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Ondřej Kunčar1 and Andrei Popescu2

1 Fakultät für Informatik, Technische Universität München, Germany
2 Department of Computer Science, School of Science and Technology,

Middlesex University, UK

Abstract. Types in Higher-Order Logic (HOL) are naturally interpreted as non-
empty sets—this intuition is reflected in the type definition rule for the HOL-based
systems (including Isabelle/HOL), where a new type can be defined whenever a
nonempty set is exhibited. However, in HOL this definition mechanism cannot be
applied inside proof contexts. We propose a more expressive type definition rule
that addresses the limitation and we prove its soundness. This higher expressive
power opens the opportunity for a HOL tool that relativizes type-based statements
to more flexible set-based variants in a principled way. We also address particular-
ities of Isabelle/HOL and show how to perform the relativization in the presence
of type classes.

1 Motivation

The proof assistant community is mainly divided in two successful camps. One camp,
represented by provers such as Agda [7], Coq [6], Matita [5] and Nuprl [10], uses
expressive type theories as a foundation. The other camp, represented by the HOL family
of provers (including HOL4 [2], HOL Light [14], HOL Zero [3] and Isabelle/HOL [26]),
mostly sticks to a form of classic set theory typed using simple types with rank-1
polymorphism. (Other successful provers, such as ACL2 [19] and Mizar [12], could be
seen as being closer to the HOL camp, although technically they are not based on HOL.)

According to the HOL school of thought, a main goal is to acquire a sweet spot:
keep the logic as simple as possible while obtaining sufficient expressiveness. The notion
of sufficient expressiveness is of course debatable, and has been debated. For example,
PVS [29] includes dependent types (but excludes polymorphism), HOL-Omega [16]
adds first-class type constructors to HOL, and Isabelle/HOL adds ad hoc overloading of
polymorphic constants. In this paper, we want to propose a gentler extension of HOL.
We do not want to promote new “first-class citizens,” but merely to give better credit to
an old and venerable HOL citizen: the notion of types emerging from sets.

The problem that we address in this paper is best illustrated by an example. Let
lists : α set→ α list set be the constant that takes a set A and returns the set of lists
whose elements are in A, and P : α list→ bool be another constant (whose definition is
not important here). Consider the following statements, where we extend the usual HOL
syntax by explicitly quantifying over types at the outermost level:

∀α. ∃xsα list. P xs (1)



∀α. ∀Aα set. A ̸= /0−→ (∃xs ∈ lists A. P xs) (2)

The formula (2) is a relativized form of (1), quantifying not only over all types α, but also
over all their nonempty subsets A, and correspondingly relativizing the quantification
over all lists to quantification over the lists built from elements of A. We call theorems
such as (1) type based and theorems such as (2) set based.

Type-based theorems have obvious advantages compared to the set-based ones.
First, they are more concise. Moreover, automatic proof procedures work better for them,
thanks to the fact that they encode properties more rigidly and more implicitly, namely, in
the HOL types (such as membership to α list) and not via formulas (such as membership
to the set lists A). On the downside, type-based theorems are less flexible, and therefore
unsuitable for some developments. Indeed, when working with mathematical structures,
it is often the case that they have the desired property only on a proper subset of the
whole type. For example, a function f from τ to σ may be injective or continuous only
on a subset of τ. When wishing to apply type-based theorems from the library to deal
with such situations, users are forced to produce ad hoc workarounds for relativizing
them from types to sets. In the most striking cases, the relativization is created manually.
For example, in Isabelle/HOL there exists the constant inj-on A f = (∀x y ∈ A. f x =
f y−→ x = y) together with a small library about functions being injective only on a
subset of a type. In summary, while it is easier to reason about type-based statements
such as (1), the set-based statements such as (2) are more general and easier to apply.

An additional nuance to this situation is specific to Isabelle/HOL, which allows
users to annotate types with Haskell-like type-class constraints. This provides a further
level of implicit reasoning. For example, instead of explicitly quantifying a statement
over an associative operation ∗ on a type σ, one marks σ as having class semigroup
(which carries implicitly the assumptions). This would also need to be reversed when
relativizing from types to sets. If (1) made the assumption that α is a semigroup, as in
∀(αsemigroup). ∃xsα list. P xs, then (2) would need to quantify universally not only over
A, but also over a binary operation on A, and explicitly assume it to be associative.

The aforementioned problem, of the mismatch between type-based theorems from
libraries and set-based versions needed by users, shows up regularly in requests posted
on the Isabelle community mailing lists. Here is an example [33]: Various lemmas [from
the theory Finite_Set] require me to show that f [commutes with ◦] for all x and y. This
is a too strong requirement for me. I can show that it holds for all x and y in A, but not
for all x and y in general.

Often, users feel the need to convert entire libraries from type-based theorems
to set-based ones. For example, our colleague Fabian Immler writes about his large
formalization experience [18, §5.7]: The main reason why we had to introduce this new
type [of finite maps] is that almost all topological properties are formalized in terms of
type classes, i.e., all assumptions have to hold on the whole type universe. It feels like a
cleaner approach [would be] to relax all necessary topological definitions and results
from types to sets because other applications might profit from that, too.

A prophylactic alternative is of course to develop the libraries in a set-based fashion
from the beginning, agreeing to pay the price in terms of verbosity and lack of automation.
And numerous developments in different HOL-based provers do just that [4, 8, 9, 15, 23].
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In this paper, we propose an alternative that gets the best of both worlds: prove
easily and still be flexible. More precisely, develop the libraries type based, but export
the results set based. We start from the observation that, from a set-theoretic semantics
standpoint, the theorems (1) and (2) are equivalent: they both state that, for every
nonempty collection of elements, there exists a list of elements from that collection for
which P holds. Unfortunately, the HOL logic in its current form is blind to one direction
of this equivalence: assuming that (1) is a theorem, one cannot prove (2). Indeed, in
a proof attempt of (2), one would fix a nonempty set A and, to invoke (1), one would
need to define a new type corresponding to A—an action not currently allowed inside
a HOL proof context. In this paper, we propose a gentle eye surgery to HOL (and to
Isabelle/HOL) to enable proving such equivalences, and show how this can be used to
leverage user experience as outlined above.

The paper is organized as follows. In Section 2, we recall the logics of HOL and
Isabelle/HOL. In Section 3, we describe the envisioned extension of HOL: adding a
new rule for simulating type definitions in proof contexts. In Section 4, we demonstrate
how the new rule allows us to relativize type-based theorems to set-based ones in HOL.
Due to the presence of type classes, we need to extend Isabelle/HOL’s logic further to
achieve the relativization—this is the topic of Section 5. Finally, in Section 6 we outline
the process of performing the relativization in a principled and automated way.

