:

Set.remove x (dset xs) = dset (Dlist.remove x xs)

Therefore what is left is the question how to implement dlist operations
by list operations. Using dlist as a pseudo constructor as in the standard
method runs into the same problem as before:

distinct xsÐ→ Dlist.remove x (Dlist xs) = Dlist (List.remove1 x xs)

is only provable under the assumption distinct xs. Therefore we try the
definition of Dlist.remove (73) itself as a code equation. Now we need to
execute the function list on the rhs and face the same problem:

list (Dlist xs) = xs (74)

is only provable for distinct xs. Therefore we extend the code generator
for this special case as follows. We register the theorem (71) in the code
generator, which instructs the code generator to make Dlist a pseudo
constructor and to turn the composition around and make (74) a code
equation, although it is not a theorem.
The justification is a meta-theoretic one: we ensure that in code equa-

tions,Dlist is only applied to distinct lists, for which (74) is provable. This
property of Dlist will be guaranteed by a check that Dlist is only applied
to the result of operations on lists that have been proved to preserve the
invariant. We guarantee this property by restricting the user to registering
only a theorem called a code certificate but not the actual code equation.
For Dlist.remove the code certificate looks as follows:

list (Dlist.remove x dxs) = List.remove1 x (list dxs) (75)

The code generator checks that the rhs does not contain the pseudo con-
structor Dlist and derives the actual code equation (73) from it (this is

121

use case: data refinement

a direct consequence of (71)). The point of the code certificate is that
it entails preservation of the invariant. Indeed: when we use the code
equation (73), it is true that we introduce a term where Dlist is applied to
List.remove1 x (list dxs), but since

list (Dlist (List.remove1 x (list dxs))
= list (Dlist.remove x (Dlist (list dxs))) by (73)
= List.remove1 x (list (Dlist (list dxs)) by (75)
= List.remove1 x (list dxs) by (71),

we can conclude distinct (List.remove1 x (list dxs)) by (72).1
This concludes the presentation of code generation for dlist. We will

straightforwardly generalize this description to a formal correctness proof.
Let us consider functions Abs ∶ C → A and Rep ∶ A → C such that

Abs (Rep y) = y and inv ∶ C → bool such that inv x ←→ Rep (Abs x) = x.
We assume that the result type of all functions in Σ is basic.
The format for the code certificate is now

ψ (f y) = t (76)

where ψ is Rep (if τ = (. . .)κ) or the identity (otherwise). The free
variables of t must be contained in y. The code generator turns this into
f y = φ t (by a proof step), where φ is Abs (if τ = (. . .)κ) or the identity
(otherwise). The only liberty that the code generator takes is that it turns
the theorem Abs (Rep y) = y into the nontheorem Rep (Abs x) = x. Of
course the latter is implied by inv x, and we will show that inv s holds for
all terms Abs s that may arise during a computation. But this requires a
careful proof (see below). The following table summarizes the behavior
of the code generator.

E E′

Rep (f y) = t f y = Abs t
Abs (Rep y) = y Rep (Abs x) = x

Let E be the set of all code equations at the point when the code generator
is invoked and let E′ be the result of the translation shown in the table
above. That is, most equations are moved from E to E′ unchanged, but
Rep (f y) = t and Abs (Rep y) = y are translated as above. Moreover,
the code generator enforces that Abs must not occur on the rhs of any
equation in E. (This is not a restriction because if one really needed an
operation that behaved like Abs one could define it separately from Abs
to avoid confusion.)

1 This is not a coincidence. It can be shown that (75) and the theorem distinct xs Ð→
distinct(List.remove1 x xs) are equivalent if we use the properties of list and Dlist (71)
and (72) and the definition of Dlist.remove (73).

122

6.2 data refinement with invariants

In [29] correctness of the code generation process is shown by interpret-
ing code equations as higher-order rewrite rules and proving that code
generation preserves the reduction behavior. Our translation from E to
E′ is a first step that happens before the steps considered in [29]. We will
now prove correctness of that first step by relating the equational theory
of E (written E ⊢ u = v) with reduction in E′. Notation E′ ⊢ u → v
means that there is a rewrite step from u to v using either a rule from E′
or β-reduction.
We call a term t invariant iff (i) E ⊢ Rep (Abs s) = s for all subterms
(Abs s) of t and (ii) every occurrence ofAbs in t is applied to an argument.

Lemma 6.2.1. If u is invariant and E′ ⊢ u →∗ v, then v is invariant.

Proof. By induction on the length of the reduction sequence. In each
step, we need to check invariance of newly created Abs terms. Because
user-provided code equations with Abs on the rhs are forbidden, only
the derived code equation f y = Abs t can introduce a new Abs term,
namely Abs t itself, where Abs is applied and for which we have E ⊢
Rep (Abs t) = Rep (Abs (Rep (f y))) = Rep (f y) = t. Invariance is
preserved by β-reduction because it cannot create new Abs terms because
all Absmust already be applied to arguments.

Lemma 6.2.2. If u is invariant and E′ ⊢ u →∗ v, then E ⊢ u = v.

Proof. By induction on the length of the reduction sequence and by the
previous lemma.

Thus we know that if we start with an invariant term, reduction with
E′ only produces equations that are already provable in E. Invariance of
the initial term is enforced by Isabelle very easily: the initial term must
not contain Abs.

6.2.3 Using Transfer and Lifting

I will demonstrate how we can automate the construction of the interme-
diate type from the previous section by the Transfer and Lifting tools.
First of all, we have to set up the lifting infrastructure, which is done

by a theorem generated by typedef for α dlist:

setup lifting type-definition-dlist

This typical boilerplate command already registers α dlist as an abstract
datatype with a constructor Dlist in the code generator.
Then every operation is lifted by lift definition command, e.g.:

lift definition remove ∶ α → α dlist→ α dlist is List.remove1

123

use case: data refinement

After we prove the respectfulness theorem

∀xα xsα list. distinct xsÐ→ distinct (List.remove1 x xs)

the command produces the obligatory definition (equivalent to (73)) and
a transfer rule. More importantly, we automatically obtain the following
representation function (coercion) equation (see Section 5.7 on page 111):

list (Dlist.remove x dxs) = List.remove1 x (list dxs),

which is exactly the code certificate (75). The Lifting tool automatically
registers the representation function equation as the code certificate.
If the return type of an abstract function is basic, the representation

function equation provided by the Lifting tool has exactly the form (76),
which is required by the code generator. Thus except for proving that an
operation on the concrete level preserves the invariant—and this is in
general unavoidable—everything else is fully automatic.
Let me note here that if we want to create a total quotient type with

executable operations, we can use the abstract function equations as code
equations by employing the standard method with Abs as a constructor.

6.3 data refinement for type expressions

In this section, we will tackle the limitation of the code generator that
the type that is being refined has to be of the form α κ. The type of
maps α → β option does not have this form, yet one would still like to
refine it by some efficient type of tables. Thus we introduce a new type
(α, β)mapping that is a copy of α → β option. It can be refined further,
for example, by red-black trees using the techniques from Section 6.2. (See
Figure 8 on the facing page for the complete picture.) The implementation
type rbt-impl is just a plain datatype of binary trees with a color in each
node; on top of it, the subtype rbt of well-shaped trees satisfying the
invariant of red-black trees is defined. This example represents the most
general form of data refinement discussed in this chapter.
But now all definitions using α → β optionmust be lifted to the new

type (α, β)mapping. Of course, this has to be done for primitive opera-
tions on maps such as a lookup or an update only once for all. But it also
has to be done for all other definitions using these primitive functions.
The reason is that one has to provide for such derived operations new
code equations that use primitive operations of (α, β)mapping and not
α → β option. On the other hand, no code equations have to be provided
for the primitive operations on (α, β)mapping in this phase because
these will be provided later on in the phase described in Section 6.2. Of
course, it is also possible to base the formalization on the lifted type

124

6.3 data refinement for type expressions

(α, β) rbt-impl

well-shaped trees

(α, β) rbt (α, β)mapping

finite mappings

α → β option

Figure 8:Maps implemented by red-black trees

(α, β)mapping from the beginning but this contradicts the very idea of
data refinement.
The complications of this general setting are as follows: For a start, you

do not obtain code for f but for some f ′. Moreover you have to refine ev-
ery function f to some f ′, not just the primitive ones, and you have to look
carefully at the definition of f ′ (typically produced by lift definition)
and at the abstraction relations involved to convince yourself that f and f ′
are in the desired relationship. But it is not quite as bad as this. As soon as
you define a derived function h where α → β option is no longer present
in the type of h but that still uses maps inside its body, you no longer need
to lift h to some h′, but you still have to prove a code equation for h itself
that uses mappings internally. This can be done again by transfer.
Having mentioned lift definition and transfer, I will show how

we again use Lifting and Transfer to automate moving the specification
from α → β option to (α, β)mapping. First, (α, β)mapping is defined
as a copy of α → β option and all primitive operations on maps are lifted:

typedef (α, β)mapping = UNIV(α→β option) set ⟨proof ⟩

lift definition empty ∶ (α, β)mapping is λ_. None .
lift definition lookup ∶ (α, β)mapping → α → β option
is λm k. m k .

lift definition update ∶ α → β → (α, β)mapping → (α, β)mapping

is λk v m. m(k ↦ v) .

We showed only 3 such operations here but in reality there are more
of them. Notice that we did not have to prove a respectfulness theorem
in the lift definition command as this is proved automatically if we
work with type copies.

125

use case: data refinement

Now let us assume we used maps in our formalization to implement
a special data type that behaves like a multiset and the multiplicity of
elements is limited. Now we can implement an insert for this data struc-
ture that ensures that if the limit is reached, the map is not changed.

definition insert-lim ∶ (α → nat option) → α → nat→ α → nat option

where insert-lim m k lim = case m k of
Some n⇒ if n < lim then m(k ↦ n + 1) else m
None⇒ m(k ↦ 1)

We use lift definition to define a copy of insert-lim that operates
on the code generation type (α, nat)mapping

lift definition insert-lim′ ∶
(α, nat)mapping → α → nat→ (α, nat)mapping is insert-lim .

Function insert-lim′ is defined in terms of the original function insert-lim
with the help of the coercions between maps and mappings. In contrast
to the situation in Section 6.2, we cannot use this definition as a code
equation because it goes in the wrong direction: it reduces a computation
on mappings to maps. The desired code equation for insert-lim′ is proved
by transfer from the definition of the original function.

lemma insert-lim′ m k lim = case Mapping.lookup m k of
Some n⇒ if n < lim then Mapping.update k (n + 1) m else m
None⇒Mapping.update k 1 m

by transfer (fact insert-lim-def)

It is inconvenient that one has to write down the lifted code equation
even if the proof is trivial thanks to the Transfer and Lifting tools. We
could use the transferred attribute to transfer theorems in the other direc-
tion, i.e., from the concrete level to the abstract level and thus we would
not have to write down the lifted code equation at all. But there is the
problem that if we go in this direction, it is not clear which parts of a term
should really be transferred. The transferred attribute can eagerly transfer
all terms from the α → β option to the (α, β)mapping level according
to the transfer rules. But the user might want some subterms to remain
maps. This would require some mechanism that allows users to annotate
a term and say which parts should not be transferred. This is work in
progress. Transferring from (α, β)mapping to α → β option instead is
unambiguous: all occurrences ofmapping are replaced.

