
Automata and Formal Languages II
Tree Automata

Peter Lammich

SS 2015

1 / 161

Overview by Lecture

• Apr 14: Slide 3
• Apr 21: Slide 2
• Apr 28: Slide 4
• May 5: Slide 50
• May 12: Slide 56
• May 19: Slide 64
• May 26: Holiday
• Jun 02: Slide 79
• Jun 09: Slide 90
• Jun 16: Slide 106
• Jun 23: Slide 108
• Jun 30: Slide 116
• Jul 7: Slide 137
• Jul 14: Slide 148

2 / 161

Organizational Issues

Lecture Tue 10:15 – 11:45, in MI 00.09.38 (Turing)

Tutorial ? Wed 10:15 – 11:45, in MI 00.09.38 (Turing)
• Weekly homework, will be corrected. Hand in before

tutorial. Discussion during tutorial.
Exam Oral, Bonus for Homework!

• ≥ 50% of homework =⇒ 0.3/0.4 better grade
On first exam attempt. Only if passed w/o bonus!

Material Tree Automata: Techniques and Applications (TATA)
• Free download at http://tata.gforge.inria.fr/

Conflict with Equational Logic.

3 / 161

http://tata.gforge.inria.fr/

Organizational Issues

Lecture Tue 10:15 – 11:45, in MI 00.09.38 (Turing)
Tutorial ? Wed 10:15 – 11:45, in MI 00.09.38 (Turing)

• Weekly homework, will be corrected. Hand in before
tutorial. Discussion during tutorial.

Exam Oral, Bonus for Homework!
• ≥ 50% of homework =⇒ 0.3/0.4 better grade

On first exam attempt. Only if passed w/o bonus!
Material Tree Automata: Techniques and Applications (TATA)

• Free download at http://tata.gforge.inria.fr/

Conflict with Equational Logic.

3 / 161

http://tata.gforge.inria.fr/

Organizational Issues

Lecture Tue 10:15 – 11:45, in MI 00.09.38 (Turing)
Tutorial ? Wed 10:15 – 11:45, in MI 00.09.38 (Turing)

• Weekly homework, will be corrected. Hand in before
tutorial. Discussion during tutorial.

Exam Oral, Bonus for Homework!
• ≥ 50% of homework =⇒ 0.3/0.4 better grade

On first exam attempt. Only if passed w/o bonus!

Material Tree Automata: Techniques and Applications (TATA)
• Free download at http://tata.gforge.inria.fr/

Conflict with Equational Logic.

3 / 161

http://tata.gforge.inria.fr/

Organizational Issues

Lecture Tue 10:15 – 11:45, in MI 00.09.38 (Turing)
Tutorial ? Wed 10:15 – 11:45, in MI 00.09.38 (Turing)

• Weekly homework, will be corrected. Hand in before
tutorial. Discussion during tutorial.

Exam Oral, Bonus for Homework!
• ≥ 50% of homework =⇒ 0.3/0.4 better grade

On first exam attempt. Only if passed w/o bonus!
Material Tree Automata: Techniques and Applications (TATA)

• Free download at http://tata.gforge.inria.fr/

Conflict with Equational Logic.

3 / 161

http://tata.gforge.inria.fr/

Organizational Issues

Lecture Tue 10:15 – 11:45, in MI 00.09.38 (Turing)
Tutorial ? Wed 10:15 – 11:45, in MI 00.09.38 (Turing)

• Weekly homework, will be corrected. Hand in before
tutorial. Discussion during tutorial.

Exam Oral, Bonus for Homework!
• ≥ 50% of homework =⇒ 0.3/0.4 better grade

On first exam attempt. Only if passed w/o bonus!
Material Tree Automata: Techniques and Applications (TATA)

• Free download at http://tata.gforge.inria.fr/

Conflict with Equational Logic.

3 / 161

http://tata.gforge.inria.fr/

Proposed Content

• Finite tree automata: Basic theory (TATA Ch. 1)
• Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...

• Regular tree grammars and regular expressions (TATA Ch. 2)
• Hedge Automata (TATA Ch. 8)

• Application: XML-Schema languages
• Application: Analysis of Concurrent Programs

• Dynamic Pushdown Networks (DPN)

4 / 161

Proposed Content

• Finite tree automata: Basic theory (TATA Ch. 1)
• Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...

• Regular tree grammars and regular expressions (TATA Ch. 2)

• Hedge Automata (TATA Ch. 8)
• Application: XML-Schema languages

• Application: Analysis of Concurrent Programs
• Dynamic Pushdown Networks (DPN)

4 / 161

Proposed Content

• Finite tree automata: Basic theory (TATA Ch. 1)
• Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...

• Regular tree grammars and regular expressions (TATA Ch. 2)
• Hedge Automata (TATA Ch. 8)

• Application: XML-Schema languages

• Application: Analysis of Concurrent Programs
• Dynamic Pushdown Networks (DPN)

4 / 161

Proposed Content

• Finite tree automata: Basic theory (TATA Ch. 1)
• Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...

• Regular tree grammars and regular expressions (TATA Ch. 2)
• Hedge Automata (TATA Ch. 8)

• Application: XML-Schema languages
• Application: Analysis of Concurrent Programs

• Dynamic Pushdown Networks (DPN)

4 / 161

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

5 / 161

Tree Automata
• Finite automata recognize words, e.g.:

q0 qF

a
b

q0 → a(qF) qF → b(q0)

• Words of alternating as and bs, ending with a, e.g., aba or abababa
• Generalize to trees

q0 → a(q1,q1) q1 → b(q0,q0) q1 → L()

• Trees with alternating „layers” of a nodes and b nodes.

• Leafs are L-nodes, as node labels will have fixed arity.

a

b

a

LL

a

LL

b

a

LL

a

LL

a

b

a

LL

a

LL

L
• We also write trees as terms

• a(b(a(L, L), a(L, L)), b(a(L, L), a(L, L)))
• a(b(a(L, L), a(L, L)), L)

6 / 161

Tree Automata
• Finite automata recognize words, e.g.:

q0 qF

a
b

q0 → a(qF) qF → b(q0)

• Words of alternating as and bs, ending with a, e.g., aba or abababa
• Generalize to trees

q0 → a(q1,q1) q1 → b(q0,q0) q1 → L()

• Trees with alternating „layers” of a nodes and b nodes.

• Leafs are L-nodes, as node labels will have fixed arity.

a

b

a

LL

a

LL

b

a

LL

a

LL

a

b

a

LL

a

LL

L
• We also write trees as terms

• a(b(a(L, L), a(L, L)), b(a(L, L), a(L, L)))
• a(b(a(L, L), a(L, L)), L)

6 / 161

Tree Automata
• Finite automata recognize words, e.g.:

q0 qF

a
b

q0 → a(qF) qF → b(q0)

• Words of alternating as and bs, ending with a, e.g., aba or abababa

• Generalize to trees

q0 → a(q1,q1) q1 → b(q0,q0) q1 → L()

• Trees with alternating „layers” of a nodes and b nodes.

• Leafs are L-nodes, as node labels will have fixed arity.

a

b

a

LL

a

LL

b

a

LL

a

LL

a

b

a

LL

a

LL

L
• We also write trees as terms

• a(b(a(L, L), a(L, L)), b(a(L, L), a(L, L)))
• a(b(a(L, L), a(L, L)), L)

6 / 161

Tree Automata
• Finite automata recognize words, e.g.:

q0 qF

a
b

q0 → a(qF) qF → b(q0)

• Words of alternating as and bs, ending with a, e.g., aba or abababa
• Generalize to trees

q0 → a(q1,q1) q1 → b(q0,q0) q1 → L()

• Trees with alternating „layers” of a nodes and b nodes.

• Leafs are L-nodes, as node labels will have fixed arity.

a

b

a

LL

a

LL

b

a

LL

a

LL

a

b

a

LL

a

LL

L
• We also write trees as terms

• a(b(a(L, L), a(L, L)), b(a(L, L), a(L, L)))
• a(b(a(L, L), a(L, L)), L)

6 / 161

Tree Automata
• Finite automata recognize words, e.g.:

q0 qF

a
b

q0 → a(qF) qF → b(q0)

• Words of alternating as and bs, ending with a, e.g., aba or abababa
• Generalize to trees

q0 → a(q1,q1) q1 → b(q0,q0) q1 → L()

• Trees with alternating „layers” of a nodes and b nodes.

• Leafs are L-nodes, as node labels will have fixed arity.
a

b

a

LL

a

LL

b

a

LL

a

LL

a

b

a

LL

a

LL

L
• We also write trees as terms

• a(b(a(L, L), a(L, L)), b(a(L, L), a(L, L)))
• a(b(a(L, L), a(L, L)), L)

6 / 161

Tree Automata
• Finite automata recognize words, e.g.:

q0 qF

a
b

q0 → a(qF) qF → b(q0)

• Words of alternating as and bs, ending with a, e.g., aba or abababa
• Generalize to trees

q0 → a(q1,q1) q1 → b(q0,q0) q1 → L()

• Trees with alternating „layers” of a nodes and b nodes.
• Leafs are L-nodes, as node labels will have fixed arity.

a

b

a

LL

a

LL

b

a

LL

a

LL

a

b

a

LL

a

LL

L
• We also write trees as terms

• a(b(a(L, L), a(L, L)), b(a(L, L), a(L, L)))
• a(b(a(L, L), a(L, L)), L)

6 / 161

Tree Automata
• Finite automata recognize words, e.g.:

q0 qF

a
b

q0 → a(qF) qF → b(q0)

• Words of alternating as and bs, ending with a, e.g., aba or abababa
• Generalize to trees

q0 → a(q1,q1) q1 → b(q0,q0) q1 → L()

• Trees with alternating „layers” of a nodes and b nodes.
• Leafs are L-nodes, as node labels will have fixed arity.

a

b

a

LL

a

LL

b

a

LL

a

LL

a

b

a

LL

a

LL

L
• We also write trees as terms

• a(b(a(L, L), a(L, L)), b(a(L, L), a(L, L)))
• a(b(a(L, L), a(L, L)), L)

6 / 161

Tree Automata
• Finite automata recognize words, e.g.:

q0 qF

a
b

q0 → a(qF) qF → b(q0)

• Words of alternating as and bs, ending with a, e.g., aba or abababa
• Generalize to trees

q0 → a(q1,q1) q1 → b(q0,q0) q1 → L()

• Trees with alternating „layers” of a nodes and b nodes.
• Leafs are L-nodes, as node labels will have fixed arity.

a

b

a

LL

a

LL

b

a

LL

a

LL

a

b

a

LL

a

LL

L

• We also write trees as terms
• a(b(a(L, L), a(L, L)), b(a(L, L), a(L, L)))
• a(b(a(L, L), a(L, L)), L)

6 / 161

Tree Automata
• Finite automata recognize words, e.g.:

q0 qF

a
b

q0 → a(qF) qF → b(q0)

• Words of alternating as and bs, ending with a, e.g., aba or abababa
• Generalize to trees

q0 → a(q1,q1) q1 → b(q0,q0) q1 → L()

• Trees with alternating „layers” of a nodes and b nodes.
• Leafs are L-nodes, as node labels will have fixed arity.

a

b

a

LL

a

LL

b

a

LL

a

LL

a

b

a

LL

a

LL

L
• We also write trees as terms

• a(b(a(L, L), a(L, L)), b(a(L, L), a(L, L)))
• a(b(a(L, L), a(L, L)), L)

6 / 161

Properties

• Tree automata share many properties with word automata
• Efficient membership query, union, intersection, emptiness check, ...

• Deterministic and non-deterministic versions equally expressive

• Only for deterministic bottom-up tree automata

• Minimization
• ...

7 / 161

Properties

• Tree automata share many properties with word automata
• Efficient membership query, union, intersection, emptiness check, ...
• Deterministic and non-deterministic versions equally expressive

• Only for deterministic bottom-up tree automata

• Minimization
• ...

7 / 161

Properties

• Tree automata share many properties with word automata
• Efficient membership query, union, intersection, emptiness check, ...
• Deterministic and non-deterministic versions equally expressive

• Only for deterministic bottom-up tree automata

• Minimization
• ...

7 / 161

Properties

• Tree automata share many properties with word automata
• Efficient membership query, union, intersection, emptiness check, ...
• Deterministic and non-deterministic versions equally expressive

• Only for deterministic bottom-up tree automata

• Minimization

• ...

7 / 161

Properties

• Tree automata share many properties with word automata
• Efficient membership query, union, intersection, emptiness check, ...
• Deterministic and non-deterministic versions equally expressive

• Only for deterministic bottom-up tree automata

• Minimization
• ...

7 / 161

Applications

• Tree automata recognize sets of trees

• Many structures in computer science are trees

• XML documents
• Computations of parallel programs with fork/join
• Values of algebraic datatypes in functional languages
• ...

• Tree automata can be used to

• Define XML schema languages
• Model-check parallel programs
• Analyze functional programs
• ...

8 / 161

Applications

• Tree automata recognize sets of trees
• Many structures in computer science are trees

• XML documents
• Computations of parallel programs with fork/join
• Values of algebraic datatypes in functional languages
• ...

• Tree automata can be used to

• Define XML schema languages
• Model-check parallel programs
• Analyze functional programs
• ...

8 / 161

Applications

• Tree automata recognize sets of trees
• Many structures in computer science are trees

• XML documents

• Computations of parallel programs with fork/join
• Values of algebraic datatypes in functional languages
• ...

• Tree automata can be used to

• Define XML schema languages
• Model-check parallel programs
• Analyze functional programs
• ...

8 / 161

Applications

• Tree automata recognize sets of trees
• Many structures in computer science are trees

• XML documents
• Computations of parallel programs with fork/join

• Values of algebraic datatypes in functional languages
• ...

• Tree automata can be used to

• Define XML schema languages
• Model-check parallel programs
• Analyze functional programs
• ...

8 / 161

Applications

• Tree automata recognize sets of trees
• Many structures in computer science are trees

• XML documents
• Computations of parallel programs with fork/join
• Values of algebraic datatypes in functional languages

• ...
• Tree automata can be used to

• Define XML schema languages
• Model-check parallel programs
• Analyze functional programs
• ...

8 / 161

Applications

• Tree automata recognize sets of trees
• Many structures in computer science are trees

• XML documents
• Computations of parallel programs with fork/join
• Values of algebraic datatypes in functional languages
• ...

• Tree automata can be used to

• Define XML schema languages
• Model-check parallel programs
• Analyze functional programs
• ...

8 / 161

Applications

• Tree automata recognize sets of trees
• Many structures in computer science are trees

• XML documents
• Computations of parallel programs with fork/join
• Values of algebraic datatypes in functional languages
• ...

• Tree automata can be used to

• Define XML schema languages
• Model-check parallel programs
• Analyze functional programs
• ...

8 / 161

Applications

• Tree automata recognize sets of trees
• Many structures in computer science are trees

• XML documents
• Computations of parallel programs with fork/join
• Values of algebraic datatypes in functional languages
• ...

• Tree automata can be used to
• Define XML schema languages

• Model-check parallel programs
• Analyze functional programs
• ...

8 / 161

Applications

• Tree automata recognize sets of trees
• Many structures in computer science are trees

• XML documents
• Computations of parallel programs with fork/join
• Values of algebraic datatypes in functional languages
• ...

• Tree automata can be used to
• Define XML schema languages
• Model-check parallel programs

• Analyze functional programs
• ...

8 / 161

Applications

• Tree automata recognize sets of trees
• Many structures in computer science are trees

• XML documents
• Computations of parallel programs with fork/join
• Values of algebraic datatypes in functional languages
• ...

• Tree automata can be used to
• Define XML schema languages
• Model-check parallel programs
• Analyze functional programs

• ...

8 / 161

Applications

• Tree automata recognize sets of trees
• Many structures in computer science are trees

• XML documents
• Computations of parallel programs with fork/join
• Values of algebraic datatypes in functional languages
• ...

• Tree automata can be used to
• Define XML schema languages
• Model-check parallel programs
• Analyze functional programs
• ...

8 / 161

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

9 / 161

Table of Contents

1 Introduction

2 Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

10 / 161

Terms and Trees

• Let F be a finite set of symbols, and arity : F → N a function.

• (F , arity) is a ranked alphabet. We also identify F with (F , arity).
• Fn := {f ∈ F | arity(f) = n} is the set of symbols with arity n

• Let X be a set of variables. We assume X ∩ F0 = ∅.
• Then the set T (F ,X) of terms over alphabet F and variables X is

defined as the least solution of

T (F ,X) ⊇ F0

T (F ,X) ⊇ X
p ≥ 1, f ∈ Fp, and t1, . . . , tp ∈ T (F ,X) =⇒ f (t1, . . . , tn) ∈ T (F ,X)

• Intuitively: Terms over functions from F and variables from X .

• Ground terms: T (F) := T (F , ∅). Terms without variables.

11 / 161

Terms and Trees

• Let F be a finite set of symbols, and arity : F → N a function.
• (F , arity) is a ranked alphabet. We also identify F with (F , arity).

• Fn := {f ∈ F | arity(f) = n} is the set of symbols with arity n

• Let X be a set of variables. We assume X ∩ F0 = ∅.
• Then the set T (F ,X) of terms over alphabet F and variables X is

defined as the least solution of

T (F ,X) ⊇ F0

T (F ,X) ⊇ X
p ≥ 1, f ∈ Fp, and t1, . . . , tp ∈ T (F ,X) =⇒ f (t1, . . . , tn) ∈ T (F ,X)

• Intuitively: Terms over functions from F and variables from X .

• Ground terms: T (F) := T (F , ∅). Terms without variables.

11 / 161

Terms and Trees

• Let F be a finite set of symbols, and arity : F → N a function.
• (F , arity) is a ranked alphabet. We also identify F with (F , arity).
• Fn := {f ∈ F | arity(f) = n} is the set of symbols with arity n

• Let X be a set of variables. We assume X ∩ F0 = ∅.
• Then the set T (F ,X) of terms over alphabet F and variables X is

defined as the least solution of

T (F ,X) ⊇ F0

T (F ,X) ⊇ X
p ≥ 1, f ∈ Fp, and t1, . . . , tp ∈ T (F ,X) =⇒ f (t1, . . . , tn) ∈ T (F ,X)

• Intuitively: Terms over functions from F and variables from X .

• Ground terms: T (F) := T (F , ∅). Terms without variables.

11 / 161

Terms and Trees

• Let F be a finite set of symbols, and arity : F → N a function.
• (F , arity) is a ranked alphabet. We also identify F with (F , arity).
• Fn := {f ∈ F | arity(f) = n} is the set of symbols with arity n

• Let X be a set of variables. We assume X ∩ F0 = ∅.

• Then the set T (F ,X) of terms over alphabet F and variables X is
defined as the least solution of

T (F ,X) ⊇ F0

T (F ,X) ⊇ X
p ≥ 1, f ∈ Fp, and t1, . . . , tp ∈ T (F ,X) =⇒ f (t1, . . . , tn) ∈ T (F ,X)

• Intuitively: Terms over functions from F and variables from X .

• Ground terms: T (F) := T (F , ∅). Terms without variables.

11 / 161

Terms and Trees

• Let F be a finite set of symbols, and arity : F → N a function.
• (F , arity) is a ranked alphabet. We also identify F with (F , arity).
• Fn := {f ∈ F | arity(f) = n} is the set of symbols with arity n

• Let X be a set of variables. We assume X ∩ F0 = ∅.
• Then the set T (F ,X) of terms over alphabet F and variables X is

defined as the least solution of

T (F ,X) ⊇ F0

T (F ,X) ⊇ X
p ≥ 1, f ∈ Fp, and t1, . . . , tp ∈ T (F ,X) =⇒ f (t1, . . . , tn) ∈ T (F ,X)

• Intuitively: Terms over functions from F and variables from X .

• Ground terms: T (F) := T (F , ∅). Terms without variables.

11 / 161

Terms and Trees

• Let F be a finite set of symbols, and arity : F → N a function.
• (F , arity) is a ranked alphabet. We also identify F with (F , arity).
• Fn := {f ∈ F | arity(f) = n} is the set of symbols with arity n

• Let X be a set of variables. We assume X ∩ F0 = ∅.
• Then the set T (F ,X) of terms over alphabet F and variables X is

defined as the least solution of

T (F ,X) ⊇ F0

T (F ,X) ⊇ X
p ≥ 1, f ∈ Fp, and t1, . . . , tp ∈ T (F ,X) =⇒ f (t1, . . . , tn) ∈ T (F ,X)

• Intuitively: Terms over functions from F and variables from X .

• Ground terms: T (F) := T (F , ∅). Terms without variables.

11 / 161

Terms and Trees

• Let F be a finite set of symbols, and arity : F → N a function.
• (F , arity) is a ranked alphabet. We also identify F with (F , arity).
• Fn := {f ∈ F | arity(f) = n} is the set of symbols with arity n

• Let X be a set of variables. We assume X ∩ F0 = ∅.
• Then the set T (F ,X) of terms over alphabet F and variables X is

defined as the least solution of

T (F ,X) ⊇ F0

T (F ,X) ⊇ X
p ≥ 1, f ∈ Fp, and t1, . . . , tp ∈ T (F ,X) =⇒ f (t1, . . . , tn) ∈ T (F ,X)

• Intuitively: Terms over functions from F and variables from X .

• Ground terms: T (F) := T (F , ∅). Terms without variables.

11 / 161

Examples

• We also write a ranked alphabet as F = f1/a1, f2/a2, . . . , fn/an, meaning
F = ({f1, . . . , fn}, (f1 7→ a1, . . . , fn 7→ an))

• F = true/0, false/0,and/2,not/1 - Syntax trees of boolean expressions

• and(true, not(x)) ∈ T (F , {x})

• F = 0/0,Suc/1,+/2, ∗/2 - Arithmetic expressions over naturals (using
unary representation)

• Suc(0) + (Suc(Suc(0)) ∗ x) ∈ T (F , {x})

• We will use infix-notation for terms when appropriate

12 / 161

Examples

• We also write a ranked alphabet as F = f1/a1, f2/a2, . . . , fn/an, meaning
F = ({f1, . . . , fn}, (f1 7→ a1, . . . , fn 7→ an))

• F = true/0, false/0,and/2,not/1 - Syntax trees of boolean expressions

• and(true, not(x)) ∈ T (F , {x})
• F = 0/0,Suc/1,+/2, ∗/2 - Arithmetic expressions over naturals (using

unary representation)

• Suc(0) + (Suc(Suc(0)) ∗ x) ∈ T (F , {x})

• We will use infix-notation for terms when appropriate

12 / 161

Examples

• We also write a ranked alphabet as F = f1/a1, f2/a2, . . . , fn/an, meaning
F = ({f1, . . . , fn}, (f1 7→ a1, . . . , fn 7→ an))

• F = true/0, false/0,and/2,not/1 - Syntax trees of boolean expressions
• and(true, not(x)) ∈ T (F , {x})

• F = 0/0,Suc/1,+/2, ∗/2 - Arithmetic expressions over naturals (using
unary representation)

• Suc(0) + (Suc(Suc(0)) ∗ x) ∈ T (F , {x})

• We will use infix-notation for terms when appropriate

12 / 161

Examples

• We also write a ranked alphabet as F = f1/a1, f2/a2, . . . , fn/an, meaning
F = ({f1, . . . , fn}, (f1 7→ a1, . . . , fn 7→ an))

• F = true/0, false/0,and/2,not/1 - Syntax trees of boolean expressions
• and(true, not(x)) ∈ T (F , {x})

• F = 0/0,Suc/1,+/2, ∗/2 - Arithmetic expressions over naturals (using
unary representation)

• Suc(0) + (Suc(Suc(0)) ∗ x) ∈ T (F , {x})

• We will use infix-notation for terms when appropriate

12 / 161

Examples

• We also write a ranked alphabet as F = f1/a1, f2/a2, . . . , fn/an, meaning
F = ({f1, . . . , fn}, (f1 7→ a1, . . . , fn 7→ an))

• F = true/0, false/0,and/2,not/1 - Syntax trees of boolean expressions
• and(true, not(x)) ∈ T (F , {x})

• F = 0/0,Suc/1,+/2, ∗/2 - Arithmetic expressions over naturals (using
unary representation)
• Suc(0) + (Suc(Suc(0)) ∗ x) ∈ T (F , {x})

• We will use infix-notation for terms when appropriate

12 / 161

Examples

• We also write a ranked alphabet as F = f1/a1, f2/a2, . . . , fn/an, meaning
F = ({f1, . . . , fn}, (f1 7→ a1, . . . , fn 7→ an))

• F = true/0, false/0,and/2,not/1 - Syntax trees of boolean expressions
• and(true, not(x)) ∈ T (F , {x})

• F = 0/0,Suc/1,+/2, ∗/2 - Arithmetic expressions over naturals (using
unary representation)
• Suc(0) + (Suc(Suc(0)) ∗ x) ∈ T (F , {x})

• We will use infix-notation for terms when appropriate

12 / 161

Trees

• Terms can be identified by trees: Nodes with p successors labeled with
symbol from Fp.

• and(true,not(x)) ∈ T (F , {x})
and

true not

x

• Suc(0) + (Suc(Suc(0)) ∗ x)
+

Suc

0

*

Suc

Suc

0

x

13 / 161

Trees

• Terms can be identified by trees: Nodes with p successors labeled with
symbol from Fp.

• and(true,not(x)) ∈ T (F , {x})
and

true not

x

• Suc(0) + (Suc(Suc(0)) ∗ x)
+

Suc

0

*

Suc

Suc

0

x

13 / 161

Trees

• Terms can be identified by trees: Nodes with p successors labeled with
symbol from Fp.

• and(true,not(x)) ∈ T (F , {x})
and

true not

x

• Suc(0) + (Suc(Suc(0)) ∗ x)
+

Suc

0

*

Suc

Suc

0

x

13 / 161

Tree Automata
• A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a

tuple A = (Q,F ,Qf ,∆) where

• Q is a finite set of states. Q ∩ F0 = ∅
• Qf ⊆ Q is a set of final states
• ∆ is a set of rules of the form

f (q1, . . . , qn)→ q

where f ∈ Fn and q, q1, . . . , qn ∈ Q

• Intuition: Use the rules from ∆ to re-write a given tree to a final state
• For a tree t ∈ T (F) and a state q, we define t →A q as the least relation

that satisfies

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q

• t →A q: Tree t is accepted in state q

• The language L(A) of A are all trees accepted in final states

L(A) := {t | ∃q ∈ Qf . t →A q}

14 / 161

Tree Automata
• A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a

tuple A = (Q,F ,Qf ,∆) where
• Q is a finite set of states. Q ∩ F0 = ∅

• Qf ⊆ Q is a set of final states
• ∆ is a set of rules of the form

f (q1, . . . , qn)→ q

where f ∈ Fn and q, q1, . . . , qn ∈ Q

• Intuition: Use the rules from ∆ to re-write a given tree to a final state
• For a tree t ∈ T (F) and a state q, we define t →A q as the least relation

that satisfies

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q

• t →A q: Tree t is accepted in state q

• The language L(A) of A are all trees accepted in final states

L(A) := {t | ∃q ∈ Qf . t →A q}

14 / 161

Tree Automata
• A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a

tuple A = (Q,F ,Qf ,∆) where
• Q is a finite set of states. Q ∩ F0 = ∅
• Qf ⊆ Q is a set of final states

• ∆ is a set of rules of the form

f (q1, . . . , qn)→ q

where f ∈ Fn and q, q1, . . . , qn ∈ Q

• Intuition: Use the rules from ∆ to re-write a given tree to a final state
• For a tree t ∈ T (F) and a state q, we define t →A q as the least relation

that satisfies

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q

• t →A q: Tree t is accepted in state q

• The language L(A) of A are all trees accepted in final states

L(A) := {t | ∃q ∈ Qf . t →A q}

14 / 161

Tree Automata
• A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a

tuple A = (Q,F ,Qf ,∆) where
• Q is a finite set of states. Q ∩ F0 = ∅
• Qf ⊆ Q is a set of final states
• ∆ is a set of rules of the form

f (q1, . . . , qn)→ q

where f ∈ Fn and q, q1, . . . , qn ∈ Q

• Intuition: Use the rules from ∆ to re-write a given tree to a final state
• For a tree t ∈ T (F) and a state q, we define t →A q as the least relation

that satisfies

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q

• t →A q: Tree t is accepted in state q

• The language L(A) of A are all trees accepted in final states

L(A) := {t | ∃q ∈ Qf . t →A q}

14 / 161

Tree Automata
• A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a

tuple A = (Q,F ,Qf ,∆) where
• Q is a finite set of states. Q ∩ F0 = ∅
• Qf ⊆ Q is a set of final states
• ∆ is a set of rules of the form

f (q1, . . . , qn)→ q

where f ∈ Fn and q, q1, . . . , qn ∈ Q

• Intuition: Use the rules from ∆ to re-write a given tree to a final state

• For a tree t ∈ T (F) and a state q, we define t →A q as the least relation
that satisfies

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q

• t →A q: Tree t is accepted in state q

• The language L(A) of A are all trees accepted in final states

L(A) := {t | ∃q ∈ Qf . t →A q}

14 / 161

Tree Automata
• A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a

tuple A = (Q,F ,Qf ,∆) where
• Q is a finite set of states. Q ∩ F0 = ∅
• Qf ⊆ Q is a set of final states
• ∆ is a set of rules of the form

f (q1, . . . , qn)→ q

where f ∈ Fn and q, q1, . . . , qn ∈ Q

• Intuition: Use the rules from ∆ to re-write a given tree to a final state
• For a tree t ∈ T (F) and a state q, we define t →A q as the least relation

that satisfies

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q

• t →A q: Tree t is accepted in state q

• The language L(A) of A are all trees accepted in final states

L(A) := {t | ∃q ∈ Qf . t →A q}

14 / 161

Tree Automata
• A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a

tuple A = (Q,F ,Qf ,∆) where
• Q is a finite set of states. Q ∩ F0 = ∅
• Qf ⊆ Q is a set of final states
• ∆ is a set of rules of the form

f (q1, . . . , qn)→ q

where f ∈ Fn and q, q1, . . . , qn ∈ Q

• Intuition: Use the rules from ∆ to re-write a given tree to a final state
• For a tree t ∈ T (F) and a state q, we define t →A q as the least relation

that satisfies

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q

• t →A q: Tree t is accepted in state q

• The language L(A) of A are all trees accepted in final states

L(A) := {t | ∃q ∈ Qf . t →A q}

14 / 161

Tree Automata
• A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a

tuple A = (Q,F ,Qf ,∆) where
• Q is a finite set of states. Q ∩ F0 = ∅
• Qf ⊆ Q is a set of final states
• ∆ is a set of rules of the form

f (q1, . . . , qn)→ q

where f ∈ Fn and q, q1, . . . , qn ∈ Q

• Intuition: Use the rules from ∆ to re-write a given tree to a final state
• For a tree t ∈ T (F) and a state q, we define t →A q as the least relation

that satisfies

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q

• t →A q: Tree t is accepted in state q

• The language L(A) of A are all trees accepted in final states

L(A) := {t | ∃q ∈ Qf . t →A q}

14 / 161

Example

• Tree automaton accepting arithmetic expressions that evaluate to even
numbers

F = 0/0,Suc/1,+/2
Q := {e,o} Qf = {e}
0→ e Suc(e)→ o Suc(o)→ e

e + e→ e e + o → o o + e→ o o + o → e

• Examples for runs on board
• Suc(Suc(0)) + Suc(0) + Suc(0)
• 0 + Suc(0)

15 / 161

Example

• Tree automaton accepting arithmetic expressions that evaluate to even
numbers

F = 0/0,Suc/1,+/2
Q := {e,o} Qf = {e}
0→ e Suc(e)→ o Suc(o)→ e

e + e→ e e + o → o o + e→ o o + o → e

• Examples for runs on board
• Suc(Suc(0)) + Suc(0) + Suc(0)
• 0 + Suc(0)

15 / 161

Remark

• In TATA, a move-relation is defined. t −→
A

t ′ rewrites a node in the tree

according to a rule.

• Another version even keeps track of the tree nodes, and just adds the
states as additional nodes of arity 1.

• Examples on board

16 / 161

Remark

• In TATA, a move-relation is defined. t −→
A

t ′ rewrites a node in the tree

according to a rule.
• Another version even keeps track of the tree nodes, and just adds the

states as additional nodes of arity 1.

• Examples on board

16 / 161

Remark

• In TATA, a move-relation is defined. t −→
A

t ′ rewrites a node in the tree

according to a rule.
• Another version even keeps track of the tree nodes, and just adds the

states as additional nodes of arity 1.
• Examples on board

16 / 161

Table of Contents

1 Introduction

2 Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

17 / 161

Epsilon rules

• As for word automata, we may add ε-rules of the form

q → q′ for q,q′ ∈ Q

• The acceptance relation is extended accordingly

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q
q → q′ ∈ ∆, t →A q =⇒ t →A q′

• Example: (Non-empty) lists of natural numbers

0→ qn Suc(qn)→ qn

nil → ql cons(qn,ql)→ q′l
q′l → ql

• Last rule converts non-empty list (q′l) to list (ql)

• On board: Accepting [], and [0,Suc(0)]

18 / 161

Epsilon rules

• As for word automata, we may add ε-rules of the form

q → q′ for q,q′ ∈ Q

• The acceptance relation is extended accordingly

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q
q → q′ ∈ ∆, t →A q =⇒ t →A q′

• Example: (Non-empty) lists of natural numbers

0→ qn Suc(qn)→ qn

nil → ql cons(qn,ql)→ q′l
q′l → ql

• Last rule converts non-empty list (q′l) to list (ql)

• On board: Accepting [], and [0,Suc(0)]

18 / 161

Epsilon rules

• As for word automata, we may add ε-rules of the form

q → q′ for q,q′ ∈ Q

• The acceptance relation is extended accordingly

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q
q → q′ ∈ ∆, t →A q =⇒ t →A q′

• Example: (Non-empty) lists of natural numbers

0→ qn Suc(qn)→ qn

nil → ql cons(qn,ql)→ q′l
q′l → ql

• Last rule converts non-empty list (q′l) to list (ql)

• On board: Accepting [], and [0,Suc(0)]

18 / 161

Epsilon rules

• As for word automata, we may add ε-rules of the form

q → q′ for q,q′ ∈ Q

• The acceptance relation is extended accordingly

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q
q → q′ ∈ ∆, t →A q =⇒ t →A q′

• Example: (Non-empty) lists of natural numbers

0→ qn Suc(qn)→ qn

nil → ql cons(qn,ql)→ q′l
q′l → ql

• Last rule converts non-empty list (q′l) to list (ql)

• On board: Accepting [], and [0,Suc(0)]

18 / 161

Epsilon rules

• As for word automata, we may add ε-rules of the form

q → q′ for q,q′ ∈ Q

• The acceptance relation is extended accordingly

f (q1, . . . ,qn)→ q ∈ ∆,∀1 ≤ i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q
q → q′ ∈ ∆, t →A q =⇒ t →A q′

• Example: (Non-empty) lists of natural numbers

0→ qn Suc(qn)→ qn

nil → ql cons(qn,ql)→ q′l
q′l → ql

• Last rule converts non-empty list (q′l) to list (ql)

• On board: Accepting [], and [0,Suc(0)]

18 / 161

Equivalence of NFTAs with and without ε - rules

Theorem
For a NFTA A with ε-rules, there is a NFTA without ε-rules that recognizes the
same language

• Proof sketch:

• Let cl(q) denote the ε-closure of q

q ∈ cl(q) q′ ∈ cl(q), q′ → q′′ =⇒ q′′ ∈ cl(q)

• Define ∆′ := {f (q1, . . . , qn)→ q′ | f (q1, . . . , qn)→ q ∈ ∆ ∧ q′ ∈ cl(q)}
• Define A′ := (Q,F ,Qf ,∆

′)
• Show: t →A q iff t →A′ q

• on board

• From now on, we assume tree automata without ε-rules, unless noted
otherwise.

19 / 161

Equivalence of NFTAs with and without ε - rules

Theorem
For a NFTA A with ε-rules, there is a NFTA without ε-rules that recognizes the
same language

• Proof sketch:
• Let cl(q) denote the ε-closure of q

q ∈ cl(q) q′ ∈ cl(q), q′ → q′′ =⇒ q′′ ∈ cl(q)

• Define ∆′ := {f (q1, . . . , qn)→ q′ | f (q1, . . . , qn)→ q ∈ ∆ ∧ q′ ∈ cl(q)}
• Define A′ := (Q,F ,Qf ,∆

′)
• Show: t →A q iff t →A′ q

• on board

• From now on, we assume tree automata without ε-rules, unless noted
otherwise.

19 / 161

Equivalence of NFTAs with and without ε - rules

Theorem
For a NFTA A with ε-rules, there is a NFTA without ε-rules that recognizes the
same language

• Proof sketch:
• Let cl(q) denote the ε-closure of q

q ∈ cl(q) q′ ∈ cl(q), q′ → q′′ =⇒ q′′ ∈ cl(q)

• Define ∆′ := {f (q1, . . . , qn)→ q′ | f (q1, . . . , qn)→ q ∈ ∆ ∧ q′ ∈ cl(q)}

• Define A′ := (Q,F ,Qf ,∆
′)

• Show: t →A q iff t →A′ q

• on board

• From now on, we assume tree automata without ε-rules, unless noted
otherwise.

19 / 161

Equivalence of NFTAs with and without ε - rules

Theorem
For a NFTA A with ε-rules, there is a NFTA without ε-rules that recognizes the
same language

• Proof sketch:
• Let cl(q) denote the ε-closure of q

q ∈ cl(q) q′ ∈ cl(q), q′ → q′′ =⇒ q′′ ∈ cl(q)

• Define ∆′ := {f (q1, . . . , qn)→ q′ | f (q1, . . . , qn)→ q ∈ ∆ ∧ q′ ∈ cl(q)}
• Define A′ := (Q,F ,Qf ,∆

′)

• Show: t →A q iff t →A′ q

• on board

• From now on, we assume tree automata without ε-rules, unless noted
otherwise.

19 / 161

Equivalence of NFTAs with and without ε - rules

Theorem
For a NFTA A with ε-rules, there is a NFTA without ε-rules that recognizes the
same language

• Proof sketch:
• Let cl(q) denote the ε-closure of q

q ∈ cl(q) q′ ∈ cl(q), q′ → q′′ =⇒ q′′ ∈ cl(q)

• Define ∆′ := {f (q1, . . . , qn)→ q′ | f (q1, . . . , qn)→ q ∈ ∆ ∧ q′ ∈ cl(q)}
• Define A′ := (Q,F ,Qf ,∆

′)
• Show: t →A q iff t →A′ q

• on board

• From now on, we assume tree automata without ε-rules, unless noted
otherwise.

19 / 161

Equivalence of NFTAs with and without ε - rules

Theorem
For a NFTA A with ε-rules, there is a NFTA without ε-rules that recognizes the
same language

• Proof sketch:
• Let cl(q) denote the ε-closure of q

q ∈ cl(q) q′ ∈ cl(q), q′ → q′′ =⇒ q′′ ∈ cl(q)

• Define ∆′ := {f (q1, . . . , qn)→ q′ | f (q1, . . . , qn)→ q ∈ ∆ ∧ q′ ∈ cl(q)}
• Define A′ := (Q,F ,Qf ,∆

′)
• Show: t →A q iff t →A′ q

• on board

• From now on, we assume tree automata without ε-rules, unless noted
otherwise.

19 / 161

Equivalence of NFTAs with and without ε - rules

Theorem
For a NFTA A with ε-rules, there is a NFTA without ε-rules that recognizes the
same language

• Proof sketch:
• Let cl(q) denote the ε-closure of q

q ∈ cl(q) q′ ∈ cl(q), q′ → q′′ =⇒ q′′ ∈ cl(q)

• Define ∆′ := {f (q1, . . . , qn)→ q′ | f (q1, . . . , qn)→ q ∈ ∆ ∧ q′ ∈ cl(q)}
• Define A′ := (Q,F ,Qf ,∆

′)
• Show: t →A q iff t →A′ q

• on board

• From now on, we assume tree automata without ε-rules, unless noted
otherwise.

19 / 161

Last Lecture

• Nondeterministic Finite Tree Automata (NFTA)
• Ranked alphabet, Terms/Trees
• Rules: f (q1, . . . , qn)→ q
• Intuition: Rewrite tree to single state

• Epsilon rules
• q → q′

• Do not increase expressiveness (recognizable languages)

20 / 161

Table of Contents

1 Introduction

2 Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

21 / 161

Deterministic Finite Tree Automata

Let A = (Q,F ,Qf ,∆) be a finite tree automaton.
• A is deterministic (DFTA), if there are no two rules with the same LHS

(and no ε-rules), i.e.

l → q1 ∈ ∆ ∧ l → q2 ∈ ∆ =⇒ q1 = q2

• For a DFTA, every tree is accepted in at most one state
• A is complete, if for every f ∈ Fn,q1, . . . ,qn ∈ Q, there is a rule

f (q1, . . . ,qn)→ q

• For a complete tree automata, every tree is accepted in at least one state
• For a complete DFTA, every tree is accepted in exactly one state

• A state q ∈ Q is accessible, if there is a t with t →A q.
• A is reduced, if all states in Q are accessible.

22 / 161

Deterministic Finite Tree Automata

Let A = (Q,F ,Qf ,∆) be a finite tree automaton.
• A is deterministic (DFTA), if there are no two rules with the same LHS

(and no ε-rules), i.e.

l → q1 ∈ ∆ ∧ l → q2 ∈ ∆ =⇒ q1 = q2

• For a DFTA, every tree is accepted in at most one state

• A is complete, if for every f ∈ Fn,q1, . . . ,qn ∈ Q, there is a rule
f (q1, . . . ,qn)→ q

• For a complete tree automata, every tree is accepted in at least one state
• For a complete DFTA, every tree is accepted in exactly one state

• A state q ∈ Q is accessible, if there is a t with t →A q.
• A is reduced, if all states in Q are accessible.

22 / 161

Deterministic Finite Tree Automata

Let A = (Q,F ,Qf ,∆) be a finite tree automaton.
• A is deterministic (DFTA), if there are no two rules with the same LHS

(and no ε-rules), i.e.

l → q1 ∈ ∆ ∧ l → q2 ∈ ∆ =⇒ q1 = q2

• For a DFTA, every tree is accepted in at most one state
• A is complete, if for every f ∈ Fn,q1, . . . ,qn ∈ Q, there is a rule

f (q1, . . . ,qn)→ q

• For a complete tree automata, every tree is accepted in at least one state
• For a complete DFTA, every tree is accepted in exactly one state

• A state q ∈ Q is accessible, if there is a t with t →A q.
• A is reduced, if all states in Q are accessible.

22 / 161

Deterministic Finite Tree Automata

Let A = (Q,F ,Qf ,∆) be a finite tree automaton.
• A is deterministic (DFTA), if there are no two rules with the same LHS

(and no ε-rules), i.e.

l → q1 ∈ ∆ ∧ l → q2 ∈ ∆ =⇒ q1 = q2

• For a DFTA, every tree is accepted in at most one state
• A is complete, if for every f ∈ Fn,q1, . . . ,qn ∈ Q, there is a rule

f (q1, . . . ,qn)→ q
• For a complete tree automata, every tree is accepted in at least one state

• For a complete DFTA, every tree is accepted in exactly one state

• A state q ∈ Q is accessible, if there is a t with t →A q.
• A is reduced, if all states in Q are accessible.

22 / 161

Deterministic Finite Tree Automata

Let A = (Q,F ,Qf ,∆) be a finite tree automaton.
• A is deterministic (DFTA), if there are no two rules with the same LHS

(and no ε-rules), i.e.

l → q1 ∈ ∆ ∧ l → q2 ∈ ∆ =⇒ q1 = q2

• For a DFTA, every tree is accepted in at most one state
• A is complete, if for every f ∈ Fn,q1, . . . ,qn ∈ Q, there is a rule

f (q1, . . . ,qn)→ q
• For a complete tree automata, every tree is accepted in at least one state
• For a complete DFTA, every tree is accepted in exactly one state

• A state q ∈ Q is accessible, if there is a t with t →A q.
• A is reduced, if all states in Q are accessible.

22 / 161

Deterministic Finite Tree Automata

Let A = (Q,F ,Qf ,∆) be a finite tree automaton.
• A is deterministic (DFTA), if there are no two rules with the same LHS

(and no ε-rules), i.e.

l → q1 ∈ ∆ ∧ l → q2 ∈ ∆ =⇒ q1 = q2

• For a DFTA, every tree is accepted in at most one state
• A is complete, if for every f ∈ Fn,q1, . . . ,qn ∈ Q, there is a rule

f (q1, . . . ,qn)→ q
• For a complete tree automata, every tree is accepted in at least one state
• For a complete DFTA, every tree is accepted in exactly one state

• A state q ∈ Q is accessible, if there is a t with t →A q.

• A is reduced, if all states in Q are accessible.

22 / 161

Deterministic Finite Tree Automata

Let A = (Q,F ,Qf ,∆) be a finite tree automaton.
• A is deterministic (DFTA), if there are no two rules with the same LHS

(and no ε-rules), i.e.

l → q1 ∈ ∆ ∧ l → q2 ∈ ∆ =⇒ q1 = q2

• For a DFTA, every tree is accepted in at most one state
• A is complete, if for every f ∈ Fn,q1, . . . ,qn ∈ Q, there is a rule

f (q1, . . . ,qn)→ q
• For a complete tree automata, every tree is accepted in at least one state
• For a complete DFTA, every tree is accepted in exactly one state

• A state q ∈ Q is accessible, if there is a t with t →A q.
• A is reduced, if all states in Q are accessible.

