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Proposed Content

¢ Finite tree automata: Basic theory (TATA Ch. 1)
e Pumping Lemma, Closure Properties, Homomorphisms, Minimization, ...
Regular tree grammars and regular expressions (TATA Ch. 2)
Hedge Automata (TATA Ch. 8)
e Application: XML-Schema languages
e Application: Analysis of Concurrent Programs
e Dynamic Pushdown Networks (DPN)
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e Finite automata recognize words, e.g.:
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Go — a(gr) gr — b(qo)

e Words of alternating as and bs, ending with a, e.g., aba or abababa
e Generalize to trees

Qo — a(aqi, q1) g1 — b(qo, Q) g — L()

o Trees with alternating ,layers” of a nodes and b nodes.
e Leafs are L-nodes, as node labels will have fixed arity.
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e Let F be afinite set of symbols, and arity : 7 — N a function.

o (F,arity) is a ranked alphabet. We also identify F with (F, arity).
o Fn:={f € F| arity(f) = n} is the set of symbols with arity n

e Let X be a set of variables. We assume X N Fy = 0.

e Then the set T(F, X) of terms over alphabet F and variables X’ is
defined as the least solution of

p>1,feFp, andty,....lp e T(F,X) = f(t,...,t)) € T(F,X)

o Intuitively: Terms over functions from F and variables from X.
e Ground terms: T(F) := T(F, ). Terms without variables.
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Examples

e We also write a ranked alphabet as F = f;/ay, f/ao, . . ., f/as, meaning
F={hf,....,H}L (i —=ar,....fh— ap)
e F = true/0, false/0,and/2, not/1 - Syntax trees of boolean expressions
e and(true, not(x)) € T(F,{x})
e F=0/0,Suc/1,+/2,x/2 - Arithmetic expressions over naturals (using
unary representation)
e Suc(0) + (Suc(Suc(0)) x x) € T(F,{x})
e We will use infix-notation for terms when appropriate
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Trees

e Terms can be identified by trees: Nodes with p successors labeled with
symbol from Fp.

e and(true, not(x)) € T(F,{x})
and

/ \

true not
|
X

o Suc(0) + (Suc(Suc(0)) * x)

Suc *
| I\

0 Sucx
Suc
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Tree Automata

¢ A (nondeterministic) finite tree automaton (NFTA) over alphabet F is a
tuple A = (Q, F, Qf, A) where
e Qis a finite set of states. QN Fy = 0
e Q C Qis a set of final states
e A is a set of rules of the form

f(qr,---,qn) = q

where f € Foand q,q1,...,gn € Q
o Intuition: Use the rules from A to re-write a given tree to a final state

e Foratreet € T(F) and a state g, we define t — 4 g as the least relation
that satisfies

f(q17~-~,Qn)_>q€A7V1 SISn ti—>AQI — f(t17--~7tn)%Aq

o { — 4 q: Tree tis accepted in state g
e The language L(.A) of A are all trees accepted in final states

L(A) :={t|3ge Q.t—4Qq}
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Example

¢ Tree automaton accepting arithmetic expressions that evaluate to even
numbers

F =0/0,Suc/1,+/2

Q:={e, 0} Q= {e}
0—e Suc(e) - o0  Suc(o) — e
e+te—e e+o0—o o+e—o0 o+o0—e

e Examples for runs on board
e Suc(Suc(0)) + Suc(0) + Suc(0)
e 0+ Suc(0)
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Remark

e In TATA, a move-relation is defined. t 7 t rewrites a node in the tree

according to a rule.
¢ Another version even keeps track of the tree nodes, and just adds the
states as additional nodes of arity 1.

e Examples on board
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Epsilon rules
e As for word automata, we may add e-rules of the form
g—qforq,qd €Q
e The acceptance relation is extended accordingly

f(Qi,..sqn) = qeANVI<i<nt—4q = f(t,....ln) 24 q
g—-qgelAt—a2q9 = t—=4q

o Example: (Non-empty) lists of natural numbers

0— g Suc(qn) = Gn
nil — q cons(gn, qi) — q;
a—q

o Last rule converts non-empty list (g;) to list (q))
e On board: Accepting [], and [0, Suc(0)]
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Equivalence of NFTAs with and without ¢ - rules

For a NFTA A with e-rules, there is a NFTA without e-rules that recognizes the
same language

¢ Proof sketch:
e Let cl(q) denote the e-closure of q

g€ cl(q) q €cl(q),qd - q" = ¢’ ccl(q)

o Define A" :={f(q1,...,qn) > @' | f(q1,...,qn) = g€ AAQG €cl(q)}
e Define A" := (Q, F,Qr, A")
e Show: t -4 qifft -4 q

e on board

e From now on, we assume tree automata without e-rules, unless noted
otherwise.
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Last Lecture

¢ Nondeterministic Finite Tree Automata (NFTA)
e Ranked alphabet, Terms/Trees
e Rules: f(q1,...,qn) > q
e Intuition: Rewrite tree to single state

e Epsilon rules

cqg—d
e Do not increase expressiveness (recognizable languages)

20
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Let A = (Q, F, @, A) be a finite tree automaton.

e Ais deterministic (DFTA), if there are no two rules with the same LHS
(and no e-rules), i.e.

> eANI >R eEN = 1 =@
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Deterministic Finite Tree Automata

Let A = (Q, F, @, A) be a finite tree automaton.

e Ais deterministic (DFTA), if there are no two rules with the same LHS
(and no e-rules), i.e.

> eANI >R eEN = 1 =@

o For a DFTA, every tree is accepted in at most one state

e Ais complete, if for every f € F,q1,...,qn € Q, there is a rule
f(q17~-~7Qn) — q
e For a complete tree automata, every tree is accepted in at least one state
e For a complete DFTA, every tree is accepted in exactly one state

e A state g € Qis accessible, if there is a t with t — 4 q.
e Ais reduced, if all states in Q are accessible.
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Membership Test for DFTA

e Complete DFTAs have a simple (and efficient) membership test

acc (f (4, ..., f)) =
let
g1 = acc bi; ...; gy = acc I
in
the g with f(qgi,...,qn) € A
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Membership Test for DFTA

e Complete DFTAs have a simple (and efficient) membership test

acc (f (4, ..., f)) =
let
gi = acc ti; ...; gy = acc I,
in
the g with f(qgi,...,qn) € A

o Note: For NFTAs, we need to backtrack, or use on-the-fly determinization
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Reduction Algorithm
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an NFTA.
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Reduction Algorithm

¢ Obviously, removing inaccessible states does not change the language of
an NFTA.

¢ The following algorithm computes the set of accessible states in
polynomial time

A:=10
repeat
A = au{q} for g with

f(Qi,---,Qn) > Q€A G1,...,qn €A
until no more states can be added to A

e Proof sketch

e Invariant: All states in A are accessible.
o If there is an accessible state not in A, saturation is not complete

e Inductionont — 4 g
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Determinization (Powerset construction)

Theorem: For every NFTA, there exists a complete DFTA with the same
language
Let Qs :=2%and Qg == {s€ Qy | sN Qs # 0}
Let f(s1,...,8n) = s € Ay iff
s={qgeQ|Ig1€51,....,qn€Sn| f(q1,---,qn) = g € A}
Define Aq := (Qd, F, Odf, Ad)
Idea: Ay accepts tree t in the set of all states in that A accepts t (maybe
the empty set)
o Formally: t -4, siffs={qe Q| t—.4 q}
Lemma: The automaton A, is a complete DFTA, and we have
L(A) = L(Ag)- (On board)
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Determinization (Powerset construction)

e Theorem: For every NFTA, there exists a complete DFTA with the same

language
o LetQy:=2%and Qi = {s€ Qy|sNQ #0}
o Let f(s1,...,87) = s € Ay ff

s={qgeQ|Ig1€51,....,qn€Sn| f(q1,---,qn) = g € A}
e Define .Ad = (Qd,]:, Odf,Ad)

e |dea: Ay accepts tree t in the set of all states in that A accepts t (maybe
the empty set)

o Formally: t -4, siffs={qe Q| t—.4 q}
e Lemma: The automaton Ay is a complete DFTA, and we have
L(A) = L(Ag)-. (On board)
e Theorem follows from this.
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Determinization with reduction

e Above method always construct exponentially many states
o Typically, many of the inaccessible

¢ |dea: Combine determinization and reduction
e Only construct accessible states of Ay

Qd =
Ay =
repeat
Qp = QdU{S}
Ay = AgU{f(s1,...,81) — s}
where
feFnSt...,Sp€ Qq
s={qeQ|3q1€51,...,qn € Sp. f(q1,...,qn) = g € A}
until No more rules can be added to Ay
Qi = {s€Qy|snNQ#0}
.Ad = (Qd,f, Qdf,Ad)

0
0
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Examples

e Automaton is already deterministic

¢ Naive method generates exponentially many rules
e Reduction method does not increase size of automaton

¢ Also advantageous if automaton is ,almost” deterministic
¢ But, exponential blowup not avoidable in general
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o Let F=f/1,g/1,a/0
e Consider the language L,

e Automaton Q= {q,q,...

