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Optimal Sorting Networks
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Abstract. This paper settles the optimality of sorting networks given in
The Art of Computer Programming vol. 3 more than 40 years ago. The
book lists efficient sorting networks with n ≤ 16 inputs. In this paper we
give general combinatorial arguments showing that if a sorting network
with a given depth exists then there exists one with a special form. We
then construct propositional formulas whose satisfiability is necessary for
the existence of such a network. Using a SAT solver we conclude that the
listed networks have optimal depth. For n ≤ 10 inputs where optimality
was known previously, our algorithm is four orders of magnitude faster
than those in prior work.

1 Introduction

In their celebrated result, Ajtai, Komlós and Szemerédi (AKS) [1], gave an opti-
mal oblivious sorting algorithm with O(n log n) comparisons in O(log n) parallel
steps. An oblivious sorting algorithm is one in which the order of comparisons is
fixed and depends only on the number of inputs but not their values. Compare
this with standard algorithms such as MergeSort or QuickSort where the order
of comparisons crucially depends on the input values.

A popular model of oblivious sorting algorithms are so-called sorting net-
works, which specify a sequence of swap-comparisons on a set of inputs, and
whose depth models the number of parallel steps required. Even though the
AKS network has asymptotically optimal depth, it is infamous for the large
constant hidden in the big O bound; recursively constructed networks of depth
O(log2 n) [2] prove superior to the AKS network for all practical values of n.
Small networks for small numbers of inputs serve as base cases for these re-
cursive methods. However, constructing networks of optimal depth has proved
extremely difficult (e.g., [5,7]) and is an open problem even for very small number
of inputs. We address this problem in this paper.

Already in the fifties and sixties various constructions appeared for small
sorting networks on few inputs. In 1973 in The Art of Computer Programming
vol. 3 [4], Knuth listed the best sorting networks with n ≤ 16 inputs known at
the time. It was further shown in [3] that these networks have optimal depth for
n ≤ 8. No progress had been made on the problem until 1989 when Parberry [7]
showed that the networks listed in [4] are optimal for n = 9 and n = 10. The re-
sult was obtained by implementing an exhaustive search with pruning based on
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symmetries in the first two parallel steps in the sorting networks, and executing
the algorithm on a supercomputer (Cray-2). Despite the great increase in avail-
able computational power in the 24 years since, the algorithm would still not be
able to handle the case n = 11. Recently there were attempts [5] at solving the
case n = 11 but we are not aware of any successful one.

Forty years after the publication of the list of small sorting networks by
Knuth [4], we finally settle their optimality for the remaining cases n = 11 up
to and including 16. We give general combinatorial arguments showing that if
a small-depth sorting network exists then there exists one with a special form.
We then construct propositional formulas whose satisfiability is necessary for the
existence of such a network. By checking the satisfiability of the formulas using
a SAT solver we conclude that no smaller networks than those listed exist.

We obtained all our results using an off-the-shelf SAT solver running on a
standard desktop computer. It is noteworthy that our algorithm required less
than a second to prove the optimality of networks with n ≤ 10 inputs whereas
the algorithm in [7] was estimated to take hundreds of hours on a supercomputer
and that in [5] took more than three weeks on a desktop computer.

2 Sorting Networks

A comparator network C with n channels and depth d is defined as a tuple
C = 〈L1, . . . , Ld〉 of layers L1, . . . , Ld. Each layer consists of comparators

〈i, j〉 for pairs of channels i < j. Every channel i is required to occur at most
once in each layer Lk, i.e., |{j | 〈i, j〉 ∈ Lk ∨ 〈j, i〉 ∈ Lk}| ≤ 1. A layer L is called
maximal if no more comparators can be added into L, i.e., |L| = ⌊n

2 ⌋.
An input to a comparator network is a sequence of numbers applied to chan-

nels in the first layer. The numbers are propagated through the network; each
comparator 〈i, j〉 takes the values from channels i and j and outputs the smaller
value on channel i and the larger value on channel j. For an input sequence
x1, . . . , xn define the value V (k, i) of channel 1 ≤ i ≤ n at layer k = 0 (input) to
be V (0, i) = xi and at layer 1 ≤ k ≤ d to be:

V (k, i) =







min(V (k − 1, i), V (k − 1, j)) if 〈i, j〉 ∈ Lk,
max(V (k − 1, i), V (k − 1, j)) if 〈j, i〉 ∈ Lk,
V (k − 1, i) otherwise.

