
Handbook of Satisfiability

Armin Biere, Marijn Heule, Hans van Maaren and Toby Walsh

IOS Press, 2008

c© 2008 Adnan Darwiche and Knot Pipatsrisawat. All rights reserved.

95

Chapter 3

Complete Algorithms
Adnan Darwiche and Knot Pipatsrisawat

3.1. Introduction

This chapter is concerned with sound and complete algorithms for testing satisfia-
bility, i.e., algorithms that are guaranteed to terminate with a correct decision on
the satisfiability/unsatisfiability of the given CNF. One can distinguish between a
few approaches on which complete satisfiability algorithms have been based. The
first approach is based on existential quantification, where one successively elim-
inates variables from the CNF without changing the status of its satisfiability.
When all variables have been eliminated, the satisfiability test is then reduced
into a simple test on a trivial CNF. The second approach appeals to sound and
complete inference rules, applying them successively until either a contradiction
is found (unsatisfiable CNF) or until the CNF is closed under these rules without
finding a contradiction (satisfiable CNF). The third approach is based on sys-
tematic search in the space of truth assignments, and is marked by its modest
space requirements. The last approach we will discuss is based on combining
search and inference, leading to algorithms that currently underly most modern
complete SAT solvers.

We start in the next section by establishing some technical preliminaries that
will be used throughout the chapter. We will follow by a treatment of algorithms
that are based on existential quantification in Section 3.3 and then algorithms
based on inference rules in Section 3.4. Algorithms based on search are treated
in Section 3.5, while those based on the combination of search and inference are
treated in Section 3.6. Note that some of the algorithms presented here could
fall into more than one class, depending on the viewpoint used. Hence, the
classification presented in Sections 3.3-3.6 is only one of the many possibilities.

3.2. Technical Preliminaries

A clause is a disjunction of literals over distinct variables.1 A propositional sen-
tence is in conjunctive normal form (CNF) if it has the form α1 ∧ α2 ∧ . . . ∧ αn,
where each αi is a clause. For example, the sentence

1The insistence that all literals in a clause be over distinct variables is not standard.

96 Chapter 3. Complete Algorithms

(A ∨ B ∨ ¬C) ∧ (¬A ∨ D) ∧ (B ∨ C ∨ D)

is in conjunctive normal form and contains three clauses. Note that according
to our definition, a clause cannot contain the literals P and ¬P simultaneously.
Hence, a clause can never be valid. Note also that a clause with no literals, the
empty clause, is inconsistent. Furthermore, a CNF with no clauses is valid.

A convenient way to notate sentences in CNF is using sets. Specifically, a
clause l1 ∨ l2 ∨ . . . ∨ lm is expressed as a set of literals {l1, l2, . . . , lm}. Moreover,
a conjunctive normal form α1 ∧ α2 ∧ . . . ∧ αn is expressed as a set of clauses
{α1, α2, . . . , αn}. For example, the CNF given above would be expressed as:

{ {A, B,¬C}, {¬A, D}, {B, C, D} }.

This set–based notation will prove very helpful when expressing algorithms that
operate on CNFs.

Given our notational conventions, a CNF ∆ is valid if ∆ is the empty set:
∆ = ∅. Moreover, a CNF ∆ is inconsistent if ∆ contains the empty set: ∅ ∈ ∆.
These two cases correspond to common boundary conditions that arise in recursive
algorithms on CNFs.

In general, a formula ∆ is said to imply another formula Γ, denoted ∆ |= Γ,
iff every assignment that satisfies ∆ also satisfies Γ. Note that if a clause Ci is
a subset of another clause Cj , Ci ⊆ Cj , then Ci |= Cj . We say in this case that
clause Ci subsumes clause Cj , as there is no need to have clause Cj in a CNF
that also contains clause Ci. One important fact that we will base our future
discussions on is that if a CNF formula implies the empty clause, the formula is
essentially unsatisfiable.

3.2.1. Resolution

One of the simplest complete algorithms for testing satisfiability is based on the
resolution inference rule [Rob65], which is defined as follows. Let P be a Boolean
variable, and suppose that ∆ is a CNF which contains clauses Ci and Cj , where
P ∈ Ci and ¬P ∈ Cj . The resolution inference rule allows us to derive the clause
(Ci −{P})∪(Cj −{¬P}), which is called a resolvent that is obtained by resolving
Ci and Cj . The resolvent of a resolution is a clause implied by the resolved clauses.
For example, we can resolve clause {A, B,¬C} with clause {¬B, D} to obtain the
resolvent {A,¬C, D}. We will say here that {A,¬C, D} is a B–resolvent as it
results from resolving two clauses on the literals B and ¬B. Note that if we can
use resolution to derive the empty clause from any formula, it means that the
formula implies the empty clause, and, thus, is unsatisfiable.

Resolution is sound but is incomplete in the sense that it is not guaranteed
to derive every clause that is implied by the given CNF. However, resolution is
refutation complete on CNFs, i.e., it is guaranteed to derive the empty clause
if the given CNF is unsatisfiable. This result is the basis for using resolution
as a complete algorithm for testing satisfiability: we keep applying resolution
until either the empty clause is derived (unsatisfiable CNF) or until no more
applications of resolution are possible (satisfiable CNF).

Chapter 3. Complete Algorithms 97

Consider now the following resolution trace.

1. {¬P, R}
2. {¬Q, R}
3. {¬R}
4. {P, Q}

5. {¬P} 1, 3
6. {¬Q} 2, 3
7. {Q} 4, 5
8. {} 6, 7

The clauses before the line represent initial clauses, while clauses below the line
represent resolvents, together with the identifiers of clauses used to obtain them.
The above resolution trace shows that we can derive the empty clause from the
initial set of Clauses (1–4). Hence, the original clauses, together, are unsatisfiable.

An important special case of resolution is called unit resolution. Unit res-
olution is a resolution strategy which requires that at least one of the resolved
clauses has only one literal. Such clause is call a unit clause. Unit resolution is
not refutation complete, which means that it may not derive the empty clause
from an unsatisfiable CNF formula. Yet one can apply all possible unit resolu-
tion steps in time linear in the size of given CNF. Because of its efficiency, unit
resolution is a key technique employed by a number of algorithms that we shall
discuss later.

3.2.2. Conditioning

A number of algorithms that we shall define on CNFs make use of the conditioning
operation. The process of conditioning a CNF ∆ on a literal L amounts to
replacing every occurrence of literal L by the constant true, replacing ¬L by the
constant false, and simplifying accordingly. The result of conditioning ∆ on L
will be denoted by ∆|L and can be described succinctly as follows:

∆|L = {α − {¬L} | α ∈ ∆, L 6∈ α}.

To further explain this statement, note that the clauses in ∆ can be partitioned
into three sets:

1. The set of clauses α containing the literal L. Since we are replacing L by
true, any clause that mentions L becomes satisfied and can be removed
from the formula. As a result, these clauses do not appear in ∆|L.

2. The set of clauses α containing the literal ¬L. Since we are replacing ¬L
by false, the occurrences of ¬L in these clauses no longer have any effect.
Therefore, these clauses appear in ∆|L with the literal ¬L removed.

3. The set of clauses α that contain neither L nor ¬L. These clauses appear
in ∆|L without change.

98 Chapter 3. Complete Algorithms

For example, if

∆ = { {A, B,¬C}, {¬A, D}, {B, C, D} },

then

∆|C = { {A, B}, {¬A, D} },

and

∆|¬C = { {¬A, D}, {B, D} }.

The definition of conditioning can be extended to multiple literals in the obvious
way. For example, ∆|CA¬D = {∅} (an inconsistent CNF). Moreover, ∆|¬CD = ∅
(a valid CNF).

3.3. Satisfiability by Existential Quantification

We will now discuss a class of complete algorithms which is based on the concept
of existential quantification. The result of existentially quantifying variable P
from a formula ∆ is denoted by ∃P ∆ and defined as follows:

∃P ∆
def
= (∆|P) ∨ (∆|¬P).

Consider for example the CNF:

∆ = { {¬A, B}, {¬B, C} },

which effectively says that A implies B and B implies C. We then have ∆|B =
{{C}}, ∆|¬B = {{¬A}} and, hence, ∃B∆ = {{¬A, C}} (i.e., A implies C).