22 / 161

Membership Test for DFTA

• Complete DFTAs have a simple (and efficient) membership test

acc (f (t1 , . . . , tn)) =
l e t

q1 = acc t1 ; . . . ; qn = acc tn
in

the q with f (q1, . . . ,qn) ∈ ∆

• Note: For NFTAs, we need to backtrack, or use on-the-fly determinization

23 / 161

Membership Test for DFTA

• Complete DFTAs have a simple (and efficient) membership test

acc (f (t1 , . . . , tn)) =
l e t

q1 = acc t1 ; . . . ; qn = acc tn
in

the q with f (q1, . . . ,qn) ∈ ∆

• Note: For NFTAs, we need to backtrack, or use on-the-fly determinization

23 / 161

Reduction Algorithm

• Obviously, removing inaccessible states does not change the language of
an NFTA.

• The following algorithm computes the set of accessible states in
polynomial time

A := ∅
repeat

A := a ∪ {q} for q with
f (q1, . . . ,qn)→ q ∈ ∆,q1, . . . ,qn ∈ A

u n t i l no more states can be added to A

• Proof sketch

• Invariant: All states in A are accessible.
• If there is an accessible state not in A, saturation is not complete

• Induction on t →A q

24 / 161

Reduction Algorithm

• Obviously, removing inaccessible states does not change the language of
an NFTA.

• The following algorithm computes the set of accessible states in
polynomial time

A := ∅
repeat

A := a ∪ {q} for q with
f (q1, . . . ,qn)→ q ∈ ∆,q1, . . . ,qn ∈ A

u n t i l no more states can be added to A

• Proof sketch

• Invariant: All states in A are accessible.
• If there is an accessible state not in A, saturation is not complete

• Induction on t →A q

24 / 161

Reduction Algorithm

• Obviously, removing inaccessible states does not change the language of
an NFTA.

• The following algorithm computes the set of accessible states in
polynomial time

A := ∅
repeat

A := a ∪ {q} for q with
f (q1, . . . ,qn)→ q ∈ ∆,q1, . . . ,qn ∈ A

u n t i l no more states can be added to A

• Proof sketch

• Invariant: All states in A are accessible.
• If there is an accessible state not in A, saturation is not complete

• Induction on t →A q

24 / 161

Reduction Algorithm

• Obviously, removing inaccessible states does not change the language of
an NFTA.

• The following algorithm computes the set of accessible states in
polynomial time

A := ∅
repeat

A := a ∪ {q} for q with
f (q1, . . . ,qn)→ q ∈ ∆,q1, . . . ,qn ∈ A

u n t i l no more states can be added to A

• Proof sketch
• Invariant: All states in A are accessible.

• If there is an accessible state not in A, saturation is not complete

• Induction on t →A q

24 / 161

Reduction Algorithm

• Obviously, removing inaccessible states does not change the language of
an NFTA.

• The following algorithm computes the set of accessible states in
polynomial time

A := ∅
repeat

A := a ∪ {q} for q with
f (q1, . . . ,qn)→ q ∈ ∆,q1, . . . ,qn ∈ A

u n t i l no more states can be added to A

• Proof sketch
• Invariant: All states in A are accessible.
• If there is an accessible state not in A, saturation is not complete

• Induction on t →A q

24 / 161

Reduction Algorithm

• Obviously, removing inaccessible states does not change the language of
an NFTA.

• The following algorithm computes the set of accessible states in
polynomial time

A := ∅
repeat

A := a ∪ {q} for q with
f (q1, . . . ,qn)→ q ∈ ∆,q1, . . . ,qn ∈ A

u n t i l no more states can be added to A

• Proof sketch
• Invariant: All states in A are accessible.
• If there is an accessible state not in A, saturation is not complete

• Induction on t →A q

24 / 161

Determinization (Powerset construction)

• Theorem: For every NFTA, there exists a complete DFTA with the same
language

• Let Qd := 2Q and Qdf := {s ∈ Qd | s ∩Qf 6= ∅}
• Let f (s1, . . . , sn)→ s ∈ ∆d iff

s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn | f (q1, . . . ,qn)→ q ∈ ∆}
• Define Ad := (Qd ,F ,Qdf ,∆d)

• Idea: Ad accepts tree t in the set of all states in that A accepts t (maybe
the empty set)

• Formally: t →Ad s iff s = {q ∈ Q | t →A q}

• Lemma: The automaton Ad is a complete DFTA, and we have
L(A) = L(Ad). (On board)

• Theorem follows from this.

25 / 161

Determinization (Powerset construction)

• Theorem: For every NFTA, there exists a complete DFTA with the same
language

• Let Qd := 2Q and Qdf := {s ∈ Qd | s ∩Qf 6= ∅}

• Let f (s1, . . . , sn)→ s ∈ ∆d iff
s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn | f (q1, . . . ,qn)→ q ∈ ∆}

• Define Ad := (Qd ,F ,Qdf ,∆d)

• Idea: Ad accepts tree t in the set of all states in that A accepts t (maybe
the empty set)

• Formally: t →Ad s iff s = {q ∈ Q | t →A q}

• Lemma: The automaton Ad is a complete DFTA, and we have
L(A) = L(Ad). (On board)

• Theorem follows from this.

25 / 161

Determinization (Powerset construction)

• Theorem: For every NFTA, there exists a complete DFTA with the same
language

• Let Qd := 2Q and Qdf := {s ∈ Qd | s ∩Qf 6= ∅}
• Let f (s1, . . . , sn)→ s ∈ ∆d iff

s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn | f (q1, . . . ,qn)→ q ∈ ∆}

• Define Ad := (Qd ,F ,Qdf ,∆d)

• Idea: Ad accepts tree t in the set of all states in that A accepts t (maybe
the empty set)

• Formally: t →Ad s iff s = {q ∈ Q | t →A q}

• Lemma: The automaton Ad is a complete DFTA, and we have
L(A) = L(Ad). (On board)

• Theorem follows from this.

25 / 161

Determinization (Powerset construction)

• Theorem: For every NFTA, there exists a complete DFTA with the same
language

• Let Qd := 2Q and Qdf := {s ∈ Qd | s ∩Qf 6= ∅}
• Let f (s1, . . . , sn)→ s ∈ ∆d iff

s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn | f (q1, . . . ,qn)→ q ∈ ∆}
• Define Ad := (Qd ,F ,Qdf ,∆d)

• Idea: Ad accepts tree t in the set of all states in that A accepts t (maybe
the empty set)

• Formally: t →Ad s iff s = {q ∈ Q | t →A q}

• Lemma: The automaton Ad is a complete DFTA, and we have
L(A) = L(Ad). (On board)

• Theorem follows from this.

25 / 161

Determinization (Powerset construction)

• Theorem: For every NFTA, there exists a complete DFTA with the same
language

• Let Qd := 2Q and Qdf := {s ∈ Qd | s ∩Qf 6= ∅}
• Let f (s1, . . . , sn)→ s ∈ ∆d iff

s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn | f (q1, . . . ,qn)→ q ∈ ∆}
• Define Ad := (Qd ,F ,Qdf ,∆d)

• Idea: Ad accepts tree t in the set of all states in that A accepts t (maybe
the empty set)

• Formally: t →Ad s iff s = {q ∈ Q | t →A q}
• Lemma: The automaton Ad is a complete DFTA, and we have

L(A) = L(Ad). (On board)
• Theorem follows from this.

25 / 161

Determinization (Powerset construction)

• Theorem: For every NFTA, there exists a complete DFTA with the same
language

• Let Qd := 2Q and Qdf := {s ∈ Qd | s ∩Qf 6= ∅}
• Let f (s1, . . . , sn)→ s ∈ ∆d iff

s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn | f (q1, . . . ,qn)→ q ∈ ∆}
• Define Ad := (Qd ,F ,Qdf ,∆d)

• Idea: Ad accepts tree t in the set of all states in that A accepts t (maybe
the empty set)
• Formally: t →Ad s iff s = {q ∈ Q | t →A q}

• Lemma: The automaton Ad is a complete DFTA, and we have
L(A) = L(Ad). (On board)

• Theorem follows from this.

25 / 161

Determinization (Powerset construction)

• Theorem: For every NFTA, there exists a complete DFTA with the same
language

• Let Qd := 2Q and Qdf := {s ∈ Qd | s ∩Qf 6= ∅}
• Let f (s1, . . . , sn)→ s ∈ ∆d iff

s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn | f (q1, . . . ,qn)→ q ∈ ∆}
• Define Ad := (Qd ,F ,Qdf ,∆d)

• Idea: Ad accepts tree t in the set of all states in that A accepts t (maybe
the empty set)
• Formally: t →Ad s iff s = {q ∈ Q | t →A q}

• Lemma: The automaton Ad is a complete DFTA, and we have
L(A) = L(Ad). (On board)

• Theorem follows from this.

25 / 161

Determinization (Powerset construction)

• Theorem: For every NFTA, there exists a complete DFTA with the same
language

• Let Qd := 2Q and Qdf := {s ∈ Qd | s ∩Qf 6= ∅}
• Let f (s1, . . . , sn)→ s ∈ ∆d iff

s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn | f (q1, . . . ,qn)→ q ∈ ∆}
• Define Ad := (Qd ,F ,Qdf ,∆d)

• Idea: Ad accepts tree t in the set of all states in that A accepts t (maybe
the empty set)
• Formally: t →Ad s iff s = {q ∈ Q | t →A q}

• Lemma: The automaton Ad is a complete DFTA, and we have
L(A) = L(Ad). (On board)

• Theorem follows from this.

25 / 161

Determinization with reduction

• Above method always construct exponentially many states

• Typically, many of the inaccessible
• Idea: Combine determinization and reduction

• Only construct accessible states of Ad

Qd := ∅
∆d := ∅
repeat

Qd := Qd ∪ {s}
∆d := ∆d ∪ {f (s1, . . . , sn)→ s}
where

f ∈ Fn, s1 . . . , sn ∈ Qd
s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn. f (q1, . . . ,qn)→ q ∈ ∆}

u n t i l No more rules can be added to ∆d
Qdf := {s ∈ Qd | s ∩Qf 6= ∅}
Ad := (Qd ,F ,Qdf ,∆d)

26 / 161

Determinization with reduction

• Above method always construct exponentially many states
• Typically, many of the inaccessible

• Idea: Combine determinization and reduction

• Only construct accessible states of Ad

Qd := ∅
∆d := ∅
repeat

Qd := Qd ∪ {s}
∆d := ∆d ∪ {f (s1, . . . , sn)→ s}
where

f ∈ Fn, s1 . . . , sn ∈ Qd
s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn. f (q1, . . . ,qn)→ q ∈ ∆}

u n t i l No more rules can be added to ∆d
Qdf := {s ∈ Qd | s ∩Qf 6= ∅}
Ad := (Qd ,F ,Qdf ,∆d)

26 / 161

Determinization with reduction

• Above method always construct exponentially many states
• Typically, many of the inaccessible

• Idea: Combine determinization and reduction

• Only construct accessible states of Ad

Qd := ∅
∆d := ∅
repeat

Qd := Qd ∪ {s}
∆d := ∆d ∪ {f (s1, . . . , sn)→ s}
where

f ∈ Fn, s1 . . . , sn ∈ Qd
s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn. f (q1, . . . ,qn)→ q ∈ ∆}

u n t i l No more rules can be added to ∆d
Qdf := {s ∈ Qd | s ∩Qf 6= ∅}
Ad := (Qd ,F ,Qdf ,∆d)

26 / 161

Determinization with reduction

• Above method always construct exponentially many states
• Typically, many of the inaccessible

• Idea: Combine determinization and reduction
• Only construct accessible states of Ad

Qd := ∅
∆d := ∅
repeat

Qd := Qd ∪ {s}
∆d := ∆d ∪ {f (s1, . . . , sn)→ s}
where

f ∈ Fn, s1 . . . , sn ∈ Qd
s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn. f (q1, . . . ,qn)→ q ∈ ∆}

u n t i l No more rules can be added to ∆d
Qdf := {s ∈ Qd | s ∩Qf 6= ∅}
Ad := (Qd ,F ,Qdf ,∆d)

26 / 161

Determinization with reduction

• Above method always construct exponentially many states
• Typically, many of the inaccessible

• Idea: Combine determinization and reduction
• Only construct accessible states of Ad

Qd := ∅
∆d := ∅
repeat

Qd := Qd ∪ {s}
∆d := ∆d ∪ {f (s1, . . . , sn)→ s}
where

f ∈ Fn, s1 . . . , sn ∈ Qd
s = {q ∈ Q | ∃q1 ∈ s1, . . . ,qn ∈ sn. f (q1, . . . ,qn)→ q ∈ ∆}

u n t i l No more rules can be added to ∆d
Qdf := {s ∈ Qd | s ∩Qf 6= ∅}
Ad := (Qd ,F ,Qdf ,∆d)

26 / 161

Examples

• Automaton is already deterministic

• Naive method generates exponentially many rules
• Reduction method does not increase size of automaton

• Also advantageous if automaton is „almost” deterministic
• But, exponential blowup not avoidable in general

27 / 161

Examples

• Automaton is already deterministic
• Naive method generates exponentially many rules

• Reduction method does not increase size of automaton

• Also advantageous if automaton is „almost” deterministic
• But, exponential blowup not avoidable in general

27 / 161

Examples

• Automaton is already deterministic
• Naive method generates exponentially many rules
• Reduction method does not increase size of automaton

• Also advantageous if automaton is „almost” deterministic
• But, exponential blowup not avoidable in general

27 / 161

Examples

• Automaton is already deterministic
• Naive method generates exponentially many rules
• Reduction method does not increase size of automaton

• Also advantageous if automaton is „almost” deterministic

• But, exponential blowup not avoidable in general

27 / 161

Examples

• Automaton is already deterministic
• Naive method generates exponentially many rules
• Reduction method does not increase size of automaton

• Also advantageous if automaton is „almost” deterministic
• But, exponential blowup not avoidable in general

27 / 161

Examples

• Let F = f/1,g/1,a/0

• Consider the language Ln := {t ∈ T (F) | The nth symbol of t is f }

• Automaton Q = {q, q1, . . . , qn}, Qf = {qn} and ∆

a→ q f (q)→ q g(q)→ q

f (q)→ q1

f (qi)→ qi+1 g(qi)→ qi+1 for i < n

• Nondeterministically decides which symbol to count

• However, any DFTA has to memorize the last n symbols

• Thus, it has at least 2n states

• Note: The same example is usually given for word automata

• L = (a + b)∗a(a + b)n

28 / 161

Examples

• Let F = f/1,g/1,a/0
• Consider the language Ln := {t ∈ T (F) | The nth symbol of t is f }

• Automaton Q = {q, q1, . . . , qn}, Qf = {qn} and ∆

a→ q f (q)→ q g(q)→ q

f (q)→ q1

f (qi)→ qi+1 g(qi)→ qi+1 for i < n

• Nondeterministically decides which symbol to count
• However, any DFTA has to memorize the last n symbols

• Thus, it has at least 2n states

• Note: The same example is usually given for word automata

• L = (a + b)∗a(a + b)n

28 / 161

Examples

• Let F = f/1,g/1,a/0
• Consider the language Ln := {t ∈ T (F) | The nth symbol of t is f }

• Automaton Q = {q, q1, . . . , qn}, Qf = {qn} and ∆

a→ q f (q)→ q g(q)→ q

f (q)→ q1

f (qi)→ qi+1 g(qi)→ qi+1 for i < n

• Nondeterministically decides which symbol to count
• However, any DFTA has to memorize the last n symbols

• Thus, it has at least 2n states

• Note: The same example is usually given for word automata

• L = (a + b)∗a(a + b)n

28 / 161

Examples

• Let F = f/1,g/1,a/0
• Consider the language Ln := {t ∈ T (F) | The nth symbol of t is f }

• Automaton Q = {q, q1, . . . , qn}, Qf = {qn} and ∆

a→ q f (q)→ q g(q)→ q

f (q)→ q1

f (qi)→ qi+1 g(qi)→ qi+1 for i < n

• Nondeterministically decides which symbol to count

• However, any DFTA has to memorize the last n symbols

• Thus, it has at least 2n states

• Note: The same example is usually given for word automata

• L = (a + b)∗a(a + b)n

28 / 161

Examples

• Let F = f/1,g/1,a/0
• Consider the language Ln := {t ∈ T (F) | The nth symbol of t is f }

• Automaton Q = {q, q1, . . . , qn}, Qf = {qn} and ∆

a→ q f (q)→ q g(q)→ q

f (q)→ q1

f (qi)→ qi+1 g(qi)→ qi+1 for i < n

• Nondeterministically decides which symbol to count
• However, any DFTA has to memorize the last n symbols

• Thus, it has at least 2n states
• Note: The same example is usually given for word automata

• L = (a + b)∗a(a + b)n

28 / 161

Examples

• Let F = f/1,g/1,a/0
• Consider the language Ln := {t ∈ T (F) | The nth symbol of t is f }

• Automaton Q = {q, q1, . . . , qn}, Qf = {qn} and ∆

a→ q f (q)→ q g(q)→ q

f (q)→ q1

f (qi)→ qi+1 g(qi)→ qi+1 for i < n

• Nondeterministically decides which symbol to count
• However, any DFTA has to memorize the last n symbols

• Thus, it has at least 2n states

• Note: The same example is usually given for word automata

• L = (a + b)∗a(a + b)n

28 / 161

Examples

• Let F = f/1,g/1,a/0
• Consider the language Ln := {t ∈ T (F) | The nth symbol of t is f }

• Automaton Q = {q, q1, . . . , qn}, Qf = {qn} and ∆

a→ q f (q)→ q g(q)→ q

f (q)→ q1

f (qi)→ qi+1 g(qi)→ qi+1 for i < n

• Nondeterministically decides which symbol to count
• However, any DFTA has to memorize the last n symbols

• Thus, it has at least 2n states
• Note: The same example is usually given for word automata

• L = (a + b)∗a(a + b)n

28 / 161

Examples

• Let F = f/1,g/1,a/0
• Consider the language Ln := {t ∈ T (F) | The nth symbol of t is f }

• Automaton Q = {q, q1, . . . , qn}, Qf = {qn} and ∆

a→ q f (q)→ q g(q)→ q

f (q)→ q1

f (qi)→ qi+1 g(qi)→ qi+1 for i < n

• Nondeterministically decides which symbol to count
• However, any DFTA has to memorize the last n symbols

• Thus, it has at least 2n states
• Note: The same example is usually given for word automata

• L = (a + b)∗a(a + b)n

28 / 161

Table of Contents

1 Introduction

2 Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

29 / 161

Example

• Consider the language L := {f (g i (a),g i (a)) | i ∈ N}

• Not recognizable by an FTA.
• Assume we have A with L(A) = L and |Q| = n
• During recognizing gn+1(a), the same state must occur twice, say

• g i (a)→A q and g j (a)→A q for i 6= j

• As f (g i (a),g i (a)) ∈ L(A), we also have f (g i (a),g j (a)) ∈ L(A)

• Contradiction! L not tree-regular

30 / 161

Example

• Consider the language L := {f (g i (a),g i (a)) | i ∈ N}
• Not recognizable by an FTA.

• Assume we have A with L(A) = L and |Q| = n
• During recognizing gn+1(a), the same state must occur twice, say

• g i (a)→A q and g j (a)→A q for i 6= j

• As f (g i (a),g i (a)) ∈ L(A), we also have f (g i (a),g j (a)) ∈ L(A)

• Contradiction! L not tree-regular

30 / 161

Example

• Consider the language L := {f (g i (a),g i (a)) | i ∈ N}
• Not recognizable by an FTA.
• Assume we have A with L(A) = L and |Q| = n

• During recognizing gn+1(a), the same state must occur twice, say
• g i (a)→A q and g j (a)→A q for i 6= j

• As f (g i (a),g i (a)) ∈ L(A), we also have f (g i (a),g j (a)) ∈ L(A)

• Contradiction! L not tree-regular

30 / 161

Example

• Consider the language L := {f (g i (a),g i (a)) | i ∈ N}
• Not recognizable by an FTA.
• Assume we have A with L(A) = L and |Q| = n
• During recognizing gn+1(a), the same state must occur twice, say

• g i (a)→A q and g j (a)→A q for i 6= j

• As f (g i (a),g i (a)) ∈ L(A), we also have f (g i (a),g j (a)) ∈ L(A)

• Contradiction! L not tree-regular

30 / 161

Example

• Consider the language L := {f (g i (a),g i (a)) | i ∈ N}
• Not recognizable by an FTA.
• Assume we have A with L(A) = L and |Q| = n
• During recognizing gn+1(a), the same state must occur twice, say

• g i (a)→A q and g j (a)→A q for i 6= j

• As f (g i (a),g i (a)) ∈ L(A), we also have f (g i (a),g j (a)) ∈ L(A)

• Contradiction! L not tree-regular

30 / 161

Example

• Consider the language L := {f (g i (a),g i (a)) | i ∈ N}
• Not recognizable by an FTA.
• Assume we have A with L(A) = L and |Q| = n
• During recognizing gn+1(a), the same state must occur twice, say

• g i (a)→A q and g j (a)→A q for i 6= j

• As f (g i (a),g i (a)) ∈ L(A), we also have f (g i (a),g j (a)) ∈ L(A)

• Contradiction! L not tree-regular

30 / 161

Towards a Pumping Lemma

• A term t ∈ T (F ,X) is called linear, if no variable occurs more than once

• A context with n holes is a linear term over variables x1, . . . , xn

• For a context C with n holes, we define

C[t1, . . . , tn] := C(x1 7→ t1, . . . , xn 7→ tn)

• A context that consists of a single variable is called trivial.

31 / 161

Towards a Pumping Lemma

• A term t ∈ T (F ,X) is called linear, if no variable occurs more than once
• A context with n holes is a linear term over variables x1, . . . , xn

• For a context C with n holes, we define

C[t1, . . . , tn] := C(x1 7→ t1, . . . , xn 7→ tn)

• A context that consists of a single variable is called trivial.

31 / 161

Towards a Pumping Lemma

• A term t ∈ T (F ,X) is called linear, if no variable occurs more than once
• A context with n holes is a linear term over variables x1, . . . , xn

• For a context C with n holes, we define

C[t1, . . . , tn] := C(x1 7→ t1, . . . , xn 7→ tn)

• A context that consists of a single variable is called trivial.

31 / 161

Towards a Pumping Lemma

• A term t ∈ T (F ,X) is called linear, if no variable occurs more than once
• A context with n holes is a linear term over variables x1, . . . , xn

• For a context C with n holes, we define

C[t1, . . . , tn] := C(x1 7→ t1, . . . , xn 7→ tn)

• A context that consists of a single variable is called trivial.

31 / 161

Pumping Lemma

Theorem
Let L be a regular language. Then, there is a constant k > 0 such that for
every t ∈ L with Height(t) > k, there is a context C, a non-trivial context C′,
and a term u such that

t = C[C′[u]] ∀n ≥ 0. C[C′n[u]] ∈ L

• Proof sketch:

• Let A = (Q,F ,Qf ,∆) with L = L(A), and t →A q, q ∈ Qf
• Choose path through t with length > k
• Two subtrees on this path accepted in same state.
• Identify them by C and C′

32 / 161

Pumping Lemma

Theorem
Let L be a regular language. Then, there is a constant k > 0 such that for
every t ∈ L with Height(t) > k, there is a context C, a non-trivial context C′,
and a term u such that

t = C[C′[u]] ∀n ≥ 0. C[C′n[u]] ∈ L

• Proof sketch:
• Let A = (Q,F ,Qf ,∆) with L = L(A), and t →A q, q ∈ Qf

• Choose path through t with length > k
• Two subtrees on this path accepted in same state.
• Identify them by C and C′

32 / 161

Pumping Lemma

Theorem
Let L be a regular language. Then, there is a constant k > 0 such that for
every t ∈ L with Height(t) > k, there is a context C, a non-trivial context C′,
and a term u such that

t = C[C′[u]] ∀n ≥ 0. C[C′n[u]] ∈ L

• Proof sketch:
• Let A = (Q,F ,Qf ,∆) with L = L(A), and t →A q, q ∈ Qf
• Choose path through t with length > k

• Two subtrees on this path accepted in same state.
• Identify them by C and C′

32 / 161

Pumping Lemma

Theorem
Let L be a regular language. Then, there is a constant k > 0 such that for
every t ∈ L with Height(t) > k, there is a context C, a non-trivial context C′,
and a term u such that

t = C[C′[u]] ∀n ≥ 0. C[C′n[u]] ∈ L

• Proof sketch:
• Let A = (Q,F ,Qf ,∆) with L = L(A), and t →A q, q ∈ Qf
• Choose path through t with length > k
• Two subtrees on this path accepted in same state.

• Identify them by C and C′

32 / 161

Pumping Lemma

Theorem
Let L be a regular language. Then, there is a constant k > 0 such that for
every t ∈ L with Height(t) > k, there is a context C, a non-trivial context C′,
and a term u such that

t = C[C′[u]] ∀n ≥ 0. C[C′n[u]] ∈ L

• Proof sketch:
• Let A = (Q,F ,Qf ,∆) with L = L(A), and t →A q, q ∈ Qf
• Choose path through t with length > k
• Two subtrees on this path accepted in same state.
• Identify them by C and C′

32 / 161

Example

• Consider F = f/2,a/0, and L := {t ∈ T (F) | |t | is prime}

• |t | is number of nodes in t
• L is not regular.

• Proof by contradiction. Assume L is regular, and k is pumping constant
• Choose t ∈ L with height(t) > k
• We obtain C,C′, u such that t = C[C′[u]] and ∀n. C[C′n[u]] ∈ L
• We have |C[C′n[u]]| = |C| − 1 + n(|C′| − 1) + |u|

• Choose n = |C|+ |u| − 1 to show that this is not prime for all n

33 / 161

Example

• Consider F = f/2,a/0, and L := {t ∈ T (F) | |t | is prime}
• |t | is number of nodes in t

• L is not regular.

• Proof by contradiction. Assume L is regular, and k is pumping constant
• Choose t ∈ L with height(t) > k
• We obtain C,C′, u such that t = C[C′[u]] and ∀n. C[C′n[u]] ∈ L
• We have |C[C′n[u]]| = |C| − 1 + n(|C′| − 1) + |u|

• Choose n = |C|+ |u| − 1 to show that this is not prime for all n

33 / 161

Example

• Consider F = f/2,a/0, and L := {t ∈ T (F) | |t | is prime}
• |t | is number of nodes in t

• L is not regular.

• Proof by contradiction. Assume L is regular, and k is pumping constant
• Choose t ∈ L with height(t) > k
• We obtain C,C′, u such that t = C[C′[u]] and ∀n. C[C′n[u]] ∈ L
• We have |C[C′n[u]]| = |C| − 1 + n(|C′| − 1) + |u|

• Choose n = |C|+ |u| − 1 to show that this is not prime for all n

33 / 161

Example

• Consider F = f/2,a/0, and L := {t ∈ T (F) | |t | is prime}
• |t | is number of nodes in t

• L is not regular.
• Proof by contradiction. Assume L is regular, and k is pumping constant

• Choose t ∈ L with height(t) > k
• We obtain C,C′, u such that t = C[C′[u]] and ∀n. C[C′n[u]] ∈ L
• We have |C[C′n[u]]| = |C| − 1 + n(|C′| − 1) + |u|

• Choose n = |C|+ |u| − 1 to show that this is not prime for all n

33 / 161

Example

• Consider F = f/2,a/0, and L := {t ∈ T (F) | |t | is prime}
• |t | is number of nodes in t

• L is not regular.
• Proof by contradiction. Assume L is regular, and k is pumping constant
• Choose t ∈ L with height(t) > k

• We obtain C,C′, u such that t = C[C′[u]] and ∀n. C[C′n[u]] ∈ L
• We have |C[C′n[u]]| = |C| − 1 + n(|C′| − 1) + |u|

• Choose n = |C|+ |u| − 1 to show that this is not prime for all n

33 / 161

Example

• Consider F = f/2,a/0, and L := {t ∈ T (F) | |t | is prime}
• |t | is number of nodes in t

• L is not regular.
• Proof by contradiction. Assume L is regular, and k is pumping constant
• Choose t ∈ L with height(t) > k
• We obtain C,C′, u such that t = C[C′[u]] and ∀n. C[C′n[u]] ∈ L

• We have |C[C′n[u]]| = |C| − 1 + n(|C′| − 1) + |u|

• Choose n = |C|+ |u| − 1 to show that this is not prime for all n

33 / 161

Example

• Consider F = f/2,a/0, and L := {t ∈ T (F) | |t | is prime}
• |t | is number of nodes in t

• L is not regular.
• Proof by contradiction. Assume L is regular, and k is pumping constant
• Choose t ∈ L with height(t) > k
• We obtain C,C′, u such that t = C[C′[u]] and ∀n. C[C′n[u]] ∈ L
• We have |C[C′n[u]]| = |C| − 1 + n(|C′| − 1) + |u|

• Choose n = |C|+ |u| − 1 to show that this is not prime for all n

33 / 161

Example

• Consider F = f/2,a/0, and L := {t ∈ T (F) | |t | is prime}
• |t | is number of nodes in t

• L is not regular.
• Proof by contradiction. Assume L is regular, and k is pumping constant
• Choose t ∈ L with height(t) > k
• We obtain C,C′, u such that t = C[C′[u]] and ∀n. C[C′n[u]] ∈ L
• We have |C[C′n[u]]| = |C| − 1 + n(|C′| − 1) + |u|

• Choose n = |C|+ |u| − 1 to show that this is not prime for all n

33 / 161

Corollaries

• Let A = (Q,F ,Qf ,∆) be an FTA.

1 L(A) is non-empty, iff ∃t ∈ L(A).height(t) ≤ |Q|
2 L(A) is infinite, iff ∃t ∈ L(A).|Q| < height(t) ≤ 2|Q|

• Proof ideas:

1 Remove duplicate states of accepting run repeatedly
2 =⇒: Take t ∈ L(A) high enough. Remove duplicate states repeatedly, until

longest path has exactly one duplication.

• ⇐=: Pump with infinitely many n

34 / 161

Corollaries

• Let A = (Q,F ,Qf ,∆) be an FTA.
1 L(A) is non-empty, iff ∃t ∈ L(A).height(t) ≤ |Q|

2 L(A) is infinite, iff ∃t ∈ L(A).|Q| < height(t) ≤ 2|Q|
• Proof ideas:

1 Remove duplicate states of accepting run repeatedly
2 =⇒: Take t ∈ L(A) high enough. Remove duplicate states repeatedly, until

longest path has exactly one duplication.

• ⇐=: Pump with infinitely many n

34 / 161

Corollaries

• Let A = (Q,F ,Qf ,∆) be an FTA.
1 L(A) is non-empty, iff ∃t ∈ L(A).height(t) ≤ |Q|
2 L(A) is infinite, iff ∃t ∈ L(A).|Q| < height(t) ≤ 2|Q|

• Proof ideas:

1 Remove duplicate states of accepting run repeatedly
2 =⇒: Take t ∈ L(A) high enough. Remove duplicate states repeatedly, until

longest path has exactly one duplication.

• ⇐=: Pump with infinitely many n

34 / 161

Corollaries

• Let A = (Q,F ,Qf ,∆) be an FTA.
1 L(A) is non-empty, iff ∃t ∈ L(A).height(t) ≤ |Q|
2 L(A) is infinite, iff ∃t ∈ L(A).|Q| < height(t) ≤ 2|Q|

• Proof ideas:

1 Remove duplicate states of accepting run repeatedly
2 =⇒: Take t ∈ L(A) high enough. Remove duplicate states repeatedly, until

longest path has exactly one duplication.

• ⇐=: Pump with infinitely many n

34 / 161

Corollaries

• Let A = (Q,F ,Qf ,∆) be an FTA.
1 L(A) is non-empty, iff ∃t ∈ L(A).height(t) ≤ |Q|
2 L(A) is infinite, iff ∃t ∈ L(A).|Q| < height(t) ≤ 2|Q|

• Proof ideas:
1 Remove duplicate states of accepting run repeatedly

2 =⇒: Take t ∈ L(A) high enough. Remove duplicate states repeatedly, until
longest path has exactly one duplication.

• ⇐=: Pump with infinitely many n

34 / 161

Corollaries

• Let A = (Q,F ,Qf ,∆) be an FTA.
1 L(A) is non-empty, iff ∃t ∈ L(A).height(t) ≤ |Q|
2 L(A) is infinite, iff ∃t ∈ L(A).|Q| < height(t) ≤ 2|Q|

• Proof ideas:
1 Remove duplicate states of accepting run repeatedly
2 =⇒: Take t ∈ L(A) high enough. Remove duplicate states repeatedly, until

longest path has exactly one duplication.

• ⇐=: Pump with infinitely many n

34 / 161

Corollaries

• Let A = (Q,F ,Qf ,∆) be an FTA.
1 L(A) is non-empty, iff ∃t ∈ L(A).height(t) ≤ |Q|
2 L(A) is infinite, iff ∃t ∈ L(A).|Q| < height(t) ≤ 2|Q|

• Proof ideas:
1 Remove duplicate states of accepting run repeatedly
2 =⇒: Take t ∈ L(A) high enough. Remove duplicate states repeatedly, until

longest path has exactly one duplication.
• ⇐=: Pump with infinitely many n

34 / 161

Last Lecture

• Deterministic Automata
• Powerset construction

• Pumping Lemma

35 / 161

Table of Contents

1 Introduction

2 Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

36 / 161

Closure Properties

Theorem

• The class of regular languages is closed under union, intersection, and
complement.

• Automata for union, intersection, and complement can be computed.

37 / 161

Union

• Given automata A1 = (Q1,F ,Qf1,∆1) and A2 = (Q2,F ,Qf2,∆2).

• Assume, wlog, Q1 ∩Q2 = ∅
• Let A = (Q1 ∪Q2,F ,Qf1 ∪Qf2,∆1 ∪∆2)
• Straightforward: L(A) = L(A1) ∪ L(A2)

• However: A may be nondeterministic and not complete, even if A1 and
A2 were.

• Let A1,A2 be deterministic and complete. Let A = (Q,F ,Qf ,∆) with

• Q = Q1 ×Q2, Qf = Qf1 ×Q2 ∪Q1 ×Qf2, and ∆ = ∆1 ×∆2 where

∆1 ×∆2 := {f ((q1, q′1), . . . , (qn, q′n))→ (q, q′) |
f (q1, . . . , qn)→ q ∈ ∆1 ∧ f (q′1, . . . , q

′
n)→ q′ ∈ ∆2}

• Then L(A) = L(A1) ∪ L(A2) and A is deterministic and complete.
• Intuition: Recognize with both automata in parallel.

38 / 161

Union

• Given automata A1 = (Q1,F ,Qf1,∆1) and A2 = (Q2,F ,Qf2,∆2).
• Assume, wlog, Q1 ∩Q2 = ∅

• Let A = (Q1 ∪Q2,F ,Qf1 ∪Qf2,∆1 ∪∆2)
• Straightforward: L(A) = L(A1) ∪ L(A2)

• However: A may be nondeterministic and not complete, even if A1 and
A2 were.

• Let A1,A2 be deterministic and complete. Let A = (Q,F ,Qf ,∆) with

• Q = Q1 ×Q2, Qf = Qf1 ×Q2 ∪Q1 ×Qf2, and ∆ = ∆1 ×∆2 where

∆1 ×∆2 := {f ((q1, q′1), . . . , (qn, q′n))→ (q, q′) |
f (q1, . . . , qn)→ q ∈ ∆1 ∧ f (q′1, . . . , q

′
n)→ q′ ∈ ∆2}

• Then L(A) = L(A1) ∪ L(A2) and A is deterministic and complete.
• Intuition: Recognize with both automata in parallel.

38 / 161

Union

• Given automata A1 = (Q1,F ,Qf1,∆1) and A2 = (Q2,F ,Qf2,∆2).
• Assume, wlog, Q1 ∩Q2 = ∅
• Let A = (Q1 ∪Q2,F ,Qf1 ∪Qf2,∆1 ∪∆2)

• Straightforward: L(A) = L(A1) ∪ L(A2)

• However: A may be nondeterministic and not complete, even if A1 and
A2 were.

• Let A1,A2 be deterministic and complete. Let A = (Q,F ,Qf ,∆) with

• Q = Q1 ×Q2, Qf = Qf1 ×Q2 ∪Q1 ×Qf2, and ∆ = ∆1 ×∆2 where

∆1 ×∆2 := {f ((q1, q′1), . . . , (qn, q′n))→ (q, q′) |
f (q1, . . . , qn)→ q ∈ ∆1 ∧ f (q′1, . . . , q

′
n)→ q′ ∈ ∆2}

• Then L(A) = L(A1) ∪ L(A2) and A is deterministic and complete.
• Intuition: Recognize with both automata in parallel.

38 / 161

Union

• Given automata A1 = (Q1,F ,Qf1,∆1) and A2 = (Q2,F ,Qf2,∆2).
• Assume, wlog, Q1 ∩Q2 = ∅
• Let A = (Q1 ∪Q2,F ,Qf1 ∪Qf2,∆1 ∪∆2)
• Straightforward: L(A) = L(A1) ∪ L(A2)

• However: A may be nondeterministic and not complete, even if A1 and
A2 were.

• Let A1,A2 be deterministic and complete. Let A = (Q,F ,Qf ,∆) with

• Q = Q1 ×Q2, Qf = Qf1 ×Q2 ∪Q1 ×Qf2, and ∆ = ∆1 ×∆2 where

∆1 ×∆2 := {f ((q1, q′1), . . . , (qn, q′n))→ (q, q′) |
f (q1, . . . , qn)→ q ∈ ∆1 ∧ f (q′1, . . . , q

′
n)→ q′ ∈ ∆2}

• Then L(A) = L(A1) ∪ L(A2) and A is deterministic and complete.
• Intuition: Recognize with both automata in parallel.

38 / 161

Union

• Given automata A1 = (Q1,F ,Qf1,∆1) and A2 = (Q2,F ,Qf2,∆2).
• Assume, wlog, Q1 ∩Q2 = ∅
• Let A = (Q1 ∪Q2,F ,Qf1 ∪Qf2,∆1 ∪∆2)
• Straightforward: L(A) = L(A1) ∪ L(A2)

• However: A may be nondeterministic and not complete, even if A1 and
A2 were.

• Let A1,A2 be deterministic and complete. Let A = (Q,F ,Qf ,∆) with

• Q = Q1 ×Q2, Qf = Qf1 ×Q2 ∪Q1 ×Qf2, and ∆ = ∆1 ×∆2 where

∆1 ×∆2 := {f ((q1, q′1), . . . , (qn, q′n))→ (q, q′) |
f (q1, . . . , qn)→ q ∈ ∆1 ∧ f (q′1, . . . , q

′
n)→ q′ ∈ ∆2}

• Then L(A) = L(A1) ∪ L(A2) and A is deterministic and complete.
• Intuition: Recognize with both automata in parallel.

38 / 161

Union

• Given automata A1 = (Q1,F ,Qf1,∆1) and A2 = (Q2,F ,Qf2,∆2).
• Assume, wlog, Q1 ∩Q2 = ∅
• Let A = (Q1 ∪Q2,F ,Qf1 ∪Qf2,∆1 ∪∆2)
• Straightforward: L(A) = L(A1) ∪ L(A2)

• However: A may be nondeterministic and not complete, even if A1 and
A2 were.

• Let A1,A2 be deterministic and complete. Let A = (Q,F ,Qf ,∆) with

• Q = Q1 ×Q2, Qf = Qf1 ×Q2 ∪Q1 ×Qf2, and ∆ = ∆1 ×∆2 where

∆1 ×∆2 := {f ((q1, q′1), . . . , (qn, q′n))→ (q, q′) |
f (q1, . . . , qn)→ q ∈ ∆1 ∧ f (q′1, . . . , q

′
n)→ q′ ∈ ∆2}

• Then L(A) = L(A1) ∪ L(A2) and A is deterministic and complete.
• Intuition: Recognize with both automata in parallel.

38 / 161

Union

• Given automata A1 = (Q1,F ,Qf1,∆1) and A2 = (Q2,F ,Qf2,∆2).
• Assume, wlog, Q1 ∩Q2 = ∅
• Let A = (Q1 ∪Q2,F ,Qf1 ∪Qf2,∆1 ∪∆2)
• Straightforward: L(A) = L(A1) ∪ L(A2)

• However: A may be nondeterministic and not complete, even if A1 and
A2 were.

• Let A1,A2 be deterministic and complete. Let A = (Q,F ,Qf ,∆) with
• Q = Q1 ×Q2, Qf = Qf1 ×Q2 ∪Q1 ×Qf2, and ∆ = ∆1 ×∆2 where

∆1 ×∆2 := {f ((q1, q′1), . . . , (qn, q′n))→ (q, q′) |
f (q1, . . . , qn)→ q ∈ ∆1 ∧ f (q′1, . . . , q

′
n)→ q′ ∈ ∆2}

• Then L(A) = L(A1) ∪ L(A2) and A is deterministic and complete.
• Intuition: Recognize with both automata in parallel.

38 / 161

Union

• Given automata A1 = (Q1,F ,Qf1,∆1) and A2 = (Q2,F ,Qf2,∆2).
• Assume, wlog, Q1 ∩Q2 = ∅
• Let A = (Q1 ∪Q2,F ,Qf1 ∪Qf2,∆1 ∪∆2)
• Straightforward: L(A) = L(A1) ∪ L(A2)

• However: A may be nondeterministic and not complete, even if A1 and
A2 were.

• Let A1,A2 be deterministic and complete. Let A = (Q,F ,Qf ,∆) with
• Q = Q1 ×Q2, Qf = Qf1 ×Q2 ∪Q1 ×Qf2, and ∆ = ∆1 ×∆2 where

∆1 ×∆2 := {f ((q1, q′1), . . . , (qn, q′n))→ (q, q′) |
f (q1, . . . , qn)→ q ∈ ∆1 ∧ f (q′1, . . . , q

′
n)→ q′ ∈ ∆2}

• Then L(A) = L(A1) ∪ L(A2) and A is deterministic and complete.

• Intuition: Recognize with both automata in parallel.

38 / 161

Union

• Given automata A1 = (Q1,F ,Qf1,∆1) and A2 = (Q2,F ,Qf2,∆2).
• Assume, wlog, Q1 ∩Q2 = ∅
• Let A = (Q1 ∪Q2,F ,Qf1 ∪Qf2,∆1 ∪∆2)
• Straightforward: L(A) = L(A1) ∪ L(A2)

• However: A may be nondeterministic and not complete, even if A1 and
A2 were.

• Let A1,A2 be deterministic and complete. Let A = (Q,F ,Qf ,∆) with
• Q = Q1 ×Q2, Qf = Qf1 ×Q2 ∪Q1 ×Qf2, and ∆ = ∆1 ×∆2 where

∆1 ×∆2 := {f ((q1, q′1), . . . , (qn, q′n))→ (q, q′) |
f (q1, . . . , qn)→ q ∈ ∆1 ∧ f (q′1, . . . , q

′
n)→ q′ ∈ ∆2}

• Then L(A) = L(A1) ∪ L(A2) and A is deterministic and complete.
• Intuition: Recognize with both automata in parallel.

38 / 161

Complement

• Assume L is recognized by the complete DFTA A = (Q,F ,Qf ,∆)

• Define Ac = (Q,F ,Q \Qf ,∆)

• Obviously, L(Ac) = T (F) \ L(A)

• If a nondeterministic automaton is given, determinization may cause
exponential blowup

39 / 161

Complement

• Assume L is recognized by the complete DFTA A = (Q,F ,Qf ,∆)

• Define Ac = (Q,F ,Q \Qf ,∆)

• Obviously, L(Ac) = T (F) \ L(A)

• If a nondeterministic automaton is given, determinization may cause
exponential blowup

39 / 161

Complement

• Assume L is recognized by the complete DFTA A = (Q,F ,Qf ,∆)

• Define Ac = (Q,F ,Q \Qf ,∆)

• Obviously, L(Ac) = T (F) \ L(A)

• If a nondeterministic automaton is given, determinization may cause
exponential blowup

39 / 161

Complement

• Assume L is recognized by the complete DFTA A = (Q,F ,Qf ,∆)

• Define Ac = (Q,F ,Q \Qf ,∆)

• Obviously, L(Ac) = T (F) \ L(A)

• If a nondeterministic automaton is given, determinization may cause
exponential blowup

39 / 161

Intersection

• The easy way: L1 ∩ L2 = L1 ∪ L2

• Exponential blowup for NFTA.
• Product construction: Given automata A1 = (Q1,F ,Qf1,∆1) and
A2 = (Q2,F ,Qf2,∆2).

• Define A = (Q1 ×Q2,F ,Qf1 ×Qf2,∆1 ×∆2)
• L(A) = L(A1) ∩ L(A2)

• Intuition: Automata run in parallel. Accept if both accept.

• A is deterministic/complete if A1 and A2 are.

• Product construction can also be combined with reduction algorithm, to
avoid construction of inaccessible states.

40 / 161

Intersection

• The easy way: L1 ∩ L2 = L1 ∪ L2

• Exponential blowup for NFTA.

• Product construction: Given automata A1 = (Q1,F ,Qf1,∆1) and
A2 = (Q2,F ,Qf2,∆2).

• Define A = (Q1 ×Q2,F ,Qf1 ×Qf2,∆1 ×∆2)
• L(A) = L(A1) ∩ L(A2)

• Intuition: Automata run in parallel. Accept if both accept.

• A is deterministic/complete if A1 and A2 are.

• Product construction can also be combined with reduction algorithm, to
avoid construction of inaccessible states.

