Automata and Formal Languages II Tree Automata

Peter Lammich

SS 2015

Overview by Lecture

- Apr 14: Slide 3
- Apr 21: Slide 2
- Apr 28: Slide 4
- May 5: Slide 50
- May 12: Slide 56
- May 19: Slide 64
- May 26: Holiday
- Jun 02: Slide 79
- Jun 09: Slide 90
- Jun 16: Slide 106
- Jun 23: Slide 108
- Jun 30: Slide 116
- Jul 7: Slide 137
- Jul 14: Slide 148

Organizational Issues

Lecture Tue 10:15 – 11:45, in MI 00.09.38 (Turing)

Tutorial ? Wed 10:15 – 11:45, in MI 00.09.38 (Turing)

• Weekly homework, will be corrected. Hand in before tutorial. Discussion during tutorial.

Exam Oral, Bonus for Homework!

 ≥ 50% of homework ⇒ 0.3/0.4 better grade On first exam attempt. Only if passed w/o bonus!

Material Tree Automata: Techniques and Applications (TATA)

• Free download at http://tata.gforge.inria.fr/

Conflict with Equational Logic.

Proposed Content

- Finite tree automata: Basic theory (TATA Ch. 1)
 - Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...
- Regular tree grammars and regular expressions (TATA Ch. 2)
- Hedge Automata (TATA Ch. 8)
 - Application: XML-Schema languages
- Application: Analysis of Concurrent Programs
 - Dynamic Pushdown Networks (DPN)

Table of Contents

1 Introduction

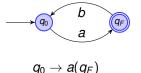
2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Tree Automata

• Finite automata recognize words, e.g.:



 $q_{ extsf{F}} o b(q_0)$

- Words of alternating *a*s and *b*s, ending with *a*, e.g., *aba* or *abababa*
- Generalize to trees

$$q_0
ightarrow a(q_1,q_1)$$
 $q_1
ightarrow b(q_0,q_0)$ $q_1
ightarrow L()$

- Trees with alternating "layers" of *a* nodes and *b* nodes.
 - Leafs are L-nodes, as node labels will have fixed arity.

a a b b b b L A a a a a a a LLLLLLLL LLLL

- We also write trees as terms
 - a(b(a(L, L), a(L, L)), b(a(L, L), a(L, L)))
 - a(b(a(L, L), a(L, L)), L)

Properties

- Tree automata share many properties with word automata
 - Efficient membership query, union, intersection, emptiness check, ...
 - Deterministic and non-deterministic versions equally expressive
 - Only for deterministic bottom-up tree automata
 - Minimization
 - ...

Applications

- Tree automata recognize sets of trees
- Many structures in computer science are trees
 - XML documents
 - · Computations of parallel programs with fork/join
 - Values of algebraic datatypes in functional languages

• ...

- Tree automata can be used to
 - Define XML schema languages
 - Model-check parallel programs
 - Analyze functional programs

• ...

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Table of Contents

1 Introduction

2 Basics

Nondeterministic Finite Tree Automata Epsilon Rules Deterministic Finite Tree Automata Pumping Lemma Closure Properties Tree Homomorphisms Minimizing Tree Automata Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Terms and Trees

- Let $\mathcal F$ be a finite set of symbols, and arity $:\mathcal F\to\mathbb N$ a function.
 - $(\mathcal{F}, arity)$ is a *ranked alphabet*. We also identify \mathcal{F} with $(\mathcal{F}, arity)$.
 - $\mathcal{F}_n := \{f \in \mathcal{F} \mid \operatorname{arity}(f) = n\}$ is the set of symbols with arity n
- Let \mathcal{X} be a set of *variables*. We assume $\mathcal{X} \cap \mathcal{F}_0 = \emptyset$.
- Then the set T(F, X) of terms over alphabet F and variables X is defined as the least solution of

$$\mathcal{T}(\mathcal{F}, \mathcal{X}) \supseteq \mathcal{F}_{0}$$

 $\mathcal{T}(\mathcal{F}, \mathcal{X}) \supseteq \mathcal{X}$
 $p \ge 1, f \in F_{p}, \text{ and } t_{1}, \dots, t_{p} \in \mathcal{T}(\mathcal{F}, \mathcal{X}) \implies f(t_{1}, \dots, t_{n}) \in \mathcal{T}(\mathcal{F}, \mathcal{X})$

- Intuitively: Terms over functions from \mathcal{F} and variables from \mathcal{X} .
- Ground terms: $T(\mathcal{F}) := T(\mathcal{F}, \emptyset)$. Terms without variables.

Examples

- We also write a ranked alphabet as $\mathcal{F} = f_1/a_1, f_2/a_2, \dots, f_n/a_n$, meaning $\mathcal{F} = (\{f_1, \dots, f_n\}, (f_1 \mapsto a_1, \dots, f_n \mapsto a_n))$
- $\mathcal{F} = true/0, false/0, and/2, not/1$ Syntax trees of boolean expressions
 - and(true, not(x)) ∈ T(F, {x})
- $\mathcal{F} = 0/0, Suc/1, +/2, */2$ Arithmetic expressions over naturals (using unary representation)
 - $Suc(0) + (Suc(Suc(0)) * x) \in T(F, \{x\})$
 - We will use infix-notation for terms when appropriate

Trees

- Terms can be identified by trees: Nodes with p successors labeled with symbol from $\mathcal{F}_p.$

```
• and(true, not(x)) \in T(\mathcal{F}, \{x\})
      and
   true not
          х
• Suc(0) + (Suc(Suc(0)) * x)
   Suc
    0 Sucx
       Suc
         0
```

Tree Automata

- A (nondeterministic) finite tree automaton (NFTA) over alphabet \mathcal{F} is a tuple $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$ where
 - *Q* is a finite set of *states*. $Q \cap F_0 = \emptyset$
 - $Q_f \subseteq Q$ is a set of *final states*
 - Δ is a set of rules of the form

 $f(q_1,\ldots,q_n) \rightarrow q$

where $f \in \mathcal{F}_n$ and $q, q_1, \ldots, q_n \in Q$

- Intuition: Use the rules from Δ to re-write a given tree to a final state
- For a tree t ∈ T(F) and a state q, we define t →_A q as the least relation that satisfies

$$f(q_1,\ldots,q_n) \rightarrow q \in \Delta, \forall 1 \leq i \leq n. \ t_i \rightarrow_{\mathcal{A}} q_i \implies f(t_1,\ldots,t_n) \rightarrow_{\mathcal{A}} q$$

- $t \rightarrow_{\mathcal{A}} q$: Tree t is accepted in state q
- The language L(A) of A are all trees accepted in final states

$$L(\mathcal{A}) := \{t \mid \exists q \in Q_{f}. t \rightarrow_{\mathcal{A}} q\}$$

Example

Tree automaton accepting arithmetic expressions that evaluate to even numbers

- Examples for runs on board
 - Suc(Suc(0)) + Suc(0) + Suc(0)
 - 0 + Suc(0)

Remark

- In TATA, a move-relation is defined. t → t' rewrites a node in the tree according to a rule.
- Another version even keeps track of the tree nodes, and just adds the states as additional nodes of arity 1.
- Examples on board

Table of Contents

1 Introduction

2 Basics

Nondeterministic Finite Tree Automata Epsilon Rules Deterministic Finite Tree Automata Pumping Lemma Closure Properties Tree Homomorphisms Minimizing Tree Automata Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Epsilon rules

• As for word automata, we may add ϵ -rules of the form

q
ightarrow q' for $q,q' \in Q$

The acceptance relation is extended accordingly

$$\begin{array}{l} f(q_1,\ldots,q_n) \to q \in \Delta, \forall 1 \leq i \leq n. \ t_i \to_{\mathcal{A}} q_i \implies f(t_1,\ldots,t_n) \to_{\mathcal{A}} q \\ q \to q' \in \Delta, t \to_{\mathcal{A}} q \implies t \to_{\mathcal{A}} q' \end{array}$$

• Example: (Non-empty) lists of natural numbers

$$egin{aligned} 0 & o q_n & Suc(q_n) & o q_n \ nil & o q_l & cons(q_n,q_l) & o q_l' \ q_l' & o q_l \end{aligned}$$

- Last rule converts non-empty list (q') to list (q)
- On board: Accepting [], and [0, Suc(0)]

Equivalence of NFTAs with and without ϵ - rules

Theorem

For a NFTA A with ϵ -rules, there is a NFTA without ϵ -rules that recognizes the same language

- Proof sketch:
 - Let *cl*(*q*) denote the *ε*-closure of *q*

$$q \in {\it cl}(q)$$
 $q' \in {\it cl}(q), q' o q'' \implies q'' \in {\it cl}(q)$

- Define $\Delta' := \{f(q_1, \ldots, q_n) \rightarrow q' \mid f(q_1, \ldots, q_n) \rightarrow q \in \Delta \land q' \in cl(q)\}$
- Define $A' := (Q, \mathcal{F}, Q_f, \Delta')$
- Show: $t \rightarrow_{\mathcal{A}} q$ iff $t \rightarrow_{\mathcal{A}'} q$
 - on board
- From now on, we assume tree automata without *ϵ*-rules, unless noted otherwise.

Last Lecture

- Nondeterministic Finite Tree Automata (NFTA)
 - Ranked alphabet, Terms/Trees
 - Rules: $f(q_1, \ldots, q_n) \rightarrow q$
 - Intuition: Rewrite tree to single state
- Epsilon rules
 - $q \rightarrow q'$
 - Do not increase expressiveness (recognizable languages)

Table of Contents

1 Introduction

2 Basics

Nondeterministic Finite Tree Automata Epsilon Rules Deterministic Finite Tree Automata Pumping Lemma Closure Properties Tree Homomorphisms Minimizing Tree Automata Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Deterministic Finite Tree Automata

Let $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$ be a finite tree automaton.

 A is deterministic (DFTA), if there are no two rules with the same LHS (and no *ϵ*-rules), i.e.

$$\textit{I}
ightarrow \textit{q}_1 \in \Delta \land \textit{I}
ightarrow \textit{q}_2 \in \Delta \implies \textit{q}_1 = \textit{q}_2$$

- · For a DFTA, every tree is accepted in at most one state
- \mathcal{A} is *complete*, if for every $f \in F_n, q_1, \ldots, q_n \in Q$, there is a rule $f(q_1, \ldots, q_n) \rightarrow q$
 - · For a complete tree automata, every tree is accepted in at least one state
 - For a complete DFTA, every tree is accepted in exactly one state
- A state $q \in Q$ is *accessible*, if there is a *t* with $t \rightarrow_{\mathcal{A}} q$.
- A is *reduced*, if all states in Q are accessible.

Membership Test for DFTA

Complete DFTAs have a simple (and efficient) membership test

```
acc (f (t_1, ..., t_n)) =

let

q_1 = acc t_1; ...; q_n = acc t_n

in

the q with f(q_1, ..., q_n) \in \Delta
```

Note: For NFTAs, we need to backtrack, or use on-the-fly determinization

Reduction Algorithm

- Obviously, removing inaccessible states does not change the language of an NFTA.
- The following algorithm computes the set of accessible states in polynomial time

A :=
$$\emptyset$$

repeat
A := $a \cup \{q\}$ for q with
 $f(q_1, \ldots, q_n) \rightarrow q \in \Delta, q_1, \ldots, q_n \in A$
until no more states can be added to A

- Proof sketch
 - Invariant: All states in A are accessible.
 - If there is an accessible state not in A, saturation is not complete
 - Induction on $t \rightarrow_{\mathcal{A}} q$

Determinization (Powerset construction)

- Theorem: For every NFTA, there exists a complete DFTA with the same language
- Let $Q_d := 2^Q$ and $Q_{df} := \{s \in Q_d \mid s \cap Q_f \neq \emptyset\}$
- Let $f(s_1, \ldots, s_n) \to s \in \Delta_d$ iff $s = \{q \in Q \mid \exists q_1 \in s_1, \ldots, q_n \in s_n \mid f(q_1, \ldots, q_n) \to q \in \Delta\}$
- Define $\mathcal{A}_d := (\mathcal{Q}_d, \mathcal{F}, \mathcal{Q}_{df}, \Delta_d)$
- Idea: A_d accepts tree t in the set of all states in that A accepts t (maybe the empty set)
 - Formally: $t \rightarrow_{\mathcal{A}_d} s$ iff $s = \{q \in Q \mid t \rightarrow_{\mathcal{A}} q\}$
- Lemma: The automaton A_d is a complete DFTA, and we have $L(A) = L(A_d)$. (On board)
- Theorem follows from this.