We created a website [1] associated to the paper where we published the Isabelle
implementation of the proposed logical extensions and the Isabelle proof scripts showing
examples of applying the new rules to relativize from types to sets (including this paper’s
introductory example).

2 HOL and Isabelle/HOL Recalled

In this section, we briefly recall the logics of HOL and Isabelle/HOL mostly for the
purpose of introducing some notation. For more details, we refer the reader to stan-
dard textbooks [11, 25]. We distinguish between the core logic and the definitional
mechanisms.

2.1 Core Logic

The core logic is common to HOL and Isabelle/HOL: it is classical Higher-Order Logic
with rank-1 polymorphism, Hilbert choice and the Infinity axioms. A HOL signature
consists of a collection of type constructor symbols k ∈ K, which include the binary
function type constructor→ and the nullary bool and ind (for representing the booleans
and an infinite type, respectively). The types σ, τ are built from type variables α and type
constructors. The signature also contains a collection of constants c ∈C together with
an indication of their types, c : τ. Among these, we have equality, = : α→ α→ bool,
and implication, −→ : bool→ bool→ bool. The terms t, s are built using typed (term)
variables xσ, constant instances cσ, application and λ-abstraction. When writing concrete
terms, types of variables and constants will be omitted when they can be inferred. HOL
typing assigns types to terms, t : σ, in a standard way. The notation σ≤ τ means that σ
is an instance of τ, e.g., bool list is an instance of α list, which itself is an instance of α.
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A formula is a term of type bool. The formula connectives and quantifiers are defined in
a standard way starting from equality and implication.

In HOL, types represent “rigid” collections of elements. More flexible collections
can be obtained using sets. Essentially, a set on a type σ, also called a subset of σ, is
given by a predicate S : σ→ bool. Then membership of an element a to S is given by
S a being true. HOL systems differ in the details of representing sets: some consider sets
as syntactic sugar for predicates, others use a specialized type constructor for wrapping
predicates, yet others consider the “type of subsets of a type” unary type constructor as a
primitive. All these approaches yield essentially the same notion.

HOL deduction is parameterized by an underlying theory D. It is a system for
inferring formulas starting from the formulas in D and HOL axioms (containing ax-
ioms for equality, infinity, choice, and excluded middle) and applying deduction rules
(introduction and elimination of −→, term and type instantiation and extensionality).

2.2 Definitional Mechanisms of HOL

Most of the systems implementing HOL follow the tradition to discourage their users
from using arbitrary underlying theories D and to promote merely definitional ones,
containing definitions of constants and types.

A HOL constant definition is a formula cσ = t, where:

– c is a fresh constant of type σ
– t is a term that is closed (i.e., has no free term variables) and whose type variables

are included in those of σ

HOL type definitions are more complex entities. They are based on the notion of a
newly defined type β being embedded in an existing type α, i.e., being isomorphic to a
given nonempty subset S of α via mappings Abs and Rep. Let α(β≈ S )Abs

Rep denote the
formula expressing this:

(∀xβ. Rep x ∈ S ) ∧ (∀xβ. Abs (Rep x) = x) ∧ (∀yα. y ∈ S −→ Rep (Abs y) = y)

When the user issues a command typedef τ= Sσ set, they are required to discharge
the goal S ̸= /0, after which the system introduces a new type τ and two constants
Absτ : σ→ τ and Repτ : τ→ σ and adds the axiom σ(τ≈ S )Absτ

Repτ to the theory.

2.3 Definitional Mechanisms of Isabelle/HOL

While a member of the HOL family, Isabelle/HOL is special w.r.t. constant definitions.
Namely, a constant is allowed to be declared with a given type σ and then “overloaded”
on various types τ less general than σ and mutually orthogonal. For example, we can
have d declared to have type α, and then dbool defined to be True and dα list defined to
be [dα]. We shall write ∆c for the collection of all types where c has been overloaded. In
the above example, ∆d = {bool, α list}.

The mechanism of overloaded definitions offers broad expressive power. But with
power also comes responsibility. The system has to make sure that the defining equations
cannot form a cycle. To guarantee that, a binary constant/type dependency relation⇝ on
types and constants is maintained, where u⇝ v holds true iff one of the following holds:
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1. u is a constant c that was declared with type σ and v is a type in σ
2. u is a constant c defined as c = t and v is a type or constant in t
3. u is a type σ defined as σ= A and v is a type or constant in A

We write⇝↓ for (type-)substitutive closure of the constant/type dependency relation, i.e.,
if p⇝ q, the type instances of p and q are in⇝↓. The system accepts only overloaded
definitions for which⇝↓ does not contain an infinite chain.

In addition, Isabelle supports user-defined axiomatic type classes, which are essen-
tially predicates on types. They effectively improve the type system with the ability to
carry implicit assumptions. For example, we can define the type class finite(α) express-
ing that α has a finite number of inhabitants. Then, we are allowed to annotate type
variables by such predicates, e.g., αfinite or αsemigroup from Section 1. Finally, we can
substitute a type τ for αfinite only if τ has been previously proved to fulfill finite(τ).

The axiomatic type classes become truly useful when we use overloaded constants
for their definitions. This combination allows the use of Haskell-style type classes. E.g.,
we can reason about arbitrary semigroups by declaring a global constant ∗ : α→ α→ α
and defining the HOL predicate semigroup(α) stating that ∗ is associative on α.

In this paper, we are largely concerned with results relevant for the entire HOL family
of provers, but also take special care with the Isabelle/HOL maverick. Namely, we show
that our local typedef proposal can be adapted to cope with Isabelle/HOL’s type classes.

3 Proposal of a Logic Extension: Local Typedef

To address the limitation described in Section 1, we propose extending the HOL logic
with a new rule for type definition with the following properties:

– It enables type definitions to be emulated inside proofs while avoiding the introduc-
tion of dependent types by a simple syntactic check.3

– It is natural and sound w.r.t. the standard HOL semantics à la Pitts [27] as well as
with the logic of Isabelle/HOL.