40 / 161

Intersection

• The easy way: L1 ∩ L2 = L1 ∪ L2

• Exponential blowup for NFTA.
• Product construction: Given automata A1 = (Q1,F ,Qf1,∆1) and
A2 = (Q2,F ,Qf2,∆2).

• Define A = (Q1 ×Q2,F ,Qf1 ×Qf2,∆1 ×∆2)
• L(A) = L(A1) ∩ L(A2)

• Intuition: Automata run in parallel. Accept if both accept.

• A is deterministic/complete if A1 and A2 are.

• Product construction can also be combined with reduction algorithm, to
avoid construction of inaccessible states.

40 / 161

Intersection

• The easy way: L1 ∩ L2 = L1 ∪ L2

• Exponential blowup for NFTA.
• Product construction: Given automata A1 = (Q1,F ,Qf1,∆1) and
A2 = (Q2,F ,Qf2,∆2).
• Define A = (Q1 ×Q2,F ,Qf1 ×Qf2,∆1 ×∆2)

• L(A) = L(A1) ∩ L(A2)

• Intuition: Automata run in parallel. Accept if both accept.

• A is deterministic/complete if A1 and A2 are.

• Product construction can also be combined with reduction algorithm, to
avoid construction of inaccessible states.

40 / 161

Intersection

• The easy way: L1 ∩ L2 = L1 ∪ L2

• Exponential blowup for NFTA.
• Product construction: Given automata A1 = (Q1,F ,Qf1,∆1) and
A2 = (Q2,F ,Qf2,∆2).
• Define A = (Q1 ×Q2,F ,Qf1 ×Qf2,∆1 ×∆2)
• L(A) = L(A1) ∩ L(A2)

• Intuition: Automata run in parallel. Accept if both accept.

• A is deterministic/complete if A1 and A2 are.

• Product construction can also be combined with reduction algorithm, to
avoid construction of inaccessible states.

40 / 161

Intersection

• The easy way: L1 ∩ L2 = L1 ∪ L2

• Exponential blowup for NFTA.
• Product construction: Given automata A1 = (Q1,F ,Qf1,∆1) and
A2 = (Q2,F ,Qf2,∆2).
• Define A = (Q1 ×Q2,F ,Qf1 ×Qf2,∆1 ×∆2)
• L(A) = L(A1) ∩ L(A2)

• Intuition: Automata run in parallel. Accept if both accept.

• A is deterministic/complete if A1 and A2 are.

• Product construction can also be combined with reduction algorithm, to
avoid construction of inaccessible states.

40 / 161

Intersection

• The easy way: L1 ∩ L2 = L1 ∪ L2

• Exponential blowup for NFTA.
• Product construction: Given automata A1 = (Q1,F ,Qf1,∆1) and
A2 = (Q2,F ,Qf2,∆2).
• Define A = (Q1 ×Q2,F ,Qf1 ×Qf2,∆1 ×∆2)
• L(A) = L(A1) ∩ L(A2)

• Intuition: Automata run in parallel. Accept if both accept.

• A is deterministic/complete if A1 and A2 are.

• Product construction can also be combined with reduction algorithm, to
avoid construction of inaccessible states.

40 / 161

Intersection

• The easy way: L1 ∩ L2 = L1 ∪ L2

• Exponential blowup for NFTA.
• Product construction: Given automata A1 = (Q1,F ,Qf1,∆1) and
A2 = (Q2,F ,Qf2,∆2).
• Define A = (Q1 ×Q2,F ,Qf1 ×Qf2,∆1 ×∆2)
• L(A) = L(A1) ∩ L(A2)

• Intuition: Automata run in parallel. Accept if both accept.

• A is deterministic/complete if A1 and A2 are.

• Product construction can also be combined with reduction algorithm, to
avoid construction of inaccessible states.

40 / 161

Summary

• For DFTA: Polynomial time intersection, union, complement

• For NFTA: Polynomial time intersection, union. Exp-time complement.

41 / 161

Summary

• For DFTA: Polynomial time intersection, union, complement
• For NFTA: Polynomial time intersection, union. Exp-time complement.

41 / 161

More Algorithms on FTA

• Membership for NFTA. In time O(|t | ∗ |A|) On-the-fly determinization.

• Emptiness check: Time O(|A|). Exercise!

42 / 161

More Algorithms on FTA

• Membership for NFTA. In time O(|t | ∗ |A|) On-the-fly determinization.
• Emptiness check: Time O(|A|). Exercise!

42 / 161

Table of Contents

1 Introduction

2 Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

43 / 161

Tree Homomorphisms

• Map each symbol of tree to new subtree

• Example: Convert ternary tree to binary tree
• f (x1, x2, x3) 7→ g(x1, g(x2, x3))

• Example: Eliminate conjunction from Boolean formulas
• x1 ∧ x2 7→ ¬(¬x1 ∨ ¬x2)

44 / 161

Tree Homomorphisms

• Map each symbol of tree to new subtree
• Example: Convert ternary tree to binary tree

• f (x1, x2, x3) 7→ g(x1, g(x2, x3))

• Example: Eliminate conjunction from Boolean formulas
• x1 ∧ x2 7→ ¬(¬x1 ∨ ¬x2)

44 / 161

Tree Homomorphisms

• Map each symbol of tree to new subtree
• Example: Convert ternary tree to binary tree

• f (x1, x2, x3) 7→ g(x1, g(x2, x3))

• Example: Eliminate conjunction from Boolean formulas
• x1 ∧ x2 7→ ¬(¬x1 ∨ ¬x2)

44 / 161

Formal definition

• Let F and F ′ be ranked alphabets, not necessarily disjoint

• Let, for any n, Xn := {x1, . . . , xn} be variables, disjoint from F and F ′

• Let hF be a mapping that maps f ∈ Fn to hF (f) ∈ T (F ′,Xn)

• hF determines a tree homomorphism h : T (F)→ T (F ′):

h(f (t1, . . . , tn)) := hF (f)(x1 7→ h(t1), . . . , xn 7→ h(tn))

45 / 161

Formal definition

• Let F and F ′ be ranked alphabets, not necessarily disjoint
• Let, for any n, Xn := {x1, . . . , xn} be variables, disjoint from F and F ′

• Let hF be a mapping that maps f ∈ Fn to hF (f) ∈ T (F ′,Xn)

• hF determines a tree homomorphism h : T (F)→ T (F ′):

h(f (t1, . . . , tn)) := hF (f)(x1 7→ h(t1), . . . , xn 7→ h(tn))

45 / 161

Formal definition

• Let F and F ′ be ranked alphabets, not necessarily disjoint
• Let, for any n, Xn := {x1, . . . , xn} be variables, disjoint from F and F ′

• Let hF be a mapping that maps f ∈ Fn to hF (f) ∈ T (F ′,Xn)

• hF determines a tree homomorphism h : T (F)→ T (F ′):

h(f (t1, . . . , tn)) := hF (f)(x1 7→ h(t1), . . . , xn 7→ h(tn))

45 / 161

Formal definition

• Let F and F ′ be ranked alphabets, not necessarily disjoint
• Let, for any n, Xn := {x1, . . . , xn} be variables, disjoint from F and F ′

• Let hF be a mapping that maps f ∈ Fn to hF (f) ∈ T (F ′,Xn)

• hF determines a tree homomorphism h : T (F)→ T (F ′):

h(f (t1, . . . , tn)) := hF (f)(x1 7→ h(t1), . . . , xn 7→ h(tn))

45 / 161

Preservation of Regularity

• Tree homomorphisms do not preserve regularity in general

• Let L = {f (g i (a)) | i ∈ N}. Obviously regular.
• Let hF : f (x) 7→ f (x , x)
• h(L) = {f (g i (a), g i (a)) | i ∈ N}. Not regular.

• But:

• A tree homomorphism determined by hF is linear, iff for all f ∈ F , the term
hF (f) is linear.

Theorem
Let L be a regular language, and h a linear tree homomorphism. Then h(L) is
also regular.

• Proof idea: For each original rule f (q1, . . . ,qn), insert rules that recognize
hF [q1, . . . ,qn]

46 / 161

Preservation of Regularity

• Tree homomorphisms do not preserve regularity in general
• Let L = {f (g i (a)) | i ∈ N}. Obviously regular.

• Let hF : f (x) 7→ f (x , x)
• h(L) = {f (g i (a), g i (a)) | i ∈ N}. Not regular.

• But:

• A tree homomorphism determined by hF is linear, iff for all f ∈ F , the term
hF (f) is linear.

Theorem
Let L be a regular language, and h a linear tree homomorphism. Then h(L) is
also regular.

• Proof idea: For each original rule f (q1, . . . ,qn), insert rules that recognize
hF [q1, . . . ,qn]

46 / 161

Preservation of Regularity

• Tree homomorphisms do not preserve regularity in general
• Let L = {f (g i (a)) | i ∈ N}. Obviously regular.
• Let hF : f (x) 7→ f (x , x)

• h(L) = {f (g i (a), g i (a)) | i ∈ N}. Not regular.
• But:

• A tree homomorphism determined by hF is linear, iff for all f ∈ F , the term
hF (f) is linear.

Theorem
Let L be a regular language, and h a linear tree homomorphism. Then h(L) is
also regular.

• Proof idea: For each original rule f (q1, . . . ,qn), insert rules that recognize
hF [q1, . . . ,qn]

46 / 161

Preservation of Regularity

• Tree homomorphisms do not preserve regularity in general
• Let L = {f (g i (a)) | i ∈ N}. Obviously regular.
• Let hF : f (x) 7→ f (x , x)
• h(L) = {f (g i (a), g i (a)) | i ∈ N}. Not regular.

• But:

• A tree homomorphism determined by hF is linear, iff for all f ∈ F , the term
hF (f) is linear.

Theorem
Let L be a regular language, and h a linear tree homomorphism. Then h(L) is
also regular.

• Proof idea: For each original rule f (q1, . . . ,qn), insert rules that recognize
hF [q1, . . . ,qn]

46 / 161

Preservation of Regularity

• Tree homomorphisms do not preserve regularity in general
• Let L = {f (g i (a)) | i ∈ N}. Obviously regular.
• Let hF : f (x) 7→ f (x , x)
• h(L) = {f (g i (a), g i (a)) | i ∈ N}. Not regular.

• But:

• A tree homomorphism determined by hF is linear, iff for all f ∈ F , the term
hF (f) is linear.

Theorem
Let L be a regular language, and h a linear tree homomorphism. Then h(L) is
also regular.

• Proof idea: For each original rule f (q1, . . . ,qn), insert rules that recognize
hF [q1, . . . ,qn]

46 / 161

Preservation of Regularity

• Tree homomorphisms do not preserve regularity in general
• Let L = {f (g i (a)) | i ∈ N}. Obviously regular.
• Let hF : f (x) 7→ f (x , x)
• h(L) = {f (g i (a), g i (a)) | i ∈ N}. Not regular.

• But:
• A tree homomorphism determined by hF is linear, iff for all f ∈ F , the term

hF (f) is linear.

Theorem
Let L be a regular language, and h a linear tree homomorphism. Then h(L) is
also regular.

• Proof idea: For each original rule f (q1, . . . ,qn), insert rules that recognize
hF [q1, . . . ,qn]

46 / 161

Preservation of Regularity

• Tree homomorphisms do not preserve regularity in general
• Let L = {f (g i (a)) | i ∈ N}. Obviously regular.
• Let hF : f (x) 7→ f (x , x)
• h(L) = {f (g i (a), g i (a)) | i ∈ N}. Not regular.

• But:
• A tree homomorphism determined by hF is linear, iff for all f ∈ F , the term

hF (f) is linear.

Theorem
Let L be a regular language, and h a linear tree homomorphism. Then h(L) is
also regular.

• Proof idea: For each original rule f (q1, . . . ,qn), insert rules that recognize
hF [q1, . . . ,qn]

46 / 161

Preservation of Regularity

• Tree homomorphisms do not preserve regularity in general
• Let L = {f (g i (a)) | i ∈ N}. Obviously regular.
• Let hF : f (x) 7→ f (x , x)
• h(L) = {f (g i (a), g i (a)) | i ∈ N}. Not regular.

• But:
• A tree homomorphism determined by hF is linear, iff for all f ∈ F , the term

hF (f) is linear.

Theorem
Let L be a regular language, and h a linear tree homomorphism. Then h(L) is
also regular.

• Proof idea: For each original rule f (q1, . . . ,qn), insert rules that recognize
hF [q1, . . . ,qn]

46 / 161

Positions

• Identify position in tree by sequence of natural numbers

• Let t be a tree, and p ∈ N∗. We define the subtree of t at position p by:

t(ε) := t (f (t1, . . . , tn))(ip) := ti (p)

• Pos(t) is the set of valid positions in t

47 / 161

Positions

• Identify position in tree by sequence of natural numbers
• Let t be a tree, and p ∈ N∗. We define the subtree of t at position p by:

t(ε) := t (f (t1, . . . , tn))(ip) := ti (p)

• Pos(t) is the set of valid positions in t

47 / 161

Positions

• Identify position in tree by sequence of natural numbers
• Let t be a tree, and p ∈ N∗. We define the subtree of t at position p by:

t(ε) := t (f (t1, . . . , tn))(ip) := ti (p)

• Pos(t) is the set of valid positions in t

47 / 161

Construction (Preservation of regularity)

• Assume L is accepted by reduced DFTA A = (Q,F ,Qf ,∆).

• Construct NFTA A′ = (Q′,F ′,Q′f ,∆′):

• With Q ⊆ Q′ and Q′f = Qf
• For each rule r = f (q1, . . . , qn)→ q, tf = hF (t), and position p ∈ Pos(tf):

• States qr
p ∈ Q′

• If tf (p) = g(. . .) ∈ Fk : g(qr
p1, . . . , q

r
pk)→ qr ∈ ∆′

• If tf (p) = xi : qi → qr
p ∈ ∆′

• qr
ε → q ∈ ∆′

48 / 161

Construction (Preservation of regularity)

• Assume L is accepted by reduced DFTA A = (Q,F ,Qf ,∆).
• Construct NFTA A′ = (Q′,F ′,Q′f ,∆′):

• With Q ⊆ Q′ and Q′f = Qf
• For each rule r = f (q1, . . . , qn)→ q, tf = hF (t), and position p ∈ Pos(tf):

• States qr
p ∈ Q′

• If tf (p) = g(. . .) ∈ Fk : g(qr
p1, . . . , q

r
pk)→ qr ∈ ∆′

• If tf (p) = xi : qi → qr
p ∈ ∆′

• qr
ε → q ∈ ∆′

48 / 161

Construction (Preservation of regularity)

• Assume L is accepted by reduced DFTA A = (Q,F ,Qf ,∆).
• Construct NFTA A′ = (Q′,F ′,Q′f ,∆′):

• With Q ⊆ Q′ and Q′f = Qf

• For each rule r = f (q1, . . . , qn)→ q, tf = hF (t), and position p ∈ Pos(tf):

• States qr
p ∈ Q′

• If tf (p) = g(. . .) ∈ Fk : g(qr
p1, . . . , q

r
pk)→ qr ∈ ∆′

• If tf (p) = xi : qi → qr
p ∈ ∆′

• qr
ε → q ∈ ∆′

48 / 161

Construction (Preservation of regularity)

• Assume L is accepted by reduced DFTA A = (Q,F ,Qf ,∆).
• Construct NFTA A′ = (Q′,F ′,Q′f ,∆′):

• With Q ⊆ Q′ and Q′f = Qf
• For each rule r = f (q1, . . . , qn)→ q, tf = hF (t), and position p ∈ Pos(tf):

• States qr
p ∈ Q′

• If tf (p) = g(. . .) ∈ Fk : g(qr
p1, . . . , q

r
pk)→ qr ∈ ∆′

• If tf (p) = xi : qi → qr
p ∈ ∆′

• qr
ε → q ∈ ∆′

48 / 161

Construction (Preservation of regularity)

• Assume L is accepted by reduced DFTA A = (Q,F ,Qf ,∆).
• Construct NFTA A′ = (Q′,F ′,Q′f ,∆′):

• With Q ⊆ Q′ and Q′f = Qf
• For each rule r = f (q1, . . . , qn)→ q, tf = hF (t), and position p ∈ Pos(tf):

• States qr
p ∈ Q′

• If tf (p) = g(. . .) ∈ Fk : g(qr
p1, . . . , q

r
pk)→ qr ∈ ∆′

• If tf (p) = xi : qi → qr
p ∈ ∆′

• qr
ε → q ∈ ∆′

48 / 161

Construction (Preservation of regularity)

• Assume L is accepted by reduced DFTA A = (Q,F ,Qf ,∆).
• Construct NFTA A′ = (Q′,F ′,Q′f ,∆′):

• With Q ⊆ Q′ and Q′f = Qf
• For each rule r = f (q1, . . . , qn)→ q, tf = hF (t), and position p ∈ Pos(tf):

• States qr
p ∈ Q′

• If tf (p) = g(. . .) ∈ Fk : g(qr
p1, . . . , q

r
pk)→ qr ∈ ∆′

• If tf (p) = xi : qi → qr
p ∈ ∆′

• qr
ε → q ∈ ∆′

48 / 161

Construction (Preservation of regularity)

• Assume L is accepted by reduced DFTA A = (Q,F ,Qf ,∆).
• Construct NFTA A′ = (Q′,F ′,Q′f ,∆′):

• With Q ⊆ Q′ and Q′f = Qf
• For each rule r = f (q1, . . . , qn)→ q, tf = hF (t), and position p ∈ Pos(tf):

• States qr
p ∈ Q′

• If tf (p) = g(. . .) ∈ Fk : g(qr
p1, . . . , q

r
pk)→ qr ∈ ∆′

• If tf (p) = xi : qi → qr
p ∈ ∆′

• qr
ε → q ∈ ∆′

48 / 161

Construction (Preservation of regularity)

• Assume L is accepted by reduced DFTA A = (Q,F ,Qf ,∆).
• Construct NFTA A′ = (Q′,F ′,Q′f ,∆′):

• With Q ⊆ Q′ and Q′f = Qf
• For each rule r = f (q1, . . . , qn)→ q, tf = hF (t), and position p ∈ Pos(tf):

• States qr
p ∈ Q′

• If tf (p) = g(. . .) ∈ Fk : g(qr
p1, . . . , q

r
pk)→ qr ∈ ∆′

• If tf (p) = xi : qi → qr
p ∈ ∆′

• qr
ε → q ∈ ∆′

48 / 161

Proof sketch

• Prove h(L) ⊆ L(A′). Straightforward.

• Prove L(A′) ⊆ h(L) (Sketch on board).

• Idea: Split derivation of t →A′ q ∈ Q at rules of the form qr
ε → q.

• Assume r = f (. . .)→ q. Without using states from Q, automaton accepts
subtree of the form hF (f).

• Cases:
• Constant (0-ary symbol)
• Due to rule qi → qr

p ∈ ∆′, qi ∈ Q (use IH)

• Formally: Induction on size of derivation t →A′ q

49 / 161

Proof sketch

• Prove h(L) ⊆ L(A′). Straightforward.
• Prove L(A′) ⊆ h(L) (Sketch on board).

• Idea: Split derivation of t →A′ q ∈ Q at rules of the form qr
ε → q.

• Assume r = f (. . .)→ q. Without using states from Q, automaton accepts
subtree of the form hF (f).

• Cases:
• Constant (0-ary symbol)
• Due to rule qi → qr

p ∈ ∆′, qi ∈ Q (use IH)

• Formally: Induction on size of derivation t →A′ q

49 / 161

Proof sketch

• Prove h(L) ⊆ L(A′). Straightforward.
• Prove L(A′) ⊆ h(L) (Sketch on board).

• Idea: Split derivation of t →A′ q ∈ Q at rules of the form qr
ε → q.

• Assume r = f (. . .)→ q. Without using states from Q, automaton accepts
subtree of the form hF (f).

• Cases:
• Constant (0-ary symbol)
• Due to rule qi → qr

p ∈ ∆′, qi ∈ Q (use IH)

• Formally: Induction on size of derivation t →A′ q

49 / 161

Proof sketch

• Prove h(L) ⊆ L(A′). Straightforward.
• Prove L(A′) ⊆ h(L) (Sketch on board).

• Idea: Split derivation of t →A′ q ∈ Q at rules of the form qr
ε → q.

• Assume r = f (. . .)→ q. Without using states from Q, automaton accepts
subtree of the form hF (f).

• Cases:
• Constant (0-ary symbol)
• Due to rule qi → qr

p ∈ ∆′, qi ∈ Q (use IH)

• Formally: Induction on size of derivation t →A′ q

49 / 161

Proof sketch

• Prove h(L) ⊆ L(A′). Straightforward.
• Prove L(A′) ⊆ h(L) (Sketch on board).

• Idea: Split derivation of t →A′ q ∈ Q at rules of the form qr
ε → q.

• Assume r = f (. . .)→ q. Without using states from Q, automaton accepts
subtree of the form hF (f).

• Cases:
• Constant (0-ary symbol)
• Due to rule qi → qr

p ∈ ∆′, qi ∈ Q (use IH)

• Formally: Induction on size of derivation t →A′ q

49 / 161

Proof sketch

• Prove h(L) ⊆ L(A′). Straightforward.
• Prove L(A′) ⊆ h(L) (Sketch on board).

• Idea: Split derivation of t →A′ q ∈ Q at rules of the form qr
ε → q.

• Assume r = f (. . .)→ q. Without using states from Q, automaton accepts
subtree of the form hF (f).

• Cases:
• Constant (0-ary symbol)
• Due to rule qi → qr

p ∈ ∆′, qi ∈ Q (use IH)

• Formally: Induction on size of derivation t →A′ q

49 / 161

Last lecture

• Closure properties: Union, intersection, complement
• Tree homomorphisms

• Idea: Replace node by tree with „holes”
• and(x1, x2) 7→ not(or(not(x1), not(x2)))

• Regular languages closed under linear homomorphisms
• Linear: No subtrees are duplicated

50 / 161

Inverse Homomorphism

• Motivation: Reconsider elimination of ∧ in Boolean formulas

• Homomorphism: Given automaton that recognizes true formulas, construct
automaton for true formulas without ∧.

• Not really useful

• Inverse homomorphism: Given automaton for formulas without ∧, construct
automaton for formulas with ∧.

• This would be nice
• From automaton for simple language, and mapping of complex to simple

language, obtain automaton for complex language!

• Fortunately

Theorem
Let h be a tree homomorphism, and L a regular language. Then
h−1(L) := {t | h(t) ∈ L} is regular.

• Also holds for non-linear homomorphisms

• Common technique to show regularity/decidability

• Can be generalized to (macro) tree transducers

51 / 161

Inverse Homomorphism

• Motivation: Reconsider elimination of ∧ in Boolean formulas
• Homomorphism: Given automaton that recognizes true formulas, construct

automaton for true formulas without ∧.

• Not really useful
• Inverse homomorphism: Given automaton for formulas without ∧, construct

automaton for formulas with ∧.

• This would be nice
• From automaton for simple language, and mapping of complex to simple

language, obtain automaton for complex language!

• Fortunately

Theorem
Let h be a tree homomorphism, and L a regular language. Then
h−1(L) := {t | h(t) ∈ L} is regular.

• Also holds for non-linear homomorphisms

• Common technique to show regularity/decidability

• Can be generalized to (macro) tree transducers

51 / 161

Inverse Homomorphism

• Motivation: Reconsider elimination of ∧ in Boolean formulas
• Homomorphism: Given automaton that recognizes true formulas, construct

automaton for true formulas without ∧.
• Not really useful

• Inverse homomorphism: Given automaton for formulas without ∧, construct
automaton for formulas with ∧.

• This would be nice
• From automaton for simple language, and mapping of complex to simple

language, obtain automaton for complex language!

• Fortunately

Theorem
Let h be a tree homomorphism, and L a regular language. Then
h−1(L) := {t | h(t) ∈ L} is regular.

• Also holds for non-linear homomorphisms

• Common technique to show regularity/decidability

• Can be generalized to (macro) tree transducers

51 / 161

Inverse Homomorphism

• Motivation: Reconsider elimination of ∧ in Boolean formulas
• Homomorphism: Given automaton that recognizes true formulas, construct

automaton for true formulas without ∧.
• Not really useful

• Inverse homomorphism: Given automaton for formulas without ∧, construct
automaton for formulas with ∧.

• This would be nice
• From automaton for simple language, and mapping of complex to simple

language, obtain automaton for complex language!

• Fortunately

Theorem
Let h be a tree homomorphism, and L a regular language. Then
h−1(L) := {t | h(t) ∈ L} is regular.

• Also holds for non-linear homomorphisms

• Common technique to show regularity/decidability

• Can be generalized to (macro) tree transducers

51 / 161

Inverse Homomorphism

• Motivation: Reconsider elimination of ∧ in Boolean formulas
• Homomorphism: Given automaton that recognizes true formulas, construct

automaton for true formulas without ∧.
• Not really useful

• Inverse homomorphism: Given automaton for formulas without ∧, construct
automaton for formulas with ∧.
• This would be nice

• From automaton for simple language, and mapping of complex to simple
language, obtain automaton for complex language!

• Fortunately

Theorem
Let h be a tree homomorphism, and L a regular language. Then
h−1(L) := {t | h(t) ∈ L} is regular.

• Also holds for non-linear homomorphisms

• Common technique to show regularity/decidability

• Can be generalized to (macro) tree transducers

51 / 161

Inverse Homomorphism

• Motivation: Reconsider elimination of ∧ in Boolean formulas
• Homomorphism: Given automaton that recognizes true formulas, construct

automaton for true formulas without ∧.
• Not really useful

• Inverse homomorphism: Given automaton for formulas without ∧, construct
automaton for formulas with ∧.
• This would be nice
• From automaton for simple language, and mapping of complex to simple

language, obtain automaton for complex language!

• Fortunately

Theorem
Let h be a tree homomorphism, and L a regular language. Then
h−1(L) := {t | h(t) ∈ L} is regular.

• Also holds for non-linear homomorphisms

• Common technique to show regularity/decidability

• Can be generalized to (macro) tree transducers

51 / 161

Inverse Homomorphism

• Motivation: Reconsider elimination of ∧ in Boolean formulas
• Homomorphism: Given automaton that recognizes true formulas, construct

automaton for true formulas without ∧.
• Not really useful

• Inverse homomorphism: Given automaton for formulas without ∧, construct
automaton for formulas with ∧.
• This would be nice
• From automaton for simple language, and mapping of complex to simple

language, obtain automaton for complex language!

• Fortunately

Theorem
Let h be a tree homomorphism, and L a regular language. Then
h−1(L) := {t | h(t) ∈ L} is regular.

• Also holds for non-linear homomorphisms

• Common technique to show regularity/decidability

• Can be generalized to (macro) tree transducers

51 / 161

Inverse Homomorphism

• Motivation: Reconsider elimination of ∧ in Boolean formulas
• Homomorphism: Given automaton that recognizes true formulas, construct

automaton for true formulas without ∧.
• Not really useful

• Inverse homomorphism: Given automaton for formulas without ∧, construct
automaton for formulas with ∧.
• This would be nice
• From automaton for simple language, and mapping of complex to simple

language, obtain automaton for complex language!

• Fortunately

Theorem
Let h be a tree homomorphism, and L a regular language. Then
h−1(L) := {t | h(t) ∈ L} is regular.

• Also holds for non-linear homomorphisms

• Common technique to show regularity/decidability

• Can be generalized to (macro) tree transducers

51 / 161

Inverse Homomorphism

• Motivation: Reconsider elimination of ∧ in Boolean formulas
• Homomorphism: Given automaton that recognizes true formulas, construct

automaton for true formulas without ∧.
• Not really useful

• Inverse homomorphism: Given automaton for formulas without ∧, construct
automaton for formulas with ∧.
• This would be nice
• From automaton for simple language, and mapping of complex to simple

language, obtain automaton for complex language!

• Fortunately

Theorem
Let h be a tree homomorphism, and L a regular language. Then
h−1(L) := {t | h(t) ∈ L} is regular.

• Also holds for non-linear homomorphisms

• Common technique to show regularity/decidability

• Can be generalized to (macro) tree transducers

51 / 161

Inverse Homomorphism

• Motivation: Reconsider elimination of ∧ in Boolean formulas
• Homomorphism: Given automaton that recognizes true formulas, construct

automaton for true formulas without ∧.
• Not really useful

• Inverse homomorphism: Given automaton for formulas without ∧, construct
automaton for formulas with ∧.
• This would be nice
• From automaton for simple language, and mapping of complex to simple

language, obtain automaton for complex language!

• Fortunately

Theorem
Let h be a tree homomorphism, and L a regular language. Then
h−1(L) := {t | h(t) ∈ L} is regular.

• Also holds for non-linear homomorphisms

• Common technique to show regularity/decidability
• Can be generalized to (macro) tree transducers

51 / 161

Generalized Acceptance Relation

• Let A = (Q,F ,Qf ,∆) and t ∈ T (F ∪̇Q).

• We define t →A q as the least relation that satisfies

q →A q
f (q1, . . . ,qn)→ q ∈ ∆,∀i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q

• This is obviously a generalization of the acceptance relation we defined
earlier

52 / 161

Generalized Acceptance Relation

• Let A = (Q,F ,Qf ,∆) and t ∈ T (F ∪̇Q).
• We define t →A q as the least relation that satisfies

q →A q
f (q1, . . . ,qn)→ q ∈ ∆,∀i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q

• This is obviously a generalization of the acceptance relation we defined
earlier

52 / 161

Generalized Acceptance Relation

• Let A = (Q,F ,Qf ,∆) and t ∈ T (F ∪̇Q).
• We define t →A q as the least relation that satisfies

q →A q
f (q1, . . . ,qn)→ q ∈ ∆,∀i ≤ n. ti →A qi =⇒ f (t1, . . . , tn)→A q

• This is obviously a generalization of the acceptance relation we defined
earlier

52 / 161

Inverse Homomorphism, construction

• Let h : T (F)→ T (F ′) be a tree homomorphism determined by hF

• Let A′ = (Q′,F ′,Q′f ,∆′) be a DFTA with L = L(A′)
• We define DFTA A = (Q′ ∪̇ {s},F ,Q′f ,∆), with the rules

f (q1, . . . ,qn)→ q ∈ ∆ if f ∈ Fn, hF (f)[p1, . . . ,pn]→A′ q
where qi = pi if xi occurs in hF (f), and qi = s otherwise

a→ s ∈ ∆, f (s, . . . , s)→ s ∈ ∆

• Intuition: Accept node f , if its image is accepted by A′

• If image does not depend on a subtree, accept any subtree (state s)

53 / 161

Inverse Homomorphism, construction

• Let h : T (F)→ T (F ′) be a tree homomorphism determined by hF
• Let A′ = (Q′,F ′,Q′f ,∆′) be a DFTA with L = L(A′)

• We define DFTA A = (Q′ ∪̇ {s},F ,Q′f ,∆), with the rules

f (q1, . . . ,qn)→ q ∈ ∆ if f ∈ Fn, hF (f)[p1, . . . ,pn]→A′ q
where qi = pi if xi occurs in hF (f), and qi = s otherwise

a→ s ∈ ∆, f (s, . . . , s)→ s ∈ ∆

• Intuition: Accept node f , if its image is accepted by A′

• If image does not depend on a subtree, accept any subtree (state s)

53 / 161

Inverse Homomorphism, construction

• Let h : T (F)→ T (F ′) be a tree homomorphism determined by hF
• Let A′ = (Q′,F ′,Q′f ,∆′) be a DFTA with L = L(A′)
• We define DFTA A = (Q′ ∪̇ {s},F ,Q′f ,∆), with the rules

f (q1, . . . ,qn)→ q ∈ ∆ if f ∈ Fn, hF (f)[p1, . . . ,pn]→A′ q
where qi = pi if xi occurs in hF (f), and qi = s otherwise

a→ s ∈ ∆, f (s, . . . , s)→ s ∈ ∆

• Intuition: Accept node f , if its image is accepted by A′

• If image does not depend on a subtree, accept any subtree (state s)

53 / 161

Inverse Homomorphism, construction

• Let h : T (F)→ T (F ′) be a tree homomorphism determined by hF
• Let A′ = (Q′,F ′,Q′f ,∆′) be a DFTA with L = L(A′)
• We define DFTA A = (Q′ ∪̇ {s},F ,Q′f ,∆), with the rules

f (q1, . . . ,qn)→ q ∈ ∆ if f ∈ Fn, hF (f)[p1, . . . ,pn]→A′ q
where qi = pi if xi occurs in hF (f), and qi = s otherwise

a→ s ∈ ∆, f (s, . . . , s)→ s ∈ ∆

• Intuition: Accept node f , if its image is accepted by A′

• If image does not depend on a subtree, accept any subtree (state s)

53 / 161

Inverse Homomorphism, construction

• Let h : T (F)→ T (F ′) be a tree homomorphism determined by hF
• Let A′ = (Q′,F ′,Q′f ,∆′) be a DFTA with L = L(A′)
• We define DFTA A = (Q′ ∪̇ {s},F ,Q′f ,∆), with the rules

f (q1, . . . ,qn)→ q ∈ ∆ if f ∈ Fn, hF (f)[p1, . . . ,pn]→A′ q
where qi = pi if xi occurs in hF (f), and qi = s otherwise

a→ s ∈ ∆, f (s, . . . , s)→ s ∈ ∆

• Intuition: Accept node f , if its image is accepted by A′
• If image does not depend on a subtree, accept any subtree (state s)

53 / 161

Inverse Homomorphism, proof

• Show t →A q iff h(t)→A′ q

• On board

54 / 161

Inverse Homomorphism, proof

• Show t →A q iff h(t)→A′ q
• On board

54 / 161

Table of Contents

1 Introduction

2 Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

55 / 161

Last Lecture

• Inverse homomorphisms preserve regularity
• Started Myhill-Nerode Theorem

56 / 161

Reminder: Equivalence relation

• A relation ≡⊆ A× A is called equivalence relation, iff it is reflexive,
transitive and symmetric

• The set [a]≡ := {a′ | a ≡ a′} is called the equivalence class of a
• An equivalence relation is of finite index, if there are only finitely many

equivalence classes

57 / 161

Reminder: Equivalence relation

• A relation ≡⊆ A× A is called equivalence relation, iff it is reflexive,
transitive and symmetric

• The set [a]≡ := {a′ | a ≡ a′} is called the equivalence class of a

• An equivalence relation is of finite index, if there are only finitely many
equivalence classes

57 / 161

Reminder: Equivalence relation

• A relation ≡⊆ A× A is called equivalence relation, iff it is reflexive,
transitive and symmetric

• The set [a]≡ := {a′ | a ≡ a′} is called the equivalence class of a
• An equivalence relation is of finite index, if there are only finitely many

equivalence classes

57 / 161

Congruence

• An equivalence relation ≡ on T (F) is a congruence, iff

∀f ∈ Fn. (∀i ≤ n. ui ≡ vi) =⇒ f (u1, . . . ,un) ≡ f (v1, . . . , vn)

• Intuition: Functions are equivalent if applied to equivalent arguments.
• Note: ≡ is congruence, iff closed under (1-hole) contexts, i.e.

∀C u v . u ≡ v =⇒ C[u] ≡ C[v]

• For a language L, we define the congruence ≡L by

u ≡L v iff ∀C. C[u] ∈ L iff C[v] ∈ L

• Obviously an equivalence relation. Obviously a congruence.
• Intuition: L does not distinguish between u and v

58 / 161

Congruence

• An equivalence relation ≡ on T (F) is a congruence, iff

∀f ∈ Fn. (∀i ≤ n. ui ≡ vi) =⇒ f (u1, . . . ,un) ≡ f (v1, . . . , vn)

• Intuition: Functions are equivalent if applied to equivalent arguments.

• Note: ≡ is congruence, iff closed under (1-hole) contexts, i.e.

∀C u v . u ≡ v =⇒ C[u] ≡ C[v]

• For a language L, we define the congruence ≡L by

u ≡L v iff ∀C. C[u] ∈ L iff C[v] ∈ L

• Obviously an equivalence relation. Obviously a congruence.
• Intuition: L does not distinguish between u and v

58 / 161

Congruence

• An equivalence relation ≡ on T (F) is a congruence, iff

∀f ∈ Fn. (∀i ≤ n. ui ≡ vi) =⇒ f (u1, . . . ,un) ≡ f (v1, . . . , vn)

• Intuition: Functions are equivalent if applied to equivalent arguments.
• Note: ≡ is congruence, iff closed under (1-hole) contexts, i.e.

∀C u v . u ≡ v =⇒ C[u] ≡ C[v]

• For a language L, we define the congruence ≡L by

u ≡L v iff ∀C. C[u] ∈ L iff C[v] ∈ L

• Obviously an equivalence relation. Obviously a congruence.
• Intuition: L does not distinguish between u and v

58 / 161

Congruence

• An equivalence relation ≡ on T (F) is a congruence, iff

∀f ∈ Fn. (∀i ≤ n. ui ≡ vi) =⇒ f (u1, . . . ,un) ≡ f (v1, . . . , vn)

• Intuition: Functions are equivalent if applied to equivalent arguments.
• Note: ≡ is congruence, iff closed under (1-hole) contexts, i.e.

∀C u v . u ≡ v =⇒ C[u] ≡ C[v]

• For a language L, we define the congruence ≡L by

u ≡L v iff ∀C. C[u] ∈ L iff C[v] ∈ L

• Obviously an equivalence relation. Obviously a congruence.
• Intuition: L does not distinguish between u and v

58 / 161

Congruence

• An equivalence relation ≡ on T (F) is a congruence, iff

∀f ∈ Fn. (∀i ≤ n. ui ≡ vi) =⇒ f (u1, . . . ,un) ≡ f (v1, . . . , vn)

• Intuition: Functions are equivalent if applied to equivalent arguments.
• Note: ≡ is congruence, iff closed under (1-hole) contexts, i.e.

∀C u v . u ≡ v =⇒ C[u] ≡ C[v]

• For a language L, we define the congruence ≡L by

u ≡L v iff ∀C. C[u] ∈ L iff C[v] ∈ L

• Obviously an equivalence relation. Obviously a congruence.

• Intuition: L does not distinguish between u and v

58 / 161

Congruence

• An equivalence relation ≡ on T (F) is a congruence, iff

∀f ∈ Fn. (∀i ≤ n. ui ≡ vi) =⇒ f (u1, . . . ,un) ≡ f (v1, . . . , vn)

• Intuition: Functions are equivalent if applied to equivalent arguments.
• Note: ≡ is congruence, iff closed under (1-hole) contexts, i.e.

∀C u v . u ≡ v =⇒ C[u] ≡ C[v]

• For a language L, we define the congruence ≡L by

u ≡L v iff ∀C. C[u] ∈ L iff C[v] ∈ L

• Obviously an equivalence relation. Obviously a congruence.
• Intuition: L does not distinguish between u and v

58 / 161

Myhill-Nerode Theorem

Theorem
The following statements are equivalent

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence
3 ≡L is of finite index

59 / 161

Myhill-Nerode Theorem

Theorem
The following statements are equivalent

1 L is a regular tree language
2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

59 / 161

Myhill-Nerode Theorem

Theorem
The following statements are equivalent

1 L is a regular tree language
2 L is the union of some equivalence classes of a finite-index congruence
3 ≡L is of finite index

59 / 161

Convention

• Complete DFTAs are written as (Q,F ,Qf , δ)
• with δ : (Fn ×Qn → Q)n

• Corresponds to ∆ via

f (q1, . . . , qn)→ q iff δ(f , q1, . . . , qn) = q

• Naturally extended to trees

δ(f (t1, . . . , tn) = δ(f , δ(t1), . . . , δ(tn))

• Compatible with→A, i.e.

t →A q iff δ(t) = q

60 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).

• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)

• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)

• We have L =
⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .

• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C

• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L

• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v

• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence

• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}

• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Proof of Myhill-Nerode Theorem

1 L is a regular tree language

2 L is the union of some equivalence classes of a finite-index congruence

3 ≡L is of finite index

1→ 2 • Take complete DFTA A = (Q,F ,Qf , δ) with L = L(A).
• Let u ≡ v iff δ(u) = δ(v) (Obviously a congruence)
• ≡ has finite index (at most |Q| equivalence classes)
• We have L =

⋃
{[u] | δ(u) ∈ Qf}

2→ 3 • Let R be the finite-index congruence. Assume uRv .
• Then, C[u]RC[v] for all contexts C
• As L is union of eq-classes of R, we have C[u] ∈ L iff C[v] ∈ L
• Thus, u ≡L v
• I.e., ≡L has not more eq-classes then the finite-index R

3→ 1 • Let Qmin be the set of eq-classes of ≡L

• Let ∆min := {f ([u1]≡L , . . . , [un]≡L)→ [f (u1, . . . , un)]≡L | f ∈ Fn, u1, . . . , un ∈
T (F)}

• Note that ∆min is deterministic, as ≡L is a congruence
• Let Qminf := {[u] | u ∈ L}
• The DFTA Amin := (Qmin,F ,Qminf ,∆min) recognizes the language L

61 / 161

Unique minimal DFTA

• Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.

• It is given by Amin from the proof of Myhill-Nerode
• Proof sketch (more details on board):

• Assume L is recognized by complete DFTA A = (Q,F ,Qf , δ)
• The relation ≡A is refinement of ≡L

• ≡A⊆≡L

• Thus |Q| ≥ |Qmin| (proves existence of minimal DFTA)
• Now assume |Q| = |Qmin|

• All states in Q are accessible (otherwise, contradiction to minimality)
• Let q ∈ Q with δ(u) = q.
• Identify q and δmin(u)
• This mapping is consistent and bijection

62 / 161

Unique minimal DFTA

• Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.
• It is given by Amin from the proof of Myhill-Nerode

• Proof sketch (more details on board):

• Assume L is recognized by complete DFTA A = (Q,F ,Qf , δ)
• The relation ≡A is refinement of ≡L

• ≡A⊆≡L

• Thus |Q| ≥ |Qmin| (proves existence of minimal DFTA)
• Now assume |Q| = |Qmin|

• All states in Q are accessible (otherwise, contradiction to minimality)
• Let q ∈ Q with δ(u) = q.
• Identify q and δmin(u)
• This mapping is consistent and bijection

62 / 161

Unique minimal DFTA

• Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.
• It is given by Amin from the proof of Myhill-Nerode

• Proof sketch (more details on board):

• Assume L is recognized by complete DFTA A = (Q,F ,Qf , δ)
• The relation ≡A is refinement of ≡L

• ≡A⊆≡L

• Thus |Q| ≥ |Qmin| (proves existence of minimal DFTA)
• Now assume |Q| = |Qmin|

• All states in Q are accessible (otherwise, contradiction to minimality)
• Let q ∈ Q with δ(u) = q.
• Identify q and δmin(u)
• This mapping is consistent and bijection

62 / 161

Unique minimal DFTA

• Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.
• It is given by Amin from the proof of Myhill-Nerode

• Proof sketch (more details on board):
• Assume L is recognized by complete DFTA A = (Q,F ,Qf , δ)

• The relation ≡A is refinement of ≡L

• ≡A⊆≡L

• Thus |Q| ≥ |Qmin| (proves existence of minimal DFTA)
• Now assume |Q| = |Qmin|

• All states in Q are accessible (otherwise, contradiction to minimality)
• Let q ∈ Q with δ(u) = q.
• Identify q and δmin(u)
• This mapping is consistent and bijection

62 / 161

Unique minimal DFTA

• Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.
• It is given by Amin from the proof of Myhill-Nerode

• Proof sketch (more details on board):
• Assume L is recognized by complete DFTA A = (Q,F ,Qf , δ)
• The relation ≡A is refinement of ≡L

• ≡A⊆≡L

• Thus |Q| ≥ |Qmin| (proves existence of minimal DFTA)
• Now assume |Q| = |Qmin|

• All states in Q are accessible (otherwise, contradiction to minimality)
• Let q ∈ Q with δ(u) = q.
• Identify q and δmin(u)
• This mapping is consistent and bijection

62 / 161

Unique minimal DFTA

• Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.
• It is given by Amin from the proof of Myhill-Nerode

• Proof sketch (more details on board):
• Assume L is recognized by complete DFTA A = (Q,F ,Qf , δ)
• The relation ≡A is refinement of ≡L

• ≡A⊆≡L

• Thus |Q| ≥ |Qmin| (proves existence of minimal DFTA)

• Now assume |Q| = |Qmin|

• All states in Q are accessible (otherwise, contradiction to minimality)
• Let q ∈ Q with δ(u) = q.
• Identify q and δmin(u)
• This mapping is consistent and bijection

62 / 161

Unique minimal DFTA

• Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.
• It is given by Amin from the proof of Myhill-Nerode

• Proof sketch (more details on board):
• Assume L is recognized by complete DFTA A = (Q,F ,Qf , δ)
• The relation ≡A is refinement of ≡L

• ≡A⊆≡L

• Thus |Q| ≥ |Qmin| (proves existence of minimal DFTA)
• Now assume |Q| = |Qmin|

• All states in Q are accessible (otherwise, contradiction to minimality)
• Let q ∈ Q with δ(u) = q.
• Identify q and δmin(u)
• This mapping is consistent and bijection

62 / 161

Unique minimal DFTA

• Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.
• It is given by Amin from the proof of Myhill-Nerode

• Proof sketch (more details on board):
• Assume L is recognized by complete DFTA A = (Q,F ,Qf , δ)
• The relation ≡A is refinement of ≡L

• ≡A⊆≡L

• Thus |Q| ≥ |Qmin| (proves existence of minimal DFTA)
• Now assume |Q| = |Qmin|

• All states in Q are accessible (otherwise, contradiction to minimality)

• Let q ∈ Q with δ(u) = q.
• Identify q and δmin(u)
• This mapping is consistent and bijection

62 / 161

Unique minimal DFTA

• Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.
• It is given by Amin from the proof of Myhill-Nerode

• Proof sketch (more details on board):
• Assume L is recognized by complete DFTA A = (Q,F ,Qf , δ)
• The relation ≡A is refinement of ≡L

• ≡A⊆≡L

• Thus |Q| ≥ |Qmin| (proves existence of minimal DFTA)
• Now assume |Q| = |Qmin|

• All states in Q are accessible (otherwise, contradiction to minimality)
• Let q ∈ Q with δ(u) = q.