a—gqg
(@) = a1
f(qi) = Gist

:={t e T(F) | The nth symbol of tis f }
,Gn}, Qr={gn}and A

f(q) —aq 9(q) —q

9(qi) = Gitt fori<n
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Examples

Let F=f/1,g/1,a/0
e Consider the language L, := {t € T(F) | The nth symbol of tis f }
e Automaton Q={q,q1,...,qs}, Qs = {g-} and A

a—q fla) — q 9(q@) »q
f(q) — o
f(q1) = Qi 9(q) — Gt fori < n

o Nondeterministically decides which symbol to count

e However, any DFTA has to memorize the last n symbols
e Thus, it has at least 2" states

¢ Note: The same example is usually given for word automata
e L=(a+b)ala+b)

28
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Example

Consider the language L := {f(g'(a),g'(a)) | i € N}

¢ Not recognizable by an FTA.

e Assume we have Awith L(A)=Land |Q|=n

« During recognizing g"*'(a), the same state must occur twice, say
e g'(a) »agand g(a) —a qfori#j

As f(g'(a),g'(a)) € L(A), we also have f(g'(a), ¢/(a)) € L(A)

Contradiction! L not tree-regular
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Towards a Pumping Lemma

e Aterm t € T(F,X) is called linear, if no variable occurs more than once
e A context with n holes is a linear term over variables xi, ..., X,
e For a context C with n holes, we define

Clt,....,ta :=C(x1 = ti,..., Xn — )

¢ A context that consists of a single variable is called trivial.



Pumping Lemma

Theorem

Let L be a regular language. Then, there is a constant k > 0 such that for
every t € L with Height(t) > k, there is a context C, a non-trivial context C’,

and a term u such that
t= C[C'[u]] vn>0. C[C'"[u]] e L

e Proof sketch:
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Pumping Lemma

Theorem

Let L be a regular language. Then, there is a constant k > 0 such that for
every t € L with Height(t) > k, there is a context C, a non-trivial context C’,
and a term u such that

t = C[C'[u]] ¥n> 0. C[C""[u]] € L

e Proof sketch:

Let A= (Q,F,Q,A)withL=L(A),andt -4 9,9 € &
e Choose path through t with length > k

e Two subtrees on this path accepted in same state.

e Identify them by C and C’
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Example

e Consider F =f/2,a/0,and L := {t € T(F) | |t| is prime}
e |t| is number of nodes in ¢

e L is notregular.
e Proof by contradiction. Assume L is regular, and k is pumping constant
e Choose t € L with height(t) > k
e We obtain C, C’, usuch that t = C[C/[u]] and vVn. C[C'"[u]] € L
e We have |C[C'"[u]]| = |C| — 1+ n(|C'| — 1) + |u]
e Choose n = |C| + |u| — 1 to show that this is not prime for all n
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o Let A=(Q,F, Qs A)be an FTA.
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Corollaries

o Let A=(Q,F, Qs A)be an FTA.

@ L(A) is non-empty, iff 3t € L(A).height(t) < |Q)|

® L(A) is infinite, iff 3t € L(A).|Q| < height(t) < 2|Q)
e Proof ideas:

@ Remove duplicate states of accepting run repeatedly
@® —: Take t € L(A) high enough. Remove duplicate states repeatedly, until
longest path has exactly one duplication.

e <——: Pump with infinitely many n
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Last Lecture

e Deterministic Automata
e Powerset construction

e Pumping Lemma
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Closure Properties

Theorem

e The class of regular languages is closed under union, intersection, and
complement.

e Automata for union, intersection, and complement can be computed.
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e Given automata Ay = (@i, F, Qs1, Aq) and Ao = (Qo, F, Qpe, Ap).
e Assume, wlog, Q1 N Q> =0
o letA=(Q1UQ:, F,Qn U Qp, A1 UA,)
e Straightforward: L(A) = L(A1) U L(A2)

e However: A may be nondeterministic and not complete, even if A and
A> were.
e Let Ay, As be deterministic and complete. Let A = (Q, F, Qf, A) with
e Q=Q1 xQ, r=Qn Xx QU Qs x Qr, and A = Ay x Ap where

Ay x Dp = {f((g1,91),..-,(an, aqn)) = (q,q) |
f(Gr,- -, qn) = g€ Ay AF(Ghs -, qn) — d € Do}
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o letA=(Q1UQ:, F,Qn U Qp, A1 UA,)
e Straightforward: L(A) = L(A1) U L(A2)

e However: A may be nondeterministic and not complete, even if A and
Ao were.
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o letA=(Q1UQ:, F,Qn U Qp, A1 UA,)
e Straightforward: L(A) = L(A1) U L(A2)

e However: A may be nondeterministic and not complete, even if A and
A> were.
e Let Ay, As be deterministic and complete. Let A = (Q, F, Qf, A) with
e Q=Q1 xQ, r=Qn Xx QU Qs x Qr, and A = Ay x Ap where

Ay x Dp = {f((g1,91),..-,(an, aqn)) = (q,q) |
f(Gr,- -, qn) = g€ Ay AF(Ghs -, qn) — d € Do}

e Then L(A) = L(Ay) U L(Az) and A is deterministic and complete.
¢ Intuition: Recognize with both automata in parallel.

38/161



Complement

e Assume L is recognized by the complete DFTA A = (Q, F, Qr, A)
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Complement

Assume L is recognized by the complete DFTA A = (Q, F, G, A)
Define A° = (Q, F,Q\ G, A)
Obviously, L(A°) = T(F) \ L(A)

If a nondeterministic automaton is given, determinization may cause
exponential blowup

39



Intersection

e Theeasyway: LiNLy =L ULy
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e Theeasyway: LiNLy =L ULy
o Exponential blowup for NFTA.
e Product construction: Given automata Ay = (Qy, F, Qs, ) and
A2 = (Qe, F, Qp2, A2).
e Define A = (01 X Og,]:, Qs X Ofg,A1 X Ag)
o [(A)=L(A)NL(A2)
e Intuition: Automata run in parallel. Accept if both accept.
e A is deterministic/complete if Ay and Az are.
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Intersection

e Theeasyway: LiNLy =L ULy
o Exponential blowup for NFTA.

e Product construction: Given automata Ay = (Qy, F, Qs, ) and
Az = (@2, F, Qp, A2).

e Define A = (01 X Og,}—, Qs X Ofg,A1 X Ag)
o [(A)=L(A)NL(A2)

e Intuition: Automata run in parallel. Accept if both accept.
e A is deterministic/complete if Ay and Az are.

¢ Product construction can also be combined with reduction algorithm, to
avoid construction of inaccessible states.

40
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Summary

o For DFTA: Polynomial time intersection, union, complement
e For NFTA: Polynomial time intersection, union. Exp-time complement.



More Algorithms on FTA

o Membership for NFTA. In time O(|t| * |.A]) On-the-fly determinization.
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More Algorithms on FTA

o Membership for NFTA. In time O(|t| * |.A]) On-the-fly determinization.
o Emptiness check: Time O(|.A|). Exercise!
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Tree Homomorphisms

e Map each symbol of tree to new subtree
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e Map each symbol of tree to new subtree
e Example: Convert ternary tree to binary tree
o f(x1,x2,x3) = 9(x1,9(X2, X3))
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Tree Homomorphisms

e Map each symbol of tree to new subtree

e Example: Convert ternary tree to binary tree
o f(x1,X2,X3) — g(x1,9(X2, X3))

e Example: Eliminate conjunction from Boolean formulas
o X1 AXo = —(—X1 V —Xo)
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Formal definition

e Let ¥ and F’ be ranked alphabets, not necessarily disjoint
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e Let ¥ and F’ be ranked alphabets, not necessarily disjoint
e Let, for any n, X, := {x1, ..., x,} be variables, disjoint from F and F’
o Let hr be a mapping that maps f € F,to hz(f) € T(F', Xy)
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Formal definition

Let F and F’ be ranked alphabets, not necessarily disjoint

Let, for any n, X, := {x1, ..., X,} be variables, disjoint from F and F’
Let hx be a mapping that maps f € Fj, to he(f) € T(F', Xp)

hx determines a tree homomorphism h: T(F) — T(F'):

h(F(tr, ... t)) == he(F) (X1 — h(t1),- .. Xn = h(ts))

45



Preservation of Regularity

e Tree homomorphisms do not preserve regularity in general
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e But:
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e But:
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hxz(f) is linear.
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Theorem
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Preservation of Regularity

e Tree homomorphisms do not preserve regularity in general
o Let L = {f(¢'(a)) | i € N}. Obviously regular.
e Let hr! f(x) — f(x, x)
o h(L) ={f(g'(a),d'(a)) | i € N}. Not regular.
e But:
¢ A tree homomorphism determined by hr is linear, iff for all f € F, the term
hxz(f) is linear.