126

6.4 compound return types

6.4 compound return types

We say that a list xs is a sublist of a list ys if xs can be obtained by removing
some elements from ys. Let us assume that we defined a function sublists ∶
α list → α list list such that sublists xs is equal to a list of all sublists of
xs. Since every sublist of a distinct list must still be distinct, we can lift
sublists to the dlist-level:

lift definition sublists ∶ α dlist→ α dlist list is List.sublists

I omitted the proof of the respectfulness theorem since we are mostly
interested in the representation function equation:

map list (Dlist.sublists xs) = List.sublists (list xs)

This equation cannot be used as a code certificate because it does not
comply with the form (76)—the top symbol of the left-hand side is not
a single representation function but a compound term map list as the
return type α dlist list of Dlist.sublists is not basic.
Not being able to execute functions with nonbasic return types might

be particularly annoying since there exists a nonnegligible number of
functions that use such return types for example for modeling partiality
(α option) or combining several results (α×β). We could extend the code
generator by the notion of a map function and require some restrictions
on themap functions to allow us to extend our syntactic correctness proof
as well. This is all, in principle, achievable, but this would enlarge the
trusted code base (and the complexity of the proof), which, as I stated in
Section 6.1, is not desirable. Instead, we work around the limitation.
How can we execute sublists if it has a nonbasic return type? Notice

that the return-type restriction holds only for primitive functions (func-
tions from Σ). My workaround allows us to execute sublists as a derived
function (i.e., no data refinement needed) by providing a code equation
that executes sublists in terms of some other primitive operations for
which the return-type restriction holds.
In order to achieve this, we define an auxiliary type that is isomorphic

to α dlist list, the type that breaks the restriction.

typedef α dlist-list = {xssα list list ∣ list all distinct xss}

Observe the definition—we did not define α dlist-list operationally as a
type copy of α dlist list but the two types are still isomorphic.
Now we define another lifted version of List.sublists called sublists′,

which is the same as sublists except for the return type:

lift definition sublists′ ∶ α dlist→ α dlist-list is List.sublists

127

use case: data refinement

The following two theorems are the internal respectfulness theorems for
sublists′ and sublists:

(=on distinct Z⇒=on (list all distinct)) List.sublists List.sublists
(=on distinct Z⇒ list all2 (=on distinct)) List.sublists List.sublists

The two above-stated theorems are equivalent as the following equation

list all2 (=on P) = =on (list all P) (77)

holds for any P and since we already store this equation in Lifting’s infras-
tructure (see Section 5.4), we can automatically derive the respectfulness
theorem for sublists′ from the respectfulness theorem for sublists.
Notice that sublists′ conforms to the return-type restriction and is

therefore executable. Thus we reduced our task to the following task:
Find a function Repα dlist-list→α dlist list such that:

1. sublists dxs = Rep (sublists′ dxs)

2. Rep is executable

It is not a surprise that the function Rep that we use is the bijection
between α dlist-list and α dlist list. We define it as a lifted identity:

lift definition Rep ∶ α dlist-list→ α dlist list is idα list list→α list list

To discharge the respectfulness theorem for Rep we again use (77). The
function Rep fulfills 1. because we can show by transfer that 1. is equiva-
lent to List.sublists xs = id (List.sublists xs), which is a trivial fact.
The last step is to make Rep executable. We cannot use the representa-

tion function equation since Rep does not have a basic return type either.
Instead, we provide an alternative code equation. The idea is simple: we
recursively destruct the list that is a representation of an α dlist-list value
and construct a list of type α dlist list by applying the Dlist constructor
to the elements of the destructed list. Ideally we would use lifted pat-
tern matching to implement Rep but this does not work because of the
higher-order flavor of pattern matching in HOL2. Fortunately, it is com-
puter science folklore that we can rewrite any datatype pattern matching
to an equivalent first-order term that is a combination of if-then-else
clauses and datatype selectors and discriminators. This form works for

2 The pattern matching is only syntax sugar in HOL and is realized by functions called
case combinators; e.g., caselist ∶ α → (β → β list → α) → β list → α. If we lift this
combinator to the type α → (β dlist → β dlist-list → α) → β dlist-list → α, we obtain
in the representation function equation abstraction functions for dlist and dlist-list (as
the types are in negative position), which is not allowed by the code generator.

128

6.4 compound return types

us. Let us assume we already obtained the lifted version of selectors and
discriminators for α dlist-list from respective functions on α list:3

head′ ∶ α dlist-list→ α dlist
tail′ ∶ α dlist-list→ α dlist-list
isNil′ ∶ α dlist-list→ bool

Having that, we provide this code equation for Rep

Rep dxs = if isNil′ dxs then [] else (head′ dxs) # (Rep (tail′ dxs)),

which can be proved by employing transfer and proving the equivalent
formula, which is a basic property of selectors, discriminators and con-
structors on α list:

id xs = if isNil xs then [] else (head xs) # (id (tail xs))

Since head′, tail′ and isNil′ conform to the return-type restriction, Rep
is executable. The following reduction sequence should give us an idea
how Rep reduces an α dlist-list value to an α dlist list value (Dlist-list is
the constructor for α dlist-list):

Rep (Dlist-list [xs1 . . . , xsn]) =
Rep (Dlist-list (xs1 # . . . # xsn # [])) ↝
Dlist xs1 # Rep (Dlist-list (xs2 # . . . # xsn # [])) ↝
Dlist xs1 #Dlist xs2 # Rep (Dlist-list (xs3 # . . . # xsn # [])) ↝
⋅ ⋅ ⋅ ↝
Dlist xs1 # . . . #Dlist xsn # Rep (Dlist-list []) ↝
Dlist xs1 # . . . #Dlist xsn # [] =
[Dlist xs1, . . . , Dlist xsn]

This ends the presentation for sublists and its return type α dlist list.
Since I did the presentation for the case where the outer nonabstract type
is a recursive datatype with two constructors (the list type), it is not hard
to work out the general algorithm from the concrete example. I will only
sketch the general case and point to particularities that did not arise in
the example.
First, let me define more precisely which return types are supported.

The construction works for any τ that is inductively defined as follows:

● τ is a type variable.

3 The respectfulness theorem for a discriminator is always proved automatically by the
monotonicity prover. The selectors must be totalized (what is head []?) by selected values
such that the invariant holds for them and thus the respectfulness theorems are provable.
The totalization is done automatically in a principled way.

129

use case: data refinement

● τ = τ1 . . . τn κ, where κ is an abstract type constructor and τ1 . . . τn
do not contain abstract type constructors, i.e., nesting of abstract
types is not allowed. For example, int dlist is allowed whereas
int dlist dlist not.

● τ = τ1 . . . τn κ, where κ is a type constructor defined as a (co)data-
type whose constructors do not have the function type or non-
free datatypes as arguments. Therefore the datatype α rose-tree =
RTree α (α rose-tree list) is allowed whereas the datatype hfset =
HFset (hfset fset) not since there are no destructors and construc-
tors for fset.

Thus we work not only with return types of the shape A κ, where A is
an abstract type and α κ is a datatype, but also with the datatypes that are
nested, which is something that we did not consider in the introductory
example. Let us execute a function f whose return type has the following
formAκ1 . . . κn, where κ1 . . .κn are unary (co)datatype type constructors.
We again define an auxiliary type

typedef A-κ1- . . . -κn = {x ∣ (predκn ○ ⋅ ⋅ ⋅ ○ predκ1) inv x},

where predκ i are respective predicators for κi (we define them for any
natural functor, see Section 4.7) and inv the defining predicate for A. We
define f ′ as before and use n theorems like (77) for every κi to prove the
respectfulness theorem for f ′. The main difference happens when we
define selectors for A-κ1- . . . -κn. Let us say that the datatype α κn was
defined as α κn = C1 α ∣ C2 (α κn τ). Thus we define two selectors:

π1 ∶ A-κ1- . . . -κn → Aκ1 . . . κn−1
π2 ∶ A-κ1- . . . -κn → A-κ1- . . . -κn τ

In both cases, the functions do not conform to the return-type restriction.
This is the place where we run our construction recursively on these
two functions. I will skip other details and just state that this recursion
is always well founded (we recurse on type expressions, not on values
of these types). The rest of the construction follows the introductory
example analogously—definition of Rep, its code equation and the code
equation f = Rep f ′. The whole construction is fully automatic and does
not require any additional input from the user.
The last thing that is worth mentioning is that we store the auxiliary

types and their associated Rep functions such that we can reuse them
when we encounter the same return type but for a different function.
Future work comprises loosening restrictions on the supported types in

the described workaround: we want to support nesting of abstract types.

130

6.5 related work

6.5 related work

Data refinement is a perennial topic that was first considered by Hoare
more than 40 years ago [36], who already introduced abstraction functions
and invariants. This principle of data refinement became an integral
part of the model oriented specification language VDM [47] (and was
later generalized to nondeterministic operations [35, 71]). In the first-
order context of universal algebra it was shown that there are always fully
abstract models such that any concrete implementation can be shown
correct with a homomorphism [70].
The standardmethod for data refinement was already presented inHaft-

mann and Nipkow’s paper about the code generator [29] in the form of an
example. The whole infrastructure (including the treatment of invariants)
had been used for a few years before it was properly published [28].
As described in Section 6.2, all occurrences of the type being refined

(e.g., α set) are refined by the same type (α list). However, our infras-
tructure does not, by itself, enforce this. Lochbihler [60] developed an
extension that builds on top of our infrastructure to support multiple
representations. He exploits the fact that there can bemultiple pseudo con-
structors for any type and organizes them bymeans of type classes. In fact,
Isabelle’s default refinement of sets supports cofinite sets by using a second
pseudo constructor coset ∶ α list → α set, where coset xs = −set xs (“−”
is the set complement here).
In Chapter 4, I already mentioned Lammich’s work [56] for data re-

finement in Isabelle/HOL and the similar work of Cohen et al. [20] in
Coq. Lammich’s approach has some similarity with Section 6.3: you do
not obtain code for f but for some f ′ that is in a certain relationship to
f . As a result, he can work with a more general notion of refinement
supporting (for example) nondeterministic operations and multiple im-
plementations of the same type. A difference is that his system proves
invariance preservation for derived functions as an explicit theorem by
using means of a procedure similar to our transfer prover whereas we
define a new abstract type and let the type checker do the work. In a
nutshell, his is a general framework for heavy duty data refinement, ours
is a lightweight infrastructure for completely transparent butmore limited
data refinement.
ACL2 supports data refinement, too. In theMu-calculus case study [49],

Manolios shows how to implement sets by lists (using a congruence on
lists) while Greve et al. [27] explain how to deal with invariants. The
details are rather different from our work because ACL2 is untyped.
In Coq, besides the already mentioned approach of Cohen et al. [20],

one can use the older approach of parametrized modules [22]: perform
the development inside the context of a specification of finite sets (or
whatever abstract type you have), and later instantiate the module with

131

use case: data refinement

some implementation of finite sets that has been proved to satisfy the
finite set axioms. The drawback is that you do not really work with the
actual abstract type (e.g., sets), but some axiomatization of it, which may
not have the same nice syntax and proof support.