• Identify q and δmin(u)
• This mapping is consistent and bijection

62 / 161

Unique minimal DFTA

• Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.
• It is given by Amin from the proof of Myhill-Nerode

• Proof sketch (more details on board):
• Assume L is recognized by complete DFTA A = (Q,F ,Qf , δ)
• The relation ≡A is refinement of ≡L

• ≡A⊆≡L

• Thus |Q| ≥ |Qmin| (proves existence of minimal DFTA)
• Now assume |Q| = |Qmin|

• All states in Q are accessible (otherwise, contradiction to minimality)
• Let q ∈ Q with δ(u) = q.
• Identify q and δmin(u)

• This mapping is consistent and bijection

62 / 161

Unique minimal DFTA

• Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.
• It is given by Amin from the proof of Myhill-Nerode

• Proof sketch (more details on board):
• Assume L is recognized by complete DFTA A = (Q,F ,Qf , δ)
• The relation ≡A is refinement of ≡L

• ≡A⊆≡L

• Thus |Q| ≥ |Qmin| (proves existence of minimal DFTA)
• Now assume |Q| = |Qmin|

• All states in Q are accessible (otherwise, contradiction to minimality)
• Let q ∈ Q with δ(u) = q.
• Identify q and δmin(u)
• This mapping is consistent and bijection

62 / 161

Minimization algorithm

• Given complete and reduced DFTA A = (Q,F ,Qf , δ)

• Idea: Refine an equivalence relation until consistent with A

1 Start with P = {Qf ,Q \Qf}
2 Refine P. Let P ′ be the new value. Set qP ′q′, if

• qPq′

• q ≡ q′ is consistent wrt. the rules, i.e.

∀f ∈ Fn, q1, . . . , qi−1, qi+1, . . . qn.

δ(f , q1, . . . , qi−1, q, qi+1, . . . , qn)Pδ(f , q1, . . . , qi−1, q′, qi+1, . . . , qn)

3 Repeat until no more refinement possible
4 Define Amin := (Qmin,F ,Qminf , δ), where

• Qmin := Equivalence classes of P
• Qminf := {[q] | q ∈ Qf}
• δmin(f , [q1], . . . , [qn]) = [δ(f , q1, . . . , qn)]

• L(Amin) = L(A). Proof on board.

63 / 161

Minimization algorithm

• Given complete and reduced DFTA A = (Q,F ,Qf , δ)

• Idea: Refine an equivalence relation until consistent with A

1 Start with P = {Qf ,Q \Qf}
2 Refine P. Let P ′ be the new value. Set qP ′q′, if

• qPq′

• q ≡ q′ is consistent wrt. the rules, i.e.

∀f ∈ Fn, q1, . . . , qi−1, qi+1, . . . qn.

δ(f , q1, . . . , qi−1, q, qi+1, . . . , qn)Pδ(f , q1, . . . , qi−1, q′, qi+1, . . . , qn)

3 Repeat until no more refinement possible
4 Define Amin := (Qmin,F ,Qminf , δ), where

• Qmin := Equivalence classes of P
• Qminf := {[q] | q ∈ Qf}
• δmin(f , [q1], . . . , [qn]) = [δ(f , q1, . . . , qn)]

• L(Amin) = L(A). Proof on board.

63 / 161

Minimization algorithm

• Given complete and reduced DFTA A = (Q,F ,Qf , δ)

• Idea: Refine an equivalence relation until consistent with A

1 Start with P = {Qf ,Q \Qf}

2 Refine P. Let P ′ be the new value. Set qP ′q′, if
• qPq′

• q ≡ q′ is consistent wrt. the rules, i.e.

∀f ∈ Fn, q1, . . . , qi−1, qi+1, . . . qn.

δ(f , q1, . . . , qi−1, q, qi+1, . . . , qn)Pδ(f , q1, . . . , qi−1, q′, qi+1, . . . , qn)

3 Repeat until no more refinement possible
4 Define Amin := (Qmin,F ,Qminf , δ), where

• Qmin := Equivalence classes of P
• Qminf := {[q] | q ∈ Qf}
• δmin(f , [q1], . . . , [qn]) = [δ(f , q1, . . . , qn)]

• L(Amin) = L(A). Proof on board.

63 / 161

Minimization algorithm

• Given complete and reduced DFTA A = (Q,F ,Qf , δ)

• Idea: Refine an equivalence relation until consistent with A

1 Start with P = {Qf ,Q \Qf}
2 Refine P. Let P ′ be the new value. Set qP ′q′, if

• qPq′

• q ≡ q′ is consistent wrt. the rules, i.e.

∀f ∈ Fn, q1, . . . , qi−1, qi+1, . . . qn.

δ(f , q1, . . . , qi−1, q, qi+1, . . . , qn)Pδ(f , q1, . . . , qi−1, q′, qi+1, . . . , qn)

3 Repeat until no more refinement possible
4 Define Amin := (Qmin,F ,Qminf , δ), where

• Qmin := Equivalence classes of P
• Qminf := {[q] | q ∈ Qf}
• δmin(f , [q1], . . . , [qn]) = [δ(f , q1, . . . , qn)]

• L(Amin) = L(A). Proof on board.

63 / 161

Minimization algorithm

• Given complete and reduced DFTA A = (Q,F ,Qf , δ)

• Idea: Refine an equivalence relation until consistent with A

1 Start with P = {Qf ,Q \Qf}
2 Refine P. Let P ′ be the new value. Set qP ′q′, if

• qPq′

• q ≡ q′ is consistent wrt. the rules, i.e.

∀f ∈ Fn, q1, . . . , qi−1, qi+1, . . . qn.

δ(f , q1, . . . , qi−1, q, qi+1, . . . , qn)Pδ(f , q1, . . . , qi−1, q′, qi+1, . . . , qn)

3 Repeat until no more refinement possible

4 Define Amin := (Qmin,F ,Qminf , δ), where

• Qmin := Equivalence classes of P
• Qminf := {[q] | q ∈ Qf}
• δmin(f , [q1], . . . , [qn]) = [δ(f , q1, . . . , qn)]

• L(Amin) = L(A). Proof on board.

63 / 161

Minimization algorithm

• Given complete and reduced DFTA A = (Q,F ,Qf , δ)

• Idea: Refine an equivalence relation until consistent with A

1 Start with P = {Qf ,Q \Qf}
2 Refine P. Let P ′ be the new value. Set qP ′q′, if

• qPq′

• q ≡ q′ is consistent wrt. the rules, i.e.

∀f ∈ Fn, q1, . . . , qi−1, qi+1, . . . qn.

δ(f , q1, . . . , qi−1, q, qi+1, . . . , qn)Pδ(f , q1, . . . , qi−1, q′, qi+1, . . . , qn)

3 Repeat until no more refinement possible
4 Define Amin := (Qmin,F ,Qminf , δ), where

• Qmin := Equivalence classes of P
• Qminf := {[q] | q ∈ Qf}
• δmin(f , [q1], . . . , [qn]) = [δ(f , q1, . . . , qn)]

• L(Amin) = L(A). Proof on board.

63 / 161

Minimization algorithm

• Given complete and reduced DFTA A = (Q,F ,Qf , δ)

• Idea: Refine an equivalence relation until consistent with A

1 Start with P = {Qf ,Q \Qf}
2 Refine P. Let P ′ be the new value. Set qP ′q′, if

• qPq′

• q ≡ q′ is consistent wrt. the rules, i.e.

∀f ∈ Fn, q1, . . . , qi−1, qi+1, . . . qn.

δ(f , q1, . . . , qi−1, q, qi+1, . . . , qn)Pδ(f , q1, . . . , qi−1, q′, qi+1, . . . , qn)

3 Repeat until no more refinement possible
4 Define Amin := (Qmin,F ,Qminf , δ), where

• Qmin := Equivalence classes of P

• Qminf := {[q] | q ∈ Qf}
• δmin(f , [q1], . . . , [qn]) = [δ(f , q1, . . . , qn)]

• L(Amin) = L(A). Proof on board.

63 / 161

Minimization algorithm

• Given complete and reduced DFTA A = (Q,F ,Qf , δ)

• Idea: Refine an equivalence relation until consistent with A

1 Start with P = {Qf ,Q \Qf}
2 Refine P. Let P ′ be the new value. Set qP ′q′, if

• qPq′

• q ≡ q′ is consistent wrt. the rules, i.e.

∀f ∈ Fn, q1, . . . , qi−1, qi+1, . . . qn.

δ(f , q1, . . . , qi−1, q, qi+1, . . . , qn)Pδ(f , q1, . . . , qi−1, q′, qi+1, . . . , qn)

3 Repeat until no more refinement possible
4 Define Amin := (Qmin,F ,Qminf , δ), where

• Qmin := Equivalence classes of P
• Qminf := {[q] | q ∈ Qf}

• δmin(f , [q1], . . . , [qn]) = [δ(f , q1, . . . , qn)]

• L(Amin) = L(A). Proof on board.

63 / 161

Minimization algorithm

• Given complete and reduced DFTA A = (Q,F ,Qf , δ)

• Idea: Refine an equivalence relation until consistent with A

1 Start with P = {Qf ,Q \Qf}
2 Refine P. Let P ′ be the new value. Set qP ′q′, if

• qPq′

• q ≡ q′ is consistent wrt. the rules, i.e.

∀f ∈ Fn, q1, . . . , qi−1, qi+1, . . . qn.

δ(f , q1, . . . , qi−1, q, qi+1, . . . , qn)Pδ(f , q1, . . . , qi−1, q′, qi+1, . . . , qn)

3 Repeat until no more refinement possible
4 Define Amin := (Qmin,F ,Qminf , δ), where

• Qmin := Equivalence classes of P
• Qminf := {[q] | q ∈ Qf}
• δmin(f , [q1], . . . , [qn]) = [δ(f , q1, . . . , qn)]

• L(Amin) = L(A). Proof on board.

63 / 161

Minimization algorithm

• Given complete and reduced DFTA A = (Q,F ,Qf , δ)

• Idea: Refine an equivalence relation until consistent with A

1 Start with P = {Qf ,Q \Qf}
2 Refine P. Let P ′ be the new value. Set qP ′q′, if

• qPq′

• q ≡ q′ is consistent wrt. the rules, i.e.

∀f ∈ Fn, q1, . . . , qi−1, qi+1, . . . qn.

δ(f , q1, . . . , qi−1, q, qi+1, . . . , qn)Pδ(f , q1, . . . , qi−1, q′, qi+1, . . . , qn)

3 Repeat until no more refinement possible
4 Define Amin := (Qmin,F ,Qminf , δ), where

• Qmin := Equivalence classes of P
• Qminf := {[q] | q ∈ Qf}
• δmin(f , [q1], . . . , [qn]) = [δ(f , q1, . . . , qn)]

• L(Amin) = L(A). Proof on board.

63 / 161

Last Lecture

• Myhill-Nerode Theorem
• Minimization of tree automata

64 / 161

Table of Contents

1 Introduction

2 Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

65 / 161

Top-Down Tree Automata

• Recall: Tree automata rewrite tree to single state

• Starting at the leaves, i.e. bottom-up
• f (q1, . . . , qn)→ q
• Intuition: Assign state to a given tree, consume tree

• Now: Rewrite state to a tree

• Starting at a single root state
• q → f (q1, . . . , qn)
• Intuition: Assign tree to given state, produce tree.

66 / 161

Top-Down Tree Automata

• Recall: Tree automata rewrite tree to single state
• Starting at the leaves, i.e. bottom-up

• f (q1, . . . , qn)→ q
• Intuition: Assign state to a given tree, consume tree

• Now: Rewrite state to a tree

• Starting at a single root state
• q → f (q1, . . . , qn)
• Intuition: Assign tree to given state, produce tree.

66 / 161

Top-Down Tree Automata

• Recall: Tree automata rewrite tree to single state
• Starting at the leaves, i.e. bottom-up
• f (q1, . . . , qn)→ q

• Intuition: Assign state to a given tree, consume tree
• Now: Rewrite state to a tree

• Starting at a single root state
• q → f (q1, . . . , qn)
• Intuition: Assign tree to given state, produce tree.

66 / 161

Top-Down Tree Automata

• Recall: Tree automata rewrite tree to single state
• Starting at the leaves, i.e. bottom-up
• f (q1, . . . , qn)→ q
• Intuition: Assign state to a given tree, consume tree

• Now: Rewrite state to a tree

• Starting at a single root state
• q → f (q1, . . . , qn)
• Intuition: Assign tree to given state, produce tree.

66 / 161

Top-Down Tree Automata

• Recall: Tree automata rewrite tree to single state
• Starting at the leaves, i.e. bottom-up
• f (q1, . . . , qn)→ q
• Intuition: Assign state to a given tree, consume tree

• Now: Rewrite state to a tree

• Starting at a single root state
• q → f (q1, . . . , qn)
• Intuition: Assign tree to given state, produce tree.

66 / 161

Top-Down Tree Automata

• Recall: Tree automata rewrite tree to single state
• Starting at the leaves, i.e. bottom-up
• f (q1, . . . , qn)→ q
• Intuition: Assign state to a given tree, consume tree

• Now: Rewrite state to a tree
• Starting at a single root state

• q → f (q1, . . . , qn)
• Intuition: Assign tree to given state, produce tree.

66 / 161

Top-Down Tree Automata

• Recall: Tree automata rewrite tree to single state
• Starting at the leaves, i.e. bottom-up
• f (q1, . . . , qn)→ q
• Intuition: Assign state to a given tree, consume tree

• Now: Rewrite state to a tree
• Starting at a single root state
• q → f (q1, . . . , qn)

• Intuition: Assign tree to given state, produce tree.

66 / 161

Top-Down Tree Automata

• Recall: Tree automata rewrite tree to single state
• Starting at the leaves, i.e. bottom-up
• f (q1, . . . , qn)→ q
• Intuition: Assign state to a given tree, consume tree

• Now: Rewrite state to a tree
• Starting at a single root state
• q → f (q1, . . . , qn)
• Intuition: Assign tree to given state, produce tree.

66 / 161

Top-Down Tree Automata

• A tuple A = (Q,F , I,∆) is called top-down tree automaton, where

• F is a ranked alphabet
• Q is a finite set of states, with Q ∩ F = ∅
• I ⊆ Q is a set of initial states
• ∆ is a set of rules of the form

q → f (q1, . . . , qn) for f ∈ Fn, q, q1, . . . , qn ∈ Q

• We define the production relation q →A t as the least relation that
satisfies

q → f (q1, . . . ,qn) ∈ ∆,q1 →A t1, . . . ,qn →A tn =⇒ q →A f (t1, . . . , tn)

• The language of A is L(A) := {t | ∃q ∈ I. q →A t}

67 / 161

Top-Down Tree Automata

• A tuple A = (Q,F , I,∆) is called top-down tree automaton, where
• F is a ranked alphabet

• Q is a finite set of states, with Q ∩ F = ∅
• I ⊆ Q is a set of initial states
• ∆ is a set of rules of the form

q → f (q1, . . . , qn) for f ∈ Fn, q, q1, . . . , qn ∈ Q

• We define the production relation q →A t as the least relation that
satisfies

q → f (q1, . . . ,qn) ∈ ∆,q1 →A t1, . . . ,qn →A tn =⇒ q →A f (t1, . . . , tn)

• The language of A is L(A) := {t | ∃q ∈ I. q →A t}

67 / 161

Top-Down Tree Automata

• A tuple A = (Q,F , I,∆) is called top-down tree automaton, where
• F is a ranked alphabet
• Q is a finite set of states, with Q ∩ F = ∅

• I ⊆ Q is a set of initial states
• ∆ is a set of rules of the form

q → f (q1, . . . , qn) for f ∈ Fn, q, q1, . . . , qn ∈ Q

• We define the production relation q →A t as the least relation that
satisfies

q → f (q1, . . . ,qn) ∈ ∆,q1 →A t1, . . . ,qn →A tn =⇒ q →A f (t1, . . . , tn)

• The language of A is L(A) := {t | ∃q ∈ I. q →A t}

67 / 161

Top-Down Tree Automata

• A tuple A = (Q,F , I,∆) is called top-down tree automaton, where
• F is a ranked alphabet
• Q is a finite set of states, with Q ∩ F = ∅
• I ⊆ Q is a set of initial states

• ∆ is a set of rules of the form

q → f (q1, . . . , qn) for f ∈ Fn, q, q1, . . . , qn ∈ Q

• We define the production relation q →A t as the least relation that
satisfies

q → f (q1, . . . ,qn) ∈ ∆,q1 →A t1, . . . ,qn →A tn =⇒ q →A f (t1, . . . , tn)

• The language of A is L(A) := {t | ∃q ∈ I. q →A t}

67 / 161

Top-Down Tree Automata

• A tuple A = (Q,F , I,∆) is called top-down tree automaton, where
• F is a ranked alphabet
• Q is a finite set of states, with Q ∩ F = ∅
• I ⊆ Q is a set of initial states
• ∆ is a set of rules of the form

q → f (q1, . . . , qn) for f ∈ Fn, q, q1, . . . , qn ∈ Q

• We define the production relation q →A t as the least relation that
satisfies

q → f (q1, . . . ,qn) ∈ ∆,q1 →A t1, . . . ,qn →A tn =⇒ q →A f (t1, . . . , tn)

• The language of A is L(A) := {t | ∃q ∈ I. q →A t}

67 / 161

Top-Down Tree Automata

• A tuple A = (Q,F , I,∆) is called top-down tree automaton, where
• F is a ranked alphabet
• Q is a finite set of states, with Q ∩ F = ∅
• I ⊆ Q is a set of initial states
• ∆ is a set of rules of the form

q → f (q1, . . . , qn) for f ∈ Fn, q, q1, . . . , qn ∈ Q

• We define the production relation q →A t as the least relation that
satisfies

q → f (q1, . . . ,qn) ∈ ∆,q1 →A t1, . . . ,qn →A tn =⇒ q →A f (t1, . . . , tn)

• The language of A is L(A) := {t | ∃q ∈ I. q →A t}

67 / 161

Top-Down Tree Automata

• A tuple A = (Q,F , I,∆) is called top-down tree automaton, where
• F is a ranked alphabet
• Q is a finite set of states, with Q ∩ F = ∅
• I ⊆ Q is a set of initial states
• ∆ is a set of rules of the form

q → f (q1, . . . , qn) for f ∈ Fn, q, q1, . . . , qn ∈ Q

• We define the production relation q →A t as the least relation that
satisfies

q → f (q1, . . . ,qn) ∈ ∆,q1 →A t1, . . . ,qn →A tn =⇒ q →A f (t1, . . . , tn)

• The language of A is L(A) := {t | ∃q ∈ I. q →A t}

67 / 161

Equal expressiveness

Theorem
A language is regular if and only if it is the language of a top-down tree
automaton.

• Proof

• Straightforward induction (Hint: Reverse arrows, exchange I and Qf)
• Exercise

68 / 161

Equal expressiveness

Theorem
A language is regular if and only if it is the language of a top-down tree
automaton.

• Proof
• Straightforward induction (Hint: Reverse arrows, exchange I and Qf)

• Exercise

68 / 161

Equal expressiveness

Theorem
A language is regular if and only if it is the language of a top-down tree
automaton.

• Proof
• Straightforward induction (Hint: Reverse arrows, exchange I and Qf)
• Exercise

68 / 161

Deterministic Top-Down Tree Automata

• A top-down tree-automaton A = (Q,F , I,∆) is deterministic, iff

• |I| = 1
• q → f (q1, . . . , qn) ∈ ∆ ∧ q → f (q′1, . . . , q

′
n) ∈ ∆ =⇒ q1 = q′1 ∧ . . . ∧ qn = q′n

• Unfortunately: There are regular languages not accepted by any
deterministic top-down FTA

• L = {f (a, b), f (b, a)}. Obviously regular. Even finite.
• But: Any deterministic top-down FTA that accepts the words in L also

accepts f (a, a).

69 / 161

Deterministic Top-Down Tree Automata

• A top-down tree-automaton A = (Q,F , I,∆) is deterministic, iff
• |I| = 1

• q → f (q1, . . . , qn) ∈ ∆ ∧ q → f (q′1, . . . , q
′
n) ∈ ∆ =⇒ q1 = q′1 ∧ . . . ∧ qn = q′n

• Unfortunately: There are regular languages not accepted by any
deterministic top-down FTA

• L = {f (a, b), f (b, a)}. Obviously regular. Even finite.
• But: Any deterministic top-down FTA that accepts the words in L also

accepts f (a, a).

69 / 161

Deterministic Top-Down Tree Automata

• A top-down tree-automaton A = (Q,F , I,∆) is deterministic, iff
• |I| = 1
• q → f (q1, . . . , qn) ∈ ∆ ∧ q → f (q′1, . . . , q

′
n) ∈ ∆ =⇒ q1 = q′1 ∧ . . . ∧ qn = q′n

• Unfortunately: There are regular languages not accepted by any
deterministic top-down FTA

• L = {f (a, b), f (b, a)}. Obviously regular. Even finite.
• But: Any deterministic top-down FTA that accepts the words in L also

accepts f (a, a).

69 / 161

Deterministic Top-Down Tree Automata

• A top-down tree-automaton A = (Q,F , I,∆) is deterministic, iff
• |I| = 1
• q → f (q1, . . . , qn) ∈ ∆ ∧ q → f (q′1, . . . , q

′
n) ∈ ∆ =⇒ q1 = q′1 ∧ . . . ∧ qn = q′n

• Unfortunately: There are regular languages not accepted by any
deterministic top-down FTA

• L = {f (a, b), f (b, a)}. Obviously regular. Even finite.
• But: Any deterministic top-down FTA that accepts the words in L also

accepts f (a, a).

69 / 161

Deterministic Top-Down Tree Automata

• A top-down tree-automaton A = (Q,F , I,∆) is deterministic, iff
• |I| = 1
• q → f (q1, . . . , qn) ∈ ∆ ∧ q → f (q′1, . . . , q

′
n) ∈ ∆ =⇒ q1 = q′1 ∧ . . . ∧ qn = q′n

• Unfortunately: There are regular languages not accepted by any
deterministic top-down FTA
• L = {f (a, b), f (b, a)}. Obviously regular. Even finite.

• But: Any deterministic top-down FTA that accepts the words in L also
accepts f (a, a).

69 / 161

Deterministic Top-Down Tree Automata

• A top-down tree-automaton A = (Q,F , I,∆) is deterministic, iff
• |I| = 1
• q → f (q1, . . . , qn) ∈ ∆ ∧ q → f (q′1, . . . , q

′
n) ∈ ∆ =⇒ q1 = q′1 ∧ . . . ∧ qn = q′n

• Unfortunately: There are regular languages not accepted by any
deterministic top-down FTA
• L = {f (a, b), f (b, a)}. Obviously regular. Even finite.
• But: Any deterministic top-down FTA that accepts the words in L also

accepts f (a, a).

69 / 161

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

70 / 161

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages
Regular Tree Grammars
Tree Regular Expressions

4 Model-Checking concurrent Systems

71 / 161

Regular Tree Grammars

• Extend grammars to trees

• Here: Only for the regular case
• A regular tree grammar (RTG) is a tuple G = (S,N,F ,R), where

• S ∈ N is a start symbol
• N is a finite set of nonterminals with arity zero, and N ∩ F = ∅
• F is a ranked alphabet
• R is a set of production rules of the form n→ β, where n ∈ N and
β ∈ T (F ∪ N)

• These are almost top-down tree automata

• But rules are a bit more complicated

72 / 161

Regular Tree Grammars

• Extend grammars to trees
• Here: Only for the regular case

• A regular tree grammar (RTG) is a tuple G = (S,N,F ,R), where

• S ∈ N is a start symbol
• N is a finite set of nonterminals with arity zero, and N ∩ F = ∅
• F is a ranked alphabet
• R is a set of production rules of the form n→ β, where n ∈ N and
β ∈ T (F ∪ N)

• These are almost top-down tree automata

• But rules are a bit more complicated

72 / 161

Regular Tree Grammars

• Extend grammars to trees
• Here: Only for the regular case
• A regular tree grammar (RTG) is a tuple G = (S,N,F ,R), where

• S ∈ N is a start symbol
• N is a finite set of nonterminals with arity zero, and N ∩ F = ∅
• F is a ranked alphabet
• R is a set of production rules of the form n→ β, where n ∈ N and
β ∈ T (F ∪ N)

• These are almost top-down tree automata

• But rules are a bit more complicated

72 / 161

Regular Tree Grammars

• Extend grammars to trees
• Here: Only for the regular case
• A regular tree grammar (RTG) is a tuple G = (S,N,F ,R), where

• S ∈ N is a start symbol

• N is a finite set of nonterminals with arity zero, and N ∩ F = ∅
• F is a ranked alphabet
• R is a set of production rules of the form n→ β, where n ∈ N and
β ∈ T (F ∪ N)

• These are almost top-down tree automata

• But rules are a bit more complicated

72 / 161

Regular Tree Grammars

• Extend grammars to trees
• Here: Only for the regular case
• A regular tree grammar (RTG) is a tuple G = (S,N,F ,R), where

• S ∈ N is a start symbol
• N is a finite set of nonterminals with arity zero, and N ∩ F = ∅

• F is a ranked alphabet
• R is a set of production rules of the form n→ β, where n ∈ N and
β ∈ T (F ∪ N)

• These are almost top-down tree automata

• But rules are a bit more complicated

72 / 161

Regular Tree Grammars

• Extend grammars to trees
• Here: Only for the regular case
• A regular tree grammar (RTG) is a tuple G = (S,N,F ,R), where

• S ∈ N is a start symbol
• N is a finite set of nonterminals with arity zero, and N ∩ F = ∅
• F is a ranked alphabet

• R is a set of production rules of the form n→ β, where n ∈ N and
β ∈ T (F ∪ N)

• These are almost top-down tree automata

• But rules are a bit more complicated

72 / 161

Regular Tree Grammars

• Extend grammars to trees
• Here: Only for the regular case
• A regular tree grammar (RTG) is a tuple G = (S,N,F ,R), where

• S ∈ N is a start symbol
• N is a finite set of nonterminals with arity zero, and N ∩ F = ∅
• F is a ranked alphabet
• R is a set of production rules of the form n→ β, where n ∈ N and
β ∈ T (F ∪ N)

• These are almost top-down tree automata

• But rules are a bit more complicated

72 / 161

Regular Tree Grammars

• Extend grammars to trees
• Here: Only for the regular case
• A regular tree grammar (RTG) is a tuple G = (S,N,F ,R), where

• S ∈ N is a start symbol
• N is a finite set of nonterminals with arity zero, and N ∩ F = ∅
• F is a ranked alphabet
• R is a set of production rules of the form n→ β, where n ∈ N and
β ∈ T (F ∪ N)

• These are almost top-down tree automata

• But rules are a bit more complicated

72 / 161

Regular Tree Grammars

• Extend grammars to trees
• Here: Only for the regular case
• A regular tree grammar (RTG) is a tuple G = (S,N,F ,R), where

• S ∈ N is a start symbol
• N is a finite set of nonterminals with arity zero, and N ∩ F = ∅
• F is a ranked alphabet
• R is a set of production rules of the form n→ β, where n ∈ N and
β ∈ T (F ∪ N)

• These are almost top-down tree automata
• But rules are a bit more complicated

72 / 161

Derivation Relation

• Intuition: Rewrite S to a tree, using the rules

• For an RTG G = (S,N,F ,R), we define a derivation step β ⇒G β′ for
β, β′ ∈ T (F ∪ N) by

β ⇒G β′ ⇐⇒ ∃C u n. β = C[n] ∧ n→ u ∈ R ∧ β′ = C[u]

• We write β →G t ′, iff t ′ ∈ T (F) and β ⇒∗G t ′

• For n ∈ N, we define L(G,n) := {t ∈ T (F) | n→G t}
• We define L(G) := L(G,S)

73 / 161

Derivation Relation

• Intuition: Rewrite S to a tree, using the rules
• For an RTG G = (S,N,F ,R), we define a derivation step β ⇒G β′ for
β, β′ ∈ T (F ∪ N) by

β ⇒G β′ ⇐⇒ ∃C u n. β = C[n] ∧ n→ u ∈ R ∧ β′ = C[u]

• We write β →G t ′, iff t ′ ∈ T (F) and β ⇒∗G t ′

• For n ∈ N, we define L(G,n) := {t ∈ T (F) | n→G t}
• We define L(G) := L(G,S)

73 / 161

Derivation Relation

• Intuition: Rewrite S to a tree, using the rules
• For an RTG G = (S,N,F ,R), we define a derivation step β ⇒G β′ for
β, β′ ∈ T (F ∪ N) by

β ⇒G β′ ⇐⇒ ∃C u n. β = C[n] ∧ n→ u ∈ R ∧ β′ = C[u]

• We write β →G t ′, iff t ′ ∈ T (F) and β ⇒∗G t ′

• For n ∈ N, we define L(G,n) := {t ∈ T (F) | n→G t}
• We define L(G) := L(G,S)

73 / 161

Derivation Relation

• Intuition: Rewrite S to a tree, using the rules
• For an RTG G = (S,N,F ,R), we define a derivation step β ⇒G β′ for
β, β′ ∈ T (F ∪ N) by

β ⇒G β′ ⇐⇒ ∃C u n. β = C[n] ∧ n→ u ∈ R ∧ β′ = C[u]

• We write β →G t ′, iff t ′ ∈ T (F) and β ⇒∗G t ′

• For n ∈ N, we define L(G,n) := {t ∈ T (F) | n→G t}

• We define L(G) := L(G,S)

73 / 161

Derivation Relation

• Intuition: Rewrite S to a tree, using the rules
• For an RTG G = (S,N,F ,R), we define a derivation step β ⇒G β′ for
β, β′ ∈ T (F ∪ N) by

β ⇒G β′ ⇐⇒ ∃C u n. β = C[n] ∧ n→ u ∈ R ∧ β′ = C[u]

• We write β →G t ′, iff t ′ ∈ T (F) and β ⇒∗G t ′

• For n ∈ N, we define L(G,n) := {t ∈ T (F) | n→G t}
• We define L(G) := L(G,S)

73 / 161

Reduced tree grammars

• A non-terminal n is reachable, iff there is a derivation from S to a tree
containing n:

∃C. S ⇒∗G C[n]

• A non-terminal n is productive, iff a tree without nonterminals can be
derived from it:

L(G,n) 6= ∅

• An RTG is reduced, if every nonterminal is reachable and productive

74 / 161

Reduced tree grammars

• A non-terminal n is reachable, iff there is a derivation from S to a tree
containing n:

∃C. S ⇒∗G C[n]

• A non-terminal n is productive, iff a tree without nonterminals can be
derived from it:

L(G,n) 6= ∅

• An RTG is reduced, if every nonterminal is reachable and productive

74 / 161

Reduced tree grammars

• A non-terminal n is reachable, iff there is a derivation from S to a tree
containing n:

∃C. S ⇒∗G C[n]

• A non-terminal n is productive, iff a tree without nonterminals can be
derived from it:

L(G,n) 6= ∅

• An RTG is reduced, if every nonterminal is reachable and productive

74 / 161

Computation of Equivalent Reduced Grammar

• For every RTG G, reduced tree grammar G′ with L(G) = L(G′) can be
computed

• Provided that L(G) 6= ∅, otherwise S must not be productive.

1 Remove unproductive non-terminals

• Productive nonterminals can be computed by saturation algorithm:
• n is productive, if there is a rule n→ β such that every nonterminal in β is

productive

2 Remove unreachable nonterminals

• Again saturation: S is reachable, n is reachable if there is a rule n̂→ C[n]
such that n̂ is reachable

75 / 161

Computation of Equivalent Reduced Grammar

• For every RTG G, reduced tree grammar G′ with L(G) = L(G′) can be
computed
• Provided that L(G) 6= ∅, otherwise S must not be productive.

1 Remove unproductive non-terminals

• Productive nonterminals can be computed by saturation algorithm:
• n is productive, if there is a rule n→ β such that every nonterminal in β is

productive

2 Remove unreachable nonterminals

• Again saturation: S is reachable, n is reachable if there is a rule n̂→ C[n]
such that n̂ is reachable

75 / 161

Computation of Equivalent Reduced Grammar

• For every RTG G, reduced tree grammar G′ with L(G) = L(G′) can be
computed
• Provided that L(G) 6= ∅, otherwise S must not be productive.

1 Remove unproductive non-terminals

• Productive nonterminals can be computed by saturation algorithm:
• n is productive, if there is a rule n→ β such that every nonterminal in β is

productive

2 Remove unreachable nonterminals

• Again saturation: S is reachable, n is reachable if there is a rule n̂→ C[n]
such that n̂ is reachable

75 / 161

Computation of Equivalent Reduced Grammar

• For every RTG G, reduced tree grammar G′ with L(G) = L(G′) can be
computed
• Provided that L(G) 6= ∅, otherwise S must not be productive.

1 Remove unproductive non-terminals
• Productive nonterminals can be computed by saturation algorithm:

• n is productive, if there is a rule n→ β such that every nonterminal in β is
productive

2 Remove unreachable nonterminals

• Again saturation: S is reachable, n is reachable if there is a rule n̂→ C[n]
such that n̂ is reachable

75 / 161

Computation of Equivalent Reduced Grammar

• For every RTG G, reduced tree grammar G′ with L(G) = L(G′) can be
computed
• Provided that L(G) 6= ∅, otherwise S must not be productive.

1 Remove unproductive non-terminals
• Productive nonterminals can be computed by saturation algorithm:
• n is productive, if there is a rule n→ β such that every nonterminal in β is

productive

2 Remove unreachable nonterminals

• Again saturation: S is reachable, n is reachable if there is a rule n̂→ C[n]
such that n̂ is reachable

75 / 161

Computation of Equivalent Reduced Grammar

• For every RTG G, reduced tree grammar G′ with L(G) = L(G′) can be
computed
• Provided that L(G) 6= ∅, otherwise S must not be productive.

1 Remove unproductive non-terminals
• Productive nonterminals can be computed by saturation algorithm:
• n is productive, if there is a rule n→ β such that every nonterminal in β is

productive

2 Remove unreachable nonterminals

• Again saturation: S is reachable, n is reachable if there is a rule n̂→ C[n]
such that n̂ is reachable

75 / 161

Computation of Equivalent Reduced Grammar

• For every RTG G, reduced tree grammar G′ with L(G) = L(G′) can be
computed
• Provided that L(G) 6= ∅, otherwise S must not be productive.

1 Remove unproductive non-terminals
• Productive nonterminals can be computed by saturation algorithm:
• n is productive, if there is a rule n→ β such that every nonterminal in β is

productive

2 Remove unreachable nonterminals
• Again saturation: S is reachable, n is reachable if there is a rule n̂→ C[n]

such that n̂ is reachable

75 / 161

Correctness

• Obviously, removing unproductive or unreachable nonterminals does not
change the language

• Remains to show: Removing unreachable nonterminals cannot create
new unproductive ones

• On board

76 / 161

Correctness

• Obviously, removing unproductive or unreachable nonterminals does not
change the language

• Remains to show: Removing unreachable nonterminals cannot create
new unproductive ones

• On board

76 / 161

Correctness

• Obviously, removing unproductive or unreachable nonterminals does not
change the language

• Remains to show: Removing unreachable nonterminals cannot create
new unproductive ones
• On board

76 / 161

Normalized Regular Tree Grammars

• RTG is normalized, iff all productions have the form n→ f (n1, . . . ,nn) for
n,n1, . . . ,nn ∈ N

• Every RTG can be transformed into an equivalent normal one

• Iterate: Replace a rule n→ f (s1, . . . , sn) by n→ f (n1, . . . , nn)

• where ni = si if si ∈ N
• ni ∈ N fresh otherwise. In this case, add rule ni → si

• After iteration, all rules have form n→ f (n1, . . . , nn) or n1 → n2
• Eliminate the latter rules by replacing s1 → s2 by rules s1 → t for all t /∈ N

with s2 →∗ n→ t

• Cf.: Elimination of epsilon rules

• Correctness (Ideas)

• Each step of the iteration preserves language
• Elimination preserves language

77 / 161

Normalized Regular Tree Grammars

• RTG is normalized, iff all productions have the form n→ f (n1, . . . ,nn) for
n,n1, . . . ,nn ∈ N

• Every RTG can be transformed into an equivalent normal one

• Iterate: Replace a rule n→ f (s1, . . . , sn) by n→ f (n1, . . . , nn)

• where ni = si if si ∈ N
• ni ∈ N fresh otherwise. In this case, add rule ni → si

• After iteration, all rules have form n→ f (n1, . . . , nn) or n1 → n2
• Eliminate the latter rules by replacing s1 → s2 by rules s1 → t for all t /∈ N

with s2 →∗ n→ t

• Cf.: Elimination of epsilon rules

• Correctness (Ideas)

• Each step of the iteration preserves language
• Elimination preserves language

77 / 161

Normalized Regular Tree Grammars

• RTG is normalized, iff all productions have the form n→ f (n1, . . . ,nn) for
n,n1, . . . ,nn ∈ N

• Every RTG can be transformed into an equivalent normal one
• Iterate: Replace a rule n→ f (s1, . . . , sn) by n→ f (n1, . . . , nn)

• where ni = si if si ∈ N
• ni ∈ N fresh otherwise. In this case, add rule ni → si

• After iteration, all rules have form n→ f (n1, . . . , nn) or n1 → n2
• Eliminate the latter rules by replacing s1 → s2 by rules s1 → t for all t /∈ N

with s2 →∗ n→ t

• Cf.: Elimination of epsilon rules

• Correctness (Ideas)

• Each step of the iteration preserves language
• Elimination preserves language

77 / 161

Normalized Regular Tree Grammars

• RTG is normalized, iff all productions have the form n→ f (n1, . . . ,nn) for
n,n1, . . . ,nn ∈ N

• Every RTG can be transformed into an equivalent normal one
• Iterate: Replace a rule n→ f (s1, . . . , sn) by n→ f (n1, . . . , nn)

• where ni = si if si ∈ N

• ni ∈ N fresh otherwise. In this case, add rule ni → si

• After iteration, all rules have form n→ f (n1, . . . , nn) or n1 → n2
• Eliminate the latter rules by replacing s1 → s2 by rules s1 → t for all t /∈ N

with s2 →∗ n→ t

• Cf.: Elimination of epsilon rules

• Correctness (Ideas)

• Each step of the iteration preserves language
• Elimination preserves language

77 / 161

Normalized Regular Tree Grammars

• RTG is normalized, iff all productions have the form n→ f (n1, . . . ,nn) for
n,n1, . . . ,nn ∈ N

• Every RTG can be transformed into an equivalent normal one
• Iterate: Replace a rule n→ f (s1, . . . , sn) by n→ f (n1, . . . , nn)

• where ni = si if si ∈ N
• ni ∈ N fresh otherwise. In this case, add rule ni → si

• After iteration, all rules have form n→ f (n1, . . . , nn) or n1 → n2
• Eliminate the latter rules by replacing s1 → s2 by rules s1 → t for all t /∈ N

with s2 →∗ n→ t

• Cf.: Elimination of epsilon rules

• Correctness (Ideas)

• Each step of the iteration preserves language
• Elimination preserves language

77 / 161

Normalized Regular Tree Grammars

• RTG is normalized, iff all productions have the form n→ f (n1, . . . ,nn) for
n,n1, . . . ,nn ∈ N

• Every RTG can be transformed into an equivalent normal one
• Iterate: Replace a rule n→ f (s1, . . . , sn) by n→ f (n1, . . . , nn)

• where ni = si if si ∈ N
• ni ∈ N fresh otherwise. In this case, add rule ni → si

• After iteration, all rules have form n→ f (n1, . . . , nn) or n1 → n2

• Eliminate the latter rules by replacing s1 → s2 by rules s1 → t for all t /∈ N
with s2 →∗ n→ t

• Cf.: Elimination of epsilon rules

• Correctness (Ideas)

• Each step of the iteration preserves language
• Elimination preserves language

77 / 161

Normalized Regular Tree Grammars

• RTG is normalized, iff all productions have the form n→ f (n1, . . . ,nn) for
n,n1, . . . ,nn ∈ N

• Every RTG can be transformed into an equivalent normal one
• Iterate: Replace a rule n→ f (s1, . . . , sn) by n→ f (n1, . . . , nn)

• where ni = si if si ∈ N
• ni ∈ N fresh otherwise. In this case, add rule ni → si

• After iteration, all rules have form n→ f (n1, . . . , nn) or n1 → n2
• Eliminate the latter rules by replacing s1 → s2 by rules s1 → t for all t /∈ N

with s2 →∗ n→ t

• Cf.: Elimination of epsilon rules

• Correctness (Ideas)

• Each step of the iteration preserves language
• Elimination preserves language

77 / 161

Normalized Regular Tree Grammars

• RTG is normalized, iff all productions have the form n→ f (n1, . . . ,nn) for
n,n1, . . . ,nn ∈ N

• Every RTG can be transformed into an equivalent normal one
• Iterate: Replace a rule n→ f (s1, . . . , sn) by n→ f (n1, . . . , nn)

• where ni = si if si ∈ N
• ni ∈ N fresh otherwise. In this case, add rule ni → si

• After iteration, all rules have form n→ f (n1, . . . , nn) or n1 → n2
• Eliminate the latter rules by replacing s1 → s2 by rules s1 → t for all t /∈ N

with s2 →∗ n→ t
• Cf.: Elimination of epsilon rules

• Correctness (Ideas)

• Each step of the iteration preserves language
• Elimination preserves language

77 / 161

Normalized Regular Tree Grammars

• RTG is normalized, iff all productions have the form n→ f (n1, . . . ,nn) for
n,n1, . . . ,nn ∈ N

• Every RTG can be transformed into an equivalent normal one
• Iterate: Replace a rule n→ f (s1, . . . , sn) by n→ f (n1, . . . , nn)

• where ni = si if si ∈ N
• ni ∈ N fresh otherwise. In this case, add rule ni → si

• After iteration, all rules have form n→ f (n1, . . . , nn) or n1 → n2
• Eliminate the latter rules by replacing s1 → s2 by rules s1 → t for all t /∈ N

with s2 →∗ n→ t
• Cf.: Elimination of epsilon rules

• Correctness (Ideas)

• Each step of the iteration preserves language
• Elimination preserves language

77 / 161

Normalized Regular Tree Grammars

• RTG is normalized, iff all productions have the form n→ f (n1, . . . ,nn) for
n,n1, . . . ,nn ∈ N

• Every RTG can be transformed into an equivalent normal one
• Iterate: Replace a rule n→ f (s1, . . . , sn) by n→ f (n1, . . . , nn)

• where ni = si if si ∈ N
• ni ∈ N fresh otherwise. In this case, add rule ni → si

• After iteration, all rules have form n→ f (n1, . . . , nn) or n1 → n2
• Eliminate the latter rules by replacing s1 → s2 by rules s1 → t for all t /∈ N

with s2 →∗ n→ t
• Cf.: Elimination of epsilon rules

• Correctness (Ideas)
• Each step of the iteration preserves language

• Elimination preserves language

77 / 161

Normalized Regular Tree Grammars

• RTG is normalized, iff all productions have the form n→ f (n1, . . . ,nn) for
n,n1, . . . ,nn ∈ N

• Every RTG can be transformed into an equivalent normal one
• Iterate: Replace a rule n→ f (s1, . . . , sn) by n→ f (n1, . . . , nn)

• where ni = si if si ∈ N
• ni ∈ N fresh otherwise. In this case, add rule ni → si

• After iteration, all rules have form n→ f (n1, . . . , nn) or n1 → n2
• Eliminate the latter rules by replacing s1 → s2 by rules s1 → t for all t /∈ N

with s2 →∗ n→ t
• Cf.: Elimination of epsilon rules

• Correctness (Ideas)
• Each step of the iteration preserves language
• Elimination preserves language

77 / 161

Normalized RTGs and top-down NTFAs

• Obviously, normalized RTGs are isomorphic to top-down NTFAs

• Thus, exactly the regular languages can be expressed by RTGs

Theorem
A language is regular if and only if it can be described by a regular tree
grammar.

78 / 161

Normalized RTGs and top-down NTFAs

• Obviously, normalized RTGs are isomorphic to top-down NTFAs
• Thus, exactly the regular languages can be expressed by RTGs

Theorem
A language is regular if and only if it can be described by a regular tree
grammar.