Theorem

Let L be a regular language, and h a linear tree homomorphism. Then h(L) is
also regular.

o Proof idea: For each original rule f(qy, ..., gn), insert rules that recognize
hJ-‘[Qh s '7qn]
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Positions

¢ Identify position in tree by sequence of natural numbers
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Positions

¢ |dentify position in tree by sequence of natural numbers
e Let t be a tree, and p € N*. We define the subtree of t at position p by:

te) =t (f(t, .-, t))(IP) := ti(p)

e Pos(t) is the set of valid positions in t



Construction (Preservation of regularity)

e Assume L is accepted by reduced DFTA A = (Q, F, G, A).
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Construction (Preservation of regularity)

e Assume L is accepted by reduced DFTA A = (Q, F, G, A).
e Construct NFTA A = (@', 7', @}, A'):
e WithQC Q and Q) = &
e Foreachrule r = f(qg1,...,qn) — q, tr = hx(t), and position p € Pos(t):
e States g, € Q'
o Ift(p) =9(...) € Fk: 9(Qpy,-- -, dpy) = 9" € A’
e Ift;(p) = x:q — qp € A

48



Construction (Preservation of regularity)

e Assume L is accepted by reduced DFTA A = (Q, F, G, A).
e Construct NFTA A = (@', 7', @}, A'):
e WithQC Q and Q) = &
e Foreachrule r = f(qg1,...,qn) — q, tr = hx(t), and position p € Pos(t):
e States g, € Q'
o Ift(p) =9(...) € Fk: 9(Qpy,-- -, dpy) = 9" € A’
o Ift(p) = xi:qi — q; € A
e gl »>qge A

48



Proof sketch

e Prove h(L) C L(A’). Straightforward.
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Proof sketch

e Prove h(L) C L
e Prove L(A’) C

(A’
h(L

). Straightforward.
) (Sketch on board).
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o |dea: Split derivation of t — 4 g € Q at rules of the form gf — q.
e Assume r = f(...) — g. Without using states from Q, automaton accepts
subtree of the form hxz(f).
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o |dea: Split derivation of t — 4 g € Q at rules of the form gf — q.
e Assume r = f(...) — g. Without using states from Q, automaton accepts

subtree of the form hxz(f).
e Cases:
e Constant (0-ary symbol)
e Duetorule g — g, € A, g; € Q (use IH)
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Proof sketch

e Prove h(L) C L(A’). Straightforward.
e Prove L(A") C h(L) (Sketch on board).
o |dea: Split derivation of t — 4 g € Q at rules of the form gf — q.
e Assume r = f(...) — g. Without using states from Q, automaton accepts

subtree of the form hxz(f).
e Cases:

e Constant (0-ary symbol)
e Duetorule g — g, € A, g; € Q (use IH)

e Formally: Induction on size of derivation t — 4 q

49



Last lecture

e Closure properties: Union, intersection, complement
e Tree homomorphisms

o |dea: Replace node by tree with ,holes”
e and(xy, x2) — not(or(not(x1), not(xz)))

e Regular languages closed under linear homomorphisms
e Linear: No subtrees are duplicated
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Inverse Homomorphism

e Motivation: Reconsider elimination of A in Boolean formulas
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automaton for formulas with A.

e This would be nice
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language, obtain automaton for complex language!

e Fortunately

Let h be a tree homomorphism, and L a regular language. Then
h=1(L) := {t | h(t) € L} is regular.
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Inverse Homomorphism

e Motivation: Reconsider elimination of A in Boolean formulas

e Homomorphism: Given automaton that recognizes true formulas, construct
automaton for true formulas without A.

e Not really useful

¢ Inverse homomorphism: Given automaton for formulas without A, construct
automaton for formulas with A.

e This would be nice
e From automaton for simple language, and mapping of complex to simple
language, obtain automaton for complex language!

e Fortunately

Let h be a tree homomorphism, and L a regular language. Then
h=1(L) := {t | h(t) € L} is regular.

e Also holds for non-linear homomorphisms

e Common technique to show regularity/decidability
e Can be generalized to (macro) tree transducers
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Generalized Acceptance Relation

e Let A=(Q,F,Qr,A)and t € T(FUQ).
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Generalized Acceptance Relation

e Let A=(Q,F,Qr,A)and t € T(FUQ).
o We define t — 4 g as the least relation that satisfies

q—aq

f(Q17~-~,Qn)_>q€A7Vi§n~ ti—>AQI = f(t17'

o t) —=aq
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Generalized Acceptance Relation

e Let A=(Q,F,Qr,A)and t € T(FUQ).
o We define t — 4 g as the least relation that satisfies

qg—aq
f(q17~-~>Qn)_>q€A7vj§n~ ti_>.Aq/ — f(t17---7tn) _>.Aq

e This is obviously a generalization of the acceptance relation we defined
earlier
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Inverse Homomorphism, construction

o Leth: T(F) — T(F’) be a tree homomorphism determined by hr
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Inverse Homomorphism, construction

o Leth: T(F) — T(F’) be a tree homomorphism determined by hr
o Let A'=(Q,F,Q;A") be a DFTA with L = L(A)
o We define DFTA A = (Q' U {s}, F, Q;, A), with the rules

f(Gr,....qn) = g€ A€ Fp, he(f)lpr,....Pa] w4 G
where q; = p; if x; occurs in h=(f), and g; = s otherwise
a—sel, f(s,....,8) >seA
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Inverse Homomorphism, construction

o Leth: T(F) — T(F’) be a tree homomorphism determined by hr
o Let A'=(Q,F,Q;A") be a DFTA with L = L(A)
o We define DFTA A = (Q' U {s}, F, Q;, A), with the rules

f(Gr,....qn) = g€ A€ Fp, he(f)lpr,....Pa] w4 G
where q; = p; if x; occurs in h=(f), and g; = s otherwise
a—sel, f(s,....,8) >seA

e Intuition: Accept node f, if its image is accepted by A’
e If image does not depend on a subtree, accept any subtree (state s)
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Inverse Homomorphism, proof

e Show t —4 qiff A(t) -4 q
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Inverse Homomorphism, proof

e Show t —4 qiff A(t) -4 q
e On board
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Last Lecture

¢ Inverse homomorphisms preserve regularity
e Started Myhill-Nerode Theorem
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Reminder: Equivalence relation

e Arelation =C A x Ais called equivalence relation, iff it is reflexive,
transitive and symmetric
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Reminder: Equivalence relation

e Arelation =C A x Ais called equivalence relation, iff it is reflexive,
transitive and symmetric

e The set [a]l= := {& | a= &'} is called the equivalence class of a

¢ An equivalence relation is of finite index, if there are only finitely many
equivalence classes
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Congruence

¢ An equivalence relation = on T(F) is a congruence, iff

VieFp. (Vi<nu=v) = f(u,...,up) = f(vy,...

) Vn)
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Congruence

¢ An equivalence relation = on T(F) is a congruence, iff

VieFp,. (Vi<nu=v) = f(uy,...,up) =f(vy,...,Vp)

e Intuition: Functions are equivalent if applied to equivalent arguments.

e Note: = is congruence, iff closed under (1-hole) contexts, i.e.

VCuv.u=v = C[u] = C[v]

e For a language L, we define the congruence =; by

u=, viffvC. Clu] e Liff C[v] e L

¢ Obviously an equivalence relation. Obviously a congruence.
e Intuition: L does not distinguish between u and v
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Myhill-Nerode Theorem

The following statements are equivalent
© L is aregular tree language
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Convention

e Complete DFTAs are written as (Q, F, Q, §)
o Withé: (Fox Q" — Q)
e Corresponds to A via

f(q1,...,qn) = qiff 5(f,q1,...,qn) = q
o Naturally extended to trees

S(f(tr, ... t) =6(f,8(t),...,0(tn))
e Compatible with — 4, i.e.

t—aqiffé(t)=q
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Proof of Myhill-Nerode Theorem

@ Lis aregular tree language
9 L is the union of some equivalence classes of a finite-index congruence
9 = is of finite index
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Proof of Myhill-Nerode Theorem
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exists and is unique.

e Itis given by A, from the proof of Myhill-Nerode
e Proof sketch (more details on board):

e Assume L is recognized by complete DFTA A = (Q, F, Q, 6)
e The relation =4 is refinement of =,

° =4C=

e Thus |Q| > |Qmin| (proves existence of minimal DFTA)
e Now assume |Q| = |Qmin|
e All states in Q are accessible (otherwise, contradiction to minimality)
e Letg e Qwith §(u) =gq.
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¢ Idea: Refine an equivalence relation until consistent with A

@ Start with P = {Qr, Q\ G}
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©® Repeat until no more refinement possible
@ Define Anpin == (Qmin, F, Qminf, 0), where
e Qmin := Equivalence classes of P
* Qmin :={[q] | g € Q}
* Smin(f, [qi], - [gn]) = [0(F, a1, .., Gn)]

o L(Amin) = L(A). Proof on board.
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Last Lecture

e Myhill-Nerode Theorem
e Minimization of tree automata
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® f(q1,---,qn) —q

e Intuition: Assign state to a given tree, consume tree
o Now: Rewrite state to a tree
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66



Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where

67/161



Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where
e Fis aranked alphabet

67/161



Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where

e Fis aranked alphabet
e Qis afinite set of states, with QN F =0

67



Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where
e Fis aranked alphabet
e Qis afinite set of states, with QN F =0
e | C Qis a set of initial states

67



Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where
e Fis aranked alphabet
¢ Qs a finite set of states, with QN F =0
e | C Qis a set of initial states
e A is a set of rules of the form

qg—f(g1,...,qn)forf € Fn,q,q1,...,qn € Q

67



Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where
e Fis aranked alphabet
¢ Qs a finite set of states, with QN F =0
e | C Qis a set of initial states
e A is a set of rules of the form

qg—f(g1,...,qn)forf € Fn,q,q1,...,qn € Q

o We define the production relation q — 4 t as the least relation that
satisfies

q—fq,....,qn) €EA,q1 =4 ty,.

e Qn—=ath = q—af(h,.