Determinization with reduction

- Above method always construct exponentially many states
 - Typically, many of the inaccessible
- Idea: Combine determinization and reduction
 - Only construct accessible states of \mathcal{A}_d

$$\begin{array}{ll} Q_d & := \ \emptyset \\ \Delta_d & := \ \emptyset \\ \hline \textbf{repeat} \\ Q_d & := \ Q_d \cup \{s\} \\ \Delta_d & := \ \Delta_d \cup \{f(s_1, \dots, s_n) \rightarrow s\} \\ \text{where} \\ f \in \mathcal{F}_n, s_1 \dots, s_n \in Q_d \\ s = \{q \in Q \mid \exists q_1 \in s_1, \dots, q_n \in s_n. \ f(q_1, \dots, q_n) \rightarrow q \in \Delta\} \\ \hline \textbf{until No more rules can be added to } \Delta_d \\ Q_{df} & := \ \{s \in Q_d \mid s \cap Q_f \neq \emptyset\} \\ \mathcal{A}_d & := (Q_d, \mathcal{F}, Q_{df}, \Delta_d) \end{array}$$

Examples

- Automaton is already deterministic
 - · Naive method generates exponentially many rules
 - Reduction method does not increase size of automaton
- Also advantageous if automaton is "almost" deterministic
- But, exponential blowup not avoidable in general

Examples

• Let $\mathcal{F} = f/1, g/1, a/0$

- Consider the language $L_n := \{t \in T(\mathcal{F}) \mid \text{The } n\text{th symbol of } t \text{ is } f \}$
 - Automaton $Q = \{q, q_1, \dots, q_n\}, Q_f = \{q_n\}$ and Δ

- · Nondeterministically decides which symbol to count
- However, any DFTA has to memorize the last n symbols
 - Thus, it has at least 2ⁿ states
- Note: The same example is usually given for word automata

•
$$L = (a+b)^* a(a+b)^n$$

Table of Contents

1 Introduction

2 Basics

Nondeterministic Finite Tree Automata Epsilon Rules Deterministic Finite Tree Automata Pumping Lemma Closure Properties Tree Homomorphisms Minimizing Tree Automata Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Example

- Consider the language $L := \{f(g^i(a), g^i(a)) \mid i \in \mathbb{N}\}$
- Not recognizable by an FTA.
- Assume we have A with L(A) = L and |Q| = n
- During recognizing $g^{n+1}(a)$, the same state must occur twice, say
 - $g^i(a) \rightarrow_{\mathcal{A}} q$ and $g^j(a) \rightarrow_{\mathcal{A}} q$ for $i \neq j$
- As $f(g^i(a),g^i(a))\in L(\mathcal{A})$, we also have $f(g^i(a),g^j(a))\in L(\mathcal{A})$
- Contradiction! L not tree-regular

Towards a Pumping Lemma

- A term $t \in T(\mathcal{F}, \mathcal{X})$ is called linear, if no variable occurs more than once
- A context with *n* holes is a linear term over variables *x*₁,..., *x_n*
 - For a context C with n holes, we define

 $C[t_1,\ldots,t_n]:=C(x_1\mapsto t_1,\ldots,x_n\mapsto t_n)$

• A context that consists of a single variable is called trivial.

Pumping Lemma

Theorem

Let L be a regular language. Then, there is a constant k > 0 such that for every $t \in L$ with Height(t) > k, there is a context C, a non-trivial context C', and a term u such that

- t = C[C'[u]] $\forall n \ge 0. \ C[C'^n[u]] \in L$
- Proof sketch:
 - Let $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$ with $L = L(\mathcal{A})$, and $t \rightarrow_{\mathcal{A}} q, q \in Q_f$
 - Choose path through *t* with length > *k*
 - Two subtrees on this path accepted in same state.
 - Identify them by C and C'

Example

- Consider $\mathcal{F} = f/2$, a/0, and $L := \{t \in T(\mathcal{F}) \mid |t| \text{ is prime}\}$
 - |t| is number of nodes in t
- L is not regular.
 - Proof by contradiction. Assume L is regular, and k is pumping constant
 - Choose $t \in L$ with height(t) > k
 - We obtain *C*, *C'*, *u* such that *t* = *C*[*C'*[*u*]] and *∀n*. *C*[*C'ⁿ*[*u*]] ∈ *L* We have |*C*[*C'ⁿ*[*u*]]| = |*C*| − 1 + *n*(|*C'*| − 1) + |*u*|
 - - Choose n = |C| + |u| 1 to show that this is not prime for all n

Corollaries

- Let $\mathcal{A} = (\mathcal{Q}, \mathcal{F}, \mathcal{Q}_f, \Delta)$ be an FTA.
 - 1 L(A) is non-empty, iff $\exists t \in L(A)$. height(t) $\leq |Q|$
 - 2 L(A) is infinite, iff $\exists t \in L(A) . |Q| < height(t) \le 2|Q|$
- Proof ideas:
 - 1 Remove duplicate states of accepting run repeatedly
 - **2** \implies : Take $t \in L(A)$ high enough. Remove duplicate states repeatedly, until longest path has exactly one duplication.
 - <=: Pump with infinitely many n

Last Lecture

- Deterministic Automata
 - Powerset construction
- Pumping Lemma

Table of Contents

1 Introduction

2 Basics

Nondeterministic Finite Tree Automata Epsilon Rules Deterministic Finite Tree Automata Pumping Lemma Closure Properties Tree Homomorphisms Minimizing Tree Automata Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Closure Properties

Theorem

- The class of regular languages is closed under union, intersection, and complement.
- Automata for union, intersection, and complement can be computed.

Union

- Given automata $\mathcal{A}_1 = (Q_1, \mathcal{F}, Q_{f1}, \Delta_1)$ and $\mathcal{A}_2 = (Q_2, \mathcal{F}, Q_{f2}, \Delta_2)$.
 - Assume, wlog, $Q_1 \cap Q_2 = \emptyset$
 - Let $\mathcal{A} = (\mathcal{Q}_1 \cup \mathcal{Q}_2, \mathcal{F}, \mathcal{Q}_{f1} \cup \mathcal{Q}_{f2}, \Delta_1 \cup \Delta_2)$
 - Straightforward: $L(A) = L(A_1) \cup L(A_2)$
- However: ${\cal A}$ may be nondeterministic and not complete, even if ${\cal A}_1$ and ${\cal A}_2$ were.
- Let A_1, A_2 be deterministic and complete. Let $A = (Q, F, Q_f, \Delta)$ with
 - $Q = Q_1 \times Q_2$, $Q_f = Q_{f1} \times Q_2 \cup Q_1 \times Q_{f2}$, and $\Delta = \Delta_1 \times \Delta_2$ where

$$egin{aligned} \Delta_1 imes \Delta_2 &:= \{f((q_1,q_1'),\ldots,(q_n,q_n')) o (q,q') \mid \ f(q_1,\ldots,q_n) o q \in \Delta_1 \wedge f(q_1',\ldots,q_n') o q' \in \Delta_2 \} \end{aligned}$$

- Then $L(A) = L(A_1) \cup L(A_2)$ and A is deterministic and complete.
- Intuition: Recognize with both automata in parallel.

Complement

- Assume L is recognized by the complete DFTA A = (Q, F, Q_f, Δ)
- Define $\mathcal{A}^{c} = (\mathcal{Q}, \mathcal{F}, \mathcal{Q} \setminus \mathcal{Q}_{f}, \Delta)$
- Obviously, $L(\mathcal{A}^c) = T(\mathcal{F}) \setminus L(\mathcal{A})$
- If a nondeterministic automaton is given, determinization may cause exponential blowup

Intersection

- The easy way: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$
 - Exponential blowup for NFTA.
- Product construction: Given automata $A_1 = (Q_1, \mathcal{F}, Q_{f1}, \Delta_1)$ and $A_2 = (Q_2, \mathcal{F}, Q_{f2}, \Delta_2)$.
 - Define $\mathcal{A} = (Q_1 \times Q_2, \mathcal{F}, Q_{f1} \times Q_{f2}, \Delta_1 \times \Delta_2)$
 - $L(\mathcal{A}) = L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$
 - Intuition: Automata run in parallel. Accept if both accept.
 - \mathcal{A} is deterministic/complete if \mathcal{A}_1 and \mathcal{A}_2 are.
- Product construction can also be combined with reduction algorithm, to avoid construction of inaccessible states.

Summary

- For DFTA: Polynomial time intersection, union, complement
- For NFTA: Polynomial time intersection, union. Exp-time complement.

More Algorithms on FTA

- Membership for NFTA. In time O(|t| * |A|) On-the-fly determinization.
- Emptiness check: Time O(|A|). Exercise!

Table of Contents

Introduction

2 Basics

Nondeterministic Finite Tree Automata Epsilon Rules Deterministic Finite Tree Automata Pumping Lemma Closure Properties Tree Homomorphisms Minimizing Tree Automata Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Tree Homomorphisms

- Map each symbol of tree to new subtree
- Example: Convert ternary tree to binary tree
 - $f(x_1, x_2, x_3) \mapsto g(x_1, g(x_2, x_3))$
- Example: Eliminate conjunction from Boolean formulas
 - $x_1 \wedge x_2 \mapsto \neg (\neg x_1 \vee \neg x_2)$

Formal definition

- Let \mathcal{F} and \mathcal{F}' be ranked alphabets, not necessarily disjoint
- Let, for any $n, \mathcal{X}_n := \{x_1, \ldots, x_n\}$ be variables, disjoint from \mathcal{F} and \mathcal{F}'
- Let $h_{\mathcal{F}}$ be a mapping that maps $f \in \mathcal{F}_n$ to $h_{\mathcal{F}}(f) \in T(\mathcal{F}', \mathcal{X}_n)$
- $h_{\mathcal{F}}$ determines a tree homomorphism $h: T(\mathcal{F}) \to T(\mathcal{F}')$:

 $h(f(t_1,\ldots,t_n)):=h_{\mathcal{F}}(f)(x_1\mapsto h(t_1),\ldots,x_n\mapsto h(t_n))$

Preservation of Regularity

- Tree homomorphisms do not preserve regularity in general
 - Let $L = \{f(g^i(a)) \mid i \in \mathbb{N}\}$. Obviously regular.
 - Let $h_{\mathcal{F}}$: $f(x) \mapsto f(x, x)$
 - $h(L) = \{f(g^i(a), g^i(a)) \mid i \in \mathbb{N}\}$. Not regular.
- But:
 - A tree homomorphism determined by $h_{\mathcal{F}}$ is *linear*, iff for all $f \in \mathcal{F}$, the term $h_{\mathcal{F}}(f)$ is linear.

Theorem

Let L be a regular language, and h a linear tree homomorphism. Then h(L) is also regular.