78 / 161

Last Lecture

• Myhill Nerode Theorem
• Minimization Algorithm
• Top-Down Tree Automata
• Regular Tree Grammars
• Started: Tree Regular Expressions

79 / 161

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages
Regular Tree Grammars
Tree Regular Expressions

4 Model-Checking concurrent Systems

80 / 161

Recall: Word regular expressions

• e ::= ε | ∅ | a for a ∈ Σ | e · e | e + e | e∗

• Empty word | empty language | single character | concatenation | choice |
iteration

• For example: (r + w + o)∗ · (r + w) · (r + w + o)∗

• Words containing at least one r or at least one w

• Recall: e∗ = ε+ e · e∗

81 / 161

Recall: Word regular expressions

• e ::= ε | ∅ | a for a ∈ Σ | e · e | e + e | e∗
• Empty word | empty language | single character | concatenation | choice |

iteration

• For example: (r + w + o)∗ · (r + w) · (r + w + o)∗

• Words containing at least one r or at least one w

• Recall: e∗ = ε+ e · e∗

81 / 161

Recall: Word regular expressions

• e ::= ε | ∅ | a for a ∈ Σ | e · e | e + e | e∗
• Empty word | empty language | single character | concatenation | choice |

iteration
• For example: (r + w + o)∗ · (r + w) · (r + w + o)∗

• Words containing at least one r or at least one w

• Recall: e∗ = ε+ e · e∗

81 / 161

Recall: Word regular expressions

• e ::= ε | ∅ | a for a ∈ Σ | e · e | e + e | e∗
• Empty word | empty language | single character | concatenation | choice |

iteration
• For example: (r + w + o)∗ · (r + w) · (r + w + o)∗

• Words containing at least one r or at least one w

• Recall: e∗ = ε+ e · e∗

81 / 161

Recall: Word regular expressions

• e ::= ε | ∅ | a for a ∈ Σ | e · e | e + e | e∗
• Empty word | empty language | single character | concatenation | choice |

iteration
• For example: (r + w + o)∗ · (r + w) · (r + w + o)∗

• Words containing at least one r or at least one w

• Recall: e∗ = ε+ e · e∗

81 / 161

Tree regular expressions

• Consider the set {0, s(0), s(s(0)), . . .}

• Want to represent this as „regular expression”
• s(�)∗ · 0

• Idea: � indicates position for concatenation
• t1 · t2 inserts t2 at square-position in t1
• f (. . .)∗ = � + f (. . .) · f (. . .)∗ iterates over position �

• There may be more than one iteration, over different positions

• Number position markers: �1,�2, . . .
• cons(s(�1)∗1 ·1 0,�2)∗2 ·2 nil

• Note: TATA notation: s(�1)∗,�1 ·�1nil

82 / 161

Tree regular expressions

• Consider the set {0, s(0), s(s(0)), . . .}
• Want to represent this as „regular expression”

• s(�)∗ · 0

• Idea: � indicates position for concatenation
• t1 · t2 inserts t2 at square-position in t1
• f (. . .)∗ = � + f (. . .) · f (. . .)∗ iterates over position �

• There may be more than one iteration, over different positions

• Number position markers: �1,�2, . . .
• cons(s(�1)∗1 ·1 0,�2)∗2 ·2 nil

• Note: TATA notation: s(�1)∗,�1 ·�1nil

82 / 161

Tree regular expressions

• Consider the set {0, s(0), s(s(0)), . . .}
• Want to represent this as „regular expression”

• s(�)∗ · 0

• Idea: � indicates position for concatenation
• t1 · t2 inserts t2 at square-position in t1
• f (. . .)∗ = � + f (. . .) · f (. . .)∗ iterates over position �

• There may be more than one iteration, over different positions

• Number position markers: �1,�2, . . .
• cons(s(�1)∗1 ·1 0,�2)∗2 ·2 nil

• Note: TATA notation: s(�1)∗,�1 ·�1nil

82 / 161

Tree regular expressions

• Consider the set {0, s(0), s(s(0)), . . .}
• Want to represent this as „regular expression”

• s(�)∗ · 0
• Idea: � indicates position for concatenation

• t1 · t2 inserts t2 at square-position in t1
• f (. . .)∗ = � + f (. . .) · f (. . .)∗ iterates over position �

• There may be more than one iteration, over different positions

• Number position markers: �1,�2, . . .
• cons(s(�1)∗1 ·1 0,�2)∗2 ·2 nil

• Note: TATA notation: s(�1)∗,�1 ·�1nil

82 / 161

Tree regular expressions

• Consider the set {0, s(0), s(s(0)), . . .}
• Want to represent this as „regular expression”

• s(�)∗ · 0
• Idea: � indicates position for concatenation
• t1 · t2 inserts t2 at square-position in t1

• f (. . .)∗ = � + f (. . .) · f (. . .)∗ iterates over position �

• There may be more than one iteration, over different positions

• Number position markers: �1,�2, . . .
• cons(s(�1)∗1 ·1 0,�2)∗2 ·2 nil

• Note: TATA notation: s(�1)∗,�1 ·�1nil

82 / 161

Tree regular expressions

• Consider the set {0, s(0), s(s(0)), . . .}
• Want to represent this as „regular expression”

• s(�)∗ · 0
• Idea: � indicates position for concatenation
• t1 · t2 inserts t2 at square-position in t1
• f (. . .)∗ = � + f (. . .) · f (. . .)∗ iterates over position �

• There may be more than one iteration, over different positions

• Number position markers: �1,�2, . . .
• cons(s(�1)∗1 ·1 0,�2)∗2 ·2 nil

• Note: TATA notation: s(�1)∗,�1 ·�1nil

82 / 161

Tree regular expressions

• Consider the set {0, s(0), s(s(0)), . . .}
• Want to represent this as „regular expression”

• s(�)∗ · 0
• Idea: � indicates position for concatenation
• t1 · t2 inserts t2 at square-position in t1
• f (. . .)∗ = � + f (. . .) · f (. . .)∗ iterates over position �

• There may be more than one iteration, over different positions

• Number position markers: �1,�2, . . .
• cons(s(�1)∗1 ·1 0,�2)∗2 ·2 nil

• Note: TATA notation: s(�1)∗,�1 ·�1nil

82 / 161

Tree regular expressions

• Consider the set {0, s(0), s(s(0)), . . .}
• Want to represent this as „regular expression”

• s(�)∗ · 0
• Idea: � indicates position for concatenation
• t1 · t2 inserts t2 at square-position in t1
• f (. . .)∗ = � + f (. . .) · f (. . .)∗ iterates over position �

• There may be more than one iteration, over different positions
• Number position markers: �1,�2, . . .

• cons(s(�1)∗1 ·1 0,�2)∗2 ·2 nil

• Note: TATA notation: s(�1)∗,�1 ·�1nil

82 / 161

Tree regular expressions

• Consider the set {0, s(0), s(s(0)), . . .}
• Want to represent this as „regular expression”

• s(�)∗ · 0
• Idea: � indicates position for concatenation
• t1 · t2 inserts t2 at square-position in t1
• f (. . .)∗ = � + f (. . .) · f (. . .)∗ iterates over position �

• There may be more than one iteration, over different positions
• Number position markers: �1,�2, . . .
• cons(s(�1)∗1 ·1 0,�2)∗2 ·2 nil

• Note: TATA notation: s(�1)∗,�1 ·�1nil

82 / 161

Tree regular expressions

• Consider the set {0, s(0), s(s(0)), . . .}
• Want to represent this as „regular expression”

• s(�)∗ · 0
• Idea: � indicates position for concatenation
• t1 · t2 inserts t2 at square-position in t1
• f (. . .)∗ = � + f (. . .) · f (. . .)∗ iterates over position �

• There may be more than one iteration, over different positions
• Number position markers: �1,�2, . . .
• cons(s(�1)∗1 ·1 0,�2)∗2 ·2 nil

• Note: TATA notation: s(�1)∗,�1 ·�1nil

82 / 161

Substitution and Concatenation

• Let K := �1/0,�2/0, Assume K ∩ F = ∅

• For trees t ∈ T (F ∪ K), we define (simultaneous) substitution
t{a1 ← L1, . . . ,an ← Ln}, for ai ∈ K and i 6= j =⇒ ai 6= aj :

a{a1 ← L1, . . . ,an ← Ln} = a for a ∈ F ∪ K and ∀i . a 6= ai

ai{a1 ← L1, . . . ,an ← Ln} = Li

f (s1, . . . , sm){a1 ← L1, . . . ,an ← Ln}
= {f (t1, . . . , tm) | ti ∈ si{a1 ← L1, . . . ,an ← Ln}}

• And generalize this to languages

L{a1 ← L1, . . . ,an ← Ln} :=
⋃
t∈L

(t{a1 ← L1, . . . ,an ← Ln})

• And define concatenation

L1 ·i L2 := L1{�i ← L2}

83 / 161

Substitution and Concatenation

• Let K := �1/0,�2/0, Assume K ∩ F = ∅
• For trees t ∈ T (F ∪ K), we define (simultaneous) substitution

t{a1 ← L1, . . . ,an ← Ln}, for ai ∈ K and i 6= j =⇒ ai 6= aj :

a{a1 ← L1, . . . ,an ← Ln} = a for a ∈ F ∪ K and ∀i . a 6= ai

ai{a1 ← L1, . . . ,an ← Ln} = Li

f (s1, . . . , sm){a1 ← L1, . . . ,an ← Ln}
= {f (t1, . . . , tm) | ti ∈ si{a1 ← L1, . . . ,an ← Ln}}

• And generalize this to languages

L{a1 ← L1, . . . ,an ← Ln} :=
⋃
t∈L

(t{a1 ← L1, . . . ,an ← Ln})

• And define concatenation

L1 ·i L2 := L1{�i ← L2}

83 / 161

Substitution and Concatenation

• Let K := �1/0,�2/0, Assume K ∩ F = ∅
• For trees t ∈ T (F ∪ K), we define (simultaneous) substitution

t{a1 ← L1, . . . ,an ← Ln}, for ai ∈ K and i 6= j =⇒ ai 6= aj :

a{a1 ← L1, . . . ,an ← Ln} = a for a ∈ F ∪ K and ∀i . a 6= ai

ai{a1 ← L1, . . . ,an ← Ln} = Li

f (s1, . . . , sm){a1 ← L1, . . . ,an ← Ln}
= {f (t1, . . . , tm) | ti ∈ si{a1 ← L1, . . . ,an ← Ln}}

• And generalize this to languages

L{a1 ← L1, . . . ,an ← Ln} :=
⋃
t∈L

(t{a1 ← L1, . . . ,an ← Ln})

• And define concatenation

L1 ·i L2 := L1{�i ← L2}

83 / 161

Substitution and Concatenation

• Let K := �1/0,�2/0, Assume K ∩ F = ∅
• For trees t ∈ T (F ∪ K), we define (simultaneous) substitution

t{a1 ← L1, . . . ,an ← Ln}, for ai ∈ K and i 6= j =⇒ ai 6= aj :

a{a1 ← L1, . . . ,an ← Ln} = a for a ∈ F ∪ K and ∀i . a 6= ai

ai{a1 ← L1, . . . ,an ← Ln} = Li

f (s1, . . . , sm){a1 ← L1, . . . ,an ← Ln}
= {f (t1, . . . , tm) | ti ∈ si{a1 ← L1, . . . ,an ← Ln}}

• And generalize this to languages

L{a1 ← L1, . . . ,an ← Ln} :=
⋃
t∈L

(t{a1 ← L1, . . . ,an ← Ln})

• And define concatenation

L1 ·i L2 := L1{�i ← L2}

83 / 161

Iteration

• Iteration Ln,i

L0,i := �i Ln+1,i = Ln,i ∪ L ·i Ln,i

• Note: All numbers ≤ n of iterations included.
• If there are many concatenation points, number of iterations is independent

for each concatenation point.
• For example: f (f (�, f (�,�)),�) ∈ {f (�,�)}3

• Closure L∗i

L∗i :=
⋃
n∈N

Ln,i

84 / 161

Iteration

• Iteration Ln,i

L0,i := �i Ln+1,i = Ln,i ∪ L ·i Ln,i

• Note: All numbers ≤ n of iterations included.

• If there are many concatenation points, number of iterations is independent
for each concatenation point.

• For example: f (f (�, f (�,�)),�) ∈ {f (�,�)}3

• Closure L∗i

L∗i :=
⋃
n∈N

Ln,i

84 / 161

Iteration

• Iteration Ln,i

L0,i := �i Ln+1,i = Ln,i ∪ L ·i Ln,i

• Note: All numbers ≤ n of iterations included.
• If there are many concatenation points, number of iterations is independent

for each concatenation point.

• For example: f (f (�, f (�,�)),�) ∈ {f (�,�)}3

• Closure L∗i

L∗i :=
⋃
n∈N

Ln,i

84 / 161

Iteration

• Iteration Ln,i

L0,i := �i Ln+1,i = Ln,i ∪ L ·i Ln,i

• Note: All numbers ≤ n of iterations included.
• If there are many concatenation points, number of iterations is independent

for each concatenation point.
• For example: f (f (�, f (�,�)),�) ∈ {f (�,�)}3

• Closure L∗i

L∗i :=
⋃
n∈N

Ln,i

84 / 161

Iteration

• Iteration Ln,i

L0,i := �i Ln+1,i = Ln,i ∪ L ·i Ln,i

• Note: All numbers ≤ n of iterations included.
• If there are many concatenation points, number of iterations is independent

for each concatenation point.
• For example: f (f (�, f (�,�)),�) ∈ {f (�,�)}3

• Closure L∗i

L∗i :=
⋃
n∈N

Ln,i

84 / 161

Preservation of Regularity (Concatenation)

Theorem
Substitution preserves regularity, i.e., let L,L1, . . . ,Ln be regular languages,
then L′ := L{a1 ← L1, . . . ,an ← Ln} is a regular language

• Proof sketch:

• Let L, L1, . . . , Li be represented by RTGs over disjoint nonterminals
• G = (S,N,F ,R) with L = L(G) and Gi = (Si ,Ni ,F ,Ri) with Li = L(Gi)

• Then let G′ = (S,N ∪N1 ∪ . . .∪Nn,F ,R′ ∪R1 ∪ . . .∪Rn) where R′ contains
the rules of R, but ai replaced by Si .

• L′ ⊆ L(G′): Produce word from L first (the �i are replaced by Si), then
rewrite the Si to words from Li

• L(G′) ⊆ L′: Re-order derivation of G′ to stop at the Si

• Formally, show:
∀A ∈ N. A→G′ s′ =⇒ ∃s. A→G s ∧ s′ ∈ s{a1 ← L1, . . . , an ← Ln}

• By induction on derivation length

• Corollary: Concatenation preserves regularity, i.e., for regular languages
L1,L2, the language L1 · L2 is regular.

85 / 161

Preservation of Regularity (Concatenation)

Theorem
Substitution preserves regularity, i.e., let L,L1, . . . ,Ln be regular languages,
then L′ := L{a1 ← L1, . . . ,an ← Ln} is a regular language

• Proof sketch:
• Let L, L1, . . . , Li be represented by RTGs over disjoint nonterminals

• G = (S,N,F ,R) with L = L(G) and Gi = (Si ,Ni ,F ,Ri) with Li = L(Gi)

• Then let G′ = (S,N ∪N1 ∪ . . .∪Nn,F ,R′ ∪R1 ∪ . . .∪Rn) where R′ contains
the rules of R, but ai replaced by Si .

• L′ ⊆ L(G′): Produce word from L first (the �i are replaced by Si), then
rewrite the Si to words from Li

• L(G′) ⊆ L′: Re-order derivation of G′ to stop at the Si

• Formally, show:
∀A ∈ N. A→G′ s′ =⇒ ∃s. A→G s ∧ s′ ∈ s{a1 ← L1, . . . , an ← Ln}

• By induction on derivation length

• Corollary: Concatenation preserves regularity, i.e., for regular languages
L1,L2, the language L1 · L2 is regular.

85 / 161

Preservation of Regularity (Concatenation)

Theorem
Substitution preserves regularity, i.e., let L,L1, . . . ,Ln be regular languages,
then L′ := L{a1 ← L1, . . . ,an ← Ln} is a regular language

• Proof sketch:
• Let L, L1, . . . , Li be represented by RTGs over disjoint nonterminals

• G = (S,N,F ,R) with L = L(G) and Gi = (Si ,Ni ,F ,Ri) with Li = L(Gi)

• Then let G′ = (S,N ∪N1 ∪ . . .∪Nn,F ,R′ ∪R1 ∪ . . .∪Rn) where R′ contains
the rules of R, but ai replaced by Si .

• L′ ⊆ L(G′): Produce word from L first (the �i are replaced by Si), then
rewrite the Si to words from Li

• L(G′) ⊆ L′: Re-order derivation of G′ to stop at the Si

• Formally, show:
∀A ∈ N. A→G′ s′ =⇒ ∃s. A→G s ∧ s′ ∈ s{a1 ← L1, . . . , an ← Ln}

• By induction on derivation length

• Corollary: Concatenation preserves regularity, i.e., for regular languages
L1,L2, the language L1 · L2 is regular.

85 / 161

Preservation of Regularity (Concatenation)

Theorem
Substitution preserves regularity, i.e., let L,L1, . . . ,Ln be regular languages,
then L′ := L{a1 ← L1, . . . ,an ← Ln} is a regular language

• Proof sketch:
• Let L, L1, . . . , Li be represented by RTGs over disjoint nonterminals

• G = (S,N,F ,R) with L = L(G) and Gi = (Si ,Ni ,F ,Ri) with Li = L(Gi)

• Then let G′ = (S,N ∪N1 ∪ . . .∪Nn,F ,R′ ∪R1 ∪ . . .∪Rn) where R′ contains
the rules of R, but ai replaced by Si .

• L′ ⊆ L(G′): Produce word from L first (the �i are replaced by Si), then
rewrite the Si to words from Li

• L(G′) ⊆ L′: Re-order derivation of G′ to stop at the Si

• Formally, show:
∀A ∈ N. A→G′ s′ =⇒ ∃s. A→G s ∧ s′ ∈ s{a1 ← L1, . . . , an ← Ln}

• By induction on derivation length

• Corollary: Concatenation preserves regularity, i.e., for regular languages
L1,L2, the language L1 · L2 is regular.

85 / 161

Preservation of Regularity (Concatenation)

Theorem
Substitution preserves regularity, i.e., let L,L1, . . . ,Ln be regular languages,
then L′ := L{a1 ← L1, . . . ,an ← Ln} is a regular language

• Proof sketch:
• Let L, L1, . . . , Li be represented by RTGs over disjoint nonterminals

• G = (S,N,F ,R) with L = L(G) and Gi = (Si ,Ni ,F ,Ri) with Li = L(Gi)

• Then let G′ = (S,N ∪N1 ∪ . . .∪Nn,F ,R′ ∪R1 ∪ . . .∪Rn) where R′ contains
the rules of R, but ai replaced by Si .

• L′ ⊆ L(G′): Produce word from L first (the �i are replaced by Si), then
rewrite the Si to words from Li

• L(G′) ⊆ L′: Re-order derivation of G′ to stop at the Si

• Formally, show:
∀A ∈ N. A→G′ s′ =⇒ ∃s. A→G s ∧ s′ ∈ s{a1 ← L1, . . . , an ← Ln}

• By induction on derivation length

• Corollary: Concatenation preserves regularity, i.e., for regular languages
L1,L2, the language L1 · L2 is regular.

85 / 161

Preservation of Regularity (Concatenation)

Theorem
Substitution preserves regularity, i.e., let L,L1, . . . ,Ln be regular languages,
then L′ := L{a1 ← L1, . . . ,an ← Ln} is a regular language

• Proof sketch:
• Let L, L1, . . . , Li be represented by RTGs over disjoint nonterminals

• G = (S,N,F ,R) with L = L(G) and Gi = (Si ,Ni ,F ,Ri) with Li = L(Gi)

• Then let G′ = (S,N ∪N1 ∪ . . .∪Nn,F ,R′ ∪R1 ∪ . . .∪Rn) where R′ contains
the rules of R, but ai replaced by Si .

• L′ ⊆ L(G′): Produce word from L first (the �i are replaced by Si), then
rewrite the Si to words from Li

• L(G′) ⊆ L′: Re-order derivation of G′ to stop at the Si

• Formally, show:
∀A ∈ N. A→G′ s′ =⇒ ∃s. A→G s ∧ s′ ∈ s{a1 ← L1, . . . , an ← Ln}

• By induction on derivation length

• Corollary: Concatenation preserves regularity, i.e., for regular languages
L1,L2, the language L1 · L2 is regular.

85 / 161

Preservation of Regularity (Concatenation)

Theorem
Substitution preserves regularity, i.e., let L,L1, . . . ,Ln be regular languages,
then L′ := L{a1 ← L1, . . . ,an ← Ln} is a regular language

• Proof sketch:
• Let L, L1, . . . , Li be represented by RTGs over disjoint nonterminals

• G = (S,N,F ,R) with L = L(G) and Gi = (Si ,Ni ,F ,Ri) with Li = L(Gi)

• Then let G′ = (S,N ∪N1 ∪ . . .∪Nn,F ,R′ ∪R1 ∪ . . .∪Rn) where R′ contains
the rules of R, but ai replaced by Si .

• L′ ⊆ L(G′): Produce word from L first (the �i are replaced by Si), then
rewrite the Si to words from Li

• L(G′) ⊆ L′: Re-order derivation of G′ to stop at the Si

• Formally, show:
∀A ∈ N. A→G′ s′ =⇒ ∃s. A→G s ∧ s′ ∈ s{a1 ← L1, . . . , an ← Ln}

• By induction on derivation length

• Corollary: Concatenation preserves regularity, i.e., for regular languages
L1,L2, the language L1 · L2 is regular.

85 / 161

Preservation of Regularity (Concatenation)

Theorem
Substitution preserves regularity, i.e., let L,L1, . . . ,Ln be regular languages,
then L′ := L{a1 ← L1, . . . ,an ← Ln} is a regular language

• Proof sketch:
• Let L, L1, . . . , Li be represented by RTGs over disjoint nonterminals

• G = (S,N,F ,R) with L = L(G) and Gi = (Si ,Ni ,F ,Ri) with Li = L(Gi)

• Then let G′ = (S,N ∪N1 ∪ . . .∪Nn,F ,R′ ∪R1 ∪ . . .∪Rn) where R′ contains
the rules of R, but ai replaced by Si .

• L′ ⊆ L(G′): Produce word from L first (the �i are replaced by Si), then
rewrite the Si to words from Li

• L(G′) ⊆ L′: Re-order derivation of G′ to stop at the Si

• Formally, show:
∀A ∈ N. A→G′ s′ =⇒ ∃s. A→G s ∧ s′ ∈ s{a1 ← L1, . . . , an ← Ln}

• By induction on derivation length

• Corollary: Concatenation preserves regularity, i.e., for regular languages
L1,L2, the language L1 · L2 is regular.

85 / 161

Preservation of Regularity (Closure)

Theorem
Closure preserves regularity, i.e., let L be a regular language. Then, L∗ is a
regular language.

• Proof sketch

• Let L be represented by RTG G = (S,N,F ,R)
• Construct G′ = (S′,N ∪̇ {S′},F ∪ K,R′), such that

• R′ contains the rules from R, with � replaced by S′
• S′ → � ∈ R′ and S′ → S ∈ R′

• L∗ ⊆ L(G′): Obvious by construction
• L(G′) ⊆ L∗: Re-ordering derivation. Formally: Induction on derivation length.

86 / 161

Preservation of Regularity (Closure)

Theorem
Closure preserves regularity, i.e., let L be a regular language. Then, L∗ is a
regular language.

• Proof sketch
• Let L be represented by RTG G = (S,N,F ,R)

• Construct G′ = (S′,N ∪̇ {S′},F ∪ K,R′), such that

• R′ contains the rules from R, with � replaced by S′
• S′ → � ∈ R′ and S′ → S ∈ R′

• L∗ ⊆ L(G′): Obvious by construction
• L(G′) ⊆ L∗: Re-ordering derivation. Formally: Induction on derivation length.

86 / 161

Preservation of Regularity (Closure)

Theorem
Closure preserves regularity, i.e., let L be a regular language. Then, L∗ is a
regular language.

• Proof sketch
• Let L be represented by RTG G = (S,N,F ,R)
• Construct G′ = (S′,N ∪̇ {S′},F ∪ K,R′), such that

• R′ contains the rules from R, with � replaced by S′
• S′ → � ∈ R′ and S′ → S ∈ R′

• L∗ ⊆ L(G′): Obvious by construction
• L(G′) ⊆ L∗: Re-ordering derivation. Formally: Induction on derivation length.

86 / 161

Preservation of Regularity (Closure)

Theorem
Closure preserves regularity, i.e., let L be a regular language. Then, L∗ is a
regular language.

• Proof sketch
• Let L be represented by RTG G = (S,N,F ,R)
• Construct G′ = (S′,N ∪̇ {S′},F ∪ K,R′), such that

• R′ contains the rules from R, with � replaced by S′

• S′ → � ∈ R′ and S′ → S ∈ R′

• L∗ ⊆ L(G′): Obvious by construction
• L(G′) ⊆ L∗: Re-ordering derivation. Formally: Induction on derivation length.

86 / 161

Preservation of Regularity (Closure)

Theorem
Closure preserves regularity, i.e., let L be a regular language. Then, L∗ is a
regular language.

• Proof sketch
• Let L be represented by RTG G = (S,N,F ,R)
• Construct G′ = (S′,N ∪̇ {S′},F ∪ K,R′), such that

• R′ contains the rules from R, with � replaced by S′
• S′ → � ∈ R′ and S′ → S ∈ R′

• L∗ ⊆ L(G′): Obvious by construction
• L(G′) ⊆ L∗: Re-ordering derivation. Formally: Induction on derivation length.

86 / 161

Preservation of Regularity (Closure)

Theorem
Closure preserves regularity, i.e., let L be a regular language. Then, L∗ is a
regular language.

• Proof sketch
• Let L be represented by RTG G = (S,N,F ,R)
• Construct G′ = (S′,N ∪̇ {S′},F ∪ K,R′), such that

• R′ contains the rules from R, with � replaced by S′
• S′ → � ∈ R′ and S′ → S ∈ R′

• L∗ ⊆ L(G′): Obvious by construction

• L(G′) ⊆ L∗: Re-ordering derivation. Formally: Induction on derivation length.

86 / 161

Preservation of Regularity (Closure)

Theorem
Closure preserves regularity, i.e., let L be a regular language. Then, L∗ is a
regular language.

• Proof sketch
• Let L be represented by RTG G = (S,N,F ,R)
• Construct G′ = (S′,N ∪̇ {S′},F ∪ K,R′), such that

• R′ contains the rules from R, with � replaced by S′
• S′ → � ∈ R′ and S′ → S ∈ R′

• L∗ ⊆ L(G′): Obvious by construction
• L(G′) ⊆ L∗: Re-ordering derivation. Formally: Induction on derivation length.

86 / 161

Tree Regular Expressions

• Syntax

e ::= ∅ | f (e, . . . ,e︸ ︷︷ ︸
n times

) for f ∈ Fn | e + e | e ·i e | e∗i

• Semantics

[[∅]] = ∅
[[f (e1, . . . ,en)]] = {f (t1, . . . , tn) | ti ∈ [[ei]]}

[[e1 + e2]] = [[e1]] ∪ [[e2]]

[[e1 ·i e2]] = [[e1]] ·i [[e2]]

[[e∗i
1]] = [[e1]]∗i

87 / 161

Tree Regular Expressions

• Syntax

e ::= ∅ | f (e, . . . ,e︸ ︷︷ ︸
n times

) for f ∈ Fn | e + e | e ·i e | e∗i

• Semantics

[[∅]] = ∅
[[f (e1, . . . ,en)]] = {f (t1, . . . , tn) | ti ∈ [[ei]]}

[[e1 + e2]] = [[e1]] ∪ [[e2]]

[[e1 ·i e2]] = [[e1]] ·i [[e2]]

[[e∗i
1]] = [[e1]]∗i

87 / 161

Kleene Theorem for Tree Languages

Theorem
A tree language L is regular if and only if there is a regular expression e with
L = [[e]]

• Proof (⇐=): Straightforward, by induction on e, using preservation of
regularity by union, concatenation, and closure

• Proof (=⇒): Construct reg-exp inductively over increasing number of
states

88 / 161

Kleene Theorem for Tree Languages

Theorem
A tree language L is regular if and only if there is a regular expression e with
L = [[e]]

• Proof (⇐=): Straightforward, by induction on e, using preservation of
regularity by union, concatenation, and closure

• Proof (=⇒): Construct reg-exp inductively over increasing number of
states

88 / 161

Kleene Theorem for Tree Languages (Proof)

• Let A = (Q,F ,QF ,∆) be bottom-up automaton.

• Let Q = {q1, . . . , qn}
• Define T (i , j ,K) for K ⊆ Q as those trees over T (F ∪ K) that can be

rewritten to qi using only internal states from {q1, . . . ,qk}

• Note: We do not require qi ∈ {q1, . . . , qk}, nor K ⊆ {q1, . . . , qk}

• L(A) =
⋃

i|qi∈QF
T (i ,n, ∅)

• T (i ,0,K) is finite

• Runs accepting t ∈ T (i, 0,K) contain no internal states
• I.e., t = a() or t = f (a1, . . . am), for a, a1, . . . am ∈ F ∪ K
• Thus, representable by regular expression

• For j > 0:

T (i , j ,K) = T (i , j − 1,K ∪ {qj})︸ ︷︷ ︸
Initial segment

·qj T (j , j − 1,K ∪ {qj})∗,qj︸ ︷︷ ︸
Runs between qj s

·qj T (j , j − 1,K)︸ ︷︷ ︸
Final segment

• Regular expression for L(A) can be constructed

89 / 161

Kleene Theorem for Tree Languages (Proof)

• Let A = (Q,F ,QF ,∆) be bottom-up automaton.
• Let Q = {q1, . . . , qn}

• Define T (i , j ,K) for K ⊆ Q as those trees over T (F ∪ K) that can be
rewritten to qi using only internal states from {q1, . . . ,qk}

• Note: We do not require qi ∈ {q1, . . . , qk}, nor K ⊆ {q1, . . . , qk}

• L(A) =
⋃

i|qi∈QF
T (i ,n, ∅)

• T (i ,0,K) is finite

• Runs accepting t ∈ T (i, 0,K) contain no internal states
• I.e., t = a() or t = f (a1, . . . am), for a, a1, . . . am ∈ F ∪ K
• Thus, representable by regular expression

• For j > 0:

T (i , j ,K) = T (i , j − 1,K ∪ {qj})︸ ︷︷ ︸
Initial segment

·qj T (j , j − 1,K ∪ {qj})∗,qj︸ ︷︷ ︸
Runs between qj s

·qj T (j , j − 1,K)︸ ︷︷ ︸
Final segment

• Regular expression for L(A) can be constructed

89 / 161

Kleene Theorem for Tree Languages (Proof)

• Let A = (Q,F ,QF ,∆) be bottom-up automaton.
• Let Q = {q1, . . . , qn}

• Define T (i , j ,K) for K ⊆ Q as those trees over T (F ∪ K) that can be
rewritten to qi using only internal states from {q1, . . . ,qk}

• Note: We do not require qi ∈ {q1, . . . , qk}, nor K ⊆ {q1, . . . , qk}
• L(A) =

⋃
i|qi∈QF

T (i ,n, ∅)
• T (i ,0,K) is finite

• Runs accepting t ∈ T (i, 0,K) contain no internal states
• I.e., t = a() or t = f (a1, . . . am), for a, a1, . . . am ∈ F ∪ K
• Thus, representable by regular expression

• For j > 0:

T (i , j ,K) = T (i , j − 1,K ∪ {qj})︸ ︷︷ ︸
Initial segment

·qj T (j , j − 1,K ∪ {qj})∗,qj︸ ︷︷ ︸
Runs between qj s

·qj T (j , j − 1,K)︸ ︷︷ ︸
Final segment

• Regular expression for L(A) can be constructed

89 / 161

Kleene Theorem for Tree Languages (Proof)

• Let A = (Q,F ,QF ,∆) be bottom-up automaton.
• Let Q = {q1, . . . , qn}

• Define T (i , j ,K) for K ⊆ Q as those trees over T (F ∪ K) that can be
rewritten to qi using only internal states from {q1, . . . ,qk}
• Note: We do not require qi ∈ {q1, . . . , qk}, nor K ⊆ {q1, . . . , qk}

• L(A) =
⋃

i|qi∈QF
T (i ,n, ∅)

• T (i ,0,K) is finite

• Runs accepting t ∈ T (i, 0,K) contain no internal states
• I.e., t = a() or t = f (a1, . . . am), for a, a1, . . . am ∈ F ∪ K
• Thus, representable by regular expression

• For j > 0:

T (i , j ,K) = T (i , j − 1,K ∪ {qj})︸ ︷︷ ︸
Initial segment

·qj T (j , j − 1,K ∪ {qj})∗,qj︸ ︷︷ ︸
Runs between qj s

·qj T (j , j − 1,K)︸ ︷︷ ︸
Final segment

• Regular expression for L(A) can be constructed

89 / 161

Kleene Theorem for Tree Languages (Proof)

• Let A = (Q,F ,QF ,∆) be bottom-up automaton.
• Let Q = {q1, . . . , qn}

• Define T (i , j ,K) for K ⊆ Q as those trees over T (F ∪ K) that can be
rewritten to qi using only internal states from {q1, . . . ,qk}
• Note: We do not require qi ∈ {q1, . . . , qk}, nor K ⊆ {q1, . . . , qk}

• L(A) =
⋃

i|qi∈QF
T (i ,n, ∅)

• T (i ,0,K) is finite

• Runs accepting t ∈ T (i, 0,K) contain no internal states
• I.e., t = a() or t = f (a1, . . . am), for a, a1, . . . am ∈ F ∪ K
• Thus, representable by regular expression

• For j > 0:

T (i , j ,K) = T (i , j − 1,K ∪ {qj})︸ ︷︷ ︸
Initial segment

·qj T (j , j − 1,K ∪ {qj})∗,qj︸ ︷︷ ︸
Runs between qj s

·qj T (j , j − 1,K)︸ ︷︷ ︸
Final segment

• Regular expression for L(A) can be constructed

89 / 161

Kleene Theorem for Tree Languages (Proof)

• Let A = (Q,F ,QF ,∆) be bottom-up automaton.
• Let Q = {q1, . . . , qn}

• Define T (i , j ,K) for K ⊆ Q as those trees over T (F ∪ K) that can be
rewritten to qi using only internal states from {q1, . . . ,qk}
• Note: We do not require qi ∈ {q1, . . . , qk}, nor K ⊆ {q1, . . . , qk}

• L(A) =
⋃

i|qi∈QF
T (i ,n, ∅)

• T (i ,0,K) is finite

• Runs accepting t ∈ T (i, 0,K) contain no internal states
• I.e., t = a() or t = f (a1, . . . am), for a, a1, . . . am ∈ F ∪ K
• Thus, representable by regular expression

• For j > 0:

T (i , j ,K) = T (i , j − 1,K ∪ {qj})︸ ︷︷ ︸
Initial segment

·qj T (j , j − 1,K ∪ {qj})∗,qj︸ ︷︷ ︸
Runs between qj s

·qj T (j , j − 1,K)︸ ︷︷ ︸
Final segment

• Regular expression for L(A) can be constructed

89 / 161

Kleene Theorem for Tree Languages (Proof)

• Let A = (Q,F ,QF ,∆) be bottom-up automaton.
• Let Q = {q1, . . . , qn}

• Define T (i , j ,K) for K ⊆ Q as those trees over T (F ∪ K) that can be
rewritten to qi using only internal states from {q1, . . . ,qk}
• Note: We do not require qi ∈ {q1, . . . , qk}, nor K ⊆ {q1, . . . , qk}

• L(A) =
⋃

i|qi∈QF
T (i ,n, ∅)

• T (i ,0,K) is finite
• Runs accepting t ∈ T (i, 0,K) contain no internal states

• I.e., t = a() or t = f (a1, . . . am), for a, a1, . . . am ∈ F ∪ K
• Thus, representable by regular expression

• For j > 0:

T (i , j ,K) = T (i , j − 1,K ∪ {qj})︸ ︷︷ ︸
Initial segment

·qj T (j , j − 1,K ∪ {qj})∗,qj︸ ︷︷ ︸
Runs between qj s

·qj T (j , j − 1,K)︸ ︷︷ ︸
Final segment

• Regular expression for L(A) can be constructed

89 / 161

Kleene Theorem for Tree Languages (Proof)

• Let A = (Q,F ,QF ,∆) be bottom-up automaton.
• Let Q = {q1, . . . , qn}

• Define T (i , j ,K) for K ⊆ Q as those trees over T (F ∪ K) that can be
rewritten to qi using only internal states from {q1, . . . ,qk}
• Note: We do not require qi ∈ {q1, . . . , qk}, nor K ⊆ {q1, . . . , qk}

• L(A) =
⋃

i|qi∈QF
T (i ,n, ∅)

• T (i ,0,K) is finite
• Runs accepting t ∈ T (i, 0,K) contain no internal states
• I.e., t = a() or t = f (a1, . . . am), for a, a1, . . . am ∈ F ∪ K

• Thus, representable by regular expression

• For j > 0:

T (i , j ,K) = T (i , j − 1,K ∪ {qj})︸ ︷︷ ︸
Initial segment

·qj T (j , j − 1,K ∪ {qj})∗,qj︸ ︷︷ ︸
Runs between qj s

·qj T (j , j − 1,K)︸ ︷︷ ︸
Final segment

• Regular expression for L(A) can be constructed

89 / 161

Kleene Theorem for Tree Languages (Proof)

• Let A = (Q,F ,QF ,∆) be bottom-up automaton.
• Let Q = {q1, . . . , qn}

• Define T (i , j ,K) for K ⊆ Q as those trees over T (F ∪ K) that can be
rewritten to qi using only internal states from {q1, . . . ,qk}
• Note: We do not require qi ∈ {q1, . . . , qk}, nor K ⊆ {q1, . . . , qk}

• L(A) =
⋃

i|qi∈QF
T (i ,n, ∅)

• T (i ,0,K) is finite
• Runs accepting t ∈ T (i, 0,K) contain no internal states
• I.e., t = a() or t = f (a1, . . . am), for a, a1, . . . am ∈ F ∪ K
• Thus, representable by regular expression

• For j > 0:

T (i , j ,K) = T (i , j − 1,K ∪ {qj})︸ ︷︷ ︸
Initial segment

·qj T (j , j − 1,K ∪ {qj})∗,qj︸ ︷︷ ︸
Runs between qj s

·qj T (j , j − 1,K)︸ ︷︷ ︸
Final segment

• Regular expression for L(A) can be constructed

89 / 161

Kleene Theorem for Tree Languages (Proof)

• Let A = (Q,F ,QF ,∆) be bottom-up automaton.
• Let Q = {q1, . . . , qn}

• Define T (i , j ,K) for K ⊆ Q as those trees over T (F ∪ K) that can be
rewritten to qi using only internal states from {q1, . . . ,qk}
• Note: We do not require qi ∈ {q1, . . . , qk}, nor K ⊆ {q1, . . . , qk}

• L(A) =
⋃

i|qi∈QF
T (i ,n, ∅)

• T (i ,0,K) is finite
• Runs accepting t ∈ T (i, 0,K) contain no internal states
• I.e., t = a() or t = f (a1, . . . am), for a, a1, . . . am ∈ F ∪ K
• Thus, representable by regular expression

• For j > 0:

T (i , j ,K) = T (i , j − 1,K ∪ {qj})︸ ︷︷ ︸
Initial segment

·qj T (j , j − 1,K ∪ {qj})∗,qj︸ ︷︷ ︸
Runs between qj s

·qj T (j , j − 1,K)︸ ︷︷ ︸
Final segment

• Regular expression for L(A) can be constructed

89 / 161

Kleene Theorem for Tree Languages (Proof)

• Let A = (Q,F ,QF ,∆) be bottom-up automaton.
• Let Q = {q1, . . . , qn}

• Define T (i , j ,K) for K ⊆ Q as those trees over T (F ∪ K) that can be
rewritten to qi using only internal states from {q1, . . . ,qk}
• Note: We do not require qi ∈ {q1, . . . , qk}, nor K ⊆ {q1, . . . , qk}

• L(A) =
⋃

i|qi∈QF
T (i ,n, ∅)

• T (i ,0,K) is finite
• Runs accepting t ∈ T (i, 0,K) contain no internal states
• I.e., t = a() or t = f (a1, . . . am), for a, a1, . . . am ∈ F ∪ K
• Thus, representable by regular expression

• For j > 0:

T (i , j ,K) = T (i , j − 1,K ∪ {qj})︸ ︷︷ ︸
Initial segment

·qj T (j , j − 1,K ∪ {qj})∗,qj︸ ︷︷ ︸
Runs between qj s

·qj T (j , j − 1,K)︸ ︷︷ ︸
Final segment

• Regular expression for L(A) can be constructed

89 / 161

Last Lecture

• Tree regular expressions
• Kleene theorem

• Tree regular expressions can express exactly the tree regular languages

90 / 161

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems

91 / 161

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems
Motivation
Pushdown Systems
Dynamic Pushdown Networks
Acquisition Histories
Acquisition Histories for DPN

92 / 161

Program Analysis

• Theorem of Rice: Properties of programs undecidable
• Need approximations
• Standard approximation: Ignore branching conditions

• if (b) ... else ... Consider both branches, independent of b
• Nondeterministic program

93 / 161

Attack Plan

• Properties: Reachability of configuration/regular set of configurations
• First, consider programs with recursion

• Modeled by pushdown systems (PDS)
• Then, add process creation

• Modeled by dynamic pushdown systems (DPN)
• Then synchronization through well-nested locks

• DPN with locks

94 / 161

Recursion

• If program has no procedures
• Runs can be described by word automaton
• Example on board

• If program has procedures
• Runs can be described by push-down system (PDS)

95 / 161

Example

vo id p () {
1 : i f (. . .) p () e lse r e t u r n ;
2 : x=y ;
3 : r e t u r n ;

}

1
τ
↪→ 12 1

τ
↪→ ε

2
x=y
↪→ 3

3
τ
↪→ ε

96 / 161

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems
Motivation
Pushdown Systems
Dynamic Pushdown Networks
Acquisition Histories
Acquisition Histories for DPN

97 / 161

Push-Down Systems (PDS)

• In order to model (finitely many) return values, we add state
• A push-down system (PDS) M is a tuple (P, Γ,Act,p0, γ0,∆) where

• P is a finite set of states
• Γ is a finite stack alphabet
• Act is a finite set of actions
• p0γ0 ∈ PΓ is the initial configuration
• ∆ is a finite set of rules, of the form

pγ
a
↪→ p′w where p, p′ ∈ P, a ∈ Act, γ ∈ Γ, and w ∈ Γ∗

98 / 161

PDS - Semantics

• Configurations have the form pw ∈ PΓ∗

• The step-relation→⊆ PΓ∗ × Act× PΓ∗ is defined by

pγw a→ p′w ′w if pγ
a
↪→ p′w ′ ∈ ∆

• →∗⊆ PΓ∗ × Act∗ × PΓ∗ is its extension to sequences of steps

• pw l→∗ p′w ′ iff l = a1 . . . an and pw
a1
↪→ . . .

an
↪→ p′w ′

99 / 161

Normalized PDS

• Simplifying assumptions
• There are only three types of rules

pγ
a
↪→ p′γ′ for p, p′ ∈ P and γ, γ′ ∈ Γ (base)

pγ
a
↪→ p′γ1γ2 for p, p′ ∈ P and γ, γ1, γ2 ∈ Γ (call)

pγ
a
↪→ p′ for p, p′ ∈ P and γ ∈ Γ (return)

• Does not reduce expressiveness. Emulate rule pγ
γ
↪→1 . . . γn by sequence of call

rules.
• The empty stack must not be reachable

• Does not reduce expressiveness
• Introduce fresh ⊥ stack symbol, a rule p0⊥

τ
↪→ p0γ0⊥, and set initial state to p0⊥

• τ models an action that has no effect (skip)

• From now on, we assume that PDS are normalized

100 / 161

Execution Trees

• Model executions of PDS as tree
• Also incomplete executions, i.e., execution may stop everywhere
• This describes all reachable configurations

• A node represents a step
• If a call returns, the call-node has two successors

• Left successor describes execution of procedure
• Right successor describes execution of remaining program

• Execution trees described by the following tree grammar

XR ::= 〈Base〉(XR) | 〈Call〉R(XR,XR) | 〈Return〉
XN ::= 〈Base〉(XN) | 〈Call〉N(XN) | 〈Call〉R(XR,XN) | 〈P × Γ〉

• Where Base, Call , Return are rules of respective type
• Intuition: XR – Returning execution trees, XN – non-returning execution trees

101 / 161

Example

p1
τ
↪→ p12 p1

τ
↪→ p

p2
x=y
↪→ p3

p3
τ
↪→ p

• Example execution tree
• 〈p1

τ
↪→ p12〉N(〈p1

τ
↪→ p12〉R(〈p1

τ
↪→ p〉, 〈p2

x=y
↪→ p3〉(〈p3〉)))

102 / 161

Execution Trees of PDS

• Execution trees of PDS M = (P, Γ,Act,p0, γ0,∆) described by tree
automata AM = (Q,F , I,∆AM)

• States: Q = PΓ ∪ PΓ|P
• pγ – produce non-returning execution trees (from XN)
• pγ|p′′ – produce execution trees that return to state p′′ (from XR)
• Initial state: I = {p0γ0}

• Rules

pγ → 〈pγ
a
↪→ p′γ′〉(p′γ′) if pγ

a
↪→ p′γ′ ∈ ∆

pγ → 〈pγ
a
↪→ p′γ1γ2〉N (p′γ1) if pγ

a
↪→ p′γ1γ2 ∈ ∆

pγ → 〈pγ
a
↪→ p′γ1γ2〉R(p′γ1|p′′, p′′γ2) if p′′ ∈ P and pγ

a
↪→ p′γ1γ2 ∈ ∆

pγ → 〈pγ〉

pγ|p′′ → 〈pγ
a
↪→ p′γ′〉(p′γ′|p′′) if pγ

a
↪→ p′γ′ ∈ ∆

pγ|p′′ → 〈pγ
a
↪→ p′γ1γ2〉R(p′γ1|p′′′, p′′′γ2|p′′) if p′′′ ∈ P and pγ

a
↪→ p′γ1γ2 ∈ ∆

pγ|p′′ → 〈pγ
τ
↪→ p′′〉 if pγ

τ
↪→ p′′ ∈ ∆

103 / 161

Execution Trees – Intuition of rules
• pγ → 〈pγ a

↪→ p′γ′〉(p′γ′) (Base)
• Make a base step, then continue execution from p′γ′

• pγ → 〈pγ a
↪→ p′γ1γ2〉N(p′γ1) (Call, no-return)

• Continue execution from p′γ1.
• As call does not return, γ2 is never looked at again, and remaining execution

does not depend on it

• pγ → 〈pγ a
↪→ p′γ1γ2〉R(p′γ1|p′′,p′′γ2) (Call, return)

• Execute procedure, it returns with state p′′. Then continue execution from
p′′γ2.