67

ot



Top-Down Tree Automata

e Atuple A= (Q,F,I A)is called fop-down tree automaton, where
e Fis aranked alphabet

e Qis afinite set of states, with QN F =0

e | C Qis a set of initial states

e A is a set of rules of the form
g—f(qr,...,qn)forf € Fn,q,qu,...,qn € Q

o We define the production relation q — 4 t as the least relation that
satisfies

q—fq,....,qn) €EA,q1 =4 ty,.

e The language of Ais L(A) :={t|3gel. q—4t}

e Qn—=ath = q—af(h,.

67

ot



Equal expressiveness

Theorem

A language is regular if and only if it is the language of a top-down tree
automaton.

e Proof
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A language is regular if and only if it is the language of a top-down tree
automaton.

e Proof

¢ Straightforward induction (Hint: Reverse arrows, exchange / and Q)
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Deterministic Top-Down Tree Automata

e A top-down tree-automaton A = (Q, F, I, A) is deterministic, iff

o |l =1

e gq—f(q,....,qn) EANG—=f(qf,...,qn) EA = G1=Q;A...ANGr =0
e Unfortunately: There are regular languages not accepted by any

deterministic top-down FTA
o [ = {f(a,b), f(b,a)}. Obviously regular. Even finite.
e But: Any deterministic top-down FTA that accepts the words in L also
accepts f(a, a).
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Regular Tree Grammars

Extend grammars to trees
e Here: Only for the regular case
A regular tree grammar (RTG) is a tuple G = (S, N, F, R), where

e S e Nis a start symbol

e N is a finite set of nonterminals with arity zero,and NN F =0

e Fis aranked alphabet

e Ris a set of production rules of the form n — 3, where n € N and
B e T(FUN)

e These are almost top-down tree automata
e But rules are a bit more complicated
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Derivation Relation

e Intuition: Rewrite S to a tree, using the rules

e Foran RTG G = (S, N, F, R), we define a derivation step 5 =g 5’ for
B,8 € T(FUN) by

B=cgfh <= ICun B=C[njAn—ueRAS =Clu]

e Wewrite g =g t,ifft/ € T(F)and g =5 t/
e For ne N, we define L(G,n) :={te T(F)| n—gt}
o We define L(G) := L(G, S)
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Reduced tree grammars

e A non-terminal n is reachable, iff there is a derivation from S to a tree
containing n:

3C. S =% Clnl
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Reduced tree grammars

e A non-terminal n is reachable, iff there is a derivation from S to a tree
containing n:

3C. S =% Clnl

¢ A non-terminal nis productive, iff a tree without nonterminals can be
derived from it:

L(G,n) # 0

e An RTG is reduced, if every nonterminal is reachable and productive

74
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Computation of Equivalent Reduced Grammar

e For every RTG G, reduced tree grammar G’ with L(G) = L(G') can be
computed

e Provided that L(G) # 0, otherwise S must not be productive.

@ Remove unproductive non-terminals
e Productive nonterminals can be computed by saturation algorithm:
e nis productive, if there is a rule n — 3 such that every nonterminal in g3 is
productive
® Remove unreachable nonterminals

e Again saturation: S is reachable, n is reachable if there is a rule i — C[n]
such that f is reachable
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Correctness

e Obviously, removing unproductive or unreachable nonterminals does not
change the language
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Correctness

e Obviously, removing unproductive or unreachable nonterminals does not
change the language
e Remains to show: Removing unreachable nonterminals cannot create
new unproductive ones
e On board



Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(ny, ..., n,) for
nny,....,npheN
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Normalized Regular Tree Grammars

e RTG is normalized, iff all productions have the form n — f(ny, ..., n,) for
nny,....,npheN
e Every RTG can be transformed into an equivalent normal one
o lterate: Replace arule n — f(s1,...,8n) by n — f(ny,...,nn)
o where nj=sjifs;e N
e n; € N fresh otherwise. In this case, add rule n; — s;

o After iteration, all rules have form n — f(ny,...,n,) or ny — no
¢ Eliminate the latter rules by replacing si — s> by rules sy — tforall t ¢ N
with so =" n—t

o Cf.: Elimination of epsilon rules
e Correctness (ldeas)

e Each step of the iteration preserves language
o Elimination preserves language
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Normalized RTGs and top-down NTFAs

e Obviously, normalized RTGs are isomorphic to top-down NTFAs
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Normalized RTGs and top-down NTFAs

e Obviously, normalized RTGs are isomorphic to top-down NTFAs
e Thus, exactly the regular languages can be expressed by RTGs
Theorem

A language is regular if and only if it can be described by a regular tree
grammar.
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e Minimization Algorithm

e Top-Down Tree Automata

Regular Tree Grammars

Started: Tree Regular Expressions
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Recall: Word regular expressions

eeu=c|(|aforacxr|e-e|le+e|e*
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Recall: Word regular expressions

eeu=c|(|aforacxr|e-e|le+e|e*
o Empty word | empty language | single character | concatenation | choice |
iteration

e Forexample: (r+w+o0)*-(r+w)-(r+w+0)*
¢ Words containing at least one r or at least one w
e Recal:e*=c+e-e*

81
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Tree regular expressions

Consider the set {0, s(0), s(s(0)), ...}
o Want to represent this as ,regular expression”
e s(O)*-0
e Idea: O indicates position for concatenation
o 1 - b inserts & at square-position in
o f(..)*=0+4f(...) - f(...)" iterates over position OJ
e There may be more than one iteration, over different positions
e Number position markers: Oy, Oa, . ..
e cons(s(0)* -1 0,02)*2 -5 nil
Note: TATA notation: (T )" o, nil
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Substitution and Concatenation

e Let £ :=0;/0,0,/0,.... Assume CNF =0

e Fortrees t € T(F UK), we define (simultaneous) substitution
Hay < Ly,...,ap + Lp},forase Kand i #j = ai # a;:

a{ay « Ly,...,ap+ Ly} =aforae FUK andVi. a# g
a,-{a1 <—L17...7a,,<—L,,}:L,-
f(s1,...,8m){ar < Li,...,an < Ly}
={f(ti,...,tm) | ties{ar « Ly,...,an < Lp}}

¢ And generalize this to languages

L{a < Li,...,a0 < Lo} = (t{an < L1,..., 80 < Ly})
tel

¢ And define concatenation

L1 ‘i L2 = L1{|:|,' — Lg}
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lteration

e lteration L™

LO,I' — Di Ln+1,i — Ln,i UL y Ln7i

e Note: All numbers < n of iterations included.

o If there are many concatenation points, number of iterations is independent
for each concatenation point.

e For example: f(f(0, f(30,0)),0) € {f(0,0)}*

e Closure L*

L= J L™

neN
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Preservation of Regularity (Concatenation)

Theorem

Substitution preserves regularity, i.e., letL, Ly, ..., L, be regular languages,
then L' := L{ay < Ly,...,an + Lp} is a regular language

e Proof sketch:
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Preservation of Regularity (Concatenation)

Theorem

Substitution preserves regularity, i.e., letL, Ly, ..., L, be regular languages,
then L' := L{ay < Ly,...,an + Lp} is a regular language

e Proof sketch:
o LetL Ly,...,L; berepresented by RTGs over disjoint nonterminals
e G=(S,N,F,R)with L = L(G) and G; = (S}, N;, F, B;) with L; = L(G))
e Thenlet G' = (S,NUN;U...UN,, F,R"UR; U...UR,) where R’ contains
the rules of R, but a; replaced by S;.
e L' C L(G'): Produce word from L first (the O); are replaced by S)), then
rewrite the S; to words from L;
e L(G') C L': Re-order derivation of G’ to stop at the S;
e Formally, show:
VAeEN. A—g s = 3s.A—gsAns e€s{a + Ly,...,an+ Ln}
e By induction on derivation length
e Corollary: Concatenation preserves regularity, i.e., for regular languages
Ly, Lo, the language L; - Ly is regular.
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e Construct G' = (S',NU{S'}, FUK, R), such that
e R’ contains the rules from R, with O replaced by S’
e S >0eR andS - SeR

e L* C L(G'): Obvious by construction
e L(G') C L*: Re-ordering derivation. Formally: Induction on derivation length.
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Tree Regular Expressions

e Syntax

e:=0|f(e...,e)forfe Fnlet+e|e-je]|e"
——

ntimes
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Tree Regular Expressions

e Syntax

e:=0|f(e,...,e)forfe Frle+e|e-je|e*
——

ntimes

e Semantics

0p=0
[f(et,....,en)l = {f(t,....tn) | ti € [ei]}
[e1 + e2] = [er] U [ez]
[ei -i e2] = [e1] -i [e2]

