Automata and Formal Languages II Tree Automata

Peter Lammich

SS 2015

Overview by Lecture

- Apr 14: Slide 3
- Apr 21: Slide 2
- Apr 28: Slide 4
- May 5: Slide 50
- May 12: Slide 56
- May 19: Slide 64
- · May 26: Holiday
- Jun 02: Slide 79
- Jun 09: Slide 90
- Jun 16: Slide 106
- Jun 23: Slide 108
- Jun 30: Slide 116
- Jul 7: Slide 137
- Jul 14: Slide 148

Lecture Tue 10:15 – 11:45, in MI 00.09.38 (Turing)

```
Lecture Tue 10:15 – 11:45, in MI 00.09.38 (Turing)
Tutorial ? Wed 10:15 – 11:45, in MI 00.09.38 (Turing)
```

 Weekly homework, will be corrected. Hand in before tutorial. Discussion during tutorial.

```
Lecture Tue 10:15 – 11:45, in MI 00.09.38 (Turing)
```

Tutorial ? Wed 10:15 – 11:45, in MI 00.09.38 (Turing)

 Weekly homework, will be corrected. Hand in before tutorial. Discussion during tutorial.

Exam Oral, Bonus for Homework!

≥ 50% of homework ⇒ 0.3/0.4 better grade
 On first exam attempt. Only if passed w/o bonus!

```
Lecture Tue 10:15 – 11:45, in MI 00.09.38 (Turing)
```

Tutorial ? Wed 10:15 – 11:45, in MI 00.09.38 (Turing)

 Weekly homework, will be corrected. Hand in before tutorial. Discussion during tutorial.

Exam Oral, Bonus for Homework!

≥ 50% of homework ⇒ 0.3/0.4 better grade
 On first exam attempt. Only if passed w/o bonus!

Material Tree Automata: Techniques and Applications (TATA)

Free download at http://tata.gforge.inria.fr/

```
Lecture Tue 10:15 – 11:45, in MI 00.09.38 (Turing)
```

Tutorial ? Wed 10:15 – 11:45, in MI 00.09.38 (Turing)

 Weekly homework, will be corrected. Hand in before tutorial. Discussion during tutorial.

Exam Oral, Bonus for Homework!

≥ 50% of homework ⇒ 0.3/0.4 better grade
 On first exam attempt. Only if passed w/o bonus!

Material Tree Automata: Techniques and Applications (TATA)

Free download at http://tata.gforge.inria.fr/

Conflict with Equational Logic.

- Finite tree automata: Basic theory (TATA Ch. 1)
 - Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...

- Finite tree automata: Basic theory (TATA Ch. 1)
 - Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...
- Regular tree grammars and regular expressions (TATA Ch. 2)

- Finite tree automata: Basic theory (TATA Ch. 1)
 - Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...
- Regular tree grammars and regular expressions (TATA Ch. 2)
- Hedge Automata (TATA Ch. 8)
 - Application: XML-Schema languages

- Finite tree automata: Basic theory (TATA Ch. 1)
 - Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...
- Regular tree grammars and regular expressions (TATA Ch. 2)
- Hedge Automata (TATA Ch. 8)
 - Application: XML-Schema languages
- Application: Analysis of Concurrent Programs
 - Dynamic Pushdown Networks (DPN)

Table of Contents

- 1 Introduction
- 2 Basics
- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems

· Finite automata recognize words, e.g.:

• Words of alternating as and bs, ending with a, e.g., aba or abababa

- Words of alternating as and bs, ending with a, e.g., aba or abababa
- · Generalize to trees

$$q_0
ightarrow a(q_1,q_1) \hspace{1cm} q_1
ightarrow b(q_0,q_0) \hspace{1cm} q_1
ightarrow \mathcal{L}()$$

· Finite automata recognize words, e.g.:

- Words of alternating as and bs, ending with a, e.g., aba or abababa
- Generalize to trees

$$q_0
ightarrow a(q_1,q_1) \hspace{1cm} q_1
ightarrow b(q_0,q_0) \hspace{1cm} q_1
ightarrow L()$$

• Trees with alternating "layers" of a nodes and b nodes.

- Words of alternating as and bs, ending with a, e.g., aba or abababa
- Generalize to trees

$$q_0
ightarrow a(q_1,q_1) \hspace{1cm} q_1
ightarrow b(q_0,q_0) \hspace{1cm} q_1
ightarrow \mathcal{L}()$$

- Trees with alternating "layers" of a nodes and b nodes.
 - Leafs are L-nodes, as node labels will have fixed arity.

- Words of alternating as and bs, ending with a, e.g., aba or abababa
- Generalize to trees

$$q_0
ightarrow a(q_1,q_1) \hspace{1cm} q_1
ightarrow b(q_0,q_0) \hspace{1cm} q_1
ightarrow {\it L}()$$

- Trees with alternating "layers" of a nodes and b nodes.
 - Leafs are *L*-nodes, as node labels will have fixed arity.

- Words of alternating as and bs, ending with a, e.g., aba or abababa
- Generalize to trees

$$q_0
ightarrow a(q_1,q_1) \hspace{1cm} q_1
ightarrow b(q_0,q_0) \hspace{1cm} q_1
ightarrow \mathcal{L}()$$

- Trees with alternating "layers" of *a* nodes and *b* nodes.
 - Leafs are L-nodes, as node labels will have fixed arity.

- Words of alternating as and bs, ending with a, e.g., aba or abababa
- Generalize to trees

$$q_0
ightarrow a(q_1,q_1) \hspace{1cm} q_1
ightarrow b(q_0,q_0) \hspace{1cm} q_1
ightarrow \mathcal{L}()$$

- Trees with alternating "layers" of a nodes and b nodes.
 - Leafs are L-nodes, as node labels will have fixed arity.

- We also write trees as terms
 - a(b(a(L, L), a(L, L)), b(a(L, L), a(L, L)))
 - a(b(a(L, L), a(L, L)), L)

- Tree automata share many properties with word automata
 - \bullet Efficient membership query, union, intersection, emptiness check, \dots

- Tree automata share many properties with word automata
 - Efficient membership query, union, intersection, emptiness check, ...
 - Deterministic and non-deterministic versions equally expressive

- Tree automata share many properties with word automata
 - Efficient membership query, union, intersection, emptiness check, ...
 - Deterministic and non-deterministic versions equally expressive
 - Only for deterministic bottom-up tree automata

- Tree automata share many properties with word automata
 - Efficient membership query, union, intersection, emptiness check, ...
 - Deterministic and non-deterministic versions equally expressive
 - Only for deterministic bottom-up tree automata
 - Minimization

- Tree automata share many properties with word automata
 - Efficient membership query, union, intersection, emptiness check, ...
 - Deterministic and non-deterministic versions equally expressive
 - Only for deterministic bottom-up tree automata
 - Minimization
 - ..

• Tree automata recognize sets of trees

- Tree automata recognize sets of trees
- Many structures in computer science are trees

- Tree automata recognize sets of trees
- Many structures in computer science are trees
 - XML documents

- Tree automata recognize sets of trees
- Many structures in computer science are trees
 - XML documents
 - Computations of parallel programs with fork/join

- Tree automata recognize sets of trees
- Many structures in computer science are trees
 - XML documents
 - Computations of parallel programs with fork/join
 - Values of algebraic datatypes in functional languages

- Tree automata recognize sets of trees
- Many structures in computer science are trees
 - XML documents
 - Computations of parallel programs with fork/join
 - Values of algebraic datatypes in functional languages
 - ..

- Tree automata recognize sets of trees
- Many structures in computer science are trees
 - XML documents
 - Computations of parallel programs with fork/join
 - Values of algebraic datatypes in functional languages
 - ...
- Tree automata can be used to

- Tree automata recognize sets of trees
- Many structures in computer science are trees
 - XML documents
 - Computations of parallel programs with fork/join
 - Values of algebraic datatypes in functional languages
 - ...
- Tree automata can be used to
 - Define XML schema languages

- Tree automata recognize sets of trees
- Many structures in computer science are trees
 - XML documents
 - Computations of parallel programs with fork/join
 - Values of algebraic datatypes in functional languages
 - ...
- Tree automata can be used to
 - Define XML schema languages
 - Model-check parallel programs

- Tree automata recognize sets of trees
- Many structures in computer science are trees
 - XML documents
 - Computations of parallel programs with fork/join
 - Values of algebraic datatypes in functional languages
 - ...
- Tree automata can be used to
 - · Define XML schema languages
 - Model-check parallel programs
 - Analyze functional programs

Applications

- Tree automata recognize sets of trees
- Many structures in computer science are trees
 - XML documents
 - Computations of parallel programs with fork/join
 - · Values of algebraic datatypes in functional languages
 - ...
- Tree automata can be used to
 - Define XML schema languages
 - Model-check parallel programs
 - Analyze functional programs
 - ...

Table of Contents

- 1 Introduction
- 2 Basics
- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems

Table of Contents

- Introduction
- 2 Basics

Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems

• Let $\mathcal F$ be a finite set of symbols, and arity $:\mathcal F\to\mathbb N$ a function.

- Let \mathcal{F} be a finite set of symbols, and arity $: \mathcal{F} \to \mathbb{N}$ a function.
 - $(\mathcal{F}, arity)$ is a *ranked alphabet*. We also identify \mathcal{F} with $(\mathcal{F}, arity)$.

- Let \mathcal{F} be a finite set of symbols, and arity : $\mathcal{F} \to \mathbb{N}$ a function.
 - $(\mathcal{F}, arity)$ is a *ranked alphabet*. We also identify \mathcal{F} with $(\mathcal{F}, arity)$.
 - $\mathcal{F}_n := \{ f \in \mathcal{F} \mid \operatorname{arity}(f) = n \}$ is the set of symbols with arity n

- Let \mathcal{F} be a finite set of symbols, and arity : $\mathcal{F} \to \mathbb{N}$ a function.
 - $(\mathcal{F}, arity)$ is a *ranked alphabet*. We also identify \mathcal{F} with $(\mathcal{F}, arity)$.
 - $\mathcal{F}_n := \{ f \in \mathcal{F} \mid \operatorname{arity}(f) = n \}$ is the set of symbols with arity n
- Let \mathcal{X} be a set of *variables*. We assume $\mathcal{X} \cap \mathcal{F}_0 = \emptyset$.

- Let \mathcal{F} be a finite set of symbols, and arity $: \mathcal{F} \to \mathbb{N}$ a function.
 - $(\mathcal{F}, arity)$ is a *ranked alphabet*. We also identify \mathcal{F} with $(\mathcal{F}, arity)$.
 - $\mathcal{F}_n := \{ f \in \mathcal{F} \mid \operatorname{arity}(f) = n \}$ is the set of symbols with arity n
- Let \mathcal{X} be a set of *variables*. We assume $\mathcal{X} \cap \mathcal{F}_0 = \emptyset$.
- Then the set $T(\mathcal{F}, \mathcal{X})$ of terms over alphabet \mathcal{F} and variables \mathcal{X} is defined as the least solution of

$$T(\mathcal{F},\mathcal{X})\supseteq\mathcal{F}_0$$

$$T(\mathcal{F},\mathcal{X})\supseteq\mathcal{X}$$
 $p\geq 1, f\in F_p, \text{ and } t_1,\ldots,t_p\in T(\mathcal{F},\mathcal{X}) \implies f(t_1,\ldots,t_n)\in T(\mathcal{F},\mathcal{X})$

- Let \mathcal{F} be a finite set of symbols, and arity $: \mathcal{F} \to \mathbb{N}$ a function.
 - $(\mathcal{F}, arity)$ is a *ranked alphabet*. We also identify \mathcal{F} with $(\mathcal{F}, arity)$.
 - $\mathcal{F}_n := \{ f \in \mathcal{F} \mid \operatorname{arity}(f) = n \}$ is the set of symbols with arity n
- Let \mathcal{X} be a set of *variables*. We assume $\mathcal{X} \cap \mathcal{F}_0 = \emptyset$.
- Then the set T(F, X) of terms over alphabet F and variables X is defined as the least solution of

$$T(\mathcal{F},\mathcal{X})\supseteq\mathcal{F}_0$$
 $T(\mathcal{F},\mathcal{X})\supseteq\mathcal{X}$
 $p\geq 1, f\in F_p, \text{ and } t_1,\ldots,t_p\in T(\mathcal{F},\mathcal{X}) \implies f(t_1,\ldots,t_n)\in T(\mathcal{F},\mathcal{X})$

• Intuitively: Terms over functions from \mathcal{F} and variables from \mathcal{X} .

- Let \mathcal{F} be a finite set of symbols, and arity : $\mathcal{F} \to \mathbb{N}$ a function.
 - $(\mathcal{F}, arity)$ is a *ranked alphabet*. We also identify \mathcal{F} with $(\mathcal{F}, arity)$.
 - $\mathcal{F}_n := \{ f \in \mathcal{F} \mid \operatorname{arity}(f) = n \}$ is the set of symbols with arity n
- Let \mathcal{X} be a set of *variables*. We assume $\mathcal{X} \cap \mathcal{F}_0 = \emptyset$.
- Then the set $T(\mathcal{F}, \mathcal{X})$ of terms over alphabet \mathcal{F} and variables \mathcal{X} is defined as the least solution of

$$T(\mathcal{F},\mathcal{X})\supseteq\mathcal{F}_0$$
 $T(\mathcal{F},\mathcal{X})\supseteq\mathcal{X}$
 $p\geq 1, f\in F_p, \text{ and } t_1,\ldots,t_p\in T(\mathcal{F},\mathcal{X}) \implies f(t_1,\ldots,t_n)\in T(\mathcal{F},\mathcal{X})$

- Intuitively: Terms over functions from \mathcal{F} and variables from \mathcal{X} .
- Ground terms: $T(\mathcal{F}) := T(\mathcal{F}, \emptyset)$. Terms without variables.

• We also write a ranked alphabet as $\mathcal{F} = f_1/a_1, f_2/a_2, \dots, f_n/a_n$, meaning $\mathcal{F} = (\{f_1, \dots, f_n\}, (f_1 \mapsto a_1, \dots, f_n \mapsto a_n))$

- We also write a ranked alphabet as $\mathcal{F} = f_1/a_1, f_2/a_2, \dots, f_n/a_n$, meaning $\mathcal{F} = (\{f_1, \dots, f_n\}, (f_1 \mapsto a_1, \dots, f_n \mapsto a_n))$
- $\mathcal{F} = true/0$, false/0, and/2, not/1 Syntax trees of boolean expressions

- We also write a ranked alphabet as $\mathcal{F} = f_1/a_1, f_2/a_2, \dots, f_n/a_n$, meaning $\mathcal{F} = (\{f_1, \dots, f_n\}, (f_1 \mapsto a_1, \dots, f_n \mapsto a_n))$
- F = true/0, false/0, and/2, not/1 Syntax trees of boolean expressions
 and(true, not(x)) ∈ T(F, {x})

- We also write a ranked alphabet as $\mathcal{F} = f_1/a_1, f_2/a_2, \dots, f_n/a_n$, meaning $\mathcal{F} = (\{f_1, \dots, f_n\}, (f_1 \mapsto a_1, \dots, f_n \mapsto a_n))$
- F = true/0, false/0, and/2, not/1 Syntax trees of boolean expressions
 and(true, not(x)) ∈ T(F, {x})
- $\mathcal{F}=0/0,$ Suc/1,+/2,*/2 Arithmetic expressions over naturals (using unary representation)

- We also write a ranked alphabet as $\mathcal{F} = f_1/a_1, f_2/a_2, \dots, f_n/a_n$, meaning $\mathcal{F} = (\{f_1, \dots, f_n\}, (f_1 \mapsto a_1, \dots, f_n \mapsto a_n))$
- F = true/0, false/0, and/2, not/1 Syntax trees of boolean expressions
 and(true, not(x)) ∈ T(F, {x})
- $\mathcal{F}=0/0,$ Suc/1,+/2,*/2 Arithmetic expressions over naturals (using unary representation)
 - $Suc(0) + (Suc(Suc(0)) * x) \in T(\mathcal{F}, \{x\})$

- We also write a ranked alphabet as $\mathcal{F} = f_1/a_1, f_2/a_2, \dots, f_n/a_n$, meaning $\mathcal{F} = (\{f_1, \dots, f_n\}, (f_1 \mapsto a_1, \dots, f_n \mapsto a_n))$
- F = true/0, false/0, and/2, not/1 Syntax trees of boolean expressions
 and(true, not(x)) ∈ T(F, {x})
- $\mathcal{F} = 0/0$, Suc/1, +/2, */2 Arithmetic expressions over naturals (using unary representation)
 - $Suc(0) + (Suc(Suc(0)) * x) \in T(\mathcal{F}, \{x\})$
 - We will use infix-notation for terms when appropriate

Trees

• Terms can be identified by trees: Nodes with p successors labeled with symbol from \mathcal{F}_p .

Trees

• Terms can be identified by trees: Nodes with p successors labeled with symbol from \mathcal{F}_p .

```
• and(true, not(x)) \in T(\mathcal{F}, \{x\})
and
true not
```

Trees

• Terms can be identified by trees: Nodes with p successors labeled with symbol from \mathcal{F}_p .

```
• and(true, not(x)) \in T(\mathcal{F}, \{x\})
      and
   true not
• Suc(0) + (Suc(Suc(0)) * x)
   Suc
    0 Sucx
       Suc
```

• A (nondeterministic) finite tree automaton (NFTA) over alphabet $\mathcal F$ is a tuple $\mathcal A=(Q,\mathcal F,Q_f,\Delta)$ where

- A (nondeterministic) finite tree automaton (NFTA) over alphabet $\mathcal F$ is a tuple $\mathcal A=(Q,\mathcal F,Q_f,\Delta)$ where
 - Q is a finite set of *states*. $Q \cap F_0 = \emptyset$

- A (nondeterministic) finite tree automaton (NFTA) over alphabet $\mathcal F$ is a tuple $\mathcal A=(Q,\mathcal F,Q_f,\Delta)$ where
 - Q is a finite set of states. $Q \cap F_0 = \emptyset$
 - $Q_f \subseteq Q$ is a set of *final states*

- A (nondeterministic) finite tree automaton (NFTA) over alphabet \mathcal{F} is a tuple $\mathcal{A}=(Q,\mathcal{F},Q_f,\Delta)$ where
 - Q is a finite set of states. $Q \cap F_0 = \emptyset$
 - $Q_f \subseteq Q$ is a set of *final states*
 - Δ is a set of rules of the form

$$f(q_1,\ldots,q_n)\to q$$

where $f \in \mathcal{F}_n$ and $q, q_1, \ldots, q_n \in Q$

- A (nondeterministic) finite tree automaton (NFTA) over alphabet $\mathcal F$ is a tuple $\mathcal A=(Q,\mathcal F,Q_f,\Delta)$ where
 - Q is a finite set of states. $Q \cap F_0 = \emptyset$
 - $Q_f \subseteq Q$ is a set of *final states*
 - Δ is a set of rules of the form

$$f(q_1,\ldots,q_n)\to q$$

where $f \in \mathcal{F}_n$ and $q, q_1, \dots, q_n \in Q$

• Intuition: Use the rules from Δ to re-write a given tree to a final state

- A (nondeterministic) finite tree automaton (NFTA) over alphabet $\mathcal F$ is a tuple $\mathcal A=(Q,\mathcal F,Q_f,\Delta)$ where
 - Q is a finite set of states. $Q \cap F_0 = \emptyset$
 - $Q_f \subseteq Q$ is a set of *final states*
 - Δ is a set of rules of the form

$$f(q_1,\ldots,q_n)\to q$$

where $f \in \mathcal{F}_n$ and $q, q_1, \dots, q_n \in Q$

- Intuition: Use the rules from ∆ to re-write a given tree to a final state
- For a tree $t \in T(\mathcal{F})$ and a state q, we define $t \to_{\mathcal{A}} q$ as the least relation that satisfies

$$f(q_1,\ldots,q_n) \rightarrow q \in \Delta, \forall 1 \leq i \leq n. \ t_i \rightarrow_{\mathcal{A}} q_i \implies f(t_1,\ldots,t_n) \rightarrow_{\mathcal{A}} q$$

- A (nondeterministic) finite tree automaton (NFTA) over alphabet $\mathcal F$ is a tuple $\mathcal A=(Q,\mathcal F,Q_f,\Delta)$ where
 - Q is a finite set of *states*. $Q \cap F_0 = \emptyset$
 - $Q_f \subseteq Q$ is a set of *final states*
 - Δ is a set of rules of the form

$$f(q_1,\ldots,q_n)\to q$$

where $f \in \mathcal{F}_n$ and $q, q_1, \dots, q_n \in Q$

- Intuition: Use the rules from Δ to re-write a given tree to a final state
- For a tree $t \in T(\mathcal{F})$ and a state q, we define $t \to_{\mathcal{A}} q$ as the least relation that satisfies

$$f(q_1,\ldots,q_n) \rightarrow q \in \Delta, \forall 1 \leq i \leq n. \ t_i \rightarrow_{\mathcal{A}} q_i \implies f(t_1,\ldots,t_n) \rightarrow_{\mathcal{A}} q$$

t →_A q: Tree t is accepted in state q

- A (nondeterministic) finite tree automaton (NFTA) over alphabet $\mathcal F$ is a tuple $\mathcal A=(Q,\mathcal F,Q_f,\Delta)$ where
 - Q is a finite set of states. $Q \cap F_0 = \emptyset$
 - $Q_f \subseteq Q$ is a set of *final states*
 - Δ is a set of rules of the form

$$f(q_1,\ldots,q_n)\to q$$

where $f \in \mathcal{F}_n$ and $q, q_1, \dots, q_n \in Q$

- Intuition: Use the rules from ∆ to re-write a given tree to a final state
- For a tree $t \in T(\mathcal{F})$ and a state q, we define $t \to_{\mathcal{A}} q$ as the least relation that satisfies

$$f(q_1,\ldots,q_n) \to q \in \Delta, \forall 1 \leq i \leq n. \ t_i \to_{\mathcal{A}} q_i \implies f(t_1,\ldots,t_n) \to_{\mathcal{A}} q$$

- t →_A q: Tree t is accepted in state q
- The language L(A) of A are all trees accepted in final states

$$L(\mathcal{A}) := \{t \mid \exists q \in Q_f. \ t \to_{\mathcal{A}} q\}$$

 Tree automaton accepting arithmetic expressions that evaluate to even numbers

$$\mathcal{F} = 0/0, Suc/1, +/2$$
 $Q := \{e, o\}$ $Q_f = \{e\}$ $0 o e$ $Suc(e) o o$ $Suc(o) o e$ $e + e o e$ $e + o o o$ $o + e o o$ $o + o o e$

 Tree automaton accepting arithmetic expressions that evaluate to even numbers

$$egin{aligned} Q := \{e,o\} & Q_f = \{e\} \ 0
ightarrow e + e
ightarrow e \end{aligned} \qquad egin{aligned} Q_f = \{e\} \ Suc(e)
ightarrow o & Suc(o)
ightarrow e \ e + o
ightarrow o & o + e
ightarrow o & o + o
ightarrow e \end{aligned}$$

- Examples for runs on board
 - Suc(Suc(0)) + Suc(0) + Suc(0)

 $\mathcal{F} = 0/0, Suc/1, +/2$

• 0 + Suc(0)

Remark

Remark

- Another version even keeps track of the tree nodes, and just adds the states as additional nodes of arity 1.

Remark

- Another version even keeps track of the tree nodes, and just adds the states as additional nodes of arity 1.
- Examples on board

Table of Contents

- Introduction
- 2 Basics

Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems

Epsilon rules

• As for word automata, we may add ϵ -rules of the form

$$extbf{q}
ightarrow extbf{q}' ext{ for } extbf{q}, extbf{q}' \in extbf{Q}$$

Epsilon rules

• As for word automata, we may add ϵ -rules of the form

$$q
ightarrow q'$$
 for $q, q' \in Q$

The acceptance relation is extended accordingly

$$f(q_1, \ldots, q_n) \rightarrow q \in \Delta, \forall 1 \leq i \leq n. \ t_i \rightarrow_{\mathcal{A}} q_i \implies f(t_1, \ldots, t_n) \rightarrow_{\mathcal{A}} q$$

 $q \rightarrow q' \in \Delta, t \rightarrow_{\mathcal{A}} q \implies t \rightarrow_{\mathcal{A}} q'$

Epsilon rules

• As for word automata, we may add ϵ -rules of the form

$$q
ightarrow q'$$
 for $q, q' \in Q$

The acceptance relation is extended accordingly

$$f(q_1, \ldots, q_n) \rightarrow q \in \Delta, \forall 1 \leq i \leq n. \ t_i \rightarrow_{\mathcal{A}} q_i \implies f(t_1, \ldots, t_n) \rightarrow_{\mathcal{A}} q$$

 $q \rightarrow q' \in \Delta, t \rightarrow_{\mathcal{A}} q \implies t \rightarrow_{\mathcal{A}} q'$

Example: (Non-empty) lists of natural numbers

$$egin{array}{ll} 0
ightarrow q_n & Suc(q_n)
ightarrow q_n \ nil
ightarrow q_l & cons(q_n,q_l)
ightarrow q_l' \ q_l'
ightarrow q_l & \end{array}$$

Epsilon rules

• As for word automata, we may add ϵ -rules of the form

$$extbf{q}
ightarrow extbf{q}' ext{ for } extbf{q}, extbf{q}' \in extbf{Q}$$

The acceptance relation is extended accordingly

$$f(q_1, \ldots, q_n) \rightarrow q \in \Delta, \forall 1 \leq i \leq n. \ t_i \rightarrow_{\mathcal{A}} q_i \implies f(t_1, \ldots, t_n) \rightarrow_{\mathcal{A}} q$$

 $q \rightarrow q' \in \Delta, t \rightarrow_{\mathcal{A}} q \implies t \rightarrow_{\mathcal{A}} q'$

Example: (Non-empty) lists of natural numbers

$$egin{array}{ll} 0
ightarrow q_n & Suc(q_n)
ightarrow q_n \ nil
ightarrow q_l & cons(q_n,q_l)
ightarrow q_l' \ q_l'
ightarrow q_l & \end{array}$$

Last rule converts non-empty list (q_i) to list (q_i)

Epsilon rules

• As for word automata, we may add ϵ -rules of the form

$$q o q'$$
 for $q, q' \in Q$

The acceptance relation is extended accordingly

$$f(q_1, \ldots, q_n) \rightarrow q \in \Delta, \forall 1 \leq i \leq n. \ t_i \rightarrow_{\mathcal{A}} q_i \implies f(t_1, \ldots, t_n) \rightarrow_{\mathcal{A}} q$$

 $q \rightarrow q' \in \Delta, t \rightarrow_{\mathcal{A}} q \implies t \rightarrow_{\mathcal{A}} q'$

Example: (Non-empty) lists of natural numbers

$$egin{aligned} 0 &
ightarrow q_n & Suc(q_n)
ightarrow q_n \ nil &
ightarrow q_l & cons(q_n,q_l)
ightarrow q_l' \end{aligned}$$

- Last rule converts non-empty list (q'_i) to list (q_i)
- On board: Accepting [], and [0, Suc(0)]

Theorem

For a NFTA $\mathcal A$ with ϵ -rules, there is a NFTA without ϵ -rules that recognizes the same language

Proof sketch:

Theorem

- Proof sketch:
 - Let cl(q) denote the ϵ -closure of q

$$q \in cl(q)$$
 $q' \in cl(q), q' \rightarrow q'' \implies q'' \in cl(q)$

Theorem

For a NFTA $\mathcal A$ with ϵ -rules, there is a NFTA without ϵ -rules that recognizes the same language

- Proof sketch:
 - Let cl(q) denote the ε-closure of q

$$q \in cl(q)$$
 $q' \in cl(q), q' \rightarrow q'' \implies q'' \in cl(q)$

• Define $\Delta' := \{ f(q_1, \dots, q_n) \rightarrow q' \mid f(q_1, \dots, q_n) \rightarrow q \in \Delta \land q' \in cl(q) \}$

Theorem

- Proof sketch:
 - Let cl(q) denote the ε-closure of q

$$q \in cl(q)$$
 $q' \in cl(q), q' \rightarrow q'' \implies q'' \in cl(q)$

- Define $\Delta' := \{ f(q_1, \dots, q_n) \rightarrow q' \mid f(q_1, \dots, q_n) \rightarrow q \in \Delta \land q' \in cl(q) \}$
- Define $A' := (Q, \mathcal{F}, Q_f, \Delta')$

Theorem

- Proof sketch:
 - Let cl(q) denote the ε-closure of q

$$q \in cl(q)$$
 $q' \in cl(q), q' \rightarrow q'' \implies q'' \in cl(q)$

- Define $\Delta' := \{ f(q_1, \dots, q_n) \rightarrow q' \mid f(q_1, \dots, q_n) \rightarrow q \in \Delta \land q' \in cl(q) \}$
- Define $A' := (Q, \mathcal{F}, Q_f, \Delta')$
- Show: $t \rightarrow_{\mathcal{A}} \dot{q}$ iff $t \rightarrow_{\mathcal{A}'} q$

Theorem

- Proof sketch:
 - Let cl(q) denote the ϵ -closure of q

$$q \in cl(q)$$
 $q' \in cl(q), q' \rightarrow q'' \implies q'' \in cl(q)$

- Define $\Delta' := \{ f(q_1, \dots, q_n) \rightarrow q' \mid f(q_1, \dots, q_n) \rightarrow q \in \Delta \land q' \in cl(q) \}$
- Define $A' := (Q, \mathcal{F}, Q_f, \Delta')$
- Show: $t \rightarrow_{\mathcal{A}} q$ iff $t \rightarrow_{\mathcal{A}'} q$
 - on board

Theorem

- Proof sketch:
 - Let cl(q) denote the ϵ -closure of q

$$q \in cl(q)$$
 $q' \in cl(q), q' \rightarrow q'' \implies q'' \in cl(q)$

- Define $\Delta' := \{f(q_1, \ldots, q_n) \rightarrow q' \mid f(q_1, \ldots, q_n) \rightarrow q \in \Delta \land q' \in \mathit{cl}(q)\}$
- Define $A' := (Q, \mathcal{F}, Q_f, \Delta')$
- Show: $t \rightarrow_{\mathcal{A}} \dot{q}$ iff $t \rightarrow_{\mathcal{A}'} q$
 - on board
- From now on, we assume tree automata without ε-rules, unless noted otherwise.

Last Lecture

- Nondeterministic Finite Tree Automata (NFTA)
 - Ranked alphabet, Terms/Trees
 - Rules: $f(q_1, \ldots, q_n) \rightarrow q$
 - Intuition: Rewrite tree to single state
- Epsilon rules
 - $q \rightarrow q'$
 - Do not increase expressiveness (recognizable languages)

Table of Contents

- 1 Introduction
- 2 Basics

Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems

Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ be a finite tree automaton.

$$I \rightarrow q_1 \in \Delta \land I \rightarrow q_2 \in \Delta \implies q_1 = q_2$$

Let $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$ be a finite tree automaton.

• A is *deterministic* (DFTA), if there are no two rules with the same LHS (and no ϵ -rules), i.e.

$$I \rightarrow q_1 \in \Delta \land I \rightarrow q_2 \in \Delta \implies q_1 = q_2$$

For a DFTA, every tree is accepted in at most one state

Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ be a finite tree automaton.

$$I \rightarrow q_1 \in \Delta \land I \rightarrow q_2 \in \Delta \implies q_1 = q_2$$

- · For a DFTA, every tree is accepted in at most one state
- \mathcal{A} is *complete*, if for every $f \in F_n, q_1, \dots, q_n \in \mathcal{Q}$, there is a rule $f(q_1, \dots, q_n) \to q$

Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ be a finite tree automaton.

$$I \rightarrow q_1 \in \Delta \land I \rightarrow q_2 \in \Delta \implies q_1 = q_2$$

- For a DFTA, every tree is accepted in at most one state
- \mathcal{A} is *complete*, if for every $f \in F_n, q_1, \dots, q_n \in \mathcal{Q}$, there is a rule $f(q_1, \dots, q_n) \to q$
 - For a complete tree automata, every tree is accepted in at least one state

Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ be a finite tree automaton.

$$I \rightarrow q_1 \in \Delta \land I \rightarrow q_2 \in \Delta \implies q_1 = q_2$$

- · For a DFTA, every tree is accepted in at most one state
- \mathcal{A} is *complete*, if for every $f \in F_n, q_1, \dots, q_n \in \mathcal{Q}$, there is a rule $f(q_1, \dots, q_n) \to q$
 - For a complete tree automata, every tree is accepted in at least one state
 - For a complete DFTA, every tree is accepted in exactly one state

Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ be a finite tree automaton.

$$I \rightarrow q_1 \in \Delta \land I \rightarrow q_2 \in \Delta \implies q_1 = q_2$$

- For a DFTA, every tree is accepted in at most one state
- \mathcal{A} is *complete*, if for every $f \in F_n, q_1, \dots, q_n \in \mathcal{Q}$, there is a rule $f(q_1, \dots, q_n) \to q$
 - For a complete tree automata, every tree is accepted in at least one state
 - For a complete DFTA, every tree is accepted in exactly one state
- A state $q \in Q$ is *accessible*, if there is a t with $t \rightarrow_{\mathcal{A}} q$.

Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ be a finite tree automaton.

$$I \rightarrow q_1 \in \Delta \land I \rightarrow q_2 \in \Delta \implies q_1 = q_2$$

- · For a DFTA, every tree is accepted in at most one state
- \mathcal{A} is *complete*, if for every $f \in F_n, q_1, \dots, q_n \in \mathcal{Q}$, there is a rule $f(q_1, \dots, q_n) \to q$
 - For a complete tree automata, every tree is accepted in at least one state
 - For a complete DFTA, every tree is accepted in exactly one state
- A state $q \in Q$ is accessible, if there is a t with $t \rightarrow_A q$.
- A is reduced, if all states in Q are accessible.

Membership Test for DFTA

Complete DFTAs have a simple (and efficient) membership test

```
\begin{array}{lll} \mathrm{acc} & (\mathsf{f} & (t_1 \,, \, \ldots \,, \, t_n)) &= \\ & \mathbf{let} \\ & q_1 = \mathrm{acc} \ t_1 \,; \, \ldots \,; \, q_n = \mathrm{acc} \ t_n \\ & \mathbf{in} \\ & \mathrm{the} \ q \ \mathrm{with} \ f(q_1, \ldots, q_n) \in \Delta \end{array}
```

Membership Test for DFTA

Complete DFTAs have a simple (and efficient) membership test

```
\begin{array}{lll} \mathrm{acc} & (\mathsf{f} & (t_1 \,, \, \ldots \,, \, t_n)) &= \\ & \mathbf{let} \\ & q_1 = \mathrm{acc} \ t_1 \,; \, \ldots \,; \, q_n = \mathrm{acc} \ t_n \\ & \mathbf{in} \\ & \mathrm{the} \ q \ \mathrm{with} \ f(q_1, \ldots, q_n) \in \Delta \end{array}
```

Note: For NFTAs, we need to backtrack, or use on-the-fly determinization

 Obviously, removing inaccessible states does not change the language of an NFTA.

- Obviously, removing inaccessible states does not change the language of an NFTA.
- The following algorithm computes the set of accessible states in polynomial time

```
A := \emptyset

repeat

A := a \cup \{q\} for q with

f(q_1, \dots, q_n) \rightarrow q \in \Delta, q_1, \dots, q_n \in A

until no more states can be added to A
```

- Obviously, removing inaccessible states does not change the language of an NFTA.
- The following algorithm computes the set of accessible states in polynomial time

```
A := \emptyset

repeat

A := a \cup \{q\} for q with

f(q_1, \dots, q_n) \rightarrow q \in \Delta, q_1, \dots, q_n \in A

until no more states can be added to A
```

Proof sketch

- Obviously, removing inaccessible states does not change the language of an NFTA.
- The following algorithm computes the set of accessible states in polynomial time

```
A := \emptyset

repeat

A := a \cup \{q\} for q with

f(q_1, \dots, q_n) \rightarrow q \in \Delta, q_1, \dots, q_n \in A

until no more states can be added to A
```

- Proof sketch
 - Invariant: All states in A are accessible.

- Obviously, removing inaccessible states does not change the language of an NFTA.
- The following algorithm computes the set of accessible states in polynomial time

```
A := \emptyset

repeat

A := a \cup \{q\} for q with

f(q_1, \dots, q_n) \rightarrow q \in \Delta, q_1, \dots, q_n \in A

until no more states can be added to A
```

- Proof sketch
 - Invariant: All states in A are accessible.
 - If there is an accessible state not in A, saturation is not complete

- Obviously, removing inaccessible states does not change the language of an NFTA.
- The following algorithm computes the set of accessible states in polynomial time

```
A := \emptyset

repeat

A := a \cup \{q\} for q with

f(q_1, \dots, q_n) \rightarrow q \in \Delta, q_1, \dots, q_n \in A

until no more states can be added to A
```

- Proof sketch
 - Invariant: All states in A are accessible.
 - If there is an accessible state not in A, saturation is not complete
 - Induction on $t \rightarrow_{\mathcal{A}} q$

 Theorem: For every NFTA, there exists a complete DFTA with the same language

- Theorem: For every NFTA, there exists a complete DFTA with the same language
- Let $Q_d := 2^Q$ and $Q_{df} := \{ s \in Q_d \mid s \cap Q_f \neq \emptyset \}$

- Theorem: For every NFTA, there exists a complete DFTA with the same language
- Let $Q_d := 2^Q$ and $Q_{df} := \{ s \in Q_d \mid s \cap Q_f \neq \emptyset \}$
- Let $f(s_1, \ldots, s_n) \to s \in \Delta_d$ iff $s = \{q \in Q \mid \exists q_1 \in s_1, \ldots, q_n \in s_n \mid f(q_1, \ldots, q_n) \to q \in \Delta\}$

- Theorem: For every NFTA, there exists a complete DFTA with the same language
- Let $Q_d := 2^Q$ and $Q_{df} := \{ s \in Q_d \mid s \cap Q_f \neq \emptyset \}$
- Let $f(s_1, \ldots, s_n) \to s \in \Delta_d$ iff $s = \{q \in Q \mid \exists q_1 \in s_1, \ldots, q_n \in s_n \mid f(q_1, \ldots, q_n) \to q \in \Delta\}$
- Define $A_d := (Q_d, \mathcal{F}, Q_{df}, \Delta_d)$

- Theorem: For every NFTA, there exists a complete DFTA with the same language
- Let $Q_d := 2^Q$ and $Q_{df} := \{ s \in Q_d \mid s \cap Q_f \neq \emptyset \}$
- Let $f(s_1, \ldots, s_n) \to s \in \Delta_d$ iff $s = \{q \in Q \mid \exists q_1 \in s_1, \ldots, q_n \in s_n \mid f(q_1, \ldots, q_n) \to q \in \Delta\}$
- Define $A_d := (Q_d, \mathcal{F}, Q_{df}, \Delta_d)$
- Idea: A_d accepts tree t in the set of all states in that A accepts t (maybe the empty set)

- Theorem: For every NFTA, there exists a complete DFTA with the same language
- Let $Q_d := 2^Q$ and $Q_{df} := \{ s \in Q_d \mid s \cap Q_f \neq \emptyset \}$
- Let $f(s_1, \ldots, s_n) \to s \in \Delta_d$ iff $s = \{q \in Q \mid \exists q_1 \in s_1, \ldots, q_n \in s_n \mid f(q_1, \ldots, q_n) \to q \in \Delta\}$
- Define $\mathcal{A}_d := (Q_d, \mathcal{F}, Q_{df}, \Delta_d)$
- Idea: A_d accepts tree t in the set of all states in that A accepts t (maybe the empty set)
 - Formally: $t \rightarrow_{\mathcal{A}_d} s$ iff $s = \{q \in Q \mid t \rightarrow_{\mathcal{A}} q\}$

- Theorem: For every NFTA, there exists a complete DFTA with the same language
- Let $Q_d := 2^Q$ and $Q_{df} := \{ s \in Q_d \mid s \cap Q_f \neq \emptyset \}$
- Let $f(s_1, \ldots, s_n) \to s \in \Delta_d$ iff $s = \{q \in Q \mid \exists q_1 \in s_1, \ldots, q_n \in s_n \mid f(q_1, \ldots, q_n) \to q \in \Delta\}$
- Define $A_d := (Q_d, \mathcal{F}, Q_{df}, \Delta_d)$
- Idea: A_d accepts tree t in the set of all states in that A accepts t (maybe the empty set)
 - Formally: $t \rightarrow_{\mathcal{A}_d} s$ iff $s = \{q \in Q \mid t \rightarrow_{\mathcal{A}} q\}$
- Lemma: The automaton A_d is a complete DFTA, and we have $L(A) = L(A_d)$. (On board)

- Theorem: For every NFTA, there exists a complete DFTA with the same language
- Let $Q_d := 2^Q$ and $Q_{df} := \{ s \in Q_d \mid s \cap Q_f \neq \emptyset \}$
- Let $f(s_1, \ldots, s_n) \to s \in \Delta_d$ iff $s = \{q \in Q \mid \exists q_1 \in s_1, \ldots, q_n \in s_n \mid f(q_1, \ldots, q_n) \to q \in \Delta\}$
- Define $A_d := (Q_d, \mathcal{F}, Q_{df}, \Delta_d)$
- Idea: A_d accepts tree t in the set of all states in that A accepts t (maybe the empty set)
 - Formally: $t \rightarrow_{\mathcal{A}_d} s$ iff $s = \{q \in Q \mid t \rightarrow_{\mathcal{A}} q\}$
- Lemma: The automaton A_d is a complete DFTA, and we have $L(A) = L(A_d)$. (On board)
- Theorem follows from this.

Determinization with reduction

Above method always construct exponentially many states

Determinization with reduction

- Above method always construct exponentially many states
 - Typically, many of the inaccessible

Determinization with reduction

- Above method always construct exponentially many states
 - Typically, many of the inaccessible
- Idea: Combine determinization and reduction

Determinization with reduction

- Above method always construct exponentially many states
 - Typically, many of the inaccessible
- Idea: Combine determinization and reduction
 - Only construct accessible states of A_d

Determinization with reduction

- Above method always construct exponentially many states
 - · Typically, many of the inaccessible
- Idea: Combine determinization and reduction
 - Only construct accessible states of \mathcal{A}_d

```
\begin{array}{ll} Q_d & := \ \emptyset \\ \Delta_d & := \ \emptyset \\ \textbf{repeat} \\ Q_d & := \ Q_d \cup \{s\} \\ \Delta_d & := \ \Delta_d \cup \{f(s_1, \ldots, s_n) \rightarrow s\} \\ \text{where} \\ f & \in \mathcal{F}_n, s_1 \ldots, s_n \in Q_d \\ s & = \{q \in Q \mid \exists q_1 \in s_1, \ldots, q_n \in s_n. \ f(q_1, \ldots, q_n) \rightarrow q \in \Delta\} \\ \textbf{until} \ \ \text{No more rules can be added to} \ \Delta_d \\ Q_{df} & := \ \{s \in Q_d \mid s \cap Q_f \neq \emptyset\} \\ \mathcal{A}_d & := \ (Q_d, \mathcal{F}, Q_{df}, \Delta_d) \end{array}
```

Automaton is already deterministic

- · Automaton is already deterministic
 - Naive method generates exponentially many rules

- Automaton is already deterministic
 - Naive method generates exponentially many rules
 - Reduction method does not increase size of automaton

- Automaton is already deterministic
 - Naive method generates exponentially many rules
 - Reduction method does not increase size of automaton
- Also advantageous if automaton is "almost" deterministic

- Automaton is already deterministic
 - Naive method generates exponentially many rules
 - Reduction method does not increase size of automaton
- Also advantageous if automaton is "almost" deterministic
- But, exponential blowup not avoidable in general

• Let $\mathcal{F} = f/1, g/1, a/0$

- Let $\mathcal{F} = f/1, g/1, a/0$
- Consider the language $L_n := \{t \in T(\mathcal{F}) \mid \text{The } n \text{th symbol of } t \text{ is } f \}$

- Let $\mathcal{F} = f/1, g/1, a/0$
- Consider the language $L_n := \{t \in T(\mathcal{F}) \mid \text{The } n \text{th symbol of } t \text{ is } f \}$
 - Automaton $Q = \{q, q_1, \dots, q_n\}, \ Q_f = \{q_n\}$ and Δ

- Let $\mathcal{F} = f/1, g/1, a/0$
- Consider the language $L_n := \{t \in T(\mathcal{F}) \mid \text{The } n \text{th symbol of } t \text{ is } f \}$
 - Automaton $Q = \{q, q_1, \dots, q_n\}, Q_f = \{q_n\}$ and Δ

· Nondeterministically decides which symbol to count

- Let $\mathcal{F} = f/1, g/1, a/0$
- Consider the language $L_n := \{t \in T(\mathcal{F}) \mid \text{The } n \text{th symbol of } t \text{ is } f \}$
 - Automaton $Q = \{q, q_1, \dots, q_n\}, Q_f = \{q_n\}$ and Δ

- Nondeterministically decides which symbol to count
- However, any DFTA has to memorize the last n symbols

- Let $\mathcal{F} = f/1, g/1, a/0$
- Consider the language $L_n := \{t \in T(\mathcal{F}) \mid \text{The } n \text{th symbol of } t \text{ is } f \}$
 - Automaton $Q = \{q, q_1, \dots, q_n\}, Q_f = \{q_n\}$ and Δ

- Nondeterministically decides which symbol to count
- However, any DFTA has to memorize the last n symbols
 - Thus, it has at least 2ⁿ states

- Let $\mathcal{F} = f/1, g/1, a/0$
- Consider the language $L_n := \{t \in T(\mathcal{F}) \mid \text{The } n \text{th symbol of } t \text{ is } f \}$
 - Automaton $Q = \{q, q_1, \dots, q_n\}, \ Q_f = \{q_n\}$ and Δ

- Nondeterministically decides which symbol to count
- However, any DFTA has to memorize the last n symbols
 - Thus, it has at least 2ⁿ states
- Note: The same example is usually given for word automata

- Let $\mathcal{F} = f/1, g/1, a/0$
- Consider the language $L_n := \{t \in T(\mathcal{F}) \mid \text{The } n \text{th symbol of } t \text{ is } f \}$
 - Automaton $Q = \{q, q_1, \dots, q_n\}, \ Q_f = \{q_n\}$ and Δ

- Nondeterministically decides which symbol to count
- However, any DFTA has to memorize the last n symbols
 - Thus, it has at least 2ⁿ states
- Note: The same example is usually given for word automata
 - $L = (a+b)^* a(a+b)^n$

Table of Contents

- Introduction
- 2 Basics

Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems

• Consider the language $L := \{ f(g^i(a), g^i(a)) \mid i \in \mathbb{N} \}$

- Consider the language $L := \{ f(g^i(a), g^i(a)) \mid i \in \mathbb{N} \}$
- Not recognizable by an FTA.

- Consider the language $L := \{ f(g^i(a), g^i(a)) \mid i \in \mathbb{N} \}$
- · Not recognizable by an FTA.
- Assume we have A with L(A) = L and |Q| = n

- Consider the language $L := \{ f(g^i(a), g^i(a)) \mid i \in \mathbb{N} \}$
- Not recognizable by an FTA.
- Assume we have A with L(A) = L and |Q| = n
- During recognizing $g^{n+1}(a)$, the same state must occur twice, say
 - $g^i(a) \rightarrow_{\mathcal{A}} q$ and $g^j(a) \rightarrow_{\mathcal{A}} q$ for $i \neq j$

- Consider the language $L := \{ f(g^i(a), g^i(a)) \mid i \in \mathbb{N} \}$
- Not recognizable by an FTA.
- Assume we have A with L(A) = L and |Q| = n
- During recognizing $g^{n+1}(a)$, the same state must occur twice, say
 - $g^i(a) \rightarrow_{\mathcal{A}} q$ and $g^j(a) \rightarrow_{\mathcal{A}} q$ for $i \neq j$
- As $f(g^i(a), g^i(a)) \in L(A)$, we also have $f(g^i(a), g^j(a)) \in L(A)$

- Consider the language $L := \{ f(g^i(a), g^i(a)) \mid i \in \mathbb{N} \}$
- Not recognizable by an FTA.
- Assume we have A with L(A) = L and |Q| = n
- During recognizing $g^{n+1}(a)$, the same state must occur twice, say
 - $g^i(a) \rightarrow_{\mathcal{A}} q$ and $g^j(a) \rightarrow_{\mathcal{A}} q$ for $i \neq j$
- As $f(g^i(a), g^i(a)) \in L(A)$, we also have $f(g^i(a), g^j(a)) \in L(A)$
- Contradiction! L not tree-regular

• A term $t \in T(\mathcal{F}, \mathcal{X})$ is called linear, if no variable occurs more than once

- A term $t \in T(\mathcal{F}, \mathcal{X})$ is called linear, if no variable occurs more than once
- A context with *n* holes is a linear term over variables x_1, \ldots, x_n

- A term $t \in T(\mathcal{F}, \mathcal{X})$ is called linear, if no variable occurs more than once
- A context with *n* holes is a linear term over variables x_1, \ldots, x_n
 - For a context C with n holes, we define

$$C[t_1,\ldots,t_n]:=C(x_1\mapsto t_1,\ldots,x_n\mapsto t_n)$$

- A term $t \in T(\mathcal{F}, \mathcal{X})$ is called linear, if no variable occurs more than once
- A context with *n* holes is a linear term over variables x_1, \ldots, x_n
 - For a context C with n holes, we define

$$C[t_1,\ldots,t_n]:=C(x_1\mapsto t_1,\ldots,x_n\mapsto t_n)$$

A context that consists of a single variable is called trivial.

Theorem

Let L be a regular language. Then, there is a constant k > 0 such that for every $t \in L$ with Height(t) > k, there is a context C, a non-trivial context C', and a term u such that

$$t = C[C'[u]]$$

$$\forall n \geq 0. \ C[C'^n[u]] \in L$$

· Proof sketch:

Theorem

$$t = C[C'[u]]$$

$$\forall n \geq 0. \ C[C'^n[u]] \in L$$

- Proof sketch:
 - Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ with L = L(A), and $t \rightarrow_A q, q \in Q_f$

Theorem

$$t = C[C'[u]]$$

$$\forall n \geq 0. \ C[C'^n[u]] \in L$$

- Proof sketch:
 - Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ with L = L(A), and $t \to_A q, q \in Q_f$
 - Choose path through t with length > k

Theorem

$$t = C[C'[u]]$$

$$\forall n \geq 0. \ C[C'^n[u]] \in L$$

- Proof sketch:
 - Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ with L = L(A), and $t \to_A q, q \in Q_f$
 - Choose path through t with length > k
 - Two subtrees on this path accepted in same state.

Theorem

$$t = C[C'[u]]$$

$$\forall n \geq 0. \ C[C'^n[u]] \in L$$

- Proof sketch:
 - Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ with L = L(A), and $t \to_A q, q \in Q_f$
 - Choose path through t with length > k
 - Two subtrees on this path accepted in same state.
 - Identify them by C and C'

• Consider $\mathcal{F} = f/2$, a/0, and $L := \{t \in \mathcal{T}(\mathcal{F}) \mid |t| \text{ is prime}\}$

- Consider $\mathcal{F} = f/2$, a/0, and $L := \{t \in \mathcal{T}(\mathcal{F}) \mid |t| \text{ is prime}\}$
 - |t| is number of nodes in t

- Consider $\mathcal{F} = f/2$, a/0, and $L := \{t \in T(\mathcal{F}) \mid |t| \text{ is prime}\}$
 - |t| is number of nodes in t
- L is not regular.

- Consider $\mathcal{F} = f/2$, a/0, and $L := \{t \in \mathcal{T}(\mathcal{F}) \mid |t| \text{ is prime}\}$
 - |t| is number of nodes in t
- L is not regular.
 - Proof by contradiction. Assume *L* is regular, and *k* is pumping constant

- Consider $\mathcal{F} = f/2$, a/0, and $L := \{t \in \mathcal{T}(\mathcal{F}) \mid |t| \text{ is prime}\}$
 - |t| is number of nodes in t
- L is not regular.
 - Proof by contradiction. Assume L is regular, and k is pumping constant
 - Choose $t \in L$ with height(t) > k

- Consider $\mathcal{F} = f/2$, a/0, and $L := \{t \in \mathcal{T}(\mathcal{F}) \mid |t| \text{ is prime}\}$
 - |t| is number of nodes in t
- L is not regular.
 - Proof by contradiction. Assume *L* is regular, and *k* is pumping constant
 - Choose $t \in L$ with height(t) > k
 - We obtain C, C', u such that t = C[C'[u]] and $\forall n. C[C'^n[u]] \in L$

- Consider $\mathcal{F} = f/2$, a/0, and $L := \{t \in T(\mathcal{F}) \mid |t| \text{ is prime}\}$
 - |t| is number of nodes in t
- L is not regular.
 - Proof by contradiction. Assume L is regular, and k is pumping constant
 - Choose $t \in L$ with height(t) > k
 - We obtain C, C', u such that t = C[C'[u]] and $\forall n. \ C[C'^n[u]] \in L$ We have $|C[C'^n[u]]| = |C| 1 + n(|C'| 1) + |u|$

- Consider $\mathcal{F} = f/2$, a/0, and $L := \{t \in T(\mathcal{F}) \mid |t| \text{ is prime}\}$
 - |t| is number of nodes in t
- L is not regular.
 - Proof by contradiction. Assume L is regular, and k is pumping constant
 - Choose $t \in L$ with height(t) > k
 - We obtain C, C', u such that t = C[C'[u]] and $\forall n. \ C[C'^n[u]] \in L$ We have $|C[C'^n[u]]| = |C| 1 + n(|C'| 1) + |u|$
 - - Choose n = |C| + |u| 1 to show that this is not prime for all n

• Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ be an FTA.

- Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ be an FTA.
 - **1** L(A) is non-empty, iff $\exists t \in L(A).height(t) \leq |Q|$

- Let $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$ be an FTA.
 - **1** L(A) is non-empty, iff $\exists t \in L(A)$. $height(t) \leq |Q|$
 - **2** L(A) is infinite, iff $\exists t \in L(A).|Q| < height(t) \leq 2|Q|$

- Let $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$ be an FTA.
 - **1** L(A) is non-empty, iff $\exists t \in L(A)$. $height(t) \leq |Q|$
 - **2** L(A) is infinite, iff $\exists t \in L(A).|Q| < height(t) \leq 2|Q|$
- Proof ideas:

- Let $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$ be an FTA.
 - **1** L(A) is non-empty, iff $\exists t \in L(A)$. $height(t) \leq |Q|$
 - 2 L(A) is infinite, iff $\exists t \in L(A).|Q| < height(t) \leq 2|Q|$
- Proof ideas:
 - Remove duplicate states of accepting run repeatedly

- Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ be an FTA.
 - **1** L(A) is non-empty, iff $\exists t \in L(A)$. height(t) $\leq |Q|$
 - **2** L(A) is infinite, iff $\exists t \in L(A).|Q| < height(t) \leq 2|Q|$
- Proof ideas:
 - 1 Remove duplicate states of accepting run repeatedly

- Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ be an FTA.
 - **1** L(A) is non-empty, iff $\exists t \in L(A)$. $height(t) \leq |Q|$
 - **2** L(A) is infinite, iff $\exists t \in L(A).|Q| < height(t) \leq 2|Q|$
- Proof ideas:
 - 1 Remove duplicate states of accepting run repeatedly
 - - ←: Pump with infinitely many n

Last Lecture

- Deterministic Automata
 - Powerset construction
- Pumping Lemma

Table of Contents

- Introduction
- 2 Basics

Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems

Closure Properties

Theorem

- The class of regular languages is closed under union, intersection, and complement.
- Automata for union, intersection, and complement can be computed.

• Given automata $A_1=(Q_1,\mathcal{F},Q_{f1},\Delta_1)$ and $A_2=(Q_2,\mathcal{F},Q_{f2},\Delta_2)$.

- Given automata $A_1=(Q_1,\mathcal{F},Q_{f1},\Delta_1)$ and $A_2=(Q_2,\mathcal{F},Q_{f2},\Delta_2)$.
 - Assume, wlog, $Q_1 \cap Q_2 = \emptyset$

- Given automata $A_1=(Q_1,\mathcal{F},Q_{f1},\Delta_1)$ and $A_2=(Q_2,\mathcal{F},Q_{f2},\Delta_2)$.
 - Assume, wlog, $Q_1 \cap Q_2 = \emptyset$
 - Let $\mathcal{A} = (Q_1 \cup Q_2, \mathcal{F}, Q_{f1} \cup Q_{f2}, \Delta_1 \cup \Delta_2)$

- Given automata $A_1=(Q_1,\mathcal{F},Q_{f1},\Delta_1)$ and $A_2=(Q_2,\mathcal{F},Q_{f2},\Delta_2)$.
 - Assume, wlog, $Q_1 \cap Q_2 = \emptyset$
 - Let $\mathcal{A} = (Q_1 \cup Q_2, \mathcal{F}, Q_{f1} \cup Q_{f2}, \Delta_1 \cup \Delta_2)$
 - Straightforward: $L(A) = L(A_1) \cup L(A_2)$

- Given automata $A_1 = (Q_1, \mathcal{F}, Q_{f1}, \Delta_1)$ and $A_2 = (Q_2, \mathcal{F}, Q_{f2}, \Delta_2)$.
 - Assume, wlog, $Q_1 \cap Q_2 = \emptyset$
 - Let $\mathcal{A} = (Q_1 \cup Q_2, \mathcal{F}, Q_{f1} \cup Q_{f2}, \Delta_1 \cup \Delta_2)$
 - Straightforward: $L(A) = L(A_1) \cup L(A_2)$
- However: $\mathcal A$ may be nondeterministic and not complete, even if $\mathcal A_1$ and $\mathcal A_2$ were.

- Given automata $A_1 = (Q_1, \mathcal{F}, Q_{f1}, \Delta_1)$ and $A_2 = (Q_2, \mathcal{F}, Q_{f2}, \Delta_2)$.
 - Assume, wlog, $Q_1 \cap Q_2 = \emptyset$
 - Let $\mathcal{A} = (Q_1 \cup Q_2, \mathcal{F}, Q_{f1} \cup Q_{f2}, \Delta_1 \cup \Delta_2)$
 - Straightforward: $L(A) = L(A_1) \cup L(A_2)$
- However: A may be nondeterministic and not complete, even if A₁ and A₂ were.
- Let A_1, A_2 be deterministic and complete. Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ with

- Given automata $A_1 = (Q_1, \mathcal{F}, Q_{f1}, \Delta_1)$ and $A_2 = (Q_2, \mathcal{F}, Q_{f2}, \Delta_2)$.
 - Assume, wlog, $Q_1 \cap Q_2 = \emptyset$
 - Let $\mathcal{A} = (Q_1 \cup Q_2, \mathcal{F}, Q_{f1} \cup Q_{f2}, \Delta_1 \cup \Delta_2)$
 - Straightforward: $L(A) = L(A_1) \cup L(A_2)$
- However: A may be nondeterministic and not complete, even if A₁ and A₂ were.
- Let A_1, A_2 be deterministic and complete. Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ with
 - $\textit{Q} = \textit{Q}_1 \times \textit{Q}_2, \, \textit{Q}_f = \textit{Q}_{f1} \times \textit{Q}_2 \cup \textit{Q}_1 \times \textit{Q}_{f2}, \, \text{and} \, \Delta = \Delta_1 \times \Delta_2 \, \, \text{where}$

$$\Delta_1 \times \Delta_2 := \{f((q_1, q_1'), \dots, (q_n, q_n')) \rightarrow (q, q') \mid f(q_1, \dots, q_n) \rightarrow q \in \Delta_1 \land f(q_1', \dots, q_n') \rightarrow q' \in \Delta_2\}$$

- Given automata $A_1 = (Q_1, \mathcal{F}, Q_{f1}, \Delta_1)$ and $A_2 = (Q_2, \mathcal{F}, Q_{f2}, \Delta_2)$.
 - Assume, wlog, Q₁ ∩ Q₂ = ∅
 - Let $\mathcal{A} = (Q_1 \cup Q_2, \mathcal{F}, Q_{f1} \cup Q_{f2}, \Delta_1 \cup \Delta_2)$
 - Straightforward: $L(A) = L(A_1) \cup L(A_2)$
- However: A may be nondeterministic and not complete, even if A₁ and A₂ were.
- Let A_1, A_2 be deterministic and complete. Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ with
 - $\textit{Q} = \textit{Q}_1 \times \textit{Q}_2, \, \textit{Q}_f = \textit{Q}_{f1} \times \textit{Q}_2 \cup \textit{Q}_1 \times \textit{Q}_{f2}, \, \text{and} \, \Delta = \Delta_1 \times \Delta_2 \, \, \text{where}$

$$\Delta_1 imes \Delta_2 := \{f((q_1, q_1'), \dots, (q_n, q_n'))
ightarrow (q, q') \mid f(q_1, \dots, q_n)
ightarrow q \in \Delta_1 \wedge f(q_1', \dots, q_n')
ightarrow q' \in \Delta_2 \}$$

• Then $L(A) = L(A_1) \cup L(A_2)$ and A is deterministic and complete.

- Given automata $A_1 = (Q_1, \mathcal{F}, Q_{f1}, \Delta_1)$ and $A_2 = (Q_2, \mathcal{F}, Q_{f2}, \Delta_2)$.
 - Assume, wlog, $Q_1 \cap Q_2 = \emptyset$
 - Let $\mathcal{A} = (Q_1 \cup Q_2, \mathcal{F}, Q_{f1} \cup Q_{f2}, \Delta_1 \cup \Delta_2)$
 - Straightforward: $L(A) = L(A_1) \cup L(A_2)$
- However: A may be nondeterministic and not complete, even if A₁ and A₂ were.
- Let A_1, A_2 be deterministic and complete. Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ with
 - $\textit{Q} = \textit{Q}_1 \times \textit{Q}_2, \, \textit{Q}_f = \textit{Q}_{f1} \times \textit{Q}_2 \cup \textit{Q}_1 \times \textit{Q}_{f2}, \, \text{and} \, \Delta = \Delta_1 \times \Delta_2 \, \, \text{where}$

$$\Delta_1 \times \Delta_2 := \{f((q_1, q_1'), \dots, (q_n, q_n')) \rightarrow (q, q') \mid f(q_1, \dots, q_n) \rightarrow q \in \Delta_1 \land f(q_1', \dots, q_n') \rightarrow q' \in \Delta_2\}$$

- Then $L(A) = L(A_1) \cup L(A_2)$ and A is deterministic and complete.
- Intuition: Recognize with both automata in parallel.

• Assume L is recognized by the complete DFTA $A = (Q, \mathcal{F}, Q_f, \Delta)$

- Assume *L* is recognized by the complete DFTA $A = (Q, \mathcal{F}, Q_f, \Delta)$
- Define $\mathcal{A}^c = (Q, \mathcal{F}, Q \setminus Q_f, \Delta)$

- Assume *L* is recognized by the complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$
- Define $\mathcal{A}^c = (Q, \mathcal{F}, Q \setminus Q_f, \Delta)$
- Obviously, $L(A^c) = T(\mathcal{F}) \setminus L(A)$

- Assume L is recognized by the complete DFTA $A = (Q, \mathcal{F}, Q_f, \Delta)$
- Define $\mathcal{A}^c = (Q, \mathcal{F}, Q \setminus Q_f, \Delta)$
- Obviously, $L(A^c) = T(F) \setminus L(A)$
- If a nondeterministic automaton is given, determinization may cause exponential blowup

• The easy way: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$

- The easy way: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$
 - Exponential blowup for NFTA.

- The easy way: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$
 - · Exponential blowup for NFTA.
- Product construction: Given automata $A_1 = (Q_1, \mathcal{F}, Q_{f1}, \Delta_1)$ and $A_2 = (Q_2, \mathcal{F}, Q_{f2}, \Delta_2)$.

- The easy way: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$
 - Exponential blowup for NFTA.
- Product construction: Given automata $A_1 = (Q_1, \mathcal{F}, Q_{f1}, \Delta_1)$ and $A_2 = (Q_2, \mathcal{F}, Q_{f2}, \Delta_2)$.
 - Define $\mathcal{A} = (\textit{Q}_1 \times \textit{Q}_2, \mathcal{F}, \textit{Q}_{f1} \times \textit{Q}_{f2}, \Delta_1 \times \Delta_2)$

- The easy way: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$
 - · Exponential blowup for NFTA.
- Product construction: Given automata $A_1 = (Q_1, \mathcal{F}, Q_{f1}, \Delta_1)$ and $A_2 = (Q_2, \mathcal{F}, Q_{f2}, \Delta_2)$.
 - Define $\mathcal{A} = (Q_1 \times Q_2, \mathcal{F}, Q_{f1} \times Q_{f2}, \Delta_1 \times \Delta_2)$
 - $L(A) = L(A_1) \cap L(A_2)$

- The easy way: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$
 - Exponential blowup for NFTA.
- Product construction: Given automata $A_1 = (Q_1, \mathcal{F}, Q_{f1}, \Delta_1)$ and $A_2 = (Q_2, \mathcal{F}, Q_{f2}, \Delta_2)$.
 - Define $\mathcal{A} = (Q_1 \times Q_2, \mathcal{F}, Q_{f1} \times Q_{f2}, \Delta_1 \times \Delta_2)$
 - $L(A) = L(A_1) \cap L(A_2)$
 - Intuition: Automata run in parallel. Accept if both accept.

- The easy way: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$
 - · Exponential blowup for NFTA.
- Product construction: Given automata $A_1 = (Q_1, \mathcal{F}, Q_{f1}, \Delta_1)$ and $A_2 = (Q_2, \mathcal{F}, Q_{f2}, \Delta_2)$.
 - Define $\mathcal{A} = (Q_1 \times Q_2, \mathcal{F}, Q_{f1} \times Q_{f2}, \Delta_1 \times \Delta_2)$
 - $L(A) = L(A_1) \cap L(A_2)$
 - Intuition: Automata run in parallel. Accept if both accept.
 - \mathcal{A} is deterministic/complete if \mathcal{A}_1 and \mathcal{A}_2 are.