To motivate the formulation of the new rule and to understand the intuition behind
it, we will first look deeper into the idea behind type definitions in HOL. Let us take a
purely semantic perspective and ignore the rank-1 polymorphism for a minute. Then the
principle behind type definitions simply states that for all types α and nonempty subsets
A of them, there exists a type β isomorphic to A:

∀α. ∀Aα set. A ̸= /0−→ ∃β. ∃Absα→β Repβ→α. α(β≈ A)Abs
Rep (⋆)

The typedef mechanism can be regarded as the result of applying a sequence of standard
rules for connectives and quantifiers to (⋆) in a more expressive logic (notationally, we
use Gentzen’s sequent calculus):

3 Dependent type theory has its own pluses and minuses. Moreover, even if we came to the
conclusion that the pluses prevail, we do not know how to combine dependent types with
higher-order logic and the tools built around it. Hence the avoidance of the dependent types.
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1. Left ∀ rule of α and A with given type σ and term Sσ set (both provided by the user),
and left implication rule:

Γ ⊢ S ̸= /0 Γ, ∃β Abs Rep. σ(β≈ S )Abs
Rep ⊢ φ ∀L, ∀L, −→L

Γ, (⋆) ⊢ φ Cut of (⋆)
Γ ⊢ φ

2. Left ∃ rule for β, Abs and Rep, introducing some new/fresh type τ, and functions
Absτ and Repτ:

Γ ⊢ S ̸= /0

Γ, σ(τ≈ S )Absτ
Repτ ⊢ φ ∃L, ∃L, ∃L

Γ, ∃β Abs Rep. σ(β≈ S )Abs
Rep ⊢ φ ∀L, ∀L, −→L

Γ, (⋆) ⊢ φ Cut of (⋆)
Γ ⊢ φ

The user further discharges Γ ⊢ S ̸= /0, and therefore the overall effect of this chain
is the sound addition of σ(τ≈ S )Absτ

Repτ as an extra assumption when trying to prove an
arbitrary fact φ.

What we propose is to use a variant of the above (with fewer instantiations) as an
actual rule:

– In step 1. we do not ask the user to provide concrete σ and Sσ set, but work with a
type σ and a term Aσ set that can contain type and term variables.

– In step 2., we only apply the left ∃ rule to the type β and introduce a fresh type
variable β.

We obtain:

Γ ⊢ A ̸= /0

Γ, ∃Abs Rep. σ(β≈ A)Abs
Rep ⊢ φ

[β fresh] ∃L
Γ, ∃β Abs Rep. σ(β≈ A)Abs

Rep ⊢ φ ∀L, ∀L, −→L
Γ, (⋆) ⊢ φ Cut of (⋆)
Γ ⊢ φ

To conclude, the overall rule, written (LT) as in “Local Typedef”, looks as follows:

Γ ⊢ A ̸= /0 Γ ⊢ (∃Abs Rep. σ(β≈ A)Abs
Rep)−→ φ

[β ̸∈ A, φ, Γ] (LT)
Γ ⊢ φ

This rule allows us to locally assume that there is a type β isomorphic to an arbitrary
nonempty set A. The syntactic check β ̸∈ A, φ, Γ prevents an introduction of a dependent
type (since A can contain term variables in general).

The above discussion merely shows that (LT) is morally correct and more importantly
natural in the sense that it is an instance of a more general principle, namely the rule (⋆).

As for any extension of a logic, we have to make sure that the extension is correct.
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Proposition 1. HOL extended by the (LT) rule is consistent.

This means that using rules of the HOL deduction system together with the (LT) rule
cannot produce a proof of False. The same property holds for Isabelle/HOL.

Proposition 2. Isabelle/HOL extended by the (LT) rule is consistent.

The justification of both Propositions can be found in an appendix of the extended
version of this paper [1]. The soundness argument of the (LT) rule in HOL uses the
standard HOL semantics à la Pitts [27] and the soundness of the rule in the context
of Isabelle/HOL’s overloading is based on our new work on proving Isabelle/HOL’s
consistency [22].

In the next section we will look at how the (LT) rule helps us to achieve the transfor-
mation from types to sets in HOL.

4 From Types to Sets in HOL

Let us look again at the motivating example from Section 1 and see how the rule (LT)
allows us to achieve the relativization from a type-based theorem to a set-based theorem
in HOL or Isabelle/HOL without type classes. We assume (1) is a theorem, and wish
to prove (2). We fix α and Aα set and assume A ̸= /0. Applying (LT), we obtain a type β
(represented by a fresh type variable) such that ∃Abs Rep. α(β≈ A)Abs

Rep, from which we
obtain Abs and Rep such that α(β≈ A)Abs

Rep. From this, (1) with α instantiated to β, and
the definition of lists, we obtain

∃xsβ list ∈ lists (UNIVβ set). Pβ list→bool xs.

Furthermore, using that Abs and Rep are isomorphisms between Aα set and UNIVβ set,
we obtain

∃xsα list ∈ lists Aα set. Pα list→bool xs,

as desired.4

We will consider a general case now. Let us start with a type-based theorem

∀α. φ[α], (3)

where φ[α] is a formula containing α. We fix α and Aα set, assume A ̸= /0 and “define” a
new type β isomorphic to A. Technically, we fix a fresh type variable β and assume

∃Abs Rep. α(β≈ A)Abs
Rep. (4)

From the last formula, we can obtain the isomorphism Abs and Rep between β and A.
Having the isomorphisms, we can carry out the relativization along them and prove

φ[β]←→ φon[α, Aα set], (5)

4 We silently assume parametricity of the quantifier ∃ and P.
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where φon[α, Aα set] is the relativization of φ[β]. In the motivational example:

φ[β] = ∃xsβ list. P xs

φon[α, Aα set] = ∃xsα list ∈ lists A. P xs

We postpone the discussion how to derive φon from φ in a principled way and how to
automatically prove the equivalence between them until Section 6. We only appeal to
the intuition here: for example, if φ contains the universal quantification ∀xβ, we replace
it by the related bounded quantification ∀xα ∈ A in φon. Or if φ contains the predicate
inj fβ→γ, we replace it by the related notion of injon Aα set fα→γ in φon.

Since the left-hand side of the equivalence (5) is an instance of (3), we discharge
the left-hand side and obtain φon[α, Aα set], which does not contain the locally “defined”
type β anymore. Thus we can discard β. Technically, we use the (LT) rule and remove
the assumption (4). Thus we obtain the final result:

∀α. ∀Aα set. A ̸= /0−→ φon[α, A]

This theorem is the set-based version of ∀α. φ[α].
We will move to Isabelle/HOL in the next section and explore how the isomorphic

journey between types and sets proceeds in the environment where we are allowed to
restrict type variables by type-class annotations.

5 From Types to Sets in Isabelle/HOL

Isabelle/HOL goes beyond traditional HOL and extends it by axiomatic type classes and
overloading. We will explain in this section how these two features are in conflict with
the algorithm described in Section 4 and how to circumvent these complications.

5.1 Local Axiomatic Type Classes

The first complication is the implicit assumptions on types given by the axiomatic type
classes. Let us recall that αfinite means that α can be instantiated only with a type that we
proved to fulfill the conditions of the type class finite, namely that the type must contain
finitely many elements.