• pγ → 〈pγ〉 (Finish)
• Non-deterministically decide that execution ends here

• pγ|p′′ → 〈pγ a
↪→ p′γ′〉(p′γ′|p′′) (Base)

• Base step, then continue execution

• pγ|p′′ → 〈pγ a
↪→ p′γ1γ2〉R(p′γ1|p′′′,p′′′γ2|p′′) (Call, return)

• Return from called procedure in state p′′′, then continue execution

• pγ|p′′ → 〈pγ τ
↪→ p′′〉 (Return)

• Return rule returns to specified state p′′

104 / 161

Reached Configuration

• Function c : XN → PΓ extracts reached configuration from execution tree

c(〈pγ a
↪→ p′γ′〉(t)) = c(t)

c(〈pγ τ
↪→ p′γ1γ2〉R(t1, t2)) = c(t2)

c(〈pγ τ
↪→ p′γ1γ2〉N(t)) = c(t)γ2

c(〈pγ〉) = pγ

• Side note: This is a tree to string transducer
• Thus, set of execution trees that reach a regular set of configurations is regular

105 / 161

Last Lecture

• Pushdown systems
• Configuration pw ∈ PΓ∗

• Semantics by step relation
• Execution trees

• Intuition: Node for steps. Returning call nodes are binary.
• Set of execution trees of PDS is regular
• Mapping of execution tree to reached configuration

• Correlation:
• Reachable configurations wrt. step relation and execution trees match

106 / 161

Relating Execution Trees and PDS Semantics

Theorem
Let M be a PDS. Then ∃l . p0γ0

l→∗ p′w iff ∃t . t ∈ L(AM) ∧ c(t) = p′w

• Note, a more general theorem would also relate the sequence of actions l
and the execution tree
• Proof ideas are the same

107 / 161

Last Lecture

• Proof of relation between execution trees and PDS semantics

108 / 161

Proof Outline
• Prove, for returning executions: ∃l . pγ l→∗ p′′ iff ∃t . pγ|p′′ → t

• As c ignores returning executions, this simple statement is enough
• Prove, for non-returning executions:

∃l . pγ l→∗ p′w ∧ w 6= ε iff ∃t . pγ → t ∧ c(t) = p′w
• Main lemmas that are required

• An execution can be repeated when we append some symbols to the stack:

lemma stack-append: pw l→∗ p′w ′ =⇒ pwv l→∗ p′w ′v

• If we have an execution, the topmost stack-symbol is either popped at some
point, or the execution does not depend on the stack below the topmost
symbol. Lemma return-cases:

pγw l→∗ p′w ′ =⇒

∃p′′ l1 l2. pγ
l1→∗ p′′ ∧ p′′w

l2→∗ p′w ′ ∧ l = l1l2 (ret)

∨ ∃w ′′. w ′ = w ′′w ∧ w ′′ 6= ε ∧ pγ l→∗ p′w ′′ (no-ret)

• Corollary: On a returning execution, we can find the point where the topmost
stack symbol is popped

lemma find-return: pγw l→∗ p′ =⇒ ∃l1 l2 p′′. pγ
l1→∗ p′′ ∧ p′′w

l2→∗ p′

109 / 161

Proofs:

• On board
• lemma return-cases (find-return is corollary)
• Proofs for returning and non-returning executions

110 / 161

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems
Motivation
Pushdown Systems
Dynamic Pushdown Networks
Acquisition Histories
Acquisition Histories for DPN

111 / 161

Thread Creation

• Concurrent programs may create threads
• These run in parallel

112 / 161

Example

vo id p () {
i f (. . .) {

spawn p ;
p () ;

}
}

main () {
p () ;

}

113 / 161

Dynamic Pushdown Networks
• Pushdown systems

• Spawn-rules may have side-effect of creating a new PDS
• A DPN M = (P, Γ,Act,p0, γ0,∆) consists of

• A finite set of states P
• A finite set of stack symbols Γ
• A finite set of actions Act
• An initial configuration p0γ0 ∈ PΓ
• Rules ∆ of the form

pγ
a
↪→ p′γ′ for p, p′ ∈ P and γ, γ′ ∈ Γ (base)

pγ
a
↪→ p′γ1γ2 for p, p′ ∈ P and γ, γ1, γ2 ∈ Γ (call)

pγ
a
↪→ p′ for p, p′ ∈ P and γ ∈ Γ (return)

pγ
a
↪→ p1γ1 � p2γ2 for p, p1, p2 ∈ P and γ, γ1, γ2 ∈ Γ (spawn)

• Assumption: Empty stack not reachable in any spawned thread

114 / 161

Dynamic Pushdown Networks
• Pushdown systems
• Spawn-rules may have side-effect of creating a new PDS

• A DPN M = (P, Γ,Act,p0, γ0,∆) consists of

• A finite set of states P
• A finite set of stack symbols Γ
• A finite set of actions Act
• An initial configuration p0γ0 ∈ PΓ
• Rules ∆ of the form

pγ
a
↪→ p′γ′ for p, p′ ∈ P and γ, γ′ ∈ Γ (base)

pγ
a
↪→ p′γ1γ2 for p, p′ ∈ P and γ, γ1, γ2 ∈ Γ (call)

pγ
a
↪→ p′ for p, p′ ∈ P and γ ∈ Γ (return)

pγ
a
↪→ p1γ1 � p2γ2 for p, p1, p2 ∈ P and γ, γ1, γ2 ∈ Γ (spawn)

• Assumption: Empty stack not reachable in any spawned thread

114 / 161

Dynamic Pushdown Networks
• Pushdown systems
• Spawn-rules may have side-effect of creating a new PDS
• A DPN M = (P, Γ,Act,p0, γ0,∆) consists of

• A finite set of states P
• A finite set of stack symbols Γ
• A finite set of actions Act
• An initial configuration p0γ0 ∈ PΓ
• Rules ∆ of the form

pγ
a
↪→ p′γ′ for p, p′ ∈ P and γ, γ′ ∈ Γ (base)

pγ
a
↪→ p′γ1γ2 for p, p′ ∈ P and γ, γ1, γ2 ∈ Γ (call)

pγ
a
↪→ p′ for p, p′ ∈ P and γ ∈ Γ (return)

pγ
a
↪→ p1γ1 � p2γ2 for p, p1, p2 ∈ P and γ, γ1, γ2 ∈ Γ (spawn)

• Assumption: Empty stack not reachable in any spawned thread

114 / 161

Dynamic Pushdown Networks
• Pushdown systems
• Spawn-rules may have side-effect of creating a new PDS
• A DPN M = (P, Γ,Act,p0, γ0,∆) consists of

• A finite set of states P

• A finite set of stack symbols Γ
• A finite set of actions Act
• An initial configuration p0γ0 ∈ PΓ
• Rules ∆ of the form

pγ
a
↪→ p′γ′ for p, p′ ∈ P and γ, γ′ ∈ Γ (base)

pγ
a
↪→ p′γ1γ2 for p, p′ ∈ P and γ, γ1, γ2 ∈ Γ (call)

pγ
a
↪→ p′ for p, p′ ∈ P and γ ∈ Γ (return)

pγ
a
↪→ p1γ1 � p2γ2 for p, p1, p2 ∈ P and γ, γ1, γ2 ∈ Γ (spawn)

• Assumption: Empty stack not reachable in any spawned thread

114 / 161

Dynamic Pushdown Networks
• Pushdown systems
• Spawn-rules may have side-effect of creating a new PDS
• A DPN M = (P, Γ,Act,p0, γ0,∆) consists of

• A finite set of states P
• A finite set of stack symbols Γ

• A finite set of actions Act
• An initial configuration p0γ0 ∈ PΓ
• Rules ∆ of the form

pγ
a
↪→ p′γ′ for p, p′ ∈ P and γ, γ′ ∈ Γ (base)

pγ
a
↪→ p′γ1γ2 for p, p′ ∈ P and γ, γ1, γ2 ∈ Γ (call)

pγ
a
↪→ p′ for p, p′ ∈ P and γ ∈ Γ (return)

pγ
a
↪→ p1γ1 � p2γ2 for p, p1, p2 ∈ P and γ, γ1, γ2 ∈ Γ (spawn)

• Assumption: Empty stack not reachable in any spawned thread

114 / 161

Dynamic Pushdown Networks
• Pushdown systems
• Spawn-rules may have side-effect of creating a new PDS
• A DPN M = (P, Γ,Act,p0, γ0,∆) consists of

• A finite set of states P
• A finite set of stack symbols Γ
• A finite set of actions Act

• An initial configuration p0γ0 ∈ PΓ
• Rules ∆ of the form

pγ
a
↪→ p′γ′ for p, p′ ∈ P and γ, γ′ ∈ Γ (base)

pγ
a
↪→ p′γ1γ2 for p, p′ ∈ P and γ, γ1, γ2 ∈ Γ (call)

pγ
a
↪→ p′ for p, p′ ∈ P and γ ∈ Γ (return)

pγ
a
↪→ p1γ1 � p2γ2 for p, p1, p2 ∈ P and γ, γ1, γ2 ∈ Γ (spawn)

• Assumption: Empty stack not reachable in any spawned thread

114 / 161

Dynamic Pushdown Networks
• Pushdown systems
• Spawn-rules may have side-effect of creating a new PDS
• A DPN M = (P, Γ,Act,p0, γ0,∆) consists of

• A finite set of states P
• A finite set of stack symbols Γ
• A finite set of actions Act
• An initial configuration p0γ0 ∈ PΓ

• Rules ∆ of the form

pγ
a
↪→ p′γ′ for p, p′ ∈ P and γ, γ′ ∈ Γ (base)

pγ
a
↪→ p′γ1γ2 for p, p′ ∈ P and γ, γ1, γ2 ∈ Γ (call)

pγ
a
↪→ p′ for p, p′ ∈ P and γ ∈ Γ (return)

pγ
a
↪→ p1γ1 � p2γ2 for p, p1, p2 ∈ P and γ, γ1, γ2 ∈ Γ (spawn)

• Assumption: Empty stack not reachable in any spawned thread

114 / 161

Dynamic Pushdown Networks
• Pushdown systems
• Spawn-rules may have side-effect of creating a new PDS
• A DPN M = (P, Γ,Act,p0, γ0,∆) consists of

• A finite set of states P
• A finite set of stack symbols Γ
• A finite set of actions Act
• An initial configuration p0γ0 ∈ PΓ
• Rules ∆ of the form

pγ
a
↪→ p′γ′ for p, p′ ∈ P and γ, γ′ ∈ Γ (base)

pγ
a
↪→ p′γ1γ2 for p, p′ ∈ P and γ, γ1, γ2 ∈ Γ (call)

pγ
a
↪→ p′ for p, p′ ∈ P and γ ∈ Γ (return)

pγ
a
↪→ p1γ1 � p2γ2 for p, p1, p2 ∈ P and γ, γ1, γ2 ∈ Γ (spawn)

• Assumption: Empty stack not reachable in any spawned thread

114 / 161

Dynamic Pushdown Networks
• Pushdown systems
• Spawn-rules may have side-effect of creating a new PDS
• A DPN M = (P, Γ,Act,p0, γ0,∆) consists of

• A finite set of states P
• A finite set of stack symbols Γ
• A finite set of actions Act
• An initial configuration p0γ0 ∈ PΓ
• Rules ∆ of the form

pγ
a
↪→ p′γ′ for p, p′ ∈ P and γ, γ′ ∈ Γ (base)

pγ
a
↪→ p′γ1γ2 for p, p′ ∈ P and γ, γ1, γ2 ∈ Γ (call)

pγ
a
↪→ p′ for p, p′ ∈ P and γ ∈ Γ (return)

pγ
a
↪→ p1γ1 � p2γ2 for p, p1, p2 ∈ P and γ, γ1, γ2 ∈ Γ (spawn)

• Assumption: Empty stack not reachable in any spawned thread

114 / 161

Configurations

• Configurations are trees over the alphabet 〈pw〉/1 | Cons/2 | Nil/0

• For all pw ∈ PΓ∗

• They have the structure
conf ::= 〈pw〉(conflist) conflist ::= Nil |Cons(conf , conflist)

• Intuitively, a node 〈pw〉(l) represents a thread in state pw , that has
already spawned the threads in l

• Convention: We identify c with the singleton list Cons(c,Nil), and use l1l2
for the concatenation of l1 and l2.

• We may use [c1, . . . , cn] for the list Cons(c1,Cons(. . . ,Cons(cn,Nil) . . .) for
clarification of notation.

115 / 161

Configurations

• Configurations are trees over the alphabet 〈pw〉/1 | Cons/2 | Nil/0
• For all pw ∈ PΓ∗

• They have the structure
conf ::= 〈pw〉(conflist) conflist ::= Nil |Cons(conf , conflist)

• Intuitively, a node 〈pw〉(l) represents a thread in state pw , that has
already spawned the threads in l

• Convention: We identify c with the singleton list Cons(c,Nil), and use l1l2
for the concatenation of l1 and l2.

• We may use [c1, . . . , cn] for the list Cons(c1,Cons(. . . ,Cons(cn,Nil) . . .) for
clarification of notation.

115 / 161

Configurations

• Configurations are trees over the alphabet 〈pw〉/1 | Cons/2 | Nil/0
• For all pw ∈ PΓ∗

• They have the structure
conf ::= 〈pw〉(conflist) conflist ::= Nil |Cons(conf , conflist)

• Intuitively, a node 〈pw〉(l) represents a thread in state pw , that has
already spawned the threads in l

• Convention: We identify c with the singleton list Cons(c,Nil), and use l1l2
for the concatenation of l1 and l2.

• We may use [c1, . . . , cn] for the list Cons(c1,Cons(. . . ,Cons(cn,Nil) . . .) for
clarification of notation.

115 / 161

Configurations

• Configurations are trees over the alphabet 〈pw〉/1 | Cons/2 | Nil/0
• For all pw ∈ PΓ∗

• They have the structure
conf ::= 〈pw〉(conflist) conflist ::= Nil |Cons(conf , conflist)

• Intuitively, a node 〈pw〉(l) represents a thread in state pw , that has
already spawned the threads in l

• Convention: We identify c with the singleton list Cons(c,Nil), and use l1l2
for the concatenation of l1 and l2.

• We may use [c1, . . . , cn] for the list Cons(c1,Cons(. . . ,Cons(cn,Nil) . . .) for
clarification of notation.

115 / 161

Configurations

• Configurations are trees over the alphabet 〈pw〉/1 | Cons/2 | Nil/0
• For all pw ∈ PΓ∗

• They have the structure
conf ::= 〈pw〉(conflist) conflist ::= Nil |Cons(conf , conflist)

• Intuitively, a node 〈pw〉(l) represents a thread in state pw , that has
already spawned the threads in l

• Convention: We identify c with the singleton list Cons(c,Nil), and use l1l2
for the concatenation of l1 and l2.

• We may use [c1, . . . , cn] for the list Cons(c1,Cons(. . . ,Cons(cn,Nil) . . .) for
clarification of notation.

115 / 161

Configurations

• Configurations are trees over the alphabet 〈pw〉/1 | Cons/2 | Nil/0
• For all pw ∈ PΓ∗

• They have the structure
conf ::= 〈pw〉(conflist) conflist ::= Nil |Cons(conf , conflist)

• Intuitively, a node 〈pw〉(l) represents a thread in state pw , that has
already spawned the threads in l

• Convention: We identify c with the singleton list Cons(c,Nil), and use l1l2
for the concatenation of l1 and l2.
• We may use [c1, . . . , cn] for the list Cons(c1,Cons(. . . ,Cons(cn,Nil) . . .) for

clarification of notation.

115 / 161

Last Lecture

• Finished proof: Relation of execution trees and PDS semantics
• DPN (PDS + Thread creation)
• DPN-Semantics:

• Configuration are trees, each node holds PDS-configuration (state+stack)
• Children are threads that have been spawned by parent

• Extract reached configuration from execution tree

116 / 161

Semantics

• A step modifies a thread’s state according to a rule

C[〈pγw〉(l)]
a→ C[〈p′w ′w〉(l)]

if pγ
a
↪→ p′w ′ ∈ ∆ (no-spawn)

C[〈pγw〉(l)]
a→ C[〈p1γ1w〉(l〈p2γ2〉(Nil))]

if pγ
a
↪→ p1γ1 � p2γ2 ∈ ∆ (spawn)

• For any context C with exactly one occurrence of x1, such that
C[〈pγw〉(l)] ∈ conf is a configuration
• Having exactly one occurrence of x1 ensures that exactly one thread makes a

step

• Intuition:

• (no-spawn) rule just changes single thread’s configuration
• (spawn) rule changes thread’s configuration, and adds new thread to

spawned thread’s list

117 / 161

Semantics

• A step modifies a thread’s state according to a rule

C[〈pγw〉(l)]
a→ C[〈p′w ′w〉(l)]

if pγ
a
↪→ p′w ′ ∈ ∆ (no-spawn)

C[〈pγw〉(l)]
a→ C[〈p1γ1w〉(l〈p2γ2〉(Nil))]

if pγ
a
↪→ p1γ1 � p2γ2 ∈ ∆ (spawn)

• For any context C with exactly one occurrence of x1, such that
C[〈pγw〉(l)] ∈ conf is a configuration
• Having exactly one occurrence of x1 ensures that exactly one thread makes a

step

• Intuition:

• (no-spawn) rule just changes single thread’s configuration
• (spawn) rule changes thread’s configuration, and adds new thread to

spawned thread’s list

117 / 161

Semantics

• A step modifies a thread’s state according to a rule

C[〈pγw〉(l)]
a→ C[〈p′w ′w〉(l)]

if pγ
a
↪→ p′w ′ ∈ ∆ (no-spawn)

C[〈pγw〉(l)]
a→ C[〈p1γ1w〉(l〈p2γ2〉(Nil))]

if pγ
a
↪→ p1γ1 � p2γ2 ∈ ∆ (spawn)

• For any context C with exactly one occurrence of x1, such that
C[〈pγw〉(l)] ∈ conf is a configuration
• Having exactly one occurrence of x1 ensures that exactly one thread makes a

step

• Intuition:

• (no-spawn) rule just changes single thread’s configuration
• (spawn) rule changes thread’s configuration, and adds new thread to

spawned thread’s list

117 / 161

Semantics

• A step modifies a thread’s state according to a rule

C[〈pγw〉(l)]
a→ C[〈p′w ′w〉(l)]

if pγ
a
↪→ p′w ′ ∈ ∆ (no-spawn)

C[〈pγw〉(l)]
a→ C[〈p1γ1w〉(l〈p2γ2〉(Nil))]

if pγ
a
↪→ p1γ1 � p2γ2 ∈ ∆ (spawn)

• For any context C with exactly one occurrence of x1, such that
C[〈pγw〉(l)] ∈ conf is a configuration
• Having exactly one occurrence of x1 ensures that exactly one thread makes a

step

• Intuition:
• (no-spawn) rule just changes single thread’s configuration

• (spawn) rule changes thread’s configuration, and adds new thread to
spawned thread’s list

117 / 161

Semantics

• A step modifies a thread’s state according to a rule

C[〈pγw〉(l)]
a→ C[〈p′w ′w〉(l)]

if pγ
a
↪→ p′w ′ ∈ ∆ (no-spawn)

C[〈pγw〉(l)]
a→ C[〈p1γ1w〉(l〈p2γ2〉(Nil))]

if pγ
a
↪→ p1γ1 � p2γ2 ∈ ∆ (spawn)

• For any context C with exactly one occurrence of x1, such that
C[〈pγw〉(l)] ∈ conf is a configuration
• Having exactly one occurrence of x1 ensures that exactly one thread makes a

step

• Intuition:
• (no-spawn) rule just changes single thread’s configuration
• (spawn) rule changes thread’s configuration, and adds new thread to

spawned thread’s list

117 / 161

Execution Trees

• Binary node 〈pγ a
↪→ p1γ1 � p2γ2〉(t1, t2) describes execution of

spawn-step

• t1 describes remaining execution of spawning thread
• t2 describes execution of spawned thread

• Execution trees

XR ::= 〈Base〉(XR) | 〈Call〉R(XR,XR) | 〈Return〉 | 〈Spawn〉(XR,XN)

XN ::= 〈Base〉(XN) | 〈Call〉N (XN) | 〈Call〉R(XR,XN) | 〈P × Γ〉 | 〈Spawn〉(XN,XN)

118 / 161

Execution Trees

• Binary node 〈pγ a
↪→ p1γ1 � p2γ2〉(t1, t2) describes execution of

spawn-step
• t1 describes remaining execution of spawning thread

• t2 describes execution of spawned thread
• Execution trees

XR ::= 〈Base〉(XR) | 〈Call〉R(XR,XR) | 〈Return〉 | 〈Spawn〉(XR,XN)

XN ::= 〈Base〉(XN) | 〈Call〉N (XN) | 〈Call〉R(XR,XN) | 〈P × Γ〉 | 〈Spawn〉(XN,XN)

118 / 161

Execution Trees

• Binary node 〈pγ a
↪→ p1γ1 � p2γ2〉(t1, t2) describes execution of

spawn-step
• t1 describes remaining execution of spawning thread
• t2 describes execution of spawned thread

• Execution trees

XR ::= 〈Base〉(XR) | 〈Call〉R(XR,XR) | 〈Return〉 | 〈Spawn〉(XR,XN)

XN ::= 〈Base〉(XN) | 〈Call〉N (XN) | 〈Call〉R(XR,XN) | 〈P × Γ〉 | 〈Spawn〉(XN,XN)

118 / 161

Execution Trees

• Binary node 〈pγ a
↪→ p1γ1 � p2γ2〉(t1, t2) describes execution of

spawn-step
• t1 describes remaining execution of spawning thread
• t2 describes execution of spawned thread

• Execution trees

XR ::= 〈Base〉(XR) | 〈Call〉R(XR,XR) | 〈Return〉 | 〈Spawn〉(XR,XN)

XN ::= 〈Base〉(XN) | 〈Call〉N (XN) | 〈Call〉R(XR,XN) | 〈P × Γ〉 | 〈Spawn〉(XN,XN)

118 / 161

List Operations

• We lift list-operations to concatenate lists and trees

• l1〈pw〉(l2) = 〈pw〉(l1l2)

119 / 161

List Operations

• We lift list-operations to concatenate lists and trees
• l1〈pw〉(l2) = 〈pw〉(l1l2)

119 / 161

Configuration of Execution Tree

• Function c : XN → conf

• c(〈Spawn〉(t1, t2)) = [c(t2)]c(t1)

• Prepend configuration reached by spawned thread

• c(〈Call〉R(t1, t2)) = s(t1)c(t2)

• Have to collect configurations reached by threads spawned during call

• The remaining equations are unchanged (Complete definition on next slide)

120 / 161

Configuration of Execution Tree

• Function c : XN → conf
• c(〈Spawn〉(t1, t2)) = [c(t2)]c(t1)

• Prepend configuration reached by spawned thread
• c(〈Call〉R(t1, t2)) = s(t1)c(t2)

• Have to collect configurations reached by threads spawned during call

• The remaining equations are unchanged (Complete definition on next slide)

120 / 161

Configuration of Execution Tree

• Function c : XN → conf
• c(〈Spawn〉(t1, t2)) = [c(t2)]c(t1)

• Prepend configuration reached by spawned thread

• c(〈Call〉R(t1, t2)) = s(t1)c(t2)

• Have to collect configurations reached by threads spawned during call

• The remaining equations are unchanged (Complete definition on next slide)

120 / 161

Configuration of Execution Tree

• Function c : XN → conf
• c(〈Spawn〉(t1, t2)) = [c(t2)]c(t1)

• Prepend configuration reached by spawned thread
• c(〈Call〉R(t1, t2)) = s(t1)c(t2)

• Have to collect configurations reached by threads spawned during call

• The remaining equations are unchanged (Complete definition on next slide)

120 / 161

Configuration of Execution Tree

• Function c : XN → conf
• c(〈Spawn〉(t1, t2)) = [c(t2)]c(t1)

• Prepend configuration reached by spawned thread
• c(〈Call〉R(t1, t2)) = s(t1)c(t2)

• Have to collect configurations reached by threads spawned during call

• The remaining equations are unchanged (Complete definition on next slide)

120 / 161

Configuration of Execution Tree

• Function c : XN → conf
• c(〈Spawn〉(t1, t2)) = [c(t2)]c(t1)

• Prepend configuration reached by spawned thread
• c(〈Call〉R(t1, t2)) = s(t1)c(t2)

• Have to collect configurations reached by threads spawned during call

• The remaining equations are unchanged (Complete definition on next slide)

120 / 161

Reached configurations

Define c : XN → conf and s : XR → conflist

c(〈pγ a
↪→ p′γ′〉(t)) = c(t)

c(〈pγ τ
↪→ p′γ1γ2〉R(t1, t2)) = s(t1)c(t2)

c(〈pγ τ
↪→ p′γ1γ2〉N(t)) = c(t)γ2 where 〈pw〉γ(l) = 〈pwγ〉(l)

c(〈pγ a
↪→ p1γ1 � p2γ2〉(t1, t2)) = [c(t2)]c(t1)

c(〈pγ〉) = 〈pγ〉

s(〈pγ a
↪→ p′γ′〉(t)) = s(t)

s(〈pγ τ
↪→ p′γ1γ2〉R(t1, t2)) = s(t1)s(t2)

s(〈pγ a
↪→ p1γ1 � p2γ2〉(t1, t2)) = [c(t2)]s(t1)

s(〈pγ a
↪→ p′〉) = Nil

121 / 161

Execution trees of DPN

• Execution trees are regular set

• Same idea as for PDS. New rules for AM :

pγ → 〈pγ
a
↪→ p1γ1 � p2γ2〉(p1γ1, p2γ2) if pγ

a
↪→ p1γ1 � p2γ2 ∈ ∆

pγ|p′′ → 〈pγ
a
↪→ p1γ1 � p2γ2〉(p1γ1|p′′, p2γ2) if pγ

a
↪→ p1γ1 � p2γ2 ∈ ∆

• Complete rules on next slide

122 / 161

Execution trees of DPN

• Execution trees are regular set
• Same idea as for PDS. New rules for AM :

pγ → 〈pγ
a
↪→ p1γ1 � p2γ2〉(p1γ1, p2γ2) if pγ

a
↪→ p1γ1 � p2γ2 ∈ ∆

pγ|p′′ → 〈pγ
a
↪→ p1γ1 � p2γ2〉(p1γ1|p′′, p2γ2) if pγ

a
↪→ p1γ1 � p2γ2 ∈ ∆

• Complete rules on next slide

122 / 161

Execution trees of DPN

• Execution trees are regular set
• Same idea as for PDS. New rules for AM :

pγ → 〈pγ
a
↪→ p1γ1 � p2γ2〉(p1γ1, p2γ2) if pγ

a
↪→ p1γ1 � p2γ2 ∈ ∆

pγ|p′′ → 〈pγ
a
↪→ p1γ1 � p2γ2〉(p1γ1|p′′, p2γ2) if pγ

a
↪→ p1γ1 � p2γ2 ∈ ∆

• Complete rules on next slide

122 / 161

Rules for execution trees

pγ → 〈pγ
a
↪→ p′γ′〉(p′γ′) if pγ

a
↪→ p′γ′ ∈ ∆

pγ → 〈pγ
a
↪→ p′γ1γ2〉N (p′γ1) if pγ

a
↪→ p′γ1γ2 ∈ ∆

pγ → 〈pγ
a
↪→ p′γ1γ2〉R(p′γ1|p′′, p′′γ2) if p′′ ∈ P and pγ

a
↪→ p′γ1γ2 ∈ ∆

pγ → 〈pγ
a
↪→ p1γ1 � p2γ2〉(p1γ1, p2γ2) if pγ

a
↪→ p1γ1 � p2γ2 ∈ ∆

pγ → 〈pγ〉

pγ|p′′ → 〈pγ
a
↪→ p′γ′〉(p′γ′|p′′) if pγ

a
↪→ p′γ′ ∈ ∆

pγ|p′′ → 〈pγ
a
↪→ p′γ1γ2〉R(p′γ1|p′′′, p′′′γ2|p′′) if p′′′ ∈ P and pγ

a
↪→ p′γ1γ2 ∈ ∆

pγ|p′′ → 〈pγ
a
↪→ p1γ1 � p2γ2〉(p1γ1|p′′, p2γ2) if pγ

a
↪→ p1γ1 � p2γ2 ∈ ∆

pγ|p′′ → 〈pγ
τ
↪→ p′′〉 if pγ

τ
↪→ p′′ ∈ ∆

123 / 161

Relating Execution Trees and DPN Semantics

Theorem
Let M be a DPN. Then ∃l . p0γ0

l→∗ c′ iff ∃t . t ∈ L(AM) ∧ c(t) = c′

• Note: Relating the action sequences is more difficult

• They are interleavings of the thread’s action sequences
• One execution tree corresponds to many such interleavings

124 / 161

Relating Execution Trees and DPN Semantics

Theorem
Let M be a DPN. Then ∃l . p0γ0

l→∗ c′ iff ∃t . t ∈ L(AM) ∧ c(t) = c′

• Note: Relating the action sequences is more difficult
• They are interleavings of the thread’s action sequences

• One execution tree corresponds to many such interleavings

124 / 161

Relating Execution Trees and DPN Semantics

Theorem
Let M be a DPN. Then ∃l . p0γ0

l→∗ c′ iff ∃t . t ∈ L(AM) ∧ c(t) = c′

• Note: Relating the action sequences is more difficult
• They are interleavings of the thread’s action sequences
• One execution tree corresponds to many such interleavings

124 / 161

Interleaving

• We define s1 ⊗ s2 to be the set of interleavings of lists s1 and s2

s1 ⊗ ε = {s1} ε⊗ s2 = {s2}
a1s1 ⊗ a2s2 = a1(s1 ⊗ a2s2) ∪ a2(a1s1 ⊗ s2)

• Intuitively: All sequences of steps that may be observed if one thread
executes s1 and another independently executes s2.

125 / 161

Proof Ideas

• Execution of different threads is almost independent

• Only spawn should be executed before other steps of spawned thread
• Re-order step: On spawn, all steps of spawned thread first, and then the rest
• Lemma indep-steps:

〈pw〉([c])
s→∗ 〈p′w ′〉(l ′) ⇐⇒

∃c′ l ′′ s1 s2. l ′ = c′l ′′ ∧ s ∈ s1⊗ s2 ∧ 〈pw〉(ε)
s1→∗ 〈p′w ′〉(l ′′)∧ c

s2→∗ c′

• Proof, by induction on number of steps:

〈pγ〉(ε)→∗ 〈p′〉(c′) ⇐⇒ ∃t .pγ|p′ → t ∧ s(t) = c′

〈pγ〉(ε)→∗ 〈p′w ′〉(c′) ∧ w ′ 6= ε ⇐⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(c′)

• Need to prove both propositions simultaneously
• But may separate =⇒ and⇐= directions

126 / 161

Proof Ideas

• Execution of different threads is almost independent
• Only spawn should be executed before other steps of spawned thread

• Re-order step: On spawn, all steps of spawned thread first, and then the rest
• Lemma indep-steps:

〈pw〉([c])
s→∗ 〈p′w ′〉(l ′) ⇐⇒

∃c′ l ′′ s1 s2. l ′ = c′l ′′ ∧ s ∈ s1⊗ s2 ∧ 〈pw〉(ε)
s1→∗ 〈p′w ′〉(l ′′)∧ c

s2→∗ c′

• Proof, by induction on number of steps:

〈pγ〉(ε)→∗ 〈p′〉(c′) ⇐⇒ ∃t .pγ|p′ → t ∧ s(t) = c′

〈pγ〉(ε)→∗ 〈p′w ′〉(c′) ∧ w ′ 6= ε ⇐⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(c′)

• Need to prove both propositions simultaneously
• But may separate =⇒ and⇐= directions

126 / 161

Proof Ideas

• Execution of different threads is almost independent
• Only spawn should be executed before other steps of spawned thread
• Re-order step: On spawn, all steps of spawned thread first, and then the rest

• Lemma indep-steps:

〈pw〉([c])
s→∗ 〈p′w ′〉(l ′) ⇐⇒

∃c′ l ′′ s1 s2. l ′ = c′l ′′ ∧ s ∈ s1⊗ s2 ∧ 〈pw〉(ε)
s1→∗ 〈p′w ′〉(l ′′)∧ c

s2→∗ c′

• Proof, by induction on number of steps:

〈pγ〉(ε)→∗ 〈p′〉(c′) ⇐⇒ ∃t .pγ|p′ → t ∧ s(t) = c′

〈pγ〉(ε)→∗ 〈p′w ′〉(c′) ∧ w ′ 6= ε ⇐⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(c′)

• Need to prove both propositions simultaneously
• But may separate =⇒ and⇐= directions

126 / 161

Proof Ideas

• Execution of different threads is almost independent
• Only spawn should be executed before other steps of spawned thread
• Re-order step: On spawn, all steps of spawned thread first, and then the rest
• Lemma indep-steps:

〈pw〉([c])
s→∗ 〈p′w ′〉(l ′) ⇐⇒

∃c′ l ′′ s1 s2. l ′ = c′l ′′ ∧ s ∈ s1⊗ s2 ∧ 〈pw〉(ε)
s1→∗ 〈p′w ′〉(l ′′)∧ c

s2→∗ c′

• Proof, by induction on number of steps:

〈pγ〉(ε)→∗ 〈p′〉(c′) ⇐⇒ ∃t .pγ|p′ → t ∧ s(t) = c′

〈pγ〉(ε)→∗ 〈p′w ′〉(c′) ∧ w ′ 6= ε ⇐⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(c′)

• Need to prove both propositions simultaneously
• But may separate =⇒ and⇐= directions

126 / 161

Proof Ideas

• Execution of different threads is almost independent
• Only spawn should be executed before other steps of spawned thread
• Re-order step: On spawn, all steps of spawned thread first, and then the rest
• Lemma indep-steps:

〈pw〉([c])
s→∗ 〈p′w ′〉(l ′) ⇐⇒

∃c′ l ′′ s1 s2. l ′ = c′l ′′ ∧ s ∈ s1⊗ s2 ∧ 〈pw〉(ε)
s1→∗ 〈p′w ′〉(l ′′)∧ c

s2→∗ c′

• Proof, by induction on number of steps:

〈pγ〉(ε)→∗ 〈p′〉(c′) ⇐⇒ ∃t .pγ|p′ → t ∧ s(t) = c′

〈pγ〉(ε)→∗ 〈p′w ′〉(c′) ∧ w ′ 6= ε ⇐⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(c′)

• Need to prove both propositions simultaneously
• But may separate =⇒ and⇐= directions

126 / 161

Proof Ideas

• Execution of different threads is almost independent
• Only spawn should be executed before other steps of spawned thread
• Re-order step: On spawn, all steps of spawned thread first, and then the rest
• Lemma indep-steps:

〈pw〉([c])
s→∗ 〈p′w ′〉(l ′) ⇐⇒

∃c′ l ′′ s1 s2. l ′ = c′l ′′ ∧ s ∈ s1⊗ s2 ∧ 〈pw〉(ε)
s1→∗ 〈p′w ′〉(l ′′)∧ c

s2→∗ c′

• Proof, by induction on number of steps:

〈pγ〉(ε)→∗ 〈p′〉(c′) ⇐⇒ ∃t .pγ|p′ → t ∧ s(t) = c′

〈pγ〉(ε)→∗ 〈p′w ′〉(c′) ∧ w ′ 6= ε ⇐⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(c′)

• Need to prove both propositions simultaneously

• But may separate =⇒ and⇐= directions

126 / 161

Proof Ideas

• Execution of different threads is almost independent
• Only spawn should be executed before other steps of spawned thread
• Re-order step: On spawn, all steps of spawned thread first, and then the rest
• Lemma indep-steps:

〈pw〉([c])
s→∗ 〈p′w ′〉(l ′) ⇐⇒

∃c′ l ′′ s1 s2. l ′ = c′l ′′ ∧ s ∈ s1⊗ s2 ∧ 〈pw〉(ε)
s1→∗ 〈p′w ′〉(l ′′)∧ c

s2→∗ c′

• Proof, by induction on number of steps:

〈pγ〉(ε)→∗ 〈p′〉(c′) ⇐⇒ ∃t .pγ|p′ → t ∧ s(t) = c′

〈pγ〉(ε)→∗ 〈p′w ′〉(c′) ∧ w ′ 6= ε ⇐⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(c′)

• Need to prove both propositions simultaneously
• But may separate =⇒ and⇐= directions

126 / 161

Example Proof Step
• Example step for⇒-direction

〈pγ〉(ε)→∗ 〈p′〉(l ′) =⇒ ∃t .pγ|p′ → t ∧ s(t) = l ′

〈pγ〉(ε)→∗ 〈p′w ′〉(l ′) ∧ w ′ 6= ε =⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(l ′)

• Case: Returning path makes a spawn-step

• We have r := pγ ↪→ p̂γ̂ � p1γ1 ∈ ∆ and 〈p̂γ̂〉(p1γ1)→∗ 〈p′〉(c′)
• Using indep-steps, to separate executions of spawned and spawning thread,

we obtain c′, l ′′ where

l ′ = c′l ′′ ∧ 〈p̂γ̂〉ε→∗ 〈p′〉(l ′′) ∧ 〈p1γ1〉(ε)→∗ c′

• With IH, we obtain t1, t2 with

p̂γ̂|p′ → t1 ∧ s(t1) = l ′′ ∧ p1γ1 → t2 ∧ c(t2) = c′

• By definition of the rules for AM , we get

pγ|p′ → 〈r〉(p̂γ̂|p′, p1γ1)→ 〈r〉(t1, t2)

• And, by definition of s() , we have

s(〈r〉(t1, t2)) = [c(t2)]s(t1) = c′l ′′ = l ′

127 / 161

Example Proof Step
• Example step for⇒-direction

〈pγ〉(ε)→∗ 〈p′〉(l ′) =⇒ ∃t .pγ|p′ → t ∧ s(t) = l ′

〈pγ〉(ε)→∗ 〈p′w ′〉(l ′) ∧ w ′ 6= ε =⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(l ′)

• Case: Returning path makes a spawn-step

• We have r := pγ ↪→ p̂γ̂ � p1γ1 ∈ ∆ and 〈p̂γ̂〉(p1γ1)→∗ 〈p′〉(c′)
• Using indep-steps, to separate executions of spawned and spawning thread,

we obtain c′, l ′′ where

l ′ = c′l ′′ ∧ 〈p̂γ̂〉ε→∗ 〈p′〉(l ′′) ∧ 〈p1γ1〉(ε)→∗ c′

• With IH, we obtain t1, t2 with

p̂γ̂|p′ → t1 ∧ s(t1) = l ′′ ∧ p1γ1 → t2 ∧ c(t2) = c′

• By definition of the rules for AM , we get

pγ|p′ → 〈r〉(p̂γ̂|p′, p1γ1)→ 〈r〉(t1, t2)

• And, by definition of s() , we have

s(〈r〉(t1, t2)) = [c(t2)]s(t1) = c′l ′′ = l ′

127 / 161

Example Proof Step
• Example step for⇒-direction

〈pγ〉(ε)→∗ 〈p′〉(l ′) =⇒ ∃t .pγ|p′ → t ∧ s(t) = l ′

〈pγ〉(ε)→∗ 〈p′w ′〉(l ′) ∧ w ′ 6= ε =⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(l ′)

• Case: Returning path makes a spawn-step
• We have r := pγ ↪→ p̂γ̂ � p1γ1 ∈ ∆ and 〈p̂γ̂〉(p1γ1)→∗ 〈p′〉(c′)

• Using indep-steps, to separate executions of spawned and spawning thread,
we obtain c′, l ′′ where

l ′ = c′l ′′ ∧ 〈p̂γ̂〉ε→∗ 〈p′〉(l ′′) ∧ 〈p1γ1〉(ε)→∗ c′

• With IH, we obtain t1, t2 with

p̂γ̂|p′ → t1 ∧ s(t1) = l ′′ ∧ p1γ1 → t2 ∧ c(t2) = c′

• By definition of the rules for AM , we get

pγ|p′ → 〈r〉(p̂γ̂|p′, p1γ1)→ 〈r〉(t1, t2)

• And, by definition of s() , we have

s(〈r〉(t1, t2)) = [c(t2)]s(t1) = c′l ′′ = l ′

127 / 161

Example Proof Step
• Example step for⇒-direction

〈pγ〉(ε)→∗ 〈p′〉(l ′) =⇒ ∃t .pγ|p′ → t ∧ s(t) = l ′

〈pγ〉(ε)→∗ 〈p′w ′〉(l ′) ∧ w ′ 6= ε =⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(l ′)

• Case: Returning path makes a spawn-step
• We have r := pγ ↪→ p̂γ̂ � p1γ1 ∈ ∆ and 〈p̂γ̂〉(p1γ1)→∗ 〈p′〉(c′)
• Using indep-steps, to separate executions of spawned and spawning thread,

we obtain c′, l ′′ where

l ′ = c′l ′′ ∧ 〈p̂γ̂〉ε→∗ 〈p′〉(l ′′) ∧ 〈p1γ1〉(ε)→∗ c′

• With IH, we obtain t1, t2 with

p̂γ̂|p′ → t1 ∧ s(t1) = l ′′ ∧ p1γ1 → t2 ∧ c(t2) = c′

• By definition of the rules for AM , we get

pγ|p′ → 〈r〉(p̂γ̂|p′, p1γ1)→ 〈r〉(t1, t2)

• And, by definition of s() , we have

s(〈r〉(t1, t2)) = [c(t2)]s(t1) = c′l ′′ = l ′

127 / 161

Example Proof Step
• Example step for⇒-direction

〈pγ〉(ε)→∗ 〈p′〉(l ′) =⇒ ∃t .pγ|p′ → t ∧ s(t) = l ′

〈pγ〉(ε)→∗ 〈p′w ′〉(l ′) ∧ w ′ 6= ε =⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(l ′)

• Case: Returning path makes a spawn-step
• We have r := pγ ↪→ p̂γ̂ � p1γ1 ∈ ∆ and 〈p̂γ̂〉(p1γ1)→∗ 〈p′〉(c′)
• Using indep-steps, to separate executions of spawned and spawning thread,

we obtain c′, l ′′ where

l ′ = c′l ′′ ∧ 〈p̂γ̂〉ε→∗ 〈p′〉(l ′′) ∧ 〈p1γ1〉(ε)→∗ c′

• With IH, we obtain t1, t2 with

p̂γ̂|p′ → t1 ∧ s(t1) = l ′′ ∧ p1γ1 → t2 ∧ c(t2) = c′

• By definition of the rules for AM , we get

pγ|p′ → 〈r〉(p̂γ̂|p′, p1γ1)→ 〈r〉(t1, t2)

• And, by definition of s() , we have

s(〈r〉(t1, t2)) = [c(t2)]s(t1) = c′l ′′ = l ′

127 / 161

Example Proof Step
• Example step for⇒-direction

〈pγ〉(ε)→∗ 〈p′〉(l ′) =⇒ ∃t .pγ|p′ → t ∧ s(t) = l ′

〈pγ〉(ε)→∗ 〈p′w ′〉(l ′) ∧ w ′ 6= ε =⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(l ′)

• Case: Returning path makes a spawn-step
• We have r := pγ ↪→ p̂γ̂ � p1γ1 ∈ ∆ and 〈p̂γ̂〉(p1γ1)→∗ 〈p′〉(c′)
• Using indep-steps, to separate executions of spawned and spawning thread,

we obtain c′, l ′′ where

l ′ = c′l ′′ ∧ 〈p̂γ̂〉ε→∗ 〈p′〉(l ′′) ∧ 〈p1γ1〉(ε)→∗ c′

• With IH, we obtain t1, t2 with

p̂γ̂|p′ → t1 ∧ s(t1) = l ′′ ∧ p1γ1 → t2 ∧ c(t2) = c′

• By definition of the rules for AM , we get

pγ|p′ → 〈r〉(p̂γ̂|p′, p1γ1)→ 〈r〉(t1, t2)

• And, by definition of s() , we have

s(〈r〉(t1, t2)) = [c(t2)]s(t1) = c′l ′′ = l ′

127 / 161

Example Proof Step
• Example step for⇒-direction

〈pγ〉(ε)→∗ 〈p′〉(l ′) =⇒ ∃t .pγ|p′ → t ∧ s(t) = l ′

〈pγ〉(ε)→∗ 〈p′w ′〉(l ′) ∧ w ′ 6= ε =⇒ ∃t .pγ → t ∧ c(t) = 〈p′w ′〉(l ′)

• Case: Returning path makes a spawn-step
• We have r := pγ ↪→ p̂γ̂ � p1γ1 ∈ ∆ and 〈p̂γ̂〉(p1γ1)→∗ 〈p′〉(c′)
• Using indep-steps, to separate executions of spawned and spawning thread,

we obtain c′, l ′′ where

l ′ = c′l ′′ ∧ 〈p̂γ̂〉ε→∗ 〈p′〉(l ′′) ∧ 〈p1γ1〉(ε)→∗ c′

• With IH, we obtain t1, t2 with

p̂γ̂|p′ → t1 ∧ s(t1) = l ′′ ∧ p1γ1 → t2 ∧ c(t2) = c′

• By definition of the rules for AM , we get

pγ|p′ → 〈r〉(p̂γ̂|p′, p1γ1)→ 〈r〉(t1, t2)

• And, by definition of s() , we have

s(〈r〉(t1, t2)) = [c(t2)]s(t1) = c′l ′′ = l ′

127 / 161

Lock-Insensitive Reachability

• Can perform a simultaneous reachability analysis

• By asking: „Is a configuration from a regular set of configurations
reachable?”

