Automata and Formal Languages Il
Tree Automata

Peter Lammich

SS 2015

1/161

Overview by Lecture

e Apr 14:Slide 3
Apr 21: Slide 2
Apr 28: Slide 4
May 5: Slide 50
May 12: Slide 56
May 19: Slide 64
May 26: Holiday
Jun 02: Slide 79
Jun 09: Slide 90
Jun 16: Slide 106
Jun 23: Slide 108
Jun 30: Slide 116
Jul 7: Slide 137
Jul 14: Slide 148

Organizational Issues

Lecture Tue 10:15 —11:45, in M1 00.09.38 (Turing)

3/161

http://tata.gforge.inria.fr/

Organizational Issues

Lecture Tue 10:15 — 11:45, in M1 00.09.38 (Turing)
Tutorial ? Wed 10:15 — 11:45, in MI 00.09.38 (Turing)

o Weekly homework, will be corrected. Hand in before
tutorial. Discussion during tutorial.

http://tata.gforge.inria.fr/

Organizational Issues

Lecture Tue 10:15 —11:45, in M1 00.09.38 (Turing)
Tutorial ? Wed 10:15 — 11:45, in MI 00.09.38 (Turing)
o Weekly homework, will be corrected. Hand in before
tutorial. Discussion during tutorial.
Exam Oral, Bonus for Homework!

e > 50% of homework — 0.3/0.4 better grade
On first exam attempt. Only if passed w/o bonus!

http://tata.gforge.inria.fr/

Organizational Issues

Lecture Tue 10:15 —11:45, in M1 00.09.38 (Turing)
Tutorial ? Wed 10:15 — 11:45, in MI 00.09.38 (Turing)
o Weekly homework, will be corrected. Hand in before
tutorial. Discussion during tutorial.
Exam Oral, Bonus for Homework!
e > 50% of homework — 0.3/0.4 better grade
On first exam attempt. Only if passed w/o bonus!
Material Tree Automata: Techniques and Applications (TATA)
e Free download at http://tata.gforge.inria.fr/

http://tata.gforge.inria.fr/

Organizational Issues

Lecture Tue 10:15 — 11:45, in M1 00.09.38 (Turing)
Tutorial ? Wed 10:15 — 11:45, in MI 00.09.38 (Turing)

o Weekly homework, will be corrected. Hand in before
tutorial. Discussion during tutorial.

Exam Oral, Bonus for Homework!

e > 50% of homework — 0.3/0.4 better grade
On first exam attempt. Only if passed w/o bonus!

Material Tree Automata: Techniques and Applications (TATA)
e Free download at http://tata.gforge.inria.fr/

Conflict with Equational Logic.

http://tata.gforge.inria.fr/

Proposed Content

¢ Finite tree automata: Basic theory (TATA Ch. 1)
e Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...

Proposed Content

¢ Finite tree automata: Basic theory (TATA Ch. 1)
e Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...

e Regular tree grammars and regular expressions (TATA Ch. 2)

Proposed Content

¢ Finite tree automata: Basic theory (TATA Ch. 1)
e Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...

e Regular tree grammars and regular expressions (TATA Ch. 2)
e Hedge Automata (TATA Ch. 8)
e Application: XML-Schema languages

Proposed Content

¢ Finite tree automata: Basic theory (TATA Ch. 1)
e Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...
Regular tree grammars and regular expressions (TATA Ch. 2)
Hedge Automata (TATA Ch. 8)
e Application: XML-Schema languages
e Application: Analysis of Concurrent Programs
e Dynamic Pushdown Networks (DPN)

Table of Contents

@ Introduction

5/161

Tree Automata

e Finite automata recognize words, e.g.:

& 0w

6/161

Tree Automata

e Finite automata recognize words, e.g.:

Go — a(gr) gr — b(qo)

6/161

Tree Automata

e Finite automata recognize words, e.g.:

& 0w

Go — a(gr) gr — b(qo)

e Words of alternating as and bs, ending with a, e.g., aba or abababa

Tree Automata

e Finite automata recognize words, e.g.:

& 0w

Go — a(gr) gr — b(qo)

e Words of alternating as and bs, ending with a, e.g., aba or abababa
e Generalize to trees

Qo — a(aqi, q1) g1 — b(qo, Q) g — L()

Tree Automata

e Finite automata recognize words, e.g.:

& 0w

Go — a(gr) gr — b(qo)

e Words of alternating as and bs, ending with a, e.g., aba or abababa
e Generalize to trees

Qo — a(aqi, q1) g1 — b(qo, Q) g — L()

o Trees with alternating ,layers” of a nodes and b nodes.

Tree Automata

e Finite automata recognize words, e.g.:

& 0w

Go — a(gr) gr — b(qo)

e Words of alternating as and bs, ending with a, e.g., aba or abababa
e Generalize to trees

Qo — a(aqi, q1) g1 — b(qo, Q) g — L()

o Trees with alternating ,layers” of a nodes and b nodes.
e Leafs are L-nodes, as node labels will have fixed arity.

Tree Automata

e Finite automata recognize words, e.g.:

& 0w

Go — a(gr) gr — b(qo)

e Words of alternating as and bs, ending with a, e.g., aba or abababa
e Generalize to trees

Qo — a(aqi, q1) g1 — b(qo, Q) g — L()

o Trees with alternating ,layers” of a nodes and b nodes.
e Leafs are L-nodes, as node labels will have fixed arity.

/N
b b
I\ I\
aaaa
NN

LLLLLLLL

Tree Automata

e Finite automata recognize words, e.g.:

& 0w

Go — a(gr) gr — b(qo)

e Words of alternating as and bs, ending with a, e.g., aba or abababa
e Generalize to trees

Qo — a(aqi, q1) g1 — b(qo, Q) g — L()

o Trees with alternating ,layers” of a nodes and b nodes.
e Leafs are L-nodes, as node labels will have fixed arity.

a a

/N VN
b b b L
I I\
aaaa aa
nononn non

LLLLLLLL LLLL

Tree Automata

e Finite automata recognize words, e.g.:

& 0w

Go — a(gr) gr — b(qo)

e Words of alternating as and bs, ending with a, e.g., aba or abababa
e Generalize to trees

Qo — a(aqi, q1) g1 — b(qo, Q) g — L()

o Trees with alternating ,layers” of a nodes and b nodes.
e Leafs are L-nodes, as node labels will have fixed arity.

a a
/ N\ /7 \
/b\ /b\ /b\ L e We also write trees as terms
aasa asd o a(b(a(L, L), a(L, L)), b(a(L, L), a(L, L)))
LLLLLLLL LLLL e a(b(a(L,L),a(L, L)), L)

Properties

¢ Tree automata share many properties with word automata
o Efficient membership query, union, intersection, emptiness check, ...

Properties

¢ Tree automata share many properties with word automata

o Efficient membership query, union, intersection, emptiness check, ...
o Deterministic and non-deterministic versions equally expressive

Properties

¢ Tree automata share many properties with word automata

o Efficient membership query, union, intersection, emptiness check, ...
o Deterministic and non-deterministic versions equally expressive

e Only for deterministic bottom-up tree automata

Properties

¢ Tree automata share many properties with word automata

o Efficient membership query, union, intersection, emptiness check, ...
o Deterministic and non-deterministic versions equally expressive

e Only for deterministic bottom-up tree automata
e Minimization

Properties

¢ Tree automata share many properties with word automata

o Efficient membership query, union, intersection, emptiness check, ...
o Deterministic and non-deterministic versions equally expressive
e Only for deterministic bottom-up tree automata
e Minimization
o ...

Applications

e Tree automata recognize sets of trees

Applications

e Tree automata recognize sets of trees
e Many structures in computer science are trees

Applications

e Tree automata recognize sets of trees
e Many structures in computer science are trees
e XML documents

Applications

e Tree automata recognize sets of trees
e Many structures in computer science are trees

e XML documents
e Computations of parallel programs with fork/join

Applications

e Tree automata recognize sets of trees
e Many structures in computer science are trees

e XML documents
e Computations of parallel programs with fork/join
e Values of algebraic datatypes in functional languages

Applications

e Tree automata recognize sets of trees
e Many structures in computer science are trees

XML documents
Computations of parallel programs with fork/join
Values of algebraic datatypes in functional languages

Applications

e Tree automata recognize sets of trees
e Many structures in computer science are trees

e XML documents

e Computations of parallel programs with fork/join

e Values of algebraic datatypes in functional languages
e ...

e Tree automata can be used to

Applications

e Tree automata recognize sets of trees
e Many structures in computer science are trees

XML documents
Computations of parallel programs with fork/join
Values of algebraic datatypes in functional languages

e Tree automata can be used to
e Define XML schema languages

Applications

e Tree automata recognize sets of trees
e Many structures in computer science are trees

XML documents
Computations of parallel programs with fork/join
Values of algebraic datatypes in functional languages

e Tree automata can be used to

e Define XML schema languages
o Model-check parallel programs

Applications

e Tree automata recognize sets of trees
e Many structures in computer science are trees

XML documents
Computations of parallel programs with fork/join
Values of algebraic datatypes in functional languages

e Tree automata can be used to
e Define XML schema languages
o Model-check parallel programs
¢ Analyze functional programs

Applications

e Tree automata recognize sets of trees
e Many structures in computer science are trees

XML documents
Computations of parallel programs with fork/join
Values of algebraic datatypes in functional languages

e Tree automata can be used to
e Define XML schema languages
o Model-check parallel programs

¢ Analyze functional programs
o ...

Table of Contents

@ Basics

9/161

Table of Contents

@ Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

Terms and Trees

e Let F be afinite set of symbols, and arity : 7 — N a function.

Terms and Trees

e Let F be afinite set of symbols, and arity : 7 — N a function.
o (F,arity) is a ranked alphabet. We also identify F with (F, arity).

Terms and Trees

e Let F be afinite set of symbols, and arity : 7 — N a function.

o (F,arity) is a ranked alphabet. We also identify F with (F, arity).
o Fn:={f € F|arity(f) = n} is the set of symbols with arity n

Terms and Trees

e Let F be afinite set of symbols, and arity : 7 — N a function.
o (F,arity) is a ranked alphabet. We also identify F with (F, arity).
o F,:={f € F|arity(f) = n} is the set of symbols with arity n

e Let X be a set of variables. We assume X N Fy = 0.

Terms and Trees

e Let F be afinite set of symbols, and arity : 7 — N a function.

o (F,arity) is a ranked alphabet. We also identify F with (F, arity).
o Fn:={f € F| arity(f) = n} is the set of symbols with arity n

e Let X be a set of variables. We assume X N Fy = 0.

e Then the set T(F, X) of terms over alphabet F and variables X’ is
defined as the least solution of

p>1,feFp, andty,....lp e T(F,X) = f(t,...,t)) € T(F,X)

Terms and Trees

e Let F be afinite set of symbols, and arity : 7 — N a function.

o (F,arity) is a ranked alphabet. We also identify F with (F, arity).
o Fn:={f € F| arity(f) = n} is the set of symbols with arity n

e Let X be a set of variables. We assume X N Fy = 0.

e Then the set T(F, X) of terms over alphabet F and variables X’ is
defined as the least solution of

p>1,feFp, andty,....lp e T(F,X) = f(t,...,t)) € T(F,X)

o Intuitively: Terms over functions from F and variables from X.

Terms and Trees

e Let F be afinite set of symbols, and arity : 7 — N a function.

o (F,arity) is a ranked alphabet. We also identify F with (F, arity).
o Fn:={f € F| arity(f) = n} is the set of symbols with arity n

e Let X be a set of variables. We assume X N Fy = 0.

e Then the set T(F, X) of terms over alphabet F and variables X’ is
defined as the least solution of

p>1,feFp, andty,....lp e T(F,X) = f(t,...,t)) € T(F,X)

o Intuitively: Terms over functions from F and variables from X.
e Ground terms: T(F) := T(F,). Terms without variables.

Examples

e We also write a ranked alphabet as 7 = fi/ay, f/ao, ..

F={h,....H, (= a,....,fh— an)

., fn/an, meaning

Examples

e We also write a ranked alphabet as F = f;/ay, f/ao, . . ., f/as, meaning
F={hf,....,H}L (i —=ar,....fh— ap)
e F = true/0, false/0,and/2, not/1 - Syntax trees of boolean expressions

Examples

e We also write a ranked alphabet as F = f;/ay, f/ao, . . ., f/as, meaning
F={hf,....,H}L (i —=ar,....fh— ap)
e F = true/0, false/0,and/2, not/1 - Syntax trees of boolean expressions
e and(true, not(x)) € T(F,{x})

Examples

e We also write a ranked alphabet as F = f;/ay, f/ao, . . ., f/as, meaning
F={hf,....,H}L (i —=ar,....fh— ap)
e F = true/0, false/0,and/2, not/1 - Syntax trees of boolean expressions
e and(true, not(x)) € T(F,{x})
e F=0/0,Suc/1,+/2,x/2 - Arithmetic expressions over naturals (using
unary representation)

Examples

e We also write a ranked alphabet as F = f;/ay, f/ao, . . ., f/as, meaning
F={hf,....,H}L (i —=ar,....fh— ap)
e F = true/0, false/0,and/2, not/1 - Syntax trees of boolean expressions
e and(true, not(x)) € T(F,{x})
e F=0/0,Suc/1,+/2,x/2 - Arithmetic expressions over naturals (using
unary representation)
e Suc(0) + (Suc(Suc(0)) x x) € T(F,{x})

Examples

e We also write a ranked alphabet as F = f;/ay, f/ao, . . ., f/as, meaning
F={hf,....,H}L (i —=ar,....fh— ap)
e F = true/0, false/0,and/2, not/1 - Syntax trees of boolean expressions
e and(true, not(x)) € T(F,{x})
e F=0/0,Suc/1,+/2,x/2 - Arithmetic expressions over naturals (using
unary representation)
e Suc(0) + (Suc(Suc(0)) x x) € T(F,{x})
e We will use infix-notation for terms when appropriate

Trees

e Terms can be identified by trees: Nodes with p successors labeled with
symbol from Fp.

Trees

e Terms can be identified by trees: Nodes with p successors labeled with
symbol from Fp.

e and(true, not(x)) € T(F,{x})
and

/ \
true not
|
X

Trees

e Terms can be identified by trees: Nodes with p successors labeled with
symbol from Fp.

e and(true, not(x)) € T(F,{x})
and

/ \

true not
|
X

o Suc(0) + (Suc(Suc(0)) * x)

Suc *
| I\

0 Sucx
Suc

0

Tree Automata

¢ A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a
tuple A = (Q, F, Q, A) where

Tree Automata

¢ A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a
tuple A = (Q, F, Q, A) where
e Qis afinite set of states. QN Fy =0

Tree Automata
¢ A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a
tuple A = (Q, F, Q, A) where
e Qis afinite set of states. QN Fy =0
e Q; C Qis a set of final states

Tree Automata

¢ A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a
tuple A = (Q, F, Q, A) where
e Qis a finite set of states. QN Fy = 0
e Q C Qis a set of final states
e A is a set of rules of the form

f(qr,---,qn) = q
where f € Foand q,q1,...,gn € Q

Tree Automata

¢ A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a
tuple A = (Q, F, Q, A) where
e Qis a finite set of states. QN Fy = 0
e Q C Qis a set of final states
e A is a set of rules of the form

f(qr,---,qn) = q

where f € Foand q,q1,...,gn € Q
o Intuition: Use the rules from A to re-write a given tree to a final state

Tree Automata

¢ A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a
tuple A = (Q, F, Qf, A) where
e Qis a finite set of states. QN Fy = 0
e Q C Qis a set of final states
e A is a set of rules of the form

f(qr,---,qn) = q

where f € Foand q,q1,...,gn € Q
o Intuition: Use the rules from A to re-write a given tree to a final state

e Foratreet € T(F) and a state g, we define t — 4 g as the least relation
that satisfies

f(q17~-~,Qn)_>q€A7V1 SISn ti—>AQI — f(t17--~7tn)%Aq

Tree Automata

¢ A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a
tuple A = (Q, F, Qf, A) where
e Qis a finite set of states. QN Fy = 0
e Q C Qis a set of final states
e A is a set of rules of the form

f(qr,---,qn) = q

where f € Foand q,q1,...,gn € Q
o Intuition: Use the rules from A to re-write a given tree to a final state

e Foratreet € T(F) and a state g, we define t — 4 g as the least relation
that satisfies

f(q17~-~,Qn)_>q€A7V1 SISn ti—>AQI — f(t17--~7tn)%Aq

o { — 4 q: Tree tis accepted in state g

Tree Automata

¢ A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a
tuple A = (Q, F, Qf, A) where
e Qis a finite set of states. QN Fy = 0
e Q C Qis a set of final states
e A is a set of rules of the form

f(qr,---,qn) = q

where f € Foand q,q1,...,gn € Q
o Intuition: Use the rules from A to re-write a given tree to a final state

e Foratreet € T(F) and a state g, we define t — 4 g as the least relation
that satisfies

f(q17~-~,Qn)_>q€A7V1 SISn ti—>AQI — f(t17--~7tn)%Aq

o { — 4 q: Tree tis accepted in state g
e The language L(.A) of A are all trees accepted in final states

L(A) :={t|3ge Q.t—4Qq}

Example

¢ Tree automaton accepting arithmetic expressions that evaluate to even
numbers

F =0/0,Suc/1,+/2
Q:={e, 0} Q= {e}
0—e Suc(e) - o0 Suc(o) — e
e+te—e e+o0—o o+e—o0 o+o0—e

Example

¢ Tree automaton accepting arithmetic expressions that evaluate to even
numbers

F =0/0,Suc/1,+/2

Q:={e, 0} Q= {e}
0—e Suc(e) - o0 Suc(o) — e
e+te—e e+o0—o o+e—o0 o+o0—e

e Examples for runs on board
e Suc(Suc(0)) + Suc(0) + Suc(0)
e 0+ Suc(0)

Remark

e In TATA, a move-relation is defined. t 7 t rewrites a node in the tree
according to a rule.

Remark

e In TATA, a move-relation is defined. t 7 t rewrites a node in the tree

according to a rule.
¢ Another version even keeps track of the tree nodes, and just adds the

states as additional nodes of arity 1.

Remark

e In TATA, a move-relation is defined. t 7 t rewrites a node in the tree

according to a rule.
¢ Another version even keeps track of the tree nodes, and just adds the
states as additional nodes of arity 1.

e Examples on board

Table of Contents

@ Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

Epsilon rules
¢ As for word automata, we may add e-rules of the form

g—qgforq,qcQ

Epsilon rules
e As for word automata, we may add e-rules of the form
g—qgforq,qcQ

e The acceptance relation is extended accordingly

f(g1,...,qn) > g€ AV <i<n ti—aq = f(t,.

g—-qgelAt—a2q9 = t—=4q

..J,,)—)Aq

Epsilon rules
e As for word automata, we may add e-rules of the form
g—qgforq,qcQ

e The acceptance relation is extended accordingly

f(Qi,..,qn) > qeANVI<i<nt—4q = f(t,.

g—qelAt—2q = t—4q
o Example: (Non-empty) lists of natural numbers

0— g Suc(qn) = Gn
nil — q cons(gn, qi) — q;
a—q

..J,,)—)Aq

Epsilon rules
e As for word automata, we may add e-rules of the form
g—qgforq,qcQ

e The acceptance relation is extended accordingly

f(Qi,..,qn) > qeANVI<i<nt—4q = f(t,.

g—-qgelAt—a2q9 = t—=4q

o Example: (Non-empty) lists of natural numbers

0— g Suc(qn) = Gn
nil — q cons(gn, qi) — q;
a—q

o Last rule converts non-empty list (g;) to list (q))

..J,,)—)Aq

Epsilon rules
e As for word automata, we may add e-rules of the form
g—qforq,qd €Q
e The acceptance relation is extended accordingly

f(Qi,..sqn) = qeANVI<i<nt—4q = f(t,....ln) 24 q
g—-qgelAt—a2q9 = t—=4q

o Example: (Non-empty) lists of natural numbers

0— g Suc(qn) = Gn
nil — q cons(gn, qi) — q;
a—q

o Last rule converts non-empty list (g;) to list (q))
e On board: Accepting [], and [0, Suc(0)]

Equivalence of NFTAs with and without ¢ - rules

Theorem

For a NFTA A with e-rules, there is a NFTA without e-rules that recognizes the
same language

e Proof sketch:

19/161

Equivalence of NFTAs with and without ¢ - rules

Theorem

For a NFTA A with e-rules, there is a NFTA without e-rules that recognizes the
same language

¢ Proof sketch:
e Let cl(q) denote the e-closure of q

g€ cl(q) q €cl(q),qd - q" = q" €cl(q)

19/161

Equivalence of NFTAs with and without ¢ - rules

Theorem

For a NFTA A with e-rules, there is a NFTA without e-rules that recognizes the
same language

¢ Proof sketch:
e Let cl(q) denote the e-closure of q

g€ cl(q) q €cl(q),qd - q" = q" €cl(q)
o Define A" :={f(q1,...,qn) > @' | f(q1,...,qn) = g€ AAQG €cl(q)}

19/161

Equivalence of NFTAs with and without ¢ - rules

For a NFTA A with e-rules, there is a NFTA without e-rules that recognizes the
same language

¢ Proof sketch:
e Let cl(q) denote the e-closure of q

g€ cl(q) q €cl(q),qd - q" = ¢’ ccl(q)

o Define A" :={f(q1,...,qn) > @' | f(q1,...,qn) = g€ AAQG €cl(q)}
e Define A" := (Q, F,Qr, A')

19/161

Equivalence of NFTAs with and without ¢ - rules

For a NFTA A with e-rules, there is a NFTA without e-rules that recognizes the
same language

¢ Proof sketch:
e Let cl(q) denote the e-closure of q

g€ cl(q) q €cl(q),qd - q" = ¢’ ccl(q)
o Define A" :={f(q1,...,qn) > @' | f(q1,...,qn) = g€ AAQG €cl(q)}

o Define A :=(Q, F,Qs, A')
e Show:t —4 qifft -4 q

19/161

Equivalence of NFTAs with and without ¢ - rules

For a NFTA A with e-rules, there is a NFTA without e-rules that recognizes the
same language

¢ Proof sketch:
e Let cl(q) denote the e-closure of q

g€ cl(q) q €cl(q),qd - q" = ¢’ ccl(q)

o Define A" :={f(q1,...,qn) > @' | f(q1,...,qn) = g€ AAQG €cl(q)}
e Define A" := (Q, F,Qr, A")
e Show: t -4 qifft -4 q

e on board

19/161

Equivalence of NFTAs with and without ¢ - rules

For a NFTA A with e-rules, there is a NFTA without e-rules that recognizes the
same language

¢ Proof sketch:
e Let cl(q) denote the e-closure of q

g€ cl(q) q €cl(q),qd - q" = ¢’ ccl(q)

o Define A" :={f(q1,...,qn) > @' | f(q1,...,qn) = g€ AAQG €cl(q)}
e Define A" := (Q, F,Qr, A")
e Show: t -4 qifft -4 q

e on board

e From now on, we assume tree automata without e-rules, unless noted
otherwise.

19/161

Last Lecture

¢ Nondeterministic Finite Tree Automata (NFTA)
e Ranked alphabet, Terms/Trees
e Rules: f(q1,...,qn) > q
e Intuition: Rewrite tree to single state

e Epsilon rules

cqg—d
e Do not increase expressiveness (recognizable languages)

20

Table of Contents

@ Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

Deterministic Finite Tree Automata

Let A = (Q, F, @, A) be a finite tree automaton.

e Ais deterministic (DFTA), if there are no two rules with the same LHS
(and no e-rules), i.e.

> eANI >R eEN = 1 =@

22/161

Deterministic Finite Tree Automata

Let A = (Q, F, @, A) be a finite tree automaton.
e Ais deterministic (DFTA), if there are no two rules with the same LHS

(and no e-rules), i.e.
> eANI >R eEN = 1 =@

o For a DFTA, every tree is accepted in at most one state

22/161

Deterministic Finite Tree Automata

Let A = (Q, F, @, A) be a finite tree automaton.

e Ais deterministic (DFTA), if there are no two rules with the same LHS
(and no e-rules), i.e.

> eANI >R eEN = 1 =@

o For a DFTA, every tree is accepted in at most one state

e Ais complete, if for every f € F,q1,...,qn € Q, there is a rule
f(Q17~-~>Qn) — q

22/161

Deterministic Finite Tree Automata

Let A = (Q, F, @, A) be a finite tree automaton.

e Ais deterministic (DFTA), if there are no two rules with the same LHS
(and no e-rules), i.e.

> eANI >R eEN = 1 =@

o For a DFTA, every tree is accepted in at most one state

e Ais complete, if for every f € F,q1,...,qn € Q, there is a rule
f(Q17~-~7Qn) — q
e For a complete tree automata, every tree is accepted in at least one state

22/161

Deterministic Finite Tree Automata

Let A = (Q, F, @, A) be a finite tree automaton.

e Ais deterministic (DFTA), if there are no two rules with the same LHS
(and no e-rules), i.e.

> eANI >R eEN = 1 =@

o For a DFTA, every tree is accepted in at most one state

e Ais complete, if for every f € F,q1,...,qn € Q, there is a rule
f(q17~-~7Qn) — q
e For a complete tree automata, every tree is accepted in at least one state
e For a complete DFTA, every tree is accepted in exactly one state

22/161

Deterministic Finite Tree Automata

Let A = (Q, F, @, A) be a finite tree automaton.

e Ais deterministic (DFTA), if there are no two rules with the same LHS
(and no e-rules), i.e.