[ei] = [ei]”
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Kleene Theorem for Tree Languages

Theorem

A tree language L is regular if and only if there is a regular expression e with
L =[el

e Proof («<): Straightforward, by induction on e, using preservation of
regularity by union, concatenation, and closure
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Kleene Theorem for Tree Languages

Theorem

A tree language L is regular if and only if there is a regular expression e with
L =[el

e Proof («<): Straightforward, by induction on e, using preservation of
regularity by union, concatenation, and closure

e Proof (=>): Construct reg-exp inductively over increasing number of
states
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Kleene Theorem for Tree Languages (Proof)

o Let A=(Q,F, QFr,A) be bottom-up automaton.
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Kleene Theorem for Tree Languages (Proof)

o Let A=(Q,F, QFr,A) be bottom-up automaton.
o letQ=1{q1,...,qn}

e Define T(i,j,K) for K C Q as those trees over T(F U K) that can be
rewritten to g; using only internal states from {q1, ..., gk}

o Note: We do not require g; € {g1,...,qk}, nor K C {q1,...,qk}
o L(A)= Ui|q,-eQF T(i,n,0)
e T(i,0,K) is finite

e Runs accepting t € T(i,0, K) contain no internal states

o le,t=a()ort="f(a,...am),fora,ai,...an€ FUK
e Thus, representable by regular expression

e Forj> 0:

T(.4.K) = T0.4 = 1. K U{q)) q T0j — 1.KU{g))" 4 T(.j ~1.K)

Initial segment Runs between g;s Final segment

e Regular expression for L(.A) can be constructed
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Last Lecture

e Tree regular expressions
¢ Kleene theorem
o Tree regular expressions can express exactly the tree regular languages
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Program Analysis

e Theorem of Rice: Properties of programs undecidable
e Need approximations

e Standard approximation: Ignore branching conditions

o if (b) ... else ... Consider both branches, independent of b
¢ Nondeterministic program
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Attack Plan

¢ Properties: Reachability of configuration/regular set of configurations
e First, consider programs with recursion
e Modeled by pushdown systems (PDS)
Then, add process creation
o Modeled by dynamic pushdown systems (DPN)
e Then synchronization through well-nested locks
o DPN with locks
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Recursion

e If program has no procedures

e Runs can be described by word automaton
e Example on board

e If program has procedures
e Runs can be described by push-down system (PDS)
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Example

void p() {
1: if (...) p() else return;
2: X=y;
3: return;

}
1512 15e
x=y
23
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Push-Down Systems (PDS)

e In order to model (finitely many) return values, we add state

o A push-down system (PDS) M is a tuple (P, T, Act, po, Y0, A) where
e Pis afinite set of states

I is a finite stack alphabet

Act is a finite set of actions

Poyo € Pr is the initial configuration

A is a finite set of rules, of the form

& pwwhere p,p' € P,ac Act,ye T, andw e I'*
py < p
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PDS - Semantics

e Configurations have the form pw € PI'*
e The step-relation —C PI'* x Act x PI'* is defined by

pyw 3 pwwit py S pw € A

e —*C PI'* x Act™ x PI'* is its extension to sequences of steps

I s 10 a an ;.o
o pw =" p'wWiffl=ar...anand pw — ... = p'w
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Normalized PDS

e Simplifying assumptions
e There are only three types of rules

oy < Py forp,p' € Pand~,y €T (base)
Py <> P for p,p' € Pand v, 71,72 € T (call)
oy <P forp,p’ e PandyeTl (return)

. 2l
e Does not reduce expressiveness. Emulate rule py < ... ~yn by sequence of call
rules.

e The empty stack must not be reachable
e Does not reduce expressiveness
o Introduce fresh L stack symbol, a rule pgL N Poyo-L, and set initial state to py L
e 7 models an action that has no effect (skip)

e From now on, we assume that PDS are normalized
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Execution Trees

e Model executions of PDS as tree

e Also incomplete executions, i.e., execution may stop everywhere
o This describes all reachable configurations

A node represents a step

o If a call returns, the call-node has two successors

o Left successor describes execution of procedure
¢ Right successor describes execution of remaining program

e Execution trees described by the following tree grammar

XR ::= (Base)(XR) | (Call)?(XR, XR) | (Return)
XN ::= (Base)(XN) | (Call)N(XN) | (Call)?(XR, XN) | (P x T

o Where Base, Call, Return are rules of respective type
¢ Intuition: XR — Returning execution trees, XN — non-returning execution trees



Example

p1 < p12 p1 S p
p2xi>yp3
p3 < p

e Example execution tree
o (p1 <5 p12)((p1 5 p12)F((p1 5 p), (2 < p3)((p3))))
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Execution Trees of PDS

o Execution trees of PDS M = (P, T, Act, po, Y0, A) described by tree
automata Ay = (Q, F, 1, A 4,,)
e States: Q= PruPr|P
e pv — produce non-returning execution trees (from XN)

e pvy|p” — produce execution trees that return to state p” (from XR)
o Initial state: I = {poo}

e Rules
py = (pr < Py (0'Y') itpy 3 pyen
Py = (py S P'y172) N (P ) it py <& p'y172 € A
Py = (b7 < P'yi2) B 1P P 2) it p” € Pand py <% p'yive € A
Py = (P7)
PYIp” = v S PV (P 1) itpy % p'y €A
PP = (o7 S Pyan2) (0 p” o " elp”) i P € Pand py < plyiyz € A
pylp” — (py <> p”) ifpy > p’en
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Execution Trees — Intuition of rules

a
o py— (py = pY)(PY') (Base)
¢ Make a base step, then continue execution from p’~’

* py = (py <> P'rv2)V(p'n) (Call, no-return)
o Continue execution from p’~;.
o As call does not return, 2 is never looked at again, and remaining execution
does not depend on it

o py = (P <> pyi72) B Ip", P 2) (Call, return)
e Execute procedure, it returns with state p”. Then continue execution from
p"vz.
py — (py) (Finish)
¢ Non-deterministically decide that execution ends here
* pYIP’ = by <% p'y)(0'Y'|P") (Base)
e Base step, then continue execution

a
o pYlp” = (Ppy <= Pyir2) (P lp”, P 72lp") (Call, return)
e Return from called procedure in state p”’, then continue execution

o pylp”" — (py — p") (Return)
e Return rule returns to specified state p”
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Reached Configuration

e Function ¢ : XN — PT extracts reached configuration from execution tree

c((py <> pY)(1) = e()
c((py & Pr172)f(t, 1)) = c(t)
c((py < Pr) (1) = ()
c((p7)) = py

e Side note: This is a tree to string transducer
e Thus, set of execution trees that reach a regular set of configurations is regular

105
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Last Lecture

e Pushdown systems

o Configuration pw € PI'*
e Semantics by step relation

e Execution trees

¢ Intuition: Node for steps. Returning call nodes are binary.
o Set of execution trees of PDS is regular
e Mapping of execution tree to reached configuration

e Correlation:
o Reachable configurations wrt. step relation and execution trees match

106
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Relating Execution Trees and PDS Semantics

Theorem
Let M be a PDS. Then 3. poyo —* p'w iff 3t. t € L(Aw) A c(t) = p'w

¢ Note, a more general theorem would also relate the sequence of actions /
and the execution tree

e Proof ideas are the same
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Last Lecture

e Proof of relation between execution trees and PDS semantics
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Proof Outline

e Prove, for returning executions: 3/. py Ly p" iff 3t. py|p’ — ¢
e As cignores returning executions, this simple statement is enough

e Prove, for non-returning executions:

3. py Ly pwAw£ceiff 3t. py —> tAC(t) = p'w
e Main lemmas that are required
e An execution can be repeated when we append some symbols to the stack:

. I, IR
lemma stack-append: pw =" p'w' — pwv =" p'wv

¢ If we have an execution, the topmost stack-symbol is either popped at some
point, or the execution does not depend on the stack below the topmost
symbol. Lemma return-cases:

pyw L pw =
30" k. py Dy o' Ap'w LA p'w A= kb (ret)
VIW . W = wwAwW £enpy ST pw! (no-ret)

e Corollary: On a returning execution, we can find the point where the topmost
stack symbol is popped

lemma find-return: pyw 5* p' = 3h b p". py 5* p" Ap'w B* p!
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Proofs:

e On board

¢ lemma return-cases (find-return is corollary)
¢ Proofs for returning and non-returning executions
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Thread Creation

e Concurrent programs may create threads
e These run in parallel
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Example

void p () {
if (...) {
spawn p;
p();
}
}

main () {

p();
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Dynamic Pushdown Networks

e Pushdown systems
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Dynamic Pushdown Networks

e Pushdown systems
e Spawn-rules may have side-effect of creating a new PDS
e ADPN M = (P,T, Act, po, Y0, AA) consists of

o A finite set of states P
o A finite set of stack symbols I’
o A finite set of actions Act
e An initial configuration pyyo € Pl
e Rules A of the form
py <> p'y forp,p € Pand~,~ €T
Py <3 Py forp,p’ € Pandy,v,72 €T
oy < o' forp,p’ ¢ Pandy el
a
Py = P1y1 > Paye for p,p1,p2 € Pand vy, y1,72 €T

e Assumption: Empty stack not reachable in any spawned thread

(base
(call
(return

(spawn

= = = <



Configurations

o Configurations are trees over the alphabet (pw)/1 | Cons/2 | Nil/0
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Configurations

o Configurations are trees over the alphabet (pw)/1 | Cons/2 | Nil/0
e Forall pw e PI'”

e They have the structure
conf == (pw)(conflist)  conflist ::= Nil|Cons(conf, conflist)

e Intuitively, a node (pw)(/) represents a thread in state pw, that has
already spawned the threads in /

o Convention: We identify ¢ with the singleton list Cons(c, Nil), and use /
for the concatenation of /; and k.

e We may use [c1,.. ., cn] for the list Cons(cy, Cons(.. ., Cons(ca, Nil) .. .) for
clarification of notation.