• Proof idea: For each original rule $f(q_1, \ldots, q_n)$, insert rules that recognize $h_{\mathcal{F}}[q_1, \ldots, q_n]$

Positions

- · Identify position in tree by sequence of natural numbers
- Let *t* be a tree, and $p \in \mathbb{N}^*$. We define the subtree of *t* at position *p* by:

$$t(\varepsilon) := t \qquad (f(t_1, \ldots, t_n))(ip) := t_i(p)$$

• *Pos*(*t*) is the set of valid positions in *t*

Construction (Preservation of regularity)

- Assume *L* is accepted by reduced DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$.
- Construct NFTA $A' = (Q', \mathcal{F}', Q'_f, \Delta')$:
 - With $Q \subseteq Q'$ and $Q'_f = Q_f$
 - For each rule $r = f(q_1, \ldots, q_n) \rightarrow q$, $t_f = h_{\mathcal{F}}(t)$, and position $p \in Pos(t_f)$:
 - States *q*^{*r*}_{*p*} ∈ *Q*^{*r*}
 - If $t_f(p) \stackrel{r}{=} g(\ldots) \in \mathcal{F}_k : g(q_{p1}^r, \ldots, q_{pk}^r) \rightarrow q^r \in \Delta'$
 - If $t_f(p) = x_i : q_i \to q_p^r \in \Delta^r$

•
$$q_{\varepsilon}^{r}
ightarrow q \in \Delta^{r}$$

Proof sketch

- Prove $h(L) \subseteq L(A')$. Straightforward.
- Prove $L(\mathcal{A}') \subseteq h(L)$ (Sketch on board).
 - Idea: Split derivation of $t \rightarrow_{\mathcal{A}'} q \in Q$ at rules of the form $q_{\varepsilon}^r \rightarrow q$.
 - Assume r = f(...) → q. Without using states from Q, automaton accepts subtree of the form h_F(f).
 - Cases:
 - Constant (0-ary symbol)
 - Due to rule $q_i
 ightarrow q_p^r \in \Delta', \, q_i \in Q$ (use IH)
 - Formally: Induction on size of derivation $t \rightarrow_{\mathcal{A}'} q$

Last lecture

- Closure properties: Union, intersection, complement
- Tree homomorphisms
 - Idea: Replace node by tree with "holes"
 - $and(x_1, x_2) \mapsto not(or(not(x_1), not(x_2)))$
- Regular languages closed under *linear* homomorphisms
 - Linear: No subtrees are duplicated

Inverse Homomorphism

- Motivation: Reconsider elimination of \wedge in Boolean formulas
 - Homomorphism: Given automaton that recognizes true formulas, construct automaton for true formulas without $\wedge.$
 - Not really useful
 - Inverse homomorphism: Given automaton for formulas without $\wedge,$ construct automaton for formulas with $\wedge.$
 - This would be nice
 - From automaton for simple language, and mapping of complex to simple language, obtain automaton for complex language!
- Fortunately

Theorem

Let *h* be a tree homomorphism, and *L* a regular language. Then $h^{-1}(L) := \{t \mid h(t) \in L\}$ is regular.

- Also holds for non-linear homomorphisms
- · Common technique to show regularity/decidability
 - Can be generalized to (macro) tree transducers

Generalized Acceptance Relation

- Let $\mathcal{A} = (\mathcal{Q}, \mathcal{F}, \mathcal{Q}_f, \Delta)$ and $t \in T(\mathcal{F} \stackrel{.}{\cup} \mathcal{Q})$.
- We define $t \rightarrow_{\mathcal{A}} q$ as the least relation that satisfies

$$q \rightarrow_{\mathcal{A}} q$$

 $f(q_1, \ldots, q_n) \rightarrow q \in \Delta, \forall i \leq n. \ t_i \rightarrow_{\mathcal{A}} q_i \implies f(t_1, \ldots, t_n) \rightarrow_{\mathcal{A}} q$

• This is obviously a generalization of the acceptance relation we defined earlier

Inverse Homomorphism, construction

- Let h: T(F) → T(F') be a tree homomorphism determined by h_F
- Let $\mathcal{A}' = (\mathcal{Q}', \mathcal{F}', \mathcal{Q}'_f, \Delta')$ be a DFTA with $L = L(\mathcal{A}')$
- We define DFTA $\mathcal{A} = (Q' \cup \{s\}, \mathcal{F}, Q'_{f}, \Delta)$, with the rules

$$f(q_1, \ldots, q_n) \rightarrow q \in \Delta \text{ if } f \in \mathcal{F}_n, h_{\mathcal{F}}(f)[p_1, \ldots, p_n] \rightarrow_{\mathcal{A}'} q$$

where $q_i = p_i$ if x_i occurs in $h_{\mathcal{F}}(f)$, and $q_i = s$ otherwise
 $a \rightarrow s \in \Delta, f(s, \ldots, s) \rightarrow s \in \Delta$

- Intuition: Accept node f, if its image is accepted by A'
 - If image does not depend on a subtree, accept any subtree (state s)

Inverse Homomorphism, proof

- Show $t \rightarrow_{\mathcal{A}} q$ iff $h(t) \rightarrow_{\mathcal{A}'} q$
- On board

Table of Contents

1 Introduction

2 Basics

Nondeterministic Finite Tree Automata Epsilon Rules Deterministic Finite Tree Automata Pumping Lemma Closure Properties Tree Homomorphisms Minimizing Tree Automata Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Last Lecture

- Inverse homomorphisms preserve regularity
- Started Myhill-Nerode Theorem

Reminder: Equivalence relation

- A relation ≡⊆ *A* × *A* is called *equivalence relation*, iff it is reflexive, transitive and symmetric
- The set $[a]_{\equiv} := \{a' \mid a \equiv a'\}$ is called the *equivalence class* of a
- An equivalence relation is of *finite index*, if there are only finitely many equivalence classes

Congruence

• An equivalence relation \equiv on $T(\mathcal{F})$ is a *congruence*, iff

 $\forall f \in \mathcal{F}_n. \ (\forall i \leq n. \ u_i \equiv v_i) \implies f(u_1, \ldots, u_n) \equiv f(v_1, \ldots, v_n)$

- Intuition: Functions are equivalent if applied to equivalent arguments.
- Note: \equiv is congruence, iff closed under (1-hole) contexts, i.e.

$$\forall C \ u \ v. \ u \equiv v \implies C[u] \equiv C[v]$$

• For a language *L*, we define the congruence \equiv_L by

$$u \equiv_L v \text{ iff } \forall C. \ C[u] \in L \text{ iff } C[v] \in L$$

- Obviously an equivalence relation. Obviously a congruence.
- Intuition: L does not distinguish between u and v

Myhill-Nerode Theorem

Theorem

The following statements are equivalent

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $\mathbf{3} \equiv_L$ is of finite index

Convention

- Complete DFTAs are written as (Q, F, Q_f, δ)
 - with $\delta : (\mathcal{F}_n \times \mathbf{Q}^n \to \mathbf{Q})_n$
 - Corresponds to Δ via

 $f(q_1,\ldots,q_n) \rightarrow q \text{ iff } \delta(f,q_1,\ldots,q_n) = q$

· Naturally extended to trees

 $\delta(f(t_1,\ldots,t_n)=\delta(f,\delta(t_1),\ldots,\delta(t_n))$

• Compatible with $\rightarrow_{\mathcal{A}}$, i.e.

 $t \rightarrow_{\mathcal{A}} q \text{ iff } \delta(t) = q$

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

- $3 \equiv_L$ is of finite index
- 1 \rightarrow 2 Take complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$ with $L = L(\mathcal{A})$.
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{ [u] \mid \delta(u) \in Q_f \}$
- $2 \rightarrow 3$ Let *R* be the finite-index congruence. Assume *uRv*.
 - Then, C[u]RC[v] for all contexts C
 - As L is union of eq-classes of R, we have $C[u] \in L$ iff $C[v] \in L$
 - Thus, $u \equiv_L v$
 - I.e., \equiv_L has not more eq-classes then the finite-index *R*
- $3 \rightarrow 1$ Let Q_{min} be the set of eq-classes of \equiv_L
 - Let $\Delta_{min} := \{f([u_1]_{\equiv_L}, \dots, [u_n]_{\equiv_L}) \rightarrow [f(u_1, \dots, u_n)]_{\equiv_L} \mid f \in \mathcal{F}_n, u_1, \dots, u_n \in T(\mathcal{F})\}$
 - Note that Δ_{min} is deterministic, as \equiv_L is a congruence
 - Let $Q_{min_f} := \{ [u] \mid u \in L \}$
 - The DFTA A_{min} := (Q_{min}, F, Q_{min_f}, Δ_{min}) recognizes the language L

Unique minimal DFTA

- Corollary: The minimal complete DFTA accepting a regular language exists and is unique.
 - It is given by \mathcal{A}_{min} from the proof of Myhill-Nerode
- Proof sketch (more details on board):
 - Assume *L* is recognized by complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$
 - The relation $\equiv_{\mathcal{A}}$ is refinement of \equiv_{L}
 - $\equiv_{\mathcal{A}} \subseteq \equiv_{L}$
 - Thus $|Q| \ge |Q_{min}|$ (proves existence of minimal DFTA)
 - Now assume $|Q| = |Q_{min}|$
 - All states in Q are accessible (otherwise, contradiction to minimality)
 - Let $q \in Q$ with $\delta(u) = q$.
 - Identify q and $\delta_{min}(u)$
 - This mapping is consistent and bijection

Minimization algorithm

- Given complete and reduced DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$
- Idea: Refine an equivalence relation until consistent with $\ensuremath{\mathcal{A}}$
- **1** Start with $P = \{Q_f, Q \setminus Q_f\}$
- 2 Refine P. Let P' be the new value. Set qP'q', if
 - *qPq*′
 - $q \equiv q'$ is consistent wrt. the rules, i.e.

$$orall f \in \mathcal{F}_n, q_1, \dots, q_{i-1}, q_{i+1}, \dots, q_n.$$

 $\delta(f, q_1, \dots, q_{i-1}, q, q_{i+1}, \dots, q_n) P \delta(f, q_1, \dots, q_{i-1}, q', q_{i+1}, \dots, q_n)$

- 3 Repeat until no more refinement possible
- 4 Define $A_{min} := (Q_{min}, \mathcal{F}, Q_{minf}, \delta)$, where
 - Q_{min} := Equivalence classes of P

•
$$Q_{minf} := \{ [q] \mid q \in Q_f \}$$

- $\delta_{min}(f, [q_1], ..., [q_n]) = [\delta(f, q_1, ..., q_n)]$
- $L(A_{min}) = L(A)$. Proof on board.

Last Lecture

- Myhill-Nerode Theorem
- Minimization of tree automata

Table of Contents

Introduction

2 Basics

Nondeterministic Finite Tree Automata Epsilon Rules Deterministic Finite Tree Automata Pumping Lemma Closure Properties Tree Homomorphisms Minimizing Tree Automata Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Top-Down Tree Automata

- Recall: Tree automata rewrite tree to single state
 - Starting at the leaves, i.e. bottom-up
 - $f(q_1,\ldots,q_n) \rightarrow q$
 - Intuition: Assign state to a given tree, consume tree
- Now: Rewrite state to a tree
 - Starting at a single root state
 - $q \rightarrow f(q_1, \ldots, q_n)$
 - Intuition: Assign tree to given state, produce tree.

Top-Down Tree Automata

- A tuple $\mathcal{A} = (Q, \mathcal{F}, I, \Delta)$ is called *top-down* tree automaton, where
 - \mathcal{F} is a ranked alphabet
 - *Q* is a finite set of states, with $Q \cap \mathcal{F} = \emptyset$
 - $I \subseteq Q$ is a set of initial states
 - Δ is a set of rules of the form

$$q \rightarrow f(q_1, \ldots, q_n)$$
 for $f \in \mathcal{F}_n, q, q_1, \ldots, q_n \in Q$

 We define the production relation q →_A t as the least relation that satisfies

$$q \rightarrow f(q_1, \ldots, q_n) \in \Delta, q_1 \rightarrow_{\mathcal{A}} t_1, \ldots, q_n \rightarrow_{\mathcal{A}} t_n \implies q \rightarrow_{\mathcal{A}} f(t_1, \ldots, t_n)$$

• The language of A is $L(A) := \{t \mid \exists q \in I. \ q \rightarrow_{A} t\}$

Equal expressiveness

Theorem

A language is regular if and only if it is the language of a top-down tree automaton.

- Proof
 - Straightforward induction (Hint: Reverse arrows, exchange I and Q_f)
 - Exercise

Deterministic Top-Down Tree Automata

- A top-down tree-automaton $\mathcal{A} = (Q, \mathcal{F}, I, \Delta)$ is *deterministic*, iff
 - |/| = 1
 - $q \rightarrow f(q_1, \ldots, q_n) \in \Delta \land q \rightarrow f(q'_1, \ldots, q'_n) \in \Delta \implies q_1 = q'_1 \land \ldots \land q_n = q'_n$
- Unfortunately: There are regular languages not accepted by any deterministic top-down FTA
 - $L = \{f(a, b), f(b, a)\}$. Obviously regular. Even finite.
 - But: Any deterministic top-down FTA that accepts the words in *L* also accepts *f*(*a*, *a*).