> eANI >R eEN = 1 =@

o For a DFTA, every tree is accepted in at most one state

e Ais complete, if for every f € F,q1,...,qn € Q, there is a rule
f(q17~-~7Qn) — q
e For a complete tree automata, every tree is accepted in at least one state
e For a complete DFTA, every tree is accepted in exactly one state

e A state g € Qis accessible, if there is a t with t — 4 q.

22/161

Deterministic Finite Tree Automata

Let A = (Q, F, @, A) be a finite tree automaton.

e Ais deterministic (DFTA), if there are no two rules with the same LHS
(and no e-rules), i.e.

> eANI >R eEN = 1 =@

o For a DFTA, every tree is accepted in at most one state

e Ais complete, if for every f € F,q1,...,qn € Q, there is a rule
f(q17~-~7Qn) — q
e For a complete tree automata, every tree is accepted in at least one state
e For a complete DFTA, every tree is accepted in exactly one state

e A state g € Qis accessible, if there is a t with t — 4 q.
e Ais reduced, if all states in Q are accessible.

22/161

Membership Test for DFTA

e Complete DFTAs have a simple (and efficient) membership test

acc (f (4, ..., f)) =
let
g1 = acc bi; ...; gy = acc I
in
the g with f(qgi,...,qn) € A

23/161

Membership Test for DFTA

e Complete DFTAs have a simple (and efficient) membership test

acc (f (4, ..., f)) =
let
gi = acc ti; ...; gy = acc I,
in
the g with f(qgi,...,qn) € A

o Note: For NFTAs, we need to backtrack, or use on-the-fly determinization

23/161

Reduction Algorithm

¢ Obviously, removing inaccessible states does not change the language of
an NFTA.

24/161

Reduction Algorithm

¢ Obviously, removing inaccessible states does not change the language of
an NFTA.

¢ The following algorithm computes the set of accessible states in
polynomial time

A:=10
repeat
A = au{q} for g with

f(Qi,---,Qn) > Q€A G1,...,qn €A
until no more states can be added to A

24/161

Reduction Algorithm

¢ Obviously, removing inaccessible states does not change the language of
an NFTA.

¢ The following algorithm computes the set of accessible states in
polynomial time
A =10
repeat
A = au{q} for g with
f(Qi,---,Qn) > Q€A G1,...,qn €A
until no more states can be added to A

e Proof sketch

24/161

Reduction Algorithm

¢ Obviously, removing inaccessible states does not change the language of
an NFTA.

¢ The following algorithm computes the set of accessible states in
polynomial time

A:=10
repeat
A = au{q} for g with

f(Qi,---,Qn) > Q€A G1,...,qn €A
until no more states can be added to A

e Proof sketch
e |nvariant: All states in A are accessible.

24/161

Reduction Algorithm

¢ Obviously, removing inaccessible states does not change the language of
an NFTA.

¢ The following algorithm computes the set of accessible states in
polynomial time

A:=10
repeat
A = au{q} for g with

f(Qi,---,Qn) > Q€A G1,...,qn €A
until no more states can be added to A

e Proof sketch

e Invariant: All states in A are accessible.
o If there is an accessible state not in A, saturation is not complete

24/161

Reduction Algorithm

¢ Obviously, removing inaccessible states does not change the language of
an NFTA.

¢ The following algorithm computes the set of accessible states in
polynomial time

A:=10
repeat
A = au{q} for g with

f(Qi,---,Qn) > Q€A G1,...,qn €A
until no more states can be added to A

e Proof sketch

e Invariant: All states in A are accessible.
o If there is an accessible state not in A, saturation is not complete

e Inductionont — 4 g

24/161

Determinization (Powerset construction)

e Theorem: For every NFTA, there exists a complete DFTA with the same
language

25/161

Determinization (Powerset construction)

e Theorem: For every NFTA, there exists a complete DFTA with the same
language
o LetQy:=2%and Qi = {s€ Qy|sNQ #0}

25/161

Determinization (Powerset construction)

e Theorem: For every NFTA, there exists a complete DFTA with the same

language
o LetQy:=2%and Qi = {s€ Qy|sNQ #0}
o Let f(s1,...,87) = s € Ay ff

s={qgeQ|Ig1€51,....,qn€Sn| f(q1,---,qn) = g € A}

25/161

Determinization (Powerset construction)

Theorem: For every NFTA, there exists a complete DFTA with the same

language
o LetQy:=2%and Qi = {s€ Qy|sNQ #0}
o Let f(s1,...,87) = s € Ay ff

s={qgeQ|Ig1€51,....,qn€Sn| f(q1,---,qn) = g € A}
Define .Ad = (Qd,]:, Odf,Ad)

25

Determinization (Powerset construction)

Theorem: For every NFTA, there exists a complete DFTA with the same

language
o LetQy:=2%and Qi = {s€ Qy|sNQ #0}
o Let f(s1,...,87) = s € Ay ff

s={qgeQ|Ig1€51,....,qn€Sn| f(q1,---,qn) = g € A}
Define .Ad = (Qd,]:, Odf,Ad)

Idea: Ay accepts tree t in the set of all states in that A accepts t (maybe
the empty set)

25

Determinization (Powerset construction)

Theorem: For every NFTA, there exists a complete DFTA with the same

language
o LetQy:=2%and Qi = {s€ Qy|sNQ #0}
o Let f(s1,...,87) = s € Ay ff

s={qgeQ|Ig1€51,....,qn€Sn| f(q1,---,qn) = g € A}
Define .Ad = (Qd,]:, Odf,Ad)

Idea: Ay accepts tree t in the set of all states in that A accepts t (maybe
the empty set)

o Formally: t -4, siffs={qe Q| t—.4 q}

25

Determinization (Powerset construction)

Theorem: For every NFTA, there exists a complete DFTA with the same
language
Let Qs :=2%and Qg == {s€ Qy | sN Qs # 0}
Let f(s1,...,8n) = s € Ay iff
s={qgeQ|Ig1€51,....,qn€Sn| f(q1,---,qn) = g € A}
Define Aq := (Qd, F, Odf, Ad)
Idea: Ay accepts tree t in the set of all states in that A accepts t (maybe
the empty set)
o Formally: t -4, siffs={qe Q| t—.4 q}
Lemma: The automaton A, is a complete DFTA, and we have
L(A) = L(Ag)- (On board)

25/161

Determinization (Powerset construction)

e Theorem: For every NFTA, there exists a complete DFTA with the same

language
o LetQy:=2%and Qi = {s€ Qy|sNQ #0}
o Let f(s1,...,87) = s € Ay ff

s={qgeQ|Ig1€51,....,qn€Sn| f(q1,---,qn) = g € A}
e Define .Ad = (Qd,]:, Odf,Ad)

e |dea: Ay accepts tree t in the set of all states in that A accepts t (maybe
the empty set)

o Formally: t -4, siffs={qe Q| t—.4 q}
e Lemma: The automaton Ay is a complete DFTA, and we have
L(A) = L(Ag)-. (On board)
e Theorem follows from this.

25/161

Determinization with reduction

e Above method always construct exponentially many states

26/161

Determinization with reduction

e Above method always construct exponentially many states
o Typically, many of the inaccessible

26

Determinization with reduction

e Above method always construct exponentially many states
o Typically, many of the inaccessible
¢ Idea: Combine determinization and reduction

26

Determinization with reduction

e Above method always construct exponentially many states
o Typically, many of the inaccessible

¢ |dea: Combine determinization and reduction
e Only construct accessible states of Ay

26

Determinization with reduction

e Above method always construct exponentially many states
o Typically, many of the inaccessible

¢ |dea: Combine determinization and reduction
e Only construct accessible states of Ay

Qd =
Ay =
repeat
Qp = QdU{S}
Ay = AgU{f(s1,...,81) — s}
where
feFnSt...,Sp€ Qq
s={qeQ|3q1€51,...,qn € Sp. f(q1,...,qn) = g € A}
until No more rules can be added to Ay
Qi = {s€Qy|snNQ#0}
.Ad = (Qd,f, Qdf,Ad)

0
0

26/161

Examples

e Automaton is already deterministic

27

Examples

e Automaton is already deterministic
¢ Naive method generates exponentially many rules

27

Examples

e Automaton is already deterministic

¢ Naive method generates exponentially many rules
e Reduction method does not increase size of automaton

27

Examples

e Automaton is already deterministic

¢ Naive method generates exponentially many rules
e Reduction method does not increase size of automaton

¢ Also advantageous if automaton is ,almost” deterministic

27

Examples

e Automaton is already deterministic

¢ Naive method generates exponentially many rules
e Reduction method does not increase size of automaton

¢ Also advantageous if automaton is ,almost” deterministic
¢ But, exponential blowup not avoidable in general

27

Examples

o Let F=f/1,9/1,a/0

28/161

Examples

o Let F=f/1,9/1,a/0
e Consider the language L, := {t € T(F) | The nth symbol of tis f }

28

Examples

o Let F=f/1,g/1,a/0
e Consider the language L,

e Automaton Q= {q,q,...

a—gqg
(@) = a1
f(qi) = Gist

:={t e T(F) | The nth symbol of tis f }
,Gn}, Qr={gn}and A

f(q) —aq 9(q) —q

9(qi) = Gitt fori<n

28

Examples

o Let F=f/1,g/1,a/0
e Consider the language L, := {t € T(F) | The nth symbol of tis f }
e Automaton Q={q,q1,...,qs}, Qs = {g-} and A

a—q fla) — q 9(q@) »q
f(q) — o
f(q1) = Qi 9(q) — Gt fori < n

¢ Nondeterministically decides which symbol to count

28/161

Examples

o Let F=f/1,g/1,a/0
e Consider the language L, := {t € T(F) | The nth symbol of tis f }
e Automaton Q={q,q1,...,qs}, Qs = {g-} and A

a—q fla) — q 9(q@) »q
f(q) — o
f(q1) = Qi 9(q) — Gt fori < n

¢ Nondeterministically decides which symbol to count
e However, any DFTA has to memorize the last n symbols

28/161

Examples

o Let F=f/1,g/1,a/0
e Consider the language L, := {t € T(F) | The nth symbol of tis f }
e Automaton Q={q,q1,...,qs}, Qs = {g-} and A

a—q fla) — q 9(q@) »q
f(q) — o
f(q1) = Qi 9(q) — Gt fori < n

¢ Nondeterministically decides which symbol to count
e However, any DFTA has to memorize the last n symbols
e Thus, it has at least 2" states

28/161

Examples

Let F=f/1,g/1,a/0
e Consider the language L, := {t € T(F) | The nth symbol of tis f }
e Automaton Q={q,q1,...,qs}, Qs = {g-} and A

a—q fla) — q 9(q@) »q
f(q) — o
f(q1) = Qi 9(q) — Gt fori < n

o Nondeterministically decides which symbol to count
e However, any DFTA has to memorize the last n symbols
e Thus, it has at least 2" states
¢ Note: The same example is usually given for word automata

28

Examples

Let F=f/1,g/1,a/0
e Consider the language L, := {t € T(F) | The nth symbol of tis f }
e Automaton Q={q,q1,...,qs}, Qs = {g-} and A

a—q fla) — q 9(q@) »q
f(q) — o
f(q1) = Qi 9(q) — Gt fori < n

o Nondeterministically decides which symbol to count

e However, any DFTA has to memorize the last n symbols
e Thus, it has at least 2" states

¢ Note: The same example is usually given for word automata
e L=(a+b)ala+b)

28

Table of Contents

@ Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

29

Example

o Consider the language L := {f(g(a),g(a)) | i € N}

30

Example

o Consider the language L := {f(g(a),g(a)) | i € N}
¢ Not recognizable by an FTA.

30

Example

o Consider the language L := {f(g(a),g(a)) | i € N}
¢ Not recognizable by an FTA.
e Assume we have Awith L(A)=Land |Q|=n

30

Example

Consider the language L := {f(g'(a),g'(a)) | i € N}

¢ Not recognizable by an FTA.

e Assume we have Awith L(A)=Land |Q|=n

« During recognizing g"*'(a), the same state must occur twice, say
e g'(a) »agand g(a) —a qfori#j

30

Example

Consider the language L := {f(g'(a),g'(a)) | i € N}

¢ Not recognizable by an FTA.

e Assume we have Awith L(A)=Land |Q|=n

« During recognizing g"*'(a), the same state must occur twice, say
e g'(a) »agand g(a) —a qfori#j

As f(g'(a),g'(a)) € L(A), we also have f(g'(a), ¢/(a)) € L(A)

30

Example

Consider the language L := {f(g'(a),g'(a)) | i € N}

¢ Not recognizable by an FTA.

e Assume we have Awith L(A)=Land |Q|=n

« During recognizing g"*'(a), the same state must occur twice, say
e g'(a) »agand g(a) —a qfori#j

As f(g'(a),g'(a)) € L(A), we also have f(g'(a), ¢/(a)) € L(A)

Contradiction! L not tree-regular

30

Towards a Pumping Lemma

e Aterm t € T(F,X) is called linear, if no variable occurs more than once

31/161

Towards a Pumping Lemma

e Aterm t € T(F,X) is called linear, if no variable occurs more than once
e A context with n holes is a linear term over variables xi, ..., X,

31

Towards a Pumping Lemma

e Aterm t € T(F,X) is called linear, if no variable occurs more than once
e A context with n holes is a linear term over variables xi, ..., X,
e For a context C with n holes, we define

Clt,....,ta :=C(x1 = ti,..., Xn —)

Towards a Pumping Lemma

e Aterm t € T(F,X) is called linear, if no variable occurs more than once
e A context with n holes is a linear term over variables xi, ..., X,
e For a context C with n holes, we define

Clt,....,ta :=C(x1 = ti,..., Xn —)

¢ A context that consists of a single variable is called trivial.

Pumping Lemma

Theorem

Let L be a regular language. Then, there is a constant k > 0 such that for
every t € L with Height(t) > k, there is a context C, a non-trivial context C’,

and a term u such that
t= C[C'[u]] vn>0. C[C'"[u]] e L

e Proof sketch:

32/161

Pumping Lemma

Theorem

Let L be a regular language. Then, there is a constant k > 0 such that for
every t € L with Height(t) > k, there is a context C, a non-trivial context C’,
and a term u such that

t= C[C'[u]] vn>0. C[C'"[u]] e L

e Proof sketch:
o Let A= (Q,F,Q;,A)withL=L(A),andt —+4 q,q € Qs

32/161

Pumping Lemma

Theorem

Let L be a regular language. Then, there is a constant k > 0 such that for
every t € L with Height(t) > k, there is a context C, a non-trivial context C’,

and a term u such that
t= C[C'[u]] vn>0. C[C'"[u]] e L

e Proof sketch:

o Let A= (Q,F,Q;,A)withL=L(A),andt —+4 q,q € Qs
e Choose path through t with length > k

32/161

Pumping Lemma

Theorem

Let L be a regular language. Then, there is a constant k > 0 such that for

every t € L with Height(t) > k, there is a context C, a non-trivial context C’,
and a term u such that

t = C[C'[u]] ¥n > 0. C[C"M[u]] € L

e Proof sketch:

o Let A= (Q,F,Q;,A)withL=L(A),andt —+4 q,q € Qs
e Choose path through t with length > k
e Two subtrees on this path accepted in same state.

32/161

Pumping Lemma

Theorem

Let L be a regular language. Then, there is a constant k > 0 such that for
every t € L with Height(t) > k, there is a context C, a non-trivial context C’,
and a term u such that

t = C[C'[u]] ¥n> 0. C[C""[u]] € L

e Proof sketch:

Let A= (Q,F,Q,A)withL=L(A),andt -4 9,9 € &
e Choose path through t with length > k

e Two subtrees on this path accepted in same state.

e Identify them by C and C’

32/161

Example

e Consider F =f/2,a/0,and L := {t € T(F) | |t| is prime}

33

Example

e Consider F =f/2,a/0,and L := {t € T(F) | |t| is prime}
e |t| is number of nodes in ¢

33

Example

e Consider F =f/2,a/0,and L := {t € T(F) | |t| is prime}
e |t| is number of nodes in ¢
e [is not regular.

33

Example

e Consider F =f/2,a/0,and L := {t € T(F) | |t| is prime}
e |t| is number of nodes in ¢
e [is not regular.
e Proof by contradiction. Assume L is regular, and k is pumping constant

33

Example

e Consider F =f/2,a/0,and L := {t € T(F) | |t| is prime}
e |t| is number of nodes in ¢
e [is not regular.

e Proof by contradiction. Assume L is regular, and k is pumping constant
e Choose t € L with height(t) > k

33

Example

e Consider F =f/2,a/0,and L := {t € T(F) | |t| is prime}
e |t| is number of nodes in ¢
e [is not regular.

e Proof by contradiction. Assume L is regular, and k is pumping constant
e Choose t € L with height(t) > k
e We obtain C, C’, u such that t = C[C'[u]] and Vn. C[C'"[u]] € L

33

Example

e Consider F =f/2,a/0,and L := {t € T(F) | |t| is prime}
e |t| is number of nodes in ¢

e L is notregular.
e Proof by contradiction. Assume L is regular, and k is pumping constant
e Choose t € L with height(t) > k
e We obtain C, C’, usuch that t = C[C/[u]] and vVn. C[C'"[u]] € L
e We have |C[C'"[u]]| = |C| — 1+ n(|C'| — 1) + |u]

33

Example

e Consider F =f/2,a/0,and L := {t € T(F) | |t| is prime}
e |t| is number of nodes in ¢

e L is notregular.
e Proof by contradiction. Assume L is regular, and k is pumping constant
e Choose t € L with height(t) > k
e We obtain C, C’, usuch that t = C[C/[u]] and vVn. C[C'"[u]] € L
e We have |C[C'"[u]]| = |C| — 1+ n(|C'| — 1) + |u]
e Choose n = |C| + |u| — 1 to show that this is not prime for all n

33

Corollaries

o Let A=(Q,F, Qs A)be an FTA.

34/161

Corollaries

o Let A=(Q,F, Qs A)be an FTA.
@ L(A) is non-empty, iff 3t € L(.A).height(t) < |Q)

34

Corollaries

o Let A=(Q,F, Qs A)be an FTA.
@ L(A) is non-empty, iff 3t € L(.A).height(t) < |Q)
@ L(A)is infinite, iff 3t € L(A).|Q| < height(t) < 2|Q|

34

Corollaries

o Let A=(Q,F, Qs A)be an FTA.

@ L(A) is non-empty, iff 3t € L(.A).height(t) < |Q)

@ L(A) is infinite, iff 3t € L(A).|Q| < height(t) < 2|Q)|
e Proof ideas:

34

Corollaries

o Let A=(Q,F, Qs A)be an FTA.

@ L(A) is non-empty, iff 3t € L(.A).height(t) < |Q)

@ L(A) is infinite, iff 3t € L(A).|Q| < height(t) < 2|Q)|
e Proof ideas:

@ Remove duplicate states of accepting run repeatedly

34

Corollaries

o Let A=(Q,F, Qs A)be an FTA.

@ L(A) is non-empty, iff 3t € L(A).height(t) < |Q)|

® L(A) is infinite, iff 3t € L(A).|Q| < height(t) < 2|Q)
e Proof ideas:

@ Remove duplicate states of accepting run repeatedly
@® —: Take t € L(A) high enough. Remove duplicate states repeatedly, until
longest path has exactly one duplication.

34/161

Corollaries

o Let A=(Q,F, Qs A)be an FTA.

@ L(A) is non-empty, iff 3t € L(A).height(t) < |Q)|

® L(A) is infinite, iff 3t € L(A).|Q| < height(t) < 2|Q)
e Proof ideas:

@ Remove duplicate states of accepting run repeatedly
@® —: Take t € L(A) high enough. Remove duplicate states repeatedly, until
longest path has exactly one duplication.

e <——: Pump with infinitely many n

34/161

Last Lecture

e Deterministic Automata
e Powerset construction

e Pumping Lemma

35

Table of Contents

@ Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

36

Closure Properties

Theorem

e The class of regular languages is closed under union, intersection, and
complement.

e Automata for union, intersection, and complement can be computed.

37/161

Union

e Given automata Ay = (@i, F, Qs1, Aq) and Ao = (Qo, F, Qpe, Ap).

38

Union

e Given automata Ay = (@i, F, Qs1, Aq) and Ao = (Qo, F, Qpe, Ap).
e Assume, wlog, Q1 N Q=10

38

Union

e Given automata Ay = (@i, F, Qs1, Aq) and Ao = (Qo, F, Qpe, Ap).
e Assume, wlog, Q1 N Q=10
o letA=(Q1UQ:, F,Qn U Qp, A1 UA,)

38

Union

e Given automata Ay = (@i, F, Qs1, Aq) and Ao = (Qo, F, Qpe, Ap).
e Assume, wlog, Q1 N Q> =0
o letA=(Q1UQ:, F,Qn U Qp, A1 UA,)
e Straightforward: L(A) = L(A1) U L(A2)

38

Union

e Given automata Ay = (@i, F, Qs1, Aq) and Ao = (Qo, F, Qpe, Ap).
e Assume, wlog, Q1 N Q> =0
o letA=(Q1UQ:, F,Qn U Qp, A1 UA,)
e Straightforward: L(A) = L(A1) U L(A2)
e However: A may be nondeterministic and not complete, even if A and
A> were.

38

Union

e Given automata Ay = (@i, F, Qs1, Aq) and Ao = (Qo, F, Qpe, Ap).
e Assume, wlog, Q1 N Q> =0
o letA=(Q1UQ:, F,Qn U Qp, A1 UA,)
e Straightforward: L(A) = L(A1) U L(A2)
e However: A may be nondeterministic and not complete, even if A and
A> were.

e Let Ay, As be deterministic and complete. Let A = (Q, F, Qf, A) with

38

Union

e Given automata Ay = (@i, F, Qs1, Aq) and Ao = (Qo, F, Qpe, Ap).
e Assume, wlog, Q1 N Q> =0
o letA=(Q1UQ:, F,Qn U Qp, A1 UA,)
e Straightforward: L(A) = L(A1) U L(A2)

e However: A may be nondeterministic and not complete, even if A and
A> were.
e Let Ay, As be deterministic and complete. Let A = (Q, F, Qf, A) with
e Q=Q1 xQ, r=Qn Xx QU Qs x Qr, and A = Ay x Ap where

Ay x Dp = {f((g1,91),..-,(an, aqn)) = (q,q) |
f(Gr,- -, qn) = g€ Ay AF(Ghs -, qn) — d € Do}

38/161

Union

e Given automata Ay = (@i, F, Qs1, Aq) and Ao = (Qo, F, Qpe, Ap).
e Assume, wlog, Q1 N Q> =0
o letA=(Q1UQ:, F,Qn U Qp, A1 UA,)
e Straightforward: L(A) = L(A1) U L(A2)

e However: A may be nondeterministic and not complete, even if A and
Ao were.

e Let Ay, As be deterministic and complete. Let A = (Q, F, Qf, A) with
e Q=Q1 x @, Qr=Qx x QU X Qr, and A = A x A, where

Ay x Dp = {f((g1,91),..-,(an, aqn)) = (q,q) |
f(Gr,- -, qn) = g€ Ay AF(Ghs -, qn) — d € Do}

e Then L(A) = L(Ay) U L(Az) and A is deterministic and complete.

38/161

Union

e Given automata Ay = (@i, F, Qs1, Aq) and Ao = (Qo, F, Qpe, Ap).
e Assume, wlog, Q1 N Q> =0
o letA=(Q1UQ:, F,Qn U Qp, A1 UA,)
e Straightforward: L(A) = L(A1) U L(A2)

e However: A may be nondeterministic and not complete, even if A and
A> were.
e Let Ay, As be deterministic and complete. Let A = (Q, F, Qf, A) with
e Q=Q1 xQ, r=Qn Xx QU Qs x Qr, and A = Ay x Ap where

Ay x Dp = {f((g1,91),..-,(an, aqn)) = (q,q) |
f(Gr,- -, qn) = g€ Ay AF(Ghs -, qn) — d € Do}

e Then L(A) = L(Ay) U L(Az) and A is deterministic and complete.
¢ Intuition: Recognize with both automata in parallel.

38/161

Complement

e Assume L is recognized by the complete DFTA A = (Q, F, Qr, A)

39

Complement

e Assume L is recognized by the complete DFTA A = (Q, F, Qr, A)
e Define A° = (Q,F,Q\ @, A)

39

Complement

 Assume L is recognized by the complete DFTA A = (Q, F, Qr, A)
e Define A°=(Q,F,Q\ Qr, A)
o Obviously, L(A°) = T(F)\ L(A)

39

Complement

Assume L is recognized by the complete DFTA A = (Q, F, G, A)
Define A° = (Q, F,Q\ G, A)
Obviously, L(A°) = T(F) \ L(A)

If a nondeterministic automaton is given, determinization may cause
exponential blowup

39

Intersection

e Theeasyway: LiNLy =L ULy

40/161

Intersection

e Theeasyway: LiNLy =L ULy
o Exponential blowup for NFTA.

40

Intersection

e Theeasyway: LiNLy =L ULy
o Exponential blowup for NFTA.

e Product construction: Given automata Ay = (Qy, F, Qs,) and
Az = (@2, F, Qp, A2).

40

Intersection

e Theeasyway: LiNLy =L ULy
o Exponential blowup for NFTA.

e Product construction: Given automata Ay = (Qy, F, Qs,) and
Az = (@2, F, Qp, A2).
e Define A = (01 X Og,]:, Qs X Ofg,A1 X Ag)

40

Intersection

e Theeasyway: LiNly =L ULy
o Exponential blowup for NFTA.
e Product construction: Given automata Ay = (Qy, F, Qs,) and
Az = (Qg,]:, sz, Az).

e Define A = (01 X Og,]:, Qs X Ofg,A1 X Ag)
o L(A) = L(Ar) N L(Az)

40

Intersection

e Theeasyway: LiNly =L ULy
o Exponential blowup for NFTA.
e Product construction: Given automata Ay = (Qy, F, Qs,) and
Az = (Qg,]:, sz, Az).

e Define A = (01 X Og,]:, Qs X Ofg,A1 X Ag)
o L(A) = L(A1) N L(A)
e Intuition: Automata run in parallel. Accept if both accept.