To explain the complication on an example, let us modify (3) to speak about types of
class finite:

∀αfinite. φ[αfinite] (6)

Clearly, the set that is isomorphic to αfinite must be some nonempty set A that is finite.
Thus as a modification of the algorithm from Section 4, we fix a set A and assume that it
is nonempty and finite. As previously, we locally define a new type β isomorphic to A.
Although β fulfills the condition of the type class finite, we cannot add the type into the
type class since this action is allowed only at the global theory level in Isabelle and not
locally in a proof context.
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On the other hand, without adding β into finite we cannot continue since we need
to instantiate β for αfinite to prove the analog of the equivalence (5). Our solution is to
internalize the type-class assumption in (6) and obtain

∀α. finite(α)−→ φ[α], (7)

where finite(α) is a term of type bool, which is true if and only if α is a finite type.5 Now
we can instantiate α by β and get finite(β)−→ φ[β]. Using the fact that the relativization
of finite(β) is finite A, we apply the isomorphic translation between β and A and obtain

finite A−→ φon[α, A].

Quantifying over the fixed variables and adding the assumptions yields the final result,
the set-based version of (6):

∀α. ∀Aα set. A ̸= /0−→ finite A−→ φon[α, A]

The internalization of type classes (inferring (7) from (6)) is already supported by the
kernel of Isabelle—thus no further work is required from us. The rule for internalization
of type classes is a result of the work by Haftmann and Wenzel [13, 32].

5.2 Local Overloading

In the previous section we addressed implicit assumptions on types given by axiomatic
type classes and showed how to reduce the relativization of such types to the original
translation algorithm by internalizing the type classes as predicates on types. As we
explained in Section 2.3, the mechanism of Haskell-like type classes in Isabelle is more
general than the notion of axiomatic type classes since additionally we are allowed
to associate operations with every type class. In this respect, the type class finite is
somewhat special since there are no operations associated with it.

Therefore we use semigroups as the running example in this section since semigroups
require an associated operation—multiplication. A general specification of a semigroup
would contain a nonempty set Aα set, a binary operation fα→α→α such that A is closed
under f , and a proof of the specific property of semigroups that f is associative on A.
We capture the last property by the predicate

semigroupon
with A f = (∀x y z ∈ A. f ( f x y) z = f x ( f y z)),

which we read along the paradigm: a structure on the set A with operations f1, . . . , fn.
The realization of semigroups by type classes in Isabelle is somewhat more specific.

The type σ can belong to the type class semigroup if semigroup(σ) is provable, where

semigroup(α) iff ∀xα yα zα. (x∗ y)∗ z = x∗ (y∗ z). (8)

5 This is Wenzel’s approach [32] to represent axiomatic type classes by internalizing them as
predicates on types, i.e., constants of type ∀α. bool. As this particular type is not allowed in
Isabelle, Wenzel uses instead α itself→ bool, where α itself is a singleton type.
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Notice that the associated multiplication operation is represented by the global over-
loaded constant ∗α→α→α, which will cause the complication.

Let us relativize ∀αsemigroup. φ[αsemigroup] now. We fix a nonempty set A, a binary
f such that A is closed under f and assume semigroupon

with A f . As before, we locally
define β to be isomorphic to A and obtain the respective isomorphisms Abs and Rep.

Having defined β, we want to prove that β belongs into semigroup. Using the ap-
proach from the previous section, this goal translates into proving semigroup(β), which
requires that the overloaded constant ∗β→β→β used in the definition of semigroup (see
(8)) must be isomorphic to f on A. In other words, we have to locally define ∗β→β→β to
be a projection of f onto β, i.e., xβ ∗ yβ must equal Abs( f (Rep x) (Rep y)). Although
we can locally “define” a new constant (fix a fresh term variable c and assume c = t), we
cannot overload the global symbol ∗ locally for β. This is not supported by Isabelle.

We will cope with the complication by compiling out the overloaded constant ∗ from

∀α. semigroup(α)−→ φ[α] (9)

by the dictionary construction as follows: whenever c = . . . ∗ . . . (i.e., c was defined
in terms of ∗ and thus depends implicitly on the overloaded meaning of ∗), define
cwith f = . . . f . . . and use it instead of c. The parameter f plays a role of the dictionary
here: whenever we want to use cwith, we have to explicitly specify how to perform
multiplication in cwith by instantiating f . That is to say, the implicit meaning of ∗ in c
was made explicit by f in cwith. Using this approach, we obtain:

∀α. ∀ fα→α→α. semigroupwith f −→ φwith[α, f ], (10)

where semigroupwith fα→α→α = (∀xα yα zα. f ( f x y) z = f x ( f y z)) and similarly for
φwith. For now, we assume that (10) is a theorem and look at how it helps us to finish the
relativization and later we will explain how to derive (10) as a theorem.

Given (10), we will instantiate α with β and obtain

∀ fβ→β→β. semigroupwith f −→ φwith[β, f ].

Recall that the quantification over all functions of type β→ β→ β is isomorphic to
the bounded quantification over all functions of type α→ α→ α under which Aα set is
closed.6 The difference after compiling out the overloaded constant ∗ is that now we are
isomorphically relating two bounded (local) variables from the quantification and not a
global constant ∗ to a local variable.

Thus we reduced the relativization once again to the original algorithm and can
obtain the set-based version

∀α. ∀Aα set. A ̸= /0−→
∀ fα→α→α. (∀xα yα ∈ A. f x y ∈ A)−→ semigroupon

with A f −→ φon
with[α, A, f ].

Let us get back to the dictionary construction. Its detailed description can be found,
for example, in the paper by Krauss and Schropp [20]. We will outline the process only

6 Let us recall that ∀x. P x is a shorthand for All (λx. P x) and ∀x ∈ A. P x for Ball A (λx. P x),
where All and Ball are the HOL combinators for quantification. Thus the statement about
isomorphism between the two quantifications means isomorphism between All and Ball A.
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informally here. Our task is to compile out an overloaded constant ∗ from a term s. As a
first step, we transform s into swith[∗/ f ] such that s = swith[∗/ f ] and such that unfolding
the definitions of all constants in swith does not yield ∗ as a subterm. We proceed for
every constant c in s as follows: if c has no definition, we do not do anything. If c was
defined as c = t, we first apply the construction recursively on t and obtain twith such
that t = twith[∗/ f ]; thus c = twith[∗/ f ]. Now we define a new constant cwith f = twith.
As cwith ∗ = c, we replace c in s by cwith ∗. At the end, we obtain s = swith[∗/ f ] as a
theorem. Notice that this procedure produces swith that does not semantically depends
on ∗ only if there is no type in s that depends on ∗.