The output C(x) of C on x is the sequence 〈V (d, 1), V (d, 2), . . . , V (d, n)〉. See
Fig. 1 for an example of a network and its evaluation on an input.

Each comparator permutes the values on two channels and hence the output
of a comparator network is always a permutation of the input. A comparator
network is called a sorting network if the output C(x) is sorted (ascendingly)
for every possible input x ∈ Z

n. We denote the set of all sorting networks with
n channels and depth d by S(n, d).

In this work, we are interested in finding the optimal-depth sorting networks
for small values of n. That is, given n, what is the least value of d, denoted by
V (n), such that S(n, d) is nonempty?



Optimal Sorting Networks 3

0

1

0

1

0

1

0

1

0

1

0

1

0

0

1

1

7

5

0

2

5

7

0

2

0

2

5

7

0

2

5

7

(a) (b)

Fig. 1. A comparator network (L1 = {〈1, 2〉, 〈3, 4〉}, L2 = {〈1, 3〉, 〈2, 4〉}, L3 = {〈2, 3〉})
with 4 channels, 5 comparators, and depth 3. The channels go from left to right, the
first channel is at the bottom, the dashed lines separate the layers. The network on
the left is evaluated on the input 〈0, 1, 0, 1〉 and the network on the right on 〈7, 5, 0, 2〉.
Diagram shows the values on channels after each layer.

Observe that the function V (n) is non-decreasing. Let C be a sorting network
with n channels, and construct a networkD from C by removing the last channel
and all comparators attached to it. Then D is a sorting network with n − 1
channels: its behaviour on any input is simulated by the first n − 1 channels
of C if the input to the last channel is set larger than all other inputs (C(x∞)
is D(x)∞, and C(x∞) is sorted so D(x) is also sorted).

2.1 Known Bounds on V (n)

Fig. 2 summarises the best bounds on V (n) for n ≤ 16 channels known before our
work. See [7] for lower bounds on V (9) and V (10), all other numbers appeared
already in [4]. The main contribution of this paper is that S(11, 7) and S(13, 8)
are empty. Thus we improve the lower bounds for n = 11, 12 and 13 ≤ n ≤ 16
to 8 and 9, respectively, thereby matching the respective upper bounds.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Upper bound 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9

Lower bound 0 1 3 3 5 5 6 6 7 7 7* 7* 7* 7* 7* 7*

Fig. 2. Table summarising the best lower and upper bounds known before our work.
We improve the starred lower bounds to match the corresponding upper bound.

One can think of a layer of a comparator network as a matching on n ele-
ments: a comparator joins two distinct elements. The number of matchings on n

elements grows exponentially in n. (See Fig. 3 for values for n ≤ 13.) In partic-
ular, there are 35696 matchings on 11 elements, so to establish the lower bound
V (11) ≥ 8 we have to show that none of the 356967 ≥ 1031 comparator networks
with 11 channels and depth 7 is a sorting one. Similarly, to establish V (13) ≥ 9
we have to consider 5685048 ≥ 1046 candidate networks. These numbers imme-
diately make any exhaustive search approach infeasible. In the next section we
present techniques to reduce the search space of possible sorting networks, and
in Section 4 we show how to explore this space using a SAT solver.
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3 Search Space Reduction

In the previous section we showed that the number of comparator networks grows
very quickly. In this section we study general properties of sorting networks with
arbitrary numbers of channels and depth, and we show that if S(n, d) is non-
empty then it contains a sorting network of a particular form, thus restricting
the set of possible candidate networks. For example, for n = 13 this restricts the
set of 5685042 ≥ 3 · 1011 possible first-two layers to only 212 candidates.