40

Intersection

e Theeasyway: LiNLy =L ULy
o Exponential blowup for NFTA.
e Product construction: Given automata Ay = (Qy, F, Qs,) and
A2 = (Qe, F, Qp2, A2).
e Define A = (01 X Og,]:, Qs X Ofg,A1 X Ag)
o [(A)=L(A)NL(A2)
e Intuition: Automata run in parallel. Accept if both accept.
e A is deterministic/complete if Ay and Az are.

40

Intersection

e Theeasyway: LiNLy =L ULy
o Exponential blowup for NFTA.

e Product construction: Given automata Ay = (Qy, F, Qs,) and
Az = (@2, F, Qp, A2).

e Define A = (01 X Og,}—, Qs X Ofg,A1 X Ag)
o [(A)=L(A)NL(A2)

e Intuition: Automata run in parallel. Accept if both accept.
e A is deterministic/complete if Ay and Az are.

¢ Product construction can also be combined with reduction algorithm, to
avoid construction of inaccessible states.

40

Summary

o For DFTA: Polynomial time intersection, union, complement

Summary

o For DFTA: Polynomial time intersection, union, complement
e For NFTA: Polynomial time intersection, union. Exp-time complement.

More Algorithms on FTA

o Membership for NFTA. In time O(|t| * |.A]) On-the-fly determinization.

42

More Algorithms on FTA

o Membership for NFTA. In time O(|t| * |.A]) On-the-fly determinization.
o Emptiness check: Time O(|.A|). Exercise!

42

Table of Contents

@ Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

43

Tree Homomorphisms

e Map each symbol of tree to new subtree

44/161

Tree Homomorphisms

e Map each symbol of tree to new subtree
e Example: Convert ternary tree to binary tree
o f(x1,x2,x3) = 9(x1,9(X2, X3))

44

Tree Homomorphisms

e Map each symbol of tree to new subtree

e Example: Convert ternary tree to binary tree
o f(x1,X2,X3) — g(x1,9(X2, X3))

e Example: Eliminate conjunction from Boolean formulas
o X1 AXo = —(—X1 V —Xo)

44

Formal definition

e Let ¥ and F’ be ranked alphabets, not necessarily disjoint

45

Formal definition

e Let ¥ and F’ be ranked alphabets, not necessarily disjoint

e Let, forany n, X, .= {xq,..

., Xn} be variables, disjoint from F and F’

45

Formal definition

e Let ¥ and F’ be ranked alphabets, not necessarily disjoint
e Let, for any n, X, := {x1, ..., x,} be variables, disjoint from F and F’
o Let hr be a mapping that maps f € F,to hz(f) € T(F', Xy)

45

Formal definition

Let F and F’ be ranked alphabets, not necessarily disjoint

Let, for any n, X, := {x1, ..., X,} be variables, disjoint from F and F’
Let hx be a mapping that maps f € Fj, to he(f) € T(F', Xp)

hx determines a tree homomorphism h: T(F) — T(F'):

h(F(tr, ... t)) == he(F) (X1 — h(t1),- .. Xn = h(ts))

45

Preservation of Regularity

e Tree homomorphisms do not preserve regularity in general

46/161

Preservation of Regularity

e Tree homomorphisms do not preserve regularity in general
o Let L = {f(¢'(a)) | i € N}. Obviously regular.

46

Preservation of Regularity

e Tree homomorphisms do not preserve regularity in general

o Let L = {f(¢'(a)) | i € N}. Obviously regular.
o Let hr: f(x) — f(x, X)

46

Preservation of Regularity

e Tree homomorphisms do not preserve regularity in general
o Let L = {f(¢'(a)) | i € N}. Obviously regular.
o Let hr: f(x) — f(x, X)
e h(L) = {f(d'(a),g'(a)) | i € N}. Not regular.

46

Preservation of Regularity

e Tree homomorphisms do not preserve regularity in general
o Let L = {f(¢'(a)) | i € N}. Obviously regular.
e Let hr! f(x) — f(x, x)
o h(L) ={f(g'(a),d'(a)) | i € N}. Not regular.

e But:

46

Preservation of Regularity

e Tree homomorphisms do not preserve regularity in general
o Let L = {f(¢'(a)) | i € N}. Obviously regular.
e Let hr! f(x) — f(x, x)
o h(L) ={f(g'(a),d'(a)) | i € N}. Not regular.

e But:

¢ A tree homomorphism determined by hr is linear, iff for all f € F, the term
hxz(f) is linear.

46

Preservation of Regularity

e Tree homomorphisms do not preserve regularity in general
o Let L = {f(¢'(a)) | i € N}. Obviously regular.
e Let hr! f(x) — f(x, x)
o h(L) ={f(g'(a),d'(a)) | i € N}. Not regular.
e But:
¢ A tree homomorphism determined by hr is linear, iff for all f € F, the term
hxz(f) is linear.

Theorem

Let L be a regular language, and h a linear tree homomorphism. Then h(L) is
also regular.

46/161

Preservation of Regularity

e Tree homomorphisms do not preserve regularity in general
o Let L = {f(¢'(a)) | i € N}. Obviously regular.
e Let hr! f(x) — f(x, x)
o h(L) ={f(g'(a),d'(a)) | i € N}. Not regular.
e But:
¢ A tree homomorphism determined by hr is linear, iff for all f € F, the term
hxz(f) is linear.

Theorem

Let L be a regular language, and h a linear tree homomorphism. Then h(L) is
also regular.

o Proof idea: For each original rule f(qy, ..., gn), insert rules that recognize
hJ-‘[Qh s '7qn]

46/161

Positions

¢ Identify position in tree by sequence of natural numbers

47

Positions

¢ |dentify position in tree by sequence of natural numbers
e Let t be a tree, and p € N*. We define the subtree of t at position p by:

te) =t (f(t, .-, t))(IP) := ti(p)

47

Positions

¢ |dentify position in tree by sequence of natural numbers
e Let t be a tree, and p € N*. We define the subtree of t at position p by:

te) =t (f(t, .-, t))(IP) := ti(p)

e Pos(t) is the set of valid positions in t

Construction (Preservation of regularity)

e Assume L is accepted by reduced DFTA A = (Q, F, G, A).

48/161

Construction (Preservation of regularity)

e Assume L is accepted by reduced DFTA A = (Q, F, G, A).
e Construct NFTA A = (@', 7', @}, A'):

48/161

Construction (Preservation of regularity)

e Assume L is accepted by reduced DFTA A = (Q, F, G, A).
e Construct NFTA A = (@', 7', @}, A'):
e WithQC @ and Qf =

48/161

Construction (Preservation of regularity)

e Assume L is accepted by reduced DFTA A = (Q, F, G, A).
e Construct NFTA A = (@', 7', @}, A'):

e With Q C Q' and Q; = Q&
e Foreachrule r = f(qg1,...,qn) — q, tr = hx(t), and position p € Pos(t):

48

Construction (Preservation of regularity)

e Assume L is accepted by reduced DFTA A = (Q, F, G, A).
e Construct NFTA A = (@', 7', @}, A'):

e With Q C Q' and Q; = Q&
e Foreachrule r = f(qg1,...,qn) — q, tr = hx(t), and position p € Pos(t):
e States g, € Q'

48

Construction (Preservation of regularity)

e Assume L is accepted by reduced DFTA A = (Q, F, G, A).
e Construct NFTA A = (@', 7', @}, A'):
e With Q C Q' and Q; = Q&
e Foreachrule r = f(qg1,...,qn) — q, tr = hx(t), and position p € Pos(t):
e States g, € Q'
o Ift(p) =9(...) € Fk: 9(Qpy,-- -, dpy) = 9" € A’

48

Construction (Preservation of regularity)

e Assume L is accepted by reduced DFTA A = (Q, F, G, A).
e Construct NFTA A = (@', 7', @}, A'):
e WithQC Q and Q) = &
e Foreachrule r = f(qg1,...,qn) — q, tr = hx(t), and position p € Pos(t):
e States g, € Q'
o Ift(p) =9(...) € Fk: 9(Qpy,-- -, dpy) = 9" € A’
e Ift;(p) = x:q — qp € A

48

Construction (Preservation of regularity)

e Assume L is accepted by reduced DFTA A = (Q, F, G, A).
e Construct NFTA A = (@', 7', @}, A'):
e WithQC Q and Q) = &
e Foreachrule r = f(qg1,...,qn) — q, tr = hx(t), and position p € Pos(t):
e States g, € Q'
o Ift(p) =9(...) € Fk: 9(Qpy,-- -, dpy) = 9" € A’
o Ift(p) = xi:qi — q; € A
e gl »>qge A

48

Proof sketch

e Prove h(L) C L(A’). Straightforward.

49/161

Proof sketch

e Prove h(L) C L
e Prove L(A’) C

(A’
h(L

). Straightforward.
) (Sketch on board).

49

Proof sketch

e Prove h(L) C L(A’). Straightforward.
e Prove L(A") C h(L) (Sketch on board).
o |dea: Split derivation of t — 4 g € Q at rules of the form gf — q.

49

Proof sketch

e Prove h(L) C L(A’). Straightforward.
e Prove L(A") C h(L) (Sketch on board).

o |dea: Split derivation of t — 4 g € Q at rules of the form gf — q.
e Assume r = f(...) — g. Without using states from Q, automaton accepts
subtree of the form hxz(f).

49

Proof sketch

e Prove h(L) C L(A’). Straightforward.
e Prove L(A") C h(L) (Sketch on board).
o |dea: Split derivation of t — 4 g € Q at rules of the form gf — q.
e Assume r = f(...) — g. Without using states from Q, automaton accepts

subtree of the form hxz(f).
e Cases:
e Constant (0-ary symbol)
e Duetorule g — g, € A, g; € Q (use IH)

49

Proof sketch

e Prove h(L) C L(A’). Straightforward.
e Prove L(A") C h(L) (Sketch on board).
o |dea: Split derivation of t — 4 g € Q at rules of the form gf — q.
e Assume r = f(...) — g. Without using states from Q, automaton accepts

subtree of the form hxz(f).
e Cases:

e Constant (0-ary symbol)
e Duetorule g — g, € A, g; € Q (use IH)

e Formally: Induction on size of derivation t — 4 q

49

Last lecture

e Closure properties: Union, intersection, complement
e Tree homomorphisms

o |dea: Replace node by tree with ,holes”
e and(xy, x2) — not(or(not(x1), not(xz)))

e Regular languages closed under linear homomorphisms
e Linear: No subtrees are duplicated

50

Inverse Homomorphism

e Motivation: Reconsider elimination of A in Boolean formulas

51/161

Inverse Homomorphism

e Motivation: Reconsider elimination of A in Boolean formulas

e Homomorphism: Given automaton that recognizes true formulas, construct
automaton for true formulas without A.

Inverse Homomorphism

e Motivation: Reconsider elimination of A in Boolean formulas

e Homomorphism: Given automaton that recognizes true formulas, construct
automaton for true formulas without A.

o Not really useful

Inverse Homomorphism

e Motivation: Reconsider elimination of A in Boolean formulas

e Homomorphism: Given automaton that recognizes true formulas, construct
automaton for true formulas without A.

o Not really useful

¢ Inverse homomorphism: Given automaton for formulas without A, construct
automaton for formulas with A.

Inverse Homomorphism

e Motivation: Reconsider elimination of A in Boolean formulas

e Homomorphism: Given automaton that recognizes true formulas, construct
automaton for true formulas without A.

o Not really useful

¢ Inverse homomorphism: Given automaton for formulas without A, construct
automaton for formulas with A.

e This would be nice

Inverse Homomorphism

e Motivation: Reconsider elimination of A in Boolean formulas
e Homomorphism: Given automaton that recognizes true formulas, construct
automaton for true formulas without A.
o Not really useful
¢ Inverse homomorphism: Given automaton for formulas without A, construct
automaton for formulas with A.
e This would be nice
e From automaton for simple language, and mapping of complex to simple
language, obtain automaton for complex language!

Inverse Homomorphism

e Motivation: Reconsider elimination of A in Boolean formulas

e Homomorphism: Given automaton that recognizes true formulas, construct
automaton for true formulas without A.

e Not really useful

¢ Inverse homomorphism: Given automaton for formulas without A, construct
automaton for formulas with A.

e This would be nice
e From automaton for simple language, and mapping of complex to simple
language, obtain automaton for complex language!

e Fortunately

Let h be a tree homomorphism, and L a regular language. Then
h=1(L) := {t | h(t) € L} is regular.

51/161

Inverse Homomorphism

e Motivation: Reconsider elimination of A in Boolean formulas

e Homomorphism: Given automaton that recognizes true formulas, construct
automaton for true formulas without A.

e Not really useful

¢ Inverse homomorphism: Given automaton for formulas without A, construct
automaton for formulas with A.

e This would be nice
e From automaton for simple language, and mapping of complex to simple
language, obtain automaton for complex language!

e Fortunately

Let h be a tree homomorphism, and L a regular language. Then
h=1(L) := {t | h(t) € L} is regular.

e Also holds for non-linear homomorphisms

51/161

Inverse Homomorphism

e Motivation: Reconsider elimination of A in Boolean formulas

e Homomorphism: Given automaton that recognizes true formulas, construct
automaton for true formulas without A.

e Not really useful

¢ Inverse homomorphism: Given automaton for formulas without A, construct
automaton for formulas with A.

e This would be nice
e From automaton for simple language, and mapping of complex to simple
language, obtain automaton for complex language!

e Fortunately

Let h be a tree homomorphism, and L a regular language. Then
h=1(L) := {t | h(t) € L} is regular.

e Also holds for non-linear homomorphisms
e Common technique to show regularity/decidability

51/161

Inverse Homomorphism

e Motivation: Reconsider elimination of A in Boolean formulas

e Homomorphism: Given automaton that recognizes true formulas, construct
automaton for true formulas without A.

e Not really useful

¢ Inverse homomorphism: Given automaton for formulas without A, construct
automaton for formulas with A.

e This would be nice
e From automaton for simple language, and mapping of complex to simple
language, obtain automaton for complex language!

e Fortunately

Let h be a tree homomorphism, and L a regular language. Then
h=1(L) := {t | h(t) € L} is regular.

e Also holds for non-linear homomorphisms

e Common technique to show regularity/decidability
e Can be generalized to (macro) tree transducers

51/161

Generalized Acceptance Relation

e Let A=(Q,F,Qr,A)and t € T(FUQ).

52/161

Generalized Acceptance Relation

e Let A=(Q,F,Qr,A)and t € T(FUQ).
o We define t — 4 g as the least relation that satisfies

q—aq

f(Q17~-~,Qn)_>q€A7Vi§n~ ti—>AQI = f(t17'

o t) —=aq

52

Generalized Acceptance Relation

e Let A=(Q,F,Qr,A)and t € T(FUQ).
o We define t — 4 g as the least relation that satisfies

qg—aq
f(q17~-~>Qn)_>q€A7vj§n~ ti_>.Aq/ — f(t17---7tn) _>.Aq

e This is obviously a generalization of the acceptance relation we defined
earlier

52/161

Inverse Homomorphism, construction

o Leth: T(F) — T(F’) be a tree homomorphism determined by hr

53/161

Inverse Homomorphism, construction

o Leth: T(F) — T(F’) be a tree homomorphism determined by hr
o Let A'=(Q,F,Q;A") be a DFTA with L = L(A)

53/161

Inverse Homomorphism, construction

o Leth: T(F) — T(F’) be a tree homomorphism determined by hr
o Let A'=(Q,F,Q;A") be a DFTA with L = L(A)
o We define DFTA A = (Q' U {s}, F, Q;, A), with the rules

f(Gr,....qn) = g€ A€ Fp, he(f)lpr,....Pa] w4 G
where q; = p; if x; occurs in h=(f), and g; = s otherwise
a—sel, f(s,....,8) >seA

53

Inverse Homomorphism, construction

o Leth: T(F) — T(F’) be a tree homomorphism determined by hr
o Let A'=(Q,F,Q;A") be a DFTA with L = L(A)
o We define DFTA A = (Q' U {s}, F, Q;, A), with the rules

f(Gr,....qn) = g€ A€ Fp, he(f)lpr,....Pa] w4 G
where q; = p; if x; occurs in h=(f), and g; = s otherwise
a—sel, f(s,....,8) >seA

e Intuition: Accept node f, if its image is accepted by A’

53/161

Inverse Homomorphism, construction

o Leth: T(F) — T(F’) be a tree homomorphism determined by hr
o Let A'=(Q,F,Q;A") be a DFTA with L = L(A)
o We define DFTA A = (Q' U {s}, F, Q;, A), with the rules

f(Gr,....qn) = g€ A€ Fp, he(f)lpr,....Pa] w4 G
where q; = p; if x; occurs in h=(f), and g; = s otherwise
a—sel, f(s,....,8) >seA

e Intuition: Accept node f, if its image is accepted by A’
e If image does not depend on a subtree, accept any subtree (state s)

53/161

Inverse Homomorphism, proof

e Show t —4 qiff A(t) -4 q

54/161

Inverse Homomorphism, proof

e Show t —4 qiff A(t) -4 q
e On board

54/161

Table of Contents

@ Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

55

Last Lecture

¢ Inverse homomorphisms preserve regularity
e Started Myhill-Nerode Theorem

56

Reminder: Equivalence relation

e Arelation =C A x Ais called equivalence relation, iff it is reflexive,
transitive and symmetric

57

Reminder: Equivalence relation

e Arelation =C A x Ais called equivalence relation, iff it is reflexive,
transitive and symmetric

e The set [a]l= := {& | a= &'} is called the equivalence class of a

57

Reminder: Equivalence relation

e Arelation =C A x Ais called equivalence relation, iff it is reflexive,
transitive and symmetric

e The set [a]l= := {& | a= &'} is called the equivalence class of a

¢ An equivalence relation is of finite index, if there are only finitely many
equivalence classes

57/161

Congruence

¢ An equivalence relation = on T(F) is a congruence, iff

VieFp. (Vi<nu=v) = f(u,...,up) = f(vy,...

) Vn)

58

Congruence

¢ An equivalence relation = on T(F) is a congruence, iff

VieFp,. (Vi<nu=v) = f(uy,...,up) =f(vy,...,Vp)

e Intuition: Functions are equivalent if applied to equivalent arguments.

58

Congruence

¢ An equivalence relation = on T(F) is a congruence, iff

VieFp,. (Vi<nu=v) = f(uy,...,up) =f(vy,...,Vp)

e Intuition: Functions are equivalent if applied to equivalent arguments.

e Note: = is congruence, iff closed under (1-hole) contexts, i.e.

VCuv.u=v = C[u] = C[v]

58

Congruence

¢ An equivalence relation = on T(F) is a congruence, iff

VieFp,. (Vi<nu=v) = f(uy,...,up) =f(vy,...,Vp)

e Intuition: Functions are equivalent if applied to equivalent arguments.
e Note: = is congruence, iff closed under (1-hole) contexts, i.e.

VCuv.u=v = C[u] = C[v]

e For a language L, we define the congruence =; by

u=, viffvC. Clu] e Liff C[v] e L

58/161

Congruence

¢ An equivalence relation = on T(F) is a congruence, iff

VieFp,. (Vi<nu=v) = f(uy,...,up) =f(vy,...,Vp)

e Intuition: Functions are equivalent if applied to equivalent arguments.
e Note: = is congruence, iff closed under (1-hole) contexts, i.e.

VCuv.u=v = C[u] = C[v]

e For a language L, we define the congruence =; by

u=, viffvC. Clu] e Liff C[v] e L

¢ Obviously an equivalence relation. Obviously a congruence.

58/161

Congruence

¢ An equivalence relation = on T(F) is a congruence, iff

VieFp,. (Vi<nu=v) = f(uy,...,up) =f(vy,...,Vp)

e Intuition: Functions are equivalent if applied to equivalent arguments.

e Note: = is congruence, iff closed under (1-hole) contexts, i.e.

VCuv.u=v = C[u] = C[v]

e For a language L, we define the congruence =; by

u=, viffvC. Clu] e Liff C[v] e L

¢ Obviously an equivalence relation. Obviously a congruence.
e Intuition: L does not distinguish between u and v

58

Myhill-Nerode Theorem

The following statements are equivalent
© L is aregular tree language

59/161

Myhill-Nerode Theorem

Theorem
The following statements are equivalent
© L is aregular tree language
® L is the union of some equivalence classes of a finite-index congruence

59/161

Myhill-Nerode Theorem

Theorem

The following statements are equivalent
© L is aregular tree language
® L is the union of some equivalence classes of a finite-index congruence
® =, is of finite index

59/161

Convention

e Complete DFTAs are written as (Q, F, Q, §)
o Withé: (Fox Q" — Q)
e Corresponds to A via

f(q1,...,qn) = qiff 5(f,q1,...,qn) = q
o Naturally extended to trees

S(f(tr, ... t) =6(f,8(t),...,0(tn))
e Compatible with — 4, i.e.

t—aqiffé(t)=q

60

Proof of Myhill-Nerode Theorem

@ Lis aregular tree language
9 L is the union of some equivalence classes of a finite-index congruence
9 = is of finite index

61/161

Proof of Myhill-Nerode Theorem

@ Lis aregular tree language
9 L is the union of some equivalence classes of a finite-index congruence
e = is of finite index

1—2 e Take complete DFTA A= (Q, F, Qr,d) with L = L(.A).

61/161

Proof of Myhill-Nerode Theorem

@ Lis aregular tree language
9 L is the union of some equivalence classes of a finite-index congruence
e = is of finite index

1—2 e Take complete DFTA A= (Q, F, Qr,d) with L = L(.A).

e Letu=viff §(u) = 6(v) (Obviously a congruence)

61/161

Proof of Myhill-Nerode Theorem

@ Lis aregular tree language

9 L is the union of some equivalence classes of a finite-index congruence
@® =, is of finite index

1—2 e Take complete DFTA A= (Q, F, Qr,d) with L = L(.A).

e Letu=viff §(u) = 6(v) (Obviously a congruence)
¢ = has finite index (at most |Q| equivalence classes)

61

Proof of Myhill-Nerode Theorem

@ Lis aregular tree language

9 L is the union of some equivalence classes of a finite-index congruence

9 =, is of finite index
1—-2
Let u = viff 6(u) = 6(v) (Obviously a congruence)
= has finite index (at most |Q| equivalence classes)
We have L = |J{[u] | 6(u) € Q¢}

Take complete DFTA A = (Q, F, Qf, d) with L = L(A).

61

Proof of Myhill-Nerode Theorem

@ Lis aregular tree language

9 L is the union of some equivalence classes of a finite-index congruence

9 =, is of finite index
1—-2
Let u = viff 6(u) = 6(v) (Obviously a congruence)
= has finite index (at most |Q| equivalence classes)
We have L = |J{[u] | 6(u) € Q¢}

Take complete DFTA A = (Q, F, Qf, d) with L = L(A).

61

Proof of Myhill-Nerode Theorem

@ Lis aregular tree language
9 L is the union of some equivalence classes of a finite-index congruence
@® =, is of finite index

1—2 e Take complete DFTA A = (Q, F, Q, d) with L = L(A).
e Letu=viff §(u) = 6(v) (Obviously a congruence)
¢ = has finite index (at most |Q| equivalence classes)
e We have L = [J{[u] | 6(u) € Q¢}

23 e Let R be the finite-index congruence. Assume uRyv.

61

Proof of Myhill-Nerode Theorem

@ Lis aregular tree language
9 L is the union of some equivalence classes of a finite-index congruence
@® =, is of finite index

1—2 e Take complete DFTA A = (Q, F, Q, d) with L = L(A).
e Letu=viff §(u) = 6(v) (Obviously a congruence)
¢ = has finite index (at most |Q| equivalence classes)
e We have L = [J{[u] | 6(u) € Q¢}

23 e Let R be the finite-index congruence. Assume uRyv.

Then, C[u]RCJv] for all contexts C

61

Proof of Myhill-Nerode Theorem

@ Lis aregular tree language
9 L is the union of some equivalence classes of a finite-index congruence
@® =, is of finite index

1—2 e Take complete DFTA A = (Q, F, Q, d) with L = L(A).
e Letu=viff §(u) = 6(v) (Obviously a congruence)
¢ = has finite index (at most |Q| equivalence classes)
e We have L = [J{[u] | 6(u) € Q¢}

23 e Let R be the finite-index congruence. Assume uRyv.