Thus the above-described step applied to (9) produces

∀α. semigroupwith ∗α→α→α −→ φwith[α, fα→α→α][∗α→α→α/ fα→α→α].

To finish the dictionary construction, we replace every occurrence of ∗α→α→α by a
universally quantified variable fα→α→α and obtain (10). This derivation step is not
currently allowed in Isabelle. The idea why this is a sound derivation is as follows:
since ∗α→α→α is a type-class operation, there exist overloaded definitions only for strict
instances of ∗ (such as ∗nat→nat→nat) but never for ∗α→α→α; thus the meaning of ∗α→α→α
remains unrestricted. That is to say, ∗α→α→α permits any interpretation and hence it must
behave as a term variable. We will formulate a rule (an extension of Isabelle’s logic) that
allows us to perform the above-described derivation.

First, let us recall that⇝↓ is the substitutive closure of the constant/type dependency
relation⇝ from Section 2.3 and ∆c is the set of all types for which c was overloaded.
The notation σ ̸≤ S means that σ is not an instance of any type in S . We shall write R+

for the transitive closure of R. Now we can formulate the Unoverloading Rule (UO):

φ[cσ/xσ]
[¬(u⇝↓+ cσ) for any type or constant u in φ; σ ̸≤ ∆c] (UO)∀xσ. φ

This means that we can replace occurrences of the constant cσ in φ by the universally
quantified variable xσ under the following two side conditions:

1. All types and constant instances in φ do not semantically depend on cσ through a
chain of constant and type definitions. The constraint is fulfilled in the first step
of the dictionary construction since for example φwith[α, ∗] does not contain any
hidden ∗s due to the construction of φwith.7

2. There is no matching definition for cσ. In our use case, cσ is always a type-class oper-
ation with its most general type (e.g., ∗α→α→α). As already mentioned, we overload
a type-class operation only for strictly more specific types (such as ∗nat→nat→nat)
and never for its most general type and thus the condition σ ̸≤ ∆c must be fulfilled.

Proposition 3. Isabelle/HOL extended by the (UO) rule is consistent.8

Notice that the (UO) rule suggests that even in presence of ad hoc overloading, the
polymorphic overloaded constants retain parametricity under some conditions.

In the next section, we will look at a concrete example of relativization of a formula
with type classes.

7 Unless there is a type depending on ∗.
8 Again, the rigorous justification of this result is based on our work on Isabelle/HOL’s consistency

[22] and can be found in an appendix in the extended version of this paper [1].
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5.3 Example: Relativization of Topological Spaces

We will show an example of relativization of a type-based theorem with type classes in a
set-based theorem from the field of topology (addressing Immler’s concern discussed
in Section 1). The type class in question will be a topological space, which has one
associated operation open : α set→ bool, a predicate defining the open subsets of α. We
require that the whole space is open, finite intersections of open sets are open, finite or
infinite unions of open sets are open and that every two distinct points can be separated
by two open sets that contain them. Such a topological space is called a T2 space and
therefore we call the respective type class T2-space.

One of the basic properties of T2 spaces is the fact that every compact set is closed:

∀αT2-space. ∀S α set. compact S −→ closed S (11)

A set is compact if every open cover of it has a finite subcover. A set is closed if its
complement is open. i.e., closed S = open (−S ). Recall that our main motivation is to
solve the problem when we have a T2 space on a proper subset of α. Let us show the
translation of (11) into a set-based variant, which solves the problem. We will observe
what happens to the predicate closed during the translation.

We will first internalize the type class T2-space and then abstract over its operation
open via the first step of the dictionary construction. As a result, we obtain

∀α. T2-spacewith open−→ ∀S α set. compactwith open S −→ closedwith open S ,

where closedwith open S = open (−S ). Let us apply (UO) and generalize over open:

∀α. ∀openα set→bool.

T2-spacewith open−→ ∀S α set. compactwith open S −→ closedwith open S
(12)

The last formula is a variant of (11) after we internalized the type class T2-space and
compiled out its operation. Now we reduced the task to the original algorithm (using
Local Typedef) from Section 4. As always, we fix a nonempty set Aα set, locally define β
to be isomorphic to A and transfer the β-instance of (12) onto the Aα set-level:

∀α. ∀Aα set. A ̸= /0−→ ∀openα set→bool. T2-spaceon
with A open−→

∀S α set ⊆ A. compacton
with A open S −→ closedon

with A open S

This is the set-based variant of the original theorem (11). Let us show what happened to
closedwith: its relativization is defined as closedon

with A open S = open (−S ∩A). Notice
that we did not have to restrict open while moving between β and A (since the function
does not produce any values of type β), whereas S is restricted since subsets of β
correspond to subsets of A.

5.4 General Case

Having seen a concrete example, let us finally aim for the general case. Let us assume
that Υ is a type class depending on the overloaded constants ∗1, . . . , ∗n, written ∗. We
write A ↓ f to mean that A is closed under operations f1, . . . , fn.
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The following derivation tree shows how we derive, from the type-based theorem
⊢ ∀αΥ. φ[αΥ] (the topmost formula in the tree), its set-based version (the bottommost
formula). Explanation of the derivation steps follows after the tree.

⊢ ∀αΥ. φ[αΥ] (1)
⊢ ∀α. Υ(α)−→ φ[α]

(2)
⊢ ∀α. Υwith ∗[α]−→ φwith[α, f ][∗/ f ]

(3)
⊢ ∀α. ∀ f [α]. Υwith f −→ φwith[α, f ]

(4)
Aα set ̸= /0, α(β≈ A)Abs

Rep ⊢ ∀α. ∀ f [α]. Υwith f −→ φwith[α, f ]
(5)

Aα set ̸= /0, α(β≈ A)Abs
Rep ⊢ ∀ f [β]. Υwith f −→ φwith[β, f ]

(6)
Aα set ̸= /0, α(β≈ A)Abs

Rep ⊢ ∀ f [α]. A ↓ f −→ Υon
with A f −→ φon

with[α, A, f ]
(7)

Aα set ̸= /0 ⊢ ∀ f [α]. A ↓ f −→ Υon
with A f −→ φon

with[α, A, f ]
(8)

⊢ ∀α. ∀Aα set. A ̸= /0−→ ∀ f [α]. A ↓ f −→ Υon
with A f −→ φon

with[α, A, f ]

Derivation steps:

(1) The class internalization from Section 5.1.
(2) The first step of the dictionary construction from Section 5.2.
(3) The Unoverloading rule (UO) from Section 5.2.
(4) We fix fresh α, Aα set and assume that A is nonempty. We locally define a new

type β to be isomorphic to A; i.e., we fix fresh β, Absα→β and Repβ→α and assume

α(β≈ A)Abs
Rep.