132

Always do what you are afraid to do.
—Ralph Waldo Emerson (1841)

7 USE CASE: FROM TYPES TO SETS

HOL types are naturally interpreted as nonempty sets—this intuition is
reflected in the type definition rule for the HOL-based systems (including
Isabelle/HOL), where a new type can be defined whenever a nonempty set
is given. However, in HOL this definition mechanism cannot be applied
inside proof contexts. In this chapter, I propose a more expressive type-
definition rule that addresses this. The new expressive power opens the
opportunity for a translation tool that relativizes type-based statements
to more flexible set-based variants. This tool is an interesting use case of
the Transfer tool.
This is joint work with Andrei Popescu and this chapter is partly based

on our workshop paper [55].

7.1 motivation

Let us recall the motivational example from Chapter 1. Let P ∶ α list →
bool be a fixed constant (whose definition is not important here). We will
consider the following statements, where we extend the syntax introduced
in Section 2.2 and explicitly quantify over types at the outermost level:

∀α. ∃xsα list. P xs (78)
∀α. ∀Aα set. A ≠ ∅ Ð→ (∃xs ∈ lists A. P xs) (79)

The formula (79) is a relativized form of (78), quantifying not only over
all types α, but also over all their nonempty subsets A, and correspond-
ingly relativizing the quantification over all lists to quantification over
the lists from A. Therefore we call statements as (78) type based whereas
statements as (79) set based.
Type-based theorems have advantages over the set-based ones. First,

they are more concise (compare (78) and (79)). Second, the HOL types
encode properties more implicitly and are therefore more rigid compared
to explicitly expressed sets (i.e., formulas) and therefore proof automation
also usually works better for them. Overall, it is much easier to reason
about type-based statements than set-based ones. On the other hand,
the set-based theorems provide more flexibility since they allow us to
reason about mathematical structures that are defined only on a subset
of the whole type. For example, a function fτ→σ can be injective only on

133

use case: from types to sets

some Aτ set or be a measure only on a subset. We are forced to come up
with workarounds if we want to use theorems from a type-based library
of injective functions or measures in such cases. Thus, while it is much
easier to reason about type-based statements such as (78), the set-based
statements such as (79) are more general and easier to apply.
In the most striking cases, the relativization was created manually. For

example, the constant inj-on A f = (∀x y ∈ A. f x = f y Ð→ x = y)
together with a small library about functions being injective only on a set.
Often the users want to convert whole type-based libraries to set-based
ones. For example, my colleague Immler writes about his formalization
experience in his master thesis [43, §5.7]:The main reason why we had
to introduce this new type [of finite maps] is that almost all topological
properties are formalized in terms of type classes, i.e., all assumptions have
to hold on the whole type universe. It feels like a cleaner approach [would
be] to relax all necessary topological definitions and results from types to
sets because other applications might profit from that, too.
In different HOL-based systems, there are numerous theories [4, 16, 18,

37, 62] that are developed as set based altogether from beginning (usually
formalizations of algebraic structures where the carrier is explicit) or that
require such set-based theories. This is of course an alternative if one is
willing to pay the price.
Ideally—and this is what I propose here—the users would develop

their theories in a type-based fashion, and then export the main theorems
as set-based statements. Unfortunately, the HOL systems currently do
not allow for this. From the set-theoretic semantics point of view, the
statements (78) and (79) are equivalent. However, from a theorem proving
perspective, they are quite different— assuming that (78) is a theorem,
one cannot prove (79). Indeed, in a proof attempt of (79), one would fix
a nonempty set A and, to invoke (78), one would need to define a new
type corresponding to A, an action not currently allowed inside a proof
context.
The problem of types vs sets bites even stronger when it comes to

tool writing: for example, the new (co)datatype tool [12] maintains a
notion of a bounded natural functor, which in the unary case is a type
constructor α F together with a functorial map function Fmap ∶ (α →
β) → α F → β F. For technical reasons, some key facts proved by the
tool (e.g., those involving algebras and coalgebras for F) require the more
flexible set-based variant—this is done via an internalization of F to sets,
Fin ∶ α set→ α F set.1 Thedevelopment would be dramatically simplified
if one could focus on the type-based counterparts for the intermediate
lemmas, and only export the set-based version of the main results at the
end.

1 Fin is to F what lists is to list.

134

7.2 proposal of a logic extension: local typedef

7.2 proposal of a logic extension: local typedef

To address the above, we propose extending the HOL logic with a new
rule for type definitions with the following properties:

● It enables type definitions to be emulated inside proofs while avoid-
ing the introduction of dependent types by a simple syntactic check.

● It is natural and sound w.r.t. our ground semantics (Section 3.4.4)
as well as the standard HOL semantics à la Pitts [81].

Let us recall that the current Isabelle/HOL type definition mechanism,
introduced in Section 2.4.2 on page 19, introduces three new axioms that
postulate that the newly defined type is isomorphic to the given set A via
mappings Abs and Rep. Let the notation α(A ≈ β)AbsRep denote the formula
that is a conjunction of these three axioms and thus states that Aα set is
isomorphic to β, which is witnessed by the two mappings Abs and Rep.
Thus, when the user issues a command typedef τ = Sσ set, as we know,
the system introduces a new type τ and two constants Absτ ∶ σ → τ and
Repτ ∶ τ → σ and adds the following axiom into the theory: S ≠ ∅ Ð→
σ(S ≈ τ)Abs

τ

Repτ . The user is required to discharge the goal S ≠ ∅, after which
the definitional theorem σ(S ≈ τ)Abs

τ

Repτ is inferred.
Before we proceed to carry out a formal proof that the new rule is sound,

we will start with a less formal description to motivate the formulation
of the rule and understand the intuition behind it. Let us take a purely
semantic perspective and ignore the rank-1 polymorphism for a minute.
Then the principle behind type definitions simply states that for all types
α and nonempty subsets A of them, there exists a type β isomorphic to A:

∀α. ∀Aα set. A ≠ ∅ Ð→ ∃β. ∃Absα→β Repβ→α . α(A ≈ β)
Abs
Rep (⋆)

The typedef mechanism can be regarded as the result of applying a se-
quence of standard rules for connectives and quantifiers to (⋆) in a more
expressive logic (notationally, we use Gentzen’s sequent calculus):

1. Left∀ rule of α and Awith given type σ and term Sσ set (both provided
by the user), and left implication rule:

Γ ⊢ S ≠ ∅ Γ, ∃β Abs Rep. σ(S ≈ β)AbsRep ⊢ φ ∀L, ∀L,Ð→LΓ, (⋆) ⊢ φ
Cut of (⋆)Γ ⊢ φ

2. Left ∃ rule for β, Abs and Rep, introducing some new/fresh type τ, and
functions Absτ and Repτ :

135

use case: from types to sets

Γ ⊢ S ≠ ∅

Γ, σ(S ≈ τ)Abs
τ

Repτ ⊢ φ ∃L, ∃L, ∃L
Γ, ∃β Abs Rep. σ(S ≈ β)AbsRep ⊢ φ ∀L, ∀L,Ð→LΓ, (⋆) ⊢ φ

Cut of (⋆)Γ ⊢ φ

The user further discharges Γ ⊢ S ≠ ∅, and therefore the overall effect
of this chain is the sound addition of σ(S ≈ τ)Abs

τ

Repτ as an extra assumption
when trying to prove an arbitrary fact φ.
What we propose is to use a variant of the above (with fewer instantia-

tions) as an actual rule:

● In step 1. we do not ask the user to provide concrete σ and Sσ set,
but work with a type σ and a term Aσ set that can contain type and
term variables.

● In step 2., we only apply the left ∃ rule to the type β and introduce
a fresh type variable β

We obtain:

Γ ⊢ A ≠ ∅

Γ, ∃Abs Rep. σ(A ≈ β)AbsRep ⊢ φ [β fresh] ∃L
Γ, ∃β Abs Rep. σ(A ≈ β)AbsRep ⊢ φ ∀L, ∀L,Ð→LΓ, (⋆) ⊢ φ

Cut of (⋆)Γ ⊢ φ

In a notation closer to Isabelle/HOL, the overall rule, written (LT) as in
“Local Typedef ”, looks as follows:

Γ ⊢ A ≠ ∅ Γ ⊢ (∃Abs Rep. σ(A ≈ β)AbsRep) Ð→ φ
[β /∈ A, φ, Γ] (LT)Γ ⊢ φ

This rule allows us to locally assume that there is a type β isomorphic to
an arbitrary nonempty set A. The syntactic check β /∈ A, φ, Γ prevents an
introduction of a dependent type (since A can contain term variables in
general).
The above discussion merely shows that (LT) is morally correct and

more importantly natural in the sense that it is an instance of a more
general principle, namely the rule (⋆).
Now we will proceed to a formal proof of (LT)’s soundness. Let us fix a

signature Σ and a well-formed definitional theory D over Σ for the rest
of this section.

136

7.2 proposal of a logic extension: local typedef

Theorem 11. Any deduction consisting of the deduction rules of Isabelle/
HOL and the (LT) rule is sound.

Proof. The overall structure of the proof is as follows:

● We construct a model I of the theory D according toTheorem 3
on page 42.

● We extend Σ and I into Σ′ and I ′ such that the interpretation of
ground types in I ′ is closed under subsets.

● We show that (LT) preserves I ′.

Let us construct the extended signature Σ′ ⊇ Σ and the interpretation
I ′ of Σ′ such that I ′ extends I , written I ⪯ I ′.2 Moreover, we require
that the interpretation of ground types in I ′ is closed under subsets,
which is formally defined as follows: for every θ ∶ TVar → GTypeΣ′ ,
I ′-compatible valuation ξ and a term A ∶ σ set it holds that

[θ(A)]I
′
(ξ) ≠ ∅ Ð→ ∃τ ∈ GTypeΣ′ . [τ]I

′
= [θ(A)]I

′
(ξ). (80)

Let Σ0 denote Σ and I0 denote I . We proceed as follows: for every
ground type τ ∈ GTypeΣ0 , and for every nonempty set S ⊆ [τ]

I0 we
extend Σ0 with a fresh type constructor τS without type parameters and
call the extended signature Σ1. We will define Σ1’s model I1 such that
I0 ⪯ I1. We start with I0 and interpret the new types by sets that pro-
duced them in the first place: [τS]I1 ∶= S. Moreover, we have to define
interpretation of the other newly introduced ground items in GTypeΣ1
and GCInstΣ1 , namely ground types and ground constant instances that
contain τS for some S in their types. We will interpret them by using
the same well-founded recursion principle as in the proof of Theorem 3,
where we constructed amodel for a well-formed definitional theory. Since
TV(u) ⊇ TV(v) for every definition u ≡ v, any ground item depending
on a newly introduced ground item must be new as well. Thus defining
new items in I1 does not change the interpretation of the old ones. To
sum up, I1 is a model of Σ1 ⊇ Σ0 and I0 ⪯ I1.
We can see the above-described construction as a single step in an

iterative process (i.e., replace 0 by i and 1 by i + 1) and create Σ2, Σ3, . . .
and their models I2, I3, . . . such that Σi ⊆ Σi+1 and Ii ⪯ Ii+1. Let us
take a limit of this process and define Σ′ = ⋃∞i=0 Σi and I ′ = ⋃∞i=0 Ii . The
limits Σ′ and I ′ are extensions of Σ and I (i.e., Σ ⊆ Σ′ and I ⪯ I ′), and
I ′ is a model of Σ′. Moreover, Σ′ and I ′ have the desired closure property
(80). Let A ∶ σ set and θ(σ) = σ ′. Because our semantics guarantees that
[θ(A)]I′(ξ) ∶ [σ ′ set]I′ = P([σ ′]I′) and [θ(A)]I′(ξ) is a nonempty set,

2 If I1 is an interpretation of Σ1 and I2 is an interpretation of Σ2 such that Σ1 ⊆ Σ2, we
define I1 ⪯ I2 to mean [u]I1 = [u]I2 for all u ∈ GType●Σ1 ∪GCInst●Σ1 .