Existential quantification satisfies a number of properties, but the most rele-
vant for our purposes here is this: ∆ is satisfiable if and only if ∃P∆ is satisfiable.
Hence, one can replace a satisfiability test on ∆ by another satisfiability test on
∃P∆, which has one fewer variable than ∆ (if ∆ mentions P). One can therefore
existentially quantify all variables in the CNF ∆, one at a time, until we are left
with a trivial CNF that contains no variables. This trivial CNF must therefore
be either {∅}, which is unsatisfiable, or {}, which is valid and, hence, satisfiable.

The above approach for testing satisfiability can be implemented in different
ways, depending on how existential quantification is implemented. We will next
discuss two such implementations, the first one leading to what is known as the
Davis-Putnam algorithm (DP), and the second one leading to what is known as
symbolic SAT solving.

3.3.1. The DP Algorithm

The DP algorithm [DP60] for testing satisfiability is based on the following obser-
vation. Suppose that ∆ is a CNF, and let Γ be another CNF which results from
adding to ∆ all P–resolvents, and then throwing out all clauses that mention P

Chapter 3. Complete Algorithms 99

(hence, Γ does not mention variable P). It follows in this case that Γ is equivalent
to ∃P∆.2 Consider the following CNF,

∆ = { {¬A, B}, {¬B, C} }.

There is only one B–resolvent in this case: {¬A, C}. Adding this resolvent to ∆,
and throwing out those clauses that mention B gives:

Γ = { {¬A, C} }.

This is equivalent to ∃B∆ which can be confirmed by computing ∆|B ∨ ∆|¬B.

The DP algorithm, also known as directional resolution [DR94], uses the
above observation to existentially quantify all variables from a CNF, one at a
time. One way to implement the DP algorithm is using a mechanism known as
bucket elimination [Dec97], which proceeds in two stages: constructing and filling
a set of buckets, and then processing them in some order. Specifically, given a
variable ordering π, we construct and fill buckets as follows:

• A bucket is constructed for each variable P and is labeled with variable P .
• Buckets are sorted top to bottom by their labels according to order π.
• Each clause α in the CNF is added to the first Bucket P from the top, such

that variable P appears in clause α.

Consider for example the CNF

∆ = { {¬A, B}, {¬A, C}, {¬B, D}, {¬C,¬D}, {A,¬C, E} },

and the variable order C, B, A, D, E. Constructing and filling buckets leads to:3

C : {¬A, C}, {¬C,¬D}, {A,¬C, E}
B : {¬A, B}, {¬B, D}
A :
D :
E :

Buckets are then processed from top to bottom. To process Bucket P , we
generate all P–resolvents using only clauses in Bucket P , and then add these
resolvents to corresponding buckets below Bucket P . That is, each resolvent α is
added to the first Bucket P ′ below Bucket P , such that variable P ′ appears in α.
Processing Bucket P can then be viewed as a process of existentially quantifying
variable P , where the result of such quantifying is now stored in the buckets below
Bucket P .

Continuing with the above example, processing Bucket C adds one C–resolvent

2This follows from the fact that prime implicates of the formula can be obtained by closing
the formula under resolution. After that, existentially quantifying a variable amounts dropping
all clauses that mention the variable. Interested readers are referred to [LLM03, Mar00].

3It is not uncommon for buckets to be empty. It is also possible for all clauses to fall in the
same bucket.

100 Chapter 3. Complete Algorithms

Algorithm 1 dp(CNF ∆, variable order π): returns unsatisfiable or satisfi-

able.
1: for each variable V of ∆ do

2: create empty bucket BV

3: for each clause C of ∆ do

4: V = first variable of C according to order π

5: BV = BV ∪ {C}
6: for each variable V of ∆ in order π do

7: if BV is not empty then

8: for each V -resolvent C of clauses in BV do

9: if C is the empty clause then

10: return unsatisfiable

11: U = first variable of clause C according to order π

12: BU = BU ∪ {C}
13: return satisfiable

to Bucket A:

C : {¬A, C}, {¬C,¬D}, {A,¬C, E}
B : {¬A, B}, {¬B, D}
A : {¬A,¬D}
D :
E :

The buckets below Bucket C will now contain the result of existentially quanti-
fying variable C. Processing Bucket B adds one B–resolvent to Bucket A:

C : {¬A, C}, {¬C,¬D}, {A,¬C, E}
B : {¬A, B}, {¬B, D}
A : {¬A,¬D}, {¬A, D}
D :
E :

At this stage, the buckets below Bucket B contain the resulting of existentially
quantifying both variables C and B. Processing Bucket A, leads to no new
resolvents. We therefore have ∃C, B, A∆ = {} and the original CNF is consistent.

Algorithm 1 contains the pseudocode for directional resolution. Note that
the amount of work performed by directional resolution is quite dependent on the
chosen variable order. For example, considering the same CNF used above with
the variable order E, A, B, C, D leads to the following buckets:

E : {A,¬C, E}
A : {¬A, B} {¬A, C}
B : {¬B, D}
C : {¬C,¬D}
D :

Processing the above buckets yields no resolvents in this case! This is another
proof for the satisfiability of the given CNF, which was obtained by doing less
work due to the chosen variable order.

In the case that the formula is satisfiable, we can extract a satisfying assign-
ment from the trace of directional resolution in time that is linear to the size of

Chapter 3. Complete Algorithms 101

B

C

DA

E

Figure 3.1. A connectivity graph for a CNF.

the formulas in all buckets [DR94]. To do so, we process the variables in the re-
verse order of the elimination (bottom bucket to top bucket). Let the elimination
order be π = V1, V2, ..., Vn. For each variable Vi, if its bucket is empty, it can be
assigned any value. Otherwise, we assign to Vi the value that, together with the
values of Vj , i < j < n, satisfies all clauses in its bucket.

Using a suitable variable order, the time and space complexity of directional
resolution can be shown to be O(n exp(w)) [DR94], where n is the size of CNF ∆
and w is the treewidth of its connectivity graph: an undirected graph G over the
variables of ∆, where an edge exists between two variables in G iff these variables
appear in the same clause in ∆. Figure 3.1 depicts the connectivity graph for
CNF we considered earlier:

∆ = { {¬A, B}, {¬A, C}, {¬B, D}, {¬C,¬D}, {A,¬C, E} }.

The complexity of this algorithms is discussed in more details in [DR94],
which also shows that directional resolution becomes tractable on certain classes
of CNF formula and that it can be used to answer some entailment queries on
the formula.

3.3.2. Symbolic SAT Solving

The main problem observed with the DP algorithm is its space complexity, as
it tends to generate too many clauses. A technique for dealing with this space
complexity is to adopt a more compact representation of the resulting clauses.
One such representation is known as Binary Decision Diagrams (BDDs) whose
adoption leads to the class of symbolic SAT algorithms [CS00, AV01, MM02,
PV04, FKS+04, JS04, HD04, SB06]. Many variations of this approach have been
proposed over the years, but we discuss here only the basic underlying algorithm
of symbolic SAT solving.

Figure 3.2 depicts an example BDD over three variables together with the
models it encodes. Formally, a BDD is a rooted directed acyclic graph where there
are at most two sinks, labeled with 0 and 1 respectively, and every other node
is labeled with a Boolean variable and has exactly two children, distinguished as
low and high [Bry86]. A BDD represents a propositional sentence whose models
can be enumerated by taking all paths from the root to the 1-sink: taking the low

102 Chapter 3. Complete Algorithms

x

y y

z

0 1

Low

High

Models encoded:

x = false

y = true

z = true

x = true

y = false

z = true

x = true

y = true

z = don’t care

Figure 3.2. A BDD and the models it encodes.

(high) child of a node labeled with a variable X corresponds to assigning false

(true) to X ; in case X does not appear on the path, it is marked as “don’t care”
which means either value can be assigned.

In practice, BDDs are usually maintained so that variables appear in the same
order on any path from the root to a sink, leading to Ordered BDDs (OBDDs).
Two additional properties are often imposed: that there is no node whose two
children are identical, and that there are no isomorphic sub-graphs. Under these
conditions OBDDs are known to be a canonical form, meaning that there is a
unique OBDD for any propositional sentence under a given variable order [Bry86].
Moreover, any binary operation on two OBDDs with the same variable order can
be carried out using the Apply algorithm [Bry86], whose complexity is linear in
the product of the operand sizes. Hence, one can existentially quantify a variable
X from an OBDD by first conditioning it on X and then on ¬X , each of which
can be done in time linear in the OBDD size. One can then disjoin the resulting
OBDDs to obtain the result of existential quantification. The whole process can
therefore be implemented in time which is quadratic in the size of the OBDD.