Our arguments build upon and extend those from [7], and are based on four
technical lemmas given in the following subsections. We make use of the following
notation. The set of all layers on n channels is denoted as Gn . For two networks
C = 〈L1, . . . , Lp〉 and D = 〈M1, . . . ,Mq〉 with the same number of channels, the
composition C #D of C and D is the network 〈L1, . . . , Lp,M1, . . . ,Mq〉. That is,
we first apply C and then D; for any input x ∈ B

n we have (C #D)(x) = D(C(x)).
A prefix of a network C is a network P such that C = P # Q for some network
Q. If L is a single layer, we abuse the notation, treat L as a comparator network
of depth 1, and write L(x) for the application of the layer L on input x.

3.1 A Sufficient Sorting Condition

Before we even start looking for sorting networks it seems necessary to check
infinitely many inputs (every x ∈ Z

n) just to determine whether a comparator
network is a sorting one. However, a standard result restricts the set of sufficient
inputs to the Boolean ones. Denote B = {0, 1}.

Lemma 1 ([4]). Let C be a comparator network. Then C is a sorting network
if and only if C sorts every Boolean input (every x ∈ B

n).

3.2 Output-minimal Networks

When looking for a sorting network C = 〈L1, . . . , Ld〉, we can assume without
loss of generality that the first layer L1 is maximal, since by adding comparators
to the first layer we can only restrict the set of its possible outputs. We can-
not assume that all layers are maximal, but we can assume that the individual
prefixes are maximally sorting in the following sense.

By outputs(C) = {C(x) | x ∈ B
n} we denote the set of all possible outputs

of a comparator network C on Boolean inputs. The following lemma states that
it suffices to consider prefixes P with minimal outputs(P ).

Lemma 2. Let C = P #S be a sorting network of depth d and Q be a comparator
network such that depth(P ) = depth(Q) and outputs(Q) ⊆ outputs(P ). Then
Q # S is a sorting network of depth d.

Proof. Since depth(P ) = depth(Q) we have depth(Q # S) = depth(P # S) = d.
Let x ∈ B

n be an arbitrary input. Then Q(x) ∈ outputs(Q) ⊆ outputs(P ).
Hence, there is y ∈ B

n such that Q(x) = P (y). Thus, (Q # S)(x) = S(Q(x)) =
S(P (y)) = (P # S)(y) = C(y), which is sorted since C is a sorting network. ⊓⊔
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3.3 Generalised Sorting Networks and Symmetry

We further restrict the set of candidate sorting networks by exploiting their sym-
metry. To facilitate such arguments, we introduce so-called generalised compara-
tor networks [4] where we lift the condition that the min-channel of a comparator
is the one with a smaller index.

Formally, a generalised comparator network C with n channels and
depth d is a tuple C = 〈L1, . . . , Ld〉 whose layers L1, . . . , Ld consists of com-
parators 〈i, j〉 for channels i 6= j, such that each channel occurs at most once
in each layer. A comparator 〈i, j〉 is called a min-max comparator if i < j

and a max-min comparator otherwise. Channel i receives the minimum and
channel j receives the maximum of the values on channels i and j.

A generalised comparator network can move smaller values to the channel
with larger index; we adapt the definition of a sorting network to reflect this.
A generalised comparator network C is a generalised sorting network if
there exists a permutation πC such that for every x ∈ B

n the value of C(x)
is sorted after applying πC . That is, if C(x) = (y1, . . . , yn) then we require
(yπC(1), . . . , yπC(n)) to be sorted. It is well known [6,4] that a generalised sorting
network can always be untangled into an “ordinary” sorting network of the same
dimensions. Furthermore, this operation preserves the “ordinary” prefix:

Lemma 3 ([6,4]). If G is a generalised sorting network of depth d then there
exist a sorting network C of depth d. Furthermore, if G = P # H where P is a
comparator network then C = P # I where I is a comparator network.

Let π be a permutation on n elements. For a comparator 〈i, j〉 we define
the comparator π(〈i, j〉) = 〈π(i), π(j)〉, and we extend the action of π to layers
and networks: π(L) = {π(C1), . . . , π(Ck)} and π(C) = 〈π(L1), . . . , π(Ld)〉. Intu-
itively, applying π to a comparator network is equivalent to permuting the chan-
nels according to π; possibly flipping min-max and max-min comparators. Since
a generalised sorting network sorts all inputs up to a fixed permutation (πC) of
the output, so do its permutations π(C) (up to the permutation πC ◦ π−1).