(5) We instantiate α in the conclusion with β.
(6) Relativization along the isomorphism between β and A—see Section 6.
(7) Since Abs and Rep are present only in α(β≈ A)Abs

Rep, we can existentially quantify over
them and replace the hypothesis with ∃Abs Rep. α(β≈ A)Abs

Rep, which we discharge
by the Local Typedef rule from Section 3, as β is not present elsewhere either (the
previous step (6) removed all occurrences of β in the conclusion).

(8) We move all hypotheses into the conclusion and quantify over all fixed variables.

As previously discussed, step (2), the dictionary construction, cannot be performed for
types depending on overloaded constants unless we want to compile out such types too.
In the next section, we will explain the last missing piece: the relativization step (6).

Note that our approach addresses one of the long-standing user complaints: the
impossibility to provide two different orders for the same type when using the type class
of orders. With our approach, users can still enjoy the advantages of type classes while
proving abstract properties about orders, and then only export the final product as a
set-based theorem (which quantifies over all possible orders).

6 Transfer: Automated Relativization

In this section, we will describe a procedure that automatically achieves relativization
of the type-based theorems. Recall that we are facing the following problem: we have
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two types β and α such that β is isomorphic to some (nonempty) set Aα set, a proper
subset of α, via two isomorphisms Absα→β and Repβ→α. In this setting, given a formula
φ[β], we want to find its isomorphic counterpart φon[α, A] and prove φ[β] ←→ φon[α, A].
Thanks to the previous work in which the first author of this paper participated [17], we
can use Isabelle’s Transfer tool, which automatically synthesizes the relativized formula
φon[α, A] and proves the equivalence with the original formula φ[β].

We will sketch the main principles of the tool on the following example, where (14)
is a relativization of (13):

∀ fβ→γ xsβ list ysβ list. inj f −→ (map f xs = map f ys) ←→ (xs = ys) (13)

∀ fα→γ. ∀xs ys ∈ lists Aα set.

injon A f −→ (map f xs = map f ys) ←→ (xs = ys)
(14)

First of all, we reformulate the problem a little bit. We will not talk about isomor-
phisms Abs and Rep but express the isomorphism between A and β by a binary relation
Tα→β→bool such that T x y = (Rep y = x). We call T a transfer relation.

To make transferring work, we require some setup. First of all, we assume that there
exists a relator for every nonnullary type constructor in φ. Relators lift relations over
type constructors: Related data structures have the same shape, with pointwise-related
elements (e.g., the relator list all2 for lists), and related functions map related input to
related output. Concrete definitions follow:

list all2 : (α→ β→ bool)→ α list→ β list→ bool
(list all2 R) xs ys≡ (length xs = length ys)∧ (∀(x, y) ∈ set (zip xs ys). R x y)

Z⇒ : (α→ γ→ bool)→ (β→ δ→ bool)→ (α→ β)→ (γ→ δ)→ bool
(R Z⇒S ) f g≡ ∀x y. R x y−→ S ( f x) (g y)

Moreover, we need a transfer rule for every constant present in φ. The transfer rules
express the relationship between constants on β and α. Let us look at some examples:

((T Z⇒=) Z⇒=) (injon A) inj (15)
((T Z⇒=) Z⇒=) (∀_ ∈ A) (∀) (16)
((list all2 T Z⇒=) Z⇒=) (∀_ ∈ lists A) (∀) (17)
((T Z⇒=) Z⇒ list all2 T Z⇒ list all2 =) map map (18)
(list all2 T Z⇒ list all2 T Z⇒=) (=) (=) (19)

As already mentioned, the universal quantification on β corresponds to a bounded
quantification over A on α (∀_ ∈ A). The relation between the two constants is obtained
purely syntactically: we start with the type (e.g., (β→ γ)→ bool for inj) and replace
every type that does not change (γ and bool) by the identity relation =, every nonnullary
type constructor by its corresponding relator (→ by Z⇒ and list by list all2) and every
type that changes by the corresponding transfer relation (β by T).

To derive the equivalence theorem between (13) and (14), we use the above-stated
transfer rules (15)–(19) (they are leaves in the derivation tree) and combine them with
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the following three rules (for a bound variable, application and lambda abstraction):

R x y ∈ Γ
Γ ⊢ R x y

Γ1 ⊢ (R Z⇒ S ) f g Γ2 ⊢ R x y
Γ1∪Γ2 ⊢ S ( f x) (g y)

Γ, R x y ⊢ S ( f x) (g y)
Γ ⊢ (R Z⇒ S ) (λx. f x) (λy. g y)

Similarity of the rules to those for typing of the simply typed lambda calculus is not a
coincidence. A typing judgment here involves two terms instead of one, and a binary
relation takes the place of a type. The environment Γ collects the local assumptions
for bound variables. Thus since (13) and (14) are of type bool, the procedure produces
(13) = (14) as the corresponding relation for bool is =. Having all appropriate transfer
rules for all the involved constants (such as (15)–(19)), we can derive the equivalence
theorem for any closed lambda term.

Of course, it is impractical to provide transfer rules for every instance of a given
constant and for every particular transfer relation (T, in our example). In general, we
are solving the transfer problem for some relation Rα→β→bool such that R is right-
total (∀y. ∃x. R x y), right-unique (∀x y z. R x y −→ R x z −→ y = z) and left-unique
(∀x y z. R x z−→ R y z−→ x = y). Notice that our concrete T fulfills all these three con-
ditions. Instead of requiring specific transfer rules (such as (15)–(19)), we automatically
derive them from general parametrized transfer rules9 talking about basic polymorphic
constants of HOL. For example, we obtain (16) and (19) from the following rules:

right total R−→ ((R Z⇒=) Z⇒=) (∀_ ∈ (Domain R)) (∀)
left unique R−→ right unique R−→ (R Z⇒R Z⇒=) (=) (=)

These rules are part of Isabelle’s library. Notice that, in the Transfer tool, we cannot regard
type constructors as mere sets of elements, but need to impose an additional structure
on them. Indeed, we required a relator structure for the involved type constructors. In
addition, for standard type constructors such as list we implicitly used some ad hoc
knowledge, e.g., that “lists whose elements are in A” can be expressed by lists A. For
space constraints, we cannot describe the structure in detail here. We only note that the
Transfer tool generates automatically the structure for every type constructor that is a
natural functor (sets, finite sets, all algebraic datatypes and codatatypes) [30]. More can
be found in the first author’s thesis [21, §4].

Overall, the tool is able to perform the relativization completely automatically.