To solve SAT, one may convert the CNF formula into the equivalent OBDD
and existentially quantify all variables from it. However, this näıve approach is
hardly practical as the size of the OBDD will be too large. Therefore, to make
this approach viable, symbolic SAT solving appeals to the following property of
existential quantification:

∃X∆ = (∃XΓX) ∧ Γ,

where ∆ = ΓX ∧ Γ and ΓX contains all clauses of CNF ∆ that mention variable
X . Symbolic SAT solving starts by converting each clause C into a corresponding
OBDD, OBBD(C), a process which can be done in time linear in the clause
size. To existentially quantify variable X , all OBDDs Γ1, . . . , Γn that mention
variable X are conjoined together to produce one OBDD ΓX , from which X is
existentially quantified. This technique is called early quantification [BCM+90,

Chapter 3. Complete Algorithms 103

Algorithm 2 symbolic sat(CNF ∆, variable order π): returns unsatisfiable

or satisfiable.
1: for each variable V of ∆ do

2: create empty bucket BV

3: for each clause C of ∆ do

4: V = first variable of C according to order π

5: BV = BV ∪ {OBDD(C)}
6: for each variable V of ∆ according to order π do

7: if BV is not empty then

8: ΓV = conjunction of all OBDDs in BV

9: if ΓV = zero then

10: return unsatisfiable

11: ΓV = ∃V ΓV

12: U = first variable of ΓV according to order π

13: BU = BU ∪ {ΓV }
14: return satisfiable

HKB96, TSL+90]. The resulting OBDD ∃XΓX will then replace the OBDDs
Γ1, . . . , Γn, and the process is continued. If a zero-OBDD (one which is equivalent
to false) is produced in the process, the algorithm terminates while declaring
the original CNF unsatisfiable. However, if all variables are eliminated without
producing a zero-OBDD, the original CNF is declared satisfiable.

The strategy for scheduling conjunctions and variable quantifications plays
an important role in the performance of this algorithm. One goal is to try to min-
imize the size of intermediate OBDDs to reduce space requirement, which is often
a major problem. Unfortunately, this problem is known to be NP-Hard [HKB96].
In [HD04], bucket elimination has been studied as a scheduling strategy. Algo-
rithm 2 illustrates a symbolic SAT algorithm with bucket elimination. In [HD04],
recursive decomposition [Dar01] and min-cut linear arrangement [AMS01] have
been used as methods for ordering variables. Another approach for scheduling
quantification is clustering [RAB+95]. In [PV04], this approach was studied to-
gether with the maximum cardinality search (MCS) [TY84] as a variable ordering
heuristic.

3.4. Satisfiability by Inference Rules

We have already discussed in Section 3.2 the use of the resolution inference rule
in testing satisfiability. We will now discuss two additional approaches based on
the use of inference rules.

3.4.1. St̊almarck’s Algorithm

St̊almarck’s algorithm was originally introduced in 1990 [SS90], and later patented
in 1994 [St̊a94], as an algorithm for checking tautology of arbitrary propositional
formulas (not necessarily in CNF). To test the satisfiability of a CNF, we can
equivalently check whether its negation is a tautology using St̊almarck’s algo-
rithm [SS90, Wid96, Har96]. Here, we will discuss St̊almarck’s algorithm in its
original form—as a tautology prover.

104 Chapter 3. Complete Algorithms

The algorithm starts with a preprocessing step in which it transforms impli-
cations into disjunctions, removes any double negations and simplifies the formula
by applying rudimentary inference rules (such as removing true from conjunctions
and false from disjunctions). If preprocessing is able to derive the truth value of
the formula (as true or false), then the algorithm terminates. Otherwise, the
algorithm continues on to the next step.

The preprocessed formula is converted into a conjunction of “triplets.” Each
triplet has the form p ⇔ (q⊗r), where ⊗ is either a conjunction or an equivalence
and p must be a Boolean variable, while r and q are literals. During this process,
new Boolean variables may need to be introduced to represent sub-formulas. For
example, the formula ¬((a ⇔ b ∧ c) ∧ (b ⇔ ¬c) ∧ a) may be transformed into

v1 ⇔ (b ∧ c)

v2 ⇔ (a ⇔ v1)

v3 ⇔ (b ⇔ ¬c)

v4 ⇔ (v3 ∧ a)

v5 ⇔ (v2 ∧ v4)

Here, ¬v5 is a literal whose truth value is equivalent to that of the original
formula.4 This conversion is meant to allow the algorithm to apply inference
rules efficiently and to partially decompose the original formula into smaller sub-
formulas that involve fewer variables. After this transformation, the algorithm
assumes, for the sake of contradiction, that the whole formula has truth value
false. For the remaining part, the algorithm tries to derive a contradiction, which
would show that the original formula was actually a tautology.

In order to achieve this, the algorithm applies a set of inference rules called
simple rules (or propagation rule) to the triplets to obtain more conclusions.
Each conclusion either assigns a value to a variable or ties the value of 2 literals
together. Some examples of simple rules are

p ⇔ (q ∧ r) :if p = ¬q then q = true and r = false

p ⇔ (q ∧ r) :if p = true then q = true and r = true

p ⇔ (q ⇔ r) :if p = q then r = true

p ⇔ (q ⇔ r) :if p = true then q = r.

The reader is referred to [Har96] for a complete set of simple rules used by
the algorithm. The process of repeatedly and exhaustively applying simple rules
to the formula is called 0–saturation. After 0–saturation, if the truth value of
the formula can be determined, then the algorithm terminates. Otherwise, the
algorithm proceeds by applying the dilemma rule.

4This example is taken from [Har96].

Chapter 3. Complete Algorithms 105

The dilemma rule is a way of deducing more conclusions about a formula by
making assumptions, which aid the application of simple rules. The rule operates
as follows. Let ∆ be the formula after 0–saturation. For each Boolean variable
v in ∆, the algorithm 0–saturates ∆|v and ∆|¬v to produce conclusions Γv and
Γ¬v, respectively. Then, all conclusions that are common between Γv and Γ¬v

are added to ∆. In other words, the algorithm tries both values of the variable
v and keeps all the conclusions derivable from both branches. These conclusions
necessarily hold regardless of the value of v. The process is repeated for all
variables until no new conclusions can be derived. The algorithm terminates as
soon as contradicting conclusions are added to the knowledge base or the truth
value of the formula can be determined from the conclusions. The process of
applying the dilemma rule exhaustively on all variables is called 1–saturation.
As one might expect, the algorithm can apply the dilemma rule with increasing
depths of assignment. In particular, n–saturation involves case-splitting over all
combinations of n variables simultaneously and gathering common conclusions.
If we allow n to be large enough, the algorithm is guaranteed to either find a
contradiction or reach a satisfying assignment. Because St̊almarck’s algorithm n–
saturates formulas starting from n = 0, it is oriented toward finding short proofs
for the formula’s satisfiability or unsatifiability.

3.4.2. HeerHugo

HeerHugo [GW00] is a satisfiability prover that was largely inspired by St̊almarck’s
algorithm. Although, strictly speaking, HeerHugo is not a tautology prover, many
techniques used in this algorithm have lots of similarity to those of St̊almarck’s
algorithm.

According to this algorithm, the input formula is first converted into CNF
with at most three literals per clause. Then, HeerHugo applies a set of basic infer-
ence rules, which are also called simple rules, to the resulting formula. Although
these inference rules share the name with those rules in St̊almarck’s algorithm,
the two set of rules are rather different. Simple rules used in HeerHugo appear to
be more powerful. They include unit resolution, subsumption, and a restricted
form of resolution (see [GW00] for more details).

Resolution is selectively performed by HeerHugo, in order to existentially
quantify some variables. This technique is similar to the one used in DP [DP60].
However, in HeerHugo, resolution is only carried out when it results in a smaller
formula. Because of these rules, clauses are constantly added and removed from
the knowledge base. Consequently, HeerHugo incorporates some subsumption
and ad-hoc resolution rules for removing subsumed clauses and opportunistically
generating stronger clauses.