Lemma 4 ([7]). Let C be a generalised sorting network with n channels and π

be any permutation on n elements. Then π(C) is a generalised sorting network.

Lemmas 1 and 2 also hold for generalised comparator networks.

3.4 First Layer

We showed in Section 3.2 that if there is a sorting network in S(n, d), then there
is one whose first layer is maximal. Now we show that for any maximal layer L,
there exists a sorting network in S(n, d) whose first layer is L.

Lemma 5 ([7]). Let L be a maximal layer on n inputs. If there is a sorting
network in S(n, d) there is a sorting network in S(n, d) whose first layer is L.
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Proof. Let C = L1 #N be a sorting network with L1 its first layer. By Section 3.2,
if L+

1 ⊇ L1 is a maximal layer, then C+ = L+
1 #N is also a sorting network. Since

L+
1 and L are both maximal, there is a permutation π such that π(L+

1 ) = L.
Then, π(C+) is a generalised sorting network by Lemma 4. Now, π(C+) =
π(L+

1 ) #π(N) = L #π(N), and by Lemma 3 there is a comparator network I such
that L # I is a sorting network and depth(L # I) = depth(C+) = depth(C). ⊓⊔

Lemma 5 allows us to consider only networks with a given maximal first
layer. For networks on n inputs we fix the first layer to

Fn = {〈i, ⌈n
2 ⌉+ i〉 | 1 ≤ i ≤ ⌊n

2 ⌋}.

3.5 Second Layer

Next we reduce the possibilities for the second layer1, not to a single candidate
but to a small set of candidate second layers. For n = 13 we arrive at 212
candidates out of the possible 568504 second layers.

As for the first layer, we can consider second layers modulo permutations of
channels. However, we must take into account that the first layer is already fixed
to Fn, and only consider permutations that leave the first layer intact.

Lemma 6 ([7]). Let π be a permutation such that π(Fn) = Fn and let L be a
layer on n channels such that π(L) is a layer. If S(n, d) contains a network with
first layer Fn and second layer L, it also contains a network with first layer Fn

and second layer π(L).

Denote by Hn the group of permutations on n elements that fix Fn. Two
layers L and L′ are equivalent under Hn if L′ = π(L) for some π ∈ Hn. For any
set S of layers, denote by R(S) a set of (lexicographically smallest) representa-
tives of S equivalent under Hn. Lemma 6 then implies that it suffices to consider
networks with second layers from R(Gn).

Recall from Lemma 2 that it is enough to consider prefixes of comparator
networks with minimal sets of possible outputs. We apply a symmetry argument
similar to Lemma 6 to the sets of possible outputs, and observe that it extends
to all permutations on n channels. In particular we show that it is enough to
consider second layers whose sets of possible outputs are minimal up to any
permutation of channels.

Lemma 7. Let La and Lb be layers on n channels such that outputs(Fn #Lb) ⊆
π(outputs(Fn #La)) for some permutation π on n channels. If S(n, d) contains a
network with first layer Fn and second layer La, it also contains a network with
first layer Fn and second layer Lb.

Proof. Let C = Fn # La # N be a sorting network of depth d. Then π(C) =
π(Fn # La) # π(N) is a generalised sorting network. Since outputs(Fn # Lb) ⊆
π(outputs(Fn #La)) = outputs(π(Fn #La)), Lemma 2 implies that Fn #Lb #π(N) is
also a generalised sorting network. Then, by Lemma 3, there exists a comparator
network I such that Fn # Lb # I is a sorting network of depth d. ⊓⊔

1 We assume that n > 2 so that the first layer Fn is not yet a sorting network.
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If outputs(Fn # Lb) ⊆ π(outputs(Fn # La)) for some permutation π, we write
Lb ≤po La where po stands for permuted outputs. For a set S of layers, denote
by Rpo(S) a minimal set of representatives from S such that for each s ∈ S,
there is a representative r ∈ Rpo(S) such that r ≤po s. Lemma 7 implies that
it suffices to consider second layers from Rpo(Gn). Fig. 3 compares numbers of
candidate layers |Rpo(Gn)| and |R(Gn)| with |Gn| for various n.