Then, C[u]RCJv] for all contexts C
e As L is union of eqg-classes of R, we have C[u] € Liff C[v] € L

61

Proof of Myhill-Nerode Theorem

@ Lis aregular tree language
9 L is the union of some equivalence classes of a finite-index congruence

9 =, is of finite index

1—2 e Take complete DFTA A = (Q, F, Q, d) with L = L(A).
e Letu=viff §(u) = 6(v) (Obviously a congruence)
¢ = has finite index (at most |Q| equivalence classes)
e We have L = [J{[u] | 6(u) € Q¢}

23 Let R be the finite-index congruence. Assume uRyv.

Then, C[u]RCJv] for all contexts C
As L is union of eg-classes of R, we have C[u] € Liff C[v] € L
Thus,u=, v

61

Proof of Myhill-Nerode Theorem

@ Lis aregular tree language
9 L is the union of some equivalence classes of a finite-index congruence
@® =, is of finite index

1—2 e Take complete DFTA A = (Q, F, Q, d) with L = L(A).
e Letu=viff §(u) = 6(v) (Obviously a congruence)
¢ = has finite index (at most |Q| equivalence classes)
e We have L = [J{[u] | 6(u) € Q¢}

23 Let R be the finite-index congruence. Assume uRyv.

Then, C[u]RCJv] for all contexts C

As L is union of eg-classes of R, we have C[u] € Liff C[v] € L
Thus,u=, v

l.e., =, has not more eg-classes then the finite-index R

Proof of Myhill-Nerode Theorem

@ Lis aregular tree language
9 L is the union of some equivalence classes of a finite-index congruence
@® =, is of finite index

1—2 e Take complete DFTA A = (Q, F, Q, d) with L = L(A).
e Letu=viff §(u) = 6(v) (Obviously a congruence)
¢ = has finite index (at most |Q| equivalence classes)
e We have L = [J{[u] | 6(u) € Q¢}

23 Let R be the finite-index congruence. Assume uRyv.

Then, C[u]RCJv] for all contexts C

As L is union of eg-classes of R, we have C[u] € Liff C[v] € L
Thus,u=, v

l.e., =, has not more eg-classes then the finite-index R

Proof of Myhill-Nerode Theorem

o L is a regular tree language

9 L is the union of some equivalence classes of a finite-index congruence

@® =, is of finite index

Take complete DFTA A = (Q, F, Qr,) with L = L(A).
Let u = viff 6(u) = 6(v) (Obviously a congruence)

= has finite index (at most |Q| equivalence classes)
We have L = |J{[u] | 6(u) € Q¢}

Let R be the finite-index congruence. Assume uRyv.
Then, C[u]RCJv] for all contexts C

As L is union of eg-classes of R, we have C[u] € Liff C[v] € L
Thus,u=, v

l.e., =, has not more eg-classes then the finite-index R

1—2

2—-3

3—-1

Let Qmin be the set of eq-classes of =,

Proof of Myhill-Nerode Theorem

o L is a regular tree language

9 L is the union of some equivalence classes of a finite-index congruence

@® =, is of finite index

Take complete DFTA A = (Q, F, Qr,) with L = L(A).
Let u = viff 6(u) = 6(v) (Obviously a congruence)

= has finite index (at most |Q| equivalence classes)
We have L = |J{[u] | 6(u) € Q¢}

Let R be the finite-index congruence. Assume uRyv.
Then, C[u]RCJv] for all contexts C

As L is union of eg-classes of R, we have C[u] € Liff C[v] € L
Thus,u=, v

l.e., =, has not more eg-classes then the finite-index R

1—2

2—-3

3—-1

Let Qmin be the set of eq-classes of =,

o Let Amin = {f([th]=,, - - - [Un]=,) = [F(ur, ... un)]=, | F € Fn,ur, ...

T(F)}

,Un €

Proof of Myhill-Nerode Theorem

o L is a regular tree language

9 L is the union of some equivalence classes of a finite-index congruence

@® =, is of finite index

Take complete DFTA A = (Q, F, Qr,) with L = L(A).
Let u = viff 6(u) = 6(v) (Obviously a congruence)

= has finite index (at most |Q| equivalence classes)
We have L = |J{[u] | 6(u) € Q¢}

Let R be the finite-index congruence. Assume uRyv.
Then, C[u]RCJv] for all contexts C

As L is union of eg-classes of R, we have C[u] € Liff C[v] € L
Thus,u=, v

l.e., =, has not more eg-classes then the finite-index R

1—2

2—-3

3—-1

Let Qmin be the set of eq-classes of =,

o Let Amin = {f([th]=,, - - - [Un]=,) = [F(ur, ... un)]=, | F € Fn,ur, ...

T(F)}
o Note that A, is deterministic, as =, is a congruence

,Un €

Proof of Myhill-Nerode Theorem

o L is a regular tree language

9 L is the union of some equivalence classes of a finite-index congruence

@® =, is of finite index

Take complete DFTA A = (Q, F, Qr,) with L = L(A).
Let u = viff 6(u) = 6(v) (Obviously a congruence)

= has finite index (at most |Q| equivalence classes)
We have L = |J{[u] | 6(u) € Q¢}

Let R be the finite-index congruence. Assume uRyv.
Then, C[u]RCJv] for all contexts C

As L is union of eg-classes of R, we have C[u] € Liff C[v] € L
Thus,u=, v

l.e., =, has not more eg-classes then the finite-index R

1—2

2—-3

3—-1

Let Qmin be the set of eq-classes of =,

o Let Amin = {f([th]=,, - - - [Un]=,) = [F(ur, ... un)]=, | F € Fn,ur, ...

T(F)}
o Note that A, is deterministic, as =, is a congruence
o Let Quin, :={[u] | u € L}

,Un €

Proof of Myhill-Nerode Theorem

o L is a regular tree language

9 L is the union of some equivalence classes of a finite-index congruence

@® =, is of finite index

Take complete DFTA A = (Q, F, Qr,) with L = L(A).
Let u = viff 6(u) = 6(v) (Obviously a congruence)

= has finite index (at most |Q| equivalence classes)
We have L = |J{[u] | 6(u) € Q¢}

Let R be the finite-index congruence. Assume uRyv.
Then, C[u]RCJv] for all contexts C

As L is union of eg-classes of R, we have C[u] € Liff C[v] € L
Thus,u=, v

l.e., =, has not more eg-classes then the finite-index R

1—2

2—-3

3—-1

Let Qmin be the set of eq-classes of =,

o Let Amin = {f([th]=,, - - - [Un]=,) = [F(ur, ... un)]=, | F € Fn,ur, ...

T(F)}
o Note that A, is deterministic, as =, is a congruence
o Let Quin, :={[u] | u € L}
e The DFTA Apin := (Qmin, F, Qmin;» Amin) recognizes the language L

,Un €

Unique minimal DFTA

e Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.

62

Unique minimal DFTA

e Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.

e Itis given by A, from the proof of Myhill-Nerode

62

Unique minimal DFTA

e Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.

e Itis given by A, from the proof of Myhill-Nerode
e Proof sketch (more details on board):

62

Unique minimal DFTA

e Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.

e Itis given by A, from the proof of Myhill-Nerode
e Proof sketch (more details on board):
e Assume L is recognized by complete DFTA A = (Q, F, Q, 6)

62

Unique minimal DFTA

e Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.

e Itis given by A, from the proof of Myhill-Nerode
e Proof sketch (more details on board):

e Assume L is recognized by complete DFTA A = (Q, F, Q, 6)
e The relation =4 is refinement of =,
* =aCE

62

Unique minimal DFTA

e Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.

e Itis given by A, from the proof of Myhill-Nerode
e Proof sketch (more details on board):

e Assume L is recognized by complete DFTA A = (Q, F, Q, 6)
e The relation =4 is refinement of =,
* =aCE

e Thus |Q| > |Qmin| (proves existence of minimal DFTA)

62

Unique minimal DFTA

e Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.

e Itis given by A, from the proof of Myhill-Nerode
e Proof sketch (more details on board):

e Assume L is recognized by complete DFTA A = (Q, F, Q, 6)
e The relation =4 is refinement of =,
e =4C=
e Thus |Q| > |Qmin| (proves existence of minimal DFTA)
o Now assume |Q| = | Qumin|

62

Unique minimal DFTA

e Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.

e Itis given by A, from the proof of Myhill-Nerode
e Proof sketch (more details on board):

e Assume L is recognized by complete DFTA A = (Q, F, Q, 6)
e The relation =4 is refinement of =,
° =4C=
e Thus |Q| > |Qmin| (proves existence of minimal DFTA)
e Now assume |Q| = |Qmin|
e All states in Q are accessible (otherwise, contradiction to minimality)

62

Unique minimal DFTA

e Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.

e Itis given by A, from the proof of Myhill-Nerode
e Proof sketch (more details on board):

e Assume L is recognized by complete DFTA A = (Q, F, Q, 6)

e The relation =4 is refinement of =,
° =4C=

e Thus |Q| > |Qmin| (proves existence of minimal DFTA)

e Now assume |Q| = |Qmin|
e All states in Q are accessible (otherwise, contradiction to minimality)
e Letg e Qwith §(u) =gq.

62

Unique minimal DFTA

e Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.
e Itis given by A, from the proof of Myhill-Nerode
e Proof sketch (more details on board):
e Assume L is recognized by complete DFTA A = (Q, F, @y, 6)
e The relation =4 is refinement of =,
e =4C=
e Thus |Q| > |Qmin| (proves existence of minimal DFTA)
o Now assume |Q| = | Qumin|
e All states in Q are accessible (otherwise, contradiction to minimality)
e Letg e Qwith §(u) =gq.
e |dentify g and §min(u)

62

Unique minimal DFTA

e Corollary: The minimal complete DFTA accepting a regular language
exists and is unique.

e Itis given by A, from the proof of Myhill-Nerode
e Proof sketch (more details on board):

e Assume L is recognized by complete DFTA A = (Q, F, Q, 6)
e The relation =4 is refinement of =,

° =4C=

e Thus |Q| > |Qmin| (proves existence of minimal DFTA)
e Now assume |Q| = |Qmin|
e All states in Q are accessible (otherwise, contradiction to minimality)
e Letg e Qwith §(u) =gq.
e |dentify g and §min(u)
e This mapping is consistent and bijection

62

Minimization algorithm

e Given complete and reduced DFTA A = (Q, F, Q, d)

63/161

Minimization algorithm

e Given complete and reduced DFTA A = (Q, F, Q, d)
¢ Idea: Refine an equivalence relation until consistent with A

63

Minimization algorithm

e Given complete and reduced DFTA A = (Q, F, Q, d)
¢ Idea: Refine an equivalence relation until consistent with A

@ Start with P = {Qr, Q\ G}

63

Minimization algorithm

e Given complete and reduced DFTA A = (Q, F, Q, d)
¢ Idea: Refine an equivalence relation until consistent with A

@ Start with P = {Qr, Q\ G}

® Refine P. Let P’ be the new value. Set qP'q/, if
* qPq
e g = q is consistent wrt. the rules, i.e.

Ve Fn, Qty--yQi1, Qit1, - - - Q-

5“:‘717---7(7i717q7(7i+17--~7qn)P5(faq17---aQI717q/7(7i+17-~~

7q”)

63

Minimization algorithm

e Given complete and reduced DFTA A = (Q, F, Q, d)
¢ Idea: Refine an equivalence relation until consistent with A

@ Start with P = {Qr, Q\ G}

® Refine P. Let P’ be the new value. Set qP'q/, if
* qPq
e g = q is consistent wrt. the rules, i.e.

Ve Fn, Qty--yQi1, Qit1, - - - Q-

5“:‘717---7(7i717q7(7i+17--~7qn)P5(faq17---aQI717q/7(7i+17-~~

©® Repeat until no more refinement possible

7q”)

63

Minimization algorithm

e Given complete and reduced DFTA A = (Q, F, Q, d)
¢ Idea: Refine an equivalence relation until consistent with A

@ Start with P = {Qr, Q\ G}

® Refine P. Let P’ be the new value. Set qP'q/, if
* qPq
e g = q is consistent wrt. the rules, i.e.

Ve Fn, Qty--yQi1, Qit1, - - - Q-

5“:‘717---7(7i717q7(7i+17--~7qn)P5(faq17---aQI717q/7(7i+17-~~

©® Repeat until no more refinement possible
@ Define Anpin == (Qmin, F, Qminf, 0), where

7q”)

63

Minimization algorithm

e Given complete and reduced DFTA A = (Q, F, Q, d)
¢ Idea: Refine an equivalence relation until consistent with A

@ Start with P = {Qr, Q\ G}

® Refine P. Let P’ be the new value. Set qP'q/, if
* qPq
e g = q is consistent wrt. the rules, i.e.

Ve Fn, Qty--yQi1, Qit1, - - - Q-

5“:‘717---7(7i717q7(7i+17-~~7qn)P5(faq17---aQI717q/7QI+17-~~

©® Repeat until no more refinement possible
@ Define Anpin == (Qmin, F, Qminf, 0), where
e Qmin := Equivalence classes of P

7q”)

63

Minimization algorithm

e Given complete and reduced DFTA A = (Q, F, Q, d)
¢ Idea: Refine an equivalence relation until consistent with A

@ Start with P = {Qr, Q\ G}

® Refine P. Let P’ be the new value. Set qP'q/, if
* qPq
e g = q is consistent wrt. the rules, i.e.

Ve Fn, Qty--yQi1, Qit1, - - - Q-

5“:‘717---7(7i717q7(7i+17-~~7qn)P5(faq17---aQI717q/7QI+17-~~

©® Repeat until no more refinement possible
@ Define Anpin == (Qmin, F, Qminf, 0), where
e Qmin := Equivalence classes of P
* Qminr :=={[q] | g € Qr}

7q”)

63

Minimization algorithm

e Given complete and reduced DFTA A = (Q, F, Q, d)
¢ Idea: Refine an equivalence relation until consistent with A

@ Start with P = {Qr, Q\ G}

® Refine P. Let P’ be the new value. Set qP'q/, if
* qPq
e g = q is consistent wrt. the rules, i.e.

Ve Fn, Qty--yQi1, Qit1, - - - Q-

5“:‘717---7(7i717q7(7i+17-~~7qn)P5(faq17---aQI717q/7QI+17-~~

©® Repeat until no more refinement possible
@ Define Anpin == (Qmin, F, Qminf, 0), where
e Qmin := Equivalence classes of P
* Qmin :={[q] | g € Q}
* Smin(f, [qi], - [gn]) = [0(F, a1, .., Gn)]

7q”)

63

Minimization algorithm

e Given complete and reduced DFTA A = (Q, F, Q, d)
¢ Idea: Refine an equivalence relation until consistent with A

@ Start with P = {Qr, Q\ G}

® Refine P. Let P’ be the new value. Set qP'q/, if
* qPq
e g = q is consistent wrt. the rules, i.e.

Ve Fn, Qty--yQi1, Qit1, - - - Q-

5“:‘717---7(7i717q7(7i+17-~~7qn)P5(faq17---aQI717q/7QI+17-~~

©® Repeat until no more refinement possible
@ Define Anpin == (Qmin, F, Qminf, 0), where
e Qmin := Equivalence classes of P
* Qmin :={[q] | g € Q}
* Smin(f, [qi], - [gn]) = [0(F, a1, .., Gn)]

o L(Amin) = L(A). Proof on board.

7q”)

63

Last Lecture

e Myhill-Nerode Theorem
e Minimization of tree automata

64

Table of Contents

@ Basics
Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

65

Top-Down Tree Automata

¢ Recall: Tree automata rewrite tree to single state

66/161

Top-Down Tree Automata

¢ Recall: Tree automata rewrite tree to single state
e Starting at the leaves, i.e. bottom-up

66

Top-Down Tree Automata

¢ Recall: Tree automata rewrite tree to single state
e Starting at the leaves, i.e. bottom-up
e f(gi,...,qn) = q

66

Top-Down Tree Automata

¢ Recall: Tree automata rewrite tree to single state
e Starting at the leaves, i.e. bottom-up

e f(qi,...,qn) > q
e Intuition: Assign state to a given tree, consume tree

66

Top-Down Tree Automata

¢ Recall: Tree automata rewrite tree to single state
e Starting at the leaves, i.e. bottom-up

e f(qi,...,qn) > q
e Intuition: Assign state to a given tree, consume tree

e Now: Rewrite state to a tree

66

Top-Down Tree Automata

¢ Recall: Tree automata rewrite tree to single state
e Starting at the leaves, i.e. bottom-up

e f(qi,...,qn) > q
e Intuition: Assign state to a given tree, consume tree

o Now: Rewrite state to a tree
o Starting at a single root state

66

Top-Down Tree Automata

¢ Recall: Tree automata rewrite tree to single state
e Starting at the leaves, i.e. bottom-up

e f(qi,...,qn) > q
e Intuition: Assign state to a given tree, consume tree

o Now: Rewrite state to a tree
o Starting at a single root state
° q— f(q17"'7q")

66

Top-Down Tree Automata

¢ Recall: Tree automata rewrite tree to single state

e Starting at the leaves, i.e. bottom-up

® f(q1,---,qn) —q

e Intuition: Assign state to a given tree, consume tree
o Now: Rewrite state to a tree

o Starting at a single root state

e g— f(q1,...,qn)
o Intuition: Assign tree to given state, produce tree.

66

Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where

67/161

Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where
e Fis aranked alphabet

67/161

Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where

e Fis aranked alphabet
e Qis afinite set of states, with QN F =0

67

Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where
e Fis aranked alphabet
e Qis afinite set of states, with QN F =0
e | C Qis a set of initial states

67

Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where
e Fis aranked alphabet
¢ Qs a finite set of states, with QN F =0
e | C Qis a set of initial states
e A is a set of rules of the form

qg—f(g1,...,qn)forf € Fn,q,q1,...,qn € Q

67

Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where
e Fis aranked alphabet
¢ Qs a finite set of states, with QN F =0
e | C Qis a set of initial states
e A is a set of rules of the form

qg—f(g1,...,qn)forf € Fn,q,q1,...,qn € Q

o We define the production relation q — 4 t as the least relation that
satisfies

q—fq,....,qn) €EA,q1 =4 ty,.

e Qn—=ath = q—af(h,.

67

ot

Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where
e Fis aranked alphabet

e Qis afinite set of states, with QN F =0

e | C Qis a set of initial states

e A is a set of rules of the form
g—f(qr,...,qn)forf € Fn,q,qu,...,qn € Q

o We define the production relation q — 4 t as the least relation that
satisfies

q—fq,....,qn) €EA,q1 =4 ty,.

e The language of Ais L(A) :={t|3gel. q—4t}

e Qn—=ath = q—af(h,.

67

ot

Equal expressiveness

Theorem

A language is regular if and only if it is the language of a top-down tree
automaton.

e Proof

68/161

Equal expressiveness

Theorem

A language is regular if and only if it is the language of a top-down tree
automaton.

e Proof
¢ Straightforward induction (Hint: Reverse arrows, exchange / and Q)

68/161

Equal expressiveness

Theorem

A language is regular if and only if it is the language of a top-down tree
automaton.

e Proof

¢ Straightforward induction (Hint: Reverse arrows, exchange / and Q)
o Exercise

68/161

Deterministic Top-Down Tree Automata

e A top-down tree-automaton A = (Q, F, I, A) is deterministic, iff

69/161

Deterministic Top-Down Tree Automata

e A top-down tree-automaton A = (Q, F, I, A) is deterministic, iff
o |l =1

69/161

Deterministic Top-Down Tree Automata

e A top-down tree-automaton A = (Q, F, I, A) is deterministic, iff
o |l =1
e q—f(q,....,q) €ANG—=(ql,....,qn) EA = G1=qN...ANQh =G

69/161

Deterministic Top-Down Tree Automata

e A top-down tree-automaton A = (Q, F, I, A) is deterministic, iff
o |l =1
e g—f(qi,....qn) EANG—f(q),...,qn) EA = G1=q1A... AN =0
e Unfortunately: There are regular languages not accepted by any
deterministic top-down FTA

69/161

Deterministic Top-Down Tree Automata

e A top-down tree-automaton A = (Q, F, I, A) is deterministic, iff
o |l =1
e gq—f(q,....,qn) EANG—=f(qf,...,qn) EA = G1=Q;A...ANGr =0
e Unfortunately: There are regular languages not accepted by any
deterministic top-down FTA
o L ={f(a,b),f(b,a)}. Obviously regular. Even finite.

69/161

Deterministic Top-Down Tree Automata

e A top-down tree-automaton A = (Q, F, I, A) is deterministic, iff

o |l =1

e gq—f(q,....,qn) EANG—=f(qf,...,qn) EA = G1=Q;A...ANGr =0
e Unfortunately: There are regular languages not accepted by any

deterministic top-down FTA
o [= {f(a,b), f(b,a)}. Obviously regular. Even finite.
e But: Any deterministic top-down FTA that accepts the words in L also
accepts f(a, a).

69/161

Table of Contents

@® Alternative Representations of Regular Languages

70/161

Table of Contents

@® Alternative Representations of Regular Languages
Regular Tree Grammars
Tree Regular Expressions

71/161

Regular Tree Grammars

e Extend grammars to trees

72/161

Regular Tree Grammars

e Extend grammars to trees
e Here: Only for the regular case

72/161

Regular Tree Grammars

e Extend grammars to trees
e Here: Only for the regular case
e A regular tree grammar (RTG) is a tuple G = (S, N, F, R), where

72

Regular Tree Grammars

e Extend grammars to trees

e Here: Only for the regular case

e A regular tree grammar (RTG) is a tuple G = (S, N, F, R), where
e S e Nis a start symbol

72

Regular Tree Grammars

e Extend grammars to trees
e Here: Only for the regular case
e A regular tree grammar (RTG) is a tuple G = (S, N, F, R), where

e S e Nis a start symbol
e N is a finite set of nonterminals with arity zero,and NN F =0

72

Regular Tree Grammars

e Extend grammars to trees

e Here: Only for the regular case

e A regular tree grammar (RTG) is a tuple G = (S, N, F, R), where
e S e Nis a start symbol

e N is a finite set of nonterminals with arity zero,and NN F =0
e Fis aranked alphabet

72

Regular Tree Grammars

e Extend grammars to trees

e Here: Only for the regular case

e A regular tree grammar (RTG) is a tuple G = (S, N, F, R), where
S € N is a start symbol

N is a finite set of nonterminals with arity zero, and NN F =

F is a ranked alphabet

R is a set of production rules of the form n — g, where n € N and
B e T(FUN)

72

Regular Tree Grammars

Extend grammars to trees
e Here: Only for the regular case
A regular tree grammar (RTG) is a tuple G = (S, N, F, R), where

S € N is a start symbol

N is a finite set of nonterminals with arity zero, and NN F =

F is a ranked alphabet

R is a set of production rules of the form n — g, where n € N and
B e T(FUN)

e These are almost top-down tree automata

72

Regular Tree Grammars

Extend grammars to trees
e Here: Only for the regular case
A regular tree grammar (RTG) is a tuple G = (S, N, F, R), where

e S e Nis a start symbol

e N is a finite set of nonterminals with arity zero,and NN F =0

e Fis aranked alphabet

e Ris a set of production rules of the form n — 3, where n € N and
B e T(FUN)

e These are almost top-down tree automata
e But rules are a bit more complicated

72

Derivation Relation

e Intuition: Rewrite S to a tree, using the rules

73/161

Derivation Relation

e Intuition: Rewrite S to a tree, using the rules

e Foran RTG G = (S, N, F, R), we define a derivation step 5 =g 5’ for
B,8 € T(FUN) by

B=cgfh <= ICun B=C[njAn—ueRAS =Clu]

73

Derivation Relation

e Intuition: Rewrite S to a tree, using the rules

e Foran RTG G = (S, N, F, R), we define a derivation step 5 =g 5’ for
B,8 € T(FUN) by

B=cgfh <= ICun B=C[njAn—ueRAS =Clu]

e Wewrite g =g t,ifft/ € T(F)and g =5 t/

73/161

Derivation Relation

e Intuition: Rewrite S to a tree, using the rules

e Foran RTG G = (S, N, F, R), we define a derivation step 5 =g 5’ for
B,8 € T(FUN) by

B=cgfh <= ICun B=C[njAn—ueRAS =Clu]

e Wewrite g =g t,ifft/ € T(F)and g =5 t/
e For ne N, we define L(G,n) :={te T(F)| n—gt}

73

Derivation Relation

e Intuition: Rewrite S to a tree, using the rules

e Foran RTG G = (S, N, F, R), we define a derivation step 5 =g 5’ for
B,8 € T(FUN) by

B=cgfh <= ICun B=C[njAn—ueRAS =Clu]

e Wewrite g =g t,ifft/ € T(F)and g =5 t/
e For ne N, we define L(G,n) :={te T(F)| n—gt}
o We define L(G) := L(G, S)

73

Reduced tree grammars

e A non-terminal n is reachable, iff there is a derivation from S to a tree
containing n:

3C. S =% Clnl

74

Reduced tree grammars

e A non-terminal n is reachable, iff there is a derivation from S to a tree
containing n:

3C. S =% Clnl

¢ A non-terminal nis productive, iff a tree without nonterminals can be
derived from it:

L(G,n) # 0

74

Reduced tree grammars

e A non-terminal n is reachable, iff there is a derivation from S to a tree
containing n:

3C. S =% Clnl

¢ A non-terminal nis productive, iff a tree without nonterminals can be
derived from it:

L(G,n) # 0

e An RTG is reduced, if every nonterminal is reachable and productive

74

Computation of Equivalent Reduced Grammar

e For every RTG G, reduced tree grammar G’ with L(G) = L(G') can be
computed

75/161

Computation of Equivalent Reduced Grammar

e For every RTG G, reduced tree grammar G’ with L(G) = L(G') can be
computed

e Provided that L(G) # 0, otherwise S must not be productive.

75/161

Computation of Equivalent Reduced Grammar

e For every RTG G, reduced tree grammar G’ with L(G) = L(G') can be
computed

e Provided that L(G) # 0, otherwise S must not be productive.

@ Remove unproductive non-terminals

75/161

Computation of Equivalent Reduced Grammar

e For every RTG G, reduced tree grammar G’ with L(G) = L(G') can be
computed

e Provided that L(G) # 0, otherwise S must not be productive.

@ Remove unproductive non-terminals
e Productive nonterminals can be computed by saturation algorithm:

75/161

Computation of Equivalent Reduced Grammar

e For every RTG G, reduced tree grammar G’ with L(G) = L(G') can be
computed

e Provided that L(G) # 0, otherwise S must not be productive.