- The easy way: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$
 - · Exponential blowup for NFTA.
- Product construction: Given automata A₁ = (Q₁, F, Q_{f1}, Δ₁) and A₂ = (Q₂, F, Q_{f2}, Δ₂).
 - Define $\mathcal{A} = (Q_1 \times Q_2, \mathcal{F}, Q_{f1} \times Q_{f2}, \Delta_1 \times \Delta_2)$
 - $L(A) = L(A_1) \cap L(A_2)$
 - Intuition: Automata run in parallel. Accept if both accept.
 - \mathcal{A} is deterministic/complete if \mathcal{A}_1 and \mathcal{A}_2 are.
- Product construction can also be combined with reduction algorithm, to avoid construction of inaccessible states.

Summary

• For DFTA: Polynomial time intersection, union, complement

Summary

- For DFTA: Polynomial time intersection, union, complement
- For NFTA: Polynomial time intersection, union. Exp-time complement.

More Algorithms on FTA

• Membership for NFTA. In time O(|t| * |A|) On-the-fly determinization.

More Algorithms on FTA

- Membership for NFTA. In time O(|t|*|A|) On-the-fly determinization.
- Emptiness check: Time $O(|\mathcal{A}|)$. Exercise!

Table of Contents

- 1 Introduction
- 2 Basics

Nondeterministic Finite Tree Automata Epsilon Rules Deterministic Finite Tree Automata Pumping Lemma Closure Properties Tree Homomorphisms Minimizing Tree Automata Top-Down Tree Automata

- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems

Tree Homomorphisms

Map each symbol of tree to new subtree

Tree Homomorphisms

- · Map each symbol of tree to new subtree
- Example: Convert ternary tree to binary tree
 - $f(x_1, x_2, x_3) \mapsto g(x_1, g(x_2, x_3))$

Tree Homomorphisms

- Map each symbol of tree to new subtree
- Example: Convert ternary tree to binary tree
 - $f(x_1, x_2, x_3) \mapsto g(x_1, g(x_2, x_3))$
- Example: Eliminate conjunction from Boolean formulas
 - $X_1 \wedge X_2 \mapsto \neg(\neg X_1 \vee \neg X_2)$

 \bullet Let ${\mathcal F}$ and ${\mathcal F}'$ be ranked alphabets, not necessarily disjoint

- Let \mathcal{F} and \mathcal{F}' be ranked alphabets, not necessarily disjoint
- Let, for any n, $\mathcal{X}_n := \{x_1, \dots, x_n\}$ be variables, disjoint from \mathcal{F} and \mathcal{F}'

- Let \mathcal{F} and \mathcal{F}' be ranked alphabets, not necessarily disjoint
- Let, for any n, $\mathcal{X}_n := \{x_1, \dots, x_n\}$ be variables, disjoint from \mathcal{F} and \mathcal{F}'
- Let $h_{\mathcal{F}}$ be a mapping that maps $f \in \mathcal{F}_n$ to $h_{\mathcal{F}}(f) \in T(\mathcal{F}', \mathcal{X}_n)$

- Let \mathcal{F} and \mathcal{F}' be ranked alphabets, not necessarily disjoint
- Let, for any $n, \mathcal{X}_n := \{x_1, \dots, x_n\}$ be variables, disjoint from \mathcal{F} and \mathcal{F}'
- Let $h_{\mathcal{F}}$ be a mapping that maps $f \in \mathcal{F}_n$ to $h_{\mathcal{F}}(f) \in T(\mathcal{F}', \mathcal{X}_n)$
- $h_{\mathcal{F}}$ determines a *tree homomorphism* $h: T(\mathcal{F}) \to T(\mathcal{F}')$:

$$h(f(t_1,\ldots,t_n)):=h_{\mathcal{F}}(f)(x_1\mapsto h(t_1),\ldots,x_n\mapsto h(t_n))$$

• Tree homomorphisms do not preserve regularity in general

- Tree homomorphisms do not preserve regularity in general
 - Let $L = \{f(g^i(a)) \mid i \in \mathbb{N}\}$. Obviously regular.

- Tree homomorphisms do not preserve regularity in general
 - Let $L = \{f(g^i(a)) \mid i \in \mathbb{N}\}$. Obviously regular.
 - Let $h_{\mathcal{F}}$: $f(x) \mapsto f(x,x)$

- Tree homomorphisms do not preserve regularity in general
 - Let $L = \{f(g^i(a)) \mid i \in \mathbb{N}\}$. Obviously regular.
 - Let $h_{\mathcal{F}}$: $f(x) \mapsto f(x,x)$
 - $h(L) = \{f(g^i(a), g^i(a)) \mid i \in \mathbb{N}\}$. Not regular.

- Tree homomorphisms do not preserve regularity in general
 - Let $L = \{f(g^i(a)) \mid i \in \mathbb{N}\}$. Obviously regular.
 - Let $h_{\mathcal{F}}$: $f(x) \mapsto f(x,x)$
 - $h(L) = \{f(g^i(a), g^i(a)) \mid i \in \mathbb{N}\}$. Not regular.
- But:

- Tree homomorphisms do not preserve regularity in general
 - Let $L = \{f(g^i(a)) \mid i \in \mathbb{N}\}$. Obviously regular.
 - Let $h_{\mathcal{F}}$: $f(x) \mapsto f(x,x)$
 - $h(L) = \{f(g^i(a), g^i(a)) \mid i \in \mathbb{N}\}$. Not regular.
- But:
 - A tree homomorphism determined by $h_{\mathcal{F}}$ is *linear*, iff for all $f \in \mathcal{F}$, the term $h_{\mathcal{F}}(f)$ is linear.

- Tree homomorphisms do not preserve regularity in general
 - Let $L = \{f(g^i(a)) \mid i \in \mathbb{N}\}$. Obviously regular.
 - Let $h_{\mathcal{F}}$: $f(x) \mapsto f(x,x)$
 - $h(L) = \{f(g^i(a), g^i(a)) \mid i \in \mathbb{N}\}$. Not regular.
- But:
 - A tree homomorphism determined by $h_{\mathcal{F}}$ is *linear*, iff for all $f \in \mathcal{F}$, the term $h_{\mathcal{F}}(f)$ is linear.

Theorem

Let L be a regular language, and h a linear tree homomorphism. Then h(L) is also regular.

- Tree homomorphisms do not preserve regularity in general
 - Let $L = \{f(g^i(a)) \mid i \in \mathbb{N}\}$. Obviously regular.
 - Let $h_{\mathcal{F}}$: $f(x) \mapsto f(x,x)$
 - $h(L) = \{f(g^i(a), g^i(a)) \mid i \in \mathbb{N}\}$. Not regular.
- But:
 - A tree homomorphism determined by $h_{\mathcal{F}}$ is *linear*, iff for all $f \in \mathcal{F}$, the term $h_{\mathcal{F}}(f)$ is linear.

Theorem

Let L be a regular language, and h a linear tree homomorphism. Then h(L) is also regular.

• Proof idea: For each original rule $f(q_1, \ldots, q_n)$, insert rules that recognize $h_{\mathcal{F}}[q_1, \ldots, q_n]$

Positions

• Identify position in tree by sequence of natural numbers

Positions

- Identify position in tree by sequence of natural numbers
- Let *t* be a tree, and $p \in \mathbb{N}^*$. We define the subtree of *t* at position *p* by:

$$t(\varepsilon) := t$$
 $(f(t_1, \ldots, t_n))(ip) := t_i(p)$

Positions

- Identify position in tree by sequence of natural numbers
- Let *t* be a tree, and $p \in \mathbb{N}^*$. We define the subtree of *t* at position *p* by:

$$t(\varepsilon) := t$$
 $(f(t_1, \ldots, t_n))(ip) := t_i(p)$

Pos(t) is the set of valid positions in t

• Assume *L* is accepted by reduced DFTA $A = (Q, \mathcal{F}, Q_f, \Delta)$.

- Assume *L* is accepted by reduced DFTA $A = (Q, \mathcal{F}, Q_f, \Delta)$.
- Construct NFTA $A' = (Q', \mathcal{F}', Q'_f, \Delta')$:

- Assume L is accepted by reduced DFTA $A = (Q, \mathcal{F}, Q_f, \Delta)$.
- Construct NFTA $A' = (Q', \mathcal{F}', Q'_f, \Delta')$:
 - With $Q \subseteq Q'$ and $Q'_f = Q_f$

- Assume *L* is accepted by reduced DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$.
- Construct NFTA $A' = (Q', \mathcal{F}', Q'_t, \Delta')$:
 - With $Q \subseteq Q'$ and $Q'_f = Q_f$
 - For each rule $r = f(q_1, \dots, q_n) \to q$, $t_f = h_{\mathcal{F}}(t)$, and position $p \in Pos(t_f)$:

- Assume *L* is accepted by reduced DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \Delta)$.
- Construct NFTA $A' = (Q', \mathcal{F}', Q'_f, \Delta')$:
 - With $Q \subseteq Q'$ and $Q'_f = Q_f$
 - For each rule $r = f(q_1, ..., q_n) \rightarrow q$, $t_f = h_{\mathcal{F}}(t)$, and position $p \in Pos(t_f)$:
 - States $q_p^r \in Q'$

- Assume *L* is accepted by reduced DFTA $A = (Q, \mathcal{F}, Q_f, \Delta)$.
- Construct NFTA $A' = (Q', \mathcal{F}', Q'_f, \Delta')$:
 - With $Q \subseteq Q'$ and $Q'_f = Q_f$
 - For each rule $r = f(q_1, \ldots, q_n) \to q$, $t_f = h_{\mathcal{F}}(t)$, and position $p \in Pos(t_f)$:
 - States $q_p^r \in Q'$
 - If $t_f(p) \stackrel{r}{=} g(\ldots) \in \mathcal{F}_k$: $g(q_{p1}^r, \ldots, q_{pk}^r) \rightarrow q^r \in \Delta'$

- Assume *L* is accepted by reduced DFTA $A = (Q, \mathcal{F}, Q_f, \Delta)$.
- Construct NFTA $A' = (Q', \mathcal{F}', Q'_f, \Delta')$:
 - With $Q \subseteq Q'$ and $Q'_f = Q_f$
 - For each rule $r = f(q_1, \ldots, q_n) \rightarrow q$, $t_f = h_{\mathcal{F}}(t)$, and position $p \in Pos(t_f)$:
 - States $q_n^r \in Q'$
 - If $t_f(p) \stackrel{\cdot,\cdot}{=} g(\ldots) \in \mathcal{F}_k : g(q_{p1}^r,\ldots,q_{pk}^r) \rightarrow q^r \in \Delta'$
 - If $t_f(p) = x_i : q_i \rightarrow q_p^r \in \Delta^{r'}$

- Assume *L* is accepted by reduced DFTA $A = (Q, \mathcal{F}, Q_f, \Delta)$.
- Construct NFTA $A' = (Q', \mathcal{F}', Q'_f, \Delta')$:
 - With $Q \subseteq Q'$ and $Q'_f = Q_f$
 - For each rule $r = f(q_1, ..., q_n) \rightarrow q$, $t_f = h_{\mathcal{F}}(t)$, and position $p \in Pos(t_f)$:
 - States $q_n^r \in Q'$
 - If $t_f(p) \stackrel{\neg}{=} g(\ldots) \in \mathcal{F}_k : g(q_{p1}^r, \ldots, q_{pk}^r) \rightarrow q^r \in \Delta'$
 - If $t_f(p) = x_i : q_i \to q_p^r \in \Delta^r$
 - $q_{\varepsilon}^r o q \in \Delta'$

• Prove $h(L) \subseteq L(A')$. Straightforward.

- Prove $h(L) \subseteq L(A')$. Straightforward.
- Prove $L(A') \subseteq h(L)$ (Sketch on board).

- Prove $h(L) \subseteq L(A')$. Straightforward.
- Prove $L(A') \subseteq h(L)$ (Sketch on board).
 - Idea: Split derivation of $t \to_{\mathcal{A}'} q \in Q$ at rules of the form $q_{\varepsilon}^r \to q$.

- Prove $h(L) \subseteq L(A')$. Straightforward.
- Prove $L(A') \subseteq h(L)$ (Sketch on board).
 - Idea: Split derivation of $t \to_{\mathcal{A}'} q \in Q$ at rules of the form $q_{\varepsilon}^r \to q$.
 - Assume $r = f(...) \rightarrow q$. Without using states from Q, automaton accepts subtree of the form $h_{\mathcal{F}}(f)$.

- Prove $h(L) \subseteq L(A')$. Straightforward.
- Prove $L(A') \subseteq h(L)$ (Sketch on board).
 - Idea: Split derivation of $t \to_{\mathcal{A}'} q \in Q$ at rules of the form $q_{\varepsilon}^r \to q$.
 - Assume r = f(...) → q. Without using states from Q, automaton accepts subtree of the form h_F(f).
 - · Cases:
 - Constant (0-ary symbol)
 - Due to rule $q_i \rightarrow q_p^r \in \Delta', \, q_i \in Q$ (use IH)

- Prove $h(L) \subseteq L(A')$. Straightforward.
- Prove $L(A') \subseteq h(L)$ (Sketch on board).
 - Idea: Split derivation of $t \to_{\mathcal{A}'} q \in Q$ at rules of the form $q_{\varepsilon}^r \to q$.
 - Assume r = f(...) → q. Without using states from Q, automaton accepts subtree of the form h_F(f).
 - · Cases:
 - · Constant (0-ary symbol)
 - Due to rule $q_i \rightarrow q_p^r \in \Delta', q_i \in Q$ (use IH)
 - Formally: Induction on size of derivation $t
 ightarrow_{\mathcal{A}'} q$

Last lecture

- Closure properties: Union, intersection, complement
- Tree homomorphisms
 - Idea: Replace node by tree with "holes"
 - $and(x_1, x_2) \mapsto not(or(not(x_1), not(x_2)))$
- Regular languages closed under linear homomorphisms
 - Linear: No subtrees are duplicated

Motivation: Reconsider elimination of ∧ in Boolean formulas

- Motivation: Reconsider elimination of ∧ in Boolean formulas
 - Homomorphism: Given automaton that recognizes true formulas, construct automaton for true formulas without ∧.

- Motivation: Reconsider elimination of ∧ in Boolean formulas
 - Homomorphism: Given automaton that recognizes true formulas, construct automaton for true formulas without ∧.
 - Not really useful

- Motivation: Reconsider elimination of ∧ in Boolean formulas
 - Homomorphism: Given automaton that recognizes true formulas, construct automaton for true formulas without ∧.
 - Not really useful
 - Inverse homomorphism: Given automaton for formulas without \land , construct automaton for formulas with \land .

- Motivation: Reconsider elimination of ∧ in Boolean formulas
 - Homomorphism: Given automaton that recognizes true formulas, construct automaton for true formulas without ∧.
 - Not really useful
 - Inverse homomorphism: Given automaton for formulas without ∧, construct automaton for formulas with ∧.
 - · This would be nice

- Motivation: Reconsider elimination of ∧ in Boolean formulas
 - Homomorphism: Given automaton that recognizes true formulas, construct automaton for true formulas without ∧.
 - Not really useful
 - Inverse homomorphism: Given automaton for formulas without ∧, construct automaton for formulas with ∧.
 - This would be nice
 - From automaton for simple language, and mapping of complex to simple language, obtain automaton for complex language!

- Motivation: Reconsider elimination of ∧ in Boolean formulas
 - Homomorphism: Given automaton that recognizes true formulas, construct automaton for true formulas without ∧.
 - Not really useful
 - Inverse homomorphism: Given automaton for formulas without \land , construct automaton for formulas with \land .
 - · This would be nice
 - From automaton for simple language, and mapping of complex to simple language, obtain automaton for complex language!
- Fortunately

Theorem

Let h be a tree homomorphism, and L a regular language. Then $h^{-1}(L) := \{t \mid h(t) \in L\}$ is regular.

- Motivation: Reconsider elimination of ∧ in Boolean formulas
 - Homomorphism: Given automaton that recognizes true formulas, construct automaton for true formulas without ∧.
 - Not really useful
 - Inverse homomorphism: Given automaton for formulas without \land , construct automaton for formulas with \land .
 - · This would be nice
 - From automaton for simple language, and mapping of complex to simple language, obtain automaton for complex language!
- Fortunately

Theorem

Let h be a tree homomorphism, and L a regular language. Then $h^{-1}(L) := \{t \mid h(t) \in L\}$ is regular.

Also holds for non-linear homomorphisms

- Motivation: Reconsider elimination of ∧ in Boolean formulas
 - Homomorphism: Given automaton that recognizes true formulas, construct automaton for true formulas without ∧.
 - Not really useful
 - Inverse homomorphism: Given automaton for formulas without \land , construct automaton for formulas with \land .
 - · This would be nice
 - From automaton for simple language, and mapping of complex to simple language, obtain automaton for complex language!
- Fortunately

Theorem

Let h be a tree homomorphism, and L a regular language. Then $h^{-1}(L) := \{t \mid h(t) \in L\}$ is regular.

- Also holds for non-linear homomorphisms
- · Common technique to show regularity/decidability

- Motivation: Reconsider elimination of ∧ in Boolean formulas
 - Homomorphism: Given automaton that recognizes true formulas, construct automaton for true formulas without ∧.
 - Not really useful
 - Inverse homomorphism: Given automaton for formulas without ∧, construct automaton for formulas with ∧.
 - This would be nice
 - From automaton for simple language, and mapping of complex to simple language, obtain automaton for complex language!
- Fortunately

Theorem

Let h be a tree homomorphism, and L a regular language. Then $h^{-1}(L) := \{t \mid h(t) \in L\}$ is regular.

- Also holds for non-linear homomorphisms
- · Common technique to show regularity/decidability
 - Can be generalized to (macro) tree transducers

Generalized Acceptance Relation

• Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ and $t \in T(\mathcal{F} \dot{\cup} Q)$.

Generalized Acceptance Relation

- Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ and $t \in T(\mathcal{F} \dot{\cup} Q)$.
- We define $t \rightarrow_{\mathcal{A}} q$ as the least relation that satisfies

$$q \rightarrow_{\mathcal{A}} q$$

$$f(q_1, \dots, q_n) \rightarrow q \in \Delta, \forall i \leq n. \ t_i \rightarrow_{\mathcal{A}} q_i \implies f(t_1, \dots, t_n) \rightarrow_{\mathcal{A}} q$$

Generalized Acceptance Relation

- Let $A = (Q, \mathcal{F}, Q_f, \Delta)$ and $t \in T(\mathcal{F} \dot{\cup} Q)$.
- We define $t \rightarrow_{\mathcal{A}} q$ as the least relation that satisfies

$$q \rightarrow_{\mathcal{A}} q$$

$$f(q_1, \dots, q_n) \rightarrow q \in \Delta, \forall i \leq n. \ t_i \rightarrow_{\mathcal{A}} q_i \implies f(t_1, \dots, t_n) \rightarrow_{\mathcal{A}} q$$

 This is obviously a generalization of the acceptance relation we defined earlier

• Let $h: T(\mathcal{F}) \to T(\mathcal{F}')$ be a tree homomorphism determined by $h_{\mathcal{F}}$

- Let $h: T(\mathcal{F}) \to T(\mathcal{F}')$ be a tree homomorphism determined by $h_{\mathcal{F}}$
- Let $\mathcal{A}' = (Q', \mathcal{F}', Q'_f, \Delta')$ be a DFTA with $L = L(\mathcal{A}')$

- Let $h: T(\mathcal{F}) \to T(\mathcal{F}')$ be a tree homomorphism determined by $h_{\mathcal{F}}$
- Let $\mathcal{A}' = (Q', \mathcal{F}', Q'_f, \Delta')$ be a DFTA with $L = L(\mathcal{A}')$
- We define DFTA $\mathcal{A} = (Q' \dot{\cup} \{s\}, \mathcal{F}, Q'_f, \Delta)$, with the rules

$$f(q_1, \ldots, q_n) \to q \in \Delta \text{ if } f \in \mathcal{F}_n, \, h_{\mathcal{F}}(f)[p_1, \ldots, p_n] \to_{\mathcal{A}'} q$$

where $q_i = p_i$ if x_i occurs in $h_{\mathcal{F}}(f)$, and $q_i = s$ otherwise $a \to s \in \Delta, \ f(s, \ldots, s) \to s \in \Delta$

- Let $h: T(\mathcal{F}) \to T(\mathcal{F}')$ be a tree homomorphism determined by $h_{\mathcal{F}}$
- Let $\mathcal{A}' = (Q', \mathcal{F}', Q'_f, \Delta')$ be a DFTA with $L = L(\mathcal{A}')$
- We define DFTA $\mathcal{A} = (Q' \dot{\cup} \{s\}, \mathcal{F}, Q'_f, \Delta)$, with the rules

$$f(q_1,\ldots,q_n) o q \in \Delta ext{ if } f \in \mathcal{F}_n, \, h_{\mathcal{F}}(f)[p_1,\ldots,p_n] o_{\mathcal{A}'} q$$
 where $q_i = p_i$ if x_i occurs in $h_{\mathcal{F}}(f)$, and $q_i = s$ otherwise $a \to s \in \Delta, \ f(s,\ldots,s) \to s \in \Delta$

• Intuition: Accept node f, if its image is accepted by A'

- Let $h: T(\mathcal{F}) \to T(\mathcal{F}')$ be a tree homomorphism determined by $h_{\mathcal{F}}$
- Let $\mathcal{A}' = (Q', \mathcal{F}', Q'_f, \Delta')$ be a DFTA with $L = L(\mathcal{A}')$
- We define DFTA $\mathcal{A} = (Q' \dot{\cup} \{s\}, \mathcal{F}, Q'_f, \Delta)$, with the rules

$$f(q_1,\ldots,q_n) o q \in \Delta \text{ if } f \in \mathcal{F}_n, \, h_{\mathcal{F}}(f)[p_1,\ldots,p_n] o_{\mathcal{A}'} q$$

where $q_i = p_i$ if x_i occurs in $h_{\mathcal{F}}(f)$, and $q_i = s$ otherwise $a \to s \in \Delta, \ f(s,\ldots,s) \to s \in \Delta$

- Intuition: Accept node f, if its image is accepted by \mathcal{A}'
 - If image does not depend on a subtree, accept any subtree (state s)

Inverse Homomorphism, proof

• Show $t \rightarrow_{\mathcal{A}} q$ iff $h(t) \rightarrow_{\mathcal{A}'} q$

Inverse Homomorphism, proof

- Show $t \rightarrow_{\mathcal{A}} q$ iff $h(t) \rightarrow_{\mathcal{A}'} q$
- On board

Table of Contents

- Introduction
- 2 Basics

Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems

Last Lecture

- Inverse homomorphisms preserve regularity
- Started Myhill-Nerode Theorem

Reminder: Equivalence relation

 A relation ≡⊆ A × A is called *equivalence relation*, iff it is reflexive, transitive and symmetric

Reminder: Equivalence relation

- A relation ≡⊆ A × A is called equivalence relation, iff it is reflexive, transitive and symmetric
- The set $[a]_{\equiv} := \{a' \mid a \equiv a'\}$ is called the *equivalence class* of a

Reminder: Equivalence relation

- A relation ≡⊆ A × A is called equivalence relation, iff it is reflexive, transitive and symmetric
- The set $[a]_{\equiv} := \{a' \mid a \equiv a'\}$ is called the *equivalence class* of a
- An equivalence relation is of finite index, if there are only finitely many equivalence classes

• An equivalence relation \equiv on $T(\mathcal{F})$ is a *congruence*, iff

$$\forall f \in \mathcal{F}_n. \ (\forall i \leq n. \ u_i \equiv v_i) \implies f(u_1, \ldots, u_n) \equiv f(v_1, \ldots, v_n)$$

• An equivalence relation \equiv on $T(\mathcal{F})$ is a *congruence*, iff

$$\forall f \in \mathcal{F}_n. \ (\forall i \leq n. \ u_i \equiv v_i) \implies f(u_1, \ldots, u_n) \equiv f(v_1, \ldots, v_n)$$

• Intuition: Functions are equivalent if applied to equivalent arguments.

• An equivalence relation \equiv on $T(\mathcal{F})$ is a *congruence*, iff

$$\forall f \in \mathcal{F}_n. \ (\forall i \leq n. \ u_i \equiv v_i) \implies f(u_1, \ldots, u_n) \equiv f(v_1, \ldots, v_n)$$

- Intuition: Functions are equivalent if applied to equivalent arguments.
- Note: \equiv is congruence, iff closed under (1-hole) contexts, i.e.

$$\forall C \ u \ v. \ u \equiv v \implies C[u] \equiv C[v]$$

• An equivalence relation \equiv on $T(\mathcal{F})$ is a *congruence*, iff

$$\forall f \in \mathcal{F}_n. \ (\forall i \leq n. \ u_i \equiv v_i) \implies f(u_1, \ldots, u_n) \equiv f(v_1, \ldots, v_n)$$

- Intuition: Functions are equivalent if applied to equivalent arguments.
- Note: \equiv is congruence, iff closed under (1-hole) contexts, i.e.

$$\forall C \ u \ v. \ u \equiv v \implies C[u] \equiv C[v]$$

• For a language L, we define the congruence \equiv_L by

$$u \equiv_L v \text{ iff } \forall C. \ C[u] \in L \text{ iff } C[v] \in L$$

• An equivalence relation \equiv on $T(\mathcal{F})$ is a *congruence*, iff

$$\forall f \in \mathcal{F}_n. \ (\forall i \leq n. \ u_i \equiv v_i) \implies f(u_1, \ldots, u_n) \equiv f(v_1, \ldots, v_n)$$

- Intuition: Functions are equivalent if applied to equivalent arguments.
- Note: \equiv is congruence, iff closed under (1-hole) contexts, i.e.

$$\forall C \ u \ v. \ u \equiv v \implies C[u] \equiv C[v]$$

• For a language L, we define the congruence \equiv_L by

$$u \equiv_L v \text{ iff } \forall C. \ C[u] \in L \text{ iff } C[v] \in L$$

Obviously an equivalence relation. Obviously a congruence.

• An equivalence relation \equiv on $T(\mathcal{F})$ is a *congruence*, iff

$$\forall f \in \mathcal{F}_n. \ (\forall i \leq n. \ u_i \equiv v_i) \implies f(u_1, \ldots, u_n) \equiv f(v_1, \ldots, v_n)$$

- Intuition: Functions are equivalent if applied to equivalent arguments.
- Note: \equiv is congruence, iff closed under (1-hole) contexts, i.e.

$$\forall C \ u \ v. \ u \equiv v \implies C[u] \equiv C[v]$$

• For a language L, we define the congruence \equiv_L by

$$u \equiv_L v \text{ iff } \forall C. \ C[u] \in L \text{ iff } C[v] \in L$$

- Obviously an equivalence relation. Obviously a congruence.
- Intuition: L does not distinguish between u and v

Myhill-Nerode Theorem

Theorem

The following statements are equivalent

1 L is a regular tree language

Myhill-Nerode Theorem

Theorem

The following statements are equivalent

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence

Myhill-Nerode Theorem

Theorem

The following statements are equivalent

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_L$ is of finite index

Convention

- Complete DFTAs are written as $(Q, \mathcal{F}, Q_f, \delta)$
 - with $\delta: (\mathcal{F}_n \times Q^n \to Q)_n$
 - Corresponds to ∆ via

$$f(q_1,\ldots,q_n)\to q \text{ iff } \delta(f,q_1,\ldots,q_n)=q$$

Naturally extended to trees

$$\delta(f(t_1,\ldots,t_n))=\delta(f,\delta(t_1),\ldots,\delta(t_n))$$

• Compatible with $\rightarrow_{\mathcal{A}}$, i.e.

$$t \to_{\mathcal{A}} q \text{ iff } \delta(t) = q$$

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_L$ is of finite index

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_L$ is of finite index

• Take complete DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$ with L = L(A).

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_L$ is of finite index
- 1 \rightarrow 2 Take complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$ with $L = L(\mathcal{A})$.
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_L$ is of finite index
- Take complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$ with $L = L(\mathcal{A})$.
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_L$ is of finite index
- Take complete DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$ with L = L(A).
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_f\}$

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_L$ is of finite index
- Take complete DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$ with L = L(A).
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_f\}$

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_L$ is of finite index
- 1 \rightarrow 2 Take complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$ with $L = L(\mathcal{A})$.
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_f\}$
- Let R be the finite-index congruence. Assume uRv.

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_{L}$ is of finite index
- 1 \rightarrow 2 Take complete DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$ with L = L(A).
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_f\}$
- Let R be the finite-index congruence. Assume uRv.
 - Then, C[u]RC[v] for all contexts C

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_{L}$ is of finite index
- 1 \rightarrow 2 Take complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$ with $L = L(\mathcal{A})$.
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_t\}$
- Let R be the finite-index congruence. Assume uRv.
 - Then, C[u]RC[v] for all contexts C
 - As L is union of eq-classes of R, we have $C[u] \in L$ iff $C[v] \in L$

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_L$ is of finite index
- 1 \rightarrow 2 Take complete DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$ with L = L(A).
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_t\}$
- Let R be the finite-index congruence. Assume uRv.
 - Then, C[u]RC[v] for all contexts C
 - As L is union of eq-classes of R, we have $C[u] \in L$ iff $C[v] \in L$
 - Thus, $u \equiv_L v$

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_{L}$ is of finite index
- Take complete DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$ with L = L(A).
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_t\}$
- Let R be the finite-index congruence. Assume uRv.
 - Then, C[u]RC[v] for all contexts C
 - As L is union of eq-classes of R, we have $C[u] \in L$ iff $C[v] \in L$
 - Thus, $u \equiv_L v$
 - I.e., ≡_L has not more eq-classes then the finite-index R

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_{L}$ is of finite index
- Take complete DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$ with L = L(A).
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_t\}$
- Let R be the finite-index congruence. Assume uRv.
 - Then, C[u]RC[v] for all contexts C
 - As L is union of eq-classes of R, we have $C[u] \in L$ iff $C[v] \in L$
 - Thus, $u \equiv_L v$
 - I.e., ≡_L has not more eq-classes then the finite-index R

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_{L}$ is of finite index
- Take complete DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$ with L = L(A).
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_t\}$
- Let R be the finite-index congruence. Assume uRv.
 - Then, C[u]RC[v] for all contexts C
 - As L is union of eq-classes of R, we have $C[u] \in L$ iff $C[v] \in L$
 - Thus, $u \equiv_L v$
 - I.e., \equiv_L has not more eq-classes then the finite-index R
- Let Q_{min} be the set of eq-classes of \equiv_L

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_L$ is of finite index
- Take complete DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$ with L = L(A).
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_f\}$
- Let R be the finite-index congruence. Assume uRv.
 - Then, C[u]RC[v] for all contexts C
 - As L is union of eq-classes of R, we have $C[u] \in L$ iff $C[v] \in L$
 - Thus, $u \equiv_L v$
 - I.e., \equiv_L has not more eq-classes then the finite-index R
- Let Q_{min} be the set of eq-classes of \equiv_L
 - Let $\Delta_{min}:=\{f([u_1]_{\equiv_L},\ldots,[u_n]_{\equiv_L})\to [f(u_1,\ldots,u_n)]_{\equiv_L}\mid f\in\mathcal{F}_n,u_1,\ldots,u_n\in\mathcal{T}(\mathcal{F})\}$

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_L$ is of finite index
- Take complete DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$ with L = L(A).
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_f\}$
- Let R be the finite-index congruence. Assume uRv.
 - Then, C[u]RC[v] for all contexts C
 - As L is union of eq-classes of R, we have $C[u] \in L$ iff $C[v] \in L$
 - Thus, $u \equiv_L v$
 - I.e., ≡_L has not more eq-classes then the finite-index R
- 3 → 1 Let Q_{min} be the set of eq-classes of \equiv_L
 - Let $\Delta_{min} := \{f([u_1]_{\equiv_L}, \dots, [u_n]_{\equiv_L}) \to [f(u_1, \dots, u_n)]_{\equiv_L} \mid f \in \mathcal{F}_n, u_1, \dots, u_n \in T(\mathcal{F})\}$
 - Note that Δ_{min} is deterministic, as \equiv_L is a congruence

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_L$ is of finite index
- 1 \rightarrow 2 Take complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$ with $L = L(\mathcal{A})$.
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_f\}$
- Let R be the finite-index congruence. Assume uRv.
 - Then, C[u]RC[v] for all contexts C
 - As L is union of eq-classes of R, we have $C[u] \in L$ iff $C[v] \in L$
 - Thus, $u \equiv_L v$
 - I.e., ≡_L has not more eq-classes then the finite-index R
- 3 → 1 Let Q_{min} be the set of eq-classes of \equiv_L
 - Let $\Delta_{min} := \{f([u_1]_{\equiv_L}, \dots, [u_n]_{\equiv_L}) \to [f(u_1, \dots, u_n)]_{\equiv_L} \mid f \in \mathcal{F}_n, u_1, \dots, u_n \in T(\mathcal{F})\}$
 - Note that Δ_{min} is deterministic, as \equiv_L is a congruence
 - Let $Q_{min_f} := \{[u] \mid u \in L\}$

- 1 L is a regular tree language
- 2 L is the union of some equivalence classes of a finite-index congruence
- $3 \equiv_{L}$ is of finite index
- Take complete DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$ with L = L(A).
 - Let $u \equiv v$ iff $\delta(u) = \delta(v)$ (Obviously a congruence)
 - \equiv has finite index (at most |Q| equivalence classes)
 - We have $L = \bigcup \{[u] \mid \delta(u) \in Q_t\}$
- Let R be the finite-index congruence. Assume uRv.
 - Then, C[u]RC[v] for all contexts C
 - As L is union of eq-classes of R, we have $C[u] \in L$ iff $C[v] \in L$
 - Thus, *u* ≡_L *v*
 - I.e., ≡_L has not more eq-classes then the finite-index R
- Let Q_{min} be the set of eq-classes of \equiv_L
 - Let $\Delta_{min} := \{f([u_1]_{\equiv_L}, \dots, [u_n]_{\equiv_L}) \to [f(u_1, \dots, u_n)]_{\equiv_L} \mid f \in \mathcal{F}_n, u_1, \dots, u_n \in \mathcal{T}(\mathcal{F})\}$
 - Note that Δ_{min} is deterministic, as \equiv_L is a congruence
 - Let $Q_{min_f} := \{[u] \mid u \in L\}$
 - The DFTA $A_{min} := (Q_{min}, \mathcal{F}, Q_{min_f}, \Delta_{min})$ recognizes the language L

 Corollary: The minimal complete DFTA accepting a regular language exists and is unique.