137

use case: from types to sets

there must exist τ ∈ GTypeΣ
′
such that [τ]I′ = [θ(A)]I′(ξ) due to the

construction of I ′.
As I ′ extends I , I ′ is a model of D. Theorem 2 guarantees that I ′ is

preserved by the deduction rules of Isabelle/HOL. Now we prove that I ′
is preserved by the (LT) rule as well.
Let us assume that I ′ is a model of the assumptions of (LT), i.e.,

I ′ ⊧ (Γ, A ≠ ∅) and
I ′ ⊧ (Γ, (∃Abs Rep. σ(A ≈ β)AbsRep) Ð→ φ).

Let us fix ground substitution θ ∶ TVar → GTypeΣ
′
and I ′-compatible

valuation ξ such that [θ(ψ)]I′(ξ) = true for all ψ ∈ Γ. Then we obtain:

[θ(A ≠ ∅)]I
′
(ξ) = true (81)

[θ((∃Abs Rep. σ(A ≈ β)AbsRep) Ð→ φ)]I
′
(ξ) = true (82)

From (81) and the definition of our semantics we obtain

[θ(A)]I
′
(ξ) ≠ ∅. (83)

Using semantics ofÐ→ and the fact β /∈ A, φ, Γ, we can derive from (82)

(∃τ ∈ GTypeΣ
′
. [θ[τ/β](∃Abs Rep. σ(A ≈ β)AbsRep)]I

′
(ξ) = true)

Ð→ [θ(φ)]I
′
(ξ) = true.

(84)

The antecedent of (84) is true: using the closure property of I ′ (80) (to-
gether with (83)), we obtain τ ∈ GTypeΣ′ such that [τ]I

′ = [θ(A)]I′(ξ).
The ground type τ is the witness for the existential quantifier in (84) since

[∃Abs Rep. θ(σ)(θ(A) ≈ τ)AbsRep)]I
′
(ξ) = true

means that [θ(A)]I′(ξ)must be isomorphic to itself due to the interpre-
tation of τ (recall [τ]I′ = [θ(A)]I′(ξ)).
Thus [θ(φ)]I′(ξ) = true and therefore I ′ ⊧ (Γ, φ). As Σ′ and I ′ are

extensions of Σ and I , and Γ and φ use only symbols from Σ, we obtain
I ⊧ (Γ, φ). To conclude, we cannot prove False by using the theory D
together with the deduction rules of Isabelle/HOL and the (LT) rule.

The (LT) rule is also sound with respect to the rules of the original
HOL by Gordon and to its standard semantics by Pitts [81]. In this case,
the proof is easier because the construction of Σ′ and I ′ with the closure
property is not necessary. As we saw in Section 3.4.3 on page 36, in the
standard semantics, we interpret type variables by sets directly by a type
valuation θ ∶ TVar → U and do not go through the intermediate step of

138

7.3 translation algorithm

ground types. But then the analog of the closure property (80) in Pitts’s
semantics is a trivial property:

∀θ . ∀ξ. [A](θ)(ξ) ≠ ∅ Ð→ ∃B ∈ U . B = [A](θ)(ξ)

The extra work of building Σ′ and I ′ is not a coincidence. In Sec-
tion 3.4.3, we moved the border between syntax and semantics to adapt
the semantics to the syntactic nature of overloading to make the expla-
nation of overloading more intuitive. Since the nature of the (LT) rule is
more semantic, we can observe that the semantic part is intruding into
syntax—we had to extend D’s signature by names for any set that could
be an interpretation of a type. But this complication is much smaller than
alternatively using the standard semantics for overloading.

7.3 translation algorithm

The rule (LT) allows us to handle the motivating example from Section 7.1.
We assume (78) is a theorem, and wish to prove (79). We fix α and Aα set

and assume A ≠ ∅. Applying (LT), we obtain a type β (represented
by a fresh type variable) such that ∃Abs Rep. α(A ≈ β)AbsRep, from which
we obtain Abs and Rep such that α(A ≈ β)AbsRep. From this, (78) with α
instantiated to β, and the definition of lists, we obtain

∃xsβ list ∈ lists (UNIVβ set). Pβ list→bool xs.

Furthermore, using that Abs and Rep are isomorphisms between Aα set

and UNIVβ set, we obtain

∃xsα list ∈ lists Aα set. Pα list→bool xs,

as desired.3
The above relativization process would be really useful only if auto-

mated. This is a perfect application for the Transfer tool. As we learned
in Chapter 4, Transfer can both automatically synthesize the relativized
statement (e.g., (79) from above) and prove it from the original statement
(e.g., (78) from above).
We will consider a general case now and use Transfer to automate the

relativization process. Let us start with a type-based theorem

∀α. φ[α], (85)

where φ[α] is a formula containing α. We fix α and Aα set, assume A ≠ ∅
and fix a fresh type variable β. We also assume ∃Abs Rep. α(A ≈ β)AbsRep,
from which we obtain Abs and Rep such that

α(A ≈ β)AbsRep. (86)

3 We silently assume parametricity of the quantifier ∃ and P.

139

use case: from types to sets

We use the Lifting setup infrastructure (see Section 5.3 on page 104) to-
gether with (86) to create setup for Transfer—most importantly a transfer
relation T ∶ α → β → bool is defined. Since β is a subtype of α, the
relation T is bi-unique and right-total (see Table 1 on page 112).
The following theorem, (85) with α instantiated to β,

φ[β] (87)

is the input for Transfer. We will transfer the theorem along the relation
T and thus replace the type β by the related type α. Let us assume that we
have appropriate transfer rules for this translation step. Roughly speaking,
this means that for every constant cτ[β]4 from φ, there exists a transfer
rule that can relate cτ[β] to some conτ[α] using T. As we saw in Chapter 4,
we do not store such specific rules. We rather obtain them as instances
of more general parametricity rules. Such a rule for c looks in general as
follows:

∀α β. ∀Tα→β→bool. bi unique T Ð→ right total T Ð→
R[T] conτ[α] cτ[β]

(88)

By instantiating α, β and T for α, β, and T and discharging the side con-
ditions (as T is bi-unique and right-total) we obtain the desired relation
between c and its relativized version con. All of this happens automatically
during the transfer algorithm.
Let us consider three concrete examples of rules of the form (88). The

transfer rule for = (43)

∀α β. ∀Tα→β→bool. bi unique T Ð→
(T Z⇒ T Z⇒=) (=α→α→bool) (=β→β→bool)

transfers = to its relativized version, which is only a different type instance
of =, whereas the transfer rule for universal quantification (46)

∀α β. ∀Tα→β→bool. right total T Ð→
((T Z⇒=) Z⇒=) (Ball {xα ∣ Domp T x}) All(β→bool)→bool

replaces All by a different constant, namely the bounded quantification
Ball. The term {xα ∣ Domp T x} gets automatically replaced by the
domain of T in the transfer algorithm (see the description in Section 4.4
on page 80); in our settings {xα ∣ Domp T x} = A. Thus, using the
above rule, we can replace "∀xβ" with "∀xα ∈ Aα set". The last exam-
ple is the rule for the predicate inj(α→β)→bool, whose relativization is
inj-onα set→(α→β)→bool:

∀α β. ∀Tα→β→bool. bi unique T Ð→ right total T Ð→
((T Z⇒=) Z⇒=) (inj-on {xα ∣ Domp T x}) inj

4 The expression τ[β] denotes a type expression containing β.

140

7.4 further extensions

Overall, Transfer will use rules of the form (88) to replace all cs in φ by
cons and thus proves the equivalence

φ[β] ←→ φon[α, Aα set],

where φon[α, Aα set] is the synthesized relativization of φ[β]. We dis-
charge the left-hand side by (87) and obtain φon[α, Aα set] as a theorem.
Since φon[α, Aα set] does not contain β, we can use the (LT) rule to

remove the assumption (86) α(A ≈ β)AbsRep and to obtain the final result:

∀α. ∀Aα set. A ≠ ∅ Ð→ φon[α, A]

This theorem is the set-based version of ∀α. φ[α]. Except for the para-
metricity rules of the form (88), which are usually a part of a library, no
further input is required and the whole process runs automatically.

7.4 further extensions

There are however Isabelle-specific complications in the isomorphic jour-
ney between types and sets: axiomatic type classes and overloading. I
will explain in this section how these two features are in conflict with the
algorithm described above and how to circumvent these complications.

7.4.1 Local Type Classes

The first complication is the implicit assumptions on types given by the
axiomatic type classes. We have not dealt with axiomatic type classes
in this thesis yet. I will briefly explain the essence of this mechanism.
We can annotate type variables with type classes, which are essentially
predicates on types. For example, αfinite means that α can be instantiated
only with a type that we proved to fulfill the conditions of the type class
finite, namely that the type must contain finitely many elements.
For example, let us modify (85) to speak about types of class finite:

∀αfinite. φ[αfinite] (89)

In the translation algorithm we instantiated α with the type variable β to
obtain the formula (87). This step breaks the algorithm from the previous
section since β is not amember of the type class finite. Even if we assumed
finite UNIVβ set, we could not make a type variable β locally a member
of finite. This operation is not allowed in Isabelle.
In order to relativize (89), we first need a version of it which internalizes

the type class assumption

∀α. finite(α) Ð→ φ[α], (90)

141

use case: from types to sets

where finite(α) is a term of type bool, which is true if and only if α is a
finite type.5 Assuming finite(β) allows us to instantiate α by β and thus
execute the original algorithm. We obtain the set-based version of (89)

∀α. ∀Aα set. finite AÐ→ A ≠ ∅ Ð→ φon[α, A]

since the relativization of finite(β) is finite A.
The internalization of type classes (inferring (90) from (89)) is already

supported by the kernel of Isabelle—thus no further work is required
from us. The rule for internalization of type classes is a result of the work
by Haftmann and Wenzel [30, 99].

7.4.2 Local Overloading

Having addressed implicit assumptions on types given by axiomatic type
classes, the only hurdle that could prevent us from relativizing a formula
∀α. φ[α] is if a parametricity rule à la (88) could not be proved for some
c in φ. This might happen if c were an overloaded constant, which will
explained be later. But where do the overloaded constants come from?
Themechanism of type classes in Isabelle gets really useful when we are

allowed to associate operations with a type class to achieve Haskell-like
type classes. This is technically achieved by using an overloaded constant
(implicitly representing the associated operation) in the definition of
the corresponding axiomatic type class. In this respect, the type class
finite from the previous section is somewhat special since there are no
operations associated with it, i.e., we did not use any overloaded constant
in its definition.
Therefore we use semigroups as the running example in this section

since semigroups require an associated operation—multiplication. First,
let us notice how a general specification of a semigroup would look. It
would contain a nonempty set Aα set, a binary operation fα→α→α such that
A is closed under f , and a proof of the specific property of semigroups
that f is associative on A. We capture the last property by the predicate

semigrouponwith A f = (∀x y z ∈ A. f (f x y) z = f x (f y z)),

which we read along the paradigm: a structure on the set Awith operations
f1, . . . , fn.
The realization of semigroups by a type class in Isabelle is somewhat

more specific. The type σ can belong to the type class semigroup if
semigroup(σ) is provable, where

semigroup(α) iff ∀xα yα zα . (x ∗ y) ∗ z = x ∗ (y ∗ z). (91)

5 This isWenzel’s approach [99] to represent axiomatic type classes by internalizing them as
predicates on types, i.e., constants of type ∀α. bool. As this particular type is not allowed
in Isabelle, Wenzel uses instead α itself → bool, where α itself is a singleton type.