@ Remove unproductive non-terminals
e Productive nonterminals can be computed by saturation algorithm:
e nis productive, if there is a rule n — 3 such that every nonterminal in g3 is
productive

75

Computation of Equivalent Reduced Grammar

e For every RTG G, reduced tree grammar G’ with L(G) = L(G') can be
computed

e Provided that L(G) # 0, otherwise S must not be productive.

@ Remove unproductive non-terminals

e Productive nonterminals can be computed by saturation algorithm:
e nis productive, if there is a rule n — 3 such that every nonterminal in g3 is
productive

® Remove unreachable nonterminals

75

Computation of Equivalent Reduced Grammar

e For every RTG G, reduced tree grammar G’ with L(G) = L(G') can be
computed

e Provided that L(G) # 0, otherwise S must not be productive.

@ Remove unproductive non-terminals
e Productive nonterminals can be computed by saturation algorithm:
e nis productive, if there is a rule n — 3 such that every nonterminal in g3 is
productive
® Remove unreachable nonterminals

e Again saturation: S is reachable, n is reachable if there is a rule i — C[n]
such that f is reachable

75

Correctness

e Obviously, removing unproductive or unreachable nonterminals does not
change the language

76

Correctness

e Obviously, removing unproductive or unreachable nonterminals does not
change the language

e Remains to show: Removing unreachable nonterminals cannot create
new unproductive ones

Correctness

e Obviously, removing unproductive or unreachable nonterminals does not
change the language
e Remains to show: Removing unreachable nonterminals cannot create
new unproductive ones
e On board

Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(ny, ..., n,) for
nny,....,npheN

77/161

Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(n, ...

nny,....,npheN
e Every RTG can be transformed into an equivalent normal one

, np) for

77

Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(n, ...

nny,....,npheN
e Every RTG can be transformed into an equivalent normal one
o lterate: Replace arule n — f(s1,...,8n) by n — f(ny,...,nn)

, np) for

77

Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(ny,.

nny,....,npheN
e Every RTG can be transformed into an equivalent normal one
o lterate: Replace arule n — f(s1,...,8n) by n — f(ny,...,nn)

e where nj =s;ifs; e N

.., np) for

77

Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(ny,.

nny,....,npheN
e Every RTG can be transformed into an equivalent normal one
o lterate: Replace arule n — f(s1,...,8n) by n — f(ny,...,nn)

e where nj =s;ifs; e N
e n; € N fresh otherwise. In this case, add rule n; — s;

.., np) for

77

Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(ny,.

nny,....,npheN
e Every RTG can be transformed into an equivalent normal one
o lterate: Replace arule n — f(s1,...,8n) by n — f(ny,...,nn)

e where nj =s;ifs; e N
e n; € N fresh otherwise. In this case, add rule n; — s;

o After iteration, all rules have form n — f(ny,...,n,) or ny — no

.., np) for

77

Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(ny, ..., n,) for
nny,....,npheN
e Every RTG can be transformed into an equivalent normal one
o lterate: Replace arule n — f(s1,...,8n) by n — f(ny,...,nn)
o where nj=sjifs;e N
e n; € N fresh otherwise. In this case, add rule n; — s;

o After iteration, all rules have form n — f(ny,...,n,) or ny — no
¢ Eliminate the latter rules by replacing si — s> by rules sy — tforall t ¢ N
with so =" n—t

77

Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(ny, ..., n,) for
nny,....,npheN
e Every RTG can be transformed into an equivalent normal one
o lterate: Replace arule n — f(s1,...,8n) by n — f(ny,...,nn)
o where nj=sjifs;e N
e n; € N fresh otherwise. In this case, add rule n; — s;

o After iteration, all rules have form n — f(ny,...,n,) or ny — no
¢ Eliminate the latter rules by replacing si — s> by rules sy — tforall t ¢ N
with so =" n—t

o Cf.: Elimination of epsilon rules

77

Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(ny, ..., n,) for
nny,....,npheN
e Every RTG can be transformed into an equivalent normal one
o lterate: Replace arule n — f(s1,...,8n) by n — f(ny,...,nn)
o where nj=sjifs;e N
e n; € N fresh otherwise. In this case, add rule n; — s;

o After iteration, all rules have form n — f(ny,...,n,) or ny — no
¢ Eliminate the latter rules by replacing si — s> by rules sy — tforall t ¢ N
with so =" n—t

o Cf.: Elimination of epsilon rules
e Correctness (ldeas)

77

Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(ny, ..., n,) for
nny,....,npheN
e Every RTG can be transformed into an equivalent normal one
o lterate: Replace arule n — f(s1,...,8n) by n — f(ny,...,nn)
o where nj=sjifs;e N
e n; € N fresh otherwise. In this case, add rule n; — s;

o After iteration, all rules have form n — f(ny,...,n,) or ny — no
¢ Eliminate the latter rules by replacing si — s> by rules sy — tforall t ¢ N
with so =" n—t

o Cf.: Elimination of epsilon rules
e Correctness (ldeas)
e Each step of the iteration preserves language

77

Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(ny, ..., n,) for
nny,....,npheN
e Every RTG can be transformed into an equivalent normal one
o lterate: Replace arule n — f(s1,...,8n) by n — f(ny,...,nn)
o where nj=sjifs;e N
e n; € N fresh otherwise. In this case, add rule n; — s;

o After iteration, all rules have form n — f(ny,...,n,) or ny — no
¢ Eliminate the latter rules by replacing si — s> by rules sy — tforall t ¢ N
with so =" n—t

o Cf.: Elimination of epsilon rules
e Correctness (ldeas)

e Each step of the iteration preserves language
o Elimination preserves language

77

Normalized RTGs and top-down NTFAs

e Obviously, normalized RTGs are isomorphic to top-down NTFAs

78/161

Normalized RTGs and top-down NTFAs

e Obviously, normalized RTGs are isomorphic to top-down NTFAs
e Thus, exactly the regular languages can be expressed by RTGs
Theorem

A language is regular if and only if it can be described by a regular tree
grammar.

78/161

Last Lecture

e Myhill Nerode Theorem

e Minimization Algorithm

e Top-Down Tree Automata

Regular Tree Grammars

Started: Tree Regular Expressions

79

Table of Contents

@® Alternative Representations of Regular Languages
Regular Tree Grammars
Tree Regular Expressions

80/161

Recall: Word regular expressions

eeu=c|(|aforacxr|e-e|le+e|e*

81/161

Recall: Word regular expressions

eeu=c|(|aforacxr|e-e|le+e|e*
o Empty word | empty language | single character | concatenation | choice |
iteration

81/161

Recall: Word regular expressions

eeu=c|(|aforacxr|e-e|le+e|e*
o Empty word | empty language | single character | concatenation | choice |
iteration

e Forexample: (r+w+o0)*-(r+w)-(r+w+0)*

81

Recall: Word regular expressions

eeu=c|(|aforacxr|e-e|le+e|e*
o Empty word | empty language | single character | concatenation | choice |
iteration

e Forexample: (r+w+o0)*-(r+w)-(r+w+0)*
¢ Words containing at least one r or at least one w

81

Recall: Word regular expressions

eeu=c|(|aforacxr|e-e|le+e|e*
o Empty word | empty language | single character | concatenation | choice |
iteration

e Forexample: (r+w+o0)*-(r+w)-(r+w+0)*
¢ Words containing at least one r or at least one w
e Recal:e*=c+e-e*

81

Tree regular expressions

o Consider the set {0, s(0), s(s(0)), ...}

82/161

Tree regular expressions

o Consider the set {0, s(0), s(s(0)), ...}
o Want to represent this as ,regular expression”

82

Tree regular expressions

o Consider the set {0, s(0), s(s(0)), ...}
o Want to represent this as ,regular expression”
e s(O)*-0

82

Tree regular expressions

e Consider the set {0, 5(0), s(s(0)), ...}

o Want to represent this as ,regular expression”
e s(O)*-0

e Idea: O indicates position for concatenation

82

Tree regular expressions

o Consider the set {0, s(0), s(s(0)), ...}

o Want to represent this as ,regular expression”

e s(O)*-0
e Idea: O indicates position for concatenation
o 1 - b inserts & at square-position in

82

Tree regular expressions

e Consider the set {0, 5(0), s(s(0)), ...}
o Want to represent this as ,regular expression”
e s(O)*-0
e Idea: O indicates position for concatenation
o 1 - b inserts & at square-position in
o f(...)"=0O+f(...)-f(...)" iterates over position [J

82

Tree regular expressions

e Consider the set {0, 5(0), s(s(0)), ...}
o Want to represent this as ,regular expression”
e s(O)*-0
e Idea: O indicates position for concatenation
o 1 - b inserts & at square-position in
o f(...)"=0O+f(...)-f(...)" iterates over position [J
e There may be more than one iteration, over different positions

82

Tree regular expressions

e Consider the set {0, 5(0), s(s(0)), ...}
o Want to represent this as ,regular expression”
e s(O)*-0
e Idea: O indicates position for concatenation
o 1 - b inserts & at square-position in
o f(..)*=0+4f(...) - f(...)" iterates over position OJ
e There may be more than one iteration, over different positions
e Number position markers: Oy, Oa, . ..

82

Tree regular expressions

e Consider the set {0, 5(0), s(s(0)), ...}
o Want to represent this as ,regular expression”
e s(O)*-0
e Idea: O indicates position for concatenation
o 1 - b inserts & at square-position in
o f(..)*=0+4f(...) - f(...)" iterates over position OJ
e There may be more than one iteration, over different positions

e Number position markers: Oy, Oa, . ..
e cons(s(0)* -1 0,02)*2 -5 nil

82

Tree regular expressions

Consider the set {0, s(0), s(s(0)), ...}
o Want to represent this as ,regular expression”
e s(O)*-0
e Idea: O indicates position for concatenation
o 1 - b inserts & at square-position in
o f(..)*=0+4f(...) - f(...)" iterates over position OJ
e There may be more than one iteration, over different positions
e Number position markers: Oy, Oa, . ..
e cons(s(0)* -1 0,02)*2 -5 nil
Note: TATA notation: (T)" o, nil

82

Substitution and Concatenation

e Let £ :=0;/0,0,/0,.... Assume CNF =0

83/161

Substitution and Concatenation

e Let £ :=0;/0,0,/0,.... Assume CNF =0
e Fortrees t € T(F UK), we define (simultaneous) substitution
Hay < Ly,...,ap + Lp},forase Kand i #j = ai # a;:
a{ay « Ly,...,ap+ Ly} =aforae FUK andVi. a# g
a,-{a1 — L17...7a,, — Ln} = L,'
f(s1,...,8m){ar < Li,...,an < Ly}
:{f(t1,...,tm)|t,-es,-{a1 <—L1,...,a,,<—L,,}}

83/161

Substitution and Concatenation

e Let £ :=0;/0,0,/0,.... Assume CNF =0

e Fortrees t € T(F UK), we define (simultaneous) substitution
Hay < Ly,...,ap + Lp},forase Kand i #j = ai # a;:

a{ay « Ly,...,ap+ Ly} =aforae FUK andVi. a# g
a,-{a1 — L17...7a,,<— Ln} = L,'
f(s1,...,8m){ar < Li,...,an < Ly}
= {f(t1,...,tm) | ti s,-{a1 — Ly,...,an Ln}}
¢ And generalize this to languages

L{a < Li,...,a0 < Lo} = (t{an < L1,..., 80 < Ly})
tel

83

Substitution and Concatenation

e Let £ :=0;/0,0,/0,.... Assume CNF =0

e Fortrees t € T(F UK), we define (simultaneous) substitution
Hay < Ly,...,ap + Lp},forase Kand i #j = ai # a;:

a{ay « Ly,...,ap+ Ly} =aforae FUK andVi. a# g
a,-{a1 <—L17...7a,,<—L,,}:L,-
f(s1,...,8m){ar < Li,...,an < Ly}
={f(ti,...,tm) | ties{ar « Ly,...,an < Lp}}

¢ And generalize this to languages

L{a < Li,...,a0 < Lo} = (t{an < L1,..., 80 < Ly})
tel

¢ And define concatenation

L1 ‘i L2 = L1{|:|,' — Lg}

83

lteration

e lteration L™

LO,I' =0 Ln+1,i — Ln,i UL y Ln,i

84/161

lteration

e lteration L™

LO,I' =0 Ln+1,i — Ln,i uL-; Ln,i

e Note: All numbers < n of iterations included.

84

lteration

e lteration L™

LO,I' — Di Ln+1,i — Ln,i UL y Ln7i

e Note: All numbers < n of iterations included.
o If there are many concatenation points, number of iterations is independent
for each concatenation point.

84

lteration

e lteration L™/
LO,I' — Di Ln+1,i — Ln,i UL y Ln7i
e Note: All numbers < n of iterations included.
o If there are many concatenation points, number of iterations is independent

for each concatenation point.
e For example: f(f(0, f(30,0)),0) € {f(0,0)}*

84

lteration

e lteration L™

LO,I' — Di Ln+1,i — Ln,i UL y Ln7i

e Note: All numbers < n of iterations included.

o If there are many concatenation points, number of iterations is independent
for each concatenation point.

e For example: f(f(0, f(30,0)),0) € {f(0,0)}*

e Closure L*

L= J L™

neN

84

Preservation of Regularity (Concatenation)

Theorem

Substitution preserves regularity, i.e., letL, Ly, ..., L, be regular languages,
then L' := L{ay < Ly,...,an + Lp} is a regular language

e Proof sketch:

85/161

Preservation of Regularity (Concatenation)

Theorem

Substitution preserves regularity, i.e., letL, Ly, ..., L, be regular languages,
then L' := L{ay < Ly,...,an + Lp} is a regular language

e Proof sketch:

o LetL Ly,...,L; berepresented by RTGs over disjoint nonterminals
e G= (S N,F,R)with L= L(G) and G; = (S;, N;, F, R;) with L; = L(G))

85/161

Preservation of Regularity (Concatenation)

Theorem

Substitution preserves regularity, i.e., letL, Ly, ..., L, be regular languages,
then L' := L{ay < Ly,...,an + Lp} is a regular language

e Proof sketch:
o LetL Ly,...,L; berepresented by RTGs over disjoint nonterminals
e G= (S N,F,R)with L= L(G) and G; = (S;, N;, F, R;) with L; = L(G))

e Thenlet G' = (S,NUN;U...UN,, F,R"UR; U...UR,) where R’ contains
the rules of R, but a; replaced by S;.

85/161

Preservation of Regularity (Concatenation)

Theorem

Substitution preserves regularity, i.e., letL, Ly, ..., L, be regular languages,
then L' := L{ay < Ly,...,an + Lp} is a regular language

e Proof sketch:
o LetL Ly,...,L; berepresented by RTGs over disjoint nonterminals
e G=(S,N,F,R)with L = L(G) and G; = (S;, N;, F, R;) with L; = L(G))
e Thenlet G' = (S,NUN;U...UN,, F,R"UR; U...UR,) where R’ contains
the rules of R, but a; replaced by S;.
e L' C L(G'): Produce word from L first (the O); are replaced by S)), then
rewrite the S; to words from L;

85/161

Preservation of Regularity (Concatenation)

Theorem

Substitution preserves regularity, i.e., letL, Ly, ..., L, be regular languages,
then L' := L{ay < Ly,...,an + Lp} is a regular language

e Proof sketch:
o LetL Ly,...,L; berepresented by RTGs over disjoint nonterminals
e G=(S,N,F,R)with L = L(G) and G; = (S;, N;, F, R;) with L; = L(G))
e Thenlet G' = (S,NUN;U...UN,, F,R"UR; U...UR,) where R’ contains
the rules of R, but a; replaced by S;.
e L' C L(G'): Produce word from L first (the O); are replaced by S)), then

rewrite the S; to words from L;
e L(G') C L': Re-order derivation of G’ to stop at the S;

85/161

Preservation of Regularity (Concatenation)

Theorem

Substitution preserves regularity, i.e., letL, Ly, ..., L, be regular languages,
then L' := L{ay < Ly,...,an + Lp} is a regular language

e Proof sketch:
o LetL Ly,...,L; berepresented by RTGs over disjoint nonterminals
e G=(S,N,F,R)with L = L(G) and G; = (S;, N;, F, R;) with L; = L(G))
e Thenlet G' = (S,NUN;U...UN,, F,R"UR; U...UR,) where R’ contains
the rules of R, but a; replaced by S;.
e L' C L(G'): Produce word from L first (the O); are replaced by S)), then
rewrite the S; to words from L;
e L(G') C L': Re-order derivation of G’ to stop at the S;
e Formally, show:
VAeEN. A—g s = 3s.A—gsAns e€s{a + Ly,...,an+ Ln}

85/161

Preservation of Regularity (Concatenation)

Theorem

Substitution preserves regularity, i.e., letL, Ly, ..., L, be regular languages,
then L' := L{ay < Ly,...,an + Lp} is a regular language

e Proof sketch:
o LetL Ly,...,L; berepresented by RTGs over disjoint nonterminals
e G=(S,N,F,R)with L = L(G) and G; = (S;, N;, F, R;) with L; = L(G))
e Thenlet G' = (S,NUN;U...UN,, F,R"UR; U...UR,) where R’ contains
the rules of R, but a; replaced by S;.
e L' C L(G'): Produce word from L first (the O); are replaced by S)), then
rewrite the S; to words from L;
e L(G') C L': Re-order derivation of G’ to stop at the S;
e Formally, show:

VAeEN. A—g s = 3s.A—gsAns e€s{a + Ly,...,an+ Ln}
e By induction on derivation length

85/161

Preservation of Regularity (Concatenation)

Theorem

Substitution preserves regularity, i.e., letL, Ly, ..., L, be regular languages,
then L' := L{ay < Ly,...,an + Lp} is a regular language

e Proof sketch:
o LetL Ly,...,L; berepresented by RTGs over disjoint nonterminals
e G=(S,N,F,R)with L = L(G) and G; = (S}, N;, F, B;) with L; = L(G))
e Thenlet G' = (S,NUN;U...UN,, F,R"UR; U...UR,) where R’ contains
the rules of R, but a; replaced by S;.
e L' C L(G'): Produce word from L first (the O); are replaced by S)), then
rewrite the S; to words from L;
e L(G') C L': Re-order derivation of G’ to stop at the S;
e Formally, show:
VAeEN. A—g s = 3s.A—gsAns e€s{a + Ly,...,an+ Ln}
e By induction on derivation length
e Corollary: Concatenation preserves regularity, i.e., for regular languages
Ly, Lo, the language L; - Ly is regular.

85/161

Preservation of Regularity (Closure)

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a
regular language.

e Proof sketch

86/161

Preservation of Regularity (Closure)

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a
regular language.

e Proof sketch
e Let L be represented by RTG G = (S, N, F, R)

86/161

Preservation of Regularity (Closure)

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a
regular language.

e Proof sketch

e Let L be represented by RTG G = (S, N, F ,R)
e Construct G' = (S',NU{S'}, FUK, R), such that

86/161

Preservation of Regularity (Closure)

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a
regular language.

e Proof sketch

e Let L be represented by RTG G = (S, N, F, R)
e Construct G' = (S',NU{S'}, FUK, R), such that
e R’ contains the rules from R, with O replaced by S’

86/161

Preservation of Regularity (Closure)

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a
regular language.

e Proof sketch

e Let L be represented by RTG G = (S, N, F, R)
e Construct G' = (S',NU{S'}, FUK, R), such that

e R’ contains the rules from R, with O replaced by S’
e S >0eR andS - SeR

86/161

Preservation of Regularity (Closure)

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a
regular language.

e Proof sketch

e Let L be represented by RTG G = (S, N, F, R)
e Construct G' = (S',NU{S'}, FUK, R), such that

e R’ contains the rules from R, with O replaced by S’
e S >0eR andS - SeR

e L* C L(G'): Obvious by construction

86/161

Preservation of Regularity (Closure)

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a
regular language.

e Proof sketch

e Let L be represented by RTG G = (S, N, F, R)

e Construct G' = (S',NU{S'}, FUK, R), such that
e R’ contains the rules from R, with O replaced by S’
e S >0eR andS - SeR

e L* C L(G'): Obvious by construction
e L(G') C L*: Re-ordering derivation. Formally: Induction on derivation length.

86/161

Tree Regular Expressions

e Syntax

e:=0|f(e...,e)forfe Fnlet+e|e-je]|e"
——

ntimes

87/161

Tree Regular Expressions

e Syntax

e:=0|f(e,...,e)forfe Frle+e|e-je|e*
——

ntimes

e Semantics

0p=0
[f(et,....,en)l = {f(t,....tn) | ti € [ei]}
[e1 + e2] = [er] U [ez]
[ei -i e2] = [e1] -i [e2]

[ei] = [ei]”

87

Kleene Theorem for Tree Languages

Theorem

A tree language L is regular if and only if there is a regular expression e with
L =[el

e Proof («<): Straightforward, by induction on e, using preservation of
regularity by union, concatenation, and closure

88/161

Kleene Theorem for Tree Languages

Theorem

A tree language L is regular if and only if there is a regular expression e with
L =[el

e Proof («<): Straightforward, by induction on e, using preservation of
regularity by union, concatenation, and closure

e Proof (=>): Construct reg-exp inductively over increasing number of
states

88/161

Kleene Theorem for Tree Languages (Proof)

o Let A=(Q,F, QFr,A) be bottom-up automaton.

89/161

Kleene Theorem for Tree Languages (Proof)

o Let A=(Q,F, QFr,A) be bottom-up automaton.
o letQ=1{q1,...,qn}

89/161

Kleene Theorem for Tree Languages (Proof)

o Let A=(Q,F, QFr,A) be bottom-up automaton.
o letQ=1{q1,...,qn}

e Define T(i,j,K) for K C Q as those trees over T(F U K) that can be
rewritten to g; using only internal states from {q1, ..., gk}

89

Kleene Theorem for Tree Languages (Proof)

o Let A=(Q,F, QFr,A) be bottom-up automaton.
o letQ=1{q1,...,qn}

e Define T(i,j,K) for K C Q as those trees over T(F U K) that can be
rewritten to g; using only internal states from {q1, ..., gk}

o Note: We do not require g; € {g1,...,qk}, nor K C {q1,...,qk}

89

Kleene Theorem for Tree Languages (Proof)

o Let A=(Q,F, QFr,A) be bottom-up automaton.
o letQ=1{q1,...,qn}

e Define T(i,j,K) for K C Q as those trees over T(F U K) that can be
rewritten to g; using only internal states from {q1, ..., gk}

o Note: We do not require g; € {g1,...,qk}, nor K C {q1,...,qk}
o L(A)= Ui|q,-eQF T(i,n,0)

89

Kleene Theorem for Tree Languages (Proof)

Let A = (Q, F, Qr, A) be bottom-up automaton.
o letQ=1{q1,...,qn}

Define T(i,j, K) for K C Q as those trees over T(F U K) that can be
rewritten to g; using only internal states from {q1, ..., gk}

o Note: We do not require g; € {g1,...,qk}, nor K C {q1,...,qk}
L(A) = Ui|q,-eQF T(i,n,0)
T(i,0, K) is finite

89

Kleene Theorem for Tree Languages (Proof)

o Let A=(Q,F, QFr,A) be bottom-up automaton.
o letQ=1{q1,...,qn}

e Define T(i,j,K) for K C Q as those trees over T(F U K) that can be
rewritten to g; using only internal states from {q1, ..., gk}

o Note: We do not require g; € {g1,...,qk}, nor K C {q1,...,qk}
o L(A)= Ui|q,-eQF T(i,n,0)
e T(i,0,K) is finite

e Runs accepting t € T(i,0, K) contain no internal states

89

Kleene Theorem for Tree Languages (Proof)

o Let A=(Q,F, QFr,A) be bottom-up automaton.
o letQ=1{q1,...,qn}

e Define T(i,j,K) for K C Q as those trees over T(F U K) that can be
rewritten to g; using only internal states from {q1, ..., gk}

o Note: We do not require g; € {g1,...,qk}, nor K C {q1,...,qk}
o L(A)= Ui|q,-eQF T(i,n,0)
e T(i,0,K) is finite

e Runs accepting t € T(i,0, K) contain no internal states

o le,t=a()ort="f(a,...am),fora,ai,...an€ FUK

89

Kleene Theorem for Tree Languages (Proof)

Let A = (Q, F, Qr, A) be bottom-up automaton.
o letQ=1{q1,...,qn}

Define T(i,j, K) for K C Q as those trees over T(F U K) that can be
rewritten to g; using only internal states from {q1, ..., gk}

o Note: We do not require g; € {g1,...,qk}, nor K C {q1,...,qk}
L(A) = Ui|q,-eQF T(i,n,0)
T(i,0, K) is finite

e Runs accepting t € T(i,0, K) contain no internal states

o le,t=a()ort="f(a,...am),fora,ai,...an€ FUK
e Thus, representable by regular expression

89/161

Kleene Theorem for Tree Languages (Proof)

Let A = (Q, F, Qr, A) be bottom-up automaton.
o letQ=1{q1,...,qn}

Define T(i,j, K) for K C Q as those trees over T(F U K) that can be
rewritten to g; using only internal states from {q1, ..., gk}

o Note: We do not require g; € {g1,...,qk}, nor K C {q1,...,qk}
L(A) = Ui|q,-eQF T(i,n,0)
T(i,0, K) is finite

e Runs accepting t € T(i,0, K) contain no internal states

o le,t=a()ort="f(a,...am),fora,ai,...an€ FUK
e Thus, representable by regular expression

Forj > 0:

T(’a/7 K) = T(’?jf 17KU {qj})q] T(]h/i 17KU {ql})*’q/ g T(/?jf 17K)