During the process of applying simple rules, conclusions may be drawn from
the formula. Like in St̊almarck’s algorithm, a conclusion is either an assignment
of a variable or an equivalence constraint between two literals. If a contradiction
is found during this step, the formula is declared unsatisfiable. Otherwise, the
algorithm continues with the branch/merge rule, which is essentially the same
as the dilemma rule of St̊almarck’s. The algorithm also terminates as soon as
the truth value of the formula can be determined from the conclusions. The

106 Chapter 3. Complete Algorithms

1w 2w 3w 4w 5w 6w 7w 8w

C C C C

B B

A
t f

t

t f t f t f t f

f t f

Figure 3.3. A search tree for enumerating all truth assignments over variables A, B and C.

completeness of HeerHugo is achieved by successively increasing the number of
variables in the branch/merge rule, in a manner that is similar to applying n–
saturation in St̊almarck’s.

3.5. Satisfiability by Search: The DPLL Algorithm

We will discuss in this section the DPLL algorithm [DLL62], which is based on
systematic search in the space of truth assignments. This algorithm is marked by
its modest space requirements and was developed in response to the challenges
posed by the space requirements of the DP algorithm.

Figure 3.3 depicts a search tree that enumerates the truth assignments over
three variables. The first observation about this tree is that its leaves are in one–
to–one correspondence with the truth assignments under consideration. Hence,
testing satisfiability can be viewed as a process of searching for a leaf node that
satisfies the given CNF. The second observation is that the tree has a finite depth
of n, where n is the number of Boolean variables. Therefore, it is best to explore
the tree using depth–first–search as given in Algorithm 3, which is called initially
with depth d = 0. The algorithm makes use of the conditioning operator on CNFs,
which leads to simplifying the CNF by either removing clauses or reducing their
size.

Consider now the CNF:

∆ = { {¬A, B}, {¬B, C} },

and the search node labeled with F in Figure 3.4. At this node, Algorithm 3 will
condition ∆ on literals A,¬B, leading to:

∆|A,¬B = { {false, false}, {true, C} } = {{}}.

Chapter 3. Complete Algorithms 107

Algorithm 3 dpll-(CNF ∆, depth d): returns a set of literals or unsatisfiable.
Variables are named P1, P2,

if ∆ = {} then

return {}
else if {} ∈ ∆ then

return unsatisfiable

else if L =dpll-(∆|Pd+1, d + 1) 6= unsatisfiable then

return L ∪ {Pd+1}
else if L =dpll-(∆|¬Pd+1, d + 1) 6= unsatisfiable then

return L ∪ {¬Pd+1}
else

return unsatisfiable

1w 2w 3w 4w 5w 6w 7w 8w

C C C C

B B

A
t f

t

t f t f t f t f

f t f

F S

Figure 3.4. A search tree for that enumerates all truth assignments over variables A, B and

C. Assignments marked by × are not models of the CNF { {¬A, B}, {¬B, C} }.

Hence, the algorithm will immediately conclude that neither truth assignment ω3

nor ω4 are models of ∆. The ability to detect contradictions at internal nodes
in the search is quite significant as it allows one to dismiss all truth assignments
that are characterized by that node, without having to visit each one of them
explicitly. Algorithm 3 can also detect success at an internal node, which implies
that all truth assignments characterized by that node are models of the CNF.
Consider for example the internal node labelled with S in Figure 3.4. This node
represents truth assignments ω7 and ω8, which are both models of ∆. This can
be detected by conditioning ∆ on literals ¬A,¬B:

∆|¬A,¬B = = { {true, false}, {true, C} } = {}.

Hence, all clauses are subsumed immediately after we set the values of A and B
to false, and regardless of how we set the value of C. This allows us to conclude
that both ω7 and ω8 are models of ∆, without having to inspect each of them

108 Chapter 3. Complete Algorithms

C

D

B

A
t

t

t f

t f

}},{},,{},,{{ DCCBBA ¬¬¬¬

}},{},{{ DCC ¬¬

}},{},,{},{{ DCCBB ¬¬¬

{{}} }}{{ D¬

{{}} {}

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 3.5. A termination tree, where each node is labelled by the corresponding CNF. The

last node visited during the search is labelled with {}. The label × indicates the detection of a

contradiction at the corresponding node.

individually. Given that Algorithm 3 may detect success before reaching a leaf
node, it may return less than n literals, which would characterize a set of truth
assignments in this case, all of which are guaranteed to be models of the input
formula.

3.5.1. Termination Trees

One way to measure the amount of work done by Algorithm 3 is using the notion
of a termination tree: the subset of search tree that is actually explored during
search. Figure 3.5 depicts an example termination tree for the CNF:

∆ = { {¬A, B}, {¬B,¬C}, {C,¬D} }.

According to this figure, ∆ is satisfiable and the truth assignment A, B,¬C,¬D
is a satisfying assignment. The figure also provides a trace of Algorithm dpll-

(Algorithm 3) as it shows the conditioned CNF at each node visited during the
search process. The nodes in a termination tree belong to different levels as shown
in Figure 3.5, with the root node being at Level 0. Termination trees are also
useful in characterizing different satisfiability problems since the size and depth
of tree appear to be good indicators of the problem character and difficulty.

Chapter 3. Complete Algorithms 109

3.5.2. Unit Resolution

Consider the termination tree of Figure 3.5, and corresponding CNF:

∆ = { {¬A, B}, {¬B,¬C}, {C,¬D} }.

Consider also the node at Level 1, which results from setting variable A to true,
and its corresponding CNF:

∆|A = { {B}, {¬B,¬C}, {C,¬D} }.

This CNF is neither empty, nor contains the empty clause. Therefore, we cannot
yet declare early success or early failure, which is why Algorithm 3 continues
searching below Level 1 as shown in Figure 3.5. We will show now, however, that
by employing unit resolution, we can indeed declare success and end the search
at this node.

The unit resolution technique (or unit propagation) is quite simple: Before we
perform the tests for success or failure on Lines 1 and 2 of Algorithm 3, we first
close the CNF under unit resolution and collect all unit clauses in the CNF. We
then assume that variables are set to satisfy these unit clauses. That is, if the
unit clause {P} appears in the CNF, we set P to true. And if the unit clause
{¬P} appears in the CNF, we set P to false. We then simplify the CNF given
these settings and check for either success (all clauses are subsumed) or failure
(the empty clause is derived).

To incorporate unit resolution into our satisfiability algorithms, we will intro-
duce a function unit-resolution, which applies to a CNF ∆ and returns two
results:

• I: a set of literals that were either present as unit clauses in ∆, or were
derived from ∆ by unit resolution.

• Γ: a new CNF which results from conditioning ∆ on literals I.

For example, if the CNF

∆ = { {¬A,¬B}, {B, C}, {¬C, D}, {A} },

then I = {A,¬B, C, D} and Γ = {}. Moreover, if

∆ = { {¬A,¬B}, {B, C}, {¬C, D}, {C} },

then I = {C, D} and Γ = { {¬A,¬B} }. Unit resolution is a very important
component of search-based SAT solving algorithms. Part 1, Chapter 4 discusses
in details the modern implementation of unit resolution employed by many SAT
solvers of this type.

Algorithm dpll, for Davis, Putnam, Logemann and Loveland, is a refine-
ment on Algorithm 3 which incorporates unit resolution. Beyond applying unit
resolution on Line 1, we have two additional changes to Algorithm 3. First of
all, we no longer assume that variables are examined in the same order as we go
down the search tree. Secondly, we no longer assume that a variable is set to true

first, and then to false; see Line 7. The particular choice of a literal L on Line 7

110 Chapter 3. Complete Algorithms

Algorithm 4 dpll(CNF ∆): returns a set of literals or unsatisfiable.

1: (I, Γ) =unit-resolution(∆)
2: if Γ = {} then

3: return I

4: else if {} ∈ Γ then

5: return unsatisfiable

6: else

7: choose a literal L in Γ
8: if L =dpll(Γ|L) 6= unsatisfiable then

9: return L ∪ I ∪ {L}
10: else if L =dpll(Γ|¬L) 6=unsatisfiable then

11: return L ∪ I ∪ {¬L}
12: else

13: return unsatisfiable

can have a dramatic impact on the running time of dpll. Part 1, Chapter 7 is
dedicated to heuristics for making this choice, which are known as variable order-
ing or splitting heuristics when choosing a variable, and phase selection heuristics
when choosing a particular literal of that variable.