142

7.4 further extensions

Notice that the associated multiplication operation is represented by the
global overloaded constant ∗α→α→α , which will cause the complication as
already mentioned.
Let us relativize ∀αsemigroup. φ[αsemigroup] now. We fix a nonempty set

A, a binary f such that A is closed under f and assume semigrouponwith A f .
As before, we locally define β to be isomorphic to A and obtain the
respective isomorphisms Abs and Rep.
Having defined β, we want to prove that β belongs into semigroup. Us-

ing the approach from the previous section, this goal translates into prov-
ing semigroup(β), which requires that the overloaded constant ∗β→β→β
used in the definition of semigroup (see (91)) must be isomorphic to f
on A. In other words, we have to locally define ∗β→β→β to be a projection
of f onto β, i.e., xβ ∗ yβ must equal Abs(f (Rep x) (Rep y)). Although
we can locally “define” a new constant (fix a fresh term variable c and
assume c = t), we cannot overload the global symbol ∗ locally for β. This
is not supported by Isabelle. In other words, there is no hope that we
could relate ∗β→β→β and fα→α→α by a transfer rule.
Since the global overloaded constants is the offending problem, we will

cope with the complication by compiling out the overloaded constant ∗
from

∀α. semigroup(α) Ð→ φ[α] (92)

by the dictionary construction as follows: whenever c = . . . ∗ . . . (i.e., c
was defined in terms of ∗ and thus depends implicitly on the overloaded
meaning of ∗), define cwith f = . . . f . . . and use it instead of c. The
parameter f plays a role of the dictionary here: whenever we want to use
cwith, we have to explicitly specify how to perform multiplication in cwith
by instantiating f . That is to say, the implicit meaning of ∗ in c was made
explicit by f in cwith. Using this approach, we obtain:

∀α. ∀ fα→α→α . semigroupwith f Ð→ φwith[α, f], (93)

where semigroupwith fα→α→α = (∀xα yα zα . f (f x y) z = f x (f y z))
and similarly for φwith. For now, we assume that (93) is a theorem and
look at how it helps us to finish the relativization and later we will explain
how to derive (93) as a theorem.
Given (93), we will instantiate α with β and obtain

∀ fβ→β→β . semigroupwith f Ð→ φwith[β, f].

Recall that the quantification over all functions of type β → β → β
is isomorphic to the bounded quantification over all functions of type
α → α → α under which Aα set is closed.6 The difference after compiling

6 We are talking about the transfer rule (46), which we discussed in Section 7.3. This time
we quantify over functions of type β → β → β and therefore the bound is “all functions
of type α → α → α closed under A”.

143

use case: from types to sets

out the overloaded constant ∗ is that now we are isomorphically relating
two bounded (local) variables from the quantification and not a global
constant ∗ to a local variable.
Thus we reduced the relativization once again to the original algorithm

and can obtain the set-based version

∀α. ∀Aα set. A ≠ ∅ Ð→ ∀ fα→α→α . (∀xα yα ∈ A. f x y ∈ A) Ð→
semigrouponwith A f Ð→ φonwith[α, A, f].

Let us get back to the dictionary construction. Its detailed description
can be found, for example, in the paper by Krauss and Schropp [50]. We
will outline the process only informally here. Our task is to compile out an
overloaded constant ∗ from a term s. As a first step, we transform s into
swith[∗/ f] such that s = swith[∗/ f] and such that unfolding the definitions
of all constants in swith does not yield ∗ as a subterm. We proceed for every
constant c in s as follows: if c has no definition, we do not do anything.
If c was defined as c = t, we first apply the construction recursively on
t and obtain twith such that t = twith[∗/ f]; thus c = twith[∗/ f]. Now we
define a new constant cwith f = twith. As cwith ∗ = c, we replace c in s by
cwith ∗. At the end, we obtain s = swith[∗/ f] as a theorem. Notice that
this procedure produces swith that does not semantically depends on ∗
only if there is no type in s that depends on ∗.
Thus the above-described step applied to (92) produces

∀α. semigroupwith ∗α→α→α Ð→
φwith[α, fα→α→α][∗α→α→α/ fα→α→α].

(94)

To finish the dictionary construction, we replace every occurrence of
∗α→α→α by a universally quantified variable fα→α→α and obtain (93). This
derivation step is not currently allowed in Isabelle.
Now we will formulate the extension of the logic in the form of a

rule that allows us to perform the derivation of (93) from (94). First,
let us recall that ↝↓+ is the transitive and substitutive closure of the
constant/type dependency relation ↝ from Section 3.4.1. Additionally,
we define ∆c as the set of all types for which c was overloaded, i.e.,
∆c = {σ ∣ there is a definition cσ ≡ v for some v}. We say that a type or a
constant instance u is in φ, written u ∈ φ, if u ∈ consts●(φ) ∪ types●(φ).
Now we can formulate the Unoverloading rule (UO):

φ[cσ/xσ] [¬(p ↝↓+ cσ) for any p ∈ φ; σ /≤ ∆c] (UO)∀xσ . φ

This means that we can replace a constant cσ by a universally quantified
variable xσ under these two side conditions:

144

7.4 further extensions

1. All types and constant instances in φ do not semantically depend on
cσ through a chain of constant and type definitions. The constraint
is fulfilled by the first step of the dictionary construction unless
there is a type depending on cσ .

2. There is no matching definition for cσ . In our use case, cσ is always
a type-class operation with its most general type (e.g., ∗α→α→α). As
we overload a type-class operation only for strictly more specific
types (such as ∗nat→nat→nat), the condition σ /≤ ∆c must be fulfilled.

The proof of the rule’s soundness is still an open question.

Conjecture 1. The rule (UO) is sound.

Proof idea. The truth of a formula φ containing cσ should not be affected
by any existing definition of cτ with τ < σ and therefore, since cσ is
unconstrained (and thus uninterpreted) outside of such τs, it behaves like
a term variable xσ in φ.

In the next section, I will summarize how the extensions for type classes
and overloading work together with the algorithm from Section 7.3.

7.4.3 General Case

Let us assume thatΥ is a type class depending on the overloaded constants
∗1, . . . , ∗n, written ∗. We write A ↓ f to mean that A is closed under
operations f1, . . . , fn.
The following derivation tree shows howwe derive from the type-based

theorem ⊢ ∀αΥ . φ[αΥ] (the topmost formula in the tree) its set-based
version (the bottommost formula). Explanation of the derivation steps
follows after the tree.

⊢ ∀αΥ . φ[αΥ] (1)
⊢ ∀α. Υ(α) Ð→ φ[α]

(2)
⊢ ∀α. Υwith ∗[α] Ð→ φwith[α, f][∗/ f] (3)
⊢ ∀α. ∀ f [α]. Υwith f Ð→ φwith[α, f] (4)

Aα set ≠ ∅, α(A ≈ β)AbsRep ⊢ ∀α. ∀ f [α]. Υwith f Ð→ φwith[α, f]
(5)

Aα set ≠ ∅, α(A ≈ β)AbsRep ⊢ ∀ f [β]. Υwith f Ð→ φwith[β, f]
(6)

Aα set ≠ ∅,

α(A ≈ β)AbsRep
⊢ ∀ f [α]. A ↓ f Ð→ Υon

with A f Ð→ φonwith[α, A, f]
(7)

Aα set ≠ ∅ ⊢ ∀ f [α]. A ↓ f Ð→ Υon
with A f Ð→ φonwith[α, A, f] (8)

⊢ ∀α. ∀Aα set.

A ≠ ∅ Ð→ ∀ f [α]. A ↓ f Ð→ Υon
with A f Ð→ φonwith[α, A, f]

145

use case: from types to sets

Derivation steps:

(1) The class internalization from Section 7.4.1.

(2) The first step of the dictionary construction from Section 7.4.2.

(3) The Unoverloading rule (UO) from Section 7.4.2.

(4) We fix fresh α, Aα set, β, Absα→β and Repβ→α . We assume that A is
nonempty and that β is isomorphic to A.

(5) We instantiate α in the conclusion with β.

(6) Relativization along the isomorphism between β and A by the
Transfer tool—see Section 7.3.

(7) Since Abs and Rep are present only in α(A ≈ β)AbsRep, we can ex-
istentially quantify over them and replace the hypothesis with
∃Abs Rep. α(A ≈ β)AbsRep, which we discharge by the Local Type-
def rule from Section 7.2, as β is not present elsewhere either (the
previous step (6) removed all occurrences of β in the conclusion).

(8) We move all hypotheses into the conclusion and quantify over all
fixed variables.

The whole process depends only on the (conditional) parametricity rules
used in the step (6). We can provide such rules for a broad class of
constants as we are transferring over right-total and bi-unique relations.
Such rules are usually part of a library and no additional input is required
from the user. The only restriction stems from the step (2). We cannot
perform the dictionary construction for types depending on overloaded
constants unless we want to compile out such types as well.

7.5 conclusion

We are currently experimenting with a prototype implementation of the
new rules and their integration with Lifting and Transfer—the implemen-
tation of the (LT) and (UO) rules is already available frommywebsite [69].
A rigorous proof of the soundness of the (UO) rule is future work.
But even without the (UO) rule in place, we can still relativize a large

class of formulas: any formula without overloaded constants. We be-
lieve that the Local Typedef rule, which is semantically well justified and
apparently quite useful, is a good candidate for HOL citizenship.
Notice that with the (UO) rule in place, we can address one of the

long-standing user complaints that they are not allowed to provide, for
example, two different orders for the same type when using the type class

146

7.5 conclusion

for orders. With our tool, they can still enjoy advantages of type classes
and overloading while proving abstract properties about orders and only
export the final product as a set-based theorem, which quantifies over all
possible orders. According to the motto: Prove easily and be still flexible.

147

The question: is this good news or bad
news? And the answer is: Yes!

— Barry Schwartz (2005)

8 CONCLUSION

Interactive theorem provers have always aimed to make proving less error
prone and less demanding. This thesis provides an advancement on this
front. Our work allows for sound and more abstract reasoning and thus
makes proving in Isabelle/HOL more trustworthy and easier.