Initial segment Runs between g;s Final segment

89/161

Kleene Theorem for Tree Languages (Proof)

o Let A=(Q,F, QFr,A) be bottom-up automaton.
o letQ=1{q1,...,qn}

e Define T(i,j,K) for K C Q as those trees over T(F U K) that can be
rewritten to g; using only internal states from {q1, ..., gk}

o Note: We do not require g; € {g1,...,qk}, nor K C {q1,...,qk}
o L(A)= Ui|q,-eQF T(i,n,0)
e T(i,0,K) is finite

e Runs accepting t € T(i,0, K) contain no internal states

o le,t=a()ort="f(a,...am),fora,ai,...an€ FUK
e Thus, representable by regular expression

e Forj> 0:

T(.4.K) = T0.4 = 1. K U{q)) q T0j — 1.KU{g))" 4 T(.j ~1.K)

Initial segment Runs between g;s Final segment

e Regular expression for L(.A) can be constructed

89/161

Last Lecture

e Tree regular expressions
¢ Kleene theorem
o Tree regular expressions can express exactly the tree regular languages

90

Table of Contents

@ Model-Checking concurrent Systems

91/161

Table of Contents

@ Model-Checking concurrent Systems
Motivation
Pushdown Systems
Dynamic Pushdown Networks
Acquisition Histories
Acquisition Histories for DPN

92

Program Analysis

e Theorem of Rice: Properties of programs undecidable
e Need approximations

e Standard approximation: Ignore branching conditions

o if (b) ... else ... Consider both branches, independent of b
¢ Nondeterministic program

93

Attack Plan

¢ Properties: Reachability of configuration/regular set of configurations
e First, consider programs with recursion
e Modeled by pushdown systems (PDS)
Then, add process creation
o Modeled by dynamic pushdown systems (DPN)
e Then synchronization through well-nested locks
o DPN with locks

94

Recursion

e If program has no procedures

e Runs can be described by word automaton
e Example on board

e If program has procedures
e Runs can be described by push-down system (PDS)

95

Example

void p() {
1: if (...) p() else return;
2: X=y;
3: return;

}
1512 15e
x=y
23

96

Table of Contents

@ Model-Checking concurrent Systems
Motivation
Pushdown Systems
Dynamic Pushdown Networks
Acquisition Histories
Acquisition Histories for DPN

97

Push-Down Systems (PDS)

e In order to model (finitely many) return values, we add state

o A push-down system (PDS) M is a tuple (P, T, Act, po, Y0, A) where
e Pis afinite set of states

I is a finite stack alphabet

Act is a finite set of actions

Poyo € Pr is the initial configuration

A is a finite set of rules, of the form

& pwwhere p,p' € P,ac Act,ye T, andw e I'*
py < p

98

PDS - Semantics

e Configurations have the form pw € PI'*
e The step-relation —C PI'* x Act x PI'* is defined by

pyw 3 pwwit py S pw € A

e —*C PI'* x Act™ x PI'* is its extension to sequences of steps

I s 10 a an ;.o
o pw =" p'wWiffl=ar...anand pw — ... = p'w

99

Normalized PDS

e Simplifying assumptions
e There are only three types of rules

oy < Py forp,p' € Pand~,y €T (base)
Py <> P for p,p' € Pand v, 71,72 € T (call)
oy <P forp,p’ e PandyeTl (return)

. 2l
e Does not reduce expressiveness. Emulate rule py < ... ~yn by sequence of call
rules.

e The empty stack must not be reachable
e Does not reduce expressiveness
o Introduce fresh L stack symbol, a rule pgL N Poyo-L, and set initial state to py L
e 7 models an action that has no effect (skip)

e From now on, we assume that PDS are normalized

100/161

Execution Trees

e Model executions of PDS as tree

e Also incomplete executions, i.e., execution may stop everywhere
o This describes all reachable configurations

A node represents a step

o If a call returns, the call-node has two successors

o Left successor describes execution of procedure
¢ Right successor describes execution of remaining program

e Execution trees described by the following tree grammar

XR ::= (Base)(XR) | (Call)?(XR, XR) | (Return)
XN ::= (Base)(XN) | (Call)N(XN) | (Call)?(XR, XN) | (P x T

o Where Base, Call, Return are rules of respective type
¢ Intuition: XR — Returning execution trees, XN — non-returning execution trees

Example

p1 < p12 p1 S p
p2xi>yp3
p3 < p

e Example execution tree
o (p1 <5 p12)((p1 5 p12)F((p1 5 p), (2 < p3)((p3))))

102/161

Execution Trees of PDS

o Execution trees of PDS M = (P, T, Act, po, Y0, A) described by tree
automata Ay = (Q, F, 1, A 4,,)
e States: Q= PruPr|P
e pv — produce non-returning execution trees (from XN)

e pvy|p” — produce execution trees that return to state p” (from XR)
o Initial state: I = {poo}

e Rules
py = (pr < Py (0'Y') itpy 3 pyen
Py = (py S P'y172) N (P) it py <& p'y172 € A
Py = (b7 < P'yi2) B 1P P 2) it p” € Pand py <% p'yive € A
Py = (P7)
PYIp” = v S PV (P 1) itpy % p'y €A
PP = (o7 S Pyan2) (0 p” o " elp”) i P € Pand py < plyiyz € A
pylp” — (py <> p”) ifpy > p’en

103/161

Execution Trees — Intuition of rules

a
o py— (py = pY)(PY') (Base)
¢ Make a base step, then continue execution from p’~’

* py = (py <> P'rv2)V(p'n) (Call, no-return)
o Continue execution from p’~;.
o As call does not return, 2 is never looked at again, and remaining execution
does not depend on it

o py = (P <> pyi72) B Ip", P 2) (Call, return)
e Execute procedure, it returns with state p”. Then continue execution from
p"vz.
py — (py) (Finish)
¢ Non-deterministically decide that execution ends here
* pYIP’ = by <% p'y)(0'Y'|P") (Base)
e Base step, then continue execution

a
o pYlp” = (Ppy <= Pyir2) (P lp”, P 72lp") (Call, return)
e Return from called procedure in state p”’, then continue execution

o pylp”" — (py — p") (Return)
e Return rule returns to specified state p”

104/161

Reached Configuration

e Function ¢ : XN — PT extracts reached configuration from execution tree

c((py <> pY)(1) = e()
c((py & Pr172)f(t, 1)) = c(t)
c((py < Pr) (1) = ()
c((p7)) = py

e Side note: This is a tree to string transducer
e Thus, set of execution trees that reach a regular set of configurations is regular

105

161

Last Lecture

e Pushdown systems

o Configuration pw € PI'*
e Semantics by step relation

e Execution trees

¢ Intuition: Node for steps. Returning call nodes are binary.
o Set of execution trees of PDS is regular
e Mapping of execution tree to reached configuration

e Correlation:
o Reachable configurations wrt. step relation and execution trees match

106

161

Relating Execution Trees and PDS Semantics

Theorem
Let M be a PDS. Then 3. poyo —* p'w iff 3t. t € L(Aw) A c(t) = p'w

¢ Note, a more general theorem would also relate the sequence of actions /
and the execution tree

e Proof ideas are the same

107/161

Last Lecture

e Proof of relation between execution trees and PDS semantics

108/161

Proof Outline

e Prove, for returning executions: 3/. py Ly p" iff 3t. py|p’ — ¢
e As cignores returning executions, this simple statement is enough

e Prove, for non-returning executions:

3. py Ly pwAw£ceiff 3t. py —> tAC(t) = p'w
e Main lemmas that are required
e An execution can be repeated when we append some symbols to the stack:

. I, IR
lemma stack-append: pw =" p'w' — pwv =" p'wv

¢ If we have an execution, the topmost stack-symbol is either popped at some
point, or the execution does not depend on the stack below the topmost
symbol. Lemma return-cases:

pyw L pw =
30" k. py Dy o' Ap'w LA p'w A= kb (ret)
VIW . W = wwAwW £enpy ST pw! (no-ret)

e Corollary: On a returning execution, we can find the point where the topmost
stack symbol is popped

lemma find-return: pyw 5* p' = 3h b p". py 5* p" Ap'w B* p!

109/161

Proofs:

e On board

¢ lemma return-cases (find-return is corollary)
¢ Proofs for returning and non-returning executions

110/161

Table of Contents

@ Model-Checking concurrent Systems
Motivation
Pushdown Systems
Dynamic Pushdown Networks
Acquisition Histories
Acquisition Histories for DPN

111/161

Thread Creation

e Concurrent programs may create threads
e These run in parallel

112/161

Example

void p () {
if (...) {
spawn p;
p();
}
}

main () {

p();

113/161

Dynamic Pushdown Networks

e Pushdown systems

114/161

Dynamic Pushdown Networks

e Pushdown systems
e Spawn-rules may have side-effect of creating a new PDS

114/161

Dynamic Pushdown Networks

e Pushdown systems
e Spawn-rules may have side-effect of creating a new PDS
e ADPN M = (P,T, Act, po, Y0, AA) consists of

114/161

Dynamic Pushdown Networks

e Pushdown systems
e Spawn-rules may have side-effect of creating a new PDS
e ADPN M = (P,T, Act, po, Y0, AA) consists of

o Afinite set of states P

114/161

Dynamic Pushdown Networks

e Pushdown systems
e Spawn-rules may have side-effect of creating a new PDS
e ADPN M = (P,T, Act, po, Y0, AA) consists of

o A finite set of states P
o A finite set of stack symbols I’

114/161

Dynamic Pushdown Networks

e Pushdown systems
e Spawn-rules may have side-effect of creating a new PDS
e ADPN M = (P,T, Act, po, Y0, AA) consists of

o A finite set of states P
o A finite set of stack symbols I’
¢ A finite set of actions Act

114/161

Dynamic Pushdown Networks

e Pushdown systems
e Spawn-rules may have side-effect of creating a new PDS
e ADPN M = (P,T, Act, po, Y0, AA) consists of

o A finite set of states P

o A finite set of stack symbols I’

o A finite set of actions Act

e An initial configuration pyyo € Pl

114/161

Dynamic Pushdown Networks

e Pushdown systems
e Spawn-rules may have side-effect of creating a new PDS
e ADPN M = (P,T, Act, po, Y0, AA) consists of

o A finite set of states P
o A finite set of stack symbols I’
o A finite set of actions Act
e An initial configuration pyyo € Pl
e Rules A of the form
py <> p'y forp,p € Pand~,~ €T
Py <3 Py forp,p’ € Pandy,v,72 €T
oy < o' forp,p’ ¢ Pandy el
a
Py = P1y1 > Paye for p,p1,p2 € Pand vy, y1,72 €T

(base
(call

(return

= = = <

(spawn

Dynamic Pushdown Networks

e Pushdown systems
e Spawn-rules may have side-effect of creating a new PDS
e ADPN M = (P,T, Act, po, Y0, AA) consists of

o A finite set of states P
o A finite set of stack symbols I’
o A finite set of actions Act
e An initial configuration pyyo € Pl
e Rules A of the form
py <> p'y forp,p € Pand~,~ €T
Py <3 Py forp,p’ € Pandy,v,72 €T
oy < o' forp,p’ ¢ Pandy el
a
Py = P1y1 > Paye for p,p1,p2 € Pand vy, y1,72 €T

e Assumption: Empty stack not reachable in any spawned thread

(base
(call
(return

(spawn

= = = <

Configurations

o Configurations are trees over the alphabet (pw)/1 | Cons/2 | Nil/0

115/161

Configurations

o Configurations are trees over the alphabet (pw)/1 | Cons/2 | Nil/0
e Forall pw e PI'”

115/161

Configurations

o Configurations are trees over the alphabet (pw)/1 | Cons/2 | Nil/0
e Forall pw e PI'”

e They have the structure
conf == (pw)(conflist) conflist ::= Nil|Cons(conf, conflist)

Configurations

o Configurations are trees over the alphabet (pw)/1 | Cons/2 | Nil/0
e Forall pw e PI'”
e They have the structure
conf == (pw)(conflist) conflist ::= Nil|Cons(conf, conflist)

e Intuitively, a node (pw)(/) represents a thread in state pw, that has
already spawned the threads in /

Configurations

e Configurations are trees over the alphabet (pw)/1 | Cons/2 | Nil/0
e Forall pw e PI'”
e They have the structure
conf == (pw)(conflist) conflist ::= Nil|Cons(conf, conflist)
e Intuitively, a node (pw)(/) represents a thread in state pw, that has
already spawned the threads in /

o Convention: We identify ¢ with the singleton list Cons(c, Nil), and use /
for the concatenation of /; and b.

Configurations

o Configurations are trees over the alphabet (pw)/1 | Cons/2 | Nil/0
e Forall pw e PI'”

e They have the structure
conf == (pw)(conflist) conflist ::= Nil|Cons(conf, conflist)

e Intuitively, a node (pw)(/) represents a thread in state pw, that has
already spawned the threads in /

o Convention: We identify ¢ with the singleton list Cons(c, Nil), and use /
for the concatenation of /; and k.

e We may use [c1,.. ., cn] for the list Cons(cy, Cons(.. ., Cons(ca, Nil) .. .) for
clarification of notation.

Last Lecture

¢ Finished proof: Relation of execution trees and PDS semantics
DPN (PDS + Thread creation)
e DPN-Semantics:

¢ Configuration are trees, each node holds PDS-configuration (state+stack)
e Children are threads that have been spawned by parent

e Extract reached configuration from execution tree

Semantics

¢ A step modifies a thread’s state according to a rule

Clipyw)(N] 5 Cl(p'w'w) (/)]

it py <> p'w € A (no-spawn)
Cl{pyw) (] 2 Cl(p171w)(I{p2y2) (Nil))]

if py < pryi > Poe € A (spawn)

Semantics

¢ A step modifies a thread’s state according to a rule

Cl{pyw)(N] = Cl(p'w'w)(1)]

if py A pw e (no-spawn)
Cl(pyw)(1)] > Cl(p1y1w)(I{p22)(Nil))]
if py < pryi > Poe € A (spawn)

e For any context C with exactly one occurrence of xq, such that
C[{pyw)(/)] € conf is a configuration
e Having exactly one occurrence of x; ensures that exactly one thread makes a
step

Semantics

¢ A step modifies a thread’s state according to a rule

Cl{pyw)(N] = Cl(p'w'w)(1)]

if py A pw e (no-spawn)
Cl(pyw)(1)] > Cl(p1y1w)(I{p22)(Nil))]
if py < pryi > Poe € A (spawn)

e For any context C with exactly one occurrence of xq, such that
C[{pyw)(/)] € conf is a configuration
e Having exactly one occurrence of x; ensures that exactly one thread makes a
step

e Intuition:

Semantics

¢ A step modifies a thread’s state according to a rule

Cl{pyw)(N] = Cl(p'w'w)(1)]

if py A pw e (no-spawn)
Cl(pyw)(1)] > Cl(p1y1w)(I{p22)(Nil))]
if py < pryi > Poe € A (spawn)

e For any context C with exactly one occurrence of xq, such that
C[{pyw)(/)] € conf is a configuration

e Having exactly one occurrence of x; ensures that exactly one thread makes a
step

e Intuition:
e (no-spawn) rule just changes single thread’s configuration

Semantics

¢ A step modifies a thread’s state according to a rule

Cl{pyw)(N] = Cl(p'w'w)(1)]

if py A pw e (no-spawn)
Cl(pyw)(1)] > Cl(p1y1w)(I{p22)(Nil))]
if py < pryi > Poe € A (spawn)

e For any context C with exactly one occurrence of xq, such that

C[{pyw)(/)] € conf is a configuration
e Having exactly one occurrence of x; ensures that exactly one thread makes a
step
e Intuition:

e (no-spawn) rule just changes single thread’s configuration

e (spawn) rule changes thread’s configuration, and adds new thread to
spawned thread’s list

Execution Trees

e Binary node (py S piyi > poy2) (b, t) describes execution of
spawn-step

118/161

Execution Trees

e Binary node (py SN P11 > pay2)(ti, k) describes execution of
spawn-step
e 1 describes remaining execution of spawning thread

118/161

Execution Trees

e Binary node (py S piyi > poy2) (b, t) describes execution of
spawn-step
e 1 describes remaining execution of spawning thread
o , describes execution of spawned thread

118/161

Execution Trees

e Binary node (py S piyi > poy2) (b, t) describes execution of
spawn-step
e 1 describes remaining execution of spawning thread
o , describes execution of spawned thread
e Execution trees

XR ::= (Base)(XR) | (Call\(XR, XR) | (Return) | (Spawn)(XR, XN)
XN ::= (Base)(XN) | (CallyN(XN) | (Cally(XR, XN) | (P x T} | (Spawn)(XN, XN)

List Operations

o We lift list-operations to concatenate lists and trees

119/161

List Operations

o We lift list-operations to concatenate lists and trees
o h{pw)(k) = (pw)(h L)

119/161

Configuration of Execution Tree

e Function ¢ : XN — conf

120/161

Configuration of Execution Tree

e Function ¢ : XN — conf
o c((Spawn)(ti,) = [c(t)]c(tr)

120/161

Configuration of Execution Tree

e Function ¢ : XN — conf
o c((Spawn)(ti, 2)) = [c(t)]c(tr)
e Prepend configuration reached by spawned thread

120/161

Configuration of Execution Tree

e Function ¢ : XN — conf
o c((Spawn)(ti, 2)) = [c(t)]c(tr)
e Prepend configuration reached by spawned thread

o c((Call)f(ty, k) = s(t)c(t)

120/161

Configuration of Execution Tree

e Function ¢ : XN — conf
o c((Spawn)(ti, 2)) = [c(t)]c(tr)
e Prepend configuration reached by spawned thread

o c((Call)f(ty, k) = s(t)c(t)
e Have to collect configurations reached by threads spawned during call

120/161

Configuration of Execution Tree

e Function ¢ : XN — conf
e c((Spawn)(ti, 2)) = [c(t)]c(tr)
e Prepend configuration reached by spawned thread
o c((Call)f(ty, k) = s(t)c(t)
e Have to collect configurations reached by threads spawned during call
e The remaining equations are unchanged (Complete definition on next slide)

120/161

Reached configurations

Define ¢ : XN — conf and s : XR — conflist

c((py <5 ply/)(t
C(<P7‘—>P7172> (t,t
c((py < Pyive)N(t

where (pw)~(l) =

{(pw)(1)

Execution trees of DPN

e Execution trees are regular set

122/161

Execution trees of DPN

e Execution trees are regular set
e Same idea as for PDS. New rules for Apy:

Py = (p7 < P B Por2) (P11, Pa2)
PYIE" = (o7 < Pyt > Pev2) (P1 1P, P2v2)

. a
if py = p1vi D> peye € A

. a
if py = piy1 > P2y € A

122

161

Execution trees of DPN

e Execution trees are regular set
e Same idea as for PDS. New rules for Apy:

Py = (p7 < P B Por2) (P11, Pa2)
PP — (py <% pri > p2v2) (P11 1P, P22)

o Complete rules on next slide

. a
if py = p1vi D> peye € A

. a
if py = piy1 > P2y € A

122

161

Rules for execution trees

Py — (pv < P4 (')
pr = (pr S pyi2)N (')
Py — Py S D) B lp”, P 2)
Py — (Pv < prv > Pa2) (D174, Pov2)
py = (pY)
Pyl = (py < Py) (P 1)
PP = (pr S P'y172) (01 10", P 2 ")
7 a 7/
pylp" — (py = piv1 > pev2) (P11 1P, parv2)
PR = (py 5 p”)

ifpy <> p'y €A
it py < Py € A
if "’ € Pand py & Pyive €A

it py <% pyvi > pov2 € A

ifpy 5 p'y €A

/11

it o' € Pand py < plygye € A
. a

if oy = p1y1 > P2y € A
ifoy <l p’ e

123

161

Relating Execution Trees and DPN Semantics

Let M be a DPN. Then 3l. pyyo —* ¢’ iff3t. t € L(Ay) A c(t) = ¢’

¢ Note: Relating the action sequences is more difficult

124/161

Relating Execution Trees and DPN Semantics

Theorem
Let M be a DPN. Then 31. poyo —* ¢ iff3t. t € L(Am) A c(t) = ¢’

¢ Note: Relating the action sequences is more difficult
e They are interleavings of the thread’s action sequences

124/161

Relating Execution Trees and DPN Semantics

Theorem
Let M be a DPN. Then 31. poyo —* ¢ iff3t. t € L(Am) A c(t) = ¢’

¢ Note: Relating the action sequences is more difficult

e They are interleavings of the thread’s action sequences
e One execution tree corresponds to many such interleavings

124/161

Interleaving

e We define sy ® sp to be the set of interleavings of lists sy and sp

Si®e=1{s} E® S = {S2}
151 ® @82 = a1(S1 @ @aS2) U ax(a151 ® S2)

e Intuitively: All sequences of steps that may be observed if one thread
executes sy and another independently executes s;.

125

161

Proof Ideas

e Execution of different threads is almost independent

126/161

Proof Ideas

e Execution of different threads is almost independent
e Only spawn should be executed before other steps of spawned thread

126/161

Proof Ideas

e Execution of different threads is almost independent

e Only spawn should be executed before other steps of spawned thread
o Re-order step: On spawn, all steps of spawned thread first, and then the rest

126/161

Proof Ideas

e Execution of different threads is almost independent

e Only spawn should be executed before other steps of spawned thread
o Re-order step: On spawn, all steps of spawned thread first, and then the rest
e Lemma indep-steps:

(pw)([c]) =" (P'W)(I') <
E|Cl /// S So. // _ CIIII/\SE S ®SQ/\<DW>(€) i* <,DIW/>(/”)AC%* C/

126/161

Proof Ideas

e Execution of different threads is almost independent

e Only spawn should be executed before other steps of spawned thread
o Re-order step: On spawn, all steps of spawned thread first, and then the rest
e Lemma indep-steps:

(pw)([c]) =" (P'W)(I') <
E|Cl /// S So. // _ CIIII/\SE S ®SQ/\<DW>(€) i* <,DIW/>(/”)AC%* C/

e Proof, by induction on number of steps:

(py)(e) =" (P)(c) <= Ttpylp’ = tAs(t)=C
(PW)YC)AW #e < Ftpy—tac(t) = (P'w)(c)

*

(p)(e) =

126/161

Proof Ideas

e Execution of different threads is almost independent

e Only spawn should be executed before other steps of spawned thread
o Re-order step: On spawn, all steps of spawned thread first, and then the rest
e Lemma indep-steps:

(pw)([c]) =" (P'W)(I') <
E|Cl /// S So. // _ CIIII/\SE S ®SQ/\<DW>(€) i* <,DIW/>(/”)AC%* C/

e Proof, by induction on number of steps:

(py)(e) =" (P)(c) <= Ttpylp’ = tAs(t)=C
(PW)YC)AW #e < Ftpy—tac(t) = (P'w)(c)

*

(p)(e) =

o Need to prove both propositions simultaneously

126/161

Proof Ideas

e Execution of different threads is almost independent
e Only spawn should be executed before other steps of spawned thread

o Re-order step: On spawn, all steps of spawned thread first, and then the rest

e Lemma indep-steps:

(pw)([c]) =" (P'W)(I') <
E|Cl /// S So. // _ CIIII/\SE S ®SQ/\<DW>(€) i* <,DIW/>(/”)AC%* C/

e Proof, by induction on number of steps:

*

(py)(e) =" (P)(c) <= Ttpylp’ = tAs(t)=C
(PW)YC)AW #e < Ftpy—tac(t) = (P'w)(c)

*

(p)(e) =

o Need to prove both propositions simultaneously
o But may separate —> and <= directions

126

161

Example Proof Step

e Example step for =-direction

(o) (e) =" (P)(I") = 3Ftpylp’ — tast) =T
(o) (e) =" (PWH(I) AW #e = Ttpy = tAc(t) = (P'w)(I)

127/161

Example Proof Step

e Example step for =-direction

(o) (e) =" (P)(I") = 3Ftpylp’ — tast) =T
(o) (e) =" (PWH(I) AW #e = Ttpy = tAc(t) = (P'w)(I)

e Case: Returning path makes a spawn-step

127/161

Example Proof Step

e Example step for =-direction

(o) (e) =" (P)(I") = 3Ftpylp’ — tast) =T
(o) (e) =" (PWH(I) AW #e = Ttpy = tAc(t) = (P'w)(I)

e Case: Returning path makes a spawn-step
e We have r := py = py > piy1 € A and (p7)(piy1) =~ (p')(¢')

127/161

Example Proof Step

e Example step for =-direction

(o) (e) =" (P)(I") = 3Ftpylp’ — tast) =T
(o7)(e) =" (PW)(I) AW #e = Ttpy = tAact) = (P'w) ()

e Case: Returning path makes a spawn-step

e We have r := py = py > piy1 € A and (p7)(piy1) =" (p')(¢))
e Using indep-steps, to separate executions of spawned and spawning thread,
we obtain ¢’, I’ where

/

/= &1 A (pA)e =" (E(I") A i) (E) =" ¢

127/161

Example Proof Step
e Example step for =-direction
(p7)(e) =" (P)(I') = Ftpylp’ — tAs(t) =T
(Pr)(e) =" (P'W)(I) AW #e = 3t.py— tAc(t)= (p'w)(l)

e Case: Returning path makes a spawn-step

e We have r := py = py > piy1 € A and (p7)(piy1) =" (p')(¢))
e Using indep-steps, to separate executions of spawned and spawning thread,
we obtain ¢’, I’ where

=G A pA)e =" (P)(I") A (pryn)(e) = ¢
e With IH, we obtain t;, & with

,f)’y|p’ —H A S(f1) =/ Apiyvi = b A C(tz) =c

127/161

Example Proof Step

e Example step for =-direction
(p7)(e) =" (P)(I') = Ftpylp’ — tAs(t) =T
(Pr)(e) =" (P'W)(I) AW #e = 3t.py— tAc(t)= (p'w)(l)

e Case: Returning path makes a spawn-step

e We have r := py = py > piy1 € A and (p7)(piy1) =" (p')(¢))
e Using indep-steps, to separate executions of spawned and spawning thread,

we obtain ¢’, I’ where
=G A pA)e =" (P)(I") A (pryn)(e) = ¢
e With IH, we obtain t;, & with
PP =t ns(t)=1" Apiyi = b Ac(k)=C
o By definition of the rules for Ay, we get

Pyl — (N3P, p1v1) = (r)(t, &)

127

161

Example Proof Step

e Example step for =-direction
(p7)(e) =" (P)(I') = Ftpylp’ — tAs(t) =T
(Pr)(e) =" (P'W)(I) AW #e = 3t.py— tAc(t)= (p'w)(l)

e Case: Returning path makes a spawn-step

e We have r := py = py > piy1 € A and (p7)(piy1) =" (p')(¢))
e Using indep-steps, to separate executions of spawned and spawning thread,
we obtain ¢’, I’ where

I'=c1" A (p3)e =" (P)(I") A (pim)(e) = ¢
e With IH, we obtain t;, & with

PP =t ns(t)=1" Apiyi = b Ac(k)=C
o By definition of the rules for Ay, we get

pylp" = (N (B3P, piv1) = (N)(t, t2)
e And, by definition of s() , we have

s((n(t,) = [e(t)]s(t) =c'I" =1 O

127/161

Lock-Insensitive Reachability

e Can perform a simultaneous reachability analysis

128/161

Lock-Insensitive Reachability

e Can perform a simultaneous reachability analysis

e By asking: ,Is a configuration from a regular set of configurations
reachable?”