Table of Contents

Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Table of Contents

Introduction

2 Basics

 Alternative Representations of Regular Languages Regular Tree Grammars Tree Regular Expressions

4 Model-Checking concurrent Systems

Regular Tree Grammars

- Extend grammars to trees
- Here: Only for the regular case
- A regular tree grammar (RTG) is a tuple $G = (S, N, \mathcal{F}, R)$, where
 - $S \in N$ is a start symbol
 - *N* is a finite set of nonterminals with arity zero, and $N \cap \mathcal{F} = \emptyset$
 - \mathcal{F} is a ranked alphabet
 - *R* is a set of production rules of the form $n \rightarrow \beta$, where $n \in N$ and $\beta \in T(\mathcal{F} \cup N)$
- These are almost top-down tree automata
 - But rules are a bit more complicated

Derivation Relation

- Intuition: Rewrite S to a tree, using the rules
- For an RTG $G = (S, N, \mathcal{F}, R)$, we define a derivation step $\beta \Rightarrow_G \beta'$ for $\beta, \beta' \in T(\mathcal{F} \cup N)$ by

$$\beta \Rightarrow_{\mathbf{G}} \beta' \iff \exists \mathbf{C} \ \mathbf{u} \ \mathbf{n}. \ \beta = \mathbf{C}[\mathbf{n}] \land \mathbf{n} \rightarrow \mathbf{u} \in \mathbf{R} \land \beta' = \mathbf{C}[\mathbf{u}]$$

- We write $\beta \rightarrow_G t'$, iff $t' \in T(\mathcal{F})$ and $\beta \Rightarrow^*_G t'$
- For $n \in N$, we define $L(G, n) := \{t \in T(\mathcal{F}) \mid n \rightarrow_G t\}$
- We define *L*(*G*) := *L*(*G*, *S*)

Reduced tree grammars

• A non-terminal *n* is *reachable*, iff there is a derivation from *S* to a tree containing *n*:

 $\exists C. S \Rightarrow^*_G C[n]$

• A non-terminal *n* is *productive*, iff a tree without nonterminals can be derived from it:

 $L(G, n) \neq \emptyset$

• An RTG is reduced, if every nonterminal is reachable and productive

Computation of Equivalent Reduced Grammar

- For every RTG *G*, reduced tree grammar *G*' with *L*(*G*) = *L*(*G*') can be computed
 - Provided that $L(G) \neq \emptyset$, otherwise *S* must not be productive.
- 1 Remove unproductive non-terminals
 - Productive nonterminals can be computed by saturation algorithm:
 - *n* is productive, if there is a rule $n \rightarrow \beta$ such that every nonterminal in β is productive
- 2 Remove unreachable nonterminals
 - Again saturation: *S* is reachable, *n* is reachable if there is a rule $\hat{n} \rightarrow C[n]$ such that \hat{n} is reachable

Correctness

- Obviously, removing unproductive or unreachable nonterminals does not change the language
- Remains to show: Removing unreachable nonterminals cannot create new unproductive ones
 - On board

Normalized Regular Tree Grammars

- RTG is normalized, iff all productions have the form $n \to f(n_1, \ldots, n_n)$ for $n, n_1, \ldots, n_n \in N$
- Every RTG can be transformed into an equivalent normal one
 - Iterate: Replace a rule $n \to f(s_1, \ldots, s_n)$ by $n \to f(n_1, \ldots, n_n)$
 - where $n_i = s_i$ if $s_i \in N$
 - $n_i \in N$ fresh otherwise. In this case, add rule $n_i \rightarrow s_i$
 - After iteration, all rules have form $n \to f(n_1, \ldots, n_n)$ or $n_1 \to n_2$
 - Eliminate the latter rules by replacing s₁ → s₂ by rules s₁ → t for all t ∉ N with s₂ →^{*} n → t
 - Cf.: Elimination of epsilon rules
- · Correctness (Ideas)
 - · Each step of the iteration preserves language
 - Elimination preserves language

Normalized RTGs and top-down NTFAs

- Obviously, normalized RTGs are isomorphic to top-down NTFAs
- Thus, exactly the regular languages can be expressed by RTGs

Theorem

A language is regular if and only if it can be described by a regular tree grammar.

Last Lecture

- Myhill Nerode Theorem
- Minimization Algorithm
- Top-Down Tree Automata
- Regular Tree Grammars
- Started: Tree Regular Expressions

Table of Contents

Introduction

2 Basics

 Alternative Representations of Regular Languages Regular Tree Grammars Tree Regular Expressions

4 Model-Checking concurrent Systems

Recall: Word regular expressions

- $e ::= \varepsilon \mid \emptyset \mid a \text{ for } a \in \Sigma \mid e \cdot e \mid e + e \mid e^*$
 - Empty word | empty language | single character | concatenation | choice | iteration
- For example: $(r + w + o)^* \cdot (r + w) \cdot (r + w + o)^*$
 - Words containing at least one r or at least one w
- Recall: e^{*} = ε + e · e^{*}

Tree regular expressions

- Consider the set {0, *s*(0), *s*(*s*(0)), ...}
 - Want to represent this as "regular expression"
- *s*(□)* · 0
 - Idea: □ indicates position for concatenation
 - $t_1 \cdot t_2$ inserts t_2 at square-position in t_1
 - $f(\ldots)^* = \Box + f(\ldots) \cdot f(\ldots)^*$ iterates over position \Box
- There may be more than one iteration, over different positions
 - Number position markers: \Box_1, \Box_2, \ldots
 - cons(s(□₁)^{*1} ·₁ 0, □₂)^{*2} ·₂ nil
- Note: TATA notation: s(□1)*,□1, nil

Substitution and Concatenation

- Let $\mathcal{K}:=\square_1/0,\square_2/0,\dots$ Assume $\mathcal{K}\cap\mathcal{F}=\emptyset$
- For trees $t \in T(\mathcal{F} \cup \mathcal{K})$, we define (simultaneous) substitution $t\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\}$, for $a_i \in \mathcal{K}$ and $i \neq j \implies a_i \neq a_j$:

$$a\{a_{1} \leftarrow L_{1}, \dots, a_{n} \leftarrow L_{n}\} = a \text{ for } a \in \mathcal{F} \cup \mathcal{K} \text{ and } \forall i. a \neq a_{i}$$
$$a_{i}\{a_{1} \leftarrow L_{1}, \dots, a_{n} \leftarrow L_{n}\} = L_{i}$$
$$f(s_{1}, \dots, s_{m})\{a_{1} \leftarrow L_{1}, \dots, a_{n} \leftarrow L_{n}\}$$
$$= \{f(t_{1}, \dots, t_{m}) \mid t_{i} \in s_{i}\{a_{1} \leftarrow L_{1}, \dots, a_{n} \leftarrow L_{n}\}\}$$

And generalize this to languages

$$L\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\} := \bigcup_{t \in L} (t\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\})$$

And define concatenation

$$L_1 \cdot_i L_2 := L_1 \{ \Box_i \leftarrow L_2 \}$$

Iteration

• Iteration L^{n,i}

$$L^{0,i} := \Box_i \qquad \qquad L^{n+1,i} = L^{n,i} \cup L_{i} L^{n,i}$$

- Note: All numbers $\leq n$ of iterations included.
- If there are many concatenation points, number of iterations is independent for each concatenation point.
- For example: $f(f(\Box, f(\Box, \Box)), \Box) \in {f(\Box, \Box)}^3$
- Closure L^{*i}

$$L^{*_i} := \bigcup_{n \in \mathbb{N}} L^{n,i}$$

Preservation of Regularity (Concatenation)

Theorem

Substitution preserves regularity, i.e., let $L, L_1, ..., L_n$ be regular languages, then $L' := L\{a_1 \leftarrow L_1, ..., a_n \leftarrow L_n\}$ is a regular language

- Proof sketch:
 - Let *L*, *L*₁, ..., *L_i* be represented by RTGs over disjoint nonterminals
 - $G = (S, N, \mathcal{F}, R)$ with L = L(G) and $G_i = (S_i, N_i, \mathcal{F}, R_i)$ with $L_i = L(G_i)$
 - Then let *G*′ = (*S*, *N* ∪ *N*₁ ∪ . . . ∪ *N*_n, *F*, *R*′ ∪ *R*₁ ∪ . . . ∪ *R*_n) where *R*′ contains the rules of *R*, but *a*_i replaced by *S*_i.
 - *L*′ ⊆ *L*(*G*′): Produce word from *L* first (the □_{*i*} are replaced by *S_i*), then rewrite the *S_i* to words from *L_i*
 - L(G') ⊆ L': Re-order derivation of G' to stop at the S_i
 - Formally, show:

 $\forall A \in N. \ A \rightarrow_{G'} s' \implies \exists s. \ A \rightarrow_{G} s \land s' \in s\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\}$

- By induction on derivation length
- Corollary: Concatenation preserves regularity, i.e., for regular languages L_1, L_2 , the language $L_1 \cdot L_2$ is regular.

Preservation of Regularity (Closure)

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a regular language.

- Proof sketch
 - Let *L* be represented by RTG *G* = (*S*, *N*, *F*, *R*)
 Construct *G*' = (*S*', *N* ∪ {*S*'}, *F* ∪ *K*, *R*'), such that
 - - R' contains the rules from R, with \Box replaced by S'
 - $S' \rightarrow \Box \in R'$ and $S' \rightarrow S \in R'$
 - $L^* \subset L(G')$: Obvious by construction
 - $L(G') \subset L^*$: Re-ordering derivation. Formally: Induction on derivation length.

Tree Regular Expressions

Syntax

$$e ::= \emptyset \mid f(\underbrace{e, \dots, e}_{n \text{ times}}) \text{ for } f \in \mathcal{F}_n \mid e + e \mid e \cdot_i e \mid e^{*_i}$$

Semantics

$$\llbracket \emptyset \rrbracket = \emptyset$$

$$\llbracket f(e_1, \dots, e_n) \rrbracket = \{ f(t_1, \dots, t_n) \mid t_i \in \llbracket e_i \rrbracket \}$$

$$\llbracket e_1 + e_2 \rrbracket = \llbracket e_1 \rrbracket \cup \llbracket e_2 \rrbracket$$

$$\llbracket e_1 \cdot_i e_2 \rrbracket = \llbracket e_1 \rrbracket \cdot_i \llbracket e_2 \rrbracket$$

$$\llbracket e_1^{*_i} \rrbracket = \llbracket e_1 \rrbracket^{*_i}$$

Kleene Theorem for Tree Languages

Theorem

A tree language L is regular if and only if there is a regular expression e with $L = [\![e]\!]$

- Proof (<): Straightforward, by induction on *e*, using preservation of regularity by union, concatenation, and closure
- Proof (⇒): Construct reg-exp inductively over increasing number of states

Kleene Theorem for Tree Languages (Proof)

• Let $\mathcal{A} = (\mathcal{Q}, \mathcal{F}, \mathcal{Q}_F, \Delta)$ be bottom-up automaton.