7 Conclusion

In this paper, we proposed extending Higher-Order Logic with a Local Typedef (LT)
rule. We showed that the rule is not an ad hoc, but a natural addition to HOL in that it
incarnates a semantic perspective characteristic to HOL: for every nonempty set A, there
must be a type that is isomorphic to A. At the same time, (LT) is careful not to introduce
dependent types since it is an open question how to integrate them into HOL.

9 These rules are related to Reynolds’s relational parametricity [28] and Wadler’s free theorems
[31]. The Transfer tool is a working implementation of Mitchell’s representation independence
[24] and it demonstrates that transferring of properties across related types can be organized
and largely automated using relational parametricity.
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We demonstrated how the rule allows for more flexibility in the proof development:
with (LT) in place, the HOL users can enjoy succinctness and proof automation provided
by types during the proof activity, while still having access to the more widely applicable,
set-based theorems.

Being natural, semantically well justified and useful, we believe that the Local Type-
def rule is a good candidate for HOL citizenship. We have implemented this extension
in Isabelle/HOL, but its implementation should be straightforward and noninvasive in
any HOL prover. And in a more expressive prover, such as HOL-Omega [16], this rule
could simply be added as an axiom in the user space.

In addition, we showed that our method for relativizing theorems is applicable to
types restricted by type classes as well, provided we extend the logic by a rule for
compiling out overloading constants (UO). With (UO) in place, the Isabelle users can
reason abstractly using type classes, while at the same time having access to different
instances of the relativized result.

All along according to the motto: Prove easily and still be flexible.
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APPENDIX

A More Details on HOL

In this and the next section, we will introduce a minimal background theory such that
we can carry out the proof of Proposition 1 (Soundness of (LT) in HOL). The theory is
based on the model theory of HOL developed by A. Pitts [27]. Our presentation might
diverge in concrete details and notation, but the overall approach is the same.

We fix the following:
– an infinite set TVar, of type variables, ranged by α, β
– an infinite set VarN, of (term) variables names, ranged by x, y, z
– a set K of symbols, ranged by κ, called type constructors, containing three special

symbols: “bool”, “ind” and “→” (aimed at representing the type of booleans, an
infinite type and the function type constructor, respectively)

We fix a function arOf : K→N giving arities to type constructors, such that arOf(bool)=
arOf(ind) = 0 and arOf(→) = 2. If arOf(κ) = n, we say that κ is an n-ary type construc-
tor. Types, ranged by σ, τ, are defined as follows:

σ= α | (σ1, . . . , σarOf(κ)) κ

Thus, a type is either a type variable or an n-ary type constructor κ postfix-applied to a
number of types corresponding to its arity. If n = 1, instead of (σ) κ we write σ k.

Finally, we fix the following:
– a set Const, ranged over by c, of symbols called constants, containing five special

symbols: “−→”, “=”, “ε”, “zero” and “suc” (aimed at representing logical impli-
cation, equality, Hilbert choice of some element from a type, zero and successor,
respectively)

– a function tpOf : Const→ Type associating a type to every constant, such that:

tpOf(−→) = bool→ bool→ bool
tpOf(=) = α→ α→ bool
tpOf(ε) = (α→ bool)→ α

tpOf(zero) = ind
tpOf(suc) = ind→ ind

TV(σ) is the set of variables of a type σ. Given a function ρ : TVar→ Type, its
support is the set of type variables where ρ is not the identity: supp(ρ) = {α | ρ(α) ̸= α}.
A type substitution is a function ρ : TVar→ Type with finite support. We let TSubst
denote the set of type substitutions. Each ρ ∈ TSubst extends to a function ρ : Type→
Type by defining ρ(α) = ρ(α) and ρ((σ1, . . . , σn) κ) = (ρ(σ1), . . . , ρ(σn)) κ.

We say that σ is an instance of τ via a substitution of ρ ∈ TSubst, written σ≤ρ τ, if
ρ(τ) = σ. We say that σ is an instance of τ, written σ ≤ τ, if there exists ρ ∈ TSubst
such that σ≤ρ τ and supp(ρ) = TV(τ).

A (typed) variable is a pair of a variable name x and a type σ, written xσ. Let Var
denote the set of all variables. A constant instance is a pair of a constant and a type,
written cσ, such that σ≤ tpOf(c). We let CInst denote the set of constant instances.

The tuple Σ = (K, arOf, Const, tpOf), which will be fixed in what follows, is called
a signature. This signature’s pre-terms, ranged over by s, t, are defined by the grammar:

t = xσ | cσ | t1 t2 | λxσ. t
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Thus, a pre-term is either a typed variable, or a constant instance, or an application, or
an abstraction. As usual, we identify pre-terms modulo alpha-equivalence. Typing is
defined as a binary relation between pre-terms and types, written t : σ, inductively as
follows:

x ∈ VarN
xσ : σ

c ∈ Const τ≤ tpOf(c)
cτ : τ

t1 : σ→ τ t2 : σ
t1 t2 : τ

t : τ
λxσ. t : σ→ τ

A term is a well-typed pre-term if there exists a (necessarily unique) type τ such that
t : τ. We let Term be the set of well-typed terms. We can apply a type substitution ρ to
a term t, written ρ(t), by applying ρ to the types of all variables and constant instances
occurring in t. FV(t) is the set of t’s free variables. The term t is called closed if it has no
free variables: FV(t) = /0.

A formula is a term of type bool. The logical constants True and False, formula
connectives and quantifiers are defined in the standard way, starting from the implication
and equality primitives. When writing terms, we sometimes omit the types of variables
if they can be inferred.

A proof context Γ and a HOL theory D are finite sets of formulas. We say that (Γ, φ)
is a sequent if Γ is a context and φ is a formula. As we already mentioned in Section 2.1,
the HOL deduction is parameterized by the underlying theory D. The deduction relation
⊢ is a ternary relation between theories, contexts and formulas. The set of axioms as
well as the deduction rules are standard and can be found elsewhere [27].

The definitional mechanisms for constants and types (see Section 2.2) extend the
signature (by adding the newly defined symbol) and the theory (by adding the definitional
formula). We call a HOL theory D definitional if D was created by a sequence of theory
extensions corresponding either to a constant or a type definition.

A theory D is consistent if we cannot derive D; /0 ⊢ False.

B The Model Theory of HOL

We fix a Grothendieck universe V , i.e., a transitive set that is closed under all standard
set operations such as power-set, union or interjection. Then we define our universe U as
U = V \ /0 since we interpret types only as non-empty sets. Moreover, we fix

– a two-element set B= {false, true} ∈ U ,
– a choice function, choice, that assigns to each set A ∈ U an element choice(a) ∈ A.