128/161

Lock-Insensitive Reachability

e Can perform a simultaneous reachability analysis

e By asking: ,Is a configuration from a regular set of configurations
reachable?”

o [f the analysis returns no, we are sure that no such configuration is reachable

128/161

Lock-Insensitive Reachability

e Can perform a simultaneous reachability analysis

e By asking: ,Is a configuration from a regular set of configurations
reachable?”

o [f the analysis returns no, we are sure that no such configuration is reachable
o If the analysis returns yes, such a configuration may be reachable

128/161

Lock-Insensitive Reachability

e Can perform a simultaneous reachability analysis

e By asking: ,Is a configuration from a regular set of configurations
reachable?”

o [f the analysis returns no, we are sure that no such configuration is reachable
o If the analysis returns yes, such a configuration may be reachable

e Or it may be a false positive due to over-approximation

128/161

Lock-Sensitive Analysis

e Consider locks.

129/161

Lock-Sensitive Analysis

e Consider locks.

e Locks can be acquired and released, each lock can be acquired by at
most one thread at the same time.

129/161

Lock-Sensitive Analysis

e Consider locks.

e Locks can be acquired and released, each lock can be acquired by at
most one thread at the same time.

e Used to protect access to shared resources

129/161

Lock-Sensitive Analysis

Consider locks.

Locks can be acquired and released, each lock can be acquired by at
most one thread at the same time.

Used to protect access to shared resources

We assume there is a finite set IL of locks, and the actions [; (acquire) and
|/ (release) for every [€ LL

129/161

Decidability

¢ Reachability with arbitrary locking is undecidable

130/161

Decidability

e Reachability with arbitrary locking is undecidable
o Emptiness of intersection of CF-Languages

130/161

Decidability

e Reachability with arbitrary locking is undecidable
e Emptiness of intersection of CF-Languages
e Consider nested locking, like synchronized-methods in Java

130

161

Decidability

e Reachability with arbitrary locking is undecidable
e Emptiness of intersection of CF-Languages

e Consider nested locking, like synchronized-methods in Java
¢ Bind locks to procedures: Acquisition on call, release on return

130

161

Undecidability

¢ Well-Known: Emptiness of intersection of CF-languages is undecidable

Undecidability

¢ Well-Known: Emptiness of intersection of CF-languages is undecidable
o Already over alphabet {0, 1}

Undecidability

¢ Well-Known: Emptiness of intersection of CF-languages is undecidable
o Already over alphabet {0, 1}

e CF-language can be simulated by PDS, where only base-transitions
produce output

Undecidability

¢ Well-Known: Emptiness of intersection of CF-languages is undecidable
o Already over alphabet {0, 1}
e CF-language can be simulated by PDS, where only base-transitions
produce output

e Idea: Run two PDS concurrently, and ensure that sequences of base
transitions must run in lock-step

Undecidability

¢ Well-Known: Emptiness of intersection of CF-languages is undecidable
o Already over alphabet {0, 1}
e CF-language can be simulated by PDS, where only base-transitions
produce output
e Idea: Run two PDS concurrently, and ensure that sequences of base
transitions must run in lock-step
e These encode output of 0 and 1. Lockstep ensures, that the other thread
must output the same.

Undecidability

¢ Well-Known: Emptiness of intersection of CF-languages is undecidable
o Already over alphabet {0, 1}

e CF-language can be simulated by PDS, where only base-transitions
produce output
e Idea: Run two PDS concurrently, and ensure that sequences of base
transitions must run in lock-step
e These encode output of 0 and 1. Lockstep ensures, that the other thread
must output the same.
o Check for simultaneous reachability of final states

Undecidability

e Synchronizing two threads with locks

132/161

Undecidability

e Synchronizing two threads with locks
e Locks:0,0!,07and 1,1!,17

132/161

Undecidability

e Synchronizing two threads with locks
e Locks:0,0!,07and 1,1!,17
e Assumption: Thread one initially holds 0!, 1!, thread two initially holds 07,17

132/161

Undecidability

e Synchronizing two threads with locks

e Locks:0,0!,0?and 1,1!,1?

e Assumption: Thread one initially holds 0!, 1!, thread two initially holds 07,17
e To produce a 0:

132/161

Undecidability

e Synchronizing two threads with locks

e Locks:0,0!,07and 1,1!,17

e Assumption: Thread one initially holds 0!, 1!, thread two initially holds 07,17
e To produce a 0:

e Thread 1 executes: [o7]oi[0]o?[0]o

132/161

Undecidability

e Synchronizing two threads with locks

e Locks:0,0!,07and 1,1!,17

e Assumption: Thread one initially holds 0!, 1!, thread two initially holds 07,17
e To produce a 0:

e Thread 1 executes: [07]0![0]07[()[]0

e Thread 2 executes: [o]oy[o[]o[oy]og

132/161

Undecidability

e Synchronizing two threads with locks
e Locks:0,0!,07and 1,1!,17
e Assumption: Thread one initially holds 0!, 1!, thread two initially holds 07,17
e To produce a 0:
e Thread 1 executes: [07]()![0]07[0[]0
e Thread 2 executes: [o]oy[o[]o[oy]og
e The only possible execution of these two sequences is
Thread 1: oz Jor o Jor o o
Thread 2: | [0 Jo» o0 o oz Jor

132/161

Undecidability

e Synchronizing two threads with locks
e Locks:0,0!,07and 1,1!,17
e Assumption: Thread one initially holds 0!, 1!, thread two initially holds 07,17
e To produce a 0:
e Thread 1 executes: [07]()![0]07[0[]0
e Thread 2 executes: [o]oy[o[]o[oy]og
e The only possible execution of these two sequences is
Thread 1: oz Jor o Jor o o
Thread 2: | [0 Jo» o0 o oz Jor
e And when Thread 2 has finished, it cannot re-enter the synchronization
sequence until Thread 1 has also finished, and released 0.

132

161

Undecidability

Synchronizing two threads with locks
e Locks:0,0!,07and 1,1!,17
e Assumption: Thread one initially holds 0!, 1!, thread two initially holds 07,17
To produce a 0:
e Thread 1 executes: [07]()![0]07[0[]0
e Thread 2 executes: [o]oy[o[]o[oy]og
The only possible execution of these two sequences is
Thread 1: oz Jor o Jor o o
Thread 2: | [0 Jo» o0 o oz Jor
e And when Thread 2 has finished, it cannot re-enter the synchronization
sequence until Thread 1 has also finished, and released 0.

The sequences for producing 1 are analogously

132

161

Undecidability

e Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols

133/161

Undecidability

e Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols

e Solution: Additional locks /; and kb

133

161

Undecidability

e Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols

e Solution: Additional locks /; and kb
e Thread 1: [oi[1:[4], [,<sStart of output>

133

161

Undecidability

e Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols
e Solution: Additional locks /s and b

e Thread 1: [oi[1:[4], [,<sStart of output>
e Thread 2: [o[17[5],, [<start of output>

133

161

Undecidability

e Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols
e Solution: Additional locks /s and b
e Thread 1: [oi[1:[4], [,<sStart of output>
e Thread 2: [o7[12[1,]1, [<start of output>

o |f one thread starts before the other has finished initialization, the other will
be stuck at [;], forever

133

161

Undecidability

e Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols
e Solution: Additional locks /s and b
e Thread 1: [oi[1:[4], [,<sStart of output>
e Thread 2: [o[17[5],, [<start of output>
o |f one thread starts before the other has finished initialization, the other will
be stuck at [;], forever
e Thus, final states of PDSs simultaneously reachable, iff encoded
CF-languages have non-empty intersection

133/161

Complexity for nested locks

e NP-Hardness

134/161

Complexity for nested locks

e NP-Hardness
¢ Reachability analysis for nested locks and procedures is NP-hard

134/161

Complexity for nested locks

e NP-Hardness

¢ Reachability analysis for nested locks and procedures is NP-hard
e Problem: Deadlocks may prevent reachability

134/161

Complexity for nested locks

e NP-Hardness

¢ Reachability analysis for nested locks and procedures is NP-hard
e Problem: Deadlocks may prevent reachability

e Reduction to 3-SAT:

134/161

Complexity for nested locks

e NP-Hardness

¢ Reachability analysis for nested locks and procedures is NP-hard
e Problem: Deadlocks may prevent reachability

e Reduction to 3-SAT:
e One lock per literal: Allocated — literal is false, Free — literal is true

134/161

Complexity for nested locks

e NP-Hardness
¢ Reachability analysis for nested locks and procedures is NP-hard
o Problem: Deadlocks may prevent reachability

e Reduction to 3-SAT:

e One lock per literal: Allocated — literal is false, Free — literal is true
e Use nested procedures and non-determinism to allocate locks according to
configuration

134/161

Complexity for nested locks

e NP-Hardness
¢ Reachability analysis for nested locks and procedures is NP-hard
o Problem: Deadlocks may prevent reachability

e Reduction to 3-SAT:

e One lock per literal: Allocated — literal is false, Free — literal is true

e Use nested procedures and non-determinism to allocate locks according to
configuration

e Check for clause /; V Vv l3: Nondeterministically run one of [;],

134/161

Complexity for nested locks

e NP-Hardness

Reachability analysis for nested locks and procedures is NP-hard
Problem: Deadlocks may prevent reachability

e Reduction to 3-SAT:

One lock per literal: Allocated — literal is false, Free — literal is true

Use nested procedures and non-determinism to allocate locks according to
configuration

Check for clause /y v k l3: Nondeterministically run one of [;;];

Enforce correct order of guessing assignment and checking: One additional
lock

134/161

Reduction to 3-SAT

e Reminder (3-SAT)

135/161

Reduction to 3-SAT

e Reminder (3-SAT)
e Variables xo, ..., Xn, literal: x; or x;

135/161

Reduction to 3-SAT

e Reminder (3-SAT)

e Variables xo, ..., Xn, literal: x; or x;
e Formula® = A._; Vs _3lj where the /; are literals

135/161

Reduction to 3-SAT

e Reminder (3-SAT)

e Variables xo, ..., Xn, literal: x; or x;
e Formula® = A._; Vs _3lj where the /; are literals

® V1. 3ljis called clause

135/161

Reduction to 3-SAT

e Reminder (3-SAT)

e Variables xo, ..., Xn, literal: x; or x;
e Formula® = A._; Vs _3lj where the /; are literals

® V1. 3ljis called clause
e It is NP-complete to decide whether ¢ is satisfiable.

135/161

Reduction to 3-SAT

e Reminder (3-SAT)

e Variables xo, ..., Xn, literal: x; or x;
e Formula® = A._; Vs _3lj where the /; are literals

® V1. 3ljis called clause

e It is NP-complete to decide whether ¢ is satisfiable.
e i.e. whether there is a valuation of the variables such that ¢ holds.

135/161

Reduction to 3-SAT

ass(i):
if ... then {
acquire x; ass(i+1) release x;
} else {
acquire x; ass(i+1) release X;
}

return

ass(n+1):
acquire(s); release(s);
labell: return

thread1: ass(1)

check(i):
if (...) {
acquire Iy, release lj;
} else if (...)
acquire lp; release lp;
} else {
acquire liz; release l3;

}

thread2:
acquire(s);
check(1); ...; check(m);
label2: skip
release(s)

e labell and label2 simultaneously reachable, iff formula is satisfiable.

136/161

Last Lecture

e Execution trees of DPN
o Locks: Negative results
o Reachability in DPN (even 2-PDS) wrt. arbitrary locking is undecidable
e Reduction to deciding intersection of CF languages
¢ Reachability in DPN (even 2-PDS) wrt. nested locking is NP-hard
e Reduction to 3-SAT

137

161

Table of Contents

@ Model-Checking concurrent Systems
Motivation
Pushdown Systems
Dynamic Pushdown Networks
Acquisition Histories
Acquisition Histories for DPN

138/161

2-PDS with locks

e Two PDS with locks. Both share same rules.

139/161

2-PDS with locks

e Two PDS with locks. Both share same rules.
o M= (P,T,Act,L,p%?,p313, A)

139/161

2-PDS with locks

e Two PDS with locks. Both share same rules.
o M= (P, Act,L, p)+?, p3~3, A)
e P T, A: States, stack alphabet, rules

139/161

2-PDS with locks

e Two PDS with locks. Both share same rules.
o M= (Pv I, Act, L, p?’Y?,pg'Yg, A)
e P T, A: States, stack alphabet, rules
o Act=Acty U{[x | x e L}U{]x | x € L}

139/161

2-PDS with locks

e Two PDS with locks. Both share same rules.
o M= (P, Act,L, p)+?, p3~3, A)
e P T, A: States, stack alphabet, rules
o Act=Acty U{[x | x e L}U{]x | x € L}
o [L: Finite set of locks

139/161

2-PDS with locks

e Two PDS with locks. Both share same rules.
o M= (P, Act,L, p)+?, p3~3, A)

P, T, A: States, stack alphabet, rules

Act=Acty U{[x | x e L} U{]x | x e L}

L: Finite set of locks

p9~9, p3~3: Initial states of left and right PDS

139/161

2-PDS with locks

e Two PDS with locks. Both share same rules.
o M= (P,T,Act, L, p}1},p373, A)

P, T, A: States, stack alphabet, rules

Act=Acty U{[x | x e L} U{]x | x e L}

L: Finite set of locks

p9~9, p3~3: Initial states of left and right PDS

e Assumption: Locks are well-nested and non-reentrant

139/161

2-PDS with locks

e Two PDS with locks. Both share same rules.
o M= (P,T,Act, L, p}1},p373, A)

P, T, A: States, stack alphabet, rules

Act=Acty U{[x | x e L} U{]x | x e L}

L: Finite set of locks

p9~9, p3~3: Initial states of left and right PDS

e Assumption: Locks are well-nested and non-reentrant
o In particular, thread does not free ,foreign” locks

139/161

Semantics

o Configurations: (p1wi, paws, L) € PI* x Pr* x 2%

140/161

Semantics

o Configurations: (pywy, pawa, L) € PI* x Pr* x 2&
o cond([x,L) = x ¢ L, eff([x,L) = LU {x}

140/161

Semantics

o Configurations: (pjwy, pows, L) € PI* x PI* x 2k
o cond([x,L) = x ¢ L, eff([x,L) = LU {x}
o cond(]x, L) = true, eff(Jx, L) = L\ {x}

140/161

Semantics

o Configurations: (pjwy, pows, L) € PI* x PI* x 2k
e cond([x,L) =x ¢ L, eff([x,L) = LU {x}
e cond(]x, L) = true, eff(]x, L) = L\ {x}
e cond(a,L) = true, eff(a,L) = Lfor a € Acty

140/161

Semantics

o Configurations: (pywy, pows, L) € PT* x PI* x 2-
e cond([x,L) =x ¢ L, eff([x,L) = LU {x}
e cond(]x, L) = true, eff(]x, L) = L\ {x}
e cond(a,L) = true, eff(a,L) = Lfor a € Acty

e Step

(Pywr, powa, L) B (o'W wy, pows, eff(a, L)) if py <> p'w’ € A and cond(a, L)
(left)

(p1wr, pywo, L) Bis (prws, p'w'wy, eff(a, L)) if py <% p'w’ € A and cond(a, L)
(right)

140/161

Lock sensitive scheduling

e |dea: Abstraction from PDS

141/161

Lock sensitive scheduling

e Idea: Abstraction from PDS
e Check whether two execution sequences can be interleaved

141/161

Lock sensitive scheduling

e Idea: Abstraction from PDS
e Check whether two execution sequences can be interleaved

e Configurations: (/y, b, L) € Act* x Act* x 2&

141/161

Lock sensitive scheduling

e Idea: Abstraction from PDS
e Check whether two execution sequences can be interleaved

e Configurations: (/y, b, L) € Act* x Act* x 2&
e Step

(a/1) /27

L) <% (h, b, eff(a, L)) if cond(a, L)
(h,ah,L)

a
(_>
E (h, b, eff(a, L)) if cond(a, L)

(left)
(right)

Lock sensitive scheduling

e Idea: Abstraction from PDS
e Check whether two execution sequences can be interleaved
o Configurations: (h, k, L) € Act* x Act* x 2-

e Step
(aly, b, L) < (h, b, eff(a, L)) if cond(a, L)
(h,ak,L) <3 (h, b, eff(a, L)) if cond(a, L)

e Lemma

(p1 W17p2W27 L) 4/>* (pq W‘;vpéwé7 L/)

(left)
(right)

iff 34, b. p1wy i)* ,Dg W1/ N P2 Wao E}* ,DéWé N (I1,/2, L) *I>* (5,{:‘, L,)

Lock sensitive scheduling

e Idea: Abstraction from PDS
e Check whether two execution sequences can be interleaved

e Configurations: (/y, b, L) € Act* x Act* x 2&
e Step
(a/1) /27

L) — (h, b, eff(a, L)) if cond(a, L) (left)
(h,ak,L)

A
& (h, b, eff(a, L)) if cond(a, L) (right)
e Lemma
(w1, pawe, L) 5 (Pywi, paws, L')
iff 3y, bo. prws 5% piwl A pown B phwh A (b, L) 5* (e, e, L)

e Intuition: Schedule lock-insensitive executions of the single PDSs

Lock sensitive scheduling

e Idea: Abstraction from PDS
e Check whether two execution sequences can be interleaved

e Configurations: (/y, b, L) € Act* x Act* x 2&

e Step
(aly, b, L) < (h, b, eff(a, L)) if cond(a, L) (left)
(h,ab, L) < (I, b, eff(a, L)) if cond(a, L) (right)
e Lemma

(p1 W17p2W27 L) 4/>* (pq W‘;vpéwé7 L/)
iff ah, b. P1Wq i)* ,Dg W1/ N P2 Wao E}* ,DéWé A (I1,/2, L) *I>* (5,{:‘, L,)

e Intuition: Schedule lock-insensitive executions of the single PDSs
e Proof: Straightforward simulation proof

Execution trees of 2-PDS

e Intuitively: Append execution trees of left and right PDS to binary root
node o.

142/161

Execution trees of 2-PDS

e Intuitively: Append execution trees of left and right PDS to binary root
node o.

o X2 ::=o(XN, XN)

142/161

Execution trees of 2-PDS

e Intuitively: Append execution trees of left and right PDS to binary root
node o.

e X2 ::=o(XN, XN)
e Tree automata: Tree automata for PDS execution trees, but

142/161

Execution trees of 2-PDS

e Intuitively: Append execution trees of left and right PDS to binary root
node o.

e X2 ::=o(XN, XN)
e Tree automata: Tree automata for PDS execution trees, but
« Initial state i, and additional rule i — o(p%?, p313)

142/161

Execution trees of 2-PDS

e Intuitively: Append execution trees of left and right PDS to binary root

node o.
e X2 ::=o(XN, XN)
e Tree automata: Tree automata for PDS execution trees, but
« Initial state i, and additional rule i — o(p%?, p313)

e We have (with lemma from previous slide)
(p1w1, pawe, L) - (Pywi, pawsy, L)

iff 3ty to. i — o(ty,) A c(ty) = piwi A (k) = pows
A(a(t), alte), L) 5" (e, L)

142/161

Execution trees of 2-PDS

e Intuitively: Append execution trees of left and right PDS to binary root

node o.
e X2 ::=o(XN, XN)
e Tree automata: Tree automata for PDS execution trees, but
« Initial state i, and additional rule i — o(p%?, p313)

e We have (with lemma from previous slide)

(p1wy, pows, L) L (Pywy, pows, L)
iff 3ty to. i — o(ty,) A c(ty) = piwi A (k) = pows
Aatr), alt),L) 5" (e,e,L)

e Where ¢ : XN — conf extracts reached configuration from execution tree
and a: XN — Act” extracts labeling sequence from execution tree (cf.

Homework 9.2)

142/161

Attack Plan

o Compute information ah(l;), ah(/) which

143/161

Attack Plan

o Compute information ah(l;), ah(/) which
e Can be used to decide whether (h, k,0) —* (g,e,_)

143/161

Attack Plan

o Compute information ah(l;), ah(/) which
e Can be used to decide whether (h, k,0) —* (g,e,_)
e Sets of which can be computed by tree automaton over execution trees

143/161

Attack Plan

o Compute information ah(l;), ah(/) which
e Can be used to decide whether (h, k,0) —* (g,e,_)
e Sets of which can be computed by tree automaton over execution trees

e Thus, we get a tree automaton for schedulable execution trees.

143

161

Attack Plan

o Compute information ah(l;), ah(/) which
e Can be used to decide whether (h, k,0) —* (g,e,_)
e Sets of which can be computed by tree automaton over execution trees

e Thus, we get a tree automaton for schedulable execution trees.

e Checking the intersection of this, the tree automaton for execution trees,
and the error property for emptiness gives us lock-sensitive
model-checker

143

161

Acquisition Histories: Intuition

o Categorize an action [, in an execution sequence as

144/161

Acquisition Histories: Intuition

o Categorize an action [, in an execution sequence as
Final acquisition If lock x is not released afterwards

144/161

Acquisition Histories: Intuition

o Categorize an action [, in an execution sequence as

Final acquisition If lock x is not released afterwards
Usage If lock / is released afterwards

144/161

Acquisition Histories: Intuition

o Categorize an action [, in an execution sequence as

Final acquisition If lock x is not released afterwards
Usage If lock / is released afterwards

e When can two sequences /; and k be scheduled?

144/161

Acquisition Histories: Intuition

o Categorize an action [, in an execution sequence as

Final acquisition If lock x is not released afterwards
Usage If lock / is released afterwards

e When can two sequences /; and k be scheduled?
¢ No lock is finally acquired in both, /; and b

144/161

Acquisition Histories: Intuition

o Categorize an action [, in an execution sequence as

Final acquisition If lock x is not released afterwards
Usage If lock / is released afterwards

e When can two sequences /; and k be scheduled?

¢ No lock is finally acquired in both, /; and b
e There must be no deadlock pair

144/161

Acquisition Histories: Intuition

o Categorize an action [, in an execution sequence as
Final acquisition If lock x is not released afterwards
Usage If lock / is released afterwards
e When can two sequences /; and k be scheduled?

¢ No lock is finally acquired in both, /; and b
e There must be no deadlock pair

e |e, / finally acquires x; and then uses x», and k finally acquires x» and then
uses Xy

144/161

Acquisition Histories: Intuition

o Categorize an action [, in an execution sequence as
Final acquisition If lock x is not released afterwards
Usage If lock / is released afterwards
e When can two sequences /; and k be scheduled?

¢ No lock is finally acquired in both, /; and b
e There must be no deadlock pair

e |e, / finally acquires x; and then uses x», and k finally acquires x» and then
uses Xy

o We will now prove: This characterization is sufficient and necessary

144/161

Acquisition Histories: Intuition

o Categorize an action [, in an execution sequence as
Final acquisition If lock x is not released afterwards
Usage If lock / is released afterwards
e When can two sequences /; and k be scheduled?