• Let $Q = \{q_1, ..., q_n\}$

Define *T*(*i*, *j*, *K*) for *K* ⊆ *Q* as those trees over *T*(*F* ∪ *K*) that can be rewritten to *q_i* using only **internal** states from {*q*₁,...,*q_k*}

• Note: We do not require $q_i \in \{q_1, \ldots, q_k\}$, nor $K \subseteq \{q_1, \ldots, q_k\}$

- $L(\mathcal{A}) = \bigcup_{i \mid q_i \in Q_F} T(i, n, \emptyset)$
- *T*(*i*, 0, *K*) is finite
 - Runs accepting $t \in T(i, 0, K)$ contain no internal states
 - I.e., t = a() or $t = f(a_1, ..., a_m)$, for $a, a_1, ..., a_m \in F \cup K$
 - Thus, representable by regular expression
- For *j* > 0:

$$T(i, j, K) = \underbrace{T(i, j - 1, K \cup \{q_j\})}_{\text{Initial segment}} \cdot_{q_j} \underbrace{T(j, j - 1, K \cup \{q_j\})^{*, q_j}}_{\text{Runs between } q_j \text{s}} \cdot_{q_j} \underbrace{T(j, j - 1, K)}_{\text{Final segment}}$$

Regular expression for L(A) can be constructed

Last Lecture

- Tree regular expressions
- Kleene theorem
 - Tree regular expressions can express exactly the tree regular languages

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Motivation Pushdown Systems Dynamic Pushdown Networks Acquisition Histories Acquisition Histories for DPN

Program Analysis

- Theorem of Rice: Properties of programs undecidable
- Need approximations
- Standard approximation: Ignore branching conditions
 - if (b) ... else ... Consider both branches, independent of b
 - Nondeterministic program

Attack Plan

- Properties: Reachability of configuration/regular set of configurations
- First, consider programs with recursion
 - Modeled by pushdown systems (PDS)
- Then, add process creation
 - Modeled by dynamic pushdown systems (DPN)
- Then synchronization through well-nested locks
 - DPN with locks

Recursion

- · If program has no procedures
 - · Runs can be described by word automaton
 - Example on board
- If program has procedures
 - Runs can be described by push-down system (PDS)

Example

 $1 \stackrel{\tau}{\hookrightarrow} 12 \qquad \qquad 1 \stackrel{\tau}{\hookrightarrow} \varepsilon$ $2 \stackrel{x=y}{\hookrightarrow} 3$

 $\mathbf{3}\overset{\tau}{\hookrightarrow}\varepsilon$

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Motivation Pushdown Systems Dynamic Pushdown Networks Acquisition Histories Acquisition Histories for DPN

Push-Down Systems (PDS)

- In order to model (finitely many) return values, we add state
- A push-down system (PDS) *M* is a tuple $(P, \Gamma, Act, p_0, \gamma_0, \Delta)$ where
 - P is a finite set of states
 - Γ is a finite stack alphabet
 - Act is a finite set of actions
 - $p_0\gamma_0 \in P\Gamma$ is the initial configuration
 - Δ is a finite set of rules, of the form

$$p\gamma \stackrel{a}{\hookrightarrow} p'w$$
 where $p, p' \in P$, $a \in Act, \gamma \in \Gamma$, and $w \in \Gamma^*$

PDS - Semantics

- Configurations have the form *pw* ∈ *P*Γ*
- The step-relation $\rightarrow \subseteq P\Gamma^* \times Act \times P\Gamma^*$ is defined by

$$p\gamma w \stackrel{a}{
ightarrow} p'w'w$$
 if $p\gamma \stackrel{a}{\hookrightarrow} p'w' \in \Delta$

→*⊆ PΓ* × Act* × PΓ* is its extension to sequences of steps
 pw ¹→* p'w' iff I = a₁... a_n and pw ^{a₁}→... ^{a_n}→ p'w'

Normalized PDS

- Simplifying assumptions
 - There are only three types of rules

$$p\gamma \stackrel{a}{\hookrightarrow} p'\gamma'$$
 for $p, p' \in P$ and $\gamma, \gamma' \in \Gamma$ (base)

$$p\gamma \stackrel{a}{\hookrightarrow} p'\gamma_1\gamma_2$$
 for $p, p' \in P$ and $\gamma, \gamma_1, \gamma_2 \in \Gamma$ (call)

$$p\gamma \stackrel{a}{\hookrightarrow} p'$$
 for $p, p' \in P$ and $\gamma \in \Gamma$ (return)

- Does not reduce expressiveness. Emulate rule pγ ^γ→₁... γ_n by sequence of call rules.
- The empty stack must not be reachable
 - Does not reduce expressiveness
 - Introduce fresh \perp stack symbol, a rule $p_0 \perp \stackrel{\tau}{\hookrightarrow} p_0 \gamma_0 \perp$, and set initial state to $p_0 \perp$
 - τ models an action that has no effect (skip)
- From now on, we assume that PDS are normalized

Execution Trees

- Model executions of PDS as tree
 - Also incomplete executions, i.e., execution may stop everywhere
 - This describes all reachable configurations
- A node represents a step
- If a call returns, the call-node has two successors
 - · Left successor describes execution of procedure
 - Right successor describes execution of remaining program
- Execution trees described by the following tree grammar

 $XR ::= \langle Base \rangle (XR) \mid \langle Call \rangle^{R} (XR, XR) \mid \langle Return \rangle$ $XN ::= \langle Base \rangle (XN) \mid \langle Call \rangle^{N} (XN) \mid \langle Call \rangle^{R} (XR, XN) \mid \langle P \times \Gamma \rangle$

- Where Base, Call, Return are rules of respective type
- Intuition: XR Returning execution trees, XN non-returning execution trees

Example

 $p1 \stackrel{\tau}{\hookrightarrow} p12$ $p2 \stackrel{x=y}{\hookrightarrow} p3$ $p3 \stackrel{\tau}{\hookrightarrow} p$

$$p1 \stackrel{ au}{\hookrightarrow} p$$

• Example execution tree

• $\langle p1 \stackrel{\tau}{\hookrightarrow} p12 \rangle^{N} (\langle p1 \stackrel{\tau}{\hookrightarrow} p12 \rangle^{R} (\langle p1 \stackrel{\tau}{\hookrightarrow} p \rangle, \langle p2 \stackrel{x=y}{\hookrightarrow} p3 \rangle (\langle p3 \rangle)))$

Execution Trees of PDS

- Execution trees of PDS M = (P, Γ, Act, p₀, γ₀, Δ) described by tree automata A_M = (Q, F, I, Δ_{A_M})
- States: $Q = P\Gamma \cup P\Gamma | P$
 - $p\gamma$ produce non-returning execution trees (from XN)
 - $p\gamma|p''$ produce execution trees that return to state p'' (from XR)
 - Initial state: $I = \{p_0 \gamma_0\}$

Rules

$$\begin{array}{ll} p\gamma \rightarrow \langle p\gamma \stackrel{a}{\rightarrow} p'\gamma' \rangle (p'\gamma') & \text{if } p\gamma \stackrel{a}{\rightarrow} p'\gamma' \in \Delta \\ p\gamma \rightarrow \langle p\gamma \stackrel{a}{\rightarrow} p'\gamma_{1}\gamma_{2} \rangle^{N} (p'\gamma_{1}) & \text{if } p\gamma \stackrel{a}{\rightarrow} p'\gamma_{1}\gamma_{2} \in \Delta \\ p\gamma \rightarrow \langle p\gamma \stackrel{a}{\rightarrow} p'\gamma_{1}\gamma_{2} \rangle^{R} (p'\gamma_{1}|p'',p''\gamma_{2}) & \text{if } p'' \in P \text{ and } p\gamma \stackrel{a}{\rightarrow} p'\gamma_{1}\gamma_{2} \in \Delta \\ p\gamma \rightarrow \langle p\gamma \rangle & & \\ p\gamma|p'' \rightarrow \langle p\gamma \stackrel{a}{\rightarrow} p'\gamma' \rangle (p'\gamma'|p'') & \text{if } p\gamma \stackrel{a}{\rightarrow} p'\gamma' \in \Delta \\ p\gamma|p'' \rightarrow \langle p\gamma \stackrel{a}{\rightarrow} p'\gamma_{1}\gamma_{2} \rangle^{R} (p'\gamma_{1}|p''',p'''\gamma_{2}|p'') & \text{if } p''' \in P \text{ and } p\gamma \stackrel{a}{\rightarrow} p'\gamma_{1}\gamma_{2} \in \Delta \\ p\gamma|p'' \rightarrow \langle p\gamma \stackrel{a}{\rightarrow} p'\gamma_{1}\gamma_{2} \rangle^{R} (p'\gamma_{1}|p''',p'''\gamma_{2}|p'') & \text{if } p''' \in \Delta \end{array}$$

Execution Trees – Intuition of rules

- $p\gamma \rightarrow \langle p\gamma \stackrel{a}{\hookrightarrow} p'\gamma' \rangle (p'\gamma')$ (Base)
 - Make a base step, then continue execution from $p'\gamma'$
- $p\gamma \rightarrow \langle p\gamma \stackrel{a}{\hookrightarrow} p'\gamma_1\gamma_2 \rangle^N(p'\gamma_1)$ (Call, no-return)
 - Continue execution from $p'\gamma_1$.
 - As call does not return, $\gamma_{\rm 2}$ is never looked at again, and remaining execution does not depend on it
- $p\gamma \rightarrow \langle p\gamma \stackrel{a}{\hookrightarrow} p'\gamma_1\gamma_2 \rangle^R (p'\gamma_1|p'',p''\gamma_2)$ (Call, return)
 - Execute procedure, it returns with state p''. Then continue execution from $p''\gamma_2$.
- $p\gamma \rightarrow \langle p\gamma \rangle$ (Finish)
 - Non-deterministically decide that execution ends here
- $p\gamma | p'' \to \langle p\gamma \stackrel{a}{\hookrightarrow} p'\gamma' \rangle (p'\gamma' | p'')$ (Base)
 - Base step, then continue execution
- $p\gamma | p'' \to \langle p\gamma \stackrel{a}{\to} p'\gamma_1\gamma_2 \rangle^R (p'\gamma_1 | p''', p'''\gamma_2 | p'')$ (Call, return)
 - Return from called procedure in state $p^{\prime\prime\prime}$, then continue execution
- $p\gamma | p'' \to \langle p\gamma \stackrel{\tau}{\hookrightarrow} p'' \rangle$ (Return)
 - Return rule returns to specified state p^{''}

Reached Configuration

• Function $c: XN \rightarrow P\Gamma$ extracts reached configuration from execution tree

$$c(\langle p\gamma \stackrel{a}{\hookrightarrow} p'\gamma'\rangle(t)) = c(t)$$

$$c(\langle p\gamma \stackrel{\tau}{\hookrightarrow} p'\gamma_1\gamma_2\rangle^R(t_1, t_2)) = c(t_2)$$

$$c(\langle p\gamma \stackrel{\tau}{\hookrightarrow} p'\gamma_1\gamma_2\rangle^N(t)) = c(t)\gamma_2$$

$$c(\langle p\gamma\rangle) = p\gamma$$

- Side note: This is a tree to string transducer
 - . Thus, set of execution trees that reach a regular set of configurations is regular

Last Lecture

- Pushdown systems
 - Configuration $pw \in P\Gamma^*$
 - Semantics by step relation
- Execution trees
 - Intuition: Node for steps. Returning call nodes are binary.
 - · Set of execution trees of PDS is regular
 - Mapping of execution tree to reached configuration
- Correlation:
 - Reachable configurations wrt. step relation and execution trees match

Relating Execution Trees and PDS Semantics

Theorem

Let *M* be a PDS. Then $\exists I. p_0 \gamma_0 \stackrel{l}{\rightarrow}^* p' w$ iff $\exists t. t \in L(\mathcal{A}_M) \land c(t) = p' w$

- Note, a more general theorem would also relate the sequence of actions *l* and the execution tree
 - · Proof ideas are the same

Last Lecture

Proof of relation between execution trees and PDS semantics

Proof Outline

- Prove, for returning executions: $\exists I. p\gamma \xrightarrow{l} p''$ iff $\exists t. p\gamma | p'' \to t$
 - As c ignores returning executions, this simple statement is enough
- Prove, for non-returning executions:

 $\exists I. \ p\gamma \stackrel{I}{\rightarrow}{}^{*} p' w \land w \neq \varepsilon \text{ iff } \exists t. \ p\gamma \rightarrow t \land c(t) = p' w$

- Main lemmas that are required
 - An execution can be repeated when we append some symbols to the stack:

lemma stack-append: $pw \stackrel{i}{\rightarrow} p'w' \implies pwv \stackrel{i}{\rightarrow} p'w'v$

• If we have an execution, the topmost stack-symbol is either popped at some point, or the execution does not depend on the stack below the topmost symbol. Lemma return-cases:

$$\vee \exists w''. w' = w''w \wedge w'' \neq \varepsilon \wedge p\gamma \stackrel{l}{\to} p'w''$$
 (no-ret)

 Corollary: On a returning execution, we can find the point where the topmost stack symbol is popped

lemma find-return:
$$p\gamma w \stackrel{l}{\rightarrow} p' \implies \exists l_1 \ l_2 \ p'' \cdot p\gamma \stackrel{l_1}{\rightarrow} p'' \wedge p'' w \stackrel{l_2}{\rightarrow} p'$$