- Corollary: The minimal complete DFTA accepting a regular language exists and is unique.
 - It is given by A_{min} from the proof of Myhill-Nerode

- Corollary: The minimal complete DFTA accepting a regular language exists and is unique.
 - It is given by A_{min} from the proof of Myhill-Nerode
- Proof sketch (more details on board):

- Corollary: The minimal complete DFTA accepting a regular language exists and is unique.
 - It is given by A_{min} from the proof of Myhill-Nerode
- Proof sketch (more details on board):
 - Assume L is recognized by complete DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$

- Corollary: The minimal complete DFTA accepting a regular language exists and is unique.
 - It is given by A_{min} from the proof of Myhill-Nerode
- Proof sketch (more details on board):
 - Assume *L* is recognized by complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$
 - The relation $\equiv_{\mathcal{A}}$ is refinement of $\equiv_{\mathcal{L}}$
 - $\equiv_{\mathcal{A}} \subseteq \equiv_{\mathcal{L}}$

- Corollary: The minimal complete DFTA accepting a regular language exists and is unique.
 - It is given by A_{min} from the proof of Myhill-Nerode
- Proof sketch (more details on board):
 - Assume *L* is recognized by complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$
 - The relation $\equiv_{\mathcal{A}}$ is refinement of $\equiv_{\mathcal{L}}$
 - ≡_A⊆≡_L
 - Thus $|Q| \ge |Q_{min}|$ (proves existence of minimal DFTA)

- Corollary: The minimal complete DFTA accepting a regular language exists and is unique.
 - It is given by A_{min} from the proof of Myhill-Nerode
- Proof sketch (more details on board):
 - Assume *L* is recognized by complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$
 - The relation $\equiv_{\mathcal{A}}$ is refinement of $\equiv_{\mathcal{L}}$
 - $\equiv_{\mathcal{A}} \subseteq \equiv_{\mathcal{L}}$
 - Thus $|Q| \ge |Q_{min}|$ (proves existence of minimal DFTA)
 - Now assume $|Q| = |Q_{min}|$

- Corollary: The minimal complete DFTA accepting a regular language exists and is unique.
 - It is given by A_{min} from the proof of Myhill-Nerode
- Proof sketch (more details on board):
 - Assume *L* is recognized by complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$
 - The relation $\equiv_{\mathcal{A}}$ is refinement of $\equiv_{\mathcal{L}}$
 - ≡_A⊆≡_L
 - Thus $|Q| \ge |Q_{min}|$ (proves existence of minimal DFTA)
 - Now assume $|Q| = |Q_{min}|$
 - All states in Q are accessible (otherwise, contradiction to minimality)

- Corollary: The minimal complete DFTA accepting a regular language exists and is unique.
 - It is given by A_{min} from the proof of Myhill-Nerode
- Proof sketch (more details on board):
 - Assume *L* is recognized by complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$
 - The relation $\equiv_{\mathcal{A}}$ is *refinement* of $\equiv_{\mathcal{L}}$
 - ≡_A⊆≡_L
 - Thus $|Q| \ge |Q_{min}|$ (proves existence of minimal DFTA)
 - Now assume $|Q| = |Q_{min}|$
 - All states in Q are accessible (otherwise, contradiction to minimality)
 - Let $q \in Q$ with $\delta(u) = q$.

- Corollary: The minimal complete DFTA accepting a regular language exists and is unique.
 - It is given by A_{min} from the proof of Myhill-Nerode
- Proof sketch (more details on board):
 - Assume *L* is recognized by complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$
 - The relation $\equiv_{\mathcal{A}}$ is refinement of $\equiv_{\mathcal{L}}$
 - ≡_A⊆≡_L
 - Thus $|Q| \ge |Q_{min}|$ (proves existence of minimal DFTA)
 - Now assume $|Q| = |Q_{min}|$
 - All states in Q are accessible (otherwise, contradiction to minimality)
 - Let $q \in Q$ with $\delta(u) = q$.
 - Identify q and $\delta_{min}(u)$

- Corollary: The minimal complete DFTA accepting a regular language exists and is unique.
 - It is given by A_{min} from the proof of Myhill-Nerode
- Proof sketch (more details on board):
 - Assume *L* is recognized by complete DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$
 - The relation $\equiv_{\mathcal{A}}$ is refinement of $\equiv_{\mathcal{L}}$
 - ≡_A⊆≡_L
 - Thus $|Q| \ge |Q_{min}|$ (proves existence of minimal DFTA)
 - Now assume $|Q| = |Q_{min}|$
 - All states in Q are accessible (otherwise, contradiction to minimality)
 - Let $q \in Q$ with $\delta(u) = q$.
 - Identify q and $\delta_{min}(u)$
 - This mapping is consistent and bijection

• Given complete and reduced DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$

- Given complete and reduced DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$
- Idea: Refine an equivalence relation until consistent with ${\cal A}$

- Given complete and reduced DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$
- Idea: Refine an equivalence relation until consistent with A

- Given complete and reduced DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$
- Idea: Refine an equivalence relation until consistent with A
- 2 Refine P. Let P' be the new value. Set qP'q', if
 - qPq'
 - $q \equiv q'$ is consistent wrt. the rules, i.e.

$$\forall f \in \mathcal{F}_n, q_1, \dots, q_{i-1}, q_{i+1}, \dots q_n.$$

$$\delta(f, q_1, \dots, q_{i-1}, q, q_{i+1}, \dots, q_n) P \delta(f, q_1, \dots, q_{i-1}, q', q_{i+1}, \dots, q_n)$$

- Given complete and reduced DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$
- Idea: Refine an equivalence relation until consistent with ${\cal A}$
- **1** Start with $P = \{Q_f, Q \setminus Q_f\}$
- 2 Refine P. Let P' be the new value. Set qP'q', if
 - qPq'
 - $q \equiv q'$ is consistent wrt. the rules, i.e.

$$\forall f \in \mathcal{F}_n, q_1, \dots, q_{i-1}, q_{i+1}, \dots q_n.$$

$$\delta(f, q_1, \dots, q_{i-1}, q, q_{i+1}, \dots, q_n) P \delta(f, q_1, \dots, q_{i-1}, q', q_{i+1}, \dots, q_n)$$

3 Repeat until no more refinement possible

- Given complete and reduced DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$
- Idea: Refine an equivalence relation until consistent with A
- **1** Start with $P = \{Q_f, Q \setminus Q_f\}$
- 2 Refine P. Let P' be the new value. Set qP'q', if
 - qPq'
 - $q \equiv q'$ is consistent wrt. the rules, i.e.

$$\forall f \in \mathcal{F}_n, q_1, \dots, q_{i-1}, q_{i+1}, \dots q_n.$$

$$\delta(f, q_1, \dots, q_{i-1}, q, q_{i+1}, \dots, q_n) P \delta(f, q_1, \dots, q_{i-1}, q', q_{i+1}, \dots, q_n)$$

- 3 Repeat until no more refinement possible
- **4** Define $A_{min} := (Q_{min}, \mathcal{F}, Q_{minf}, \delta)$, where

- Given complete and reduced DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$
- Idea: Refine an equivalence relation until consistent with ${\cal A}$
- 2 Refine P. Let P' be the new value. Set qP'q', if
 - qPq'
 - $q \equiv q'$ is consistent wrt. the rules, i.e.

$$\forall f \in \mathcal{F}_n, q_1, \dots, q_{i-1}, q_{i+1}, \dots q_n.$$

$$\delta(f, q_1, \dots, q_{i-1}, q, q_{i+1}, \dots, q_n) P \delta(f, q_1, \dots, q_{i-1}, q', q_{i+1}, \dots, q_n)$$

- 3 Repeat until no more refinement possible
- **4** Define $A_{min} := (Q_{min}, \mathcal{F}, Q_{minf}, \delta)$, where
 - Q_{min} := Equivalence classes of P

- Given complete and reduced DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$
- Idea: Refine an equivalence relation until consistent with A
- 1 Start with $P = \{Q_f, Q \setminus Q_f\}$
- 2 Refine P. Let P' be the new value. Set qP'q', if
 - qPq'
 - $q \equiv q'$ is consistent wrt. the rules, i.e.

$$\forall f \in \mathcal{F}_n, q_1, \dots, q_{i-1}, q_{i+1}, \dots q_n.$$

$$\delta(f, q_1, \dots, q_{i-1}, q, q_{i+1}, \dots, q_n) P \delta(f, q_1, \dots, q_{i-1}, q', q_{i+1}, \dots, q_n)$$

- 3 Repeat until no more refinement possible
- **4** Define $A_{min} := (Q_{min}, \mathcal{F}, Q_{minf}, \delta)$, where
 - Q_{min} := Equivalence classes of P
 - $\bullet \ \ Q_{minf}:=\{[q] \mid q \in Q_f\}$

Minimization algorithm

- Given complete and reduced DFTA $\mathcal{A} = (Q, \mathcal{F}, Q_f, \delta)$
- Idea: Refine an equivalence relation until consistent with A
- 2 Refine P. Let P' be the new value. Set qP'q', if
 - qPq'
 - $q \equiv q'$ is consistent wrt. the rules, i.e.

$$\forall f \in \mathcal{F}_n, q_1, \dots, q_{i-1}, q_{i+1}, \dots q_n.$$

$$\delta(f, q_1, \dots, q_{i-1}, q, q_{i+1}, \dots, q_n) P \delta(f, q_1, \dots, q_{i-1}, q', q_{i+1}, \dots, q_n)$$

- 3 Repeat until no more refinement possible
- **4** Define $A_{min} := (Q_{min}, \mathcal{F}, Q_{minf}, \delta)$, where
 - Q_{min} := Equivalence classes of P
 - $\bullet \ \ Q_{minf}:=\{[q] \mid q \in Q_f\}$
 - $\delta_{min}(f, [q_1], \ldots, [q_n]) = [\delta(f, q_1, \ldots, q_n)]$

Minimization algorithm

- Given complete and reduced DFTA $A = (Q, \mathcal{F}, Q_f, \delta)$
- Idea: Refine an equivalence relation until consistent with A
- 2 Refine P. Let P' be the new value. Set qP'q', if
 - qPq'
 - $q \equiv q'$ is consistent wrt. the rules, i.e.

$$\forall f \in \mathcal{F}_n, q_1, \dots, q_{i-1}, q_{i+1}, \dots q_n.$$

$$\delta(f, q_1, \dots, q_{i-1}, q, q_{i+1}, \dots, q_n) P \delta(f, q_1, \dots, q_{i-1}, q', q_{i+1}, \dots, q_n)$$

- 3 Repeat until no more refinement possible
- **4** Define $A_{min} := (Q_{min}, \mathcal{F}, Q_{minf}, \delta)$, where
 - Q_{min} := Equivalence classes of P
 - $\bullet \ \ Q_{minf}:=\{[q] \mid q \in Q_f\}$
 - $\delta_{min}(f, [q_1], \ldots, [q_n]) = [\delta(f, q_1, \ldots, q_n)]$
- $L(A_{min}) = L(A)$. Proof on board.

Last Lecture

- Myhill-Nerode Theorem
- · Minimization of tree automata

Table of Contents

- Introduction
- 2 Basics

Nondeterministic Finite Tree Automata
Epsilon Rules
Deterministic Finite Tree Automata
Pumping Lemma
Closure Properties
Tree Homomorphisms
Minimizing Tree Automata
Top-Down Tree Automata

- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems

• Recall: Tree automata rewrite tree to single state

- Recall: Tree automata rewrite tree to single state
 - Starting at the leaves, i.e. bottom-up

- Recall: Tree automata rewrite tree to single state
 - Starting at the leaves, i.e. bottom-up
 - $f(q_1,\ldots,q_n) \rightarrow q$

- Recall: Tree automata rewrite tree to single state
 - Starting at the leaves, i.e. bottom-up
 - $f(q_1,\ldots,q_n)\to q$
 - Intuition: Assign state to a given tree, consume tree

- Recall: Tree automata rewrite tree to single state
 - Starting at the leaves, i.e. bottom-up
 - $f(q_1,\ldots,q_n) \rightarrow q$
 - Intuition: Assign state to a given tree, consume tree
- Now: Rewrite state to a tree

- Recall: Tree automata rewrite tree to single state
 - Starting at the leaves, i.e. bottom-up
 - $f(q_1,\ldots,q_n)\to q$
 - Intuition: Assign state to a given tree, consume tree
- Now: Rewrite state to a tree
 - Starting at a single root state

- Recall: Tree automata rewrite tree to single state
 - · Starting at the leaves, i.e. bottom-up
 - $f(q_1,\ldots,q_n)\to q$
 - Intuition: Assign state to a given tree, consume tree
- Now: Rewrite state to a tree
 - Starting at a single root state
 - $q \rightarrow f(q_1, \ldots, q_n)$

- Recall: Tree automata rewrite tree to single state
 - · Starting at the leaves, i.e. bottom-up
 - $f(q_1,\ldots,q_n) \rightarrow q$
 - Intuition: Assign state to a given tree, consume tree
- Now: Rewrite state to a tree
 - · Starting at a single root state
 - $q \rightarrow f(q_1, \ldots, q_n)$
 - Intuition: Assign tree to given state, produce tree.

• A tuple $A = (Q, \mathcal{F}, I, \Delta)$ is called *top-down* tree automaton, where

- A tuple $A = (Q, \mathcal{F}, I, \Delta)$ is called *top-down* tree automaton, where
 - \mathcal{F} is a ranked alphabet

- A tuple $A = (Q, \mathcal{F}, I, \Delta)$ is called *top-down* tree automaton, where
 - \mathcal{F} is a ranked alphabet
 - Q is a finite set of states, with $Q \cap \mathcal{F} = \emptyset$

- A tuple $A = (Q, \mathcal{F}, I, \Delta)$ is called *top-down* tree automaton, where
 - \mathcal{F} is a ranked alphabet
 - Q is a finite set of states, with $Q \cap \mathcal{F} = \emptyset$
 - $I \subseteq Q$ is a set of initial states

- A tuple $A = (Q, \mathcal{F}, I, \Delta)$ is called *top-down* tree automaton, where
 - \mathcal{F} is a ranked alphabet
 - Q is a finite set of states, with $Q \cap \mathcal{F} = \emptyset$
 - $I \subseteq Q$ is a set of initial states
 - Δ is a set of rules of the form

$$q \rightarrow f(q_1, \ldots, q_n)$$
 for $f \in \mathcal{F}_n, q, q_1, \ldots, q_n \in Q$

- A tuple $A = (Q, \mathcal{F}, I, \Delta)$ is called *top-down* tree automaton, where
 - \mathcal{F} is a ranked alphabet
 - Q is a finite set of states, with $Q \cap \mathcal{F} = \emptyset$
 - $I \subseteq Q$ is a set of initial states
 - Δ is a set of rules of the form

$$q \rightarrow f(q_1, \dots, q_n)$$
 for $f \in \mathcal{F}_n, q, q_1, \dots, q_n \in Q$

• We define the *production relation* $q \rightarrow_{\mathcal{A}} t$ as the least relation that satisfies

$$q \to f(q_1, \ldots, q_n) \in \Delta, q_1 \to_{\mathcal{A}} t_1, \ldots, q_n \to_{\mathcal{A}} t_n \implies q \to_{\mathcal{A}} f(t_1, \ldots, t_n)$$

- A tuple $A = (Q, \mathcal{F}, I, \Delta)$ is called *top-down* tree automaton, where
 - \mathcal{F} is a ranked alphabet
 - Q is a finite set of states, with $Q \cap \mathcal{F} = \emptyset$
 - $I \subseteq Q$ is a set of initial states
 - Δ is a set of rules of the form

$$q \rightarrow f(q_1, \ldots, q_n)$$
 for $f \in \mathcal{F}_n, q, q_1, \ldots, q_n \in Q$

• We define the *production relation* $q \rightarrow_{\mathcal{A}} t$ as the least relation that satisfies

$$q \to f(q_1, \ldots, q_n) \in \Delta, q_1 \to_{\mathcal{A}} t_1, \ldots, q_n \to_{\mathcal{A}} t_n \implies q \to_{\mathcal{A}} f(t_1, \ldots, t_n)$$

• The language of A is $L(A) := \{t \mid \exists q \in I. \ q \rightarrow_{A} t\}$

Equal expressiveness

Theorem

A language is regular if and only if it is the language of a top-down tree automaton.

Proof

Equal expressiveness

Theorem

A language is regular if and only if it is the language of a top-down tree automaton.

- Proof
 - Straightforward induction (Hint: Reverse arrows, exchange I and Q_f)

Equal expressiveness

Theorem

A language is regular if and only if it is the language of a top-down tree automaton.

- Proof
 - Straightforward induction (Hint: Reverse arrows, exchange I and Q_f)
 - Exercise

• A top-down tree-automaton $A = (Q, \mathcal{F}, I, \Delta)$ is *deterministic*, iff

- A top-down tree-automaton $A = (Q, \mathcal{F}, I, \Delta)$ is *deterministic*, iff
 - |*I*| = 1

- A top-down tree-automaton $A = (Q, \mathcal{F}, I, \Delta)$ is *deterministic*, iff
 - |*I*| = 1
 - $q \to f(q_1, \ldots, q_n) \in \Delta \land q \to f(q'_1, \ldots, q'_n) \in \Delta \implies q_1 = q'_1 \land \ldots \land q_n = q'_n$

- A top-down tree-automaton $A = (Q, \mathcal{F}, I, \Delta)$ is *deterministic*, iff
 - |*I*| = 1
 - $q \to f(q_1, \ldots, q_n) \in \Delta \land q \to f(q'_1, \ldots, q'_n) \in \Delta \implies q_1 = q'_1 \land \ldots \land q_n = q'_n$
- Unfortunately: There are regular languages not accepted by any deterministic top-down FTA

- A top-down tree-automaton $A = (Q, \mathcal{F}, I, \Delta)$ is *deterministic*, iff
 - |*I*| = 1
 - $q \to f(q_1, \ldots, q_n) \in \Delta \land q \to f(q'_1, \ldots, q'_n) \in \Delta \implies q_1 = q'_1 \land \ldots \land q_n = q'_n$
- Unfortunately: There are regular languages not accepted by any deterministic top-down FTA
 - $L = \{f(a, b), f(b, a)\}$. Obviously regular. Even finite.

- A top-down tree-automaton $A = (Q, \mathcal{F}, I, \Delta)$ is *deterministic*, iff
 - |*I*| = 1
 - $\bullet \ \ q \to f(q_1,\ldots,q_n) \in \Delta \land q \to f(q_1',\ldots,q_n') \in \Delta \implies q_1 = q_1' \land \ldots \land q_n = q_n'$
- Unfortunately: There are regular languages not accepted by any deterministic top-down FTA
 - $L = \{f(a, b), f(b, a)\}$. Obviously regular. Even finite.
 - But: Any deterministic top-down FTA that accepts the words in L also accepts f(a, a).

Table of Contents

- Introduction
- 2 Basics
- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems

Table of Contents

- Introduction
- 2 Basics
- 3 Alternative Representations of Regular Languages Regular Tree Grammars Tree Regular Expressions
- 4 Model-Checking concurrent Systems

Extend grammars to trees

- Extend grammars to trees
- Here: Only for the regular case

- Extend grammars to trees
- Here: Only for the regular case
- A regular tree grammar (RTG) is a tuple G = (S, N, F, R), where

- Extend grammars to trees
- Here: Only for the regular case
- A regular tree grammar (RTG) is a tuple $G = (S, N, \mathcal{F}, R)$, where
 - $S \in N$ is a start symbol

- Extend grammars to trees
- Here: Only for the regular case
- A regular tree grammar (RTG) is a tuple $G = (S, N, \mathcal{F}, R)$, where
 - $S \in N$ is a start symbol
 - *N* is a finite set of nonterminals with arity zero, and $N \cap \mathcal{F} = \emptyset$

- Extend grammars to trees
- Here: Only for the regular case
- A regular tree grammar (RTG) is a tuple $G = (S, N, \mathcal{F}, R)$, where
 - $S \in N$ is a start symbol
 - *N* is a finite set of nonterminals with arity zero, and $N \cap \mathcal{F} = \emptyset$
 - F is a ranked alphabet

Regular Tree Grammars

- Extend grammars to trees
- Here: Only for the regular case
- A regular tree grammar (RTG) is a tuple $G = (S, N, \mathcal{F}, R)$, where
 - $S \in N$ is a start symbol
 - *N* is a finite set of nonterminals with arity zero, and $N \cap \mathcal{F} = \emptyset$
 - \mathcal{F} is a ranked alphabet
 - R is a set of production rules of the form $n \to \beta$, where $n \in N$ and $\beta \in T(\mathcal{F} \cup N)$

Regular Tree Grammars

- Extend grammars to trees
- Here: Only for the regular case
- A regular tree grammar (RTG) is a tuple $G = (S, N, \mathcal{F}, R)$, where
 - $S \in N$ is a start symbol
 - *N* is a finite set of nonterminals with arity zero, and $N \cap \mathcal{F} = \emptyset$
 - \mathcal{F} is a ranked alphabet
 - R is a set of production rules of the form $n \to \beta$, where $n \in N$ and $\beta \in T(\mathcal{F} \cup N)$
- These are almost top-down tree automata

Regular Tree Grammars

- Extend grammars to trees
- Here: Only for the regular case
- A regular tree grammar (RTG) is a tuple $G = (S, N, \mathcal{F}, R)$, where
 - $S \in N$ is a start symbol
 - *N* is a finite set of nonterminals with arity zero, and $N \cap \mathcal{F} = \emptyset$
 - F is a ranked alphabet
 - R is a set of production rules of the form $n \to \beta$, where $n \in N$ and $\beta \in T(\mathcal{F} \cup N)$
- These are almost top-down tree automata
 - But rules are a bit more complicated

• Intuition: Rewrite S to a tree, using the rules

- Intuition: Rewrite S to a tree, using the rules
- For an RTG $G=(S,N,\mathcal{F},R)$, we define a derivation step $\beta\Rightarrow_G\beta'$ for $\beta,\beta'\in\mathcal{T}(\mathcal{F}\cup N)$ by

$$\beta \Rightarrow_{\mathsf{G}} \beta' \iff \exists \mathsf{C} \ \mathsf{u} \ \mathsf{n}. \ \beta = \mathsf{C}[\mathsf{n}] \land \mathsf{n} \to \mathsf{u} \in \mathsf{R} \land \beta' = \mathsf{C}[\mathsf{u}]$$

- Intuition: Rewrite S to a tree, using the rules
- For an RTG $G=(S,N,\mathcal{F},R)$, we define a derivation step $\beta\Rightarrow_G\beta'$ for $\beta,\beta'\in T(\mathcal{F}\cup N)$ by

$$\beta \Rightarrow_{\textit{G}} \beta' \iff \exists \textit{C} \textit{ u n. } \beta = \textit{C}[\textit{n}] \land \textit{n} \rightarrow \textit{u} \in \textit{R} \land \beta' = \textit{C}[\textit{u}]$$

• We write $\beta \rightarrow_G t'$, iff $t' \in T(\mathcal{F})$ and $\beta \Rightarrow_G^* t'$

- Intuition: Rewrite S to a tree, using the rules
- For an RTG $G=(S,N,\mathcal{F},R)$, we define a derivation step $\beta\Rightarrow_G\beta'$ for $\beta,\beta'\in T(\mathcal{F}\cup N)$ by

$$\beta \Rightarrow_{\textit{G}} \beta' \iff \exists \textit{C} \textit{ u n. } \beta = \textit{C}[\textit{n}] \land \textit{n} \rightarrow \textit{u} \in \textit{R} \land \beta' = \textit{C}[\textit{u}]$$

- We write $\beta \rightarrow_G t'$, iff $t' \in T(\mathcal{F})$ and $\beta \Rightarrow_G^* t'$
- For $n \in N$, we define $L(G, n) := \{t \in T(\mathcal{F}) \mid n \rightarrow_G t\}$

- Intuition: Rewrite S to a tree, using the rules
- For an RTG $G=(S,N,\mathcal{F},R)$, we define a derivation step $\beta\Rightarrow_G\beta'$ for $\beta,\beta'\in T(\mathcal{F}\cup N)$ by

$$\beta \Rightarrow_{\textit{G}} \beta' \iff \exists \textit{C} \textit{ u n. } \beta = \textit{C}[\textit{n}] \land \textit{n} \rightarrow \textit{u} \in \textit{R} \land \beta' = \textit{C}[\textit{u}]$$

- We write $\beta \rightarrow_G t'$, iff $t' \in T(\mathcal{F})$ and $\beta \Rightarrow_G^* t'$
- For $n \in N$, we define $L(G, n) := \{t \in T(\mathcal{F}) \mid n \rightarrow_G t\}$
- We define L(G) := L(G, S)

Reduced tree grammars

• A non-terminal *n* is *reachable*, iff there is a derivation from *S* to a tree containing *n*:

$$\exists C. S \Rightarrow_G^* C[n]$$

Reduced tree grammars

• A non-terminal *n* is *reachable*, iff there is a derivation from *S* to a tree containing *n*:

$$\exists C. S \Rightarrow_G^* C[n]$$

 A non-terminal n is productive, iff a tree without nonterminals can be derived from it:

$$L(G, n) \neq \emptyset$$

Reduced tree grammars

 A non-terminal n is reachable, iff there is a derivation from S to a tree containing n:

$$\exists C. S \Rightarrow_G^* C[n]$$

 A non-terminal n is productive, iff a tree without nonterminals can be derived from it:

$$L(G, n) \neq \emptyset$$

An RTG is reduced, if every nonterminal is reachable and productive

• For every RTG G, reduced tree grammar G' with L(G) = L(G') can be computed

- For every RTG G, reduced tree grammar G' with L(G) = L(G') can be computed
 - Provided that $L(G) \neq \emptyset$, otherwise *S* must not be productive.

- For every RTG G, reduced tree grammar G' with L(G) = L(G') can be computed
 - Provided that $L(G) \neq \emptyset$, otherwise *S* must not be productive.
- Remove unproductive non-terminals

- For every RTG G, reduced tree grammar G' with L(G) = L(G') can be computed
 - Provided that $L(G) \neq \emptyset$, otherwise *S* must not be productive.
- 1 Remove unproductive non-terminals
 - Productive nonterminals can be computed by saturation algorithm:

- For every RTG G, reduced tree grammar G' with L(G) = L(G') can be computed
 - Provided that $L(G) \neq \emptyset$, otherwise S must not be productive.
- Remove unproductive non-terminals
 - Productive nonterminals can be computed by saturation algorithm:
 - n is productive, if there is a rule $n \to \beta$ such that every nonterminal in β is productive

- For every RTG G, reduced tree grammar G' with L(G) = L(G') can be computed
 - Provided that $L(G) \neq \emptyset$, otherwise *S* must not be productive.
- 1 Remove unproductive non-terminals
 - Productive nonterminals can be computed by saturation algorithm:
 - n is productive, if there is a rule $n \to \beta$ such that every nonterminal in β is productive
- 2 Remove unreachable nonterminals

- For every RTG G, reduced tree grammar G' with L(G) = L(G') can be computed
 - Provided that $L(G) \neq \emptyset$, otherwise *S* must not be productive.
- 1 Remove unproductive non-terminals
 - Productive nonterminals can be computed by saturation algorithm:
 - *n* is productive, if there is a rule $n \to \beta$ such that every nonterminal in β is productive
- 2 Remove unreachable nonterminals
 - Again saturation: S is reachable, n is reachable if there is a rule $\hat{n} \to C[n]$ such that \hat{n} is reachable

Correctness

 Obviously, removing unproductive or unreachable nonterminals does not change the language

Correctness

- Obviously, removing unproductive or unreachable nonterminals does not change the language
- Remains to show: Removing unreachable nonterminals cannot create new unproductive ones

Correctness

- Obviously, removing unproductive or unreachable nonterminals does not change the language
- Remains to show: Removing unreachable nonterminals cannot create new unproductive ones
 - On board

• RTG is normalized, iff all productions have the form $n \to f(n_1, \dots, n_n)$ for $n, n_1, \dots, n_n \in N$

- RTG is normalized, iff all productions have the form $n \to f(n_1, \dots, n_n)$ for $n, n_1, \dots, n_n \in N$
- Every RTG can be transformed into an equivalent normal one

- RTG is normalized, iff all productions have the form $n \to f(n_1, \dots, n_n)$ for $n, n_1, \dots, n_n \in N$
- Every RTG can be transformed into an equivalent normal one
 - Iterate: Replace a rule $n \to f(s_1, \dots, s_n)$ by $n \to f(n_1, \dots, n_n)$

- RTG is normalized, iff all productions have the form $n \to f(n_1, \dots, n_n)$ for $n, n_1, \dots, n_n \in N$
- Every RTG can be transformed into an equivalent normal one
 - Iterate: Replace a rule $n \to f(s_1, \dots, s_n)$ by $n \to f(n_1, \dots, n_n)$
 - where $n_i = s_i$ if $s_i \in N$

- RTG is normalized, iff all productions have the form $n \to f(n_1, \dots, n_n)$ for $n, n_1, \dots, n_n \in N$
- Every RTG can be transformed into an equivalent normal one
 - Iterate: Replace a rule $n \to f(s_1, \dots, s_n)$ by $n \to f(n_1, \dots, n_n)$
 - where $n_i = s_i$ if $s_i \in N$
 - $n_i \in N$ fresh otherwise. In this case, add rule $n_i \rightarrow s_i$

- RTG is normalized, iff all productions have the form $n \to f(n_1, \dots, n_n)$ for $n, n_1, \dots, n_n \in N$
- Every RTG can be transformed into an equivalent normal one
 - Iterate: Replace a rule $n \to f(s_1, \ldots, s_n)$ by $n \to f(n_1, \ldots, n_n)$
 - where $n_i = s_i$ if $s_i \in N$
 - $n_i \in N$ fresh otherwise. In this case, add rule $n_i \rightarrow s_i$
 - After iteration, all rules have form $n \to f(n_1, \dots, n_n)$ or $n_1 \to n_2$

- RTG is normalized, iff all productions have the form $n \to f(n_1, \dots, n_n)$ for $n, n_1, \dots, n_n \in N$
- Every RTG can be transformed into an equivalent normal one
 - Iterate: Replace a rule $n \to f(s_1, \dots, s_n)$ by $n \to f(n_1, \dots, n_n)$
 - where $n_i = s_i$ if $s_i \in N$
 - $n_i \in N$ fresh otherwise. In this case, add rule $n_i \to s_i$
 - After iteration, all rules have form $n \to f(n_1, \dots, n_n)$ or $n_1 \to n_2$
 - Eliminate the latter rules by replacing s₁ → s₂ by rules s₁ → t for all t ∉ N with s₂ →* n → t

- RTG is normalized, iff all productions have the form $n \to f(n_1, \dots, n_n)$ for $n, n_1, \dots, n_n \in N$
- Every RTG can be transformed into an equivalent normal one
 - Iterate: Replace a rule $n \to f(s_1, \dots, s_n)$ by $n \to f(n_1, \dots, n_n)$
 - where $n_i = s_i$ if $s_i \in N$
 - $n_i \in N$ fresh otherwise. In this case, add rule $n_i \rightarrow s_i$
 - After iteration, all rules have form $n \to f(n_1, \dots, n_n)$ or $n_1 \to n_2$
 - Eliminate the latter rules by replacing s₁ → s₂ by rules s₁ → t for all t ∉ N with s₂ →* n → t
 - Cf.: Elimination of epsilon rules

- RTG is normalized, iff all productions have the form $n \to f(n_1, \dots, n_n)$ for $n, n_1, \dots, n_n \in N$
- Every RTG can be transformed into an equivalent normal one
 - Iterate: Replace a rule $n \to f(s_1, \dots, s_n)$ by $n \to f(n_1, \dots, n_n)$
 - where $n_i = s_i$ if $s_i \in N$
 - $n_i \in N$ fresh otherwise. In this case, add rule $n_i \rightarrow s_i$
 - After iteration, all rules have form $n \to f(n_1, \dots, n_n)$ or $n_1 \to n_2$
 - Eliminate the latter rules by replacing s₁ → s₂ by rules s₁ → t for all t ∉ N with s₂ →* n → t
 - · Cf.: Elimination of epsilon rules
- Correctness (Ideas)

- RTG is normalized, iff all productions have the form $n \to f(n_1, \dots, n_n)$ for $n, n_1, \dots, n_n \in N$
- Every RTG can be transformed into an equivalent normal one
 - Iterate: Replace a rule $n \to f(s_1, \dots, s_n)$ by $n \to f(n_1, \dots, n_n)$
 - where $n_i = s_i$ if $s_i \in N$
 - $n_i \in N$ fresh otherwise. In this case, add rule $n_i \rightarrow s_i$
 - After iteration, all rules have form $n \to f(n_1, \dots, n_n)$ or $n_1 \to n_2$
 - Eliminate the latter rules by replacing s₁ → s₂ by rules s₁ → t for all t ∉ N with s₂ →* n → t
 - · Cf.: Elimination of epsilon rules
- Correctness (Ideas)
 - Each step of the iteration preserves language

- RTG is normalized, iff all productions have the form $n \to f(n_1, \dots, n_n)$ for $n, n_1, \dots, n_n \in N$
- Every RTG can be transformed into an equivalent normal one
 - Iterate: Replace a rule $n \to f(s_1, \dots, s_n)$ by $n \to f(n_1, \dots, n_n)$
 - where $n_i = s_i$ if $s_i \in N$
 - $n_i \in N$ fresh otherwise. In this case, add rule $n_i \rightarrow s_i$
 - After iteration, all rules have form $n \to f(n_1, \dots, n_n)$ or $n_1 \to n_2$
 - Eliminate the latter rules by replacing s₁ → s₂ by rules s₁ → t for all t ∉ N with s₂ →* n → t
 - · Cf.: Elimination of epsilon rules
- Correctness (Ideas)
 - Each step of the iteration preserves language
 - Elimination preserves language

Normalized RTGs and top-down NTFAs

Obviously, normalized RTGs are isomorphic to top-down NTFAs

Normalized RTGs and top-down NTFAs

- Obviously, normalized RTGs are isomorphic to top-down NTFAs
- Thus, exactly the regular languages can be expressed by RTGs

Theorem

A language is regular if and only if it can be described by a regular tree grammar.