Last Lecture

¢ Finished proof: Relation of execution trees and PDS semantics
DPN (PDS + Thread creation)
e DPN-Semantics:

¢ Configuration are trees, each node holds PDS-configuration (state+stack)
e Children are threads that have been spawned by parent

e Extract reached configuration from execution tree



Semantics

¢ A step modifies a thread’s state according to a rule

Clipyw)(N] 5 Cl(p'w'w) (/)]

it py <> p'w € A (no-spawn)
Cl{pyw) (] 2 Cl(p171w)(I{p2y2) (Nil))]

if py < pryi > Poe € A (spawn)
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Semantics

¢ A step modifies a thread’s state according to a rule

Cl{pyw)(N] = Cl(p'w'w)(1)]

if py A pw e (no-spawn)
Cl(pyw)(1)] > Cl(p1y1w)(I{p22)(Nil))]
if py < pryi > Poe € A (spawn)

e For any context C with exactly one occurrence of xq, such that

C[{pyw)(/)] € conf is a configuration
e Having exactly one occurrence of x; ensures that exactly one thread makes a
step
e Intuition:

e (no-spawn) rule just changes single thread’s configuration

e (spawn) rule changes thread’s configuration, and adds new thread to
spawned thread’s list



Execution Trees

e Binary node (py S piyi > poy2) (b, t) describes execution of
spawn-step
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Execution Trees

e Binary node (py S piyi > poy2) (b, t) describes execution of
spawn-step
e 1 describes remaining execution of spawning thread
o , describes execution of spawned thread
e Execution trees

XR ::= (Base)(XR) | (Call\(XR, XR) | (Return) | (Spawn)(XR, XN)
XN ::= (Base)(XN) | (CallyN(XN) | (Cally(XR, XN) | (P x T} | (Spawn)(XN, XN)



List Operations

o We lift list-operations to concatenate lists and trees
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List Operations

o We lift list-operations to concatenate lists and trees
o h{pw)(k) = (pw)(h L)
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Configuration of Execution Tree

e Function ¢ : XN — conf
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Configuration of Execution Tree

e Function ¢ : XN — conf
e c((Spawn)(ti, 2)) = [c(t)]c(tr)
e Prepend configuration reached by spawned thread
o c((Call)f(ty, k) = s(t)c(t)
e Have to collect configurations reached by threads spawned during call
e The remaining equations are unchanged (Complete definition on next slide)
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Reached configurations

Define ¢ : XN — conf and s : XR — conflist

c((py <5 ply/)(t
C(<P7‘—>P7172> (t,t
c((py < Pyive)N(t

where (pw)~(l) =

{(pw)(1)
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122/161



Execution trees of DPN

e Execution trees are regular set
e Same idea as for PDS. New rules for Apy:

Py = (p7 < P B Por2) (P11, Pa2)
PYIE" = (o7 < Pyt > Pev2) (P1 1P, P2v2)

. a
if py = p1vi D> peye € A
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if py = piy1 > P2y € A
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e Execution trees are regular set
e Same idea as for PDS. New rules for Apy:

Py = (p7 < P B Por2) (P11, Pa2)
PP — (py <% pri > p2v2) (P11 1P, P22)

o Complete rules on next slide

. a
if py = p1vi D> peye € A

. a
if py = piy1 > P2y € A
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Rules for execution trees

Py — (pv < P4 (')
pr = (pr S pyi2)N (')
Py — Py S D) B lp”, P 2)
Py — (Pv < prv > Pa2) (D174, Pov2)
py = (pY)
Pyl = (py < Py ) (P 1)
PP = (pr S P'y172) (01 10", P 2 ")
7 a 7/
pylp" — (py = piv1 > pev2) (P11 1P, parv2)
PR = (py 5 p”)

ifpy <> p'y €A
it py < Py € A
if "’ € Pand py & Pyive €A

it py <% pyvi > pov2 € A

ifpy 5 p'y €A

/11

it o' € Pand py < plygye € A
. a

if oy = p1y1 > P2y € A
ifoy <l p’ e
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Relating Execution Trees and DPN Semantics

Let M be a DPN. Then 3l. pyyo —* ¢’ iff3t. t € L(Ay) A c(t) = ¢’

¢ Note: Relating the action sequences is more difficult
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Relating Execution Trees and DPN Semantics

Theorem
Let M be a DPN. Then 31. poyo —* ¢ iff3t. t € L(Am) A c(t) = ¢’

¢ Note: Relating the action sequences is more difficult

e They are interleavings of the thread’s action sequences
e One execution tree corresponds to many such interleavings
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Interleaving

e We define sy ® sp to be the set of interleavings of lists sy and sp

Si®e=1{s} E® S = {S2}
151 ® @82 = a1(S1 @ @aS2) U ax(a151 ® S2)

e Intuitively: All sequences of steps that may be observed if one thread
executes sy and another independently executes s;.
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Proof Ideas

e Execution of different threads is almost independent
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Proof Ideas

e Execution of different threads is almost independent
e Only spawn should be executed before other steps of spawned thread

o Re-order step: On spawn, all steps of spawned thread first, and then the rest

e Lemma indep-steps:

(pw)([c]) =" (P'W)(I') <
E|Cl /// S So. // _ CIIII/\SE S ®SQ/\<DW>(€) i* <,DIW/>(/”)AC%* C/

e Proof, by induction on number of steps:

*

(py)(e) =" (P)(c) <= Ttpylp’ = tAs(t)=C
(PW)YC)AW #e < Ftpy—tac(t) = (P'w)(c)

*

(p)(e) =

o Need to prove both propositions simultaneously
o But may separate —> and <= directions

126

161



Example Proof Step

e Example step for =-direction

(o) (e) =" (P)(I") = 3Ftpylp’ — tast) =T
(o) (e) =" (PWH(I) AW #e = Ttpy = tAc(t) = (P'w)(I)
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(o7)(e) =" (PW)(I) AW #e = Ttpy = tAact) = (P'w) ()

e Case: Returning path makes a spawn-step

e We have r := py = py > piy1 € A and (p7)(piy1) =" (p')(¢))
e Using indep-steps, to separate executions of spawned and spawning thread,
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e Example step for =-direction
(p7)(e) =" (P)(I') = Ftpylp’ — tAs(t) =T
(Pr)(e) =" (P'W)(I) AW #e = 3t.py— tAc(t)= (p'w)(l)

e Case: Returning path makes a spawn-step

e We have r := py = py > piy1 € A and (p7)(piy1) =" (p')(¢))
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e Case: Returning path makes a spawn-step

e We have r := py = py > piy1 € A and (p7)(piy1) =" (p')(¢))
e Using indep-steps, to separate executions of spawned and spawning thread,

we obtain ¢’, I’ where
=G A pA)e =" (P)(I") A (pryn)(e) = ¢
e With IH, we obtain t;, & with
PP =t ns(t)=1" Apiyi = b Ac(k)=C
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Example Proof Step

e Example step for =-direction
(p7)(e) =" (P)(I') = Ftpylp’ — tAs(t) =T
(Pr)(e) =" (P'W)(I) AW #e = 3t.py— tAc(t)= (p'w)(l)

e Case: Returning path makes a spawn-step

e We have r := py = py > piy1 € A and (p7)(piy1) =" (p')(¢))
e Using indep-steps, to separate executions of spawned and spawning thread,
we obtain ¢’, I’ where

I'=c1" A (p3)e =" (P)(I") A (pim)(e) = ¢
e With IH, we obtain t;, & with

PP =t ns(t)=1" Apiyi = b Ac(k)=C
o By definition of the rules for Ay, we get

pylp" = (N (B3P, piv1) = (N)(t, t2)
e And, by definition of s() , we have

s((n(t, ) = [e(t)]s(t) =c'I" =1 O
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Lock-Insensitive Reachability

e Can perform a simultaneous reachability analysis
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Lock-Insensitive Reachability

e Can perform a simultaneous reachability analysis

e By asking: ,Is a configuration from a regular set of configurations
reachable?”

o [f the analysis returns no, we are sure that no such configuration is reachable
o If the analysis returns yes, such a configuration may be reachable

e Or it may be a false positive due to over-approximation
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e Consider locks.
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Lock-Sensitive Analysis

Consider locks.