We assume an interpretation function I that interprets type constructors and con-
stants from the signature Σ. We do not introduce two interpretations functions for type
constructors and for constants. Instead, we “overload” I and assume it will be always
clear to which syntactic object I is applied. We also define an extension of I called [.]I ,
which will interpret types and terms.

Interpretation of an n-ary type constructor κ ∈ K is a function I(κ) ∈ Un→U . Since
HOL types can contain free type variables, we need their interpretation as well. An
assignment of type variables is a function θ, such that for all type variables α, θ(α) ∈ U ,
i.e., θ ∈ TVar→U . We assume that I(bool) = B, I(→)(X)(Y) = X→ Y (i.e., the set of
all functions from X to Y) and I(ind) = N (i.e., the set of natural numbers).
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An interpretation of a type τ, [τ]I ∈ (TVar→U)→U , is a function that takes an
assignment of type variables θ as a parameter. Instead of [τ]I(θ), we will write [τ]I,θ. The
function is defined as follows:

[α]I,θ = θ(α)

[(σ1, . . . , σn) κ]I,θ = I ([σ1]I,θ, . . . , [σn]I,θ) where arOf(κ) = n

Notice that [τ]I,θ = [τ]I,θ′ if θ and θ′ do not differ on TV(τ).
Interpretation of a constant c ∈C such that tpOf(c) = τ is a function I(c) ∈ [τ]I . We

assume that I(−→)(θ) is the logical implication on B, I(=)(θ) is the equality predicate
in [α]I,ξ → [α]I,ξ → B, I(zero)(θ) = 0 and I(suc)(θ) is the successor function for N.
Finally, we assume that the Hilbert choice operator is interpreted as

I(ε)(θ)( f ) =

{
choice({a ∈ [α]I,θ | f (a) = true}) if the set is non-empty,
choice([α]I,θ) otherwise.

Since HOL terms might contain free term variables, we need an interpretation of
them as well. An assignment of term variables is a function ξ ∈ Var→U . We say that
ξ is θ-compatible if ξ ∈∏xτ∈Var[τ]I,θ, i.e., for all term variables xτ, ξ(xτ) ∈ [τ]I,θ. From
this point on, we assume that we work only with θ-compatible term assignments and it
will be always clear which θ we mean. Interpretation of a term t : σ is a function

[t]I ∈ ∏
θ∈TVar→U

(
∏

xτ∈Var
[τ]I,θ

)
→ [σ]I,θ.

That is to say, it is a function that takes assignment of type variables θ and (θ-compatible)
assignment of term variables ξ as two parameters. Instead of [t]I(θ)(ξ) we will write
[t]I,θ,ξ. Let us define [t]I,θ,ξ as follows:

[xσ]I,θ,ξ = ξ(xσ)

[cσ]I,θ,ξ = I(c)(θ′) where σ≤ρ tpOf(c) and θ′(α) = [τ]I,θ iff ρ(α) = τ

[t1 t2]I,θ,ξ = [t1]I,θ,ξ [t2]I,θ,ξ

[λxσ. t]I,θ,ξ = Λ
a∈[σ]I,θ

. [t]I,θ,ξ[xσ←a]

The operator Λ is the meta-level lambda-abstraction and ξ[xσ← a] is ξ updated with a
at xσ. Notice that [t]I,θ,ξ = [t]I,θ′,ξ′ if θ and θ′ do not differ on TV(t) and ξ and ξ′ do not
differ on FV(t).

We say that an interpretation I satisfies a sequent (Γ, φ), written Γ ⊨I φ, if for all
valuations θ and ξ it holds that [φ]I,θ,ξ = true whenever [ψ]I,θ,ξ = true for all ψ ∈ Γ. If
Γ is empty, we write ⊨I φ. If the interpretation I is clear from the context or it is not
important, we omit it and write Γ ⊨ φ.

We say that an interpretationM is a model of D ifM satisfies all HOL axioms and
all formulas from D. A. Pitts proved that (i) models are preserved by the deduction rules
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of HOL, (ii) if a definitional D has a model, we can extend this model to a model of any
D′ that is an extension of D by a constant or a type definition. The facts (i) and (ii) give
us that for every definitional theory D, it holds that if D; Γ ⊢ φ, then there exists a model
M of D such that Γ ⊨M φ. This implies consistency of HOL since ̸⊨I False for every
interpretation I.

C Proof of Proposition 1

Now we have enough background theory to carry out the proof of soundness of (LT).
Proof of Proposition 1. Any deduction consisting of the deduction rules of HOL and
the (LT) rule is sound.

Proof. Let us fix a modelM and let us assume that the assumptions of the (LT) rule are
satisfied in the model, i.e.,

Γ ⊨M A ̸= /0 and Γ ⊨M (∃Abs Rep. σ(β≈ A)Abs
Rep)−→ φ

Let us fix a type valuation θ and a compatible term valuation ξ such that [ψ]θ,ξ = true for
all ψ ∈ Γ. Then using the interpretation of −→, we obtain:

[A ̸= /0]θ,ξ = true, (20)

[∃Abs Rep. σ(β≈ A)Abs
Rep]θ,ξ = true implies [φ]θ,ξ = true. (21)

From (20) and from the interpretation of sets, we can conclude that

[A]θ,ξ ̸= /0. (22)

From (21) and the fact that β /∈ A, β /∈ φ and β /∈ Γ, we derive

(∃B ∈ U . [∃Abs Rep. σ(β≈ A)Abs
Rep]θ[β←B],ξ = true) implies [φ]θ,ξ = true, (23)

where θ[β← B] is θ updated with B at β.
If we were able to prove the antecedent of (23), we would be finished with the proof

since we could use Modus Ponens and obtain [φ]θ,ξ = true and thus Γ ⊨M φ.
Following our intuitive understanding of the HOL model theory, we can surely prove

∃B ∈ U . [∃Abs Rep. σ(β≈ A)Abs
Rep]θ[β←B],ξ = true, (24)

because we are looking for a set B that is an interpretation of β such that B is isomorphic
to the interpretation of A. Needles to say, there exists such an interpretation: it is the
interpretation of A. Let us define B = [A]θ,ξ and observe that B ∈ U thanks to (22).

Since A : σ set, then B⊆ [σ]θ. Let us define Abs : [σ]θ→ B as

Abs(x) =

{
x if x ∈ B
ϵ([σ]θ) otherwise

and Rep : B→ [σ]θ as injection. It is a routine to verify [σ]θ(B≈ [A]θ,ξ)Abs
Rep = true.

Notice that the bottom line of the proof was to show a semantic analog of (⋆): given
(22), we obtain (24).
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D Proofs of Propositions 2 and 3

The proofs of Propositions 2 and 3 can be found in our paper about HOL with compre-
hension types [22].
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