Last Lecture

- Myhill Nerode Theorem
- Minimization Algorithm
- Top-Down Tree Automata
- Regular Tree Grammars
- Started: Tree Regular Expressions

Table of Contents

- Introduction
- 2 Basics
- 3 Alternative Representations of Regular Languages Regular Tree Grammars Tree Regular Expressions
- Model-Checking concurrent Systems

• $e := \varepsilon \mid \emptyset \mid a \text{ for } a \in \Sigma \mid e \cdot e \mid e + e \mid e^*$

- $e := \varepsilon \mid \emptyset \mid a \text{ for } a \in \Sigma \mid e \cdot e \mid e + e \mid e^*$
 - Empty word | empty language | single character | concatenation | choice | iteration

- $e := \varepsilon \mid \emptyset \mid a \text{ for } a \in \Sigma \mid e \cdot e \mid e + e \mid e^*$
 - Empty word | empty language | single character | concatenation | choice | iteration
- For example: $(r + w + o)^* \cdot (r + w) \cdot (r + w + o)^*$

- $e := \varepsilon \mid \emptyset \mid a \text{ for } a \in \Sigma \mid e \cdot e \mid e + e \mid e^*$
 - Empty word | empty language | single character | concatenation | choice | iteration
- For example: $(r + w + o)^* \cdot (r + w) \cdot (r + w + o)^*$
 - Words containing at least one r or at least one w

- $e := \varepsilon \mid \emptyset \mid a \text{ for } a \in \Sigma \mid e \cdot e \mid e + e \mid e^*$
 - Empty word | empty language | single character | concatenation | choice | iteration
- For example: $(r + w + o)^* \cdot (r + w) \cdot (r + w + o)^*$
 - Words containing at least one r or at least one w
- Recall: $e^* = \varepsilon + e \cdot e^*$

• Consider the set $\{0, s(0), s(s(0)), ...\}$

- Consider the set $\{0, s(0), s(s(0)), ...\}$
 - Want to represent this as "regular expression"

- Consider the set $\{0, s(0), s(s(0)), ...\}$
 - Want to represent this as "regular expression"
- s(□)* · 0

- Consider the set {0, s(0), s(s(0)), ...}
 - Want to represent this as "regular expression"
- s(□)* · 0
 - $\bullet \;\; \text{Idea:} \; \square$ indicates position for concatenation

- Consider the set {0, s(0), s(s(0)), ...}
 - · Want to represent this as "regular expression"
- s(□)* · 0
 - Idea: □ indicates position for concatenation
 - $t_1 \cdot t_2$ inserts t_2 at square-position in t_1

- Consider the set {0, s(0), s(s(0)), ...}
 - · Want to represent this as "regular expression"
- s(□)* · 0
 - Idea: □ indicates position for concatenation
 - t₁ · t₂ inserts t₂ at square-position in t₁
 - $f(...)^* = \Box + f(...) \cdot f(...)^*$ iterates over position \Box

- Consider the set {0, s(0), s(s(0)), ...}
 - · Want to represent this as "regular expression"
- s(□)* · 0
 - Idea: □ indicates position for concatenation
 - t₁ · t₂ inserts t₂ at square-position in t₁
 - $f(...)^* = \Box + f(...) \cdot f(...)^*$ iterates over position \Box
- There may be more than one iteration, over different positions

- Consider the set {0, s(0), s(s(0)), ...}
 - · Want to represent this as "regular expression"
- s(□)* · 0
 - Idea: □ indicates position for concatenation
 - t₁ · t₂ inserts t₂ at square-position in t₁
 - $f(...)^* = \Box + f(...) \cdot f(...)^*$ iterates over position \Box
- There may be more than one iteration, over different positions
 - Number position markers: □₁, □₂, . . .

- Consider the set {0, s(0), s(s(0)), ...}
 - · Want to represent this as "regular expression"
- s(□)* · 0
 - Idea: □ indicates position for concatenation
 - t₁ · t₂ inserts t₂ at square-position in t₁
 - $f(...)^* = \Box + f(...) \cdot f(...)^*$ iterates over position \Box
- There may be more than one iteration, over different positions
 - Number position markers: □₁, □₂, . . .
 - cons(s(□₁)*¹ ·₁ 0,□₂)*² ·₂ nil

- Consider the set {0, s(0), s(s(0)), ...}
 - · Want to represent this as "regular expression"
- s(□)* · 0
 - Idea: □ indicates position for concatenation
 - t₁ · t₂ inserts t₂ at square-position in t₁
 - $f(...)^* = \Box + f(...) \cdot f(...)^*$ iterates over position \Box
- There may be more than one iteration, over different positions
 - Number position markers: □₁, □₂, . . .
 - cons(s(□₁)*¹ ·₁ 0, □₂)*² ·₂ nil
- Note: TATA notation: $s(\square_1)^{*,\square_1}$ *nil*

• Let $\mathcal{K}:=\square_1/0,\square_2/0,\ldots$ Assume $\mathcal{K}\cap\mathcal{F}=\emptyset$

- Let $\mathcal{K} := \square_1/0, \square_2/0, \ldots$ Assume $\mathcal{K} \cap \mathcal{F} = \emptyset$
- For trees $t \in T(\mathcal{F} \cup \mathcal{K})$, we define (simultaneous) substitution $t\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\}$, for $a_i \in \mathcal{K}$ and $i \neq j \implies a_i \neq a_i$:

$$a\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\} = a \text{ for } a \in \mathcal{F} \cup \mathcal{K} \text{ and } \forall i. \ a \neq a_i$$

$$a_i\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\} = L_i$$

$$f(s_1, \dots, s_m)\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\}$$

$$= \{f(t_1, \dots, t_m) \mid t_i \in s_i\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\}\}$$

- Let $\mathcal{K} := \square_1/0, \square_2/0, \ldots$ Assume $\mathcal{K} \cap \mathcal{F} = \emptyset$
- For trees $t \in T(\mathcal{F} \cup \mathcal{K})$, we define (simultaneous) substitution $t\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\}$, for $a_i \in \mathcal{K}$ and $i \neq j \implies a_i \neq a_j$:

$$a\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\} = a \text{ for } a \in \mathcal{F} \cup \mathcal{K} \text{ and } \forall i. \ a \neq a_i$$

$$a_i\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\} = L_i$$

$$f(s_1, \dots, s_m)\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\}$$

$$= \{f(t_1, \dots, t_m) \mid t_i \in s_i\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\}\}$$

And generalize this to languages

$$L\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\} := \bigcup_{t \in L} (t\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\})$$

- Let $\mathcal{K} := \square_1/0, \square_2/0, \ldots$ Assume $\mathcal{K} \cap \mathcal{F} = \emptyset$
- For trees $t \in T(\mathcal{F} \cup \mathcal{K})$, we define (simultaneous) substitution $t\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\}$, for $a_i \in \mathcal{K}$ and $i \neq j \implies a_i \neq a_j$:

$$a\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\} = a \text{ for } a \in \mathcal{F} \cup \mathcal{K} \text{ and } \forall i. \ a \neq a_i$$
 $a_i\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\} = L_i$
 $f(s_1, \dots, s_m)\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\}$
 $= \{f(t_1, \dots, t_m) \mid t_i \in s_i\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\}\}$

And generalize this to languages

$$L\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\} := \bigcup_{t \in L} (t\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\})$$

And define concatenation

$$L_1 \cdot_i L_2 := L_1 \{ \Box_i \leftarrow L_2 \}$$

• Iteration L^{n,i}

$$L^{0,i} := \square_i$$

$$L^{n+1,i} = L^{n,i} \cup L \cdot_i L^{n,i}$$

• Iteration L^{n,i}

$$L^{0,i} := \square_i \qquad \qquad L^{n+1,i} = L^{n,i} \cup L_{i} L^{n,i}$$

• Note: All numbers $\leq n$ of iterations included.

Iteration L^{n,i}

$$L^{0,i} := \square_i \qquad \qquad L^{n+1,i} = L^{n,i} \cup L_{i} L^{n,i}$$

- Note: All numbers < n of iterations included.
- If there are many concatenation points, number of iterations is independent for each concatenation point.

Iteration L^{n,i}

$$L^{0,i} := \square_i \qquad \qquad L^{n+1,i} = L^{n,i} \cup L \cdot_i L^{n,i}$$

- Note: All numbers < n of iterations included.
- If there are many concatenation points, number of iterations is independent for each concatenation point.
- For example: $f(f(\Box, f(\Box, \Box)), \Box) \in \{f(\Box, \Box)\}^3$

Iteration L^{n,i}

$$L^{0,i} := \square_i \qquad \qquad L^{n+1,i} = L^{n,i} \cup L \cdot_i L^{n,i}$$

- Note: All numbers ≤ n of iterations included.
- If there are many concatenation points, number of iterations is independent for each concatenation point.
- For example: $f(f(\Box, f(\Box, \Box)), \Box) \in \{f(\Box, \Box)\}^3$
- Closure L*i

$$L^{*_i}:=\bigcup_{n\in\mathbb{N}}L^{n,i}$$

Theorem

Substitution preserves regularity, i.e., let L, L_1, \ldots, L_n be regular languages, then $L' := L\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\}$ is a regular language

Proof sketch:

Theorem

Substitution preserves regularity, i.e., let L, L_1, \ldots, L_n be regular languages, then $L' := L\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\}$ is a regular language

- Proof sketch:
 - Let L, L_1, \ldots, L_i be represented by RTGs over disjoint nonterminals
 - $G = (S, N, \mathcal{F}, R)$ with L = L(G) and $G_i = (S_i, N_i, \mathcal{F}, R_i)$ with $L_i = L(G_i)$

Theorem

Substitution preserves regularity, i.e., let L, L_1, \ldots, L_n be regular languages, then $L' := L\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\}$ is a regular language

- Proof sketch:
 - Let L, L_1, \ldots, L_i be represented by RTGs over disjoint nonterminals
 - $G = (S, N, \mathcal{F}, R)$ with L = L(G) and $G_i = (S_i, N_i, \mathcal{F}, R_i)$ with $L_i = L(G_i)$
 - Then let $G' = (S, N \cup N_1 \cup \ldots \cup N_n, \mathcal{F}, R' \cup R_1 \cup \ldots \cup R_n)$ where R' contains the rules of R, but a_i replaced by S_i .

Theorem

Substitution preserves regularity, i.e., let $L, L_1, ..., L_n$ be regular languages, then $L' := L\{a_1 \leftarrow L_1, ..., a_n \leftarrow L_n\}$ is a regular language

- Proof sketch:
 - Let L, L_1, \ldots, L_i be represented by RTGs over disjoint nonterminals
 - $G = (S, N, \mathcal{F}, R)$ with L = L(G) and $G_i = (S_i, N_i, \mathcal{F}, R_i)$ with $L_i = L(G_i)$
 - Then let $G' = (S, N \cup N_1 \cup ... \cup N_n, \mathcal{F}, R' \cup R_1 \cup ... \cup R_n)$ where R' contains the rules of R, but a_i replaced by S_i .
 - L' ⊆ L(G'): Produce word from L first (the □_i are replaced by S_i), then rewrite the S_i to words from L_i

Theorem

Substitution preserves regularity, i.e., let L, L_1, \ldots, L_n be regular languages, then $L' := L\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\}$ is a regular language

- Proof sketch:
 - Let L, L_1, \ldots, L_i be represented by RTGs over disjoint nonterminals
 - $G = (S, N, \mathcal{F}, R)$ with L = L(G) and $G_i = (S_i, N_i, \mathcal{F}, R_i)$ with $L_i = L(G_i)$
 - Then let $G' = (S, N \cup N_1 \cup ... \cup N_n, \mathcal{F}, R' \cup R_1 \cup ... \cup R_n)$ where R' contains the rules of R, but a_i replaced by S_i .
 - L' ⊆ L(G'): Produce word from L first (the □_i are replaced by S_i), then rewrite the S_i to words from L_i
 - L(G') ⊆ L': Re-order derivation of G' to stop at the S_i

Theorem

Substitution preserves regularity, i.e., let L, L_1, \ldots, L_n be regular languages, then $L' := L\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\}$ is a regular language

- Proof sketch:
 - Let L, L_1, \ldots, L_i be represented by RTGs over disjoint nonterminals
 - $G = (S, N, \mathcal{F}, R)$ with L = L(G) and $G_i = (S_i, N_i, \mathcal{F}, R_i)$ with $L_i = L(G_i)$
 - Then let $G' = (S, N \cup N_1 \cup ... \cup N_n, \mathcal{F}, R' \cup R_1 \cup ... \cup R_n)$ where R' contains the rules of R, but a_i replaced by S_i .
 - L' ⊆ L(G'): Produce word from L first (the □_i are replaced by S_i), then rewrite the S_i to words from L_i
 - $L(G') \subseteq L'$: Re-order derivation of G' to stop at the S_i
 - Formally, show: $\forall A \in N$. $A \rightarrow_{G'} s' \implies \exists s. \ A \rightarrow_{G} s \land s' \in s \{ a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n \}$

Theorem

Substitution preserves regularity, i.e., let L, L_1, \ldots, L_n be regular languages, then $L' := L\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\}$ is a regular language

- Proof sketch:
 - Let L, L_1, \ldots, L_i be represented by RTGs over disjoint nonterminals
 - $G = (S, N, \mathcal{F}, R)$ with L = L(G) and $G_i = (S_i, N_i, \mathcal{F}, R_i)$ with $L_i = L(G_i)$
 - Then let $G' = (S, N \cup N_1 \cup ... \cup N_n, \mathcal{F}, R' \cup R_1 \cup ... \cup R_n)$ where R' contains the rules of R, but a_i replaced by S_i .
 - L' ⊆ L(G'): Produce word from L first (the □_i are replaced by S_i), then rewrite the S_i to words from L_i
 - $L(G') \subseteq L'$: Re-order derivation of G' to stop at the S_i
 - Formally, show:

$$\forall A \in N. \ A \rightarrow_{G'} s' \implies \exists s. \ A \rightarrow_{G} s \land s' \in s\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\}$$

· By induction on derivation length

Theorem

Substitution preserves regularity, i.e., let L, L_1, \ldots, L_n be regular languages, then $L' := L\{a_1 \leftarrow L_1, \ldots, a_n \leftarrow L_n\}$ is a regular language

- Proof sketch:
 - Let L, L_1, \ldots, L_i be represented by RTGs over disjoint nonterminals
 - $G = (S, N, \mathcal{F}, R)$ with L = L(G) and $G_i = (S_i, N_i, \mathcal{F}, R_i)$ with $L_i = L(G_i)$
 - Then let $G' = (S, N \cup N_1 \cup ... \cup N_n, \mathcal{F}, R' \cup R_1 \cup ... \cup R_n)$ where R' contains the rules of R, but a_i replaced by S_i .
 - L' ⊆ L(G'): Produce word from L first (the □_i are replaced by S_i), then rewrite the S_i to words from L_i
 - L(G') ⊆ L': Re-order derivation of G' to stop at the S_i
 - Formally, show:

$$\forall A \in N. \ A \rightarrow_{G'} s' \implies \exists s. \ A \rightarrow_{G} s \land s' \in s\{a_1 \leftarrow L_1, \dots, a_n \leftarrow L_n\}$$

- By induction on derivation length
- Corollary: Concatenation preserves regularity, i.e., for regular languages L_1, L_2 , the language $L_1 \cdot L_2$ is regular.

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a regular language.

Proof sketch

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a regular language.

- Proof sketch
 - Let *L* be represented by RTG $G = (S, N, \mathcal{F}, R)$

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a regular language.

- Proof sketch

 - Let L be represented by RTG G = (S,N,F,R)
 Construct G' = (S',N ∪ {S'},F ∪ K,R'), such that

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a regular language.

- Proof sketch

 - Let L be represented by RTG $G = (S, N, \mathcal{F}, R)$ Construct $G' = (S', N \dot{\cup} \{S'\}, \mathcal{F} \cup \mathcal{K}, R')$, such that
 - R' contains the rules from R, with \square replaced by S'

Preservation of Regularity (Closure)

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a regular language.

- Proof sketch

 - Let L be represented by RTG $G = (S, N, \mathcal{F}, R)$ Construct $G' = (S', N \dot{\cup} \{S'\}, \mathcal{F} \cup \mathcal{K}, R')$, such that
 - R' contains the rules from R, with \square replaced by S'
 - $S' \rightarrow \square \in R'$ and $S' \rightarrow S \in R'$

Preservation of Regularity (Closure)

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a regular language.

- Proof sketch

 - Let L be represented by RTG G = (S,N,F,R)
 Construct G' = (S',N ∪ {S'},F ∪ K,R'), such that
 - R' contains the rules from R, with \square replaced by S'
 - $S' \rightarrow \square \in R'$ and $S' \rightarrow S \in R'$
 - $L^* \subset L(G')$: Obvious by construction

Preservation of Regularity (Closure)

Theorem

Closure preserves regularity, i.e., let L be a regular language. Then, L* is a regular language.

- Proof sketch

 - Let L be represented by RTG G = (S,N,F,R)
 Construct G' = (S',N ∪ {S'},F ∪ K,R'), such that
 - R' contains the rules from R, with \square replaced by S'
 - $S' \rightarrow \square \in R'$ and $S' \rightarrow S \in R'$
 - $L^* \subset L(G')$: Obvious by construction
 - $L(G') \subset L^*$: Re-ordering derivation. Formally: Induction on derivation length.

Tree Regular Expressions

Syntax

$$e ::= \emptyset \mid f(\underbrace{e, \dots, e}_{n \text{ times}}) \text{ for } f \in \mathcal{F}_n \mid e + e \mid e \cdot_i e \mid e^{*_i}$$

Tree Regular Expressions

Syntax

$$e ::= \emptyset \mid f(\underbrace{e, \dots, e}_{n \text{ times}}) \text{ for } f \in \mathcal{F}_n \mid e + e \mid e \cdot_i e \mid e^{*_i}$$

Semantics

Kleene Theorem for Tree Languages

Theorem

A tree language L is regular if and only if there is a regular expression e with $L = [\![e]\!]$

 Proof (<=): Straightforward, by induction on e, using preservation of regularity by union, concatenation, and closure

Kleene Theorem for Tree Languages

Theorem

A tree language L is regular if and only if there is a regular expression e with $L = [\![e]\!]$

- Proof (<=:): Straightforward, by induction on e, using preservation of regularity by union, concatenation, and closure
- Proof (\improx): Construct reg-exp inductively over increasing number of states

• Let $A = (Q, \mathcal{F}, Q_F, \Delta)$ be bottom-up automaton.

- Let $A = (Q, \mathcal{F}, Q_F, \Delta)$ be bottom-up automaton.
 - Let $Q = \{q_1, \dots, q_n\}$

- Let $A = (Q, \mathcal{F}, Q_F, \Delta)$ be bottom-up automaton.
 - Let $Q = \{q_1, \dots, q_n\}$
- Define T(i, j, K) for $K \subseteq Q$ as those trees over $T(\mathcal{F} \cup K)$ that can be rewritten to q_i using only **internal** states from $\{q_1, \dots, q_k\}$

- Let $A = (Q, \mathcal{F}, Q_F, \Delta)$ be bottom-up automaton.
 - Let $Q = \{q_1, \ldots, q_n\}$
- Define T(i, j, K) for $K \subseteq Q$ as those trees over $T(\mathcal{F} \cup K)$ that can be rewritten to q_i using only **internal** states from $\{q_1, \dots, q_k\}$
 - Note: We do not require $q_i \in \{q_1, \dots, q_k\}$, nor $K \subseteq \{q_1, \dots, q_k\}$

- Let $A = (Q, \mathcal{F}, Q_F, \Delta)$ be bottom-up automaton.
 - Let $Q = \{q_1, \ldots, q_n\}$
- Define T(i,j,K) for $K \subseteq Q$ as those trees over $T(\mathcal{F} \cup K)$ that can be rewritten to q_i using only **internal** states from $\{q_1, \dots, q_k\}$
 - Note: We do not require $q_i \in \{q_1, \dots, q_k\}$, nor $K \subseteq \{q_1, \dots, q_k\}$
- $L(A) = \bigcup_{i|q_i \in Q_F} T(i, n, \emptyset)$

- Let $A = (Q, \mathcal{F}, Q_F, \Delta)$ be bottom-up automaton.
 - Let $Q = \{q_1, \dots, q_n\}$
- Define T(i,j,K) for $K \subseteq Q$ as those trees over $T(\mathcal{F} \cup K)$ that can be rewritten to q_i using only **internal** states from $\{q_1, \dots, q_k\}$
 - Note: We do not require $q_i \in \{q_1, \dots, q_k\}$, nor $K \subseteq \{q_1, \dots, q_k\}$
- $L(A) = \bigcup_{i|q_i \in Q_F} T(i, n, \emptyset)$
- *T*(*i*, 0, *K*) is finite

- Let $A = (Q, \mathcal{F}, Q_F, \Delta)$ be bottom-up automaton.
 - Let $Q = \{q_1, \dots, q_n\}$
- Define T(i,j,K) for $K \subseteq Q$ as those trees over $T(\mathcal{F} \cup K)$ that can be rewritten to q_i using only **internal** states from $\{q_1, \ldots, q_k\}$
 - Note: We do not require $q_i \in \{q_1, \dots, q_k\}$, nor $K \subseteq \{q_1, \dots, q_k\}$
- $L(A) = \bigcup_{i|a_i \in Q_F} T(i, n, \emptyset)$
- *T*(*i*, 0, *K*) is finite
 - Runs accepting t ∈ T(i, 0, K) contain no internal states

- Let $A = (Q, \mathcal{F}, Q_F, \Delta)$ be bottom-up automaton.
 - Let $Q = \{q_1, \ldots, q_n\}$
- Define T(i,j,K) for $K \subseteq Q$ as those trees over $T(\mathcal{F} \cup K)$ that can be rewritten to q_i using only **internal** states from $\{q_1, \dots, q_k\}$
 - Note: We do not require $q_i \in \{q_1, \dots, q_k\}$, nor $K \subseteq \{q_1, \dots, q_k\}$
- $L(A) = \bigcup_{i|q_i \in Q_F} T(i, n, \emptyset)$
- T(i, 0, K) is finite
 - Runs accepting $t \in T(i, 0, K)$ contain no internal states
 - I.e., t = a() or $t = f(a_1, ..., a_m)$, for $a, a_1, ..., a_m \in \mathcal{F} \cup K$

- Let $A = (Q, \mathcal{F}, Q_F, \Delta)$ be bottom-up automaton.
 - Let $Q = \{q_1, \ldots, q_n\}$
- Define T(i,j,K) for $K \subseteq Q$ as those trees over $T(\mathcal{F} \cup K)$ that can be rewritten to q_i using only **internal** states from $\{q_1, \dots, q_k\}$
 - Note: We do not require $q_i \in \{q_1, \dots, q_k\}$, nor $K \subseteq \{q_1, \dots, q_k\}$
- $L(A) = \bigcup_{i|q_i \in Q_F} T(i, n, \emptyset)$
- T(i, 0, K) is finite
 - Runs accepting $t \in T(i, 0, K)$ contain no internal states
 - I.e., t = a() or $t = f(a_1, ..., a_m)$, for $a, a_1, ..., a_m \in \mathcal{F} \cup \mathcal{K}$
 - Thus, representable by regular expression

- Let $A = (Q, \mathcal{F}, Q_F, \Delta)$ be bottom-up automaton.
 - Let $Q = \{q_1, \dots, q_n\}$
- Define T(i,j,K) for $K \subseteq Q$ as those trees over $T(\mathcal{F} \cup K)$ that can be rewritten to q_i using only **internal** states from $\{q_1, \ldots, q_k\}$
 - Note: We do not require $q_i \in \{q_1, \dots, q_k\}$, nor $K \subseteq \{q_1, \dots, q_k\}$
- $L(A) = \bigcup_{i|q_i \in Q_F} T(i, n, \emptyset)$
- T(i, 0, K) is finite
 - Runs accepting $t \in T(i, 0, K)$ contain no internal states
 - I.e., t = a() or $t = f(a_1, ..., a_m)$, for $a, a_1, ..., a_m \in \mathcal{F} \cup K$
 - Thus, representable by regular expression
- For *j* > 0:

$$T(i,j,K) = \underbrace{T(i,j-1,K \cup \{q_j\})}_{\text{Initial segment}} \cdot_{q_j} \underbrace{T(j,j-1,K \cup \{q_j\})^{*,q_j}}_{\text{Runs between } q_j \text{s}} \cdot_{q_j} \underbrace{T(j,j-1,K)}_{\text{Final segment}}$$

- Let $A = (Q, \mathcal{F}, Q_F, \Delta)$ be bottom-up automaton.
 - Let $Q = \{q_1, \dots, q_n\}$
- Define T(i,j,K) for $K \subseteq Q$ as those trees over $T(\mathcal{F} \cup K)$ that can be rewritten to q_i using only **internal** states from $\{q_1, \ldots, q_k\}$
 - Note: We do not require $q_i \in \{q_1, \dots, q_k\}$, nor $K \subseteq \{q_1, \dots, q_k\}$
- $L(A) = \bigcup_{i|q_i \in Q_F} T(i, n, \emptyset)$
- *T*(*i*, 0, *K*) is finite
 - Runs accepting $t \in T(i, 0, K)$ contain no internal states
 - I.e., t = a() or $t = f(a_1, ..., a_m)$, for $a, a_1, ..., a_m \in \mathcal{F} \cup \mathcal{K}$
 - Thus, representable by regular expression
- For *j* > 0:

$$T(i,j,K) = \underbrace{T(i,j-1,K \cup \{q_j\})}_{\text{Initial segment}} \cdot_{q_j} \underbrace{T(j,j-1,K \cup \{q_j\})^{*,q_j}}_{\text{Runs between } q_j \text{s}} \cdot_{q_j} \underbrace{T(j,j-1,K)}_{\text{Final segment}}$$

Regular expression for L(A) can be constructed

Last Lecture

- Tree regular expressions
- Kleene theorem
 - Tree regular expressions can express exactly the tree regular languages

Table of Contents

- 1 Introduction
- 2 Basics
- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems

Table of Contents

- 1 Introduction
- 2 Basics
- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems
 Motivation
 Pushdown Systems
 Dynamic Pushdown Networks
 Acquisition Histories
 Acquisition Histories for DPN

Program Analysis

- Theorem of Rice: Properties of programs undecidable
- Need approximations
- Standard approximation: Ignore branching conditions
 - if (b) ... else ... Consider both branches, independent of b
 - Nondeterministic program

Attack Plan

- Properties: Reachability of configuration/regular set of configurations
- First, consider programs with recursion
 - Modeled by pushdown systems (PDS)
- Then, add process creation
 - Modeled by dynamic pushdown systems (DPN)
- Then synchronization through well-nested locks
 - DPN with locks

Recursion

- If program has no procedures
 - Runs can be described by word automaton
 - Example on board
- If program has procedures
 - Runs can be described by push-down system (PDS)

Example

```
void p() {
1:    if (...) p() else return;
  2: x=y;
  3: return;
                                                                                         \mathbf{1} \stackrel{\tau}{\hookrightarrow} \varepsilon
1 \stackrel{\tau}{\hookrightarrow} 12
2 \stackrel{x=y}{\hookrightarrow} 3
\mathbf{3}\overset{\tau}{\hookrightarrow}\varepsilon
```

Table of Contents

- 1 Introduction
- 2 Basics
- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems
 Motivation
 Pushdown Systems
 Dynamic Pushdown Networks
 Acquisition Histories
 Acquisition Histories for DPN

Push-Down Systems (PDS)

- In order to model (finitely many) return values, we add state
- A push-down system (PDS) M is a tuple $(P, \Gamma, Act, p_0, \gamma_0, \Delta)$ where
 - P is a finite set of states
 - Γ is a finite stack alphabet
 - · Act is a finite set of actions
 - $p_0\gamma_0 \in P\Gamma$ is the initial configuration
 - Δ is a finite set of rules, of the form

$$p\gamma \stackrel{a}{\hookrightarrow} p'w$$
 where $p, p' \in P$, $a \in Act$, $\gamma \in \Gamma$, and $w \in \Gamma^*$

PDS - Semantics

- Configurations have the form pw ∈ PΓ*
- The step-relation $\rightarrow \subseteq P\Gamma^* \times Act \times P\Gamma^*$ is defined by

$$p\gamma w \stackrel{a}{\rightarrow} p'w'w$$
 if $p\gamma \stackrel{a}{\hookrightarrow} p'w' \in \Delta$

- $\rightarrow^* \subseteq P\Gamma^* \times Act^* \times P\Gamma^*$ is its extension to sequences of steps
 - $pw \stackrel{I}{\rightarrow}^* p'w'$ iff $I = a_1 \dots a_n$ and $pw \stackrel{a_1}{\hookrightarrow} \dots \stackrel{a_n}{\hookrightarrow} p'w'$

Normalized PDS

- Simplifying assumptions
 - There are only three types of rules

$$p\gamma \stackrel{a}{\hookrightarrow} p'\gamma' \qquad \qquad \text{for } p,p' \in P \text{ and } \gamma,\gamma' \in \Gamma \qquad \qquad \text{(base)}$$

$$p\gamma \stackrel{a}{\hookrightarrow} p'\gamma_1\gamma_2 \qquad \qquad \text{for } p,p' \in P \text{ and } \gamma,\gamma_1,\gamma_2 \in \Gamma \qquad \qquad \text{(call)}$$

$$p\gamma \stackrel{a}{\hookrightarrow} p' \qquad \qquad \text{for } p,p' \in P \text{ and } \gamma \in \Gamma \qquad \qquad \text{(return)}$$

- Does not reduce expressiveness. Emulate rule $p\gamma \overset{\gamma}{\hookrightarrow}_1 \dots \gamma_n$ by sequence of call rules.
- · The empty stack must not be reachable
 - Does not reduce expressiveness
 - Introduce fresh \bot stack symbol, a rule $p_0\bot\stackrel{\tau}{\hookrightarrow}p_0\gamma_0\bot$, and set initial state to $p_0\bot$
 - τ models an action that has no effect (skip)
- From now on, we assume that PDS are normalized

Execution Trees

- Model executions of PDS as tree
 - Also incomplete executions, i.e., execution may stop everywhere
 - This describes all reachable configurations
- A node represents a step
- If a call returns, the call-node has two successors
 - · Left successor describes execution of procedure
 - Right successor describes execution of remaining program
- Execution trees described by the following tree grammar

$$\begin{split} \textit{XR} ::= \langle \textit{Base} \rangle (\textit{XR}) \mid \langle \textit{Call} \rangle^{\textit{R}} (\textit{XR}, \textit{XR}) \mid \langle \textit{Return} \rangle \\ \textit{XN} ::= \langle \textit{Base} \rangle (\textit{XN}) \mid \langle \textit{Call} \rangle^{\textit{N}} (\textit{XN}) \mid \langle \textit{Call} \rangle^{\textit{R}} (\textit{XR}, \textit{XN}) \mid \langle \textit{P} \times \Gamma \rangle \end{split}$$

