
TU München
Institut für Informatik

Dr. Peter Lammich

Homework for lecture
Automata and Formal Languages II

SS 2015 Homework Sheet 7 27.05.2014

Submission: June 3

Aufgabe 7.1. [Pretty-Printing Trees] (10 points)
Let F be a ranked alphabet, and Σ := F ∪̇ {“(”, “)”, “,”} be an unranked alphabet that
contains the symbol names from F , open parentheses, closing parentheses, and comma.
Consider the following function p : T (F) → Σ, that pretty-prints a tree, where · is string
concatenation:

p(f(t1, . . . , tn)) = f · “(” · p(t1) · “,” · . . . · “,” · p(tn) · “)”

Show that the image of a tree regular language under p is context free, i.e., given a tree
regular language L ⊆ T (F), show that the language W := {p(t) | t ∈ L} ⊆ Σ∗ is context
free. Hint: Show how to convert the rules of a top-down tree automaton into a context free
grammar.



Homework Sheet 7 Automata II Seite 2

Aufgabe 7.2. [Simple Tree to String Transducers] (10 points)
Generalizing the pretty-printing function from the previous question, we define a simple tree
to string transducer from a ranked alphabet F to an alphabet Σ by specifying, for each
f ∈ Fn, strings rf,0, rf,1 . . . rf,n ∈ Σ∗. The transformation r : T (F)→ Σ∗ is then defined as:

r(f(t1, . . . , tn)) = rf,0 · r(t1) · rf,1 · . . . · rf,n−1 · r(tn) · rf,n

Intuitively, the rf,i are the strings that separate the pretty-prints of the arguments of f .

For example, for the ranked alphabet +/2, ∗/2, Suc/1, 0/0, a simple pretty-printer, which
does some parenthesis optimizations, could be defined by the simple tree to string transducer:

r+,0 = “(” r+,1 = “+” r+,2 = “)”

r∗,0 = “” r∗,1 = “*” r+,2 = “”

rSuc,0 = “Suc(” rSuc,1 = “)”

r0,0 = “0”

then, we have r(+(∗(0, Suc(0)), 0)) = “(0 ∗ Suc(0) + 0)′′.

1. Consider the alphabet F = true/0, false/0, Cons/2, Nil/0 and Σ = {a − z, :, [, ]}.
Define a simple tree to string transducer that pretty prints a list of booleans to a
representation using infix “::” for Cons, and [] for Nil, e.g., the list [true, true, false]
is printed as true :: true :: false :: [], and the empty list is printed as [].

2. Consider arbitrary alphabets F and Σ, and a transducer r : F → Σ. Show that the
inverse image of a regular word language under r is tree regular, i.e., for a regular word
language W ⊆ Σ∗, show that the tree language r−1(W ) := {t | r(t) ∈ W} is regular.

Hint: Similar to leaf languages (which are a special case of transducers), construct a
tree automaton with states Q × Q, such that a tree t is accepted in state (q1, q2), if
r(t) brings the word automaton from q1 to q2, i.e., δ(q1, r(t)) = q2.

3. Show that the inverse image of a context free language W under a simple tree to string
transducer r is not regular in general. Give a counterexample by specifying suitable
alphabets, W and r.