Computing the Representatives Rpo(Gn) Although we can speed up the
search for sorting networks dramatically by only considering second layers from
Rpo(Gn) instead of Gn, computing Rpo(Gn) is a non-trivial task even for n = 13.

Just establishing the inequality La ≥po Lb for two layers La and Lb involves
the comparison of sets outputs(Fn #Lb) and π(outputs(Fn #La)), both of size up
to 2n, for all permutations π. A naive algorithm comparing all sets of outputs for
all pairs of layers thus takes time O(|Gn|

2 · n! · 2n), and is infeasible for n = 13.
We present three techniques to speed up the computation of Rpo(Gn).

First we note that in the second layer it is useless to repeat a comparator
from the first layer, and in most other cases adding a comparator to the second
layer decreases the set of its possible outputs. Call a layer L saturated if it
contains no comparator from Fn, and its unused channels are either all min-
channels, or all max-channels of comparators from Fn. Let Sn be the set of all
saturated layers on n channels.

Lemma 8. Let n be odd and let L be a layer on n channels. There exists a
saturated layer S such that S ≤po L.

Proof. Let L be any layer on n channels. First construct L0 by removing from L

all comparators that also appear in Fn. For any input, L and L0 give the same
output, so outputs(Fn # L) = outputs(Fn # L0). Next, suppose that L0 is not
saturated. Then one of the following holds.
– We can add a comparator between a channel i ≤ ⌊n

2 ⌋, which is a min-channel
in Fn, and a channel j ≥ ⌈n

2 ⌉ + 1, which is a max-channel in Fn such that
〈i, j〉 is not a comparator from Fn. (If n is odd and L0 is not saturated, there
are at least 3 unused channels, and we can always choose a pair which is not
in Fn, not a pair of min-channels, and not a pair of max-channels from Fn.)
Denote L1 = L0 ∪ 〈i, j〉 and consider the output of Fn # L1 on some input
x ∈ B

n. We will show that (Fn #L1)(x) can also arise as the output of Fn #L0.
If (Fn # L1)(x) 6= (Fn # L0)(x), then the output of (Fn # L0)(x) must be
1 on channel i and 0 on channel j, and the added comparator 〈i, j〉 flips
these values in the output of Fn # L1. Since channel i is the min-channel of
the comparator 〈i, i+ ⌈n

2 ⌉〉 in Fn, both channels i and i + ⌈n
2 ⌉ must carry

the value 1 in the input x. Similarly, since channel j is the max-channel
of the comparator 〈j − ⌈n

2 ⌉, j〉 of Fn, both channels j and j − ⌈n
2 ⌉ must

carry the value 0 in the input x. By changing the value of channel i to 0
and the value of channel j to 1, these changes propagate to the output in
Fn #L0, and yield the same output as that of Fn #L1 on x. It follows that of
outputs(Fn # L1) ⊆ outputs(Fn # L0).
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– We can add a comparator between some channel i and channel j = ⌈n
2 ⌉,

which is unused in Fn, obtaining a layer L1. Similarly as in the previous case
we can prove that outputs(Fn # L1) ⊆ outputs(Fn # L0).

By induction, we obtain layers L1, L2, . . . , until some Lk is saturated. Then
outputs(Fn # Lk) ⊆ outputs(Fn # L0) = outputs(Fn # L), so Lk ≤po L. ⊓⊔

Second we note that if two networks are the same up to a permutation π, then
their sets of outputs are also the same up to π. In particular, L ≤po π(L) for any
layer L and any π ∈ Hn. This observation and the above lemma together imply
that it suffices to consider representatives of saturated layers up to permutations
from Hn before computing the representatives with respect to ≤po.

Lemma 9. For odd n, we have Rpo(Gn) = Rpo(R(Sn)).

Checking whether a layer is saturated only takes time O(n2) and computing
R(·) involves checking only ⌊n

2 ⌋! permutations compared to all n! for Rpo(·).
Instead of computing Rpo(Gn) directly, we first compute R(Sn) and only on
this much smaller set we compute the most expensive reduction operation Rpo.
Figure 3 summarises the number of layers, saturated layers, representatives and
representatives modulo rotation for different n.