- Where Base, Call, Return are rules of respective type
- Intuition: XR Returning execution trees, XN non-returning execution trees

Example

$$p1 \xrightarrow{\tau} p12$$

$$p2 \xrightarrow{x=y} p3$$

$$p3 \xrightarrow{\tau} p$$

- Example execution tree
 - $\bullet \ \langle p1 \stackrel{\tau}{\hookrightarrow} p12 \rangle^{N} (\langle p1 \stackrel{\tau}{\hookrightarrow} p12 \rangle^{R} (\langle p1 \stackrel{\tau}{\hookrightarrow} p \rangle, \langle p2 \stackrel{x=y}{\hookrightarrow} p3 \rangle (\langle p3 \rangle)))$

Execution Trees of PDS

- Execution trees of PDS M = (P, Γ, Act, p₀, γ₀, Δ) described by tree automata A_M = (Q, F, I, Δ_{A_M})
- States: $Q = P\Gamma \cup P\Gamma | P$
 - $p\gamma$ produce non-returning execution trees (from XN)
 - $p\gamma|p''$ produce execution trees that return to state p'' (from XR)
 - Initial state: $I = \{p_0 \gamma_0\}$
- Rules

$$\begin{split} &\rho\gamma \to \langle \rho\gamma \overset{a}{\hookrightarrow} \rho'\gamma' \rangle (\rho'\gamma') & \text{if } \rho\gamma \overset{a}{\hookrightarrow} \rho'\gamma' \in \Delta \\ &\rho\gamma \to \langle \rho\gamma \overset{a}{\hookrightarrow} \rho'\gamma_1\gamma_2 \rangle^N (\rho'\gamma_1) & \text{if } \rho\gamma \overset{a}{\hookrightarrow} \rho'\gamma_1\gamma_2 \in \Delta \\ &\rho\gamma \to \langle \rho\gamma \overset{a}{\hookrightarrow} \rho'\gamma_1\gamma_2 \rangle^R (\rho'\gamma_1|\rho'',\rho''\gamma_2) & \text{if } \rho'' \in P \text{ and } \rho\gamma \overset{a}{\hookrightarrow} \rho'\gamma_1\gamma_2 \in \Delta \\ &\rho\gamma \to \langle \rho\gamma \rangle & \text{if } \rho\gamma \overset{a}{\hookrightarrow} \rho'\gamma' \in \Delta \\ &\rho\gamma|\rho'' \to \langle \rho\gamma \overset{a}{\hookrightarrow} \rho'\gamma_1\gamma_2 \rangle^R (\rho'\gamma_1|\rho''',\rho'''\gamma_2|\rho'') & \text{if } \rho\gamma \overset{a}{\hookrightarrow} \rho'\gamma' \in \Delta \\ &\rho\gamma|\rho'' \to \langle \rho\gamma \overset{a}{\hookrightarrow} \rho'\gamma_1\gamma_2 \rangle^R (\rho'\gamma_1|\rho''',\rho'''\gamma_2|\rho'') & \text{if } \rho''' \in P \text{ and } \rho\gamma \overset{a}{\hookrightarrow} \rho'\gamma_1\gamma_2 \in \Delta \\ &\rho\gamma|\rho'' \to \langle \rho\gamma \overset{\tau}{\hookrightarrow} \rho'' \rangle & \text{if } \rho\gamma \overset{\tau}{\hookrightarrow} \rho'' \in \Delta \end{split}$$

Execution Trees – Intuition of rules

- $p\gamma \rightarrow \langle p\gamma \stackrel{a}{\hookrightarrow} p'\gamma' \rangle (p'\gamma')$ (Base)
 - Make a base step, then continue execution from $p'\gamma'$
- $p\gamma \rightarrow \langle p\gamma \stackrel{a}{\hookrightarrow} p'\gamma_1\gamma_2 \rangle^N(p'\gamma_1)$ (Call, no-return)
 - Continue execution from $p'\gamma_1$.
 - As call does not return, γ_2 is never looked at again, and remaining execution does not depend on it
- $p\gamma \rightarrow \langle p\gamma \stackrel{a}{\hookrightarrow} p'\gamma_1\gamma_2 \rangle^R(p'\gamma_1|p'',p''\gamma_2)$ (Call, return)
 - Execute procedure, it returns with state p''. Then continue execution from $p''\gamma_2$.
- $p\gamma \rightarrow \langle p\gamma \rangle$ (Finish)
 - · Non-deterministically decide that execution ends here
- $p\gamma|p''\to\langle p\gamma\stackrel{a}{\hookrightarrow}p'\gamma'\rangle(p'\gamma'|p'')$ (Base)
 - Base step, then continue execution
- $p\gamma|p'' \to \langle p\gamma \stackrel{a}{\hookrightarrow} p'\gamma_1\gamma_2 \rangle^R(p'\gamma_1|p''',p'''\gamma_2|p'')$ (Call, return)
 - Return from called procedure in state p''', then continue execution
- $p\gamma|p'' \to \langle p\gamma \stackrel{\tau}{\hookrightarrow} p'' \rangle$ (Return)
 - Return rule returns to specified state p"

Reached Configuration

• Function $c: XN \to P\Gamma$ extracts reached configuration from execution tree

$$egin{aligned} c(\langle p\gamma \stackrel{a}{\hookrightarrow} p'\gamma'
angle(t)) &= c(t) \ c(\langle p\gamma \stackrel{ au}{\hookrightarrow} p'\gamma_1\gamma_2
angle^R(t_1,t_2)) &= c(t_2) \ c(\langle p\gamma \stackrel{ au}{\hookrightarrow} p'\gamma_1\gamma_2
angle^N(t)) &= c(t)\gamma_2 \ c(\langle p\gamma
angle) &= p\gamma \end{aligned}$$

- · Side note: This is a tree to string transducer
 - Thus, set of execution trees that reach a regular set of configurations is regular

Last Lecture

- Pushdown systems
 - Configuration pw ∈ PΓ*
 - · Semantics by step relation
- Execution trees
 - Intuition: Node for steps. Returning call nodes are binary.
 - · Set of execution trees of PDS is regular
 - Mapping of execution tree to reached configuration
- Correlation:
 - Reachable configurations wrt. step relation and execution trees match

Relating Execution Trees and PDS Semantics

Theorem

Let M be a PDS. Then $\exists I. \ p_0 \gamma_0 \stackrel{I}{\rightarrow}^* p'w \ iff \exists t. \ t \in L(\mathcal{A}_M) \land c(t) = p'w$

- Note, a more general theorem would also relate the sequence of actions / and the execution tree
 - · Proof ideas are the same

Last Lecture

Proof of relation between execution trees and PDS semantics

Proof Outline

- Prove, for returning executions: $\exists I. \ p\gamma \xrightarrow{l}^* p'' \ \text{iff} \ \exists t. \ p\gamma | p'' \to t$
 - As c ignores returning executions, this simple statement is enough
- Prove, for non-returning executions:

$$\exists I. \ p\gamma \xrightarrow{l}^* p'w \land w \neq \varepsilon \text{ iff } \exists t. \ p\gamma \rightarrow t \land c(t) = p'w$$

- Main lemmas that are required
 - An execution can be repeated when we append some symbols to the stack:

lemma stack-append:
$$pw \stackrel{/}{\rightarrow}^* p'w' \implies pwv \stackrel{/}{\rightarrow}^* p'w'v$$

 If we have an execution, the topmost stack-symbol is either popped at some point, or the execution does not depend on the stack below the topmost symbol. Lemma return-cases:

$$p\gamma w \stackrel{J^*}{\to} p'w' \implies$$

$$\exists p'' \ l_1 \ l_2. \ p\gamma \stackrel{l_1}{\to} * \ p'' \land p''w \stackrel{l_2}{\to} * \ p'w' \land I = l_1 l_2 \qquad (ret)$$

$$\lor \exists w''. \ w' = w''w \land w'' \neq \varepsilon \land p\gamma \stackrel{J^*}{\to} * p'w'' \qquad (no-ret)$$

 Corollary: On a returning execution, we can find the point where the topmost stack symbol is popped

lemma find-return:
$$p\gamma w \stackrel{l}{\rightarrow}^* p' \implies \exists l_1 \ l_2 \ p'' . \ p\gamma \stackrel{l_1}{\rightarrow}^* p'' \land p'' w \stackrel{l_2}{\rightarrow}^* p'$$

Proofs:

- On board
 - lemma return-cases (find-return is corollary)
 - Proofs for returning and non-returning executions

Table of Contents

- Introduction
- 2 Basics
- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems
 Motivation
 Pushdown Systems
 Dynamic Pushdown Networks
 Acquisition Histories
 Acquisition Histories for DPN

Thread Creation

- · Concurrent programs may create threads
- These run in parallel

Example

```
void p () {
    if (...) {
        spawn p;
        p();
    }
}
main () {
    p();
}
```

• Pushdown systems

- Pushdown systems
- Spawn-rules may have side-effect of creating a new PDS

- Pushdown systems
- Spawn-rules may have side-effect of creating a new PDS
- A DPN $M = (P, \Gamma, Act, p_0, \gamma_0, \Delta)$ consists of

- Pushdown systems
- Spawn-rules may have side-effect of creating a new PDS
- A DPN $M = (P, \Gamma, Act, p_0, \gamma_0, \Delta)$ consists of
 - A finite set of states P

- Pushdown systems
- Spawn-rules may have side-effect of creating a new PDS
- A DPN $M = (P, \Gamma, Act, p_0, \gamma_0, \Delta)$ consists of
 - A finite set of states P
 - A finite set of stack symbols Γ

- Pushdown systems
- Spawn-rules may have side-effect of creating a new PDS
- A DPN $M = (P, \Gamma, Act, p_0, \gamma_0, \Delta)$ consists of
 - A finite set of states P
 - A finite set of stack symbols Γ
 - · A finite set of actions Act

- Pushdown systems
- Spawn-rules may have side-effect of creating a new PDS
- A DPN $M = (P, \Gamma, Act, p_0, \gamma_0, \Delta)$ consists of
 - A finite set of states P
 - A finite set of stack symbols Γ
 - · A finite set of actions Act
 - An initial configuration $p_0\gamma_0 \in P\Gamma$

- Pushdown systems
- Spawn-rules may have side-effect of creating a new PDS
- A DPN $M = (P, \Gamma, Act, p_0, \gamma_0, \Delta)$ consists of
 - A finite set of states P
 - A finite set of stack symbols Γ
 - · A finite set of actions Act
 - An initial configuration $p_0\gamma_0 \in P\Gamma$
 - Rules ∆ of the form

$$\begin{array}{cccc} p\gamma \overset{a}{\hookrightarrow} p'\gamma' & \text{for } p,p' \in P \text{ and } \gamma,\gamma' \in \Gamma & \text{(base)} \\ p\gamma \overset{a}{\hookrightarrow} p'\gamma_1\gamma_2 & \text{for } p,p' \in P \text{ and } \gamma,\gamma_1,\gamma_2 \in \Gamma & \text{(call)} \\ p\gamma \overset{a}{\hookrightarrow} p' & \text{for } p,p' \in P \text{ and } \gamma \in \Gamma & \text{(return)} \\ p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 & \text{for } p,p_1,p_2 \in P \text{ and } \gamma,\gamma_1,\gamma_2 \in \Gamma & \text{(spawn)} \end{array}$$

- Pushdown systems
- Spawn-rules may have side-effect of creating a new PDS
- A DPN $M = (P, \Gamma, Act, p_0, \gamma_0, \Delta)$ consists of
 - A finite set of states P
 - A finite set of stack symbols Γ
 - · A finite set of actions Act
 - An initial configuration $p_0\gamma_0 \in P\Gamma$
 - Rules Δ of the form

$$\begin{array}{cccc} p\gamma \stackrel{a}{\hookrightarrow} p'\gamma' & \text{for } p,p' \in P \text{ and } \gamma,\gamma' \in \Gamma & \text{(base)} \\ p\gamma \stackrel{a}{\hookrightarrow} p'\gamma_1\gamma_2 & \text{for } p,p' \in P \text{ and } \gamma,\gamma_1,\gamma_2 \in \Gamma & \text{(call)} \\ p\gamma \stackrel{a}{\hookrightarrow} p' & \text{for } p,p' \in P \text{ and } \gamma \in \Gamma & \text{(return)} \\ p\gamma \stackrel{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 & \text{for } p,p_1,p_2 \in P \text{ and } \gamma,\gamma_1,\gamma_2 \in \Gamma & \text{(spawn)} \end{array}$$

Assumption: Empty stack not reachable in any spawned thread

• Configurations are trees over the alphabet $\langle pw \rangle/1 \mid Cons/2 \mid Nil/0$

- Configurations are trees over the alphabet \(\lambda pw \rangle / 1 \cord Cons/2 \cord Nil/0\)
 - For all $pw \in P\Gamma^*$

- Configurations are trees over the alphabet \(\lambda pw \rangle / 1 \cord Cons/2 \cord Nil/0\)
 - For all $pw \in P\Gamma^*$
- They have the structure $conf ::= \langle pw \rangle (conflist) \quad conflist ::= Nil|Cons(conf, conflist)$

- Configurations are trees over the alphabet \(\lambda pw \rangle / 1 \rightarrow Cons/2 \rightarrow Nil/0\)
 - For all $pw \in P\Gamma^*$
- They have the structure conf ::= \(\rho w\rangle (conflist)\) conflist ::= \(\right)i|\(\right) \cons(conf, conflist)\)
- Intuitively, a node $\langle pw \rangle(I)$ represents a thread in state pw, that has already spawned the threads in I

- Configurations are trees over the alphabet \(\lambda pw \rangle / 1 \cord Cons/2 \cord Nil/0\)
 - For all $pw \in P\Gamma^*$
- They have the structure conf ::= \(\rho w \rangle (conflist) \) conflist ::= \(Nil \rangle Cons(conf, conflist) \)
- Intuitively, a node \(\langle pw \rangle (I)\) represents a thread in state \(pw\), that has already spawned the threads in \(I\)
- Convention: We identify c with the singleton list Cons(c, NiI), and use $l_1 l_2$ for the concatenation of l_1 and l_2 .

- Configurations are trees over the alphabet \(\lambda pw \rangle / 1 \rightarrow Cons/2 \rightarrow Nil/0\)
 - For all $pw \in P\Gamma^*$
- They have the structure conf ::= \(\rho w \rangle (conflist) \) conflist ::= \(Nil \rangle Cons(conf, conflist) \)
- Intuitively, a node \(\langle pw \rangle (I)\) represents a thread in state \(pw\), that has already spawned the threads in \(I\)
- Convention: We identify c with the singleton list Cons(c, Nil), and use $l_1 l_2$ for the concatenation of l_1 and l_2 .
 - We may use [c₁,..., c_n] for the list Cons(c₁, Cons(..., Cons(c_n, Nil)...) for clarification of notation.

Last Lecture

- Finished proof: Relation of execution trees and PDS semantics
- DPN (PDS + Thread creation)
- DPN-Semantics:
 - Configuration are trees, each node holds PDS-configuration (state+stack)
 - Children are threads that have been spawned by parent
- Extract reached configuration from execution tree

$$\begin{split} C[\langle p\gamma w\rangle(I)] &\overset{a}{\to} C[\langle p'w'w\rangle(I)] \\ &\text{if } p\gamma \overset{a}{\hookrightarrow} p'w' \in \Delta \\ C[\langle p\gamma w\rangle(I)] &\overset{a}{\to} C[\langle p_1\gamma_1w\rangle(I\langle p_2\gamma_2\rangle(NiI))] \\ &\text{if } p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta \end{split} \tag{spawn}$$

$$\begin{split} C[\langle p\gamma w\rangle(I)] &\overset{a}{\to} C[\langle p'w'w\rangle(I)] \\ & \text{if } p\gamma \overset{a}{\hookrightarrow} p'w' \in \Delta \\ C[\langle p\gamma w\rangle(I)] &\overset{a}{\to} C[\langle p_1\gamma_1w\rangle(I\langle p_2\gamma_2\rangle(\textit{NiI}))] \\ & \text{if } p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta \end{split} \tag{spawn}$$

- For any context C with exactly one occurrence of x_1 , such that $C[\langle p\gamma w\rangle(I)] \in conf$ is a configuration
 - Having exactly one occurrence of x₁ ensures that exactly one thread makes a step

$$\begin{split} C[\langle p\gamma w\rangle(I)] &\overset{a}{\to} C[\langle p'w'w\rangle(I)] \\ & \text{if } p\gamma \overset{a}{\hookrightarrow} p'w' \in \Delta \\ C[\langle p\gamma w\rangle(I)] &\overset{a}{\to} C[\langle p_1\gamma_1w\rangle(I\langle p_2\gamma_2\rangle(\textit{NiI}))] \\ & \text{if } p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta \end{split} \tag{spawn}$$

- For any context C with exactly one occurrence of x_1 , such that $C[\langle p\gamma w\rangle(I)] \in conf$ is a configuration
 - Having exactly one occurrence of x₁ ensures that exactly one thread makes a step
- Intuition:

$$\begin{split} C[\langle p\gamma w\rangle(I)] &\overset{a}{\to} C[\langle p'w'w\rangle(I)] \\ & \text{if } p\gamma \overset{a}{\hookrightarrow} p'w' \in \Delta \\ C[\langle p\gamma w\rangle(I)] &\overset{a}{\to} C[\langle p_1\gamma_1w\rangle(I\langle p_2\gamma_2\rangle(\textit{NiI}))] \\ & \text{if } p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta \end{split} \tag{spawn}$$

- For any context C with exactly one occurrence of x_1 , such that $C[\langle p\gamma w\rangle(I)] \in conf$ is a configuration
 - Having exactly one occurrence of x₁ ensures that exactly one thread makes a step
- Intuition:
 - (no-spawn) rule just changes single thread's configuration

$$\begin{split} C[\langle p\gamma w\rangle(I)] &\overset{a}{\to} C[\langle p'w'w\rangle(I)] \\ & \text{if } p\gamma \overset{a}{\hookrightarrow} p'w' \in \Delta \\ C[\langle p\gamma w\rangle(I)] &\overset{a}{\to} C[\langle p_1\gamma_1w\rangle(I\langle p_2\gamma_2\rangle(\textit{NiI}))] \\ & \text{if } p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta \end{split} \tag{spawn}$$

- For any context C with exactly one occurrence of x_1 , such that $C[\langle p\gamma w\rangle(I)] \in conf$ is a configuration
 - Having exactly one occurrence of x₁ ensures that exactly one thread makes a step
- Intuition:
 - (no-spawn) rule just changes single thread's configuration
 - (spawn) rule changes thread's configuration, and adds new thread to spawned thread's list

• Binary node $\langle p\gamma \stackrel{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (t_1,t_2)$ describes execution of spawn-step

- Binary node $\langle p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (t_1,t_2)$ describes execution of spawn-step
 - t₁ describes remaining execution of spawning thread

- Binary node $\langle p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (t_1,t_2)$ describes execution of spawn-step
 - t₁ describes remaining execution of spawning thread
 - t₂ describes execution of spawned thread

- - t₁ describes remaining execution of spawning thread
 - t₂ describes execution of spawned thread
- Execution trees

```
XR ::= \langle \textit{Base} \rangle (XR) \mid \langle \textit{Call} \rangle^R (XR, XR) \mid \langle \textit{Return} \rangle \mid \langle \textit{Spawn} \rangle (XR, XN)

XN ::= \langle \textit{Base} \rangle (XN) \mid \langle \textit{Call} \rangle^N (XN) \mid \langle \textit{Call} \rangle^R (XR, XN) \mid \langle \textit{P} \times \Gamma \rangle \mid \langle \textit{Spawn} \rangle (XN, XN)
```

List Operations

• We lift list-operations to concatenate lists and trees

List Operations

- We lift list-operations to concatenate lists and trees
 - $I_1\langle pw\rangle(I_2)=\langle pw\rangle(I_1I_2)$

Configuration of Execution Tree

Function c : XN → conf

Configuration of Execution Tree

- Function c : XN → conf
 - $c(\langle Spawn \rangle(t_1, t_2)) = [c(t_2)]c(t_1)$

Configuration of Execution Tree

- Function $c: XN \rightarrow conf$
 - $c(\langle Spawn \rangle(t_1, t_2)) = [c(t_2)]c(t_1)$
 - Prepend configuration reached by spawned thread

Configuration of Execution Tree

- Function $c: XN \rightarrow conf$
 - $c(\langle Spawn \rangle(t_1, t_2)) = [c(t_2)]c(t_1)$
 - Prepend configuration reached by spawned thread
 - $c(\langle Call \rangle^R(t_1,t_2)) = s(t_1)c(t_2)$

Configuration of Execution Tree

- Function $c: XN \rightarrow conf$
 - $c(\langle Spawn \rangle(t_1, t_2)) = [c(t_2)]c(t_1)$
 - Prepend configuration reached by spawned thread
 - $c(\langle Call \rangle^R(t_1, t_2)) = s(t_1)c(t_2)$
 - Have to collect configurations reached by threads spawned during call

Configuration of Execution Tree

- Function c : XN → conf
 - $c(\langle Spawn \rangle(t_1, t_2)) = [c(t_2)]c(t_1)$
 - Prepend configuration reached by spawned thread
 - $c(\langle Call \rangle^R(t_1, t_2)) = s(t_1)c(t_2)$
 - Have to collect configurations reached by threads spawned during call
 - The remaining equations are unchanged (Complete definition on next slide)

Reached configurations

Define $c: XN \rightarrow conf$ and $s: XR \rightarrow conflist$

$$c(\langle p\gamma \overset{a}{\hookrightarrow} p'\gamma'\rangle(t)) = c(t)$$

$$c(\langle p\gamma \overset{\tau}{\hookrightarrow} p'\gamma_1\gamma_2\rangle^R(t_1,t_2)) = s(t_1)c(t_2)$$

$$c(\langle p\gamma \overset{\tau}{\hookrightarrow} p'\gamma_1\gamma_2\rangle^N(t)) = c(t)\gamma_2 \qquad \text{where } \langle pw\rangle\gamma(I) = \langle pw\gamma\rangle(I)$$

$$c(\langle p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2\rangle(t_1,t_2)) = [c(t_2)]c(t_1)$$

$$c(\langle p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2\rangle(t_1)) = s(t_1)$$

$$s(\langle p\gamma \overset{a}{\hookrightarrow} p'\gamma'\rangle(t)) = s(t)$$

$$s(\langle p\gamma \overset{a}{\hookrightarrow} p'\gamma_1\gamma_2\rangle^R(t_1,t_2)) = s(t_1)s(t_2)$$

$$s(\langle p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2\rangle(t_1,t_2)) = [c(t_2)]s(t_1)$$

$$s(\langle p\gamma \overset{a}{\hookrightarrow} p'\rangle) = NiI$$

Execution trees of DPN

• Execution trees are regular set

Execution trees of DPN

- · Execution trees are regular set
- Same idea as for PDS. New rules for A_M :

$$\begin{split} \rho\gamma &\to \langle \rho\gamma \overset{a}{\hookrightarrow} \rho_1\gamma_1 \rhd \rho_2\gamma_2 \rangle (\rho_1\gamma_1,\rho_2\gamma_2) & \text{if } \rho\gamma \overset{a}{\hookrightarrow} \rho_1\gamma_1 \rhd \rho_2\gamma_2 \in \Delta \\ \rho\gamma|\rho'' &\to \langle \rho\gamma \overset{a}{\hookrightarrow} \rho_1\gamma_1 \rhd \rho_2\gamma_2 \rangle (\rho_1\gamma_1|\rho'',\rho_2\gamma_2) & \text{if } \rho\gamma \overset{a}{\hookrightarrow} \rho_1\gamma_1 \rhd \rho_2\gamma_2 \in \Delta \end{split}$$

Execution trees of DPN

- · Execution trees are regular set
- Same idea as for PDS. New rules for A_M :

$$\begin{split} \rho\gamma &\to \langle \rho\gamma \overset{a}{\hookrightarrow} \rho_1\gamma_1 \rhd \rho_2\gamma_2 \rangle (\rho_1\gamma_1,\rho_2\gamma_2) & \text{if } \rho\gamma \overset{a}{\hookrightarrow} \rho_1\gamma_1 \rhd \rho_2\gamma_2 \in \Delta \\ \rho\gamma|\rho'' &\to \langle \rho\gamma \overset{a}{\hookrightarrow} \rho_1\gamma_1 \rhd \rho_2\gamma_2 \rangle (\rho_1\gamma_1|\rho'',\rho_2\gamma_2) & \text{if } \rho\gamma \overset{a}{\hookrightarrow} \rho_1\gamma_1 \rhd \rho_2\gamma_2 \in \Delta \end{split}$$

· Complete rules on next slide

Rules for execution trees

$$\begin{aligned} p\gamma &\rightarrow \langle p\gamma \overset{a}{\rightarrow} p'\gamma' \rangle (p'\gamma') & \text{if } p\gamma \overset{a}{\rightarrow} p'\gamma' \in \Delta \\ p\gamma &\rightarrow \langle p\gamma \overset{a}{\rightarrow} p'\gamma_1\gamma_2 \rangle^N (p'\gamma_1) & \text{if } p\gamma \overset{a}{\rightarrow} p'\gamma_1\gamma_2 \in \Delta \\ p\gamma &\rightarrow \langle p\gamma \overset{a}{\rightarrow} p'\gamma_1\gamma_2 \rangle^R (p'\gamma_1|p'',p''\gamma_2) & \text{if } p'' \in P \text{ and } p\gamma \overset{a}{\rightarrow} p'\gamma_1\gamma_2 \in \Delta \\ p\gamma &\rightarrow \langle p\gamma \overset{a}{\rightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (p_1\gamma_1,p_2\gamma_2) & \text{if } p\gamma \overset{a}{\rightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta \\ p\gamma &\rightarrow \langle p\gamma \rangle & \text{if } p\gamma \overset{a}{\rightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta \\ p\gamma|p'' &\rightarrow \langle p\gamma \overset{a}{\rightarrow} p'\gamma' \rangle (p'\gamma'|p'') & \text{if } p\gamma \overset{a}{\rightarrow} p'\gamma' \in \Delta \\ p\gamma|p'' &\rightarrow \langle p\gamma \overset{a}{\rightarrow} p'\gamma_1\gamma_2 \rangle^R (p'\gamma_1|p''',p'''\gamma_2|p'') & \text{if } p''' \in P \text{ and } p\gamma \overset{a}{\rightarrow} p'\gamma_1\gamma_2 \in \Delta \\ p\gamma|p'' &\rightarrow \langle p\gamma \overset{a}{\rightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (p_1\gamma_1|p''',p_2\gamma_2) & \text{if } p\gamma \overset{a}{\rightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta \\ p\gamma|p'' &\rightarrow \langle p\gamma \overset{a}{\rightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (p_1\gamma_1|p''',p_2\gamma_2) & \text{if } p\gamma \overset{a}{\rightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \in \Delta \\ p\gamma|p'' &\rightarrow \langle p\gamma \overset{\tau}{\rightarrow} p'' \rangle & \text{if } p\gamma \overset{\tau}{\rightarrow} p'' \in \Delta \end{aligned}$$

Relating Execution Trees and DPN Semantics

Theorem

Let M be a DPN. Then $\exists I. \ p_0 \gamma_0 \stackrel{I}{\rightarrow}^* \ c' \ iff \exists t. \ t \in L(\mathcal{A}_M) \land c(t) = c'$

Note: Relating the action sequences is more difficult

Relating Execution Trees and DPN Semantics

Theorem

Let M be a DPN. Then $\exists I. \ p_0 \gamma_0 \stackrel{/}{\to}^* \ c' \ iff \ \exists t. \ t \in L(\mathcal{A}_M) \land c(t) = c'$

- · Note: Relating the action sequences is more difficult
 - They are interleavings of the thread's action sequences

Relating Execution Trees and DPN Semantics

Theorem

Let M be a DPN. Then $\exists I. \ p_0 \gamma_0 \stackrel{/}{\to}^* \ c' \ iff \ \exists t. \ t \in L(\mathcal{A}_M) \land c(t) = c'$

- · Note: Relating the action sequences is more difficult
 - They are interleavings of the thread's action sequences
 - One execution tree corresponds to many such interleavings

Interleaving

• We define $s_1 \otimes s_2$ to be the set of *interleavings* of lists s_1 and s_2

$$\begin{aligned} s_1 \otimes \varepsilon &= \{s_1\} \\ a_1 s_1 \otimes a_2 s_2 &= a_1 (s_1 \otimes a_2 s_2) \cup a_2 (a_1 s_1 \otimes s_2) \end{aligned}$$

 Intuitively: All sequences of steps that may be observed if one thread executes s₁ and another independently executes s₂.