3.6. Satisfiability by Combining Search and Inference

We will now discuss a class of algorithms for satisfiability testing which form the
basis of most modern complete SAT solvers. These algorithms are based on the
DPLL algorithm, and have undergone many refinements over the last decade,
making them the most efficient algorithms discussed thus far. Yet, these refine-
ments have been significant enough to change the behavior of DPLL to the point
where the new algorithms are best understood in terms of an interplay between
search and inference. Early successful solvers employing this approach, such as
GRASP [MSS99] and Rel sat [BS97], gave rise to modern solvers namely Berk-
Min [GN02], JeruSAT [DHN05a], MiniSAT [ES03], PicoSAT [Bie07], Rsat [PD07],
Siege [Rya04], TiniSAT [Hua07a], and zChaff [MMZ+01]. We start this next sec-
tion by discussing a main limitation of the DPLL algorithm, which serves as a
key motivation for these refinements.

3.6.1. Chronological Backtracking

Algorithm dpll is based on chronological backtracking. That is, if we try both
values of a variable at level l, and each leads to a contradiction, we move to level
l − 1, undoing all intermediate assignments in the process, and try another value
at that level (if one remains to be tried). If there are no other values to try at
level l−1, we move to level l−2, and so on. If we move all the way to Level 0, and
each value there leads to a contradiction, we know that the CNF is inconsistent.

The process of moving from the current level to a lower level is known as
backtracking. Moreover, if backtracking to level l is done only after having tried
both values at level l +1, then it is called chronological backtracking, which is the
kind of backtracking used by dpll. The problem with this type of backtracking
is that it does not take into account the information of the contradiction that
triggers the backtrack.

Chapter 3. Complete Algorithms 111

C tC =

B

A
t f

t

t f t f

f

X

t f

X

t f

X

tB = {}

Figure 3.6. A termination tree. Assignments shown next to nodes are derived using unit

resolution.

To consider a concrete example, let us look at how standard dpll behaves
on the following CNF, assuming a variable ordering of A, B, C, X, Y, Z:

∆ =

1. {A, B}
2. {B, C}
3. {¬A,¬X, Y }
4. {¬A, X, Z}
5. {¬A,¬Y, Z}
6. {¬A, X,¬Z}
7. {¬A,¬Y,¬Z}

(3.1)

Figure 3.6 depicts the termination tree for dpll on the above CNF. We start
first by setting A to true and explore the subtree below that node, only to find
that all branches lead to contradictions. This basically means that A = true is
not a part of any solution. In other words, the formula ∆ ∧ A is inconsistent.
Note, however, that dpll is unable to discover this fact in the knowledge until
it has set variables B, C and X . Recall that dpll uses unit resolution, which is
not refutation complete. This explains why dpll cannot detect the contradiction
early on.

To provide more examples of the previous phenomena, note that dpll is
able to detect a contradiction in ∆|A, B, C, X and in ∆|A, B, C,¬X , which im-
mediately implies a contradiction in ∆|A, B, C. Yet dpll is unable to detect a
contradiction in ∆|A, B, C.

When dpll detects the contradiction in ∆|A, B, C, X , it backtracks and tries
the other value of X , leading also to a contradiction in ∆|A, B, C,¬X . dpll then
backtracks again and tries the second value of variable C. Again, no contradiction

112 Chapter 3. Complete Algorithms

is detected by dpll in ∆|A, B,¬C, yet it later discovers that both ∆|A, B,¬C, X
and ∆|A, B,¬C,¬X are contradictory, leading it to backtrack again, and so on.

The key point here is that all these contradictions that are discovered deep
in the search tree are actually caused by having set A to true at Level 0. That is,
the settings of variables B and C at Levels 1 and 2 are irrelevant here. However,
chronological backtracking is not aware of this fact. As a result, it tries different
values of variables B, C, hoping to fix the contradiction. As shown in Figure 3.6,
DPLL with chronological backtracking encounters 6 contradictions before realiz-
ing that A = true was a wrong decision. In general, there can be many irrelevant
variables between the level of conflict and the real cause of the conflict. Chrono-
logical backtracking may lead the solver to repeat the same conflict over and over
again in different settings of irrelevant variables.

3.6.2. Non–Chronological Backtracking

Non–chronological backtracking addresses this problem by taking into account the
set of variables that actually involve in the contradiction. Originally proposed as a
technique for solving constraint satisfaction problems (CSPs), non–chronological
backtracking is a method for the solver to quickly get out of the portion of the
search space that contains no solution [SS77, Gas77, Pro93, BS97]. This process
involves backtracking to a lower level l without necessarily trying every possibility
between the current level and l.5 Non–chronological backtracking is sometimes
called for as it is not uncommon for the contradiction discovered at level l to be
caused by variable settings that have been committed at levels much lower than
l. In such a case, trying another value at level l, or at level l−1, may be fruitless.

Non–chronological backtracking can be performed by first identifying every
assignment that contributes to the derivation of the empty clause [BS97]. This
set of assignments is referred to as the conflict set [Dec90]. Then, instead of
backtracking to the last unflipped decision variable as in the case of chronological
backtracking, non–chronological backtracking backtracks to the most recent de-
cision variable that appears in the conflict set and tries its different value. Note
that, during this process, all intermediate assignments (between the current level
and the backtrack level) are erased.

In the above example, after the algorithm assigns A = true, B = true, C =
true, X = true, unit resolution will derive Y = true (Clause 3), Z = true (Clause
5), and detect that Clause 7 becomes empty (all literals are already false). In
this case, the conflict set is {A = true, X = true, Y = true, Z = true}. Note that
B and C do not participate in this conflict. Non–chronological backtracking will
backtrack to try a different value of X–the most recent decision variable in the
conflict set. After setting X = false, the algorithm will detect another conflict.
This time, the conflict set will be {A = true, X = true, Z = true}. Since we have
exhausted the values for X , non–chronological backtracking will now backtrack
to A and set A = false and continue. Note that, this time, the algorithm is able
to get out of the conflict without trying different values of B or C. Moreover, it
only ran into 2 contradictions in the process.

5There are several variations of non–chronological backtracking used in CSP and SAT [Gas77,
Pro93, MSS99, BS97, ZMMM01].

Chapter 3. Complete Algorithms 113

Non–chronological backtracking partially prevents the algorithm form repeat-
ing the same conflict. However, as soon as the algorithm backtracks past every
variable in the conflict set (possibly due to a different conflict), it can still repeat
the same mistake in the future.

One can address this problem by empowering unit resolution through the
addition of clauses to the CNF. For example, the clause {¬A,¬X} is implied by
the above CNF. Moreover, if this clause were present in the CNF initially, then
unit resolution would have discovered a contradiction immediately after setting
A to true. This leaves the question of how to identify such clauses in the first
place. As it turns out, each time unit resolution discovers a contradiction, there
is an opportunity to identify a clause which is implied by the CNF and which
would be allow unit resolution to realize new implications. This clause is known
as a conflict–driven clause (or conflict cluase) [MSS99, BS97, ZMMM01, BKS04].
Adding it to the CNF will allow unit resolution to detect this contradiction earlier
and to avoid the same mistake in the future.6

3.6.3. Non–Chronological Backtracking and Conflict–Driven Clauses

The use of non–chronological backtracking in modern SAT solvers is tightly cou-
pled with the derivation of conflict–driven clauses. We will now discuss the
method that modern SAT solvers use to derive conflict–driven clauses from con-
flicts and the specific way they perform non–chronological backtracking. The
combination of these techniques makes sure that unit resolution is empowered
every time a conflict arises and that the solver will not repeat any mistake. The
identification of conflict–driven clauses is done through a process known as con-
flict analysis, which analyzes a trace of unit resolution known as the implication
graph.

3.6.3.1. Implication Graph

An implication graph is a bookkeeping device that allows us to record dependen-
cies among variable settings as they are established by unit resolution. Figure 3.7
depicts two implication graphs for the knowledge base in (3.1). Figure 3.7(a) is
the implication graph after setting variables A, B, C and X to true.

Each node in an implication graph has the form l/V=v, which means that
variable V has been set to value v at level l. Note that a variable is set either by
a decision or by an implication. A variable is set by an implication if the setting
is due to the application of unit resolution. Otherwise, it is set by a decision.

Whenever unit resolution is used to derive a variable assignment, it uses a
clause and a number of other variable assignments to justify the implication.
In this case, we must have an edge into the implied assignment from each of
the assignments used to justify the implication. For example, in the implication
graph of Figure 3.7(a), variable Y is set to true at Level 3 by using Clause 3 and
the variable settings A=true and X=true. Hence, we have an edge from A=true

to Y=true, and another from X=true to Y=true. Moreover, both of these edges
are labeled with 3, which is the ID of clause used in implying Y=true.

6The idea of learning from conflicts originated from the sucessful applications in CSP [SS77,
Gen84, Dav84, Dec86, dKW87].