Locks can be acquired and released, each lock can be acquired by at
most one thread at the same time.

Used to protect access to shared resources

We assume there is a finite set IL of locks, and the actions [; (acquire) and
|/ (release) for every [ € LL
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¢ Reachability with arbitrary locking is undecidable
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Decidability

e Reachability with arbitrary locking is undecidable
e Emptiness of intersection of CF-Languages

e Consider nested locking, like synchronized-methods in Java
¢ Bind locks to procedures: Acquisition on call, release on return
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Undecidability

¢ Well-Known: Emptiness of intersection of CF-languages is undecidable
o Already over alphabet {0, 1}

e CF-language can be simulated by PDS, where only base-transitions
produce output
e Idea: Run two PDS concurrently, and ensure that sequences of base
transitions must run in lock-step
e These encode output of 0 and 1. Lockstep ensures, that the other thread
must output the same.
o Check for simultaneous reachability of final states
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Undecidability

Synchronizing two threads with locks
e Locks:0,0!,07and 1,1!,17
e Assumption: Thread one initially holds 0!, 1!, thread two initially holds 07,17
To produce a 0:
e Thread 1 executes: [07]()![0]07[0[]0
e Thread 2 executes: [o]oy[o[]o[oy]og
The only possible execution of these two sequences is
Thread 1: oz Jor o Jor o o
Thread 2: | [0 Jo» o0 o oz Jor
e And when Thread 2 has finished, it cannot re-enter the synchronization
sequence until Thread 1 has also finished, and released 0.

The sequences for producing 1 are analogously
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Undecidability

e Remaining problem: Ensure that the locks are initially allocated, before
the threads start the production of output symbols
e Solution: Additional locks /s and b
e Thread 1: [oi[1:[4], [,<sStart of output>
e Thread 2: [o[17[5],, [ <start of output>
o |f one thread starts before the other has finished initialization, the other will
be stuck at [;], forever
e Thus, final states of PDSs simultaneously reachable, iff encoded
CF-languages have non-empty intersection
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Complexity for nested locks

e NP-Hardness

Reachability analysis for nested locks and procedures is NP-hard
Problem: Deadlocks may prevent reachability

e Reduction to 3-SAT:

One lock per literal: Allocated — literal is false, Free — literal is true

Use nested procedures and non-determinism to allocate locks according to
configuration

Check for clause /y v k  l3: Nondeterministically run one of [;;];

Enforce correct order of guessing assignment and checking: One additional
lock
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Reduction to 3-SAT

e Reminder (3-SAT)

e Variables xo, ..., Xn, literal: x; or x;
e Formula® = A._; Vs _3lj where the /; are literals

® V1. 3ljis called clause

e It is NP-complete to decide whether ¢ is satisfiable.
e i.e. whether there is a valuation of the variables such that ¢ holds.
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Reduction to 3-SAT

ass(i):
if ... then {
acquire x; ass(i+1) release x;
} else {
acquire x; ass(i+1) release X;
}

return

ass(n+1):
acquire(s); release(s);
labell: return

thread1: ass(1)

check(i):
if (...) {
acquire Iy, release lj;
} else if (...)
acquire lp; release lp;
} else {
acquire liz; release l3;

}

thread2:
acquire(s);
check(1); ...; check(m);
label2: skip
release(s)

e labell and label2 simultaneously reachable, iff formula is satisfiable.
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Last Lecture

e Execution trees of DPN
o Locks: Negative results
o Reachability in DPN (even 2-PDS) wrt. arbitrary locking is undecidable
e Reduction to deciding intersection of CF languages
¢ Reachability in DPN (even 2-PDS) wrt. nested locking is NP-hard
e Reduction to 3-SAT
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2-PDS with locks

e Two PDS with locks. Both share same rules.
o M= (P,T,Act, L, p}1},p373, A)

P, T, A: States, stack alphabet, rules

Act=Acty U{[x | x e L} U{]x | x e L}

L: Finite set of locks

p9~9, p3~3: Initial states of left and right PDS

e Assumption: Locks are well-nested and non-reentrant
o In particular, thread does not free ,foreign” locks

139/161



Semantics
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Semantics

o Configurations: (pywy, pows, L) € PT* x PI* x 2-
e cond([x,L) =x ¢ L, eff([x,L) = LU {x}
e cond(]x, L) = true, eff(]x, L) = L\ {x}
e cond(a,L) = true, eff(a,L) = Lfor a € Acty

e Step

(Pywr, powa, L) B (o'W wy, pows, eff(a, L)) if py <> p'w’ € A and cond(a, L)
(left)

(p1wr, pywo, L) Bis (prws, p'w'wy, eff(a, L)) if py <% p'w’ € A and cond(a, L)
(right)
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Lock sensitive scheduling

e Idea: Abstraction from PDS
e Check whether two execution sequences can be interleaved
o Configurations: (h, k, L) € Act* x Act* x 2-

e Step
(aly, b, L) < (h, b, eff(a, L)) if cond(a, L)
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e Idea: Abstraction from PDS
e Check whether two execution sequences can be interleaved

e Configurations: (/y, b, L) € Act* x Act* x 2&
e Step
(a/1 ) /27

L) — (h, b, eff(a, L)) if cond(a, L) (left)
(h,ak,L)

A
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Lock sensitive scheduling

e Idea: Abstraction from PDS
e Check whether two execution sequences can be interleaved

e Configurations: (/y, b, L) € Act* x Act* x 2&

e Step
(aly, b, L) < (h, b, eff(a, L)) if cond(a, L) (left)
(h,ab, L) < (I, b, eff(a, L)) if cond(a, L) (right)
e Lemma

(p1 W17p2W27 L) 4/>* (pq W‘;vpéwé7 L/)
iff ah, b. P1Wq i)* ,Dg W1/ N P2 Wao E}* ,DéWé A (I1,/2, L) *I>* (5,{:‘, L,)

e Intuition: Schedule lock-insensitive executions of the single PDSs
e Proof: Straightforward simulation proof
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e Intuitively: Append execution trees of left and right PDS to binary root

node o.
e X2 ::=o(XN, XN)
e Tree automata: Tree automata for PDS execution trees, but
« Initial state i, and additional rule i — o(p%?, p313)

e We have (with lemma from previous slide)
(p1w1, pawe, L) - (Pywi, pawsy, L)
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Execution trees of 2-PDS

e Intuitively: Append execution trees of left and right PDS to binary root

node o.
e X2 ::=o(XN, XN)
e Tree automata: Tree automata for PDS execution trees, but
« Initial state i, and additional rule i — o(p%?, p313)

e We have (with lemma from previous slide)

(p1wy, pows, L) L (Pywy, pows, L)
iff 3ty to. i — o(ty, ) A c(ty) = piwi A (k) = pows
Aatr), alt),L) 5" (e,e,L)

e Where ¢ : XN — conf extracts reached configuration from execution tree
and a: XN — Act” extracts labeling sequence from execution tree (cf.

Homework 9.2)
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Attack Plan

o Compute information ah(l;), ah(/) which
e Can be used to decide whether (h, k,0) —* (g,e,_)
e Sets of which can be computed by tree automaton over execution trees

e Thus, we get a tree automaton for schedulable execution trees.

e Checking the intersection of this, the tree automaton for execution trees,
and the error property for emptiness gives us lock-sensitive
model-checker

143
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Acquisition Histories: Intuition

o Categorize an action [, in an execution sequence as
Final acquisition If lock x is not released afterwards
Usage If lock / is released afterwards
e When can two sequences /; and k be scheduled?