• If the analysis returns no, we are sure that no such configuration is reachable
• If the analysis returns yes, such a configuration may be reachable

• Or it may be a false positive due to over-approximation

128 / 161

Lock-Insensitive Reachability

• Can perform a simultaneous reachability analysis
• By asking: „Is a configuration from a regular set of configurations

reachable?”

• If the analysis returns no, we are sure that no such configuration is reachable
• If the analysis returns yes, such a configuration may be reachable

• Or it may be a false positive due to over-approximation

128 / 161

Lock-Insensitive Reachability

• Can perform a simultaneous reachability analysis
• By asking: „Is a configuration from a regular set of configurations

reachable?”
• If the analysis returns no, we are sure that no such configuration is reachable

• If the analysis returns yes, such a configuration may be reachable

• Or it may be a false positive due to over-approximation

128 / 161

Lock-Insensitive Reachability

• Can perform a simultaneous reachability analysis
• By asking: „Is a configuration from a regular set of configurations

reachable?”
• If the analysis returns no, we are sure that no such configuration is reachable
• If the analysis returns yes, such a configuration may be reachable

• Or it may be a false positive due to over-approximation

128 / 161

Lock-Insensitive Reachability

• Can perform a simultaneous reachability analysis
• By asking: „Is a configuration from a regular set of configurations

reachable?”
• If the analysis returns no, we are sure that no such configuration is reachable
• If the analysis returns yes, such a configuration may be reachable

• Or it may be a false positive due to over-approximation

128 / 161

Lock-Sensitive Analysis

• Consider locks.

• Locks can be acquired and released, each lock can be acquired by at
most one thread at the same time.

• Used to protect access to shared resources
• We assume there is a finite set L of locks, and the actions [l (acquire) and

]l (release) for every l ∈ L

129 / 161

Lock-Sensitive Analysis

• Consider locks.
• Locks can be acquired and released, each lock can be acquired by at

most one thread at the same time.

• Used to protect access to shared resources
• We assume there is a finite set L of locks, and the actions [l (acquire) and

]l (release) for every l ∈ L

129 / 161

Lock-Sensitive Analysis

• Consider locks.
• Locks can be acquired and released, each lock can be acquired by at

most one thread at the same time.
• Used to protect access to shared resources

• We assume there is a finite set L of locks, and the actions [l (acquire) and
]l (release) for every l ∈ L

129 / 161

Lock-Sensitive Analysis

• Consider locks.
• Locks can be acquired and released, each lock can be acquired by at

most one thread at the same time.
• Used to protect access to shared resources
• We assume there is a finite set L of locks, and the actions [l (acquire) and

]l (release) for every l ∈ L

129 / 161

Decidability

• Reachability with arbitrary locking is undecidable

• Emptiness of intersection of CF-Languages
• Consider nested locking, like synchronized-methods in Java

• Bind locks to procedures: Acquisition on call, release on return

130 / 161

Decidability

• Reachability with arbitrary locking is undecidable
• Emptiness of intersection of CF-Languages

• Consider nested locking, like synchronized-methods in Java

• Bind locks to procedures: Acquisition on call, release on return

130 / 161

Decidability

• Reachability with arbitrary locking is undecidable
• Emptiness of intersection of CF-Languages

• Consider nested locking, like synchronized-methods in Java

• Bind locks to procedures: Acquisition on call, release on return

130 / 161

Decidability

• Reachability with arbitrary locking is undecidable
• Emptiness of intersection of CF-Languages

• Consider nested locking, like synchronized-methods in Java
• Bind locks to procedures: Acquisition on call, release on return

130 / 161

Undecidability

• Well-Known: Emptiness of intersection of CF-languages is undecidable

• Already over alphabet {0, 1}
• CF-language can be simulated by PDS, where only base-transitions

produce output

• Idea: Run two PDS concurrently, and ensure that sequences of base
transitions must run in lock-step

• These encode output of 0 and 1. Lockstep ensures, that the other thread
must output the same.

• Check for simultaneous reachability of final states

131 / 161

Undecidability

• Well-Known: Emptiness of intersection of CF-languages is undecidable
• Already over alphabet {0, 1}

• CF-language can be simulated by PDS, where only base-transitions
produce output

• Idea: Run two PDS concurrently, and ensure that sequences of base
transitions must run in lock-step

• These encode output of 0 and 1. Lockstep ensures, that the other thread
must output the same.

• Check for simultaneous reachability of final states

131 / 161

Undecidability

• Well-Known: Emptiness of intersection of CF-languages is undecidable
• Already over alphabet {0, 1}

• CF-language can be simulated by PDS, where only base-transitions
produce output

• Idea: Run two PDS concurrently, and ensure that sequences of base
transitions must run in lock-step

• These encode output of 0 and 1. Lockstep ensures, that the other thread
must output the same.

• Check for simultaneous reachability of final states

131 / 161

Undecidability

• Well-Known: Emptiness of intersection of CF-languages is undecidable
• Already over alphabet {0, 1}

• CF-language can be simulated by PDS, where only base-transitions
produce output
• Idea: Run two PDS concurrently, and ensure that sequences of base

transitions must run in lock-step

• These encode output of 0 and 1. Lockstep ensures, that the other thread
must output the same.

• Check for simultaneous reachability of final states

131 / 161

Undecidability

• Well-Known: Emptiness of intersection of CF-languages is undecidable
• Already over alphabet {0, 1}

• CF-language can be simulated by PDS, where only base-transitions
produce output
• Idea: Run two PDS concurrently, and ensure that sequences of base

transitions must run in lock-step
• These encode output of 0 and 1. Lockstep ensures, that the other thread

must output the same.

• Check for simultaneous reachability of final states

131 / 161

Undecidability

• Well-Known: Emptiness of intersection of CF-languages is undecidable
• Already over alphabet {0, 1}

• CF-language can be simulated by PDS, where only base-transitions
produce output
• Idea: Run two PDS concurrently, and ensure that sequences of base

transitions must run in lock-step
• These encode output of 0 and 1. Lockstep ensures, that the other thread

must output the same.
• Check for simultaneous reachability of final states

131 / 161

Undecidability

• Synchronizing two threads with locks

• Locks: 0, 0!, 0? and 1, 1!, 1?
• Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?

• To produce a 0:

• Thread 1 executes: [0?]0![0]0?[0!]0

• Thread 2 executes: [0]0?[0!]0[0?]0!

• The only possible execution of these two sequences is
Thread 1: [0?]0! [0]0? [0!]0
Thread 2: [0]0? [0!]0 [0?]0!

• And when Thread 2 has finished, it cannot re-enter the synchronization
sequence until Thread 1 has also finished, and released 0.

• The sequences for producing 1 are analogously

132 / 161

Undecidability

• Synchronizing two threads with locks
• Locks: 0, 0!, 0? and 1, 1!, 1?

• Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?

• To produce a 0:

• Thread 1 executes: [0?]0![0]0?[0!]0

• Thread 2 executes: [0]0?[0!]0[0?]0!

• The only possible execution of these two sequences is
Thread 1: [0?]0! [0]0? [0!]0
Thread 2: [0]0? [0!]0 [0?]0!

• And when Thread 2 has finished, it cannot re-enter the synchronization
sequence until Thread 1 has also finished, and released 0.

• The sequences for producing 1 are analogously

132 / 161

Undecidability

• Synchronizing two threads with locks
• Locks: 0, 0!, 0? and 1, 1!, 1?
• Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?

• To produce a 0:

• Thread 1 executes: [0?]0![0]0?[0!]0

• Thread 2 executes: [0]0?[0!]0[0?]0!

• The only possible execution of these two sequences is
Thread 1: [0?]0! [0]0? [0!]0
Thread 2: [0]0? [0!]0 [0?]0!

• And when Thread 2 has finished, it cannot re-enter the synchronization
sequence until Thread 1 has also finished, and released 0.

• The sequences for producing 1 are analogously

132 / 161

Undecidability

• Synchronizing two threads with locks
• Locks: 0, 0!, 0? and 1, 1!, 1?
• Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?

• To produce a 0:

• Thread 1 executes: [0?]0![0]0?[0!]0

• Thread 2 executes: [0]0?[0!]0[0?]0!

• The only possible execution of these two sequences is
Thread 1: [0?]0! [0]0? [0!]0
Thread 2: [0]0? [0!]0 [0?]0!

• And when Thread 2 has finished, it cannot re-enter the synchronization
sequence until Thread 1 has also finished, and released 0.

• The sequences for producing 1 are analogously

132 / 161

Undecidability

• Synchronizing two threads with locks
• Locks: 0, 0!, 0? and 1, 1!, 1?
• Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?

• To produce a 0:
• Thread 1 executes: [0?]0![0]0?[0!]0

• Thread 2 executes: [0]0?[0!]0[0?]0!

• The only possible execution of these two sequences is
Thread 1: [0?]0! [0]0? [0!]0
Thread 2: [0]0? [0!]0 [0?]0!

• And when Thread 2 has finished, it cannot re-enter the synchronization
sequence until Thread 1 has also finished, and released 0.

• The sequences for producing 1 are analogously

132 / 161

Undecidability

• Synchronizing two threads with locks
• Locks: 0, 0!, 0? and 1, 1!, 1?
• Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?

• To produce a 0:
• Thread 1 executes: [0?]0![0]0?[0!]0

• Thread 2 executes: [0]0?[0!]0[0?]0!

• The only possible execution of these two sequences is
Thread 1: [0?]0! [0]0? [0!]0
Thread 2: [0]0? [0!]0 [0?]0!

• And when Thread 2 has finished, it cannot re-enter the synchronization
sequence until Thread 1 has also finished, and released 0.

• The sequences for producing 1 are analogously

132 / 161

Undecidability

• Synchronizing two threads with locks
• Locks: 0, 0!, 0? and 1, 1!, 1?
• Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?

• To produce a 0:
• Thread 1 executes: [0?]0![0]0?[0!]0

• Thread 2 executes: [0]0?[0!]0[0?]0!

• The only possible execution of these two sequences is
Thread 1: [0?]0! [0]0? [0!]0
Thread 2: [0]0? [0!]0 [0?]0!

• And when Thread 2 has finished, it cannot re-enter the synchronization
sequence until Thread 1 has also finished, and released 0.

• The sequences for producing 1 are analogously

132 / 161

Undecidability

• Synchronizing two threads with locks
• Locks: 0, 0!, 0? and 1, 1!, 1?
• Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?

• To produce a 0:
• Thread 1 executes: [0?]0![0]0?[0!]0

• Thread 2 executes: [0]0?[0!]0[0?]0!

• The only possible execution of these two sequences is
Thread 1: [0?]0! [0]0? [0!]0
Thread 2: [0]0? [0!]0 [0?]0!

• And when Thread 2 has finished, it cannot re-enter the synchronization
sequence until Thread 1 has also finished, and released 0.

• The sequences for producing 1 are analogously

132 / 161

Undecidability

• Synchronizing two threads with locks
• Locks: 0, 0!, 0? and 1, 1!, 1?
• Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?

• To produce a 0:
• Thread 1 executes: [0?]0![0]0?[0!]0

• Thread 2 executes: [0]0?[0!]0[0?]0!

• The only possible execution of these two sequences is
Thread 1: [0?]0! [0]0? [0!]0
Thread 2: [0]0? [0!]0 [0?]0!

• And when Thread 2 has finished, it cannot re-enter the synchronization
sequence until Thread 1 has also finished, and released 0.

• The sequences for producing 1 are analogously

132 / 161

Undecidability

• Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols

• Solution: Additional locks l1 and l2

• Thread 1: [0![1![l1]l1 [l2 <start of output>
• Thread 2: [0?[1?[l2]l2 [l1 <start of output>
• If one thread starts before the other has finished initialization, the other will

be stuck at [li]li forever

• Thus, final states of PDSs simultaneously reachable, iff encoded
CF-languages have non-empty intersection

133 / 161

Undecidability

• Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols

• Solution: Additional locks l1 and l2

• Thread 1: [0![1![l1]l1 [l2 <start of output>
• Thread 2: [0?[1?[l2]l2 [l1 <start of output>
• If one thread starts before the other has finished initialization, the other will

be stuck at [li]li forever

• Thus, final states of PDSs simultaneously reachable, iff encoded
CF-languages have non-empty intersection

133 / 161

Undecidability

• Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols

• Solution: Additional locks l1 and l2
• Thread 1: [0![1![l1]l1 [l2 <start of output>

• Thread 2: [0?[1?[l2]l2 [l1 <start of output>
• If one thread starts before the other has finished initialization, the other will

be stuck at [li]li forever

• Thus, final states of PDSs simultaneously reachable, iff encoded
CF-languages have non-empty intersection

133 / 161

Undecidability

• Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols

• Solution: Additional locks l1 and l2
• Thread 1: [0![1![l1]l1 [l2 <start of output>
• Thread 2: [0?[1?[l2]l2 [l1 <start of output>

• If one thread starts before the other has finished initialization, the other will
be stuck at [li]li forever

• Thus, final states of PDSs simultaneously reachable, iff encoded
CF-languages have non-empty intersection

133 / 161

Undecidability

• Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols

• Solution: Additional locks l1 and l2
• Thread 1: [0![1![l1]l1 [l2 <start of output>
• Thread 2: [0?[1?[l2]l2 [l1 <start of output>
• If one thread starts before the other has finished initialization, the other will

be stuck at [li]li forever

• Thus, final states of PDSs simultaneously reachable, iff encoded
CF-languages have non-empty intersection

133 / 161

Undecidability

• Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols

• Solution: Additional locks l1 and l2
• Thread 1: [0![1![l1]l1 [l2 <start of output>
• Thread 2: [0?[1?[l2]l2 [l1 <start of output>
• If one thread starts before the other has finished initialization, the other will

be stuck at [li]li forever

• Thus, final states of PDSs simultaneously reachable, iff encoded
CF-languages have non-empty intersection

133 / 161

Complexity for nested locks

• NP-Hardness

• Reachability analysis for nested locks and procedures is NP-hard
• Problem: Deadlocks may prevent reachability

• Reduction to 3-SAT:

• One lock per literal: Allocated — literal is false, Free — literal is true
• Use nested procedures and non-determinism to allocate locks according to

configuration
• Check for clause l1 ∨ l2 ∨ l3: Nondeterministically run one of [li ;]li
• Enforce correct order of guessing assignment and checking: One additional

lock

134 / 161

Complexity for nested locks

• NP-Hardness
• Reachability analysis for nested locks and procedures is NP-hard

• Problem: Deadlocks may prevent reachability
• Reduction to 3-SAT:

• One lock per literal: Allocated — literal is false, Free — literal is true
• Use nested procedures and non-determinism to allocate locks according to

configuration
• Check for clause l1 ∨ l2 ∨ l3: Nondeterministically run one of [li ;]li
• Enforce correct order of guessing assignment and checking: One additional

lock

134 / 161

Complexity for nested locks

• NP-Hardness
• Reachability analysis for nested locks and procedures is NP-hard
• Problem: Deadlocks may prevent reachability

• Reduction to 3-SAT:

• One lock per literal: Allocated — literal is false, Free — literal is true
• Use nested procedures and non-determinism to allocate locks according to

configuration
• Check for clause l1 ∨ l2 ∨ l3: Nondeterministically run one of [li ;]li
• Enforce correct order of guessing assignment and checking: One additional

lock

134 / 161

Complexity for nested locks

• NP-Hardness
• Reachability analysis for nested locks and procedures is NP-hard
• Problem: Deadlocks may prevent reachability

• Reduction to 3-SAT:

• One lock per literal: Allocated — literal is false, Free — literal is true
• Use nested procedures and non-determinism to allocate locks according to

configuration
• Check for clause l1 ∨ l2 ∨ l3: Nondeterministically run one of [li ;]li
• Enforce correct order of guessing assignment and checking: One additional

lock

134 / 161

Complexity for nested locks

• NP-Hardness
• Reachability analysis for nested locks and procedures is NP-hard
• Problem: Deadlocks may prevent reachability

• Reduction to 3-SAT:
• One lock per literal: Allocated — literal is false, Free — literal is true

• Use nested procedures and non-determinism to allocate locks according to
configuration

• Check for clause l1 ∨ l2 ∨ l3: Nondeterministically run one of [li ;]li
• Enforce correct order of guessing assignment and checking: One additional

lock

134 / 161

Complexity for nested locks

• NP-Hardness
• Reachability analysis for nested locks and procedures is NP-hard
• Problem: Deadlocks may prevent reachability

• Reduction to 3-SAT:
• One lock per literal: Allocated — literal is false, Free — literal is true
• Use nested procedures and non-determinism to allocate locks according to

configuration

• Check for clause l1 ∨ l2 ∨ l3: Nondeterministically run one of [li ;]li
• Enforce correct order of guessing assignment and checking: One additional

lock

134 / 161

Complexity for nested locks

• NP-Hardness
• Reachability analysis for nested locks and procedures is NP-hard
• Problem: Deadlocks may prevent reachability

• Reduction to 3-SAT:
• One lock per literal: Allocated — literal is false, Free — literal is true
• Use nested procedures and non-determinism to allocate locks according to

configuration
• Check for clause l1 ∨ l2 ∨ l3: Nondeterministically run one of [li ;]li

• Enforce correct order of guessing assignment and checking: One additional
lock

134 / 161

Complexity for nested locks

• NP-Hardness
• Reachability analysis for nested locks and procedures is NP-hard
• Problem: Deadlocks may prevent reachability

• Reduction to 3-SAT:
• One lock per literal: Allocated — literal is false, Free — literal is true
• Use nested procedures and non-determinism to allocate locks according to

configuration
• Check for clause l1 ∨ l2 ∨ l3: Nondeterministically run one of [li ;]li
• Enforce correct order of guessing assignment and checking: One additional

lock

134 / 161

Reduction to 3-SAT

• Reminder (3-SAT)

• Variables x0, . . . , xn, literal: xi or x̄i
• Formula Φ =

∧
i=1...m

∨
j=1...3 lij , where the lij are literals

•
∨

j=1...3 lij is called clause

• It is NP-complete to decide whether Φ is satisfiable.

• i.e. whether there is a valuation of the variables such that Φ holds.

135 / 161

Reduction to 3-SAT

• Reminder (3-SAT)
• Variables x0, . . . , xn, literal: xi or x̄i

• Formula Φ =
∧

i=1...m

∨
j=1...3 lij , where the lij are literals

•
∨

j=1...3 lij is called clause

• It is NP-complete to decide whether Φ is satisfiable.

• i.e. whether there is a valuation of the variables such that Φ holds.

135 / 161

Reduction to 3-SAT

• Reminder (3-SAT)
• Variables x0, . . . , xn, literal: xi or x̄i
• Formula Φ =

∧
i=1...m

∨
j=1...3 lij , where the lij are literals

•
∨

j=1...3 lij is called clause

• It is NP-complete to decide whether Φ is satisfiable.

• i.e. whether there is a valuation of the variables such that Φ holds.

135 / 161

Reduction to 3-SAT

• Reminder (3-SAT)
• Variables x0, . . . , xn, literal: xi or x̄i
• Formula Φ =

∧
i=1...m

∨
j=1...3 lij , where the lij are literals

•
∨

j=1...3 lij is called clause

• It is NP-complete to decide whether Φ is satisfiable.

• i.e. whether there is a valuation of the variables such that Φ holds.

135 / 161

Reduction to 3-SAT

• Reminder (3-SAT)
• Variables x0, . . . , xn, literal: xi or x̄i
• Formula Φ =

∧
i=1...m

∨
j=1...3 lij , where the lij are literals

•
∨

j=1...3 lij is called clause

• It is NP-complete to decide whether Φ is satisfiable.

• i.e. whether there is a valuation of the variables such that Φ holds.

135 / 161

Reduction to 3-SAT

• Reminder (3-SAT)
• Variables x0, . . . , xn, literal: xi or x̄i
• Formula Φ =

∧
i=1...m

∨
j=1...3 lij , where the lij are literals

•
∨

j=1...3 lij is called clause

• It is NP-complete to decide whether Φ is satisfiable.
• i.e. whether there is a valuation of the variables such that Φ holds.

135 / 161

Reduction to 3-SAT

ass (i) :
i f . . . then {

acqu i re xi ass (i +1) re lease xi
} else {

acqu i re x̄i ass (i +1) re lease x̄i
}
r e t u r n

ass (n +1) :
acqu i re (s) ; re lease (s) ;
l abe l1 : r e t u r n

thread1 : ass (1)

check (i) :
i f (. . .) {

acqu i re li1 ; re lease li1 ;
} else i f (. . .) {

acqu i re li2 ; re lease li2 ;
} else {

acqu i re li3 ; re lease li3 ;
}

thread2 :
acqu i re (s) ;
check (1) ; . . . ; check (m) ;
l abe l2 : sk ip
re lease (s)

• label1 and label2 simultaneously reachable, iff formula is satisfiable.

136 / 161

Last Lecture

• Execution trees of DPN
• Locks: Negative results

• Reachability in DPN (even 2-PDS) wrt. arbitrary locking is undecidable
• Reduction to deciding intersection of CF languages

• Reachability in DPN (even 2-PDS) wrt. nested locking is NP-hard
• Reduction to 3-SAT

137 / 161

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems
Motivation
Pushdown Systems
Dynamic Pushdown Networks
Acquisition Histories
Acquisition Histories for DPN

138 / 161

2-PDS with locks

• Two PDS with locks. Both share same rules.

• M = (P, Γ,Act,L, p0
1γ

0
1 , p

0
2γ

0
2 ,∆)

• P, Γ,∆: States, stack alphabet, rules
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks
• p0

1γ
0
1 , p0

2γ
0
2 : Initial states of left and right PDS

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

139 / 161

2-PDS with locks

• Two PDS with locks. Both share same rules.
• M = (P, Γ,Act,L, p0

1γ
0
1 , p

0
2γ

0
2 ,∆)

• P, Γ,∆: States, stack alphabet, rules
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks
• p0

1γ
0
1 , p0

2γ
0
2 : Initial states of left and right PDS

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

139 / 161

2-PDS with locks

• Two PDS with locks. Both share same rules.
• M = (P, Γ,Act,L, p0

1γ
0
1 , p

0
2γ

0
2 ,∆)

• P, Γ,∆: States, stack alphabet, rules

• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks
• p0

1γ
0
1 , p0

2γ
0
2 : Initial states of left and right PDS

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

139 / 161

2-PDS with locks

• Two PDS with locks. Both share same rules.
• M = (P, Γ,Act,L, p0

1γ
0
1 , p

0
2γ

0
2 ,∆)

• P, Γ,∆: States, stack alphabet, rules
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}

• L: Finite set of locks
• p0

1γ
0
1 , p0

2γ
0
2 : Initial states of left and right PDS

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

139 / 161

2-PDS with locks

• Two PDS with locks. Both share same rules.
• M = (P, Γ,Act,L, p0

1γ
0
1 , p

0
2γ

0
2 ,∆)

• P, Γ,∆: States, stack alphabet, rules
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks

• p0
1γ

0
1 , p0

2γ
0
2 : Initial states of left and right PDS

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

139 / 161

2-PDS with locks

• Two PDS with locks. Both share same rules.
• M = (P, Γ,Act,L, p0

1γ
0
1 , p

0
2γ

0
2 ,∆)

• P, Γ,∆: States, stack alphabet, rules
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks
• p0

1γ
0
1 , p0

2γ
0
2 : Initial states of left and right PDS

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

139 / 161

2-PDS with locks

• Two PDS with locks. Both share same rules.
• M = (P, Γ,Act,L, p0

1γ
0
1 , p

0
2γ

0
2 ,∆)

• P, Γ,∆: States, stack alphabet, rules
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks
• p0

1γ
0
1 , p0

2γ
0
2 : Initial states of left and right PDS

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

139 / 161

2-PDS with locks

• Two PDS with locks. Both share same rules.
• M = (P, Γ,Act,L, p0

1γ
0
1 , p

0
2γ

0
2 ,∆)

• P, Γ,∆: States, stack alphabet, rules
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks
• p0

1γ
0
1 , p0

2γ
0
2 : Initial states of left and right PDS

• Assumption: Locks are well-nested and non-reentrant
• In particular, thread does not free „foreign” locks

139 / 161

Semantics

• Configurations: (p1w1,p2w2,L) ∈ PΓ∗ × PΓ∗ × 2L

• cond([x , L) = x /∈ L, eff ([x , L) = L ∪ {x}
• cond(]x , L) = true, eff (]x , L) = L \ {x}
• cond(a, L) = true, eff (a, L) = L for a ∈ Actnl

• Step

(pγw1, p2w2, L)
a→ls (p′w ′w1, p2w2, eff (a, L)) if pγ

a
↪→ p′w ′ ∈ ∆ and cond(a, L)

(left)

(p1w1, pγw2, L)
a→ls (p1w1, p′w ′w2, eff (a, L)) if pγ

a
↪→ p′w ′ ∈ ∆ and cond(a, L)

(right)

140 / 161

Semantics

• Configurations: (p1w1,p2w2,L) ∈ PΓ∗ × PΓ∗ × 2L

• cond([x , L) = x /∈ L, eff ([x , L) = L ∪ {x}

• cond(]x , L) = true, eff (]x , L) = L \ {x}
• cond(a, L) = true, eff (a, L) = L for a ∈ Actnl

• Step

(pγw1, p2w2, L)
a→ls (p′w ′w1, p2w2, eff (a, L)) if pγ

a
↪→ p′w ′ ∈ ∆ and cond(a, L)

(left)

(p1w1, pγw2, L)
a→ls (p1w1, p′w ′w2, eff (a, L)) if pγ

a
↪→ p′w ′ ∈ ∆ and cond(a, L)

(right)

140 / 161

Semantics

• Configurations: (p1w1,p2w2,L) ∈ PΓ∗ × PΓ∗ × 2L

• cond([x , L) = x /∈ L, eff ([x , L) = L ∪ {x}
• cond(]x , L) = true, eff (]x , L) = L \ {x}

• cond(a, L) = true, eff (a, L) = L for a ∈ Actnl

• Step

(pγw1, p2w2, L)
a→ls (p′w ′w1, p2w2, eff (a, L)) if pγ

a
↪→ p′w ′ ∈ ∆ and cond(a, L)

(left)

(p1w1, pγw2, L)
a→ls (p1w1, p′w ′w2, eff (a, L)) if pγ

a
↪→ p′w ′ ∈ ∆ and cond(a, L)

(right)

140 / 161

Semantics

• Configurations: (p1w1,p2w2,L) ∈ PΓ∗ × PΓ∗ × 2L

• cond([x , L) = x /∈ L, eff ([x , L) = L ∪ {x}
• cond(]x , L) = true, eff (]x , L) = L \ {x}
• cond(a, L) = true, eff (a, L) = L for a ∈ Actnl

• Step

(pγw1, p2w2, L)
a→ls (p′w ′w1, p2w2, eff (a, L)) if pγ

a
↪→ p′w ′ ∈ ∆ and cond(a, L)

(left)

(p1w1, pγw2, L)
a→ls (p1w1, p′w ′w2, eff (a, L)) if pγ

a
↪→ p′w ′ ∈ ∆ and cond(a, L)

(right)

140 / 161

Semantics

• Configurations: (p1w1,p2w2,L) ∈ PΓ∗ × PΓ∗ × 2L

• cond([x , L) = x /∈ L, eff ([x , L) = L ∪ {x}
• cond(]x , L) = true, eff (]x , L) = L \ {x}
• cond(a, L) = true, eff (a, L) = L for a ∈ Actnl

• Step

(pγw1, p2w2, L)
a→ls (p′w ′w1, p2w2, eff (a, L)) if pγ

a
↪→ p′w ′ ∈ ∆ and cond(a, L)

(left)

(p1w1, pγw2, L)
a→ls (p1w1, p′w ′w2, eff (a, L)) if pγ

a
↪→ p′w ′ ∈ ∆ and cond(a, L)

(right)

140 / 161

Lock sensitive scheduling

• Idea: Abstraction from PDS

• Check whether two execution sequences can be interleaved

• Configurations: (l1, l2,L) ∈ Act∗ × Act∗ × 2L

• Step

(al1, l2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (left)

(l1,al2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (right)

• Lemma

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃l1, l2. p1w1
l1→∗ p′1w ′1 ∧ p2w2

l2→∗ p′2w ′2 ∧ (l1, l2,L)
l→∗ (ε, ε,L′)

• Intuition: Schedule lock-insensitive executions of the single PDSs
• Proof: Straightforward simulation proof

141 / 161

Lock sensitive scheduling

• Idea: Abstraction from PDS
• Check whether two execution sequences can be interleaved

• Configurations: (l1, l2,L) ∈ Act∗ × Act∗ × 2L

• Step

(al1, l2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (left)

(l1,al2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (right)

• Lemma

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃l1, l2. p1w1
l1→∗ p′1w ′1 ∧ p2w2

l2→∗ p′2w ′2 ∧ (l1, l2,L)
l→∗ (ε, ε,L′)

• Intuition: Schedule lock-insensitive executions of the single PDSs
• Proof: Straightforward simulation proof

141 / 161

Lock sensitive scheduling

• Idea: Abstraction from PDS
• Check whether two execution sequences can be interleaved

• Configurations: (l1, l2,L) ∈ Act∗ × Act∗ × 2L

• Step

(al1, l2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (left)

(l1,al2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (right)

• Lemma

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃l1, l2. p1w1
l1→∗ p′1w ′1 ∧ p2w2

l2→∗ p′2w ′2 ∧ (l1, l2,L)
l→∗ (ε, ε,L′)

• Intuition: Schedule lock-insensitive executions of the single PDSs
• Proof: Straightforward simulation proof

141 / 161

Lock sensitive scheduling

• Idea: Abstraction from PDS
• Check whether two execution sequences can be interleaved

• Configurations: (l1, l2,L) ∈ Act∗ × Act∗ × 2L

• Step

(al1, l2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (left)

(l1,al2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (right)

• Lemma

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃l1, l2. p1w1
l1→∗ p′1w ′1 ∧ p2w2

l2→∗ p′2w ′2 ∧ (l1, l2,L)
l→∗ (ε, ε,L′)

• Intuition: Schedule lock-insensitive executions of the single PDSs
• Proof: Straightforward simulation proof

141 / 161

Lock sensitive scheduling

• Idea: Abstraction from PDS
• Check whether two execution sequences can be interleaved

• Configurations: (l1, l2,L) ∈ Act∗ × Act∗ × 2L

• Step

(al1, l2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (left)

(l1,al2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (right)

• Lemma

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃l1, l2. p1w1
l1→∗ p′1w ′1 ∧ p2w2

l2→∗ p′2w ′2 ∧ (l1, l2,L)
l→∗ (ε, ε,L′)

• Intuition: Schedule lock-insensitive executions of the single PDSs
• Proof: Straightforward simulation proof

141 / 161

Lock sensitive scheduling

• Idea: Abstraction from PDS
• Check whether two execution sequences can be interleaved

• Configurations: (l1, l2,L) ∈ Act∗ × Act∗ × 2L

• Step

(al1, l2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (left)

(l1,al2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (right)

• Lemma

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃l1, l2. p1w1
l1→∗ p′1w ′1 ∧ p2w2

l2→∗ p′2w ′2 ∧ (l1, l2,L)
l→∗ (ε, ε,L′)

• Intuition: Schedule lock-insensitive executions of the single PDSs

• Proof: Straightforward simulation proof

141 / 161

Lock sensitive scheduling

• Idea: Abstraction from PDS
• Check whether two execution sequences can be interleaved

• Configurations: (l1, l2,L) ∈ Act∗ × Act∗ × 2L

• Step

(al1, l2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (left)

(l1,al2,L)
a
↪→ (l1, l2,eff (a,L)) if cond(a,L) (right)

• Lemma

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃l1, l2. p1w1
l1→∗ p′1w ′1 ∧ p2w2

l2→∗ p′2w ′2 ∧ (l1, l2,L)
l→∗ (ε, ε,L′)

• Intuition: Schedule lock-insensitive executions of the single PDSs
• Proof: Straightforward simulation proof

141 / 161

Execution trees of 2-PDS

• Intuitively: Append execution trees of left and right PDS to binary root
node ◦.

• X2 ::= ◦(XN,XN)

• Tree automata: Tree automata for PDS execution trees, but

• Initial state i , and additional rule i → ◦(p0
1γ

0
1 , p

0
2γ

0
2)

• We have (with lemma from previous slide)

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃t1, t2. i → ◦(t1, t2) ∧ c(t1) = p′1w ′1 ∧ c(t2) = p′2w ′2

∧ (a(t1),a(t2),L)
l→∗ (ε, ε,L′)

• Where c : XN → conf extracts reached configuration from execution tree
and a : XN → Act∗ extracts labeling sequence from execution tree (cf.
Homework 9.2)

142 / 161

Execution trees of 2-PDS

• Intuitively: Append execution trees of left and right PDS to binary root
node ◦.
• X2 ::= ◦(XN,XN)

• Tree automata: Tree automata for PDS execution trees, but

• Initial state i , and additional rule i → ◦(p0
1γ

0
1 , p

0
2γ

0
2)

• We have (with lemma from previous slide)

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃t1, t2. i → ◦(t1, t2) ∧ c(t1) = p′1w ′1 ∧ c(t2) = p′2w ′2

∧ (a(t1),a(t2),L)
l→∗ (ε, ε,L′)

• Where c : XN → conf extracts reached configuration from execution tree
and a : XN → Act∗ extracts labeling sequence from execution tree (cf.
Homework 9.2)

142 / 161

Execution trees of 2-PDS

• Intuitively: Append execution trees of left and right PDS to binary root
node ◦.
• X2 ::= ◦(XN,XN)

• Tree automata: Tree automata for PDS execution trees, but

• Initial state i , and additional rule i → ◦(p0
1γ

0
1 , p

0
2γ

0
2)

• We have (with lemma from previous slide)

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃t1, t2. i → ◦(t1, t2) ∧ c(t1) = p′1w ′1 ∧ c(t2) = p′2w ′2

∧ (a(t1),a(t2),L)
l→∗ (ε, ε,L′)

• Where c : XN → conf extracts reached configuration from execution tree
and a : XN → Act∗ extracts labeling sequence from execution tree (cf.
Homework 9.2)

142 / 161

Execution trees of 2-PDS

• Intuitively: Append execution trees of left and right PDS to binary root
node ◦.
• X2 ::= ◦(XN,XN)

• Tree automata: Tree automata for PDS execution trees, but
• Initial state i , and additional rule i → ◦(p0

1γ
0
1 , p

0
2γ

0
2)

• We have (with lemma from previous slide)

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃t1, t2. i → ◦(t1, t2) ∧ c(t1) = p′1w ′1 ∧ c(t2) = p′2w ′2

∧ (a(t1),a(t2),L)
l→∗ (ε, ε,L′)

• Where c : XN → conf extracts reached configuration from execution tree
and a : XN → Act∗ extracts labeling sequence from execution tree (cf.
Homework 9.2)

142 / 161

Execution trees of 2-PDS

• Intuitively: Append execution trees of left and right PDS to binary root
node ◦.
• X2 ::= ◦(XN,XN)

• Tree automata: Tree automata for PDS execution trees, but
• Initial state i , and additional rule i → ◦(p0

1γ
0
1 , p

0
2γ

0
2)

• We have (with lemma from previous slide)

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃t1, t2. i → ◦(t1, t2) ∧ c(t1) = p′1w ′1 ∧ c(t2) = p′2w ′2

∧ (a(t1),a(t2),L)
l→∗ (ε, ε,L′)

• Where c : XN → conf extracts reached configuration from execution tree
and a : XN → Act∗ extracts labeling sequence from execution tree (cf.
Homework 9.2)

142 / 161

Execution trees of 2-PDS

• Intuitively: Append execution trees of left and right PDS to binary root
node ◦.
• X2 ::= ◦(XN,XN)

• Tree automata: Tree automata for PDS execution trees, but
• Initial state i , and additional rule i → ◦(p0

1γ
0
1 , p

0
2γ

0
2)

• We have (with lemma from previous slide)

(p1w1,p2w2,L)
l→∗ (p′1w ′1,p

′
2w ′2,L

′)

iff ∃t1, t2. i → ◦(t1, t2) ∧ c(t1) = p′1w ′1 ∧ c(t2) = p′2w ′2

∧ (a(t1),a(t2),L)
l→∗ (ε, ε,L′)

• Where c : XN → conf extracts reached configuration from execution tree
and a : XN → Act∗ extracts labeling sequence from execution tree (cf.
Homework 9.2)

142 / 161

Attack Plan

• Compute information ah(l1),ah(l2) which

• Can be used to decide whether (l1, l2, ∅)→∗ (ε, ε, _)
• Sets of which can be computed by tree automaton over execution trees

• Thus, we get a tree automaton for schedulable execution trees.
• Checking the intersection of this, the tree automaton for execution trees,

and the error property for emptiness gives us lock-sensitive
model-checker

143 / 161

Attack Plan

• Compute information ah(l1),ah(l2) which
• Can be used to decide whether (l1, l2, ∅)→∗ (ε, ε, _)

• Sets of which can be computed by tree automaton over execution trees

• Thus, we get a tree automaton for schedulable execution trees.
• Checking the intersection of this, the tree automaton for execution trees,

and the error property for emptiness gives us lock-sensitive
model-checker

143 / 161

Attack Plan

• Compute information ah(l1),ah(l2) which
• Can be used to decide whether (l1, l2, ∅)→∗ (ε, ε, _)
• Sets of which can be computed by tree automaton over execution trees

• Thus, we get a tree automaton for schedulable execution trees.
• Checking the intersection of this, the tree automaton for execution trees,

and the error property for emptiness gives us lock-sensitive
model-checker

143 / 161

Attack Plan

• Compute information ah(l1),ah(l2) which
• Can be used to decide whether (l1, l2, ∅)→∗ (ε, ε, _)
• Sets of which can be computed by tree automaton over execution trees

• Thus, we get a tree automaton for schedulable execution trees.

• Checking the intersection of this, the tree automaton for execution trees,
and the error property for emptiness gives us lock-sensitive
model-checker

143 / 161

Attack Plan

• Compute information ah(l1),ah(l2) which
• Can be used to decide whether (l1, l2, ∅)→∗ (ε, ε, _)
• Sets of which can be computed by tree automaton over execution trees

• Thus, we get a tree automaton for schedulable execution trees.
• Checking the intersection of this, the tree automaton for execution trees,

and the error property for emptiness gives us lock-sensitive
model-checker

143 / 161

Acquisition Histories: Intuition

• Categorize an action [x in an execution sequence as

Final acquisition If lock x is not released afterwards
Usage If lock l is released afterwards

• When can two sequences l1 and l2 be scheduled?

• No lock is finally acquired in both, l1 and l2
• There must be no deadlock pair

• I.e., l1 finally acquires x1 and then uses x2, and l2 finally acquires x2 and then
uses x1

• We will now prove: This characterization is sufficient and necessary

• And can be computed for the sets of all executions by tree automata

144 / 161

Acquisition Histories: Intuition

• Categorize an action [x in an execution sequence as
Final acquisition If lock x is not released afterwards

Usage If lock l is released afterwards
• When can two sequences l1 and l2 be scheduled?

• No lock is finally acquired in both, l1 and l2
• There must be no deadlock pair

• I.e., l1 finally acquires x1 and then uses x2, and l2 finally acquires x2 and then
uses x1

• We will now prove: This characterization is sufficient and necessary

• And can be computed for the sets of all executions by tree automata

144 / 161

Acquisition Histories: Intuition

• Categorize an action [x in an execution sequence as
Final acquisition If lock x is not released afterwards

Usage If lock l is released afterwards

• When can two sequences l1 and l2 be scheduled?

• No lock is finally acquired in both, l1 and l2
• There must be no deadlock pair

• I.e., l1 finally acquires x1 and then uses x2, and l2 finally acquires x2 and then
uses x1

• We will now prove: This characterization is sufficient and necessary

• And can be computed for the sets of all executions by tree automata

144 / 161

Acquisition Histories: Intuition

• Categorize an action [x in an execution sequence as
Final acquisition If lock x is not released afterwards

Usage If lock l is released afterwards
• When can two sequences l1 and l2 be scheduled?

• No lock is finally acquired in both, l1 and l2
• There must be no deadlock pair

• I.e., l1 finally acquires x1 and then uses x2, and l2 finally acquires x2 and then
uses x1

• We will now prove: This characterization is sufficient and necessary

• And can be computed for the sets of all executions by tree automata

144 / 161

Acquisition Histories: Intuition

• Categorize an action [x in an execution sequence as
Final acquisition If lock x is not released afterwards

Usage If lock l is released afterwards
• When can two sequences l1 and l2 be scheduled?

• No lock is finally acquired in both, l1 and l2

• There must be no deadlock pair

• I.e., l1 finally acquires x1 and then uses x2, and l2 finally acquires x2 and then
uses x1

• We will now prove: This characterization is sufficient and necessary

• And can be computed for the sets of all executions by tree automata

144 / 161

Acquisition Histories: Intuition

• Categorize an action [x in an execution sequence as
Final acquisition If lock x is not released afterwards

Usage If lock l is released afterwards
• When can two sequences l1 and l2 be scheduled?

• No lock is finally acquired in both, l1 and l2
• There must be no deadlock pair

• I.e., l1 finally acquires x1 and then uses x2, and l2 finally acquires x2 and then
uses x1

• We will now prove: This characterization is sufficient and necessary

• And can be computed for the sets of all executions by tree automata

144 / 161

Acquisition Histories: Intuition

• Categorize an action [x in an execution sequence as
Final acquisition If lock x is not released afterwards

Usage If lock l is released afterwards
• When can two sequences l1 and l2 be scheduled?

• No lock is finally acquired in both, l1 and l2
• There must be no deadlock pair

• I.e., l1 finally acquires x1 and then uses x2, and l2 finally acquires x2 and then
uses x1

• We will now prove: This characterization is sufficient and necessary

• And can be computed for the sets of all executions by tree automata

144 / 161

Acquisition Histories: Intuition

• Categorize an action [x in an execution sequence as
Final acquisition If lock x is not released afterwards

Usage If lock l is released afterwards
• When can two sequences l1 and l2 be scheduled?

• No lock is finally acquired in both, l1 and l2
• There must be no deadlock pair

• I.e., l1 finally acquires x1 and then uses x2, and l2 finally acquires x2 and then
uses x1

• We will now prove: This characterization is sufficient and necessary

• And can be computed for the sets of all executions by tree automata

144 / 161

Acquisition Histories: Intuition

• Categorize an action [x in an execution sequence as
Final acquisition If lock x is not released afterwards

Usage If lock l is released afterwards
• When can two sequences l1 and l2 be scheduled?