Finally we show how to compute representatives Rpo. Recall that Lb ≤po La

iff outputs(Fn # Lb) ⊆ π(outputs(Fn # La)) for some permutation π. A necessary
condition for outputs(Fn # Lb) ⊆ π(outputs(Fn # La)) is that the number of
outputs of (Fn #La) where channel i is set to 1 is at least the number of outputs of
(Fn#Lb) where channel π(i) is set to 1. We obtain a similar necessary condition by
considering only outputs with value 1 on exactly k channels. For each i = 1, . . . , n
and each k = 0, . . . , n we obtain a necessary condition on π for outputs(Fn #Lb) ⊆
π(outputs(Fn #La)) to hold. These conditions are fast to check and significantly
prune the space of possible permutations π, thereby making the check Lb ≤po La

feasible for any two layers Lb and La. For n = 13 we were able to compute R(Sn)
in 2 seconds and subsequently Rpo(R(Sn)) in 32 minutes.

n 3 4 5 6 7 8 9 10 11 12 13

|Gn| 4 10 26 76 232 764 2620 9496 35696 140152 568504

|Sn| 2 7 10 51 74 513 700 6345 8174 93255 113008

|R(Gn)| 4 8 18 28 74 101 295 350 1134 1236 4288

|R(Sn)| 2 - 8 - 29 - 100 - 341 - 1155

|Rpo(Gn)| 2 2 6 6 14 15 37 27 88 70 212

Fig. 3. Number of candidates for second layer on n channels. Candidate sets are:
Gn = set of all layers, Sn = set of saturated layers, R(S) = set of representatives of
S under permutations fixing the first layer, Rpo(S) = set of representatives of S under
permuted outputs. Note that R(Sn) is used to compute Rpo(Gn) only for odd n.
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4 Propositional Encoding of Sorting Networks

In the previous section we showed how to restrict the set of possible first two
layers of sorting networks. In this section we describe how to reduce the existence
of such a sorting network to the satisfiability of a set of propositional formulas.
We then employ the power of modern SAT solvers to determine the satisfiability
of the obtained formulas.

Recall that to check whether a comparator network is a sorting one it suffices
to consider only its outputs on Boolean inputs (Lemma 1). Now, for Boolean
values x, y ∈ B a min-max comparator reduces to: min(x, y) = x ∧ y and
max(x, y) = x ∨ y. The authors of [5] observed that a comparator network of a
given size can be represented by a propositional formula, and the existence of
a sorting network in S(n, d) is equivalent to its satisfiability. We improve upon
the work of [5] and give a more natural translation to propositional formulas.

We represent a comparator network with n channels and depth d by Boolean
variables Cd

n = {gki,j} for 1 ≤ i < j ≤ n and 1 ≤ k ≤ d. The variable gki,j
indicates whether the comparator 〈i, j〉 occurs in layer k. We then define

onceki (C
d
n) =

∧

1≤i6=j 6=l≤n(¬g
k
min(i,j),max(i,j) ∨ ¬gkmin(i,l),max(i,l)) and

valid(C) =
∧

1≤k≤d, 1≤i≤n once
k
i (C

d
n),

where onceki (C
d
n) enforces that channel i is used at most once in layer k, and

valid(Cd
n) enforces that this constraint holds for each channel in every layer, i.e.,

that C represents a valid comparator network.
Let x = 〈x1, . . . , xn〉 ∈ B

n be a Boolean input and y = 〈y1, . . . , yn〉 be the
sequence obtained by sorting x. To evaluate the network Cd

n on an input x we
introduce variables vki for 0 ≤ k ≤ d and 1 ≤ i ≤ n denoting V (k, i)–the value
of channel i after layer k. The correct value of vki is enforced by updateki (C

d
n)

which implements the recursive formula for V (k, i) from Section 2:

update
k
i (C

d
n) = (¬used

k
i (C

d
n) =⇒ (vki ↔ vk−1

i )) ∧
∧

1≤j<i

[

gkj,i =⇒ (vki ↔ (vk−1
j ∨ vk−1

i ))
]