114 Chapter 3. Complete Algorithms

tB =/1

tC =/2

tA =/0

tX =/3

tY =/3

tZ =/3

/{}3

7

7

3

3

5

5

7

a)

tA =/0

fX =/0

tZ =/0

/{}0

6

6

8

4

4

6

b)

Figure 3.7. Two implication graphs.

tB =/1

tC =/2

tA =/0

tX =/3

tY =/3

tZ =/3

/{}3

7

7

3

3

5

5

7

Cut 1

Cut 2 Cut 3

Figure 3.8. Three cuts in an implication graph, leading to three conflict sets.

An implication graph may also have a special node representing a contradic-
tion derived by unit resolution. This is indicated by {} in the implication graph,
with its parents being all variable settings that were used in deriving an empty
clause. For example, in Figure 3.7(a), the settings A=true, Y=true and Z=true

were used with Clause 7 to derive the empty clause.

3.6.3.2. Deriving a Conflict–Driven Clause

The process of deriving a conflict–driven clause involves identifying a conflict set
from the implication graph and converting this set into a clause. A conflict set can
be obtained in the following manner. Every cut in the implication graph defines
a conflict set as long as that cut separates the decision variables (root nodes)
from the contradiction (a leaf node) [MSS99, ZMMM01, Rya04].7 Any node
(variable assignment) with an outgoing edge that crosses the cut will then be in
the conflict set. Intuitively, a conflict set contains assignments that are sufficient
to cause the conflict. Figure 3.8 depicts a few cuts in the implication graph of

7Note that we may have multiple, disconnected components of the implication graph at any
point in the search. Our analysis always concerns the component which contains the contradic-
tion node.

Chapter 3. Complete Algorithms 115

Figure 3.7(a), leading to conflict sets {A=true, X=true}, {A=true, Y=true} and
{A=true, Y=true, Z=true}.

Given the multiplicity of these conflict sets, one is interested in choosing the
most useful one. In practice, virtually all modern SAT solvers insist on selecting
cuts that involve exactly one variable assigned at the level of conflict for a reason
that we become apparent later. For the implication graph in Figure 3.7(a), the
sets {Y = true, A = true} and {X = true, A = true} meet this criterion. Similarly,
for the graph in Figure 3.7(b), {A = true} is a conflict cut with such property. An
actual implementation that analyzes the implication graph for the right conflict
set with desired properties will be described in Part 1, Chapter 4.

Once a conflict set is identified, a conflict–driven clause can be obtained by
simply negating the assignments in the set. For example, if the conflict set is {A =
true, B = false, C = false}, then the conflict–driven clause derived is {¬A, B, C}.
This clause represents the previously-implicit constraint that the assignments in
the conflict set cannot be made simultaneously (A = true, B = false, C = true

will now violate this new clause). Conflict–driven clauses generated from cuts
that contain exactly one variable assigned at the level of conflict are said to
be asserting [ZMMM01]. Modern SAT solvers insist on learning only asserting
clauses. We will discuss later the properties of asserting clauses that make them
useful and even necessary for the completeness of the algorithm. From now on,
we assume that every conflict–driven clause is asserting, unless stated otherwise.

3.6.3.3. Learning a Conflict–Driven Clause and Backtracking

Once the conflict–driven clause is derived from the implication graph, it is added
to the formula. The process of adding a conflict–driven clause to the CNF is
known as clause learning [MSS99, BS97, ZMMM01, BKS04]. A key question in
this regard is when exactly to add this clause. Consider the termination tree in
Figure 3.6 and the left most leaf node corresponding to the CNF ∆|A, B, C, X .
Unit resolution discovers a contradiction in this CNF and by analyzing the impli-
cation graph in Figure 3.7(a), we can identify the conflict–driven clause ¬A∨¬X .
The question now is: What to do next?

Since the contradiction was discovered after setting variable X to true, we
know that we have to at least undo that decision. Modern SAT solvers, however,
will undo all decisions made after the assertion level, which is the second highest
level in a conflict–driven clause. For example, in the clause ¬A ∨ ¬X , A was set
at Level 0 and X was set at level 3. Hence, the assertion level is 0 in this case. If
the clause contains only literals from one level, its assertion level is then −1 by
definition. The assertion level is special in the sense that it is the deepest level
at which adding the conflict–driven clause would allow unit resolution to derive
a new implication using that clause. This is the reason why modern SAT solvers
would actually backtrack all the way to the assertion level, add the conflict–driven
clause to the CNF, apply unit resolution, and then continue the search process.
This particular method of performing non–chronological backtracking is referred
to as far-backtracking [SBK05].

116 Chapter 3. Complete Algorithms

Algorithm 5 dpll+(CNF ∆): returns unsatisfiable or satisfiable.

1: D ← () {empty decision sequence}
2: Γ← {} {empty set of learned clauses}
3: while true do

4: if unit resolution detects a contradiction in (∆, Γ, D) then

5: if D = () then {contradiction without any decisions}
6: return unsatisfiable

7: else {backtrack to assertion level}
8: α← asserting clause
9: m← assertion level of clause α

10: D ← first m decisions in D {erase decisions ℓm+1, . . .}
11: add clause α to Γ
12: else {unit resolution does not detect a contradiction}
13: if ℓ is a literal where neither ℓ nor ¬ℓ are implied by unit resolution from (∆, Γ, D)

then

14: D← D; ℓ {add new decision to sequence D}
15: else

16: return satisfiable

3.6.3.4. Clause Learning and Proof Complexity

The advantages of clause learning can also be shown from proof complexity per-
spective [CR79]. Whenever the CNF formula is unsatisfiable, a SAT solver can
be thought of as a resolution proof engine that tries to produce a (short) proof
for the unsatisfiability of the formula. From this viewpoint, the goal of the solver
is to derive the empty clause. Generating short resolution proofs is difficult to
implement in practice, because the right order of clauses to resolve is often hard
to find. As a result, SAT solvers only apply a restricted version of resolution,
which may generate longer proofs, to allow the solvers to run efficiently.

In [BKS04], the authors show that DPLL-based SAT solvers that utilize clause
learning can generate exponentially shorter proofs than those that do not use
clause learning. Moreover, it has been shown, in the same paper, that if the
solver is allowed to branch on assigned variables and to use unlimited restarts,
the resulting proof engine is theoretically as strong as an unrestricted resolution
proof system.

3.6.4. Putting It All Together

Algorithm dpll+ is the final SAT algorithm in this chapter which incorpo-
rates all techniques we discussed so far in this section. The algorithm maintains
a triplet (∆, Γ, D) consisting of the original CNF ∆, the set of learned clauses
Γ and a decision sequence D = (ℓ0, . . . , ℓn), where ℓi is a literal representing a
decision made at level i. Algorithm dpll+ starts initially with an empty decision
sequence D and an empty set of learned clauses Γ. It then keeps adding decisions
to the sequence D until a contradiction is detected by unit resolution. If the con-
tradiction is detected in the context of some decisions, a conflict–driven clause α
is constructed and added to the set of learned clauses, while backtracking to the
assertion level of clause α. The process keeps repeating until either a contradic-
tion is detected without any decisions (unsatisfiable), or until every variable is
set to a value without a contradiction (satisfiable). Part 1, Chapter 4 discusses
in details the implementation of this type of SAT solvers.

Chapter 3. Complete Algorithms 117

3.6.4.1. An Example

To consider a concrete example of dpll+, let us go back to the CNF 3.1 shown
again below:

∆ =

1. {A, B}
2. {B, C}
3. {¬A,¬X, Y }
4. {¬A, X, Z}
5. {¬A,¬Y, Z}
6. {¬A, X,¬Z}
7. {¬A,¬Y,¬Z}

dpll+ starts with an empty decision sequence and an empty set of learned
clauses:

D = (),

Γ = {}.

Suppose now that the algorithm makes the following decisions in a row:

D = (A=true, B=true, C=true, X=true).

Unit resolution will not detect a contradiction until after the last decision X=true

has been made. This triggers a conflict analysis based on the implication graph
in Figure 3.7(a), leading to the conflict–driven clause

8. {¬A,¬X},

whose assertion level is 0. Backtracking to the assertion level gives:

D = (A=true),

Γ = {{¬A,¬X}}.

Unit resolution will then detect another contradiction, leading to conflict
analysis based on the implication graph in Figure 3.7(b). The conflict–driven
clause in this case is

9. {¬A}

with an assertion level of −1. Backtracking leads to:

D = (),

Γ = {{¬A,¬X}, {¬A}}.