• No lock is finally acquired in both, l1 and l2
• There must be no deadlock pair

• I.e., l1 finally acquires x1 and then uses x2, and l2 finally acquires x2 and then
uses x1

• We will now prove: This characterization is sufficient and necessary
• And can be computed for the sets of all executions by tree automata

144 / 161

Acquisition Histories: Definition
• Given an execution sequence l ∈ Act∗, we define ah(l) := (A(l),G(l))

where

• A(l) ⊆ L is the set of finally acquired locks:

A(ε) = ∅
A(al) = A(l) if a ∈ Actnl or a =]x for x ∈ L
A([x l) = A(l) if]x ∈ l

A([x l) = A(l) ∪ {x} if]x /∈ l

• G(l) ⊆ L× L is the lock graph:

G(ε) = ∅
G(al) = G(l) if a ∈ Actnl or a =]x for x ∈ L
G([x l) = G(l) if]x ∈ l

G([x l) = G(l) ∪ {x} × acq(l) if]x /∈ l

where acq(l) := {x | [x ∈ l}
• Lemma

(l1, l2, ∅)→∗ (ε, ε,_) iff A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

145 / 161

Acquisition Histories: Definition
• Given an execution sequence l ∈ Act∗, we define ah(l) := (A(l),G(l))

where
• A(l) ⊆ L is the set of finally acquired locks:

A(ε) = ∅
A(al) = A(l) if a ∈ Actnl or a =]x for x ∈ L
A([x l) = A(l) if]x ∈ l

A([x l) = A(l) ∪ {x} if]x /∈ l

• G(l) ⊆ L× L is the lock graph:

G(ε) = ∅
G(al) = G(l) if a ∈ Actnl or a =]x for x ∈ L
G([x l) = G(l) if]x ∈ l

G([x l) = G(l) ∪ {x} × acq(l) if]x /∈ l

where acq(l) := {x | [x ∈ l}
• Lemma

(l1, l2, ∅)→∗ (ε, ε,_) iff A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

145 / 161

Acquisition Histories: Definition
• Given an execution sequence l ∈ Act∗, we define ah(l) := (A(l),G(l))

where
• A(l) ⊆ L is the set of finally acquired locks:

A(ε) = ∅
A(al) = A(l) if a ∈ Actnl or a =]x for x ∈ L
A([x l) = A(l) if]x ∈ l

A([x l) = A(l) ∪ {x} if]x /∈ l

• G(l) ⊆ L× L is the lock graph:

G(ε) = ∅
G(al) = G(l) if a ∈ Actnl or a =]x for x ∈ L
G([x l) = G(l) if]x ∈ l

G([x l) = G(l) ∪ {x} × acq(l) if]x /∈ l

where acq(l) := {x | [x ∈ l}

• Lemma

(l1, l2, ∅)→∗ (ε, ε,_) iff A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

145 / 161

Acquisition Histories: Definition
• Given an execution sequence l ∈ Act∗, we define ah(l) := (A(l),G(l))

where
• A(l) ⊆ L is the set of finally acquired locks:

A(ε) = ∅
A(al) = A(l) if a ∈ Actnl or a =]x for x ∈ L
A([x l) = A(l) if]x ∈ l

A([x l) = A(l) ∪ {x} if]x /∈ l

• G(l) ⊆ L× L is the lock graph:

G(ε) = ∅
G(al) = G(l) if a ∈ Actnl or a =]x for x ∈ L
G([x l) = G(l) if]x ∈ l

G([x l) = G(l) ∪ {x} × acq(l) if]x /∈ l

where acq(l) := {x | [x ∈ l}
• Lemma

(l1, l2, ∅)→∗ (ε, ε,_) iff A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

145 / 161

Proof ideas

• =⇒

• Generalize to

∀L. (l1, l2, L)→∗ (ε, ε, _) =⇒ A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

• Induction on→∗

• Interesting case: First step is final acquisition: [x
• [x will not occur in remaining execution
• Thus, it cannot close a cycle in the lock graphs

• ⇐=

• Generalize to

A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

=⇒ ∀L. L ∩ (acq(l1) ∪ acq(l2)) = ∅ =⇒ (l1, l2, L)→∗ (ε, ε, _) (1)

• Induction on |l1|+ |l2|

• Schedule usages of locks first
• If both, l1 and l2 start with final acquisitions:

Choose acquisition that comes first in topological ordering of G(l1) ∪ G(l2)

146 / 161

Proof ideas

• =⇒
• Generalize to

∀L. (l1, l2, L)→∗ (ε, ε, _) =⇒ A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

• Induction on→∗

• Interesting case: First step is final acquisition: [x
• [x will not occur in remaining execution
• Thus, it cannot close a cycle in the lock graphs

• ⇐=

• Generalize to

A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

=⇒ ∀L. L ∩ (acq(l1) ∪ acq(l2)) = ∅ =⇒ (l1, l2, L)→∗ (ε, ε, _) (1)

• Induction on |l1|+ |l2|

• Schedule usages of locks first
• If both, l1 and l2 start with final acquisitions:

Choose acquisition that comes first in topological ordering of G(l1) ∪ G(l2)

146 / 161

Proof ideas

• =⇒
• Generalize to

∀L. (l1, l2, L)→∗ (ε, ε, _) =⇒ A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

• Induction on→∗

• Interesting case: First step is final acquisition: [x
• [x will not occur in remaining execution
• Thus, it cannot close a cycle in the lock graphs

• ⇐=

• Generalize to

A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

=⇒ ∀L. L ∩ (acq(l1) ∪ acq(l2)) = ∅ =⇒ (l1, l2, L)→∗ (ε, ε, _) (1)

• Induction on |l1|+ |l2|

• Schedule usages of locks first
• If both, l1 and l2 start with final acquisitions:

Choose acquisition that comes first in topological ordering of G(l1) ∪ G(l2)

146 / 161

Proof ideas

• =⇒
• Generalize to

∀L. (l1, l2, L)→∗ (ε, ε, _) =⇒ A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

• Induction on→∗
• Interesting case: First step is final acquisition: [x

• [x will not occur in remaining execution
• Thus, it cannot close a cycle in the lock graphs

• ⇐=

• Generalize to

A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

=⇒ ∀L. L ∩ (acq(l1) ∪ acq(l2)) = ∅ =⇒ (l1, l2, L)→∗ (ε, ε, _) (1)

• Induction on |l1|+ |l2|

• Schedule usages of locks first
• If both, l1 and l2 start with final acquisitions:

Choose acquisition that comes first in topological ordering of G(l1) ∪ G(l2)

146 / 161

Proof ideas

• =⇒
• Generalize to

∀L. (l1, l2, L)→∗ (ε, ε, _) =⇒ A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

• Induction on→∗
• Interesting case: First step is final acquisition: [x
• [x will not occur in remaining execution

• Thus, it cannot close a cycle in the lock graphs

• ⇐=

• Generalize to

A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

=⇒ ∀L. L ∩ (acq(l1) ∪ acq(l2)) = ∅ =⇒ (l1, l2, L)→∗ (ε, ε, _) (1)

• Induction on |l1|+ |l2|

• Schedule usages of locks first
• If both, l1 and l2 start with final acquisitions:

Choose acquisition that comes first in topological ordering of G(l1) ∪ G(l2)

146 / 161

Proof ideas

• =⇒
• Generalize to

∀L. (l1, l2, L)→∗ (ε, ε, _) =⇒ A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

• Induction on→∗
• Interesting case: First step is final acquisition: [x
• [x will not occur in remaining execution
• Thus, it cannot close a cycle in the lock graphs

• ⇐=

• Generalize to

A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

=⇒ ∀L. L ∩ (acq(l1) ∪ acq(l2)) = ∅ =⇒ (l1, l2, L)→∗ (ε, ε, _) (1)

• Induction on |l1|+ |l2|

• Schedule usages of locks first
• If both, l1 and l2 start with final acquisitions:

Choose acquisition that comes first in topological ordering of G(l1) ∪ G(l2)

146 / 161

Proof ideas

• =⇒
• Generalize to

∀L. (l1, l2, L)→∗ (ε, ε, _) =⇒ A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

• Induction on→∗
• Interesting case: First step is final acquisition: [x
• [x will not occur in remaining execution
• Thus, it cannot close a cycle in the lock graphs

• ⇐=

• Generalize to

A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

=⇒ ∀L. L ∩ (acq(l1) ∪ acq(l2)) = ∅ =⇒ (l1, l2, L)→∗ (ε, ε, _) (1)

• Induction on |l1|+ |l2|

• Schedule usages of locks first
• If both, l1 and l2 start with final acquisitions:

Choose acquisition that comes first in topological ordering of G(l1) ∪ G(l2)

146 / 161

Proof ideas

• =⇒
• Generalize to

∀L. (l1, l2, L)→∗ (ε, ε, _) =⇒ A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

• Induction on→∗
• Interesting case: First step is final acquisition: [x
• [x will not occur in remaining execution
• Thus, it cannot close a cycle in the lock graphs

• ⇐=
• Generalize to

A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

=⇒ ∀L. L ∩ (acq(l1) ∪ acq(l2)) = ∅ =⇒ (l1, l2, L)→∗ (ε, ε, _) (1)

• Induction on |l1|+ |l2|

• Schedule usages of locks first
• If both, l1 and l2 start with final acquisitions:

Choose acquisition that comes first in topological ordering of G(l1) ∪ G(l2)

146 / 161

Proof ideas

• =⇒
• Generalize to

∀L. (l1, l2, L)→∗ (ε, ε, _) =⇒ A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

• Induction on→∗
• Interesting case: First step is final acquisition: [x
• [x will not occur in remaining execution
• Thus, it cannot close a cycle in the lock graphs

• ⇐=
• Generalize to

A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

=⇒ ∀L. L ∩ (acq(l1) ∪ acq(l2)) = ∅ =⇒ (l1, l2, L)→∗ (ε, ε, _) (1)

• Induction on |l1|+ |l2|

• Schedule usages of locks first
• If both, l1 and l2 start with final acquisitions:

Choose acquisition that comes first in topological ordering of G(l1) ∪ G(l2)

146 / 161

Proof ideas

• =⇒
• Generalize to

∀L. (l1, l2, L)→∗ (ε, ε, _) =⇒ A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

• Induction on→∗
• Interesting case: First step is final acquisition: [x
• [x will not occur in remaining execution
• Thus, it cannot close a cycle in the lock graphs

• ⇐=
• Generalize to

A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

=⇒ ∀L. L ∩ (acq(l1) ∪ acq(l2)) = ∅ =⇒ (l1, l2, L)→∗ (ε, ε, _) (1)

• Induction on |l1|+ |l2|
• Schedule usages of locks first

• If both, l1 and l2 start with final acquisitions:
Choose acquisition that comes first in topological ordering of G(l1) ∪ G(l2)

146 / 161

Proof ideas

• =⇒
• Generalize to

∀L. (l1, l2, L)→∗ (ε, ε, _) =⇒ A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

• Induction on→∗
• Interesting case: First step is final acquisition: [x
• [x will not occur in remaining execution
• Thus, it cannot close a cycle in the lock graphs

• ⇐=
• Generalize to

A(l1) ∩ A(l2) = ∅ ∧ acyclic(G(l1) ∪G(l2))

=⇒ ∀L. L ∩ (acq(l1) ∪ acq(l2)) = ∅ =⇒ (l1, l2, L)→∗ (ε, ε, _) (1)

• Induction on |l1|+ |l2|
• Schedule usages of locks first
• If both, l1 and l2 start with final acquisitions:

Choose acquisition that comes first in topological ordering of G(l1) ∪ G(l2)

146 / 161

Computation of acquisition histories

• There are only finitely many acquisition histories

• Exponentially many in number of locks

• Set of all schedulable 2-PDS execution trees is regular
• In practice: Avoid computing unnecessary states of tree automata

147 / 161

Computation of acquisition histories

• There are only finitely many acquisition histories
• Exponentially many in number of locks

• Set of all schedulable 2-PDS execution trees is regular
• In practice: Avoid computing unnecessary states of tree automata

147 / 161

Computation of acquisition histories

• There are only finitely many acquisition histories
• Exponentially many in number of locks

• Set of all schedulable 2-PDS execution trees is regular

• In practice: Avoid computing unnecessary states of tree automata

147 / 161

Computation of acquisition histories

• There are only finitely many acquisition histories
• Exponentially many in number of locks

• Set of all schedulable 2-PDS execution trees is regular
• In practice: Avoid computing unnecessary states of tree automata

147 / 161

Last Lecture

• 2-PDS with locks
• Acquisition histories
• Deciding lock-sensitive reachability

148 / 161

Table of Contents

1 Introduction

2 Basics

3 Alternative Representations of Regular Languages

4 Model-Checking concurrent Systems
Motivation
Pushdown Systems
Dynamic Pushdown Networks
Acquisition Histories
Acquisition Histories for DPN

149 / 161

DPNs with locks

• Same ideas as for 2-PDS

• M = (P, Γ,Act,L,p0γ0,∆)

• P, Γ,∆: States, stack alphabet, rules (with spawns)
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks
• p0γ0: Initial state

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

150 / 161

DPNs with locks

• Same ideas as for 2-PDS
• M = (P, Γ,Act,L,p0γ0,∆)

• P, Γ,∆: States, stack alphabet, rules (with spawns)
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks
• p0γ0: Initial state

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

150 / 161

DPNs with locks

• Same ideas as for 2-PDS
• M = (P, Γ,Act,L,p0γ0,∆)

• P, Γ,∆: States, stack alphabet, rules (with spawns)

• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks
• p0γ0: Initial state

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

150 / 161

DPNs with locks

• Same ideas as for 2-PDS
• M = (P, Γ,Act,L,p0γ0,∆)

• P, Γ,∆: States, stack alphabet, rules (with spawns)
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}

• L: Finite set of locks
• p0γ0: Initial state

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

150 / 161

DPNs with locks

• Same ideas as for 2-PDS
• M = (P, Γ,Act,L,p0γ0,∆)

• P, Γ,∆: States, stack alphabet, rules (with spawns)
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks

• p0γ0: Initial state
• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

150 / 161

DPNs with locks

• Same ideas as for 2-PDS
• M = (P, Γ,Act,L,p0γ0,∆)

• P, Γ,∆: States, stack alphabet, rules (with spawns)
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks
• p0γ0: Initial state

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

150 / 161

DPNs with locks

• Same ideas as for 2-PDS
• M = (P, Γ,Act,L,p0γ0,∆)

• P, Γ,∆: States, stack alphabet, rules (with spawns)
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks
• p0γ0: Initial state

• Assumption: Locks are well-nested and non-reentrant

• In particular, thread does not free „foreign” locks

150 / 161

DPNs with locks

• Same ideas as for 2-PDS
• M = (P, Γ,Act,L,p0γ0,∆)

• P, Γ,∆: States, stack alphabet, rules (with spawns)
• Act = Actnl ∪̇ {[x | x ∈ L} ∪̇ {]x | x ∈ L}
• L: Finite set of locks
• p0γ0: Initial state

• Assumption: Locks are well-nested and non-reentrant
• In particular, thread does not free „foreign” locks

150 / 161

Semantics

• As for 2-PDS: Add set of locks

• Recall: conf ::= 〈pw〉(conflist) conflist ::= Nil|Cons(conf, conflist)
• confls := conf× L

• Step relation:

(c,L)
a→ (c′,eff (a,L)) iff cond(a,L) ∧ c a→ c′

151 / 161

Semantics

• As for 2-PDS: Add set of locks
• Recall: conf ::= 〈pw〉(conflist) conflist ::= Nil|Cons(conf, conflist)

• confls := conf× L
• Step relation:

(c,L)
a→ (c′,eff (a,L)) iff cond(a,L) ∧ c a→ c′

151 / 161

Semantics

• As for 2-PDS: Add set of locks
• Recall: conf ::= 〈pw〉(conflist) conflist ::= Nil|Cons(conf, conflist)
• confls := conf× L

• Step relation:

(c,L)
a→ (c′,eff (a,L)) iff cond(a,L) ∧ c a→ c′

151 / 161

Semantics

• As for 2-PDS: Add set of locks
• Recall: conf ::= 〈pw〉(conflist) conflist ::= Nil|Cons(conf, conflist)
• confls := conf× L

• Step relation:

(c,L)
a→ (c′,eff (a,L)) iff cond(a,L) ∧ c a→ c′

151 / 161

Lock-Sensitive Scheduling
• Abstract from DPN-configurations

• Scheduling tree:

BL ::= Nil | Cons(a,BL) | Spawn(a,BL,BL) for all a ∈ Act
ST ::= 〈BL〉(SL) SL ::= Nil | Cons(ST ,SL)

• Combination of configurations and sequences of actions to be executed
• Each thread in configuration is labeled by actions it still has to execute
• Spawn actions have two successors: Actions of spawning thread and

actions of spawned thread

• Scheduler semantics
(C[〈Cons(a, l)〉(s)], L)

a→ (C[〈l〉(s)], eff (a, L)) iff cond(a, L) (no-spawn)

(C[〈Spawn(a, l1, l2)〉(s)], L)
a→ (C[〈l1〉(s[〈l2〉(Nil)])], eff (a, L)) iff cond(a, L) (spawn)

where C is a context with exactly one occurrence of x1.

• Terminated scheduling tree: All steps are executed, i.e., all nodes labeled
with Nil

STterm ::= 〈Nil〉(SLterm) SLterm ::= Nil | Cons(STterm,SLterm)

152 / 161

Lock-Sensitive Scheduling
• Abstract from DPN-configurations
• Scheduling tree:

BL ::= Nil | Cons(a,BL) | Spawn(a,BL,BL) for all a ∈ Act
ST ::= 〈BL〉(SL) SL ::= Nil | Cons(ST ,SL)

• Combination of configurations and sequences of actions to be executed
• Each thread in configuration is labeled by actions it still has to execute
• Spawn actions have two successors: Actions of spawning thread and

actions of spawned thread
• Scheduler semantics

(C[〈Cons(a, l)〉(s)], L)
a→ (C[〈l〉(s)], eff (a, L)) iff cond(a, L) (no-spawn)

(C[〈Spawn(a, l1, l2)〉(s)], L)
a→ (C[〈l1〉(s[〈l2〉(Nil)])], eff (a, L)) iff cond(a, L) (spawn)

where C is a context with exactly one occurrence of x1.

• Terminated scheduling tree: All steps are executed, i.e., all nodes labeled
with Nil

STterm ::= 〈Nil〉(SLterm) SLterm ::= Nil | Cons(STterm,SLterm)

152 / 161

Lock-Sensitive Scheduling
• Abstract from DPN-configurations
• Scheduling tree:

BL ::= Nil | Cons(a,BL) | Spawn(a,BL,BL) for all a ∈ Act
ST ::= 〈BL〉(SL) SL ::= Nil | Cons(ST ,SL)

• Combination of configurations and sequences of actions to be executed

• Each thread in configuration is labeled by actions it still has to execute
• Spawn actions have two successors: Actions of spawning thread and

actions of spawned thread
• Scheduler semantics

(C[〈Cons(a, l)〉(s)], L)
a→ (C[〈l〉(s)], eff (a, L)) iff cond(a, L) (no-spawn)

(C[〈Spawn(a, l1, l2)〉(s)], L)
a→ (C[〈l1〉(s[〈l2〉(Nil)])], eff (a, L)) iff cond(a, L) (spawn)

where C is a context with exactly one occurrence of x1.

• Terminated scheduling tree: All steps are executed, i.e., all nodes labeled
with Nil

STterm ::= 〈Nil〉(SLterm) SLterm ::= Nil | Cons(STterm,SLterm)

152 / 161

Lock-Sensitive Scheduling
• Abstract from DPN-configurations
• Scheduling tree:

BL ::= Nil | Cons(a,BL) | Spawn(a,BL,BL) for all a ∈ Act
ST ::= 〈BL〉(SL) SL ::= Nil | Cons(ST ,SL)

• Combination of configurations and sequences of actions to be executed
• Each thread in configuration is labeled by actions it still has to execute

• Spawn actions have two successors: Actions of spawning thread and
actions of spawned thread

• Scheduler semantics
(C[〈Cons(a, l)〉(s)], L)

a→ (C[〈l〉(s)], eff (a, L)) iff cond(a, L) (no-spawn)

(C[〈Spawn(a, l1, l2)〉(s)], L)
a→ (C[〈l1〉(s[〈l2〉(Nil)])], eff (a, L)) iff cond(a, L) (spawn)

where C is a context with exactly one occurrence of x1.

• Terminated scheduling tree: All steps are executed, i.e., all nodes labeled
with Nil

STterm ::= 〈Nil〉(SLterm) SLterm ::= Nil | Cons(STterm,SLterm)

152 / 161

Lock-Sensitive Scheduling
• Abstract from DPN-configurations
• Scheduling tree:

BL ::= Nil | Cons(a,BL) | Spawn(a,BL,BL) for all a ∈ Act
ST ::= 〈BL〉(SL) SL ::= Nil | Cons(ST ,SL)

• Combination of configurations and sequences of actions to be executed
• Each thread in configuration is labeled by actions it still has to execute
• Spawn actions have two successors: Actions of spawning thread and

actions of spawned thread

• Scheduler semantics
(C[〈Cons(a, l)〉(s)], L)

a→ (C[〈l〉(s)], eff (a, L)) iff cond(a, L) (no-spawn)

(C[〈Spawn(a, l1, l2)〉(s)], L)
a→ (C[〈l1〉(s[〈l2〉(Nil)])], eff (a, L)) iff cond(a, L) (spawn)

where C is a context with exactly one occurrence of x1.

• Terminated scheduling tree: All steps are executed, i.e., all nodes labeled
with Nil

STterm ::= 〈Nil〉(SLterm) SLterm ::= Nil | Cons(STterm,SLterm)

152 / 161

Lock-Sensitive Scheduling
• Abstract from DPN-configurations
• Scheduling tree:

BL ::= Nil | Cons(a,BL) | Spawn(a,BL,BL) for all a ∈ Act
ST ::= 〈BL〉(SL) SL ::= Nil | Cons(ST ,SL)

• Combination of configurations and sequences of actions to be executed
• Each thread in configuration is labeled by actions it still has to execute
• Spawn actions have two successors: Actions of spawning thread and

actions of spawned thread
• Scheduler semantics

(C[〈Cons(a, l)〉(s)], L)
a→ (C[〈l〉(s)], eff (a, L)) iff cond(a, L) (no-spawn)

(C[〈Spawn(a, l1, l2)〉(s)], L)
a→ (C[〈l1〉(s[〈l2〉(Nil)])], eff (a, L)) iff cond(a, L) (spawn)

where C is a context with exactly one occurrence of x1.

• Terminated scheduling tree: All steps are executed, i.e., all nodes labeled
with Nil

STterm ::= 〈Nil〉(SLterm) SLterm ::= Nil | Cons(STterm,SLterm)

152 / 161

Lock-Sensitive Scheduling
• Abstract from DPN-configurations
• Scheduling tree:

BL ::= Nil | Cons(a,BL) | Spawn(a,BL,BL) for all a ∈ Act
ST ::= 〈BL〉(SL) SL ::= Nil | Cons(ST ,SL)

• Combination of configurations and sequences of actions to be executed
• Each thread in configuration is labeled by actions it still has to execute
• Spawn actions have two successors: Actions of spawning thread and

actions of spawned thread
• Scheduler semantics

(C[〈Cons(a, l)〉(s)], L)
a→ (C[〈l〉(s)], eff (a, L)) iff cond(a, L) (no-spawn)

(C[〈Spawn(a, l1, l2)〉(s)], L)
a→ (C[〈l1〉(s[〈l2〉(Nil)])], eff (a, L)) iff cond(a, L) (spawn)

where C is a context with exactly one occurrence of x1.

• Terminated scheduling tree: All steps are executed, i.e., all nodes labeled
with Nil

STterm ::= 〈Nil〉(SLterm) SLterm ::= Nil | Cons(STterm,SLterm)

152 / 161

Operations on Branching Lists
• Generalized concatenation

(Nil)l ′ := l ′

Cons(a, l)l ′ := Cons(a, ll ′)
Spawn(a, l1, l2)l ′ := Spawn(a, l1l ′, l2)

• This thread’s steps: this : BL→ Act∗

this(Nil) := Nil
this(Cons(a, l)) := Cons(a, this(l))

this(Spawn(a, l1, l2)) = Cons(a, this(l1))

• Set of steps

x ∈ Nil := false
x ∈ Cons(a, l) := x = a ∨ x ∈ l

x ∈ Spawn(a, l1, l2) := x = a ∨ x ∈ l1 ∨ x ∈ l2

153 / 161

Operations on Branching Lists
• Generalized concatenation

(Nil)l ′ := l ′

Cons(a, l)l ′ := Cons(a, ll ′)
Spawn(a, l1, l2)l ′ := Spawn(a, l1l ′, l2)

• This thread’s steps: this : BL→ Act∗

this(Nil) := Nil
this(Cons(a, l)) := Cons(a, this(l))

this(Spawn(a, l1, l2)) = Cons(a, this(l1))

• Set of steps

x ∈ Nil := false
x ∈ Cons(a, l) := x = a ∨ x ∈ l

x ∈ Spawn(a, l1, l2) := x = a ∨ x ∈ l1 ∨ x ∈ l2

153 / 161

Operations on Branching Lists
• Generalized concatenation

(Nil)l ′ := l ′

Cons(a, l)l ′ := Cons(a, ll ′)
Spawn(a, l1, l2)l ′ := Spawn(a, l1l ′, l2)

• This thread’s steps: this : BL→ Act∗

this(Nil) := Nil
this(Cons(a, l)) := Cons(a, this(l))

this(Spawn(a, l1, l2)) = Cons(a, this(l1))

• Set of steps

x ∈ Nil := false
x ∈ Cons(a, l) := x = a ∨ x ∈ l

x ∈ Spawn(a, l1, l2) := x = a ∨ x ∈ l1 ∨ x ∈ l2

153 / 161

Relation of execution tree and scheduling tree
• Execution trees correspond to scheduling trees: st : XN → ST and

st ′ : XN → BL where

st(t) := 〈st ′(t)〉(Nil)

st ′(〈pγ a
↪→ p′γ′〉(t)) := Cons(a, st ′(t))

st ′(〈pγ a
↪→ p1γ1 � p2γ2〉(t1, t2)) := Spawn(a, st ′(t1), st ′(t2))

st ′(〈pγ a
↪→ p′γ1γ2〉N(t)) := Cons(a, st ′(t))

st ′(〈pγ a
↪→ p′γ1γ2〉R(t1, t2)) := [a]st ′(t1)st ′(t2)

st ′(〈pγ〉) := Nil

st ′(〈pγ a
↪→ p′〉) := Cons(a,Nil)

• It can be proved

(〈p0γ0〉(ε), ∅) l→∗ (c′,L)

⇐⇒ ∃t ∈ XN. ∃t ′ ∈ STterm. t ∈ L(AM)∧c(t) = c′∧(st(t), ∅) l→∗ (t ′,L)

• Note: This proof requires a generalization from a single-thread start
configuration to arbitrary start configurations.

154 / 161

Relation of execution tree and scheduling tree
• Execution trees correspond to scheduling trees: st : XN → ST and

st ′ : XN → BL where

st(t) := 〈st ′(t)〉(Nil)

st ′(〈pγ a
↪→ p′γ′〉(t)) := Cons(a, st ′(t))

st ′(〈pγ a
↪→ p1γ1 � p2γ2〉(t1, t2)) := Spawn(a, st ′(t1), st ′(t2))

st ′(〈pγ a
↪→ p′γ1γ2〉N(t)) := Cons(a, st ′(t))

st ′(〈pγ a
↪→ p′γ1γ2〉R(t1, t2)) := [a]st ′(t1)st ′(t2)

st ′(〈pγ〉) := Nil

st ′(〈pγ a
↪→ p′〉) := Cons(a,Nil)

• It can be proved

(〈p0γ0〉(ε), ∅) l→∗ (c′,L)

⇐⇒ ∃t ∈ XN. ∃t ′ ∈ STterm. t ∈ L(AM)∧c(t) = c′∧(st(t), ∅) l→∗ (t ′,L)

• Note: This proof requires a generalization from a single-thread start
configuration to arbitrary start configurations.

154 / 161

Relation of execution tree and scheduling tree
• Execution trees correspond to scheduling trees: st : XN → ST and

st ′ : XN → BL where

st(t) := 〈st ′(t)〉(Nil)

st ′(〈pγ a
↪→ p′γ′〉(t)) := Cons(a, st ′(t))

st ′(〈pγ a
↪→ p1γ1 � p2γ2〉(t1, t2)) := Spawn(a, st ′(t1), st ′(t2))

st ′(〈pγ a
↪→ p′γ1γ2〉N(t)) := Cons(a, st ′(t))

st ′(〈pγ a
↪→ p′γ1γ2〉R(t1, t2)) := [a]st ′(t1)st ′(t2)

st ′(〈pγ〉) := Nil

st ′(〈pγ a
↪→ p′〉) := Cons(a,Nil)

• It can be proved

(〈p0γ0〉(ε), ∅) l→∗ (c′,L)

⇐⇒ ∃t ∈ XN. ∃t ′ ∈ STterm. t ∈ L(AM)∧c(t) = c′∧(st(t), ∅) l→∗ (t ′,L)

• Note: This proof requires a generalization from a single-thread start
configuration to arbitrary start configurations. 154 / 161

Acquisition Histories for Scheduling Trees
• Assumption: Acquisition and release only on base rules

• Compute set of final acquisitions

A(Nil) = ∅
A(Spawn(a, l1, l2)) = A(l1) ∪ A(l2)

A(Cons(a, l)) = A(l) if a ∈ Actnl or a =]x for x ∈ L
A(Cons([x , l)) = A(l) if]x ∈ this(l)
A(Cons([x , l)) = A(l) ∪ {x} if]x /∈ this(l)

• Check consistency of final acquisitions

fac(Nil) = true fac(Cons(a, l)) = fac(l) fac(Spawn(a, l1, l2)) = fac(l1) ∧ fac(l2) ∧ A(l1) ∩ A(l2) = ∅
• Compute acquisition graph

G(Nil) = ∅
G(Spawn(a, l1, l2)) = G(l1) ∪G(l2)

G(Cons(a, l)) = G(l) if a ∈ Actnl or a =]x for x ∈ L
G(Cons([x , l)) = G(l) if]x ∈ this(l)
G(Cons([x , l)) = G(l) ∪ {x} × acq(l) if]x /∈ this(l)

where acq(l) := {x | [x ∈ l}

155 / 161

Acquisition Histories for Scheduling Trees
• Assumption: Acquisition and release only on base rules
• Compute set of final acquisitions

A(Nil) = ∅
A(Spawn(a, l1, l2)) = A(l1) ∪ A(l2)

A(Cons(a, l)) = A(l) if a ∈ Actnl or a =]x for x ∈ L
A(Cons([x , l)) = A(l) if]x ∈ this(l)
A(Cons([x , l)) = A(l) ∪ {x} if]x /∈ this(l)

• Check consistency of final acquisitions

fac(Nil) = true fac(Cons(a, l)) = fac(l) fac(Spawn(a, l1, l2)) = fac(l1) ∧ fac(l2) ∧ A(l1) ∩ A(l2) = ∅
• Compute acquisition graph

G(Nil) = ∅
G(Spawn(a, l1, l2)) = G(l1) ∪G(l2)

G(Cons(a, l)) = G(l) if a ∈ Actnl or a =]x for x ∈ L
G(Cons([x , l)) = G(l) if]x ∈ this(l)
G(Cons([x , l)) = G(l) ∪ {x} × acq(l) if]x /∈ this(l)

where acq(l) := {x | [x ∈ l}

155 / 161

Acquisition Histories for Scheduling Trees
• Assumption: Acquisition and release only on base rules
• Compute set of final acquisitions

A(Nil) = ∅
A(Spawn(a, l1, l2)) = A(l1) ∪ A(l2)

A(Cons(a, l)) = A(l) if a ∈ Actnl or a =]x for x ∈ L
A(Cons([x , l)) = A(l) if]x ∈ this(l)
A(Cons([x , l)) = A(l) ∪ {x} if]x /∈ this(l)

• Check consistency of final acquisitions

fac(Nil) = true fac(Cons(a, l)) = fac(l) fac(Spawn(a, l1, l2)) = fac(l1) ∧ fac(l2) ∧ A(l1) ∩ A(l2) = ∅

• Compute acquisition graph

G(Nil) = ∅
G(Spawn(a, l1, l2)) = G(l1) ∪G(l2)

G(Cons(a, l)) = G(l) if a ∈ Actnl or a =]x for x ∈ L
G(Cons([x , l)) = G(l) if]x ∈ this(l)
G(Cons([x , l)) = G(l) ∪ {x} × acq(l) if]x /∈ this(l)

where acq(l) := {x | [x ∈ l}

155 / 161

Acquisition Histories for Scheduling Trees
• Assumption: Acquisition and release only on base rules
• Compute set of final acquisitions

A(Nil) = ∅
A(Spawn(a, l1, l2)) = A(l1) ∪ A(l2)

A(Cons(a, l)) = A(l) if a ∈ Actnl or a =]x for x ∈ L
A(Cons([x , l)) = A(l) if]x ∈ this(l)
A(Cons([x , l)) = A(l) ∪ {x} if]x /∈ this(l)

• Check consistency of final acquisitions

fac(Nil) = true fac(Cons(a, l)) = fac(l) fac(Spawn(a, l1, l2)) = fac(l1) ∧ fac(l2) ∧ A(l1) ∩ A(l2) = ∅
• Compute acquisition graph

G(Nil) = ∅
G(Spawn(a, l1, l2)) = G(l1) ∪G(l2)

G(Cons(a, l)) = G(l) if a ∈ Actnl or a =]x for x ∈ L
G(Cons([x , l)) = G(l) if]x ∈ this(l)
G(Cons([x , l)) = G(l) ∪ {x} × acq(l) if]x /∈ this(l)

where acq(l) := {x | [x ∈ l} 155 / 161

Acquisition Graphs characterize Schedulability

• For scheduling tree 〈bl〉(Nil) ∈ ST and labeling sequence l ∈ Act∗, we
have

∃t ′.(〈bl〉(Nil), ∅) l→∗ (t ′,L) ∧ t ′ ∈ STterm ⇐⇒ acyclic(G(bl)) ∧ fac(bl)

• Proof Ideas:

• =⇒

• G(t) expresses constraints due to locking, that any schedule has to follow
• Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling

trees, induction on scheduling tree.

• ⇐=

• Scheduling strategy: Schedule usages first. Final acquisitions in topological
ordering of acquisition graph

• Formally: Generalize to initial set of locks disjoint from locks that occur in
scheduling tree. Generalize to arbitrary scheduling tree. Induction on scheduling
tree.

156 / 161

Acquisition Graphs characterize Schedulability

• For scheduling tree 〈bl〉(Nil) ∈ ST and labeling sequence l ∈ Act∗, we
have

∃t ′.(〈bl〉(Nil), ∅) l→∗ (t ′,L) ∧ t ′ ∈ STterm ⇐⇒ acyclic(G(bl)) ∧ fac(bl)

• Proof Ideas:

• =⇒

• G(t) expresses constraints due to locking, that any schedule has to follow
• Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling

trees, induction on scheduling tree.

• ⇐=

• Scheduling strategy: Schedule usages first. Final acquisitions in topological
ordering of acquisition graph

• Formally: Generalize to initial set of locks disjoint from locks that occur in
scheduling tree. Generalize to arbitrary scheduling tree. Induction on scheduling
tree.

156 / 161

Acquisition Graphs characterize Schedulability

• For scheduling tree 〈bl〉(Nil) ∈ ST and labeling sequence l ∈ Act∗, we
have

∃t ′.(〈bl〉(Nil), ∅) l→∗ (t ′,L) ∧ t ′ ∈ STterm ⇐⇒ acyclic(G(bl)) ∧ fac(bl)

• Proof Ideas:
• =⇒

• G(t) expresses constraints due to locking, that any schedule has to follow
• Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling

trees, induction on scheduling tree.
• ⇐=

• Scheduling strategy: Schedule usages first. Final acquisitions in topological
ordering of acquisition graph

• Formally: Generalize to initial set of locks disjoint from locks that occur in
scheduling tree. Generalize to arbitrary scheduling tree. Induction on scheduling
tree.

156 / 161

Acquisition Graphs characterize Schedulability

• For scheduling tree 〈bl〉(Nil) ∈ ST and labeling sequence l ∈ Act∗, we
have

∃t ′.(〈bl〉(Nil), ∅) l→∗ (t ′,L) ∧ t ′ ∈ STterm ⇐⇒ acyclic(G(bl)) ∧ fac(bl)

• Proof Ideas:
• =⇒

• G(t) expresses constraints due to locking, that any schedule has to follow

• Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling
trees, induction on scheduling tree.

• ⇐=

• Scheduling strategy: Schedule usages first. Final acquisitions in topological
ordering of acquisition graph

• Formally: Generalize to initial set of locks disjoint from locks that occur in
scheduling tree. Generalize to arbitrary scheduling tree. Induction on scheduling
tree.

156 / 161

Acquisition Graphs characterize Schedulability

• For scheduling tree 〈bl〉(Nil) ∈ ST and labeling sequence l ∈ Act∗, we
have

∃t ′.(〈bl〉(Nil), ∅) l→∗ (t ′,L) ∧ t ′ ∈ STterm ⇐⇒ acyclic(G(bl)) ∧ fac(bl)

• Proof Ideas:
• =⇒

• G(t) expresses constraints due to locking, that any schedule has to follow
• Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling

trees, induction on scheduling tree.

• ⇐=

• Scheduling strategy: Schedule usages first. Final acquisitions in topological
ordering of acquisition graph

• Formally: Generalize to initial set of locks disjoint from locks that occur in
scheduling tree. Generalize to arbitrary scheduling tree. Induction on scheduling
tree.

156 / 161

Acquisition Graphs characterize Schedulability

• For scheduling tree 〈bl〉(Nil) ∈ ST and labeling sequence l ∈ Act∗, we
have

∃t ′.(〈bl〉(Nil), ∅) l→∗ (t ′,L) ∧ t ′ ∈ STterm ⇐⇒ acyclic(G(bl)) ∧ fac(bl)

• Proof Ideas:
• =⇒

• G(t) expresses constraints due to locking, that any schedule has to follow
• Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling

trees, induction on scheduling tree.
• ⇐=

• Scheduling strategy: Schedule usages first. Final acquisitions in topological
ordering of acquisition graph

• Formally: Generalize to initial set of locks disjoint from locks that occur in
scheduling tree. Generalize to arbitrary scheduling tree. Induction on scheduling
tree.

156 / 161

Acquisition Graphs characterize Schedulability

• For scheduling tree 〈bl〉(Nil) ∈ ST and labeling sequence l ∈ Act∗, we
have

∃t ′.(〈bl〉(Nil), ∅) l→∗ (t ′,L) ∧ t ′ ∈ STterm ⇐⇒ acyclic(G(bl)) ∧ fac(bl)

• Proof Ideas:
• =⇒

• G(t) expresses constraints due to locking, that any schedule has to follow
• Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling

trees, induction on scheduling tree.
• ⇐=

• Scheduling strategy: Schedule usages first. Final acquisitions in topological
ordering of acquisition graph

• Formally: Generalize to initial set of locks disjoint from locks that occur in
scheduling tree. Generalize to arbitrary scheduling tree. Induction on scheduling
tree.

156 / 161

Acquisition Graphs characterize Schedulability

• For scheduling tree 〈bl〉(Nil) ∈ ST and labeling sequence l ∈ Act∗, we
have

∃t ′.(〈bl〉(Nil), ∅) l→∗ (t ′,L) ∧ t ′ ∈ STterm ⇐⇒ acyclic(G(bl)) ∧ fac(bl)

• Proof Ideas:
• =⇒

• G(t) expresses constraints due to locking, that any schedule has to follow
• Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling

trees, induction on scheduling tree.
• ⇐=

• Scheduling strategy: Schedule usages first. Final acquisitions in topological
ordering of acquisition graph

• Formally: Generalize to initial set of locks disjoint from locks that occur in
scheduling tree. Generalize to arbitrary scheduling tree. Induction on scheduling
tree.

156 / 161

Set of schedulable execution trees is regular

• Schedulable scheduling trees are regular (compute acquisition graphs by
tree automata)

• st−1 preserves regularity: Just another tree transducer construction
• Thus, we can decide lock-sensitive reachability of a regular set of

configurations of a DPN.

157 / 161

Set of schedulable execution trees is regular

• Schedulable scheduling trees are regular (compute acquisition graphs by
tree automata)

• st−1 preserves regularity: Just another tree transducer construction

• Thus, we can decide lock-sensitive reachability of a regular set of
configurations of a DPN.

157 / 161

Set of schedulable execution trees is regular

• Schedulable scheduling trees are regular (compute acquisition graphs by
tree automata)

• st−1 preserves regularity: Just another tree transducer construction
• Thus, we can decide lock-sensitive reachability of a regular set of

configurations of a DPN.

157 / 161

Remark on complexity

• The lock-sensitive reachability problem is in NP:

• For a sequential run, only polynomially many acquisition graphs/final
acquisition sets occur

• So, for 2-PDS, we can guess these in advance
• For DPN: There may be exponentially many acquisition graphs!

• However, not for schedulable runs
• Problem remaining: There may be exponentially many sets of used locks
• Solution: Only check that certain locks are not used

• Set of used locks only required at final acquisition.
• Just check that less locks are used afterwards
• Accepts executions with the guess acquisition graph, or with smaller ones

158 / 161

Remark on complexity

• The lock-sensitive reachability problem is in NP:
• For a sequential run, only polynomially many acquisition graphs/final

acquisition sets occur

• So, for 2-PDS, we can guess these in advance
• For DPN: There may be exponentially many acquisition graphs!

• However, not for schedulable runs
• Problem remaining: There may be exponentially many sets of used locks
• Solution: Only check that certain locks are not used

• Set of used locks only required at final acquisition.
• Just check that less locks are used afterwards
• Accepts executions with the guess acquisition graph, or with smaller ones

158 / 161

Remark on complexity

• The lock-sensitive reachability problem is in NP:
• For a sequential run, only polynomially many acquisition graphs/final

acquisition sets occur
• So, for 2-PDS, we can guess these in advance

• For DPN: There may be exponentially many acquisition graphs!

• However, not for schedulable runs
• Problem remaining: There may be exponentially many sets of used locks
• Solution: Only check that certain locks are not used

• Set of used locks only required at final acquisition.
• Just check that less locks are used afterwards
• Accepts executions with the guess acquisition graph, or with smaller ones

158 / 161

Remark on complexity

• The lock-sensitive reachability problem is in NP:
• For a sequential run, only polynomially many acquisition graphs/final

acquisition sets occur
• So, for 2-PDS, we can guess these in advance

• For DPN: There may be exponentially many acquisition graphs!

• However, not for schedulable runs
• Problem remaining: There may be exponentially many sets of used locks
• Solution: Only check that certain locks are not used

• Set of used locks only required at final acquisition.
• Just check that less locks are used afterwards
• Accepts executions with the guess acquisition graph, or with smaller ones

158 / 161

Remark on complexity

• The lock-sensitive reachability problem is in NP:
• For a sequential run, only polynomially many acquisition graphs/final

acquisition sets occur
• So, for 2-PDS, we can guess these in advance

• For DPN: There may be exponentially many acquisition graphs!
• However, not for schedulable runs

• Problem remaining: There may be exponentially many sets of used locks
• Solution: Only check that certain locks are not used

• Set of used locks only required at final acquisition.
• Just check that less locks are used afterwards
• Accepts executions with the guess acquisition graph, or with smaller ones

158 / 161

Remark on complexity

• The lock-sensitive reachability problem is in NP:
• For a sequential run, only polynomially many acquisition graphs/final

acquisition sets occur
• So, for 2-PDS, we can guess these in advance

• For DPN: There may be exponentially many acquisition graphs!
• However, not for schedulable runs
• Problem remaining: There may be exponentially many sets of used locks

• Solution: Only check that certain locks are not used

• Set of used locks only required at final acquisition.
• Just check that less locks are used afterwards
• Accepts executions with the guess acquisition graph, or with smaller ones

158 / 161

Remark on complexity

• The lock-sensitive reachability problem is in NP:
• For a sequential run, only polynomially many acquisition graphs/final

acquisition sets occur
• So, for 2-PDS, we can guess these in advance

• For DPN: There may be exponentially many acquisition graphs!
• However, not for schedulable runs
• Problem remaining: There may be exponentially many sets of used locks
• Solution: Only check that certain locks are not used

• Set of used locks only required at final acquisition.
• Just check that less locks are used afterwards
• Accepts executions with the guess acquisition graph, or with smaller ones

158 / 161

Remark on complexity

• The lock-sensitive reachability problem is in NP:
• For a sequential run, only polynomially many acquisition graphs/final

acquisition sets occur
• So, for 2-PDS, we can guess these in advance

• For DPN: There may be exponentially many acquisition graphs!
• However, not for schedulable runs
• Problem remaining: There may be exponentially many sets of used locks
• Solution: Only check that certain locks are not used

• Set of used locks only required at final acquisition.

• Just check that less locks are used afterwards
• Accepts executions with the guess acquisition graph, or with smaller ones

158 / 161

Remark on complexity

• The lock-sensitive reachability problem is in NP:
• For a sequential run, only polynomially many acquisition graphs/final

acquisition sets occur
• So, for 2-PDS, we can guess these in advance

• For DPN: There may be exponentially many acquisition graphs!
• However, not for schedulable runs
• Problem remaining: There may be exponentially many sets of used locks
• Solution: Only check that certain locks are not used

• Set of used locks only required at final acquisition.
• Just check that less locks are used afterwards

• Accepts executions with the guess acquisition graph, or with smaller ones

158 / 161

Remark on complexity

• The lock-sensitive reachability problem is in NP:
• For a sequential run, only polynomially many acquisition graphs/final

acquisition sets occur
• So, for 2-PDS, we can guess these in advance

• For DPN: There may be exponentially many acquisition graphs!
• However, not for schedulable runs
• Problem remaining: There may be exponentially many sets of used locks
• Solution: Only check that certain locks are not used

• Set of used locks only required at final acquisition.
• Just check that less locks are used afterwards
• Accepts executions with the guess acquisition graph, or with smaller ones

158 / 161

Main Theorem

Lock-sensitive reachability of a regular set of configurations is NP-complete
for DPNs

159 / 161

Complexity of related problems

DPN PPDS 2PDS DFN PFSM nFSM
EF(p1 ‖ p2) NP∗? NP†? NP†? NP∗! P P
EF(A) NP NP NP†? NP NP P
EF(p1 ‖ p2 ∧ EF(p3 ‖ p4)) NP NP NP

:::
NP∗! P P

EF(A1 ∧ EF(A2)) NP NP NP NP NP P
EF\neg (fixed #ops)

:::
NP NP NP NP NP P

EF (fixed #ops) ≥ PSPACE‡ ≥NP P
EF\neg ≥ PSPACE‡reg? ≥ NP‡ P
EF ≥ PSPACE‡

::
P

∗ Requires spawn inside lock

∗! Polynomial algorithm if no spawn inside lock
∗? Complexity unknown if no spawn inside lock

†? Hardness proof requires deadlocks/escapable locks. Complexity without this unknown.

‡ Hardness result requires no locks

reg? Hardness requires regular APs. Complexity for double-indexed APs unknown (≥NP)

160 / 161

The End

Thank you for listening

161 / 161

	Introduction
	Basics
	Nondeterministic Finite Tree Automata
	Epsilon Rules
	Deterministic Finite Tree Automata
	Pumping Lemma
	Closure Properties
	Tree Homomorphisms
	Minimizing Tree Automata
	Top-Down Tree Automata

	Alternative Representations of Regular Languages
	Regular Tree Grammars
	Tree Regular Expressions

	Model-Checking concurrent Systems
	Motivation
	Pushdown Systems
	Dynamic Pushdown Networks
	Acquisition Histories
	Acquisition Histories for DPN