· Execution of different threads is almost independent

- · Execution of different threads is almost independent
 - Only spawn should be executed before other steps of spawned thread

- Execution of different threads is almost independent
 - Only spawn should be executed before other steps of spawned thread
 - Re-order step: On spawn, all steps of spawned thread first, and then the rest

- Execution of different threads is almost independent
 - Only spawn should be executed before other steps of spawned thread
 - Re-order step: On spawn, all steps of spawned thread first, and then the rest
 - Lemma indep-steps:

$$\begin{split} \langle \rho w \rangle([c]) &\overset{s}{\to}{}^* \ \langle \rho' w' \rangle(l') \iff \\ \exists c' \ l'' \ s_1 \ s_2. \ l' = c' l'' \land s \in s_1 \otimes s_2 \land \langle \rho w \rangle(\varepsilon) &\overset{s_1}{\to}{}^* \ \langle \rho' w' \rangle(l'') \land c &\overset{s_2}{\to}{}^* \ c' \end{split}$$

- Execution of different threads is almost independent
 - Only spawn should be executed before other steps of spawned thread
 - · Re-order step: On spawn, all steps of spawned thread first, and then the rest
 - Lemma indep-steps:

$$\langle pw\rangle([c]) \stackrel{s}{\to} {}^* \langle p'w'\rangle(l') \iff \exists c' \ l'' \ s_1 \ s_2. \ l' = c' l'' \land s \in s_1 \otimes s_2 \land \langle pw\rangle(\varepsilon) \stackrel{s_1}{\to} {}^* \langle p'w'\rangle(l'') \land c \stackrel{s_2}{\to} {}^* c'$$

Proof, by induction on number of steps:

$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'\rangle(c') \iff \exists t.p\gamma|p' \to t \land s(t) = c'$$
$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'w'\rangle(c') \land w' \neq \varepsilon \iff \exists t.p\gamma \to t \land c(t) = \langle p'w'\rangle(c')$$

- Execution of different threads is almost independent
 - Only spawn should be executed before other steps of spawned thread
 - Re-order step: On spawn, all steps of spawned thread first, and then the rest
 - Lemma indep-steps:

$$\langle pw\rangle([c]) \stackrel{s}{\to} {}^* \langle p'w'\rangle(l') \iff \exists c' \ l'' \ s_1 \ s_2. \ l' = c' l'' \land s \in s_1 \otimes s_2 \land \langle pw\rangle(\varepsilon) \stackrel{s_1}{\to} {}^* \langle p'w'\rangle(l'') \land c \stackrel{s_2}{\to} {}^* c'$$

Proof, by induction on number of steps:

$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'\rangle(c') \iff \exists t.p\gamma|p' \to t \land s(t) = c' \\ \langle p\gamma\rangle(\varepsilon) \to^* \langle p'w'\rangle(c') \land w' \neq \varepsilon \iff \exists t.p\gamma \to t \land c(t) = \langle p'w'\rangle(c')$$

Need to prove both propositions simultaneously

- Execution of different threads is almost independent
 - Only spawn should be executed before other steps of spawned thread
 - Re-order step: On spawn, all steps of spawned thread first, and then the rest
 - Lemma indep-steps:

$$\langle pw\rangle([c]) \stackrel{s}{\to} {}^* \langle p'w'\rangle(l') \iff \exists c' \ l'' \ s_1 \ s_2. \ l' = c' \ l'' \land s \in s_1 \otimes s_2 \land \langle pw\rangle(\varepsilon) \stackrel{s_1}{\to} {}^* \langle p'w'\rangle(l'') \land c \stackrel{s_2}{\to} {}^* c'$$

Proof, by induction on number of steps:

$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'\rangle(c') \iff \exists t.p\gamma|p' \to t \land s(t) = c' \\ \langle p\gamma\rangle(\varepsilon) \to^* \langle p'w'\rangle(c') \land w' \neq \varepsilon \iff \exists t.p\gamma \to t \land c(t) = \langle p'w'\rangle(c')$$

- Need to prove both propositions simultaneously
- But may separate ⇒ and ← directions

Example step for ⇒-direction

$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'\rangle(l') \implies \exists t.p\gamma|p' \to t \land s(t) = l' \\ \langle p\gamma\rangle(\varepsilon) \to^* \langle p'w'\rangle(l') \land w' \neq \varepsilon \implies \exists t.p\gamma \to t \land c(t) = \langle p'w'\rangle(l')$$

Example step for ⇒-direction

$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'\rangle(l') \implies \exists t.p\gamma|p' \to t \land s(t) = l'$$
$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'w'\rangle(l') \land w' \neq \varepsilon \implies \exists t.p\gamma \to t \land c(t) = \langle p'w'\rangle(l')$$

Case: Returning path makes a spawn-step

Example step for ⇒-direction

$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'\rangle(l') \implies \exists t.p\gamma|p' \to t \land s(t) = l'$$
$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'w'\rangle(l') \land w' \neq \varepsilon \implies \exists t.p\gamma \to t \land c(t) = \langle p'w'\rangle(l')$$

- Case: Returning path makes a spawn-step
 - We have $r:=p\gamma\hookrightarrow\hat{p}\hat{\gamma}\rhd p_1\gamma_1\in\Delta$ and $\langle\hat{p}\hat{\gamma}\rangle(p_1\gamma_1)\to^*\langle p'\rangle(c')$

Example step for ⇒-direction

$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'\rangle(l') \implies \exists t.p\gamma|p' \to t \land s(t) = l'$$
$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'w'\rangle(l') \land w' \neq \varepsilon \implies \exists t.p\gamma \to t \land c(t) = \langle p'w'\rangle(l')$$

- Case: Returning path makes a spawn-step
 - We have $r:=p\gamma\hookrightarrow\hat{p}\hat{\gamma}\rhd p_1\gamma_1\in\Delta$ and $\langle\hat{p}\hat{\gamma}\rangle(p_1\gamma_1)\to^*\langle p'\rangle(c')$
 - Using indep-steps, to separate executions of spawned and spawning thread, we obtain c', I" where

$$I' = c'I'' \wedge \langle \hat{p}\hat{\gamma}\rangle\varepsilon \to^* \langle p'\rangle(I'') \wedge \langle p_1\gamma_1\rangle(\varepsilon) \to^* c'$$

Example step for ⇒-direction

$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'\rangle(l') \implies \exists t.p\gamma|p' \to t \land s(t) = l' \\ \langle p\gamma\rangle(\varepsilon) \to^* \langle p'w'\rangle(l') \land w' \neq \varepsilon \implies \exists t.p\gamma \to t \land c(t) = \langle p'w'\rangle(l')$$

- Case: Returning path makes a spawn-step
 - We have $r:=p\gamma\hookrightarrow\hat{p}\hat{\gamma}\rhd p_1\gamma_1\in\Delta$ and $\langle\hat{p}\hat{\gamma}\rangle(p_1\gamma_1)\to^*\langle p'\rangle(c')$
 - Using indep-steps, to separate executions of spawned and spawning thread, we obtain c', l" where

$$I' = c'I'' \wedge \langle \hat{p}\hat{\gamma}\rangle\varepsilon \to^* \langle p'\rangle(I'') \wedge \langle p_1\gamma_1\rangle(\varepsilon) \to^* c'$$

With IH, we obtain t₁, t₂ with

$$\hat{p}\hat{\gamma}|p' \rightarrow t_1 \wedge s(t_1) = l'' \wedge p_1\gamma_1 \rightarrow t_2 \wedge c(t_2) = c'$$

Example step for ⇒-direction

$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'\rangle(l') \implies \exists t.p\gamma|p' \to t \land s(t) = l' \\ \langle p\gamma\rangle(\varepsilon) \to^* \langle p'w'\rangle(l') \land w' \neq \varepsilon \implies \exists t.p\gamma \to t \land c(t) = \langle p'w'\rangle(l')$$

- Case: Returning path makes a spawn-step
 - We have $r:=p\gamma\hookrightarrow\hat{p}\hat{\gamma}\rhd p_1\gamma_1\in\Delta$ and $\langle\hat{p}\hat{\gamma}\rangle(p_1\gamma_1)\to^*\langle p'\rangle(c')$
 - Using indep-steps, to separate executions of spawned and spawning thread, we obtain c', I" where

$$I' = c'I'' \wedge \langle \hat{p}\hat{\gamma}\rangle\varepsilon \to^* \langle p'\rangle(I'') \wedge \langle p_1\gamma_1\rangle(\varepsilon) \to^* c'$$

With IH, we obtain t₁, t₂ with

$$\hat{p}\hat{\gamma}|p' \rightarrow t_1 \wedge s(t_1) = l'' \wedge p_1\gamma_1 \rightarrow t_2 \wedge c(t_2) = c'$$

• By definition of the rules for A_M , we get

$$p\gamma|p' \rightarrow \langle r \rangle (\hat{p}\hat{\gamma}|p', p_1\gamma_1) \rightarrow \langle r \rangle (t_1, t_2)$$

Example step for ⇒-direction

$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'\rangle(l') \implies \exists t.p\gamma|p' \to t \land s(t) = l'$$
$$\langle p\gamma\rangle(\varepsilon) \to^* \langle p'w'\rangle(l') \land w' \neq \varepsilon \implies \exists t.p\gamma \to t \land c(t) = \langle p'w'\rangle(l')$$

- Case: Returning path makes a spawn-step
 - We have $r:=p\gamma\hookrightarrow\hat{p}\hat{\gamma}\rhd p_1\gamma_1\in\Delta$ and $\langle\hat{p}\hat{\gamma}\rangle(p_1\gamma_1)\to^*\langle p'\rangle(c')$
 - Using indep-steps, to separate executions of spawned and spawning thread, we obtain c', l" where

$$I' = c'I'' \wedge \langle \hat{p}\hat{\gamma}\rangle\varepsilon \to^* \langle p'\rangle(I'') \wedge \langle p_1\gamma_1\rangle(\varepsilon) \to^* c'$$

With IH, we obtain t₁, t₂ with

$$\hat{p}\hat{\gamma}|p' \rightarrow t_1 \wedge s(t_1) = l'' \wedge p_1\gamma_1 \rightarrow t_2 \wedge c(t_2) = c'$$

• By definition of the rules for A_M , we get

$$p\gamma|p' \rightarrow \langle r \rangle(\hat{p}\hat{\gamma}|p',p_1\gamma_1) \rightarrow \langle r \rangle(t_1,t_2)$$

And, by definition of s(), we have

$$s(\langle r\rangle(t_1,t_2))=[c(t_2)]s(t_1)=c'l''=l'\quad \Box$$

Can perform a simultaneous reachability analysis

- Can perform a simultaneous reachability analysis
- By asking: "Is a configuration from a regular set of configurations reachable?"

- Can perform a simultaneous reachability analysis
- By asking: "Is a configuration from a regular set of configurations reachable?"
 - If the analysis returns no, we are sure that no such configuration is reachable

- Can perform a simultaneous reachability analysis
- By asking: "Is a configuration from a regular set of configurations reachable?"
 - If the analysis returns no, we are sure that no such configuration is reachable
 - If the analysis returns yes, such a configuration may be reachable

- Can perform a simultaneous reachability analysis
- By asking: "Is a configuration from a regular set of configurations reachable?"
 - If the analysis returns no, we are sure that no such configuration is reachable
 - If the analysis returns yes, such a configuration may be reachable
 - Or it may be a false positive due to over-approximation

· Consider locks.

- · Consider locks.
- Locks can be acquired and released, each lock can be acquired by at most one thread at the same time.

- Consider locks.
- Locks can be acquired and released, each lock can be acquired by at most one thread at the same time.
- Used to protect access to shared resources

- Consider locks.
- Locks can be acquired and released, each lock can be acquired by at most one thread at the same time.
- Used to protect access to shared resources
- We assume there is a finite set $\mathbb L$ of locks, and the actions [$_l$ (acquire) and] $_l$ (release) for every $l \in \mathbb L$

Decidability

• Reachability with arbitrary locking is undecidable

Decidability

- · Reachability with arbitrary locking is undecidable
 - Emptiness of intersection of CF-Languages

Decidability

- Reachability with arbitrary locking is undecidable
 - Emptiness of intersection of CF-Languages
- · Consider nested locking, like synchronized-methods in Java

Decidability

- Reachability with arbitrary locking is undecidable
 - Emptiness of intersection of CF-Languages
- Consider nested locking, like synchronized-methods in Java
 - Bind locks to procedures: Acquisition on call, release on return

• Well-Known: Emptiness of intersection of CF-languages is undecidable

- Well-Known: Emptiness of intersection of CF-languages is undecidable
 - Already over alphabet {0, 1}

- Well-Known: Emptiness of intersection of CF-languages is undecidable
 - Already over alphabet {0, 1}
- CF-language can be simulated by PDS, where only base-transitions produce output

- Well-Known: Emptiness of intersection of CF-languages is undecidable
 - Already over alphabet {0, 1}
- CF-language can be simulated by PDS, where only base-transitions produce output
 - Idea: Run two PDS concurrently, and ensure that sequences of base transitions must run in lock-step

- Well-Known: Emptiness of intersection of CF-languages is undecidable
 - Already over alphabet {0, 1}
- CF-language can be simulated by PDS, where only base-transitions produce output
 - Idea: Run two PDS concurrently, and ensure that sequences of base transitions must run in lock-step
 - These encode output of 0 and 1. Lockstep ensures, that the other thread must output the same.

- Well-Known: Emptiness of intersection of CF-languages is undecidable
 - Already over alphabet {0, 1}
- CF-language can be simulated by PDS, where only base-transitions produce output
 - Idea: Run two PDS concurrently, and ensure that sequences of base transitions must run in lock-step
 - These encode output of 0 and 1. Lockstep ensures, that the other thread must output the same.
 - · Check for simultaneous reachability of final states

Synchronizing two threads with locks

- Synchronizing two threads with locks
 - Locks: 0, 0!, 0? and 1, 1!, 1?

- Synchronizing two threads with locks
 - Locks: 0, 0!, 0? and 1, 1!, 1?
 - Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?

- Synchronizing two threads with locks
 - Locks: 0, 0!, 0? and 1, 1!, 1?
 - Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?
- To produce a 0:

- Synchronizing two threads with locks
 - Locks: 0, 0!, 0? and 1, 1!, 1?
 - Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?
- To produce a 0:
 - Thread 1 executes: [0?]0![0]0?[0!]0

- Synchronizing two threads with locks
 - Locks: 0, 0!, 0? and 1, 1!, 1?
 - Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?
- To produce a 0:
 - Thread 1 executes: [0?]0![0]0?[0!]0
 - Thread 2 executes: [0]0?[0!]0[0?]0!

- Synchronizing two threads with locks
 - Locks: 0, 0!, 0? and 1, 1!, 1?
 - Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?
- To produce a 0:
 - Thread 1 executes: [0?]0![0]0?[0!]0
 - Thread 2 executes: [0]0?[0!]0[0?]0!
- The only possible execution of these two sequences is

Thread 1: $\begin{bmatrix} 0? & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0! & 0$

- Synchronizing two threads with locks
 - Locks: 0, 0!, 0? and 1, 1!, 1?
 - Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?
- To produce a 0:
 - Thread 1 executes: [0?]0![0]0?[0!]0
 - Thread 2 executes: [0]0?[0!]0[0?]0!
- The only possible execution of these two sequences is

Thread 1: $\begin{bmatrix} 0? & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0! & 0$

 And when Thread 2 has finished, it cannot re-enter the synchronization sequence until Thread 1 has also finished, and released 0.

- Synchronizing two threads with locks
 - Locks: 0, 0!, 0? and 1, 1!, 1?
 - Assumption: Thread one initially holds 0!, 1!, thread two initially holds 0?, 1?
- To produce a 0:
 - Thread 1 executes: [0?]0![0]0?[0!]0
 - Thread 2 executes: [0]0?[0!]0[0?]0!
- The only possible execution of these two sequences is

Thread 1: $\begin{bmatrix} 0? &]0! & \begin{bmatrix} 0 &]0? & \begin{bmatrix} 0! &]0 \end{bmatrix}$ Thread 2: $\begin{bmatrix} 0 &]0? & \begin{bmatrix} 0! &]0 \end{bmatrix}$

- And when Thread 2 has finished, it cannot re-enter the synchronization sequence until Thread 1 has also finished, and released 0.
- The sequences for producing 1 are analogously

• Remaining problem: Ensure that the locks are initially allocated, before the threads start the production of output symbols

- Remaining problem: Ensure that the locks are initially allocated, before the threads start the production of output symbols
- Solution: Additional locks I₁ and I₂

- Remaining problem: Ensure that the locks are initially allocated, before the threads start the production of output symbols
- Solution: Additional locks l₁ and l₂
 - Thread 1: [0![1![1]] | [1] < start of output>

- Remaining problem: Ensure that the locks are initially allocated, before the threads start the production of output symbols
- Solution: Additional locks l₁ and l₂
 - Thread 1: [0![1![l₁]]_{l₁}[l₂<start of output>
 - Thread 2: [0?[1?[b]] [1] < start of output>

- Remaining problem: Ensure that the locks are initially allocated, before the threads start the production of output symbols
- Solution: Additional locks I₁ and I₂
 - Thread 1: [0![1![l₁]l₁[l₂<start of output>
 - Thread 2: [0?[1?[1/2]1/2][1/4] < start of output>
 - If one thread starts before the other has finished initialization, the other will be stuck at [_{li}]_{li} forever

- Remaining problem: Ensure that the locks are initially allocated, before the threads start the production of output symbols
- Solution: Additional locks l₁ and l₂
 - Thread 1: [0![1![l₁]]_{l₁}[l₂<start of output>
 - Thread 2: [0?[1?[b]]b[b]
 - If one thread starts before the other has finished initialization, the other will be stuck at $[l_i]_{l_i}$ forever
- Thus, final states of PDSs simultaneously reachable, iff encoded CF-languages have non-empty intersection

NP-Hardness

- NP-Hardness
 - Reachability analysis for nested locks and procedures is NP-hard

- NP-Hardness
 - Reachability analysis for nested locks and procedures is NP-hard
 - Problem: Deadlocks may prevent reachability

- NP-Hardness
 - · Reachability analysis for nested locks and procedures is NP-hard
 - · Problem: Deadlocks may prevent reachability
- Reduction to 3-SAT:

- NP-Hardness
 - · Reachability analysis for nested locks and procedures is NP-hard
 - · Problem: Deadlocks may prevent reachability
- Reduction to 3-SAT:
 - One lock per literal: Allocated literal is false, Free literal is true

- NP-Hardness
 - Reachability analysis for nested locks and procedures is NP-hard
 - · Problem: Deadlocks may prevent reachability
- Reduction to 3-SAT:
 - One lock per literal: Allocated literal is false, Free literal is true
 - Use nested procedures and non-determinism to allocate locks according to configuration

- NP-Hardness
 - Reachability analysis for nested locks and procedures is NP-hard
 - Problem: Deadlocks may prevent reachability
- Reduction to 3-SAT:
 - One lock per literal: Allocated literal is false, Free literal is true
 - Use nested procedures and non-determinism to allocate locks according to configuration
 - Check for clause $l_1 \vee l_2 \vee l_3$: Nondeterministically run one of $[l_i;]_{l_i}$

- NP-Hardness
 - Reachability analysis for nested locks and procedures is NP-hard
 - · Problem: Deadlocks may prevent reachability
- Reduction to 3-SAT:
 - One lock per literal: Allocated literal is false, Free literal is true
 - Use nested procedures and non-determinism to allocate locks according to configuration
 - Check for clause I₁ ∨ I₂ ∨ I₃: Nondeterministically run one of [Iᵢ;]Iᵢ
 - Enforce correct order of guessing assignment and checking: One additional lock

• Reminder (3-SAT)

- Reminder (3-SAT)
 - Variables x_0, \ldots, x_n , *literal*: x_i or \bar{x}_i

- Reminder (3-SAT)

 - Variables x_0,\ldots,x_n , *literal*: x_i or \bar{x}_i Formula $\Phi = \bigwedge_{i=1\ldots m}\bigvee_{j=1\ldots 3}I_{ij}$, where the I_{ij} are literals

- Reminder (3-SAT)

 - Variables x_0,\ldots,x_n , *literal*: x_i or \bar{x}_i Formula $\Phi = \bigwedge_{i=1\ldots m}\bigvee_{j=1\ldots 3}I_{ij}$, where the I_{ij} are literals
 - $\bigvee_{i=1...3} I_{ij}$ is called *clause*

Reduction to 3-SAT

- Reminder (3-SAT)

 - Variables x_0,\ldots,x_n , literal: x_i or \bar{x}_i Formula $\Phi = \bigwedge_{i=1\ldots m}\bigvee_{j=1\ldots 3}I_{ij}$, where the I_{ij} are literals
 - $\bigvee_{i=1...3} I_{ij}$ is called *clause*
 - It is NP-complete to decide whether Φ is satisfiable.

Reduction to 3-SAT

- Reminder (3-SAT)
 - Variables x_0, \ldots, x_n , *literal*: x_i or \bar{x}_i
 - Formula $\Phi = \bigwedge_{i=1...m} \bigvee_{j=1...3} I_{ij}$, where the I_{ij} are literals
 - $\bigvee_{j=1...3} I_{ij}$ is called *clause*
 - It is NP-complete to decide whether Φ is satisfiable.
 - i.e. whether there is a valuation of the variables such that Φ holds.

Reduction to 3-SAT

```
check(i):
ass(i):
                                                   if (...) {
  if ... then {
                                                     acquire li1; release li1;
    acquire x_i ass(i+1) release x_i
                                                  } else if (...) {
  } else {
                                                     acquire lip; release lip;
    acquire \bar{x}_i ass(i+1) release \bar{x}_i
                                                   } else {
                                                     acquire li3; release li3;
  return
ass(n+1):
                                                thread2:
  acquire(s); release(s);
                                                   acquire(s);
  label1: return
                                                  check(1); ...; check(m);
                                                   label2: skip
thread1: ass(1)
                                                   release(s)
```

• label1 and label2 simultaneously reachable, iff formula is satisfiable.

Last Lecture

- Execution trees of DPN
- Locks: Negative results
 - Reachability in DPN (even 2-PDS) wrt. arbitrary locking is undecidable
 - Reduction to deciding intersection of CF languages
 - · Reachability in DPN (even 2-PDS) wrt. nested locking is NP-hard
 - Reduction to 3-SAT

Table of Contents

- 1 Introduction
- 2 Basics
- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems
 Motivation
 Pushdown Systems
 Dynamic Pushdown Networks
 Acquisition Histories
 Acquisition Histories for DPN

• Two PDS with locks. Both share same rules.

- Two PDS with locks. Both share same rules.
 - $M = (P, \Gamma, Act, \mathbb{L}, p_1^0 \gamma_1^0, p_2^0 \gamma_2^0, \Delta)$

- Two PDS with locks. Both share same rules.
 - $M = (P, \Gamma, Act, \mathbb{L}, p_1^0 \gamma_1^0, p_2^0 \gamma_2^0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules

- Two PDS with locks. Both share same rules.
 - $M = (P, \Gamma, Act, \mathbb{L}, p_1^0 \gamma_1^0, p_2^0 \gamma_2^0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules
 - Act = Act_{nl} $\dot{\cup}$ {[$x \mid x \in \mathbb{L}$ } $\dot{\cup}$ {] $x \mid x \in \mathbb{L}$ }

- Two PDS with locks. Both share same rules.
 - $M = (P, \Gamma, Act, \mathbb{L}, p_1^0 \gamma_1^0, p_2^0 \gamma_2^0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules
 - Act = Act_{nl} $\dot{\cup}$ {[$x \mid x \in \mathbb{L}$ } $\dot{\cup}$ {] $x \mid x \in \mathbb{L}$ }
 - L: Finite set of locks

- Two PDS with locks. Both share same rules.
 - $M = (P, \Gamma, Act, \mathbb{L}, p_1^0 \gamma_1^0, p_2^0 \gamma_2^0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules
 - Act = Act_{nl} $\dot{\cup}$ {[$x \mid x \in \mathbb{L}$ } $\dot{\cup}$ {] $x \mid x \in \mathbb{L}$ }
 - L: Finite set of locks
 - $p_1^0 \gamma_1^0, p_2^0 \gamma_2^0$: Initial states of left and right PDS

- Two PDS with locks. Both share same rules.
 - $M = (P, \Gamma, Act, \mathbb{L}, p_1^0 \gamma_1^0, p_2^0 \gamma_2^0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules
 - Act = Act_{nl} $\dot{\cup}$ {[$x \mid x \in \mathbb{L}$ } $\dot{\cup}$ {] $x \mid x \in \mathbb{L}$ }
 - L: Finite set of locks
 - $p_1^0 \gamma_1^0$, $p_2^0 \gamma_2^0$: Initial states of left and right PDS
- · Assumption: Locks are well-nested and non-reentrant

- Two PDS with locks. Both share same rules.
 - $M = (P, \Gamma, Act, \mathbb{L}, p_1^0 \gamma_1^0, p_2^0 \gamma_2^0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules
 - Act = Act_{nl} $\dot{\cup}$ {[$x \mid x \in \mathbb{L}$ } $\dot{\cup}$ {] $x \mid x \in \mathbb{L}$ }
 - L: Finite set of locks
 - $p_1^0 \gamma_1^0$, $p_2^0 \gamma_2^0$: Initial states of left and right PDS
- · Assumption: Locks are well-nested and non-reentrant
 - In particular, thread does not free "foreign" locks

• Configurations: $(p_1 w_1, p_2 w_2, L) \in P\Gamma^* \times P\Gamma^* \times 2^{\mathbb{L}}$

- Configurations: $(p_1 w_1, p_2 w_2, L) \in P\Gamma^* \times P\Gamma^* \times 2^{\mathbb{L}}$
 - $cond([x, L) = x \notin L, eff([x, L) = L \cup \{x\}$

- Configurations: $(p_1 w_1, p_2 w_2, L) \in P\Gamma^* \times P\Gamma^* \times 2^{\mathbb{L}}$
 - $cond([x, L) = x \notin L, eff([x, L) = L \cup \{x\}$
 - $cond(]_x, L) = true, eff(]_x, L) = L \setminus \{x\}$

- Configurations: $(p_1 w_1, p_2 w_2, L) \in P\Gamma^* \times P\Gamma^* \times 2^{\mathbb{L}}$
 - $cond([x, L) = x \notin L, eff([x, L) = L \cup \{x\})$
 - cond(]_x, L) = true, eff(]_x, L) = L \ {x}
 - $cond(a, L) = true, eff(a, L) = L \text{ for } a \in Act_{nl}$

- Configurations: $(p_1 w_1, p_2 w_2, L) \in P\Gamma^* \times P\Gamma^* \times 2^{\mathbb{L}}$
 - $cond([x, L) = x \notin L, eff([x, L) = L \cup \{x\})$
 - $cond(]_x, L) = true, eff(]_x, L) = L \setminus \{x\}$
 - cond(a, L) = true, eff(a, L) = L for $a \in Act_{nl}$
- Step

$$\begin{array}{ll} (p\gamma w_1,p_2w_2,L) \stackrel{a}{\to}_{\operatorname{ls}} (p'w'w_1,p_2w_2,eff(a,L)) & \text{if } p\gamma \stackrel{a}{\hookrightarrow} p'w' \in \Delta \text{ and } cond(a,L) \\ (\operatorname{left}) \\ (p_1w_1,p\gamma w_2,L) \stackrel{a}{\to}_{\operatorname{ls}} (p_1w_1,p'w'w_2,eff(a,L)) & \text{if } p\gamma \stackrel{a}{\hookrightarrow} p'w' \in \Delta \text{ and } cond(a,L) \\ (\operatorname{right}) \end{array}$$

• Idea: Abstraction from PDS

- Idea: Abstraction from PDS
 - Check whether two execution sequences can be interleaved

- Idea: Abstraction from PDS
 - Check whether two execution sequences can be interleaved
- Configurations: $(I_1, I_2, L) \in \operatorname{Act}^* \times \operatorname{Act}^* \times 2^{\mathbb{L}}$

- Idea: Abstraction from PDS
 - Check whether two execution sequences can be interleaved
- Configurations: $(I_1, I_2, L) \in \operatorname{Act}^* \times \operatorname{Act}^* \times 2^{\mathbb{L}}$
- Step

$$(al_1, l_2, L) \stackrel{a}{\hookrightarrow} (l_1, l_2, eff(a, L))$$
 if $cond(a, L)$ (left)
 $(l_1, al_2, L) \stackrel{a}{\hookrightarrow} (l_1, l_2, eff(a, L))$ if $cond(a, L)$ (right)

- Idea: Abstraction from PDS
 - Check whether two execution sequences can be interleaved
- Configurations: $(l_1, l_2, L) \in \operatorname{Act}^* \times \operatorname{Act}^* \times 2^{\mathbb{L}}$
- Step

$$(al_1, l_2, L) \stackrel{a}{\hookrightarrow} (l_1, l_2, eff(a, L))$$
 if $cond(a, L)$ (left)
 $(l_1, al_2, L) \stackrel{a}{\hookrightarrow} (l_1, l_2, eff(a, L))$ if $cond(a, L)$ (right)

Lemma

$$(p_1 w_1, p_2 w_2, L) \stackrel{l}{\rightarrow}^* (p_1' w_1', p_2' w_2', L')$$

$$\text{iff } \exists l_1, l_2. \ p_1 w_1 \stackrel{l_1}{\rightarrow}^* p_1' w_1' \wedge p_2 w_2 \stackrel{l_2}{\rightarrow}^* p_2' w_2' \wedge (l_1, l_2, L) \stackrel{l}{\rightarrow}^* (\varepsilon, \varepsilon, L')$$

- Idea: Abstraction from PDS
 - Check whether two execution sequences can be interleaved
- Configurations: $(l_1, l_2, L) \in \operatorname{Act}^* \times \operatorname{Act}^* \times 2^{\mathbb{L}}$
- Step

$$(al_1, l_2, L) \stackrel{a}{\hookrightarrow} (l_1, l_2, eff(a, L))$$
 if $cond(a, L)$ (left)
 $(l_1, al_2, L) \stackrel{a}{\hookrightarrow} (l_1, l_2, eff(a, L))$ if $cond(a, L)$ (right)

Lemma

$$(p_1 w_1, p_2 w_2, L) \xrightarrow{l_*} (p'_1 w'_1, p'_2 w'_2, L')$$
iff $\exists l_1, l_2. \ p_1 w_1 \xrightarrow{l_1} p'_1 w'_1 \land p_2 w_2 \xrightarrow{l_2} p'_2 w'_2 \land (l_1, l_2, L) \xrightarrow{l_*} (\varepsilon, \varepsilon, L')$

• Intuition: Schedule lock-insensitive executions of the single PDSs

- Idea: Abstraction from PDS
 - Check whether two execution sequences can be interleaved
- Configurations: $(l_1, l_2, L) \in \operatorname{Act}^* \times \operatorname{Act}^* \times 2^{\mathbb{L}}$
- Step

$$(al_1, l_2, L) \stackrel{a}{\hookrightarrow} (l_1, l_2, eff(a, L))$$
 if $cond(a, L)$ (left)
 $(l_1, al_2, L) \stackrel{a}{\hookrightarrow} (l_1, l_2, eff(a, L))$ if $cond(a, L)$ (right)

Lemma

$$(p_1 w_1, p_2 w_2, L) \stackrel{J}{\rightarrow}^* (p'_1 w'_1, p'_2 w'_2, L')$$

$$\text{iff } \exists l_1, l_2. \ p_1 w_1 \stackrel{l_1}{\rightarrow}^* p'_1 w'_1 \wedge p_2 w_2 \stackrel{l_2}{\rightarrow}^* p'_2 w'_2 \wedge (l_1, l_2, L) \stackrel{J}{\rightarrow}^* (\varepsilon, \varepsilon, L')$$

- Intuition: Schedule lock-insensitive executions of the single PDSs
- Proof: Straightforward simulation proof

 Intuitively: Append execution trees of left and right PDS to binary root node ∘.

- Intuitively: Append execution trees of left and right PDS to binary root node ○.
 - X2 ::= ○(XN, XN)

- Intuitively: Append execution trees of left and right PDS to binary root node o.
 - X2 ::= ○(XN, XN)
- Tree automata: Tree automata for PDS execution trees, but

- Intuitively: Append execution trees of left and right PDS to binary root node o.
 - X2 ::= ○(XN, XN)
- Tree automata: Tree automata for PDS execution trees, but
 - Initial state i, and additional rule $i \to \circ (p_1^0 \gamma_1^0, p_2^0 \gamma_2^0)$

- Intuitively: Append execution trees of left and right PDS to binary root node o.
 - X2 ::= ○(XN, XN)
- Tree automata: Tree automata for PDS execution trees, but
 - Initial state i, and additional rule $i \to o(p_1^0 \gamma_1^0, p_2^0 \gamma_2^0)$
- We have (with lemma from previous slide)

$$\begin{aligned} (p_1 w_1, p_2 w_2, L) & \xrightarrow{l}^* (p_1' w_1', p_2' w_2', L') \\ \text{iff } \exists t_1, t_2. \ i \to \circ(t_1, t_2) \land c(t_1) = p_1' w_1' \land c(t_2) = p_2' w_2' \\ & \wedge (a(t_1), a(t_2), L) \xrightarrow{l}^* (\varepsilon, \varepsilon, L') \end{aligned}$$

- Intuitively: Append execution trees of left and right PDS to binary root node o.
 - X2 ::= ○(XN, XN)
- Tree automata: Tree automata for PDS execution trees, but
 - Initial state *i*, and additional rule $i \to o(p_1^0 \gamma_1^0, p_2^0 \gamma_2^0)$
- We have (with lemma from previous slide)

$$\begin{aligned} (p_{1}w_{1},p_{2}w_{2},L) &\stackrel{/}{\to}^{*} (p'_{1}w'_{1},p'_{2}w'_{2},L') \\ \text{iff } \exists t_{1},t_{2}. \ i \to \circ(t_{1},t_{2}) \land c(t_{1}) = p'_{1}w'_{1} \land c(t_{2}) = p'_{2}w'_{2} \\ & \wedge (a(t_{1}),a(t_{2}),L) \stackrel{/}{\to}^{*} (\varepsilon,\varepsilon,L') \end{aligned}$$

 Where c: XN → conf extracts reached configuration from execution tree and a: XN → Act* extracts labeling sequence from execution tree (cf. Homework 9.2)

• Compute information $ah(I_1)$, $ah(I_2)$ which

- Compute information $ah(I_1)$, $ah(I_2)$ which
 - Can be used to decide whether $(I_1, I_2, \emptyset) \to^* (\varepsilon, \varepsilon, _)$

- Compute information $ah(l_1)$, $ah(l_2)$ which
 - Can be used to decide whether $(l_1, l_2, \emptyset) \to^* (\varepsilon, \varepsilon, \underline{\hspace{0.5cm}})$
 - Sets of which can be computed by tree automaton over execution trees

- Compute information $ah(l_1)$, $ah(l_2)$ which
 - Can be used to decide whether $(l_1, l_2, \emptyset) \to^* (\varepsilon, \varepsilon, \underline{\hspace{0.5cm}})$
 - Sets of which can be computed by tree automaton over execution trees
- Thus, we get a tree automaton for schedulable execution trees.

- Compute information $ah(I_1)$, $ah(I_2)$ which
 - Can be used to decide whether $(l_1, l_2, \emptyset) \to^* (\varepsilon, \varepsilon, \underline{\hspace{0.5cm}})$
 - Sets of which can be computed by tree automaton over execution trees
- Thus, we get a tree automaton for schedulable execution trees.
- Checking the intersection of this, the tree automaton for execution trees, and the error property for emptiness gives us lock-sensitive model-checker

Categorize an action [x in an execution sequence as

 Categorize an action [x in an execution sequence as Final acquisition If lock x is not released afterwards

 Categorize an action [x in an execution sequence as Final acquisition If lock x is not released afterwards Usage If lock / is released afterwards

- Categorize an action [x in an execution sequence as Final acquisition If lock x is not released afterwards Usage If lock I is released afterwards
- When can two sequences l₁ and l₂ be scheduled?