Proofs:

- On board
 - lemma return-cases (find-return is corollary)
 - Proofs for returning and non-returning executions

Table of Contents

Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Motivation Pushdown Systems Dynamic Pushdown Networks Acquisition Histories Acquisition Histories for DPN

Thread Creation

- Concurrent programs may create threads
- These run in parallel

Example

```
void p () {
    if (...) {
        spawn p;
        p();
    }
}
main () {
    p();
}
```

Dynamic Pushdown Networks

- Pushdown systems
- Spawn-rules may have side-effect of creating a new PDS
- A DPN $M = (P, \Gamma, Act, p_0, \gamma_0, \Delta)$ consists of
 - A finite set of states P
 - A finite set of stack symbols Γ
 - A finite set of actions Act
 - An initial configuration $p_0\gamma_0\in P\Gamma$
 - Rules Δ of the form

$$\begin{array}{ccc} p\gamma \stackrel{a}{\hookrightarrow} p'\gamma' & \text{for } p, p' \in P \text{ and } \gamma, \gamma' \in \Gamma & \text{(base)} \\ p\gamma \stackrel{a}{\hookrightarrow} p'\gamma_1\gamma_2 & \text{for } p, p' \in P \text{ and } \gamma, \gamma_1, \gamma_2 \in \Gamma & \text{(call)} \\ p\gamma \stackrel{a}{\hookrightarrow} p' & \text{for } p, p' \in P \text{ and } \gamma \in \Gamma & \text{(return)} \\ p\gamma \stackrel{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 & \text{for } p, p_1, p_2 \in P \text{ and } \gamma, \gamma_1, \gamma_2 \in \Gamma & \text{(spawn)} \end{array}$$

Assumption: Empty stack not reachable in any spawned thread

Configurations

- Configurations are trees over the alphabet $\langle pw \rangle / 1 | Cons/2 | Nil/0$
 - For all *pw* ∈ *P*Γ^{*}
- They have the structure conf ::= (pw)(conflist) conflist ::= Nil|Cons(conf, conflist)
- Intuitively, a node (pw)(I) represents a thread in state pw, that has already spawned the threads in I
- Convention: We identify *c* with the singleton list Cons(c, Nil), and use $l_1 l_2$ for the concatenation of l_1 and l_2 .
 - We may use [c_1, \ldots, c_n] for the list $Cons(c_1, Cons(\ldots, Cons(c_n, Nil) \ldots)$ for clarification of notation.

Last Lecture

- Finished proof: Relation of execution trees and PDS semantics
- DPN (PDS + Thread creation)
- DPN-Semantics:
 - Configuration are trees, each node holds PDS-configuration (state+stack)
 - Children are threads that have been spawned by parent
- Extract reached configuration from execution tree

Semantics

• A step modifies a thread's state according to a rule

$$C[\langle p\gamma w \rangle(l)] \xrightarrow{a} C[\langle p'w'w \rangle(l)]$$

if $p\gamma \xrightarrow{a} p'w' \in \Delta$ (no-spawn)

$$C[\langle p\gamma w \rangle(l)] \xrightarrow{a} C[\langle p_1\gamma_1 w \rangle(l\langle p_2\gamma_2 \rangle(Nil))]$$

if $p\gamma \xrightarrow{a} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta$ (spawn)

- For any context *C* with exactly one occurrence of x_1 , such that $C[\langle p\gamma w \rangle(I)] \in conf$ is a configuration
 - Having exactly one occurrence of *x*₁ ensures that exactly one thread makes a step
- Intuition:
 - (no-spawn) rule just changes single thread's configuration
 - (spawn) rule changes thread's configuration, and adds new thread to spawned thread's list

Execution Trees

- Binary node ⟨pγ → p₁γ₁ ▷ p₂γ₂⟩(t₁, t₂) describes execution of spawn-step
 - t1 describes remaining execution of spawning thread
 - t₂ describes execution of spawned thread
- Execution trees

 $XR ::= \langle Base \rangle (XR) \mid \langle Call \rangle^R (XR, XR) \mid \langle Return \rangle \mid \langle Spawn \rangle (XR, XN)$

 $\textit{XN} ::= \langle\textit{Base}\rangle(\textit{XN}) \mid \langle\textit{Call}\rangle^{\textit{N}}(\textit{XN}) \mid \langle\textit{Call}\rangle^{\textit{R}}(\textit{XR},\textit{XN}) \mid \langle\textit{P} \times \Gamma\rangle \mid \langle\textit{Spawn}\rangle(\textit{XN},\textit{XN})$

List Operations

- · We lift list-operations to concatenate lists and trees
 - $l_1 \langle pw \rangle (l_2) = \langle pw \rangle (l_1 l_2)$

Configuration of Execution Tree

- Function $c: XN \rightarrow conf$
 - $c((Spawn)(t_1, t_2)) = [c(t_2)]c(t_1)$
 - · Prepend configuration reached by spawned thread
 - $c(\langle Call \rangle^R(t_1, t_2)) = s(t_1)c(t_2)$
 - · Have to collect configurations reached by threads spawned during call
 - The remaining equations are unchanged (Complete definition on next slide)

Reached configurations

Define $c: XN \rightarrow conf$ and $s: XR \rightarrow conflist$

$$\begin{split} c(\langle p\gamma \stackrel{a}{\hookrightarrow} p'\gamma'\rangle(t)) &= c(t) \\ c(\langle p\gamma \stackrel{\tau}{\hookrightarrow} p'\gamma_{1}\gamma_{2}\rangle^{R}(t_{1},t_{2})) &= s(t_{1})c(t_{2}) \\ c(\langle p\gamma \stackrel{\tau}{\hookrightarrow} p'\gamma_{1}\gamma_{2}\rangle^{N}(t)) &= c(t)\gamma_{2} \qquad \text{where } \langle pw\rangle\gamma(l) &= \langle pw\gamma\rangle(l) \\ c(\langle p\gamma \stackrel{a}{\to} p_{1}\gamma_{1} \rhd p_{2}\gamma_{2}\rangle(t_{1},t_{2})) &= [c(t_{2})]c(t_{1}) \\ c(\langle p\gamma \rangle) &= \langle p\gamma\rangle \\ s(\langle p\gamma \stackrel{a}{\to} p'\gamma'\rangle(t)) &= s(t) \\ s(\langle p\gamma \stackrel{\tau}{\to} p'\gamma_{1}\gamma_{2}\rangle^{R}(t_{1},t_{2})) &= s(t_{1})s(t_{2}) \\ s(\langle p\gamma \stackrel{a}{\to} p_{1}\gamma_{1} \rhd p_{2}\gamma_{2}\rangle(t_{1},t_{2})) &= [c(t_{2})]s(t_{1}) \\ s(\langle p\gamma \stackrel{a}{\to} p'\gamma\rangle) &= Nil \end{split}$$

Execution trees of DPN

- Execution trees are regular set
- Same idea as for PDS. New rules for A_M :

$$p\gamma \to \langle p\gamma \stackrel{a}{\to} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (p_1\gamma_1, p_2\gamma_2) \qquad \text{if } p\gamma \stackrel{a}{\to} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta$$
$$p\gamma |p'' \to \langle p\gamma \stackrel{a}{\to} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (p_1\gamma_1 | p'', p_2\gamma_2) \qquad \text{if } p\gamma \stackrel{a}{\to} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta$$

· Complete rules on next slide

Rules for execution trees

$$\begin{split} p\gamma &\to \langle p\gamma \stackrel{a}{\to} p'\gamma' \rangle (p'\gamma') \\ p\gamma &\to \langle p\gamma \stackrel{a}{\to} p'\gamma_1\gamma_2 \rangle^N (p'\gamma_1) \\ p\gamma &\to \langle p\gamma \stackrel{a}{\to} p'\gamma_1\gamma_2 \rangle^R (p'\gamma_1|p'',p''\gamma_2) \\ p\gamma &\to \langle p\gamma \stackrel{a}{\to} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (p_1\gamma_1,p_2\gamma_2) \\ p\gamma &\to \langle p\gamma \rangle \\ p\gamma|p'' &\to \langle p\gamma \stackrel{a}{\to} p'\gamma' \rangle (p'\gamma'|p'') \\ p\gamma|p'' &\to \langle p\gamma \stackrel{a}{\to} p'\gamma_1\gamma_2 \rangle^R (p'\gamma_1|p''',p'''\gamma_2|p'') \\ p\gamma|p'' &\to \langle p\gamma \stackrel{a}{\to} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (p_1\gamma_1|p''',p_2\gamma_2) \\ p\gamma|p'' &\to \langle p\gamma \stackrel{a}{\to} p'\gamma' \rangle \end{split}$$

$$\begin{array}{l} \text{if } p\gamma \stackrel{a}{\rightarrow} p'\gamma' \in \Delta \\ \text{if } p\gamma \stackrel{a}{\rightarrow} p'\gamma_1\gamma_2 \in \Delta \\ \text{if } p'' \in P \text{ and } p\gamma \stackrel{a}{\rightarrow} p'\gamma_1\gamma_2 \in \Delta \\ \text{if } p\gamma \stackrel{a}{\rightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta \end{array}$$

if
$$p\gamma \xrightarrow{a} p'\gamma' \in \Delta$$

if $p''' \in P$ and $p\gamma \xrightarrow{a} p'\gamma_1\gamma_2 \in \Delta$
if $p\gamma \xrightarrow{a} p_1\gamma_1 \triangleright p_2\gamma_2 \in \Delta$
if $p\gamma \xrightarrow{a} p'' \in \Delta$

)

Relating Execution Trees and DPN Semantics

Theorem

Let *M* be a DPN. Then $\exists I. p_0 \gamma_0 \xrightarrow{l} c'$ iff $\exists t. t \in L(\mathcal{A}_M) \land c(t) = c'$

- Note: Relating the action sequences is more difficult
 - They are interleavings of the thread's action sequences
 - One execution tree corresponds to many such interleavings

Interleaving

We define s₁ ⊗ s₂ to be the set of *interleavings* of lists s₁ and s₂

 $\begin{aligned} \mathbf{s}_1 \otimes \varepsilon &= \{\mathbf{s}_1\} \\ \mathbf{a}_1 \mathbf{s}_1 \otimes \mathbf{a}_2 \mathbf{s}_2 &= \mathbf{a}_1 (\mathbf{s}_1 \otimes \mathbf{a}_2 \mathbf{s}_2) \cup \mathbf{a}_2 (\mathbf{a}_1 \mathbf{s}_1 \otimes \mathbf{s}_2) \end{aligned}$

 Intuitively: All sequences of steps that may be observed if one thread executes s₁ and another independently executes s₂.