8.1 results

Isabelle/HOL has contained user-defined types since its creation. Our
goal was to promote user-defined types as a tool for abstraction.
Our first contribution is to have made the type definitional mechanism

consistent with the overloading constant definitions. We defined decid-
able criteria under which these definitions cannot create a cycle—the
offending dependency. We identified the standard HOL semantics [81]
as not being suitable for overloading (which has a syntactic notion) and
therefore created a novel semantics, which is a natural syntactic-semantic
blend. Our model of Isabelle/HOL is the first explanation of the correct
interplay of the two definitional mechanisms after a series of works on this
topic [30, 50, 75, 99]. This work put Isabelle/HOL onto a firm foundational
ground to a relief of its users.
Although the concrete (technical) contribution here is novel (new

semantics, first model for typedef with overloading), our achievement
seen in a broader context of interactive provers is not revolutionary at
all. We are just catching up with a group of provers that have already
clarified their foundations [81], in some cases even mechanically [34, 52,
67]. In our eyes, we are settling a debt concerning clarity of Isabelle’s
logical foundations and trustworthiness of its implementation. Of course,
this has good reasons: our logic is more complex and we put more energy
into other aspects of Isabelle and created indisputably a system with the
highest usability among interactive provers. Let us shift our focus back
to the kernel of our system. In this regard, our work is meant to be a
beginning not an end product on this front—I will elaborate on this in
the future work section.
On the practical side, our main contribution was a development of

two tools, Transfer and Lifting, providing support for creating libraries of
abstract types.

149

conclusion

Transfer is a working implementation of ideas successively developed
by Reynolds [83], Wadler [95] and Mitchell [65]. Transfer supports trans-
ferring of theorems between any pair of types that can be set in a relation
and for which we have transfer rules relating corresponding operations on
these types. Various automation procedures ease the burden of proving:
the transfer prover can prove parametricity for derived operations and
the integration with the (co)datatype tool [12] proves setup theorems for
natural functors. Our work confirms that it is useful to treat types as
objects with a rich structure rather than sets of elements. Compared with
previous solutions based on the rewriting approach [33, 39, 48, 78], Trans-
fer is more general and requires less input from the users—the hallmark
of representing related types as relations and using parametricity.
Lifting is an improvement on previous quotient tools [39, 48]. Lifting

defines operations on different kinds of abstract types (subtypes and
quotients) by using a uniform algorithm. The main contribution is that
it is the first quotient tool that does not impose any limitation on the
higher-order type of the lifted operations. Our automation can discharge
the correctness condition of the definition for type copies and rewrites its
statement into a readable form in other cases. The integration with the
(co)datatype tool again provides setup theorems. The integration with the
code generator animates our methodology for reducing data refinement
to code generation.
Adding the layered design into our solution caters for flexibility: Trans-

fer is not limited only to operations defined by Lifting, and Lifting is not
limited only to types defined by the command quotient type.
The principles on which Transfer and Lifting are based are not tightly

bound to Isabelle/HOL. Thus we consider our results to be of general
interest to the whole HOL community. Our detailed description allows
for recreating similar tools at the very least in other HOL-based provers.
The Transfer and Lifting tools have become popular tools. One of

Isabelle’s advanced users gave me an anecdotal evidence [42]: If I had not
been able to use the type of finite sets together with Transfer and Lifting, I
would have had to use lists to model finite sets and would have hated myself
every day. An inspection of the Isabelle2015 distribution [44] and the
Archive of Formal Proofs [5] reveals around 3500 uses of methods and
commands from the Transfer and Lifting tools.
Our interpretation of the above is that the Isabelle users started enjoying

abstract types thanks to the invaluable help of our tools. Thus we achieved
our goal to make types in Isabelle/HOL a powerful and useful tool for
abstraction. Overall, our work means that we can overcome limitations
of an elementary type system by building a layer of automation around it.
This brings us to a broader perspective of improving the technology of

interactive theorem proving. There have been numerous other works [10,
12, 51, 63, 93, 96–98] that made proving in Isabelle/HOL more scalable

150

8.2 future work

andmore productive. Thanks to this advancement, the users can and dare
to create larger and more demanding formalizations [14, 23, 45, 57, 59, 77,
88, 90], which in return opens new challenges. This is a never-ending
process. In this respect, our work is just a small stone put into a much
larger mosaic, a small step in a long run.
Let me also mention what our tools cannot do. At the very beginning

of my thesis, I praised abstraction as a fruitful way of working. Let us
not forget how easily mathematicians’ minds can move between different
abstractions; sometimes as easy as our eyes can refocus fromour laptops to
a distant tree. We are still far from this effortless freedom in our theorem
provers, although most if not every user would agree that an ideal prover
should support such refocusing. Transfer and Lifting still work only on
a small scale and do not provide what we could call reasoning modulo
isomorphism. We are only at the start of using our tools as black boxes to
build more complicated tools. My procedure to work around the return-
type limitation of the code generator or my proposal to move theorems
from types to sets are first swallows that will hopefully make a summer.

8.2 future work

Here I propose how to address most of the limitations of our work and
suggest interesting follow-up projects.

8.2.1 Foundations and Trustworthiness

conservativity We proved only consistency of Isabelle/HOL. Consis-
tency is a crucial, but rather weak property—a suitable notion of conserva-
tiveness (perhaps in the style ofWenzel [99], but covering type definitions
as well) is left as future work. Overloading is again the challenge here.

framework for logical extensions Our original plan was to create a
general framework that would allow us to prove easily that a certain
extension of the logic (for example the Local Typedef rule) constitutes
a conservative extension. Our idea was that one would prove that the
extension preserves a certain invariant (motivatedmainly by overloading)
rather than to inspect its interaction with all other rules in the logic. This
plan proved to be overambitious as the first step.

mechanical verification To strengthen confidence in our results, we
wish to mechanically verify the proofs from Chapter 3 in Isabelle, espe-
cially the algorithm from Section 3.5 for deciding well-formedness of a
theory. Verification of the current kernel all the way down to the im-

151

conclusion

plementation level would be extremely laborious task with the current
proving technology due to the kernel’s complexity. But we can try to
reduce the size of the kernel.

reducing the kernel The advantage of reducing the size of the kernel
would be twofold: we make the kernel more trustworthy by reducing the
trusted code and we make the potential verification of what is left more
feasible. We propose the following steps:

● The typedef command in Isabelle/HOL takes as an input a term of
type α set. This means that the set type must be introduced before
the typedef command and therefore axiomatically. After all, we
saw this in Section 2.3, where we introduced α set as a type copy of
α → bool by two axioms mem_Collect_eq and Collect_mem_eq.
We could change typedef to take a term of type α → bool, as in
the original HOL by Gordon [81], and then define α set by using it.

● The kernel of Isabelle contains a powerful rule for higher-order
resolution, which runs as a subroutine a higher-order unifier, a com-
plex piece of code. We could compute the unification outside of the
kernel and only certify in the kernel that the supplied substitution
is a unifier.

● The mechanism of axiomatic type classes is a part of the kernel.
Wenzel [99] already showed in 1997 how to compile out this mecha-
nism by reflecting type classes as predicates on types and interpret-
ing affected parts of Isabelle’s type system (order-sorted unification
and type inference) as a logical reasoning in a simple fragment of
the propositional logic. Following Wenzel’s proposal is rather an
engineering challenge—performance and compatibility.

8.2.2 Transfer and Lifting

limitations of transfer I mentioned two limitations of Transfer in Sec-
tion 4.9: 1) Under some rare conditions, transfer does not synthesize a
goal that would represent the most eager way of transferring. The desired
result can be obtained only by backtracking. We want to improve the
transfer algorithm such that this does not happen. 2) Some useful con-
ditional transfer rules are not expressible in our current framework. We
want to generalize the notion of a transfer rule with side conditions.

lifting restrictions of the code generator In Section 6.4, I presented
the algorithm for lifting the return-type restriction of the code generator.
The presented solution does not support composition of abstract types. It

152

8.2 future work

seems that parametricity (for left-unique relations) of the defining predi-
cate of the outer type suffices. It is an open question if this condition is also
necessary. Another topic would be to implement a similar algorithm for
functions that do not need invariants. Here a dual restriction is required:
the type arguments of a function must be basic.

from types to sets We want to finish the project of translating type-
based theorem to set-based theorems (Chapter 7). Besides implementa-
tion of the translation algorithm, this requires a proof of soundness of
the Unoverloading rule (UO).

reasoningmodulo isomorphism I have alreadymentioned this project
in the previous section. Our ideal is to move whole specifications and
theories between different types. More speculatively, we could envision a
mechanism that would work as follows: if a user wanted to apply some
method to a goal, it would be recognized that we need to change a view
to an isomorphic view of the goal to make the method succeed.

153

BIBLIOGRAPHY

[1] A Consistent Foundation for Isabelle/HOL - A Correction Patch.
url: http://www21.in.tum.de/~kuncar/documents/
patch.html.

[2] M. Adams. Introducing HOL Zero - (Extended Abstract). In K.
Fukuda, J. v. d. Hoeven, M. Joswig, and N. Takayama, editors,
ICMS 2010. Vol. 6327, in LNCS, pp. 142–143. Springer, 2010.

[3] A. Anand and V. Rahli. Towards a Formally Verified Proof Assis-
tant. In G. Klein and R. Gamboa, editors, ITP 2014. Vol. 8558, in
LNCS, pp. 27–44. Springer, 2014.

[4] J. Aransay, C. Ballarin, and J. Rubio. A Mechanized Proof of the
Basic Perturbation Lemma. J. autom. reasoning, 40(4):271–292,
2008.

[5] Archive of Formal Proofs. url: http://afp.sf.net/.

[6] R. D. Arthan. Some Mathematical Case Studies in ProofPower–
HOL. In K. Slind, editor, TPHOLs 2004 (Emerging Trends), in
School of Computing, pp. 1–16. University of Utah, 2010.

[7] B. Barras. Coq en Coq. Tech. rep. (3026). INRIA, 1996.

[8] B. Barras. Sets in Coq, Coq in Sets. J. Formalized Reasoning,
3(1):29–48, 2010.

[9] Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-
gram Development - Coq’Art: The Calculus of Inductive Construc-
tions. Of Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2004.

[10] J. C. Blanchette. Automatic Proofs and Refutations for Higher-
Order Logic. PhD thesis. Institut für Informatik, Technische Uni-
versität München, 2012.

[11] J. C. Blanchette, M. Desharnais, L. Panny, A. Popescu, andD. Tray-
tel.Defining (Co)datatypes and Primitively (Co)recursive Functions
in Isabelle/HOL, 2015. url: https://isabelle.in.tum.de/
dist/Isabelle2015/doc/datatypes.pdf.

[12] J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu,
and D. Traytel. Truly Modular (Co)datatypes for Isabelle/HOL.
In G. Klein and R. Gamboa, editors, ITP 2014. Vol. 8558, in LNCS,
pp. 93–110. Springer, 2014.

155

http://www21.in.tum.de/~kuncar/documents/patch.html
http://www21.in.tum.de/~kuncar/documents/patch.html
http://afp.sf.net/
https://isabelle.in.tum.de/dist/Isabelle2015/doc/datatypes.pdf
https://isabelle.in.tum.de/dist/Isabelle2015/doc/datatypes.pdf

Bibliography

[13] J. C. Blanchette, A. Popescu, and D. Traytel. Foundational exten-
sible corecursion: a proof assistant perspective. In K. Fisher and
J. H. Reppy, editors, ICFP 2015, pp. 192–204. ACM, 2015.

[14] T. Bourke, R. J. v. Glabbeek, and P. Höfner. A Mechanized Proof
of Loop Freedom of the (Untimed) AODV Routing Protocol. In
F. Cassez and J. Raskin, editors, ATVA 2014. Vol. 8837, in LNCS,
pp. 47–63. Springer, 2014.