No contradiction is detected by unit resolution at this point, so the algorithm
proceeds to add a new decision and so on.

118 Chapter 3. Complete Algorithms

tB =/1

tC =/2

tA =/0

tX =/3

tY =/3

tZ =/3

/{}3

7

7

3

3

5

5

7

First UIP

decision

conflict

UIP

Figure 3.9. An example of a unique implication point (UIP).

3.6.4.2. More on Asserting Clauses

Modern SAT solvers insist on generating asserting conflict–driven clauses as they
are guaranteed to become unit clauses when added to the CNF. Recall that a
conflict–driven clause is asserting if it includes exactly one variable that has been
set at the decision level where the contradiction is found. A popular refinement
on this definition, however, appeals to the notion of unique implication point
(UIP) [MSS99, ZMMM01]. In particular, a UIP of a decision level in an impli-
cation graph is a variable setting at that decision level which lies on every path
from the decision variable of that level to the contradiction. Intuitively, a UIP of
a level is an assignment at the level that, by itself, is sufficient for implying the
contradiction. In Figure 3.9, the variable setting 3/Y=true and 3/X=true would
be UIPs as they lie on every path from the decision 3/X=true to the contradiction
3/{}.

Note that there may be more than one UIP for a given level and contradiction.
In such a case, we will order the UIPs according to their distance to the contradic-
tion node. The first UIP is the one closest to the contradiction. Even though there
are many possible ways of generating asserting conflict–driven clauses from differ-
ent UIPs, asserting clauses that contain the first UIP of the conflict level are pre-
ferred because they tend to be shorter.8 This scheme of deriving asserting clauses
is called the 1UIP scheme. One could also derive clauses that contain the first
UIPs of other levels as well. However, the studies in [ZMMM01] and [DHN05b]
showed that insisting on the first UIPs of other levels tends to worsen the solver’s
performance. Considering Figure 3.9, the conflict set {A=true, Y=true} contains
the first UIP of the conflict level (Y), leading to the asserting conflict–driven
clause ¬A ∨ ¬Y .

Chapter 3. Complete Algorithms 119

fA=/0 tB=/0 tE=/0

tF=/0

fF=/0

/{}0

tC=/0

tD=/0

5

6

1

2

3

4

4

Figure 3.10. An implication graph with three different asserting, conflict–driven clauses.

3.6.4.3. Repeating Decision Sequences

Consider now the following CNF:

∆ =

1. {A, B}
2. {¬B, C}
3. {¬B, D}
4. {¬C,¬D, E}
5. {¬E, F}
6. {¬E,¬F}

After dpll+ has decided ¬A, unit resolution will detect a contradiction as given
by the implication graph in Figure 3.10. There are three asserting clauses in
this case, {A}, {¬B} and {¬E}, where {¬E} is the first UIP clause. Suppose
that dpll+ generates {¬E}. dpll+ will then erase the decision ¬A and add
clause {¬E} to the formula. Unit resolution will not detect a contradiction in
this case. Moreover, since neither A nor ¬A is implied by unit resolution, dpll+

may decide ¬A again!
This example illustrates the extent to which dpll+ deviates from the stan-

dard depth–first search used by dpll. In particular, in such a search no decision
sequence will be examined more than once as the search tree is traversed in a
systematic fashion, ensuring that no node in the tree will be visited more than
once. The situation is different with dpll+ which does not have a memory of
what decision sequences it has considered, leading it to possibly consider the same
decision sequence more than once. This, however, should not affect the complete-
ness of the algorithm, because the assignments at the time of future visits will be
different. In this sense, even though the algorithm repeats the decision sequence,
it does so in a different context. A completeness proof of dpll+ is presented
in [ZM03, Rya04].

3.6.4.4. Deleting Conflict–Driven Clauses

The addition of conflict–driven clauses is quite useful as it empowers unit resolu-
tion, allowing it to detect certain contradictions that it could not detect before.
The addition of conflict–driven clauses may carry a disadvantage though, as it

8A short clause is preferable because it potentially allows the solver to prune more search
space.

120 Chapter 3. Complete Algorithms

may considerably increase the size of given CNF, possibly causing a space prob-
lem. Moreover, the more clauses the CNF has, the more time it takes for the
solver to perform unit resolution. In practice, it is not uncommon for the number
of added clauses to be much greater than the number of clauses in the original
CNF on a difficult problem.

This issue can be dealt with in at least two ways. First, newly added conflict–
driven clauses may actually subsume older conflict–driven clauses, which can be
removed in this case. Second, one may decide to delete conflict–driven clauses
if efficiency or space becomes an issue. In this case, the size, age, and activity
of a conflict–driven clause are typically used in considering its deletion, with
a preference towards deleting longer, older and less active clauses. Different
conflict–driven clause deletion policies, mostly based on some heuristics, have
been proposed in different SAT solvers [MSS99, MMZ+01, ES03].

3.6.4.5. Restarts

Another important technique employed by all modern SAT solvers in this cate-
gory is restarts [GSC97]. When a SAT solver restarts, it abandons the current
assignments and starts the search at the root of the search tree, while maintain-
ing other information, notably conflict–directed clauses, obtained during earlier
search. Restarting is a way of dealing with the heavy-tailed distribution of running
time often found in combinatorial search [GSC97, BS00]. Intuitively, restarting is
meant to prevent the solver from getting stuck in a part of the search space that
contains no solution. The solver can often get into such situation because some
incorrect assignments were committed early on and unit resolution was unable to
detect them. If the search space is large, it may take very long for these incorrect
assignments to be fixed. Hence, in practice, SAT solvers usually restart after a
certain number of conflicts is detected (indicating that the current search space is
difficult), hoping that, with additional information, they can make better early as-
signments. The extensive study of different restarting policies in [Hua07b] shows
that it is advantageous to restart often. The policy that was found to be em-
pirically best in [Hua07b] is also becoming a standard practice in state-of-the-art
SAT solvers.

Note that restarts may compromise the solver’s completeness, when it is
employed in a solver that periodically deletes conflict–driven clauses. Unless
the solver allows the number of conflict–driven clauses to grow sufficiently large
or eventually allows a sufficiently long period without restarting, it may keep
exploring the same assignments after each restart. Note that both restarting and
clause deletion strategies are further discussed in Part 1, Chapter 4.

3.6.5. Other Inference Techniques

Other than the standard techniques mentioned in the previous sub-sections, over
the years, other inference techniques have been studied in the context of DPLL-
based algorithm. Even though most of these techniques are not present in leading
general complete SAT solvers, they could provide considerable speedup on certain
families of problems that exhibit the right structure. We discuss some of these
techniques in this brief section.

Chapter 3. Complete Algorithms 121

One natural extension of unit resolution is binary resolution. Binary reso-
lution is a resolution in which at least one resolved clause has size two. Binary
resolution allows more implications to be realized at the expense of efficiency.
In [VG01], Van Gelder presented a SAT solver, 2clVER, that utilized a limited
form of binary resolution. Bacchus also studied, in [Bac02], the same form of
binary resolution, termed BinRes, in DPLL-based solver called 2CLS+EQ. This
solver also employed other rules such as hyper resolution (resolution involving
more than two clause at the same time) and equality reduction (replacing equiv-
alent literals). The solver was shown to be competitive with zChaff [MMZ+01]
(which only used unit resolution) on some families. Another solver that utilized
equivalency reasoning was developed by Li [Li00]. The solver, called EqSatz, em-
ployed six inference rules aimed at deriving equivalence relations between literals
and was shown to dominate other solvers on the DIMACS 32-bit parity prob-
lems [SKM97] (among others). SymChaff [Sab05], developed by Sabharwal, takes
advantage of symmetry information (made explicit by the problem creator) to
prune redundant parts of the search space to achieve exponential speedup.

3.6.6. Certifying SAT Algorithms

As satisfiability testing becomes vital for many applications, the need to ensure
the correctness of the answers produced by SAT solving algorithms increases. In
some applications, SAT algorithms are used to verify the correctness of hardware
and software designs. Usually, unsatisfiability tells us that the design is free of
certain types of bug. If the design is critical for safety or the success of the
mission, it would be a good idea to check that the SAT solvers did not produce
a buggy result.

