HOMEWORK FOR LECTURE
AUTOMATA AND FORMAL LANGUAGES 11

TU MUNCHEN

. DRr. PETER LAMMICH
INSTITUT FUR INFORMATIK

SS 2015 HOMEWORK SHEET 10 17.6.2014

| Submission: June 24

Aufgabe 10.1. [Product of PDS and NFA] (10 points)
In order to define the language of a pushdown system, we add a set F' of final states. That
is, a pushdown system with final states is a tuple M = (P,T", %, po, Y0, F, A). The language
of M is defined as the label sequences of all runs to final states (and arbitrary stack):

L(M):={l|3p € F. 3w. pyyo >* pw}

Now let M = (P,T',%, po, V0, Far, Apr) be a pushdown system, and A = (Q, X, [, Fa, Aa)
be a nondeterministic word automaton. Construct a pushdown system with final states M’,
such that L(M') = L(M) N L(A). Prove your construction correct.

Hint: Use a product construction. You do not need tree automata for this exercise.



HOMEWORK SHEET 10 AvuTtomAaTA 11 SEITE 2

Aufgabe 10.2. [Program Analysis] (10 points)

1. Translate the following program into a PDS. The actions are {z == 0,y = 1,2 =
yxx,x = x — 1,z = 5,7} where 7 labels call and return transitions. When reaching
the halt-command, the PDS should get stuck. This ensures that main cannot return.

int x, y;

void factorial() {

if (x==0) { void main() {
y=1; x=b;

} else { factorial();
y =y * Xx; halt;
x=x-1; }
factorial ();

}

+

2. What is wrong with the above program? Does it really compute the factorial of 57

3. Let’s focus on variable y. There are actions that initialize y, actions that read y (and
thus require it to be initialized), and actions that do not touch y. Specify a regular tree
language that characterizes all non-returning execution trees where y is read before it
is initialized. Note: Your automaton shall specify all those execution trees from XN
(cf. Slide 101), not only the ones of the PDS from (1). Use the following sets:

e Base = ReadUInitUUnrelated Set of base rules, composed of those actions that
read the variable, initialize the variable, and do not touch the variable.

e Call Set of call rules. They do not touch the variable.
e Return Set of return rules. They do not touch the variable.
e P T States and stack alphabet of the PDS.

Note: You are not required to prove your construction correct.

4. Assume that you have a function program-to-PDS(prog), which translates a program
to a PDS, a function PDS-to-NFTA (pds) which converts a PDS to a tree automaton
describing its execution trees, and a function bad-execs-NFTA (pds) that uses the con-
struction from (3) to return a tree automaton that describes all execution trees over
the rules from pds which read an uninitialized variable. Moreover, assume you have
already implemented the standard algorithms on tree automata from this lecture.

Specify, in pseudocode, and algorithm may-read-uninit(prog), which takes as input a
program, and outputs true if the program may access an uninitialized variable. Use
the ideas of this exercise!