[15] A. Bove, P. Dybjer, and U. Norell. A Brief Overview of Agda -
A Functional Language with Dependent Types. In S. Berghofer,
T. Nipkow, C. Urban, and M. Wenzel, editors, TPHOLs 2009.
Vol. 5674, in LNCS, pp. 73–78. Springer, 2009.

[16] H. Chan and M. Norrish. Mechanisation of AKS Algorithm: Part
1 –The MainTheorem. In C. Urban and X. Zhang, editors, ITP
2015. Vol. 9236, in LNCS, pp. 117–136. Springer, 2015.

[17] A. Church. A Formulation of the Simple Theory of Types.The
Journal of Symbolic Logic, 5(2):56–68, 1940.

[18] A. R. Coble. Formalized Information-Theoretic Proofs of Privacy
Using the HOL4Theorem-Prover. In N. Borisov and I. Goldberg,
editors, PETS 2008. Vol. 5134, in LNCS, pp. 77–98. Springer, 2008.

[19] C. S. Coen. A Semi-reflexive Tactic for (Sub-)Equational Reason-
ing. In J. Filliâtre, C. Paulin-Mohring, and B. Werner, editors,
TYPES 2004. Vol. 3839, in LNCS, pp. 98–114. Springer, 2004.

[20] C. Cohen, M. Dénès, and A. Mörtberg. Refinements for Free!
In G. Gonthier and M. Norrish, editors, CPP 2013. Vol. 8307, in
LNCS, pp. 147–162. Springer, 2013.

[21] M.Dénès. [Coq-Club] Propositional extensionality is inconsistent
in Coq. Archived at https://sympa.inria.fr/sympa/arc/
coq-club/2013-12/msg00119.html. Dec. 12, 2013.

[22] J.-C. Filliâtre and P. Letouzey. Functors for Proofs and Programs.
In, ESOP 2004. Vol. 2986, in LNCS, pp. 370–384. Springer, 2004.

[23] P. Gammie, A. L. Hosking, and K. Engelhardt. Relaxing safely:
verified on-the-fly garbage collection for x86-TSO. In D. Grove
and S. Blackburn, editors, PLDI 2015, pp. 99–109. ACM, 2015.

[24] M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic. Cambridge
University Press, 1993.

[25] M. Gordon. From LCF to HOL: a short history. In G. D. Plotkin,
C. Stirling, andM. Tofte, editors, Proof, Language, and Interaction,
Essays in Honour of Robin Milner, pp. 169–186. The MIT Press,
2000.

156

https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html
https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html

Bibliography

[26] A. Grabowski, A. Kornilowicz, and A. Naumowicz. Mizar in a
Nutshell. J. Formalized Reasoning, 3(2):153–245, 2010.

[27] D. Greve, M. Kaufmann, P. Manolios, J. Moore, S. Ray, J. Ruiz-
Reina, R. Sumners, D. Vroon, andM.Wilding. Efficient execution
in an automated reasoning environment. J. Funct. Program., 18:15–
46, 2008.

[28] F. Haftmann, A. Krauss, O. Kunčar, and T. Nipkow. Data Refine-
ment in Isabelle/HOL. In S. Blazy, C. Paulin-Mohring, and D.
Pichardie, editors, ITP 2013. Vol. 7998, in LNCS, pp. 100–115. Sprin-
ger, 2013.

[29] F. Haftmann and T. Nipkow. Code Generation via Higher-Order
Rewrite Systems. InM. Blume,N. Kobayashi, andG.Vidal, editors,
FLOPS 2010. Vol. 6009, in LNCS, pp. 103–117. Springer, 2010.

[30] F.Haftmann andM.Wenzel. Constructive TypeClasses in Isabelle.
In T. Altenkirch and C. McBride, editors, TYPES 2006. Vol. 4502,
in LNCS, pp. 160–174. Springer, 2006.

[31] F. Haftmann and M. Wenzel. Private communication. Oct. 2014.

[32] J. Harrison. HOL Light: A Tutorial Introduction. In M. K. S. and
A. J. Camilleri, editors, FMCAD ’96. Vol. 1166, in LNCS, pp. 265–
269. Springer, 1996.

[33] J. Harrison.Theorem provingwith the real numbers. OfCPHC/BCS
distinguished dissertations. Springer, 1998.

[34] J. Harrison. Towards Self-verification of HOL Light. In U. Furbach
and N. Shankar, editors, IJCAR 2006. Vol. 4130, in LNCS, pp. 177–
191. Springer, 2006.

[35] J. He, C. Hoare, and J. Sanders. Data refinement refined. In B.
Robinet and R. Wilhelm, editors, ESOP ’86. Vol. 213, in LNCS,
pp. 187–196. Springer, 1986.

[36] C. Hoare. Proof of Correctness of Data Representations. Acta
Informatica, 1:271–281, 1972.

[37] J. Hölzl and A. Heller. Three Chapters of Measure Theory in Isa-
belle/HOL. In M. C. J. D. v. Eekelen, H. Geuvers, J. Schmaltz,
and F. Wiedijk, editors, ITP 2011. Vol. 6898, in LNCS, pp. 135–151.
Springer, 2011.

[38] J. Hölzl, F. Immler, and B. Huffman. Type Classes and Filters for
Mathematical Analysis in Isabelle/HOL. In S. Blazy, C. Paulin-
Mohring, and D. Pichardie, editors, ITP 2013. Vol. 7998, in LNCS,
pp. 279–294. Springer, 2013.

157

Bibliography

[39] P. V. Homeier. A Design Structure for Higher Order Quotients.
In J. Hurd and T. F. Melham, editors, TPHOLs 2005. Vol. 3603, in
LNCS, pp. 130–146. Springer, 2005.

[40] B. Huffman and O. Kunčar. Lifting and Transfer: A Modular De-
sign for Quotients in Isabelle/HOL. In G. Gonthier and M. Nor-
rish, editors, CPP 2013. Vol. 8307, in LNCS, pp. 131–146. Springer,
2013.

[41] B. Huffman and C. Urban. A New Foundation for Nominal
Isabelle. In M. Kaufmann and L. C. Paulson, editors, ITP 2010.
Vol. 6172, in LNCS, pp. 35–50. Springer, 2010.

[42] L. Hupel. Private communication. Nov. 2015.

[43] F. Immler. Generic Construction of Probability Spaces for Paths
of Stochastic Processes. MA thesis. Institut für Informatik, Tech-
nische Universität München, 2012.

[44] Isabelle2015. url: http://isabelle.in.tum.de/website-
Isabelle2015/.

[45] IsaFoR/CeTA - An Isabelle/HOL Formalization of Rewriting for
Certified Termination Analysis. url: http://cl-informatik.
uibk.ac.at/software/ceta/.

[46] Issues of The Cyclicity Checker. url: http://www21.in.tum.
de/~kuncar/documents/issues/.

[47] C. B. Jones. Software Development. A Rigourous Approach. Pren-
tice Hall, 1980.

[48] C. Kaliszyk and C. Urban. Quotients revisited for Isabelle/HOL.
In W. C. Chu, W. E. Wong, M. J. Palakal, and C. Hung, editors,
SAC 2011, pp. 1639–1644. ACM, 2011.

[49] M. Kaufmann, P. Manolios, and J. S. More. Computer-Aided Rea-
soning: ACL2 Case Studies. Kluwer Academic Publishers, 2000.

[50] A. Krauss and A. Schropp. A Mechanized Translation from
Higher-Order Logic to Set Theory. In M. Kaufmann and L. C.
Paulson, editors, ITP 2010. Vol. 6172, in LNCS, pp. 323–338.
Springer, 2010.

[51] A. Krauss, C. Sternagel, R. Thiemann, C. Fuhs, and J. Giesl. Ter-
mination of Isabelle Functions via Termination of Rewriting. In
M. C. J. D. v. Eekelen, H. Geuvers, J. Schmaltz, and F. Wiedijk,
editors, ITP 2011. Vol. 6898, in LNCS, pp. 152–167. Springer, 2011.

[52] R. Kumar, R. Arthan, M. O. Myreen, and S. Owens. HOL with
Definitions: Semantics, Soundness, and a Verified Implementa-
tion. In G. Klein and R. Gamboa, editors, ITP 2014. Vol. 8558, in
LNCS, pp. 308–324. Springer, 2014.

158

http://isabelle.in.tum.de/website-Isabelle2015/
http://isabelle.in.tum.de/website-Isabelle2015/
http://cl-informatik.uibk.ac.at/software/ceta/
http://cl-informatik.uibk.ac.at/software/ceta/
http://www21.in.tum.de/~kuncar/documents/issues/
http://www21.in.tum.de/~kuncar/documents/issues/

Bibliography

[53] O. Kunčar. Correctness of Isabelle’s Cyclicity Checker: Implemen-
tability of Overloading in Proof Assistants. In X. Leroy and A. Tiu,
editors, CPP 2015, pp. 85–94. ACM, 2015.

[54] O. Kunčar and A. Popescu. A Consistent Foundation for Isabelle/
HOL. In C. Urban and X. Zhang, editors, ITP 2015. Vol. 9236, in
LNCS, pp. 234–252. Springer, 2015.

[55] O. Kunčar and A. Popescu. From Types to Sets in Isabelle/HOL.
In, Isabelle Workshop 2014, 2014. url: http://www21.in.tum.
de/~kuncar/documents/kuncar-popescu-itp2014.pdf.

[56] P. Lammich. Automatic Data Refinement. In S. Blazy, C. Paulin-
Mohring, and D. Pichardie, editors, ITP 2013. Vol. 7998, in LNCS,
pp. 84–99. Springer, 2013.

[57] P. Lammich and A. Lochbihler. The Isabelle Collections Frame-
work. In M. Kaufmann and L. C. Paulson, editors, ITP 2010.
Vol. 6172, in LNCS, pp. 339–354. Springer, 2010.

[58] K. R. M. Leino and M. Moskal. Co-induction Simply - Automatic
Co-inductive Proofs in a Program Verifier. In C. B. Jones, P. Pihla-
jasaari, and J. Sun, editors, FM 2014. Vol. 8442, in LNCS, pp. 382–
398. Springer, 2014.

[59] A. Lochbihler. Java and the Java Memory Model - A Unified,
Machine-Checked Formalisation. In H. Seidl, editor, ESOP 2012.
Vol. 7211, in LNCS, pp. 497–517. Springer, 2012.

[60] A. Lochbihler. Light-Weight Containers for Isabelle: Efficient,
Extensible, Nestable. In S. Blazy, C. Paulin-Mohring, and D.
Pichardie, editors, ITP 2013. Vol. 7998, in LNCS, pp. 116–132.
Springer, 2013.

[61] N. Magaud. Changing Data Representation within the Coq Sys-
tem. In D. A. Basin and B. Wolff, editors, TPHOLs 2003. Vol. 2758,
in LNCS, pp. 87–102. Springer, 2003.

[62] M. Maggesi. A formalisation of metric spaces in HOL Light. Pre-
sented at the Workshop Formal Mathematics for Mathematicians.
CICM 2015. Published online. 2015. url: http://www.cicm-
conference.org/2015/fm4m/FMM_2015_paper_3.pdf.

[63] D. Matichuk, M. Wenzel, and T. C. Murray. An Isabelle Proof
Method Language. In G. Klein and R. Gamboa, editors, ITP 2014.
Vol. 8558, in LNCS, pp. 390–405. Springer, 2014.