Proof Ideas

- Execution of different threads is almost independent
 - · Only spawn should be executed before other steps of spawned thread
 - Re-order step: On spawn, all steps of spawned thread first, and then the rest
 - · Lemma indep-steps:

 $\begin{array}{l} \langle \mathcal{p} w \rangle([\mathcal{c}]) \stackrel{s}{\to}{}^{*} \langle \mathcal{p}' w' \rangle(\mathcal{I}') \iff \\ \exists \mathcal{c}' \ \mathcal{I}'' s_1 s_2. \ \mathcal{I}' = \mathcal{c}' \mathcal{I}'' \land s \in s_1 \otimes s_2 \land \langle \mathcal{p} w \rangle(\varepsilon) \stackrel{s_1}{\to}{}^{*} \langle \mathcal{p}' w' \rangle(\mathcal{I}'') \land c \stackrel{s_2}{\to}{}^{*} \mathcal{c}' \end{array}$

• Proof, by induction on number of steps:

$$\langle p\gamma \rangle(\varepsilon) \to^* \langle p' \rangle(c') \iff \exists t.p\gamma | p' \to t \land s(t) = c' \langle p\gamma \rangle(\varepsilon) \to^* \langle p'w' \rangle(c') \land w' \neq \varepsilon \iff \exists t.p\gamma \to t \land c(t) = \langle p'w' \rangle(c')$$

- · Need to prove both propositions simultaneously
- But may separate ⇒ and ⇐ directions

Example Proof Step

• Example step for ⇒-direction

$$\langle p\gamma \rangle(\varepsilon) \to^* \langle p' \rangle(l') \implies \exists t.p\gamma | p' \to t \land s(t) = l' \langle p\gamma \rangle(\varepsilon) \to^* \langle p'w' \rangle(l') \land w' \neq \varepsilon \implies \exists t.p\gamma \to t \land c(t) = \langle p'w' \rangle(l')$$

- Case: Returning path makes a spawn-step
 - We have $r := p\gamma \hookrightarrow \hat{p}\hat{\gamma} \rhd p_1\gamma_1 \in \Delta$ and $\langle \hat{p}\hat{\gamma} \rangle (p_1\gamma_1) \to^* \langle p' \rangle (c')$
 - Using indep-steps, to separate executions of spawned and spawning thread, we obtain *c'*, *I''* where

$$\mathbf{l}' = \mathbf{c}' \mathbf{l}'' \land \langle \hat{\mathbf{p}} \hat{\gamma} \rangle \varepsilon \to^* \langle \mathbf{p}' \rangle (\mathbf{l}'') \land \langle \mathbf{p}_1 \gamma_1 \rangle (\varepsilon) \to^* \mathbf{c}'$$

• With IH, we obtain t_1, t_2 with

$$\hat{p}\hat{\gamma}|p'
ightarrow t_1 \wedge s(t_1) = l'' \wedge p_1\gamma_1
ightarrow t_2 \wedge c(t_2) = c'$$

• By definition of the rules for \mathcal{A}_M , we get

 $p\gamma | p' \rightarrow \langle r \rangle (\hat{p}\hat{\gamma} | p', p_1\gamma_1) \rightarrow \langle r \rangle (t_1, t_2)$

• And, by definition of s(), we have

$$s(\langle r \rangle(t_1,t_2)) = [c(t_2)]s(t_1) = c'l'' = l' \quad \Box$$

Lock-Insensitive Reachability

- Can perform a simultaneous reachability analysis
- By asking: "Is a configuration from a regular set of configurations reachable?"
 - If the analysis returns no, we are sure that no such configuration is reachable
 - If the analysis returns yes, such a configuration may be reachable
 - Or it may be a false positive due to over-approximation

Lock-Sensitive Analysis

- Consider locks.
- Locks can be acquired and released, each lock can be acquired by at most one thread at the same time.
- Used to protect access to shared resources
- We assume there is a finite set L of locks, and the actions [*I* (acquire) and]*I* (release) for every *I* ∈ L

Decidability

- Reachability with arbitrary locking is undecidable
 - Emptiness of intersection of CF-Languages
- · Consider nested locking, like synchronized-methods in Java
 - · Bind locks to procedures: Acquisition on call, release on return

Undecidability

- Well-Known: Emptiness of intersection of CF-languages is undecidable
 - Already over alphabet {0, 1}
- CF-language can be simulated by PDS, where only base-transitions produce output
 - Idea: Run two PDS concurrently, and ensure that sequences of base transitions must run in lock-step
 - These encode output of 0 and 1. Lockstep ensures, that the other thread must output the same.
 - · Check for simultaneous reachability of final states

Undecidability

- Synchronizing two threads with locks
 - Locks: 0, 0!, 0? and 1, 1!, 1?
 - Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?
- To produce a 0:
 - Thread 1 executes: [0?]0![0]0?[0!]0
 - Thread 2 executes: [0]0?[0!]0[0?]0!
- The only possible execution of these two sequences is Thread 1: [0?]0! [0]0? [0!]0 Thread 2: [0]0? [0!]0 [0?]0!
 - And when Thread 2 has finished, it cannot re-enter the synchronization sequence until Thread 1 has also finished, and released 0.
- The sequences for producing 1 are analogously

Undecidability

- Remaining problem: Ensure that the locks are initially allocated, before the threads start the production of output symbols
- Solution: Additional locks I1 and I2
 - Thread 1: [0![1![l1]]1[l2<start of output>
 - Thread 2: [0?[1?[1/2]]1/2 [1/1 < start of output>
 - If one thread starts before the other has finished initialization, the other will be stuck at [l_i]_{li} forever
- Thus, final states of PDSs simultaneously reachable, iff encoded CF-languages have non-empty intersection

Complexity for nested locks

- NP-Hardness
 - · Reachability analysis for nested locks and procedures is NP-hard
 - · Problem: Deadlocks may prevent reachability
- Reduction to 3-SAT:
 - One lock per literal: Allocated literal is false, Free literal is true
 - Use nested procedures and non-determinism to allocate locks according to configuration
 - Check for clause l₁ ∨ l₂ ∨ l₃: Nondeterministically run one of [l_i;]l_i
 - Enforce correct order of guessing assignment and checking: One additional lock

Reduction to 3-SAT

- Reminder (3-SAT)
 - Variables x_0, \ldots, x_n , *literal*: x_i or \bar{x}_i
 - Formula $\Phi = \bigwedge_{i=1...m} \bigvee_{j=1...3} I_{ij}$, where the I_{ij} are literals
 - $\bigvee_{j=1...3} I_{ij}$ is called *clause*
 - It is NP-complete to decide whether Φ is *satisfiable*.
 - i.e. whether there is a valuation of the variables such that Φ holds.

Reduction to 3-SAT

```
check(i):
ass(i):
                                                         if (...) {
  if ... then {
                                                           acquire l<sub>i1</sub>; release l<sub>i1</sub>;
     acquire x_i ass(i+1) release x_i
                                                        } else if (...) {
  } else {
                                                           acquire lip; release lip;
     acquire \bar{x}_i ass(i+1) release \bar{x}_i
                                                         } else {
                                                           acquire l<sub>i3</sub>; release l<sub>i3</sub>;
  return
ass(n+1):
                                                      thread2:
  acquire(s); release(s);
                                                         acquire(s);
  label1: return
                                                        check(1); ...; check(m);
                                                         label2: skip
thread1: ass(1)
                                                         release(s)
```

label1 and label2 simultaneously reachable, iff formula is satisfiable.

Last Lecture

- Execution trees of DPN
- Locks: Negative results
 - Reachability in DPN (even 2-PDS) wrt. arbitrary locking is undecidable
 - Reduction to deciding intersection of CF languages
 - Reachability in DPN (even 2-PDS) wrt. nested locking is NP-hard
 - Reduction to 3-SAT

Table of Contents

Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Motivation Pushdown Systems Dynamic Pushdown Networks Acquisition Histories Acquisition Histories for DPN

2-PDS with locks

- Two PDS with locks. Both share same rules.
 - $M = (P, \Gamma, \operatorname{Act}, \mathbb{L}, p_1^0 \gamma_1^0, p_2^0 \gamma_2^0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules
 - Act = Act_{nl} $\dot{\cup} \{ [x \mid x \in \mathbb{L} \} \dot{\cup} \{]_x \mid x \in \mathbb{L} \}$
 - L: Finite set of locks
 - *p*⁰₁ γ⁰₁, *p*⁰₂ γ⁰₂: Initial states of left and right PDS
- · Assumption: Locks are well-nested and non-reentrant
 - In particular, thread does not free "foreign" locks

Semantics

- Configurations: $(p_1 w_1, p_2 w_2, L) \in P\Gamma^* \times P\Gamma^* \times 2^{\mathbb{L}}$
 - $cond([x, L) = x \notin L, eff([x, L) = L \cup \{x\})$
 - $cond(]_x, L) = true, eff(]_x, L) = L \setminus \{x\}$
 - cond(a, L) = true, eff(a, L) = L for a ∈ Act_{nl}

Step

 $(p\gamma w_1, p_2 w_2, L) \xrightarrow{a}_{ls} (p'w'w_1, p_2 w_2, eff(a, L))$ if $p\gamma \xrightarrow{a} p'w' \in \Delta$ and cond(a, L) (left)

 $(p_1 w_1, p_\gamma w_2, L) \xrightarrow{a}_{ls} (p_1 w_1, p' w' w_2, eff(a, L))$ if $p_\gamma \xrightarrow{a} p' w' \in \Delta$ and cond(a, L)(right)

Lock sensitive scheduling

- Idea: Abstraction from PDS
 - · Check whether two execution sequences can be interleaved
- Configurations: $(I_1, I_2, L) \in Act^* \times Act^* \times 2^{\mathbb{L}}$

Step

$$(al_1, l_2, L) \xrightarrow{a} (l_1, l_2, eff(a, L)) \qquad \text{if } cond(a, L) \qquad (\text{left})$$
$$(l_1, al_2, L) \xrightarrow{a} (l_1, l_2, eff(a, L)) \qquad \text{if } cond(a, L) \qquad (\text{right})$$

Lemma

$$(p_1 w_1, p_2 w_2, L) \stackrel{l}{\to} (p'_1 w'_1, p'_2 w'_2, L')$$

iff $\exists l_1, l_2. p_1 w_1 \stackrel{l_1}{\to} p'_1 w'_1 \land p_2 w_2 \stackrel{l_2}{\to} p'_2 w'_2 \land (l_1, l_2, L) \stackrel{l}{\to} (\varepsilon, \varepsilon, L')$

- Intuition: Schedule lock-insensitive executions of the single PDSs
- Proof: Straightforward simulation proof

Execution trees of 2-PDS

- Intuitively: Append execution trees of left and right PDS to binary root node o.
 - X2 ::= ○(XN, XN)
- Tree automata: Tree automata for PDS execution trees, but
 - Initial state *i*, and additional rule $i \rightarrow \circ(p_1^0 \gamma_1^0, p_2^0 \gamma_2^0)$
- We have (with lemma from previous slide)

$$\begin{array}{l} (p_1 w_1, p_2 w_2, L) \stackrel{l}{\rightarrow} * (p_1' w_1', p_2' w_2', L') \\ \text{iff } \exists t_1, t_2. \ i \rightarrow \circ(t_1, t_2) \land c(t_1) = p_1' w_1' \land c(t_2) = p_2' w_2' \\ & \land (a(t_1), a(t_2), L) \stackrel{l}{\rightarrow} * (\varepsilon, \varepsilon, L') \end{array}$$

 Where c : XN → conf extracts reached configuration from execution tree and a : XN → Act* extracts labeling sequence from execution tree (cf. Homework 9.2)

Attack Plan

- Compute information $ah(l_1), ah(l_2)$ which
 - Can be used to decide whether $(I_1, I_2, \emptyset) \rightarrow^* (\varepsilon, \varepsilon, _)$
 - Sets of which can be computed by tree automaton over execution trees
- Thus, we get a tree automaton for schedulable execution trees.
- Checking the intersection of this, the tree automaton for execution trees, and the error property for emptiness gives us lock-sensitive model-checker

Acquisition Histories: Intuition

- Categorize an action [x in an execution sequence as Final acquisition If lock x is not released afterwards Usage If lock / is released afterwards
- When can two sequences I₁ and I₂ be scheduled?
 - No lock is finally acquired in both, I1 and I2
 - There must be no deadlock pair
 - I.e., *I*₁ finally acquires *x*₁ and then uses *x*₂, and *I*₂ finally acquires *x*₂ and then uses *x*₁
- · We will now prove: This characterization is sufficient and necessary
 - And can be computed for the sets of all executions by tree automata

Acquisition Histories: Definition

- Given an execution sequence $l \in Act^*$, we define ah(l) := (A(l), G(l)) where
 - $A(I) \subseteq \mathbb{L}$ is the set of finally acquired locks:

$$\begin{array}{ll} A(\varepsilon) = \emptyset \\ A(al) = A(l) & \text{if } a \in \operatorname{Act}_{nl} \text{ or } a =]_x \text{ for } x \in \mathbb{L} \\ A([_xl) = A(l) & \text{if }]_x \in l \\ A([_xl) = A(l) \cup \{x\} & \text{if }]_x \notin l \end{array}$$