∧
∧

i<j≤n

[

gki,j =⇒ (vki ↔ (vk−1
j ∧ vk−1

i ))
]

and

usedki (C
d
n) =

∨

j<i g
k
j,i ∨

∨

i<j g
k
i,j ,

where the formula usedki (C
d
n) denotes whether channel i is used in layer k. We

can express the predicate “Cd
n(x) is sorted” as:

sorts(Cd
n, x) =

∧

1≤i≤n(v
0
i ↔ xi) ∧

∧

1≤k≤d,
1≤i≤n

updateki (C
d
n) ∧

∧

1≤i≤n(v
d
i ↔ yi)

where the first term ensures that we start with the input x, the second term
that the vki update appropriately, and the last term that the output is sorted.

Lemma 10. A sorting network with n channels and depth d exists if and only
if valid(Cd

n) ∧
∧

x∈Bn sorts(Cd
n, x) is satisfiable.



10 D. Bundala, J. Závodný

Further, for inputs of the form x = 0py1q, we hard-wire the variables vki in the
formula sorts(Cd

n, x) to false for 1 ≤ i ≤ p and to true for n− q < i ≤ n. These
values are implied by the updateki (C

d
n) formulas (see also Example 11). However,

we find that hard-wiring these values speeds up the SAT solver approximately
by a factor of 4 for n ≤ 12 as the SAT solver is not able to discover them directly
by unit propagation.

In Section 3 we showed that it suffices to consider sorting networks with first
layer Fn and second layer S ∈ Rpo(Gn). We can incorporate such restriction
into the propositional formula easily. For the first layer, let T = outputs(Fn)
be the set of possible outputs, then a sorting network with n channels, depth
d, and first layer Fn exists if and only if valid(Cd−1

n ) ∧
∧

x∈T sorts(Cd−1
n , x) is

satisfiable. A similar adaptation works for fixing the first two layers; we produce
one formula for each S ∈ Rpo(Gn) and check the satisfiability of each of them.

Instantiating these SAT formulas and checking their satisfiability was suffi-
cient to establish V (n) for n ≤ 12 in less than 2 minutes in each case (see Fig. 4).
A further optimisation substantially reduced the time to establish V (13).

4.1 Existence of Subnetworks: a Necessary Condition

Our final optimisation in showing the nonexistence of sorting network is restrict-
ing attention to inputs of the form 0py1q. This optimisation is based on the idea
that if a comparator network sorts its input, its subnetworks must also sort their
respective subinputs. Consider the following example.

Example 11. Consider the evaluation of a sorting network C on input 0x where
x ∈ B

n−1. Since C consists of min-max comparators, the value on the first
channel is always 0. Hence, also the output of the first channel is 0. (See also
Fig. 1.) Let D be the comparator network obtained from C by removing the
first channel and all comparators attached to it. Then C(0x) = 0D(x) for all x.
Requiring that C(0x) is sorted for all x ∈ B

n−1 is the same as requiring that D
is a sorting network. A similar argument can be made for inputs of the form y1
for y ∈ B

n−1, and in general for 0py1q for y ∈ B
n−p−q.

Let T p,q = {t = 0px1q | t ∈ T, x ∈ B
n−p−q} ⊆ T be the set of all inputs

from T beginning with p zeros and ending with q ones. Intuitively, evaluating
a network C on inputs from T p,q exercises only the subnetwork obtained by
removing first p and last q channels from C.

For subnetwork size m < n let Tm =
⋃

p+q=n−m T p,q. Then Tm ⊆ T and so
if network C sorts all inputs from T then C sorts all inputs from Tm. Therefore,
a necessary condition for the existence of a network on n channels and depth d

sorting inputs T is the satisfiability of the formula

subnets(n, d,m, T ) = valid(Cd
n) ∧

∧

x∈Tm
sorts(Cd

n, x).