[64] C. McBride et al. [HoTT] Newbie questions about homotopy
theory and advantage of UF/Coq. Archived at http://article.
gmane.org/gmane.comp.lang.agda/6106. Aug. 1, 2014.

[65] J. C.Mitchell. Representation Independence andDataAbstraction.
In, POPL ’86, pp. 263–276. ACM, 1986.

159

http://www21.in.tum.de/~kuncar/documents/kuncar-popescu-itp2014.pdf
http://www21.in.tum.de/~kuncar/documents/kuncar-popescu-itp2014.pdf
http://www.cicm-conference.org/2015/fm4m/FMM_2015_paper_3.pdf
http://www.cicm-conference.org/2015/fm4m/FMM_2015_paper_3.pdf
http://article.gmane.org/gmane.comp.lang.agda/6106
http://article.gmane.org/gmane.comp.lang.agda/6106

Bibliography

[66] O. Müller, T. Nipkow, D. v. Oheimb, and O. Slotosch. HOLCF=
HOL+LCF. J. Funct. Program., 9(2):191–223, 1999.

[67] M.O.Myreen and J. Davis.TheReflectiveMilawaTheoremProver
Is Sound - (Down to the Machine CodeThat Runs It). In G. Klein
and R. Gamboa, editors, ITP 2014. Vol. 8558, in LNCS, pp. 421–436.
Springer, 2014.

[68] W. Naraschewski and M. Wenzel. Object-Oriented Verification
Based on Record Subtyping in Higher-Order Logic. In J. Grundy
and M. C. Newey, editors, TPHOLs ’98. Vol. 1479, in LNCS,
pp. 349–366. Springer, 1998.

[69] New Rules for HOL. url: http : / / www21 . in . tum . de /
~kuncar/documents/new_rules.html.

[70] T.Nipkow. AreHomomorphisms Sufficient for Behavioural Imple-
mentations of Deterministic and Nondeterministic Data Types?
In F. Brandenburg, G. Vidal-Naquet, and M. Wirsing, editors,
STACS ’87. Vol. 247, in LNCS, pp. 260–271. Springer, 1987.

[71] T. Nipkow. Non-Deterministic Data Types: Models and Imple-
mentations. Acta Informatica, 22:629–661, 1986.

[72] T. Nipkow, L. C. Paulson, andM.Wenzel. Isabelle/HOL—A Proof
Assistant for Higher-Order Logic. Vol. 2283 of LNCS. Springer,
2002.

[73] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic. Part of the Isabelle2015
distribution, 2015. url:https://isabelle.in.tum.de/dist/
Isabelle2015/doc/tutorial.pdf.

[74] T. Nipkow and G. Snelting. Type Classes and Overloading Resolu-
tion via Order-Sorted Unification. In J. Hughes, editor, Functional
Programming Languages and Computer Architecture. Vol. 523, in
LNCS, pp. 1–14. Springer, 1991.

[75] S. Obua. Checking Conservativity of Overloaded Definitions in
Higher-Order Logic. In F. Pfenning, editor, RTA 2006. Vol. 4098,
in LNCS, pp. 212–226. Springer, 2006.

[76] L. C. Paulson. A fixedpoint approach to (co)inductive and
(co)datatype definitions. In G. D. Plotkin, C. Stirling, and M.
Tofte, editors, Proof, Language, and Interaction, Essays in Honour
of Robin Milner, pp. 187–212. MIT Press, 2000.

[77] L. C. Paulson. A Mechanised Proof of Gödel’s Incompleteness
Theorems Using Nominal Isabelle. J. Autom. Reasoning, 55(1):1–37,
2015.

[78] L. C. Paulson. Defining functions on equivalence classes. ACM
trans. comput. log., 7(4):658–675, 2006.

160

http://www21.in.tum.de/~kuncar/documents/new_rules.html
http://www21.in.tum.de/~kuncar/documents/new_rules.html
https://isabelle.in.tum.de/dist/Isabelle2015/doc/tutorial.pdf
https://isabelle.in.tum.de/dist/Isabelle2015/doc/tutorial.pdf

Bibliography

[79] L. C. Paulson. Isabelle: A Generic Theorem Prover. Vol. 828 of
LNCS. Springer, 1994.

[80] B. C. Pierce. Types and Programming Languages. MIT Press, Cam-
bridge, MA, USA, 2002.

[81] A. Pitts. In. Introduction to HOL: ATheorem Proving Environment
for Higher Order Logic. M. J. C. Gordon and T. F. Melham, editors.
Cambridge University Press, 1993. part The HOL Logic, pp. 191–
232.

[82] W. Reif, G. Schellhorn, and K. Stenzel. Interactive Correctness
Proofs for SoftwareModulesUsingKIV. In,COMPASS ’95, pp. 151–
162. IEEE, 1995.

[83] J. C. Reynolds. Types, Abstraction and Parametric Polymorphism.
In, IFIP Congress, pp. 513–523, 1983.

[84] N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Computer
Science Laboratory, SRI International, 1993.

[85] O. Slotosch. Higher Order Quotients and their Implementation
in Isabelle HOL. In E. L. Gunter and A. P. Felty, editors, TPHOLs
’97. Vol. 1275, in LNCS, pp. 291–306. Springer, 1997.

[86] M. Sozeau. A New Look at Generalized Rewriting in TypeTheory.
J. Formalized Reasoning, 2(1):41–62, 2009.

[87] M. Sozeau and N. Oury. First-Class Type Classes. In O. A.
Mohamed, C. A. Muñoz, and S. Tahar, editors, TPHOLs 2008.
Vol. 5170, in LNCS, pp. 278–293. Springer, 2008.

[88] The CAVA Project - Computer Aided Verification of Automata.
url: https://cava.in.tum.de/.

[89] The HOL4 Theorem Prover. url: http://hol.sourceforge.
net/.

[90] The seL4 Microkernel. url: https://sel4.systems/.

[91] D. Traytel, A. Popescu, and J. C. Blanchette. Foundational, Compo-
sitional (Co)datatypes for Higher-Order Logic: Category Theory
Applied to Theorem Proving. In, LICS 2012, pp. 596–605. IEEE,
2012.

[92] C. Urban. Nominal Techniques in Isabelle/HOL. J. Autom. Rea-
soning, 40(4):327–356, 2008.

[93] C. Urban and C. Kaliszyk. General Bindings and Alpha-Equiva-
lence in Nominal Isabelle. Logical Methods in Computer Science,
8(2), 2012.

[94] P. Wadler and S. Blott. How to Make Ad-hoc Polymorphism Less
Ad Hoc. In, POPL ’89, pp. 60–76. ACM, 1989.

161

https://cava.in.tum.de/
http://hol.sourceforge.net/
http://hol.sourceforge.net/
https://sel4.systems/

Bibliography

[95] P. Wadler. Theorems for Free! In, FPCA ’89, pp. 347–359. ACM,
1989.

[96] M. Wenzel. Asynchronous User Interaction and Tool Integration
in Isabelle/PIDE. In G. Klein and R. Gamboa, editors, ITP 2014.
Vol. 8558, in LNCS, pp. 515–530. Springer, 2014.

[97] M. Wenzel. System description: Isabelle/jEdit in 2014. In C. Benz-
müller and B. W. Paleo, editors, UITP 2014. Vol. 167, in EPTCS,
pp. 84–94, 2014.

[98] M. Wenzel. Isabelle/Isar — a Versatile Environment for Human-
Readable Formal Proof Documents. PhD thesis. Institut für In-
formatik, Technische Universität München, 2002.

[99] M.Wenzel. Type Classes and Overloading in Higher-Order Logic.
In E. L. Gunter and A. P. Felty, editors, TPHOLs ’97. Vol. 1275, in
LNCS, pp. 307–322. Springer, 1997.

[100] T. Zimmermann and H. Herbelin. Automatic and Transparent
Transfer of Theorems along Isomorphisms in the Coq Proof As-
sistant. CoRR, abs/1505.05028, 2015.

162

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.2.1 Consistent Foundation for Isabelle/HOL
	1.2.2 Automation for Building Abstract Types
	1.2.3 Use Cases of Transfer and Lifting

	1.3 Publications
	1.4 Structure of This Thesis

	2 Isabelle/HOL
	2.1 Isabelle Simplified
	2.1.1 The Metalogic
	2.1.2 Type Classes

	2.2 Syntax
	2.3 Deduction System
	2.4 Definitional Principles
	2.4.1 Overloaded Constant Definition
	2.4.2 Type Definition
	2.4.3 Derived Definitional Principles

	2.5 Tactics, Methods and Attributes
	2.6 Sets and Binary Relations

	3 Higher-Order Logic with Ad Hoc Overloading Consistently
	3.1 HOL with Ad Hoc Overloading Inconsistently
	3.2 Related Work
	3.3 The Consistency Problem
	3.3.1 Built-In and Non-Built-In Types and Constants
	3.3.2 Definitional Theories
	3.3.3 The Consistency Problem

	3.4 The Solution to The Consistency Problem
	3.4.1 Definitional Dependency Relation
	3.4.2 The Consistency Theorem
	3.4.3 Inadequacy of the Standard Semantics of Polymorphic HOL
	3.4.4 Ground, Fragment-Localized Semantics
	3.4.5 Soundness
	3.4.6 The Model Construction

	3.5 Deciding Well-Formedness
	3.5.1 The Termination Problem
	3.5.2 Preliminaries
	3.5.3 From Termination to Acyclicity
	3.5.4 From Acyclicity to a Decision Procedure
	3.5.5 Issues with the Original Algorithm

	3.6 Discussion

	4 Relational Parametricity Implemented: Transfer
	4.1 Types as Relations
	4.1.1 Relational Parametricity
	4.1.2 Representation Independence
	4.1.3 Example: int/nat Transfer

	4.2 Transfer Algorithm
	4.3 Parametrized Transfer Relations
	4.4 Transfer Rules with Side Conditions
	4.4.1 Conditional Parametricity
	4.4.2 Handling Equality Relations

	4.5 Proving Implications Instead of Equivalences
	4.6 Proving Parametricity Transfer Rules
	4.7 Transferable Type Constructors
	4.8 Interfaces
	4.9 Limitations and Future Work
	4.10 Related Work

	5 Abstract Types Uniformly: Lifting
	5.1 Motivational Examples
	5.2 Lifting Algorithm
	5.3 Setup Interface
	5.4 Readable Form of Respectfulness Theorems
	5.5 Modular Design of Transfer and Lifting
	5.6 Implementation
	5.7 Coercion Equations
	5.8 Related Work

	6 Use Case: Data Refinement
	6.1 Background
	6.2 Data Refinement with Invariants
	6.2.1 Standard Method without Invariants
	6.2.2 Adding Invariants
	6.2.3 Using Transfer and Lifting

	6.3 Data Refinement for Type Expressions
	6.4 Compound Return Types
	6.5 Related Work

	7 Use Case: From Types to Sets
	7.1 Motivation
	7.2 Proposal of a Logic Extension: Local Typedef
	7.3 Translation Algorithm
	7.4 Further Extensions
	7.4.1 Local Type Classes
	7.4.2 Local Overloading
	7.4.3 General Case

	7.5 Conclusion

	8 Conclusion
	8.1 Results
	8.2 Future Work
	8.2.1 Foundations and Trustworthiness
	8.2.2 Transfer and Lifting