¢ No lock is finally acquired in both, /; and b
e There must be no deadlock pair

e |e, / finally acquires x; and then uses x», and k finally acquires x» and then
uses Xy

o We will now prove: This characterization is sufficient and necessary
e And can be computed for the sets of all executions by tree automata

144/161

Acquisition Histories: Definition

e Given an execution sequence / € Act®, we define ah(/) := (A(/), G(I))
where

145/161

Acquisition Histories: Definition
e Given an execution sequence / € Act*, we define ah(/) := (A(/), G(/))

where
e A(/) C Lis the set of finally acquired locks:
A) =10
A(al) = A(l) ifae Actyora=]xforx el
A(lxl) = A()) if]x €/

A([x!) = A(l) U {x} if x &/

145/161

Acquisition Histories: Definition
e Given an execution sequence / € Act*, we define ah(/) := (A(/), G(/))

where
e A(/) C Lis the set of finally acquired locks:
A) =10
A(al) = A(l) ifae Actyora=]xforx el
A([x!) = A()) if]x €/
A([x!) = A(l) U {x} if x &/
e G(/) CL x L is the lock graph:
Ge)=10
G(al) = G(I) ifac Actyora=|]xforx elL
G([x) = G(I) if]x €l
G([x) = G(I) U {x} x acq(/) if [x ¢/

where acq(/) :={x | [x € [}

145/161

Acquisition Histories: Definition
e Given an execution sequence / € Act*, we define ah(/) := (A(/), G(/))

where
e A(/) C Lis the set of finally acquired locks:
A) =10
A(al) = A(l) ifae Actyora=]xforx el
A([x!) = A()) if]x €/
A([x!) = A(l) U {x} if x &/
e G(/) CL x L is the lock graph:
Ge)=10
G(al) = G(I) ifac Actyora=|]xforx elL
G(Ix) = G()) if]x €l
G([x) = G(I) U {x} x acq(/) if [x ¢/
where acq(/) .= {x | [x € I}
e Lemma

(h, b, 0) =* (c,,) iff A(h) N A(l) = 0 A acyclic(G(h) U G(k))

145/161

Proof ideas

° —

146/161

Proof ideas

o —>
e Generalize to

VL. (h, b, L) =7 (g,e,_) = A(h) NA(k) =0 A acyclic(G(h) U G(k))

146/161

Proof ideas

o —>
e Generalize to
VL. (h, b, L) =7 (g,e,_) = A(h) NA(k) =0 A acyclic(G(h) U G(k))

e Induction on —~*

146/161

Proof ideas
o —
e Generalize to
VL. (h, b, L) =7 (g,e,_) = A(h) NA(k) =0 A acyclic(G(h) U G(k))

¢ Induction on —*
e Interesting case: First step is final acquisition: [x

146/161

Proof ideas

o —>
e Generalize to

VL. (h, b, L) =7 (g,e,_) = A(h) NA(k) =0 A acyclic(G(h) U G(k))

e Induction on —~*

e Interesting case: First step is final acquisition: [x
e [, will not occur in remaining execution

146/161

Proof ideas

o —>
e Generalize to
VL. (h,b,L) =" (g,6,_) = A(h) N A(k) =0 A acyclic(G(h) U G(k))

e Induction on —~*

e Interesting case: First step is final acquisition: [x
e [, will not occur in remaining execution
e Thus, it cannot close a cycle in the lock graphs

146/161

Proof ideas

o —>
e Generalize to

VL. (h, b, L) " (e,e,_) => A(h) N A(k) = 0 A acyclic(G(h) U G())

e Induction on —~
e Interesting case: First step is final acquisition: [x
e [, will not occur in remaining execution
e Thus, it cannot close a cycle in the lock graphs

146/161

Proof ideas

o —>
e Generalize to

VL. (h, b, L) " (e,e,_) => A(h) N A(k) = 0 A acyclic(G(h) U G())

e Induction on —~*

e Interesting case: First step is final acquisition: [x
e [, will not occur in remaining execution
e Thus, it cannot close a cycle in the lock graphs

o —
e Generalize to

A(h) N A(k) = 0 A acyclic(G(h) U G(k))
= VL LN (acq(h)Uacq(k)) =0 = (h,k,L) =" (e,e,_) (1)

146/161

Proof ideas

o —>
e Generalize to

VL. (h, b, L) " (e,e,_) => A(h) N A(k) = 0 A acyclic(G(h) U G())

e Induction on —~*

e Interesting case: First step is final acquisition: [x
e [, will not occur in remaining execution
e Thus, it cannot close a cycle in the lock graphs

o —
e Generalize to

A(h) N A(k) = 0 A acyclic(G(h) U G(k))
= VL LN (acq(h)Uacq(k)) =0 = (h,k,L) =" (e,e,_) (1)

e Induction on |/]| + |k|

146/161

Proof ideas

o —>
e Generalize to

VL. (h, b, L) " (e,e,_) => A(h) N A(k) = 0 A acyclic(G(h) U G())

e Induction on —~*

e Interesting case: First step is final acquisition: [x
e [, will not occur in remaining execution
e Thus, it cannot close a cycle in the lock graphs

o —
e Generalize to

A(h) N A(k) = 0 A acyclic(G(h) U G(k))
= VL LN (acq(h)Uacq(k)) =0 = (h,k,L) =" (e,e,_) (1)

e Induction on |/]| + |k|
e Schedule usages of locks first

146/161

Proof ideas

o —>
e Generalize to

VL. (h, b, L) " (e,e,_) => A(h) N A(k) = 0 A acyclic(G(h) U G())

e Induction on —~*

e Interesting case: First step is final acquisition: [x
e [, will not occur in remaining execution
e Thus, it cannot close a cycle in the lock graphs

o —
e Generalize to

A(h) N A(k) = 0 A acyclic(G(h) U G(k))
= VL Ln(acq(h)Uacq(k)) =0 = (h,k,L) =" (e,e,_) (1)

e Induction on |/]| + |k|
e Schedule usages of locks first
e If both, /; and k start with final acquisitions:
Choose acquisition that comes first in topological ordering of G(/1) U G(k)

146/161

Computation of acquisition histories

e There are only finitely many acquisition histories

147/161

Computation of acquisition histories

e There are only finitely many acquisition histories
e Exponentially many in number of locks

147/161

Computation of acquisition histories

e There are only finitely many acquisition histories
e Exponentially many in number of locks

e Set of all schedulable 2-PDS execution trees is regular

147/161

Computation of acquisition histories

e There are only finitely many acquisition histories
e Exponentially many in number of locks

e Set of all schedulable 2-PDS execution trees is regular
e In practice: Avoid computing unnecessary states of tree automata

147/161

Last Lecture

e 2-PDS with locks
e Acquisition histories
¢ Deciding lock-sensitive reachability

148/161

Table of Contents

@ Model-Checking concurrent Systems
Motivation
Pushdown Systems
Dynamic Pushdown Networks
Acquisition Histories
Acquisition Histories for DPN

149/161

DPNs with locks

e Same ideas as for 2-PDS

150/161

DPNs with locks

e Same ideas as for 2-PDS
e M= (Pv rv ACta]La Poo, A)

150/161

DPNs with locks

e Same ideas as for 2-PDS
e M= (Pv rv ACta]La Poo, A)
e P T, A: States, stack alphabet, rules (with spawns)

150/161

DPNs with locks

e Same ideas as for 2-PDS

e M= (Pv rv ACta]La Poo, A)
e P T, A: States, stack alphabet, rules (with spawns)
o Act=Acty U{[x | x e L}U{]x | x e L}

150/161

DPNs with locks

e Same ideas as for 2-PDS

e M= (Pv rv ACta]La Poo, A)
e P T, A: States, stack alphabet, rules (with spawns)
o Act=Acty U{[x | x e L}U{]x | x e L}
e L: Finite set of locks

150/161

DPNs with locks

e Same ideas as for 2-PDS
e M= (Pv rv ACta]La Poo, A)
e P T, A: States, stack alphabet, rules (with spawns)
o Act=Acty U{[x | x e L}U{]x | x €L}
e L: Finite set of locks
e poo: Initial state

150

161

DPNs with locks

e Same ideas as for 2-PDS
e M= (Pv rv ACta]La Poo, A)
e P T, A: States, stack alphabet, rules (with spawns)
o Act=Acty U{[x | x e L}U{]x | x e L}
e L: Finite set of locks
e poo: Initial state
e Assumption: Locks are well-nested and non-reentrant

150

161

DPNs with locks

e Same ideas as for 2-PDS

e M= (Pv rv ACta]La Poo0, A)

P, T, A: States, stack alphabet, rules (with spawns)

Act = Acty U{[x | x e L} U{]x | x e L}

L: Finite set of locks

Poyo: Initial state

e Assumption: Locks are well-nested and non-reentrant
¢ In particular, thread does not free ,foreign” locks

150

161

Semantics

e As for 2-PDS: Add set of locks

151/161

Semantics

e As for 2-PDS: Add set of locks
e Recall: conf ::= (pw)(conflist) conflist ::= Nil|Cons(conf, conflist)

151/161

Semantics

e As for 2-PDS: Add set of locks

e Recall: conf ::= (pw)(conflist) conflist ::= Nil|Cons(conf, conflist)
e confj, := conf x L

151/161

Semantics

e As for 2-PDS: Add set of locks

e Recall: conf ::= (pw)(conflist) conflist ::= Nil|Cons(conf, conflist)
e confj, := conf x L

e Step relation:

(c,L) 2 (c, eff(a,L)) iff cond(a,L) Ac B ¢

Lock-Sensitive Scheduling
¢ Abstract from DPN-configurations

152/161

Lock-Sensitive Scheduling

¢ Abstract from DPN-configurations
e Scheduling tree:

BL ::= Nil | Cons(a, BL) | Spawn(a, BL, BL) for all a € Act
ST .= (BL)(SL) SL::= Nil | Cons(ST, SL)

152/161

Lock-Sensitive Scheduling

¢ Abstract from DPN-configurations
e Scheduling tree:

BL ::= Nil | Cons(a, BL) | Spawn(a, BL, BL) for all a € Act
ST .= (BL)(SL) SL::= Nil | Cons(ST, SL)

e Combination of configurations and sequences of actions to be executed

152/161

Lock-Sensitive Scheduling

¢ Abstract from DPN-configurations
e Scheduling tree:

BL ::= Nil | Cons(a, BL) | Spawn(a, BL, BL) for all a € Act
ST .= (BL)(SL) SL::= Nil | Cons(ST, SL)

e Combination of configurations and sequences of actions to be executed
o Each thread in configuration is labeled by actions it still has to execute

152/161

Lock-Sensitive Scheduling

¢ Abstract from DPN-configurations
e Scheduling tree:

BL ::= Nil | Cons(a,BL) | Spawn(a,BL,BL) forall a € Act
= (BL)(SL) SL::= Nil | Cons(ST, SL)

e Combination of configurations and sequences of actions to be executed

o Each thread in configuration is labeled by actions it still has to execute

e Spawn actions have two successors: Actions of spawning thread and
actions of spawned thread

152

161

Lock-Sensitive Scheduling

¢ Abstract from DPN-configurations
e Scheduling tree:

BL ::= Nil | Cons(a, BL) | Spawn(a, BL, BL) for all a € Act
ST .= (BL)(SL) SL::= Nil | Cons(ST, SL)

e Combination of configurations and sequences of actions to be executed
o Each thread in configuration is labeled by actions it still has to execute
e Spawn actions have two successors: Actions of spawning thread and
actions of spawned thread
e Scheduler semantics

(C[{Cons(a, l))(s)], L) N (C[h(s)], eff(a, L)) iff cond(a, L) (no-spawn)
(C[(Spawn(a, 1, k))(s)], L) 2 (CIKh)(s[{k)Y(NIND)], eff(a, L)) iff cond(a,L) (spawn)

where C is a context with exactly one occurrence of x;.

152/161

Lock-Sensitive Scheduling

¢ Abstract from DPN-configurations
e Scheduling tree:

BL ::= Nil | Cons(a, BL) | Spawn(a, BL, BL) for all a € Act
ST .= (BL)(SL) SL::= Nil | Cons(ST, SL)

e Combination of configurations and sequences of actions to be executed
o Each thread in configuration is labeled by actions it still has to execute
e Spawn actions have two successors: Actions of spawning thread and
actions of spawned thread
e Scheduler semantics

(Cl{Cons(a,)(s)], L) 3 (C[{I)(s)], eff(a, L)) iff cond(a, L) (no-spawn)
(C[(Spawn(a, 1, k))(s)], L) 4 (CIKh)(s[{k)Y(NIND)], eff(a, L)) iff cond(a,L) (spawn)
where C is a context with exactly one occurrence of x;.

e Terminated scheduling tree: All steps are executed, i.e., all nodes labeled
with Nil

STierm = (Nil)(SLierm) SLierm ::= Nil | Cons(STierm, SLierm)

152/161

Operations on Branching Lists
e Generalized concatenation

(NI =1
Cons(a,l)I' := Cons(a, II')
Spawn(a, i, b)I' :== Spawn(a, I,)

153/161

Operations on Branching Lists
e Generalized concatenation

(NI =T
Cons(a,l)I' := Cons(a, II')
Spawn(a, i, b)I' :== Spawn(a, I,)
e This thread’s steps: this : BL — Act”

this(Nil) := Nil
this(Cons(a, I)) := Cons(a, this(I))
this(Spawn(a, 1, kb)) = Cons(a, this(l))

153/161

Operations on Branching Lists
e Generalized concatenation

(NI =T
Cons(a,l)I' := Cons(a, II')
Spawn(a, i, b)I' :== Spawn(a, I,)
e This thread’s steps: this : BL — Act”

this(Nil) := Nil
this(Cons(a, I)) := Cons(a, this(I))
this(Spawn(a, 1, kb)) = Cons(a, this(l))

o Set of steps

x € Nil := false
x € Cons(a,l):=x=avxel
x € Spawn(a, h,b) =x=avxehVvxeh

153/161

Relation of execution tree and scheduling tree

e Execution trees correspond to scheduling trees: st : XN — ST and
st’ . XN — BL where

st(t) == (st'(t))(Nil)
st ({py < p'y')(1)) == Cons(a, st'(1))
st ({(p7 <> p171 & Paye)(tr, b)) == Spawn(a, st'(tr), st'(t2))
st'({py <> p'y12)"(1)) := Cons(a, st (1))
st((py <5 p'y2) (4.) = [alst (t)st (1)
st'((py)) == Nil
st'({py <% p')) := Cons(a, Nil)

154/161

Relation of execution tree and scheduling tree

e Execution trees correspond to scheduling trees: st : XN — ST and

st' : XN — BL where

st(t) == (st'())(Nil)
st ({py < p'y')(1)) == Cons(a, st'(1))
st ({(p7 <> p171 & Paye)(tr, b)) == Spawn(a, st'(tr), st'(t2))
st'({py <> p'y12)"(1)) := Cons(a, st (1))
st((py <5 p'y2) (4.) = [alst (t)st (1)
st'((py)) == Nil
st'({py <% p')) := Cons(a, Nil)

e |t can be proved

((Pov0)(€).0) 5" (¢, L)
<= 3t e XN.3t' € STierm- t € L(Am)AC(t) = ' A(st(t),0)

154

Lt L)

161

Relation of execution tree and scheduling tree

e Execution trees correspond to scheduling trees: st : XN — ST and
st’ . XN — BL where

st(t) == (st'())(Nil)
st ({py < p'y')(1)) == Cons(a, st'(1))
st ({(p7 <> p171 & Paye)(tr, b)) == Spawn(a, st'(tr), st'(t2))
st'({py <> p'y12)"(1)) := Cons(a, st (1))
st((py <5 p'y2) (4.) = [alst (t)st (1)
st'((py)) == Nil
st'({py <% p')) := Cons(a, Nil)

e |t can be proved

((Po0)(), 0) - (¢, L)
= 3te XN.3t' € STiam. t € L(Am)AC(t) = ¢ A(st(t), 0) L+ (¢, L)

¢ Note: This proof requires a generalization from a single-thread start
configuration to arbitrary start configurations. 154/161

Acquisition Histories for Scheduling Trees
e Assumption: Acquisition and release only on base rules

155/161

Acquisition Histories for Scheduling Trees

e Assumption: Acquisition and release only on base rules
e Compute set of final acquisitions

A(Nil) = 0

A(Spawn(a, I, k)) = A(h) U A(k)
A(Cons(a,l)) = A(/) ifac Actyora=]yforx el
A(Cons([x, 1)) = A()) if |x € this(/)
A(Cons([x, 1)) = A(l) U {x} if |x ¢ this(/)

155/161

Acquisition Histories for Scheduling Trees

e Assumption: Acquisition and release only on base rules
e Compute set of final acquisitions

A(NIil) =0
A(Spawn(a, h, b)) = A(h) U A(k)
A(Cons(a,l)) = A(l) ifaeActyora=]xforx el
A(Cons([x, 1)) = A()) if 1x € this(/)
A(Cons([x, 1)) = A(l) U {x} if |x ¢ this(/)
e Check consistency of final acquisitions
fac(Nil) = true fac(Cons(a,l)) = fac(l) fac(Spawn(a,h,k)) = fac(h

155/161

Acquisition Histories for Scheduling Trees

e Assumption: Acquisition and release only on base rules
e Compute set of final acquisitions

A(NIil) =0
A(Spawn(a, I, k)) = A(h) U A(k)
A(Cons(a,l)) = A(/) ifac Actyora=]yforx el
A(Cons([x, 1)) = A()) if |x € this(/)
A(Cons([x, 1)) = A(l) U {x} if |x ¢ this(/)
e Check consistency of final acquisitions
fac(Nil) = true fac(Cons(a,l)) = fac(/) fac(Spawn(a,h,k)) = fac(h
e Compute acquisition graph
G(Nil) =0
G(Spawn(a, I, k)) = G(h) U G(k)
G(Cons(a,l)) = G(I) if ae Actpora=|y forx €1
G(Cons([x, 1)) = G(I) if |x € this(/)
G(Cons([x, 1)) = G(I) U {x} x acq(l) if]x ¢ this(/)
where acq(/) := {x | [x € I}

155/161

Acquisition Graphs characterize Schedulability

e For scheduling tree (bl)(Nil) € ST and labeling sequence / € Act*, we
have

3t.((bIY(Nil), 0) 5* (', L) At € STierm <= acyclic(G(bl)) A fac(bl)

156/161

Acquisition Graphs characterize Schedulability

e For scheduling tree (bl)(Nil) € ST and labeling sequence / € Act*, we
have

3t.((bIY(Nil), 0) 5* (', L) At € STierm <= acyclic(G(bl)) A fac(bl)

e Proof Ideas:

156/161

Acquisition Graphs characterize Schedulability

e For scheduling tree (bl)(Nil) € ST and labeling sequence / € Act*, we
have

3t.((bIY(Nil), 0) 5* (', L) At € STierm <= acyclic(G(bl)) A fac(bl)

e Proof Ideas:
o —>

156/161

Acquisition Graphs characterize Schedulability

e For scheduling tree (bl)(Nil) € ST and labeling sequence / € Act*, we
have

3t’.((bl)(Nil), D) Ly (t', L)\t € STierm < acyclic(G(bl)) A fac(bl)
e Proof Ideas:

o —
e G(t) expresses constraints due to locking, that any schedule has to follow

156/161

Acquisition Graphs characterize Schedulability

e For scheduling tree (bl)(Nil) € ST and labeling sequence / € Act*, we
have

3t’.((bl)(Nil), D) Ly (t', L)\t € STierm < acyclic(G(bl)) A fac(bl)

e Proof Ideas:
o —
e G(t) expresses constraints due to locking, that any schedule has to follow
e Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling
trees, induction on scheduling tree.

156/161

Acquisition Graphs characterize Schedulability

e For scheduling tree (bl)(Nil) € ST and labeling sequence / € Act*, we
have

3t’.((bl)(Nil), D) Ly (t', L)\t € STierm < acyclic(G(bl)) A fac(bl)

e Proof Ideas:
o —
e G(t) expresses constraints due to locking, that any schedule has to follow

e Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling
trees, induction on scheduling tree.

o —

156/161

Acquisition Graphs characterize Schedulability

e For scheduling tree (bl)(Nil) € ST and labeling sequence | € Act™, we
have

3t’.((bl)(Nil), D) Ly (t', L)\t € STierm < acyclic(G(bl)) A fac(bl)

e Proof Ideas:
o —
e G(t) expresses constraints due to locking, that any schedule has to follow
e Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling
trees, induction on scheduling tree.
o —
e Scheduling strategy: Schedule usages first. Final acquisitions in topological
ordering of acquisition graph

156/161

Acquisition Graphs characterize Schedulability

e For scheduling tree (bl)(Nil) € ST and labeling sequence | € Act™, we
have

3t’.((bl)(Nil), D) Ly (t', L)\t € STierm < acyclic(G(bl)) A fac(bl)

e Proof Ideas:
o —
e G(t) expresses constraints due to locking, that any schedule has to follow
e Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling
trees, induction on scheduling tree.

e Scheduling strategy: Schedule usages first. Final acquisitions in topological
ordering of acquisition graph

o Formally: Generalize to initial set of locks disjoint from locks that occur in
scheduling tree. Generalize to arbitrary scheduling tree. Induction on scheduling
tree.

156/161

Set of schedulable execution trees is regular

e Schedulable scheduling trees are regular (compute acquisition graphs by
tree automata)

157/161

Set of schedulable execution trees is regular

e Schedulable scheduling trees are regular (compute acquisition graphs by
tree automata)

st~ preserves regularity: Just another tree transducer construction

157/161

Set of schedulable execution trees is regular

e Schedulable scheduling trees are regular (compute acquisition graphs by
tree automata)

st~ preserves regularity: Just another tree transducer construction

e Thus, we can decide lock-sensitive reachability of a regular set of
configurations of a DPN.

157/161

Remark on complexity

e The lock-sensitive reachability problem is in NP:

158/161

Remark on complexity

e The lock-sensitive reachability problem is in NP:

e For a sequential run, only polynomially many acquisition graphs/final
acquisition sets occur

158/161

Remark on complexity

e The lock-sensitive reachability problem is in NP:

e For a sequential run, only polynomially many acquisition graphs/final
acquisition sets occur
e So, for 2-PDS, we can guess these in advance

158/161

Remark on complexity

e The lock-sensitive reachability problem is in NP:

e For a sequential run, only polynomially many acquisition graphs/final
acquisition sets occur
e So, for 2-PDS, we can guess these in advance

e For DPN: There may be exponentially many acquisition graphs!

158/161

Remark on complexity

e The lock-sensitive reachability problem is in NP:
e For a sequential run, only polynomially many acquisition graphs/final

acquisition sets occur
e So, for 2-PDS, we can guess these in advance

e For DPN: There may be exponentially many acquisition graphs!
e However, not for schedulable runs

158

161

Remark on complexity

e The lock-sensitive reachability problem is in NP:
e For a sequential run, only polynomially many acquisition graphs/final
acquisition sets occur
e So, for 2-PDS, we can guess these in advance
e For DPN: There may be exponentially many acquisition graphs!

e However, not for schedulable runs
e Problem remaining: There may be exponentially many sets of used locks

158

161

Remark on complexity

e The lock-sensitive reachability problem is in NP:
e For a sequential run, only polynomially many acquisition graphs/final
acquisition sets occur
e So, for 2-PDS, we can guess these in advance
e For DPN: There may be exponentially many acquisition graphs!

e However, not for schedulable runs
e Problem remaining: There may be exponentially many sets of used locks
e Solution: Only check that certain locks are not used

158

161

Remark on complexity

e The lock-sensitive reachability problem is in NP:
e For a sequential run, only polynomially many acquisition graphs/final
acquisition sets occur
e So, for 2-PDS, we can guess these in advance

e For DPN: There may be exponentially many acquisition graphs!

e However, not for schedulable runs
e Problem remaining: There may be exponentially many sets of used locks
e Solution: Only check that certain locks are not used

e Set of used locks only required at final acquisition.

158

161

Remark on complexity

e The lock-sensitive reachability problem is in NP:
e For a sequential run, only polynomially many acquisition graphs/final
acquisition sets occur
e So, for 2-PDS, we can guess these in advance

e For DPN: There may be exponentially many acquisition graphs!
e However, not for schedulable runs
e Problem remaining: There may be exponentially many sets of used locks
e Solution: Only check that certain locks are not used
e Set of used locks only required at final acquisition.
e Just check that less locks are used afterwards

158

161

Remark on complexity

e The lock-sensitive reachability problem is in NP:
e For a sequential run, only polynomially many acquisition graphs/final
acquisition sets occur
e So, for 2-PDS, we can guess these in advance

e For DPN: There may be exponentially many acquisition graphs!
e However, not for schedulable runs

e Problem remaining: There may be exponentially many sets of used locks
e Solution: Only check that certain locks are not used

e Set of used locks only required at final acquisition.

e Just check that less locks are used afterwards

e Accepts executions with the guess acquisition graph, or with smaller ones

158

161

Main Theorem

Lock-sensitive reachability of a regular set of configurations is NP-complete
for DPNs

159/161

Complexity of related problems

] || DPN [PPDS [2PDS [DFN | PFSM [nFSM |

EF(p1 || p2) NP*7 [NPT | NPT [NP* P P
EF(A) NP NP | NP7 | NP | NP P
EF(p1 || p2 NEF(ps || p4)) || NP NP NP [NP* P P
EF(A; A EF(Az)) NP NP NP NP NP P
EF\"®9 (fixed #ops) NP NP NP NP NP P
EF (fixed #ops) > PSPACE! >NP P
EF\"%0 > PSPACE?#Y’ |>NPH| P
EF > PSPACE! P

x Requires spawn inside lock

«! Polynomial algorithm if no spawn inside lock
x?7 Complexity unknown if no spawn inside lock

1?7 Hardness proof requires deadlocks/escapable locks. Complexity without this unknown.
1 Hardness result requires no locks
reg? Hardness requires regular APs. Complexity for double-indexed APs unknown (>NP)

160/161

The End

Thank you for listening

161/161

	Introduction
	Basics
	Nondeterministic Finite Tree Automata
	Epsilon Rules
	Deterministic Finite Tree Automata
	Pumping Lemma
	Closure Properties
	Tree Homomorphisms
	Minimizing Tree Automata
	Top-Down Tree Automata

	Alternative Representations of Regular Languages
	Regular Tree Grammars
	Tree Regular Expressions

	Model-Checking concurrent Systems
	Motivation
	Pushdown Systems
	Dynamic Pushdown Networks
	Acquisition Histories
	Acquisition Histories for DPN