¢ No lock is finally acquired in both, /; and b
e There must be no deadlock pair

e |e, / finally acquires x; and then uses x», and k finally acquires x» and then
uses Xy

o We will now prove: This characterization is sufficient and necessary
e And can be computed for the sets of all executions by tree automata

144/161
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Acquisition Histories: Definition
e Given an execution sequence / € Act*, we define ah(/) := (A(/), G(/))

where
e A(/) C Lis the set of finally acquired locks:
A) =10
A(al) = A(l) ifae Actyora=]xforx el
A([x!) = A()) if]x €/
A([x!) = A(l) U {x} if x &/
e G(/) CL x L is the lock graph:
Ge)=10
G(al) = G(I) ifac Actyora=|]xforx elL
G(Ix) = G()) if]x €l
G([x) = G(I) U {x} x acq(/) if [x ¢/
where acq(/) .= {x | [x € I}
e Lemma

(h, b, 0) =* (c,, ) iff A(h) N A(l) = 0 A acyclic(G(h) U G(k))
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Proof ideas

o —>
e Generalize to

VL. (h, b, L) " (e,e,_) => A(h) N A(k) = 0 A acyclic(G(h) U G())

e Induction on —~*

e Interesting case: First step is final acquisition: [x
e [, will not occur in remaining execution
e Thus, it cannot close a cycle in the lock graphs

o —
e Generalize to

A(h) N A(k) = 0 A acyclic(G(h) U G(k))
= VL Ln(acq(h)Uacq(k)) =0 = (h,k,L) =" (e,e,_) (1)

e Induction on |/]| + |k|
e Schedule usages of locks first
e If both, /; and k start with final acquisitions:
Choose acquisition that comes first in topological ordering of G(/1) U G(k)

146/161
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Computation of acquisition histories

e There are only finitely many acquisition histories
e Exponentially many in number of locks

e Set of all schedulable 2-PDS execution trees is regular
e In practice: Avoid computing unnecessary states of tree automata
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Last Lecture

e 2-PDS with locks
e Acquisition histories
¢ Deciding lock-sensitive reachability
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DPNs with locks

e Same ideas as for 2-PDS

e M= (Pv rv ACta ]La Poo0, A)

P, T, A: States, stack alphabet, rules (with spawns)

Act = Acty U{[x | x e L} U{]x | x e L}

L: Finite set of locks

Poyo: Initial state

e Assumption: Locks are well-nested and non-reentrant
¢ In particular, thread does not free ,foreign” locks
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Semantics

e As for 2-PDS: Add set of locks

e Recall: conf ::= (pw)(conflist) conflist ::= Nil|Cons(conf, conflist)
e confj, := conf x L

e Step relation:

(c,L) 2 (c, eff(a,L)) iff cond(a,L) Ac B ¢
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BL ::= Nil | Cons(a, BL) | Spawn(a, BL, BL) for all a € Act
ST .= (BL)(SL) SL::= Nil | Cons(ST, SL)

e Combination of configurations and sequences of actions to be executed
o Each thread in configuration is labeled by actions it still has to execute
e Spawn actions have two successors: Actions of spawning thread and
actions of spawned thread
e Scheduler semantics
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Lock-Sensitive Scheduling

¢ Abstract from DPN-configurations
e Scheduling tree:

BL ::= Nil | Cons(a, BL) | Spawn(a, BL, BL) for all a € Act
ST .= (BL)(SL) SL::= Nil | Cons(ST, SL)

e Combination of configurations and sequences of actions to be executed
o Each thread in configuration is labeled by actions it still has to execute
e Spawn actions have two successors: Actions of spawning thread and
actions of spawned thread
e Scheduler semantics

(Cl{Cons(a, )(s)], L) 3 (C[{I)(s)], eff(a, L)) iff cond(a, L) (no-spawn)
(C[(Spawn(a, 1, k))(s)], L) 4 (CIKh)(s[{k)Y(NIND)], eff(a, L)) iff cond(a,L) (spawn)
where C is a context with exactly one occurrence of x;.

e Terminated scheduling tree: All steps are executed, i.e., all nodes labeled
with Nil

STierm = (Nil)(SLierm) SLierm ::= Nil | Cons(STierm, SLierm)
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(NI =1
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Operations on Branching Lists
e Generalized concatenation

(NI =T
Cons(a,l)I' := Cons(a, II')
Spawn(a, i, b)I' :== Spawn(a, I, )
e This thread’s steps: this : BL — Act”

this(Nil) := Nil
this(Cons(a, I)) := Cons(a, this(I))
this(Spawn(a, 1, kb)) = Cons(a, this(l))

o Set of steps

x € Nil := false
x € Cons(a,l):=x=avxel
x € Spawn(a, h,b) =x=avxehVvxeh
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Relation of execution tree and scheduling tree

e Execution trees correspond to scheduling trees: st : XN — ST and
st’ . XN — BL where

st(t) == (st'(t))(Nil)
st ({py < p'y')(1)) == Cons(a, st'(1))
st ({(p7 <> p171 & Paye)(tr, b)) == Spawn(a, st'(tr), st'(t2))
st'({py <> p'y12)"(1)) := Cons(a, st (1))
st((py <5 p'y2) (4. ) = [alst (t)st (1)
st'((py)) == Nil
st'({py <% p')) := Cons(a, Nil)
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Relation of execution tree and scheduling tree

e Execution trees correspond to scheduling trees: st : XN — ST and
st’ . XN — BL where

st(t) == (st'())(Nil)
st ({py < p'y')(1)) == Cons(a, st'(1))
st ({(p7 <> p171 & Paye)(tr, b)) == Spawn(a, st'(tr), st'(t2))
st'({py <> p'y12)"(1)) := Cons(a, st (1))
st((py <5 p'y2) (4. ) = [alst (t)st (1)
st'((py)) == Nil
st'({py <% p')) := Cons(a, Nil)

e |t can be proved

((Po0)(), 0) - (¢, L)
= 3te XN.3t' € STiam. t € L(Am)AC(t) = ¢ A(st(t), 0) L+ (¢, L)

¢ Note: This proof requires a generalization from a single-thread start
configuration to arbitrary start configurations. 154/161



Acquisition Histories for Scheduling Trees
e Assumption: Acquisition and release only on base rules
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e Assumption: Acquisition and release only on base rules
e Compute set of final acquisitions

A(NIil) =0
A(Spawn(a, I, k)) = A(h) U A(k)
A(Cons(a,l)) = A(/) ifac Actyora=]yforx el
A(Cons([x, 1)) = A()) if |x € this(/)
A(Cons([x, 1)) = A(l) U {x} if |x ¢ this(/)
e Check consistency of final acquisitions
fac(Nil) = true fac(Cons(a,l)) = fac(/) fac(Spawn(a,h,k)) = fac(h
e Compute acquisition graph
G(Nil) =0
G(Spawn(a, I, k)) = G(h) U G(k)
G(Cons(a,l)) = G(I) if ae Actpora=|y forx €1
G(Cons([x, 1)) = G(I) if |x € this(/)
G(Cons([x, 1)) = G(I) U {x} x acq(l) if]x ¢ this(/)
where acq(/) := {x | [x € I}
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Acquisition Graphs characterize Schedulability

e For scheduling tree (bl)(Nil) € ST and labeling sequence / € Act*, we
have

3t.((bIY(Nil), 0) 5* (', L) At € STierm <= acyclic(G(bl)) A fac(bl)
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Acquisition Graphs characterize Schedulability

e For scheduling tree (bl)(Nil) € ST and labeling sequence | € Act™, we
have

3t’.((bl)(Nil), D) Ly (t', L)\t € STierm < acyclic(G(bl)) A fac(bl)

e Proof Ideas:
o —
e G(t) expresses constraints due to locking, that any schedule has to follow
e Formally: Generalize to arbitrary initial set of locks and arbitrary scheduling
trees, induction on scheduling tree.

e Scheduling strategy: Schedule usages first. Final acquisitions in topological
ordering of acquisition graph

o Formally: Generalize to initial set of locks disjoint from locks that occur in
scheduling tree. Generalize to arbitrary scheduling tree. Induction on scheduling
tree.
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Set of schedulable execution trees is regular

e Schedulable scheduling trees are regular (compute acquisition graphs by
tree automata)
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Set of schedulable execution trees is regular

e Schedulable scheduling trees are regular (compute acquisition graphs by
tree automata)

st~ preserves regularity: Just another tree transducer construction

e Thus, we can decide lock-sensitive reachability of a regular set of
configurations of a DPN.
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Remark on complexity

e The lock-sensitive reachability problem is in NP:
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Remark on complexity

e The lock-sensitive reachability problem is in NP:
e For a sequential run, only polynomially many acquisition graphs/final
acquisition sets occur
e So, for 2-PDS, we can guess these in advance

e For DPN: There may be exponentially many acquisition graphs!
e However, not for schedulable runs

e Problem remaining: There may be exponentially many sets of used locks
e Solution: Only check that certain locks are not used

e Set of used locks only required at final acquisition.

e Just check that less locks are used afterwards

e Accepts executions with the guess acquisition graph, or with smaller ones
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Main Theorem

Lock-sensitive reachability of a regular set of configurations is NP-complete
for DPNs
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Complexity of related problems

] || DPN [ PPDS [ 2PDS [ DFN | PFSM [ nFSM |

EF(p1 || p2) NP*7 [ NPT | NPT [ NP* P P
EF(A) NP NP | NP7 | NP | NP P
EF(p1 || p2 NEF(ps || p4)) || NP NP NP [ NP* P P
EF(A; A EF(Az)) NP NP NP NP NP P
EF\"®9 (fixed #ops) NP NP NP NP NP P
EF (fixed #ops) > PSPACE! >NP P
EF\"%0 > PSPACE?#Y’ |>NPH| P
EF > PSPACE! P

x Requires spawn inside lock

«! Polynomial algorithm if no spawn inside lock
x?7 Complexity unknown if no spawn inside lock

1?7 Hardness proof requires deadlocks/escapable locks. Complexity without this unknown.
1 Hardness result requires no locks
reg? Hardness requires regular APs. Complexity for double-indexed APs unknown (>NP)

160/161



The End

Thank you for listening
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