Empirically, we were always able to findm withm < n such that the resulting
formula subnets(n, d,m, T ) was unsatisfiable. Furthermore, the SAT solver es-
tablished unsatisfiability of this formula significantly faster than for the original
formula (see Fig. 4).
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5 Experimental Results

In this section we present an experimental evaluation of the described tech-
niques, and show how we used them to obtain bounds on V (n) for n ≤ 16. We
instantiated propositional formulas encoding the existence of a sorting network
for various values of n and d and various stages of optimisation as presented
in the previous sections.2 We checked their satisfiability using an off-the-shelf
propositional SAT solver3 running on a standard desktop computer4. The times
taken by the SAT solver are reported in Fig. 4.

n 5 6 7 8 9 10 11 12 13

d 4 4 5 5 6 6 7 7 8

SAT 0.02s 0.05s 1.79s 1.93s 864s 1738s > 105s > 105s -

Fix-1 0s 0s 0s 0.02s 0.5s 0.5s 314s 452s -

Fix-1 + subnet 0s 0s 0s 0.01s 0.27s 0.26s 112s 143s -

Fix-2 0s 0s 0.03s 0.07s 0.93s 1.13s 63s 87s 22h23m

Fix-2 + subnet 0s 0s 0.02s 0.05s 0.77s 0.78s 49s 48s 13h1m

d 5 5 6 6 7 7 8 8 9

SAT 0s 0.04s 0.13s 1.12s 59.7s 949s 1294s > 105s -

Fix-1 0s 0s 0s 0.01s 0.20s 3.6s 24s 172s 1h40m

Fig. 4. Time required by a SAT solver to solve particular instances of n and d using
different variants of propositional formulas: the basic formula from Lemma 10 (SAT), a
formula fixing the first layer to Fn (Fix-1), formulas fixing the first two layers to Fn #S

for each S ∈ Rpo(Gn) (Fix-2), and the subnets(n, d,m) versions thereof for appropriate
values of m (subnet). The top series corresponds to d = V (n)−1, the largest depth for
which no sorting network exists and the formulas are unsatisfiable, the bottom series
corresponds to d = V (n) and the formulas are satisfiable. A missing value indicates
that the SAT solver ran out of available memory.

Our computations confirm the known values of V (n) for n ≤ 10. Noteworthy
is the case n = 9 where we establish the nonexistence of a sorting network of
depth 6 in less than a second. The specially crafted and low-level optimised
program of [7] was estimated to take 200 hours on the supercomputer Cray-2.
Recent work [5] also expressed the existence of such a network as a propositional
formula, but their technique by compilation from a higher-level language yields
an unnecessarily complicated formula whose SAT checking took over 16 hours.

After 5 minutes of computation when fixing the first layer (2 minutes with
the subnetwork optimisation and 1 minute with fixed second layers), we found
that S(11, 7) is empty. Since V (11), V (12) ≤ 8 (see Fig. 2), we have:

Theorem 12. The optimal depth of a sorting network with n = 11 or 12 chan-
nels is eight.

2 Code is available at http://www.cs.ox.ac.uk/people/daniel.bundala/networks/
3 MiniSAT version 2.2.0
4 Linux, CPU: 2.83GHz, Memory: 3.7GiB. All reported times are using a single CPU.



12 D. Bundala, J. Závodný

Note from Fig. 4 that checking all Fix-2 formulas for all candidate first-two
layers is already faster than checking the single Fix-1 formula; despite the draw-
back that the SAT solver is restarted for each different second layer. Furthermore,
checking the Fix-1 formula requires much more memory, and for the case n = 13,
the SAT solver consumed all available memory (4GB) before finishing. Checking
a Fix-2 formula is well within available memory, and different instances for dif-
ferent second layers can be distributed to different computers. This also allows
us to start with a small subnetwork size in the subnetwork optimisation and
increase it only in instances (second layers) where it yields a satisfiable formula.

For n = 13 for each of the 212 depth-two prefixes F13 # L we generated a
formula subnets(13, 6, 10, T ) with subnetwork size m = 10 and determined that
all of them are unsatisfiable in cumulative computation time of 13 hours. Hence,
none of the 212 candidate second layers can be extended to a sorting network.

Theorem 13. The optimal depth of a sorting network with n = 13, 14, 15 or 16
channels is nine.

Even though we were able to compute lower bounds for 11 ≤ n ≤ 16, the
case n = 17 is beyond the scope of current techniques. We leave the depth of the
optimal sorting network on 17 channels as the main open problem of this paper.
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