•
$$G(I) \subseteq \mathbb{L} \times \mathbb{L}$$
 is the lock graph:

$$\begin{split} G(\varepsilon) &= \emptyset \\ G(al) &= G(l) & \text{if } a \in \operatorname{Act}_{nl} \text{ or } a =]_x \text{ for } x \in \mathbb{L} \\ G([_xl) &= G(l) & \text{if }]_x \in l \\ G([_xl) &= G(l) \cup \{x\} \times \operatorname{acq}(l) & \text{if }]_x \notin l \end{split}$$

where $acq(I) := \{x \mid [x \in I\}$

Lemma

$$(l_1, l_2, \emptyset) \to^* (\varepsilon, \varepsilon, _) \text{ iff } A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$$

Proof ideas

 $\bullet \implies$

Generalize to

 $\forall L. \ (l_1, l_2, L) \to^* (\varepsilon, \varepsilon, _) \implies A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$

- Induction on \rightarrow^*
 - Interesting case: First step is final acquisition: [x
 - [x will not occur in remaining execution
 - Thus, it cannot close a cycle in the lock graphs
- <==
 - · Generalize to

$$\begin{aligned} \mathsf{A}(h_1) \cap \mathsf{A}(h_2) &= \emptyset \land \operatorname{acyclic}(\mathsf{G}(h_1) \cup \mathsf{G}(h_2)) \\ & \Longrightarrow \quad \forall L. \ L \cap (\operatorname{acq}(h_1) \cup \operatorname{acq}(h_2)) = \emptyset \implies (h_1, h_2, L) \to^* (\varepsilon, \varepsilon, _) \quad (1) \end{aligned}$$

- Induction on $|I_1| + |I_2|$
 - · Schedule usages of locks first
 - If both, *l*₁ and *l*₂ start with final acquisitions: Choose acquisition that comes first in topological ordering of *G*(*l*₁) ∪ *G*(*l*₂)

Computation of acquisition histories

- There are only finitely many acquisition histories
 - Exponentially many in number of locks
- Set of all schedulable 2-PDS execution trees is regular
- In practice: Avoid computing unnecessary states of tree automata

Last Lecture

- 2-PDS with locks
- Acquisition histories
- Deciding lock-sensitive reachability

Table of Contents

Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

Motivation Pushdown Systems Dynamic Pushdown Networks Acquisition Histories Acquisition Histories for DPN

DPNs with locks

- Same ideas as for 2-PDS
- $M = (P, \Gamma, \operatorname{Act}, \mathbb{L}, p_0 \gamma_0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules (with spawns)
 - Act = Act_n $\dot{\cup}$ {[$x \mid x \in \mathbb{L}$ } $\dot{\cup}$ {] $x \mid x \in \mathbb{L}$ }
 - L: Finite set of locks
 - *p*₀γ₀: Initial state
- Assumption: Locks are well-nested and non-reentrant
 - In particular, thread does not free "foreign" locks

Semantics

- As for 2-PDS: Add set of locks
 - Recall: conf ::= $\langle pw \rangle$ (conflist) conflist ::= Nil|Cons(conf, conflist)
 - $\bullet \ conf_{ls}:=conf\times \mathbb{L}$
- Step relation:

 $(c, L) \stackrel{a}{\rightarrow} (c', \textit{eff}(a, L)) \text{ iff } \textit{cond}(a, L) \land c \stackrel{a}{\rightarrow} c'$

Lock-Sensitive Scheduling

- Abstract from DPN-configurations
- Scheduling tree:

 $\begin{aligned} BL ::= \textit{Nil} \mid \textit{Cons}(a,\textit{BL}) \mid \textit{Spawn}(a,\textit{BL},\textit{BL}) & \text{for all } a \in \textit{Act} \\ ST ::= \langle \textit{BL} \rangle (\textit{SL}) & SL ::= \textit{Nil} \mid \textit{Cons}(\textit{ST},\textit{SL}) \end{aligned}$

- · Combination of configurations and sequences of actions to be executed
- Each thread in configuration is labeled by actions it still has to execute
- Spawn actions have two successors: Actions of spawning thread and actions of spawned thread
- Scheduler semantics

 $(C[\langle Cons(a, l) \rangle(s)], L) \xrightarrow{a} (C[\langle l \rangle(s)], eff(a, L)) \text{ iff } cond(a, L)$ (no-spawn)

 $(C[\langle Spawn(a, l_1, l_2)\rangle(s)], L) \xrightarrow{a} (C[\langle l_1\rangle(s[\langle l_2\rangle(Nil)])], eff(a, L)) \text{ iff } cond(a, L) \quad (spawn)$

where C is a context with exactly one occurrence of x_1 .

• Terminated scheduling tree: All steps are executed, i.e., all nodes labeled with *Nil*

$$ST_{term} ::= \langle Nil \rangle (SL_{term})$$
 $SL_{term} ::= Nil \mid Cons(ST_{term}, SL_{term})$

Operations on Branching Lists

Generalized concatenation

(Nil)l' := l' Cons(a, l)l' := Cons(a, ll') $Spawn(a, l_1, l_2)l' := Spawn(a, l_1l', l_2)$

• This thread's steps: $\textit{this}:\textit{BL} \rightarrow Act^*$

 $\begin{aligned} this(Nil) &:= Nil\\ this(Cons(a, l)) &:= Cons(a, this(l))\\ this(Spawn(a, l_1, l_2)) &= Cons(a, this(l_1)) \end{aligned}$

Set of steps

 $x \in \mathit{Nil} := \mathit{false}$ $x \in \mathit{Cons}(a, l) := x = a \lor x \in l$ $x \in \mathit{Spawn}(a, l_1, l_2) := x = a \lor x \in l_1 \lor x \in l_2$

Relation of execution tree and scheduling tree

• Execution trees correspond to scheduling trees: $st : XN \rightarrow ST$ and $st' : XN \rightarrow BL$ where

$$\begin{aligned} st(t) &:= \langle st'(t) \rangle (\mathsf{Nil}) \\ st'(\langle p\gamma \stackrel{a}{\rightarrow} p'\gamma' \rangle(t)) &:= \mathsf{Cons}(a, st'(t)) \\ st'(\langle p\gamma \stackrel{a}{\rightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \rangle(t_1, t_2)) &:= \mathsf{Spawn}(a, st'(t_1), st'(t_2)) \\ st'(\langle p\gamma \stackrel{a}{\rightarrow} p'\gamma_1\gamma_2 \rangle^{\mathsf{N}}(t)) &:= \mathsf{Cons}(a, st'(t)) \\ st'(\langle p\gamma \stackrel{a}{\rightarrow} p'\gamma_1\gamma_2 \rangle^{\mathsf{R}}(t_1, t_2)) &:= [a]st'(t_1)st'(t_2) \\ st'(\langle p\gamma \stackrel{a}{\rightarrow} p' \rangle) &:= \mathsf{Nil} \\ st'(\langle p\gamma \stackrel{a}{\rightarrow} p' \rangle) &:= \mathsf{Cons}(a, \mathsf{Nil}) \end{aligned}$$

It can be proved

$$\begin{array}{l} (\langle p_0 \gamma_0 \rangle(\varepsilon), \emptyset) \stackrel{l}{\to} ^* (c', L) \\ \iff \exists t \in XN. \ \exists t' \in ST_{term}. \ t \in L(\mathcal{A}_M) \land c(t) = c' \land (st(t), \emptyset) \stackrel{l}{\to} ^* (t', L) \end{array}$$

• Note: This proof requires a generalization from a single-thread start configuration to arbitrary start configurations.

Acquisition Histories for Scheduling Trees

- · Assumption: Acquisition and release only on base rules
- Compute set of final acquisitions

$$\begin{split} A(Nil) &= \emptyset \\ A(Spawn(a, l_1, l_2)) &= A(l_1) \cup A(l_2) \\ A(Cons(a, l)) &= A(l) & \text{if } a \in \operatorname{Act}_{nl} \text{ or } a =]_x \text{ for } x \in \mathbb{L} \\ A(Cons([_x, l)) &= A(l) & \text{if }]_x \in this(l) \\ A(Cons([_x, l)) &= A(l) \cup \{x\} & \text{if }]_x \notin this(l) \end{split}$$

Check consistency of final acquisitions

 $fac(Nil) = true \quad fac(Cons(a, l)) = fac(l) \quad fac(Spawn(a, l_1, l_2)) = fac(l_1 \circ Compute acquisition graph)$

$$\begin{split} G(\textit{Nil}) &= \emptyset \\ G(\textit{Spawn}(a, l_1, l_2)) &= G(l_1) \cup G(l_2) \\ G(\textit{Cons}(a, l)) &= G(l) & \text{if } a \in \operatorname{Act}_{nl} \text{ or } a =]_x \text{ for } x \in \mathbb{I} \\ G(\textit{Cons}([_x, l)) &= G(l) & \text{if }]_x \in \textit{this}(l) \\ G(\textit{Cons}([_x, l)) &= G(l) \cup \{x\} \times \operatorname{acq}(l) & \text{if }]_x \notin \textit{this}(l) \\ \end{split}$$
where $\operatorname{acq}(l) := \{x \mid [_x \in l\}$

Acquisition Graphs characterize Schedulability

• For scheduling tree $\langle \textit{bl} \rangle(\textit{Nil}) \in \textit{ST}$ and labeling sequence $\textit{l} \in \operatorname{Act}^*,$ we have

 $\exists t'.(\langle \textit{bl}\rangle(\textit{Nil}), \emptyset) \stackrel{!}{\rightarrow}{}^{*}(t', \textit{L}) \land t' \in \textit{ST}_{term} \iff \operatorname{acyclic}(\textit{G}(\textit{bl})) \land \textit{fac}(\textit{bl})$

- Proof Ideas:
 - ⇒
 - G(t) expresses constraints due to locking, that any schedule has to follow
 - Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling trees, induction on scheduling tree.

• <==

- Scheduling strategy: Schedule usages first. Final acquisitions in topological ordering of acquisition graph
- Formally: Generalize to initial set of locks disjoint from locks that occur in scheduling tree. Generalize to arbitrary scheduling tree. Induction on scheduling tree.

Set of schedulable execution trees is regular

- Schedulable scheduling trees are regular (compute acquisition graphs by tree automata)
- *st*⁻¹ preserves regularity: Just another tree transducer construction
- Thus, we can decide lock-sensitive reachability of a regular set of configurations of a DPN.

Remark on complexity

- The lock-sensitive reachability problem is in NP:
 - For a sequential run, only polynomially many acquisition graphs/final acquisition sets occur
 - So, for 2-PDS, we can guess these in advance
- For DPN: There may be exponentially many acquisition graphs!
 - However, not for schedulable runs
 - Problem remaining: There may be exponentially many sets of used locks
 - Solution: Only check that certain locks are not used
 - Set of used locks only required at final acquisition.
 - Just check that less locks are used afterwards
 - · Accepts executions with the guess acquisition graph, or with smaller ones

Main Theorem

Lock-sensitive reachability of a regular set of configurations is NP-complete for DPNs

Complexity of related problems

	DPN	PPDS	2PDS	DFN	PFSM	<i>n</i> FSM
$EF(p_1 \parallel p_2)$	NP*?	NP ^{†?}	<u>NP</u> †?	<u>NP</u> *!	Р	Р
EF(A)	NP	NP	NP ^{†?}	NP	<u>NP</u>	Р
$EF(p_1 \parallel p_2 \land EF(p_3 \parallel p_4))$	NP	NP	<u>NP</u>	<u>N</u> P*!	Р	Р
$EF(A_1 \wedge EF(A_2))$	NP	NP	NP	NP	NP	Р
EF ^{\neg} (fixed #ops)	NP	NP	NP	NP	NP	Р
EF (fixed #ops)	$\geq \underline{PSPACE}^{\ddagger} \geq NP$				NP	Р
EF ^{\neg}	$\geq \underline{PSPACE}^{\ddagger reg?} \geq \underline{N}$				$\geq \underline{NP}^{\ddagger}$	Р
EF	$\geq \underline{PSPACE}^{\ddagger}$					P

* Requires spawn inside lock

- *! Polynomial algorithm if no spawn inside lock
- *? Complexity unknown if no spawn inside lock
- †? Hardness proof requires deadlocks/escapable locks. Complexity without this unknown.
 - ‡ Hardness result requires no locks
- reg? Hardness requires regular APs. Complexity for double-indexed APs unknown (≥NP)

The End

Thank you for listening