- Categorize an action [x in an execution sequence as Final acquisition If lock x is not released afterwards Usage If lock I is released afterwards
- When can two sequences I₁ and I₂ be scheduled?
 - No lock is finally acquired in both, l_1 and l_2

- Categorize an action [x in an execution sequence as Final acquisition If lock x is not released afterwards Usage If lock I is released afterwards
- When can two sequences I₁ and I₂ be scheduled?
 - No lock is finally acquired in both, l_1 and l_2
 - There must be no deadlock pair

- Categorize an action [x in an execution sequence as Final acquisition If lock x is not released afterwards Usage If lock / is released afterwards
- When can two sequences I₁ and I₂ be scheduled?
 - No lock is finally acquired in both, I₁ and I₂
 - There must be no deadlock pair
 - I.e., l₁ finally acquires x₁ and then uses x₂, and l₂ finally acquires x₂ and then uses x₁

- Categorize an action [x in an execution sequence as Final acquisition If lock x is not released afterwards Usage If lock I is released afterwards
- When can two sequences I₁ and I₂ be scheduled?
 - No lock is finally acquired in both, I₁ and I₂
 - There must be no deadlock pair
 - I.e., I₁ finally acquires x₁ and then uses x₂, and I₂ finally acquires x₂ and then uses x₁
- We will now prove: This characterization is sufficient and necessary

- Categorize an action [x in an execution sequence as Final acquisition If lock x is not released afterwards Usage If lock / is released afterwards
- When can two sequences I₁ and I₂ be scheduled?
 - No lock is finally acquired in both, I₁ and I₂
 - There must be no deadlock pair
 - I.e., I₁ finally acquires x₁ and then uses x₂, and I₂ finally acquires x₂ and then uses x₁
- We will now prove: This characterization is sufficient and necessary
 - And can be computed for the sets of all executions by tree automata

Given an execution sequence *I* ∈ Act*, we define ah(*I*) := (A(*I*), G(*I*)) where

- Given an execution sequence *I* ∈ Act*, we define ah(*I*) := (A(*I*), G(*I*)) where
 - $A(I) \subseteq \mathbb{L}$ is the set of finally acquired locks:

$$A(\varepsilon) = \emptyset$$

$$A(al) = A(l) \qquad \text{if } a \in \operatorname{Act}_{nl} \text{ or } a =]_{x} \text{ for } x \in \mathbb{L}$$

$$A([_{x}l) = A(l) \qquad \text{if }]_{x} \in I$$

$$A([_{x}l) = A(l) \cup \{x\} \qquad \text{if }]_{x} \notin I$$

- Given an execution sequence *I* ∈ Act*, we define ah(*I*) := (A(*I*), G(*I*)) where
 - A(I) ⊆ L is the set of finally acquired locks:

$$A(\varepsilon) = \emptyset$$

 $A(al) = A(l)$ if $a \in \operatorname{Act}_{nl}$ or $a =]_x$ for $x \in \mathbb{L}$
 $A([xl) = A(l) \cup \{x\}$ if $]_x \notin l$

• $G(I) \subseteq \mathbb{L} \times \mathbb{L}$ is the lock graph:

$$G(arepsilon) = \emptyset$$
 $G(al) = G(l)$ if $a \in \operatorname{Act}_{nl}$ or $a =]_x$ for $x \in \mathbb{L}$
 $G([xl) = G(l) \cup \{x\} \times \operatorname{acq}(l)$ if $]_x \notin l$
where $\operatorname{acq}(l) := \{x \mid [x \in l]\}$

- Given an execution sequence *I* ∈ Act*, we define ah(*I*) := (A(*I*), G(*I*)) where
 - A(I) ⊆ L is the set of finally acquired locks:

$$A(\varepsilon) = \emptyset$$

$$A(al) = A(l) \qquad \text{if } a \in \operatorname{Act}_{nl} \text{ or } a =]_{x} \text{ for } x \in \mathbb{L}$$

$$A([_{x}l) = A(l) \qquad \text{if }]_{x} \in l$$

$$A([_{x}l) = A(l) \cup \{x\} \qquad \text{if }]_{x} \notin l$$

• $G(I) \subseteq \mathbb{L} \times \mathbb{L}$ is the lock graph:

$$G(\varepsilon) = \emptyset$$
 $G(aI) = G(I)$ if $a \in \operatorname{Act}_{nI}$ or $a =]_x$ for $x \in \mathbb{L}$
 $G([_xI) = G(I) \cup \{x\} \times \operatorname{acq}(I)$ if $]_x \notin I$
where $\operatorname{acq}(I) := \{x \mid [_x \in I]\}$

Lemma

$$(I_1, I_2, \emptyset) \rightarrow^* (\varepsilon, \varepsilon, \underline{\ }) \text{ iff } A(I_1) \cap A(I_2) = \emptyset \wedge \operatorname{acyclic}(G(I_1) \cup G(I_2))$$

- $\bullet \implies$
 - Generalize to

$$\forall \textit{L.} \; (\textit{I}_1, \textit{I}_2, \textit{L}) \rightarrow^* (\varepsilon, \varepsilon, \underline{\ }) \implies \textit{A}(\textit{I}_1) \cap \textit{A}(\textit{I}_2) = \emptyset \land \operatorname{acyclic}(\textit{G}(\textit{I}_1) \cup \textit{G}(\textit{I}_2))$$

- ==>
 - Generalize to

$$\forall \textit{L.} \; (\textit{I}_1, \textit{I}_2, \textit{L}) \rightarrow^* (\varepsilon, \varepsilon, \underline{\ }) \implies \textit{A}(\textit{I}_1) \cap \textit{A}(\textit{I}_2) = \emptyset \land \operatorname{acyclic}(\textit{G}(\textit{I}_1) \cup \textit{G}(\textit{I}_2))$$

• Induction on \rightarrow^*

- $\bullet \implies$
 - Generalize to

$$\forall L. \ (l_1, l_2, L) \to^* (\varepsilon, \varepsilon, \underline{\ }) \implies A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$$

- Induction on →*
 - Interesting case: First step is final acquisition: [x

- $\bullet \implies$
 - Generalize to

$$\forall L. \ (l_1, l_2, L) \to^* (\varepsilon, \varepsilon, _) \implies A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$$

- Induction on →*
 - Interesting case: First step is final acquisition: [x
 - [x] will not occur in remaining execution

- $\bullet \implies$
 - Generalize to

$$\forall L. \ (l_1, l_2, L) \to^* (\varepsilon, \varepsilon, \underline{\ }) \implies A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$$

- Induction on →*
 - Interesting case: First step is final acquisition: [x
 - [x will not occur in remaining execution
 - Thus, it cannot close a cycle in the lock graphs

- $\bullet \implies$
 - Generalize to

$$\forall L. \ (l_1, l_2, L) \to^* (\varepsilon, \varepsilon, \underline{\ }) \implies A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$$

- Induction on →*
 - Interesting case: First step is final acquisition: [x
 - [x will not occur in remaining execution
 - Thus, it cannot close a cycle in the lock graphs
- \Leftarrow

- $\bullet \implies$
 - Generalize to

$$\forall L. \ (l_1, l_2, L) \to^* (\varepsilon, \varepsilon, \underline{\ }) \implies A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$$

- Induction on →*
 - Interesting case: First step is final acquisition: [x
 - [x will not occur in remaining execution
 - Thus, it cannot close a cycle in the lock graphs
- <=
 - Generalize to

$$A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$$

$$\implies \forall L. \ L \cap (\operatorname{acq}(l_1) \cup \operatorname{acq}(l_2)) = \emptyset \implies (l_1, l_2, L) \to^* (\varepsilon, \varepsilon, \underline{\ }) \quad (1)$$

- $\bullet \implies$
 - Generalize to

$$\forall L. \ (l_1, l_2, L) \to^* (\varepsilon, \varepsilon, _) \implies A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$$

- Induction on →*
 - Interesting case: First step is final acquisition: [x
 - [x will not occur in remaining execution
 - Thus, it cannot close a cycle in the lock graphs
- =
 - Generalize to

$$A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$$

$$\implies \forall L. \ L \cap (\operatorname{acq}(l_1) \cup \operatorname{acq}(l_2)) = \emptyset \implies (l_1, l_2, L) \to^* (\varepsilon, \varepsilon, \underline{\ }) \quad (1)$$

• Induction on $|I_1| + |I_2|$

- $\bullet \implies$
 - Generalize to

$$\forall L. \ (l_1, l_2, L) \to^* (\varepsilon, \varepsilon, _) \implies A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$$

- Induction on →*
 - Interesting case: First step is final acquisition: [x
 - [x will not occur in remaining execution
 - Thus, it cannot close a cycle in the lock graphs
- =
 - Generalize to

$$A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$$

$$\implies \forall L. \ L \cap (\operatorname{acq}(l_1) \cup \operatorname{acq}(l_2)) = \emptyset \implies (l_1, l_2, L) \to^* (\varepsilon, \varepsilon, \underline{\ }) \quad (1)$$

- Induction on $|I_1| + |I_2|$
 - Schedule usages of locks first

- $\bullet \implies$
 - Generalize to

$$\forall L. \ (I_1, I_2, L) \rightarrow^* (\varepsilon, \varepsilon, _) \implies A(I_1) \cap A(I_2) = \emptyset \land \operatorname{acyclic}(G(I_1) \cup G(I_2))$$

- Induction on →*
 - Interesting case: First step is final acquisition: [x
 - [x will not occur in remaining execution
 - Thus, it cannot close a cycle in the lock graphs
- =
 - Generalize to

$$A(l_1) \cap A(l_2) = \emptyset \land \operatorname{acyclic}(G(l_1) \cup G(l_2))$$

$$\implies \forall L. \ L \cap (\operatorname{acq}(l_1) \cup \operatorname{acq}(l_2)) = \emptyset \implies (l_1, l_2, L) \to^* (\varepsilon, \varepsilon, \underline{\ }) \quad (1)$$

- Induction on $|I_1| + |I_2|$
 - Schedule usages of locks first
 - If both, I₁ and I₂ start with final acquisitions:
 Choose acquisition that comes first in topological ordering of G(I₁) ∪ G(I₂)

• There are only finitely many acquisition histories

- There are only finitely many acquisition histories
 - Exponentially many in number of locks

- There are only finitely many acquisition histories
 - · Exponentially many in number of locks
- Set of all schedulable 2-PDS execution trees is regular

- There are only finitely many acquisition histories
 - · Exponentially many in number of locks
- Set of all schedulable 2-PDS execution trees is regular
- In practice: Avoid computing unnecessary states of tree automata

Last Lecture

- 2-PDS with locks
- Acquisition histories
- Deciding lock-sensitive reachability

Table of Contents

- 1 Introduction
- 2 Basics
- 3 Alternative Representations of Regular Languages
- 4 Model-Checking concurrent Systems
 Motivation
 Pushdown Systems
 Dynamic Pushdown Networks
 Acquisition Histories
 Acquisition Histories for DPN

• Same ideas as for 2-PDS

- · Same ideas as for 2-PDS
- $M = (P, \Gamma, Act, \mathbb{L}, p_0 \gamma_0, \Delta)$

- Same ideas as for 2-PDS
- $M = (P, \Gamma, Act, \mathbb{L}, p_0 \gamma_0, \Delta)$
 - *P*, Γ, Δ: States, stack alphabet, rules (with spawns)

- Same ideas as for 2-PDS
- $M = (P, \Gamma, Act, \mathbb{L}, p_0 \gamma_0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules (with spawns)
 - Act = Act_{nl} $\dot{\cup}$ {[$_X \mid X \in \mathbb{L}$ } $\dot{\cup}$ {] $_X \mid X \in \mathbb{L}$ }

- Same ideas as for 2-PDS
- $M = (P, \Gamma, Act, \mathbb{L}, p_0 \gamma_0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules (with spawns)
 - Act = Act_{nl} $\dot{\cup}$ {[$_X \mid X \in \mathbb{L}$ } $\dot{\cup}$ {] $_X \mid X \in \mathbb{L}$ }
 - L: Finite set of locks

- Same ideas as for 2-PDS
- $M = (P, \Gamma, Act, \mathbb{L}, p_0 \gamma_0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules (with spawns)
 - Act = Act_{nl} $\dot{\cup}$ {[$_X \mid X \in \mathbb{L}$ } $\dot{\cup}$ {] $_X \mid X \in \mathbb{L}$ }
 - L: Finite set of locks
 - $p_0\gamma_0$: Initial state

DPNs with locks

- Same ideas as for 2-PDS
- $M = (P, \Gamma, Act, \mathbb{L}, p_0 \gamma_0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules (with spawns)
 - Act = Act_{nl} $\dot{\cup}$ {[$x \mid x \in \mathbb{L}$ } $\dot{\cup}$ {] $x \mid x \in \mathbb{L}$ }
 - L: Finite set of locks
 - $p_0\gamma_0$: Initial state
- Assumption: Locks are well-nested and non-reentrant

DPNs with locks

- Same ideas as for 2-PDS
- $M = (P, \Gamma, Act, \mathbb{L}, p_0 \gamma_0, \Delta)$
 - P, Γ, Δ: States, stack alphabet, rules (with spawns)
 - Act = Act_{nl} $\dot{\cup}$ {[$x \mid x \in \mathbb{L}$ } $\dot{\cup}$ {] $x \mid x \in \mathbb{L}$ }
 - L: Finite set of locks
 - $p_0\gamma_0$: Initial state
- · Assumption: Locks are well-nested and non-reentrant
 - In particular, thread does not free "foreign" locks

• As for 2-PDS: Add set of locks

- · As for 2-PDS: Add set of locks
 - Recall: conf ::= $\langle pw \rangle$ (conflist) conflist ::= Nil|Cons(conf, conflist)

- · As for 2-PDS: Add set of locks
 - Recall: conf ::= $\langle pw \rangle$ (conflist) conflist ::= Nil|Cons(conf, conflist)|
 - $\bullet \ conf_{ls} := conf \times \mathbb{L}$

- As for 2-PDS: Add set of locks
 - Recall: conf ::= $\langle pw \rangle$ (conflist) conflist ::= *Nil*|*Cons*(conf, conflist)
 - $\bullet \ conf_{ls} := conf \times \mathbb{L}$
- Step relation:

$$(c,L)\stackrel{a}{
ightarrow}(c',eff(a,L)) \ \text{iff} \ cond(a,L) \wedge c\stackrel{a}{
ightarrow}c'$$

· Abstract from DPN-configurations

- Abstract from DPN-configurations
- Scheduling tree:

```
BL ::= Nil \mid Cons(a, BL) \mid Spawn(a, BL, BL) \text{ for all } a \in Act

ST ::= \langle BL \rangle(SL) \quad SL ::= Nil \mid Cons(ST, SL)
```

- Abstract from DPN-configurations
- Scheduling tree:

```
BL ::= Nil \mid Cons(a, BL) \mid Spawn(a, BL, BL) \text{ for all } a \in Act

ST ::= \langle BL \rangle(SL) \quad SL ::= Nil \mid Cons(ST, SL)
```

Combination of configurations and sequences of actions to be executed

- Abstract from DPN-configurations
- Scheduling tree:

```
BL ::= Nil \mid Cons(a, BL) \mid Spawn(a, BL, BL) \text{ for all } a \in Act

ST ::= \langle BL \rangle(SL) \quad SL ::= Nil \mid Cons(ST, SL)
```

- Combination of configurations and sequences of actions to be executed
- Each thread in configuration is labeled by actions it still has to execute

- Abstract from DPN-configurations
- Scheduling tree:

```
BL ::= Nil \mid Cons(a, BL) \mid Spawn(a, BL, BL) \text{ for all } a \in Act

ST ::= \langle BL \rangle (SL) \quad SL ::= Nil \mid Cons(ST, SL)
```

- Combination of configurations and sequences of actions to be executed
- Each thread in configuration is labeled by actions it still has to execute
- Spawn actions have two successors: Actions of spawning thread and actions of spawned thread

- Abstract from DPN-configurations
- Scheduling tree:

```
BL ::= Nil \mid Cons(a, BL) \mid Spawn(a, BL, BL) \text{ for all } a \in Act

ST ::= \langle BL \rangle(SL) \quad SL ::= Nil \mid Cons(ST, SL)
```

- Combination of configurations and sequences of actions to be executed
- Each thread in configuration is labeled by actions it still has to execute
- Spawn actions have two successors: Actions of spawning thread and actions of spawned thread
- Scheduler semantics

$$(C[\langle Cons(a,l)\rangle(s)],L) \overset{a}{\to} (C[\langle l\rangle(s)],eff(a,L)) \text{ iff } cond(a,L) \qquad \text{(no-spawn)}$$

$$(C[\langle Spawn(a,l_1,l_2)\rangle(s)],L) \overset{a}{\to} (C[\langle l_1\rangle(s[\langle l_2\rangle(Nil)])],eff(a,L)) \text{ iff } cond(a,L) \qquad \text{(spawn)}$$
 where C is a context with exactly one occurrence of x_1 .

- · Abstract from DPN-configurations
- · Scheduling tree:

```
BL ::= Nil \mid Cons(a, BL) \mid Spawn(a, BL, BL) \text{ for all } a \in Act

ST ::= \langle BL \rangle(SL) \quad SL ::= Nil \mid Cons(ST, SL)
```

- Combination of configurations and sequences of actions to be executed
- Each thread in configuration is labeled by actions it still has to execute
- Spawn actions have two successors: Actions of spawning thread and actions of spawned thread
- Scheduler semantics

$$(C[\langle Cons(a,l)\rangle(s)],L) \overset{a}{\to} (C[\langle l\rangle(s)],eff(a,L)) \text{ iff } cond(a,L) \qquad \text{(no-spawn)}$$

$$(C[\langle Spawn(a,l_1,l_2)\rangle(s)],L) \overset{a}{\to} (C[\langle l_1\rangle(s[\langle l_2\rangle(Nil)])],eff(a,L)) \text{ iff } cond(a,L) \qquad \text{(spawn)}$$
 where C is a context with exactly one occurrence of x_1 .

 Terminated scheduling tree: All steps are executed, i.e., all nodes labeled with Nil

$$ST_{term} ::= \langle Nil \rangle (SL_{term})$$
 $SL_{term} ::= Nil \mid Cons(ST_{term}, SL_{term})$

Operations on Branching Lists

Generalized concatenation

```
(Nil)l' := l'
Cons(a, l)l' := Cons(a, ll')
Spawn(a, l_1, l_2)l' := Spawn(a, l_1l', l_2)
```

Operations on Branching Lists

Generalized concatenation

```
(Nil)l' := l' \ Cons(a, l)l' := Cons(a, ll') \ Spawn(a, l_1, l_2)l' := Spawn(a, l_1l', l_2)
```

This thread's steps: this: BL → Act*

```
this(Nil) := Nil this(Cons(a, l)) := Cons(a, this(l)) this(Spawn(a, l_1, l_2)) = Cons(a, this(l_1))
```

Operations on Branching Lists

Generalized concatenation

```
(Nil)l' := l'
Cons(a, l)l' := Cons(a, ll')
Spawn(a, l_1, l_2)l' := Spawn(a, l_1l', l_2)
```

This thread's steps: this: BL → Act*

$$this(Nil) := Nil$$

$$this(Cons(a, l)) := Cons(a, this(l))$$

$$this(Spawn(a, l_1, l_2)) = Cons(a, this(l_1))$$

Set of steps

$$x \in \textit{Nil} := \textit{false}$$

 $x \in \textit{Cons}(a, l) := x = a \lor x \in l$
 $x \in \textit{Spawn}(a, l_1, l_2) := x = a \lor x \in l_1 \lor x \in l_2$

Relation of execution tree and scheduling tree

 Execution trees correspond to scheduling trees: st : XN → ST and st' : XN → BL where

$$st(t) := \langle st'(t) \rangle (\textit{Nil})$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p'\gamma' \rangle (t)) := \textit{Cons}(a, st'(t))$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (t_1, t_2)) := \textit{Spawn}(a, st'(t_1), st'(t_2))$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p'\gamma_1\gamma_2 \rangle^N(t)) := \textit{Cons}(a, st'(t))$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p'\gamma_1\gamma_2 \rangle^R(t_1, t_2)) := [a]st'(t_1)st'(t_2)$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p' \rangle) := \textit{Nil}$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p' \rangle) := \textit{Cons}(a, \textit{Nil})$$

Relation of execution tree and scheduling tree

• Execution trees correspond to scheduling trees: $st: XN \to ST$ and $st': XN \to BL$ where

$$st(t) := \langle st'(t) \rangle (\textit{Nil})$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p'\gamma' \rangle (t)) := \textit{Cons}(a, st'(t))$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (t_1, t_2)) := \textit{Spawn}(a, st'(t_1), st'(t_2))$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p'\gamma_1\gamma_2 \rangle^N(t)) := \textit{Cons}(a, st'(t))$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p'\gamma_1\gamma_2 \rangle^R(t_1, t_2)) := [a]st'(t_1)st'(t_2)$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p' \rangle) := \textit{Nil}$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p' \rangle) := \textit{Cons}(a, \textit{Nil})$$

It can be proved

$$(\langle p_0 \gamma_0 \rangle (\varepsilon), \emptyset) \stackrel{/}{\to}^* (c', L)$$

$$\iff \exists t \in XN. \ \exists t' \in ST_{term}. \ t \in L(\mathcal{A}_M) \land c(t) = c' \land (st(t), \emptyset) \stackrel{/}{\to}^* (t', L)$$

Relation of execution tree and scheduling tree

• Execution trees correspond to scheduling trees: $st: XN \to ST$ and $st': XN \to BL$ where

$$st(t) := \langle st'(t) \rangle (\textit{Nil})$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p'\gamma' \rangle (t)) := \textit{Cons}(a, st'(t))$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p_1\gamma_1 \rhd p_2\gamma_2 \rangle (t_1, t_2)) := \textit{Spawn}(a, st'(t_1), st'(t_2))$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p'\gamma_1\gamma_2 \rangle^N(t)) := \textit{Cons}(a, st'(t))$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p'\gamma_1\gamma_2 \rangle^R(t_1, t_2)) := [a]st'(t_1)st'(t_2)$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p' \rangle) := \textit{Nil}$$

$$st'(\langle p\gamma \overset{a}{\hookrightarrow} p' \rangle) := \textit{Cons}(a, \textit{Nil})$$

It can be proved

$$(\langle p_0 \gamma_0 \rangle (\varepsilon), \emptyset) \xrightarrow{l}^* (c', L)$$

$$\iff \exists t \in XN. \ \exists t' \in ST_{term}. \ t \in L(\mathcal{A}_M) \land c(t) = c' \land (st(t), \emptyset) \xrightarrow{l}^* (t', L)$$

 Note: This proof requires a generalization from a single-thread start configuration to arbitrary start configurations.

· Assumption: Acquisition and release only on base rules

- Assumption: Acquisition and release only on base rules
- Compute set of final acquisitions

$$A(NiI) = \emptyset$$
 $A(Spawn(a, l_1, l_2)) = A(l_1) \cup A(l_2)$
 $A(Cons(a, l)) = A(l)$ if $a \in Act_{nl}$ or $a =]_x$ for $x \in \mathbb{L}$
 $A(Cons([_x, l)) = A(l)$ if $]_x \in this(l)$
 $A(Cons([_x, l)) = A(l) \cup \{x\}$ if $]_x \notin this(l)$

- Assumption: Acquisition and release only on base rules
- Compute set of final acquisitions

$$A(Nil) = \emptyset$$
 $A(Spawn(a, l_1, l_2)) = A(l_1) \cup A(l_2)$
 $A(Cons(a, l)) = A(l)$ if $a \in Act_{nl}$ or $a =]_x$ for $x \in \mathbb{L}$
 $A(Cons([_x, l)) = A(l)$ if $]_x \in this(l)$
 $A(Cons([_x, l)) = A(l) \cup \{x\}$ if $]_x \notin this(l)$

· Check consistency of final acquisitions

$$fac(Nil) = true \quad fac(Cons(a, l)) = fac(l) \quad fac(Spawn(a, l_1, l_2)) = fac(l_1 + l_2)$$

- Assumption: Acquisition and release only on base rules
- Compute set of final acquisitions

$$A(Nil) = \emptyset$$

$$A(Spawn(a, I_1, I_2)) = A(I_1) \cup A(I_2)$$

$$A(Cons(a, l)) = A(l)$$

$$A(Cons([x, l)) = A(l)$$
 if $]_x \in this(l)$
 $A(Cons([x, l)) = A(l) \cup \{x\}$ if $]_x \notin this(l)$

Check consistency of final acquisitions

$$fac(Nil) = true \ fac(Cons(a, l)) = fac(l) \ fac(Spawn(a, l_1, l_2)) = fac(l_1)$$

Compute acquisition graph

$$G(NiI) = \emptyset$$

G(Cons([x, I)) = G(I)

$$G(Spawn(a, l_1, l_2)) = G(l_1) \cup G(l_2)$$

$$G(Cons(a, I)) = G(I) \cup G(I_2)$$

 $G(Cons(a, I)) = G(I)$

if
$$]_X \in this(I)$$

if $a \in \operatorname{Act}_{nl}$ or $a =]_x$ for $x \in \mathbb{L}$

if $a \in \operatorname{Act}_{nl}$ or $a =]_x$ for $x \in \mathbb{I}$

$$G(Cons([_x, I)) = G(I) \cup \{x\} \times acq(I) \text{ if }]_x \notin this(I)$$

where $acq(I) := \{x \mid [_x \in I\}$

$$\exists t'. (\langle bl \rangle(\textit{Nil}), \emptyset) \stackrel{l}{\rightarrow}^* (t', L) \land t' \in \textit{ST}_{term} \iff \operatorname{acyclic}(\textit{G}(\textit{bl})) \land \textit{fac}(\textit{bl})$$

• For scheduling tree $\langle bl \rangle(Nil) \in ST$ and labeling sequence $l \in Act^*$, we have

$$\exists t'.(\langle bl \rangle(\textit{Nil}), \emptyset) \overset{l}{\to}^* (t', L) \land t' \in \textit{ST}_{\textit{term}} \iff \textit{acyclic}(\textit{G}(\textit{bl})) \land \textit{fac}(\textit{bl})$$

Proof Ideas:

$$\exists t'. (\langle \textit{bl} \rangle (\textit{Nil}), \emptyset) \overset{\textit{I}}{\rightarrow}^* (t', \textit{L}) \land t' \in \textit{ST}_{\textit{term}} \iff \textit{acyclic}(\textit{G}(\textit{bl})) \land \textit{fac}(\textit{bl})$$

- Proof Ideas:
 - **=**

$$\exists t'. (\langle bl \rangle(\textit{Nil}), \emptyset) \overset{\textit{I}}{\rightarrow}^* (t', L) \land t' \in \textit{ST}_{\textit{term}} \iff \operatorname{acyclic}(\textit{G}(\textit{bl})) \land \textit{fac}(\textit{bl})$$

- Proof Ideas:
 - **⇒**
 - *G*(*t*) expresses constraints due to locking, that any schedule has to follow

$$\exists t'. (\langle bl \rangle(\textit{Nil}), \emptyset) \overset{\textit{I}}{\rightarrow}^* (t', L) \land t' \in \textit{ST}_{\textit{term}} \iff \operatorname{acyclic}(\textit{G}(\textit{bl})) \land \textit{fac}(\textit{bl})$$

- Proof Ideas:
 - ==
 - G(t) expresses constraints due to locking, that any schedule has to follow
 - Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling trees, induction on scheduling tree.

$$\exists t'. (\langle \mathit{bl} \rangle(\mathit{Nil}), \emptyset) \overset{\mathit{l}}{\rightarrow}^* (t', \mathit{L}) \land t' \in \mathit{ST}_{\mathit{term}} \iff \mathit{acyclic}(\mathit{G}(\mathit{bl})) \land \mathit{fac}(\mathit{bl})$$

- Proof Ideas:
 - $\bullet \implies$
 - *G*(*t*) expresses constraints due to locking, that any schedule has to follow
 - Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling trees, induction on scheduling tree.
 - \Leftarrow

$$\exists t'. (\langle bl \rangle(\textit{Nil}), \emptyset) \overset{\textit{I}}{\rightarrow}^* (t', L) \land t' \in \textit{ST}_{\textit{term}} \iff \operatorname{acyclic}(\textit{G}(\textit{bl})) \land \textit{fac}(\textit{bl})$$

- Proof Ideas:
 - $\bullet \implies$
 - G(t) expresses constraints due to locking, that any schedule has to follow
 - Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling trees, induction on scheduling tree.
 - ⇐
 - Scheduling strategy: Schedule usages first. Final acquisitions in topological ordering of acquisition graph

$$\exists t'. (\langle \mathit{bl} \rangle(\mathit{Nil}), \emptyset) \overset{\mathit{l}}{\rightarrow}^* (t', \mathit{L}) \land t' \in \mathit{ST}_{\mathit{term}} \iff \mathit{acyclic}(\mathit{G}(\mathit{bl})) \land \mathit{fac}(\mathit{bl})$$

- Proof Ideas:
 - $\bullet \implies$
 - *G*(*t*) expresses constraints due to locking, that any schedule has to follow
 - Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling trees, induction on scheduling tree.
 - =
 - Scheduling strategy: Schedule usages first. Final acquisitions in topological ordering of acquisition graph
 - Formally: Generalize to initial set of locks disjoint from locks that occur in scheduling tree. Generalize to arbitrary scheduling tree. Induction on scheduling tree.

Set of schedulable execution trees is regular

• Schedulable scheduling trees are regular (compute acquisition graphs by tree automata)

Set of schedulable execution trees is regular

- Schedulable scheduling trees are regular (compute acquisition graphs by tree automata)
- st^{-1} preserves regularity: Just another tree transducer construction

Set of schedulable execution trees is regular

- Schedulable scheduling trees are regular (compute acquisition graphs by tree automata)
- st⁻¹ preserves regularity: Just another tree transducer construction
- Thus, we can decide lock-sensitive reachability of a regular set of configurations of a DPN.

• The lock-sensitive reachability problem is in NP:

- The lock-sensitive reachability problem is in NP:
 - For a sequential run, only polynomially many acquisition graphs/final acquisition sets occur

- The lock-sensitive reachability problem is in NP:
 - For a sequential run, only polynomially many acquisition graphs/final acquisition sets occur
 - So, for 2-PDS, we can guess these in advance

- The lock-sensitive reachability problem is in NP:
 - For a sequential run, only polynomially many acquisition graphs/final acquisition sets occur
 - So, for 2-PDS, we can guess these in advance
- For DPN: There may be exponentially many acquisition graphs!

- The lock-sensitive reachability problem is in NP:
 - For a sequential run, only polynomially many acquisition graphs/final acquisition sets occur
 - So, for 2-PDS, we can guess these in advance
- For DPN: There may be exponentially many acquisition graphs!
 - However, not for schedulable runs

- The lock-sensitive reachability problem is in NP:
 - For a sequential run, only polynomially many acquisition graphs/final acquisition sets occur
 - So, for 2-PDS, we can guess these in advance
- For DPN: There may be exponentially many acquisition graphs!
 - · However, not for schedulable runs
 - Problem remaining: There may be exponentially many sets of used locks

- The lock-sensitive reachability problem is in NP:
 - For a sequential run, only polynomially many acquisition graphs/final acquisition sets occur
 - So, for 2-PDS, we can guess these in advance
- For DPN: There may be exponentially many acquisition graphs!
 - · However, not for schedulable runs
 - Problem remaining: There may be exponentially many sets of used locks
 - Solution: Only check that certain locks are not used

- The lock-sensitive reachability problem is in NP:
 - For a sequential run, only polynomially many acquisition graphs/final acquisition sets occur
 - So, for 2-PDS, we can guess these in advance
- For DPN: There may be exponentially many acquisition graphs!
 - · However, not for schedulable runs
 - Problem remaining: There may be exponentially many sets of used locks
 - Solution: Only check that certain locks are not used
 - · Set of used locks only required at final acquisition.

- The lock-sensitive reachability problem is in NP:
 - For a sequential run, only polynomially many acquisition graphs/final acquisition sets occur
 - So, for 2-PDS, we can guess these in advance
- For DPN: There may be exponentially many acquisition graphs!
 - · However, not for schedulable runs
 - Problem remaining: There may be exponentially many sets of used locks
 - Solution: Only check that certain locks are not used
 - Set of used locks only required at final acquisition.
 - · Just check that less locks are used afterwards

- The lock-sensitive reachability problem is in NP:
 - For a sequential run, only polynomially many acquisition graphs/final acquisition sets occur
 - So, for 2-PDS, we can guess these in advance
- For DPN: There may be exponentially many acquisition graphs!
 - · However, not for schedulable runs
 - Problem remaining: There may be exponentially many sets of used locks
 - Solution: Only check that certain locks are not used
 - · Set of used locks only required at final acquisition.
 - Just check that less locks are used afterwards
 - · Accepts executions with the guess acquisition graph, or with smaller ones

Main Theorem

Lock-sensitive reachability of a regular set of configurations is NP-complete for DPNs

Complexity of related problems

	DPN	PPDS	2PDS	DFN	PFSM	<i>n</i> FSM
$EF(p_1 \parallel p_2)$	NP*?	NP [†] ?	<u>NP</u> †?	<u>NP</u> *!	Р	Р
EF(A)	NP	NP	NP ^{†?}	NP	<u>NP</u>	Р
$EF(p_1 \parallel p_2 \wedge EF(p_3 \parallel p_4))$	NP	NP	<u>NP</u>	$\widetilde{\mathbb{NP}}^{*!}$	Р	Р
$EF(A_1 \wedge EF(A_2))$	NP	NP	NP	NP	NP	Р
EF ^{\neg} (fixed #ops)	N₽	NP	NP	NP	NP	Р
EF (fixed #ops)	≥ <u>PSPACE</u> ‡			>	NP	Р
EF ^{\neg}	≥ PSPACE ^{‡reg?}				$\geq \underline{NP}^{\ddagger}$	Р
EF	≥ <u>PSPACE</u> [‡]					P _~

- * Requires spawn inside lock
 - *! Polynomial algorithm if no spawn inside lock
 - *? Complexity unknown if no spawn inside lock
- †? Hardness proof requires deadlocks/escapable locks. Complexity without this unknown.
- ‡ Hardness result requires no locks
- reg? Hardness requires regular APs. Complexity for double-indexed APs unknown (≥NP)

The End

Thank you for listening