Verifying that a SAT solving algorithm produces the right result for satisfi-
able instances is straightforward. We could require the SAT solving algorithm to
output a satisfying assignment. The verifier then needs to check whether every
clause in the instance mention at least a literal from the satisfying assignment.
Verifying that a SAT solving algorithm produces the right result for unsatisfi-
able instances is more problematic, however. The complications are caused by
the needs to make the verifying procedure simple and the “certificate” concise;
see [Van02]. The main method used for showing unsatisfiability of a formula is
to give a resolution proof of the empty clause from the original set of clauses.

One of the most basic certificate formats is the explicit resolution derivation
proof. A certificate in this format contains the complete resolution proof of un-
satisfiability (the empty clause). The proof is simply a sequence of resolutions.
First of all, all variables and clauses in the original formula are indexed. Each
resolution is made explicit by listing the indices of the two operands, the index
of the variable to be resolved on, and the literals in the resolvent. This certifi-
cate format was referred to as %RES and was used for the verification track of the
SAT’05 competition [BS05].

A closely related format called resolution proof trace (%RPT) [BS05] does not
require the resolvent of each resolution to be materialized. Hence, the certificate
will only list the clauses to be resolved for each resolution operation.

Zhang and Malik proposed in [ZM03] a less verbose variant which relies on
the verifier’s ability to reconstruct implication graphs in order to derive learned

122 Chapter 3. Complete Algorithms

clauses. According to this format, the certificate contains, for each learned clause
generated by the solving algorithm, the indices of all clauses that were used in
the derivation of the conflict–driven clause. The verifier then has the burden of
reconstructing the conflict–driven clauses that are required to arrive at the proof
of the empty clause.

Another certificate format was proposed by Goldberg and Novikov in [GN03].
This format lists all conflict–driven clauses generated by the SAT solving algo-
rithm in the order of their creation. This type of certificate employs the fact that
if a learned clause C is derived from the CNF ∆, then applying unit resolution to
∆ ∧ ¬C will result in a contradiction. By listing every conflict–driven clause (in-
cluding the empty clause at the end) in order, the verifier may check to make sure
that each conflict–driven clause can actually be derived from the set of preceding
clauses (including the original formula) by using unit resolution.

3.7. Conclusions

We have discussed in this chapter various complete algorithms for SAT solving.
We categorized these algorithms based on their approaches for achieving com-
pleteness: by existential quantification, by inference rules, and by search. While
much work has been done in each category, nowadays, it is the search-based ap-
proach that receives the most attention because of its efficiency and versatility on
many real-world problems. We presented in this chapter the standard techniques
used by leading contemporary SAT solvers and some less common inference tech-
niques studied by others. Current research in this area focuses on both theory and
applications of satisfiability testing. Recently, however, there is a growing em-
phasis on applying a SAT solver as a general-purpose problem solver for different
problem domains (see Part 3). As a result, a branch of current research focuses
on finding efficient ways to encode real-world problems compactly as CNF formu-
las. When it comes to using a SAT solver as a general-purpose solver, efficiency
is the most important issue. Consequently, techniques that are theoretically at-
tractive may not necessarily be adopted in practice, unless they can be efficiently
implemented and shown to work on a broad set of problems.

References

[AMS01] F. A. Aloul, I. L. Markov, and K. A. Sakallah. Faster sat and smaller
bdds via common function structure. In Technical Report #CSE-
TR-445-01. University of Michigan, November 2001.

[AV01] A. S. M. Aguirre and M. Y. Vardi. Random 3-SAT and BDDs:
The plot thickens further. In Principles and Practice of Constraint
Programming, pages 121–136, 2001.

[Bac02] F. Bacchus. Enhancing davis putnam with extended binary clause
reasoning. In AAAI/IAAI, pages 613–619, 2002.

[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic Model Checking: 1020 States and Beyond. In
Proceedings of the Fifth Annual IEEE Symposium on Logic in Com-

Chapter 3. Complete Algorithms 123

puter Science, pages 1–33, Washington, D.C., 1990. IEEE Computer
Society Press.

[Bie07] A. Biere. Picosat versions 535, 2007. Solver description, SAT Com-
petition 2007.

[BKS04] P. Beame, H. Kautz, and A. Sabharwal. Towards understanding
and harnessing the potential of clause learning. Journal of Artificial
Intelligence Research, 22:319–351, 2004.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Transactions on Computers, 35(8):677–691, 1986.

[BS97] R. J. J. Bayardo and R. C. Schrag. Using CSP look-back techniques
to solve real-world SAT instances. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence (AAAI’97), pages 203–
208, Providence, Rhode Island, 1997.

[BS00] L. Baptista and J. P. M. Silva. Using randomization and learning
to solve hard real-world instances of satisfiability. In Principles and
Practice of Constraint Programming, pages 489–494, 2000.

[BS05] D. L. Berre and L. Simon, 2005. SAT’05 Competition Homepage,
http://www.satcompetition.org/2005/.

[CR79] S. A. Cook and R. A. Reckhow. The relative efficiency of proposi-
tional proof systems. J. Symb. Log., 44(1):36–50, 1979.

[CS00] P. Chatalic and L. Simon. ZRes: The old Davis-Putnam procedure
meets ZBDDs. In D. McAllester, editor, 17th International Con-
ference on Automated Deduction (CADE’17), number 1831, pages
449–454, 2000.

[Dar01] A. Darwiche. Recursive conditioning. Artificial Intelligence, 126(1-
2):5–41, 2001.

[Dav84] R. Davis. Diagnostic reasoning based on structure and behavior.
Artif. Intell., 24(1-3):347–410, 1984.

[Dec86] R. Dechter. Learning while searching in constraint-satisfaction-
problems. In AAAI, pages 178–185, 1986.

[Dec90] R. Dechter. Enhancement schemes for constraint processing:
backjumping, learning, and cutset decomposition. Artif. Intell.,
41(3):273–312, 1990.

[Dec97] R. Dechter. Bucket elimination: A unifying framework for processing
hard and soft constraints. Constraints: An International Journal,
2:51–55, 1997.

[DHN05a] N. Dershowitz, Z. Hanna, and A. Nadel. A clause-based heuristic for
sat solvers. In Proceedings of SAT 2005, pages 46–60, 2005.

[DHN05b] N. Dershowitz, Z. Hanna, and A. Nadel. Towards a better under-
standing of the functionality of a conflict-driven sat solver. In Pro-
ceedings of the 10th International Conference on Theory and Appli-
cations of Satisfiability Testing, 2005.

[dKW87] J. de Kleer and B. C. Williams. Diagnosing multiple faults. Artif.
Intell., 32(1):97–130, 1987.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification

124 Chapter 3. Complete Algorithms

theory. Journal of the ACM, 7:201–215, 1960.
[DR94] R. Dechter and I. Rish. Directional resolution: The davis put-

nam procedure, revisited. In Principles of Knowledge Representation
(KR-94), pages 134–145, 1994.

[ES03] N. Eén and N. Sörensson. An extensible sat-solver. In Proceedings
of SAT’03, pages 502–518, 2003.

[FKS+04] J. Franco, M. Kouril, J. Schlipf, J. Ward, S. Weaver, M. Dransfield,
and W. M. Vanfleet. Sbsat: a state-based, bdd-based satisfiability
solver. In Proceedings of the 7th International Conference on Theory
and Applications of Satisfiability Testing, pages 398–410, 2004.

[Gas77] J. Gaschnig. A general backtrack algorithm that eliminates most
redundant tests. In IJCAI, page 457, 1977.

[Gen84] M. R. Genesereth. The use of design descriptions in automated di-
agnosis. Artif. Intell., 24(1-3):411–436, 1984.

[GN02] E. Goldberg and Y. Novikov. Berkmin: A fast and robust sat-solver.
In DATE ’02: Proceedings of the conference on Design, automation
and test in Europe, page 142, Washington, DC, USA, 2002. IEEE
Computer Society.

[GN03] E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability
for cnf formulas. In Proceedings of Design, Automation and Test in
Europe (DATE2003)., 2003.

[GSC97] C. P. Gomes, B. Selman, and N. Crato. Heavy-tailed distributions
in combinatorial search. In Principles and Practice of Constraint
Programming, pages 121–135, 1997.

[GW00] J. F. Groote and J. P. Warners. The propositional formula checker
heerhugo. Journal of Automated Reasoning, 24:101–125, 2000.

[Har96] J. Harrison. Stalmårck’s algorithm as a hol derived rule. In Proceed-
ings of TPHOLs’96, pages 221–234, 1996.

[HD04] J. Huang and A. Darwiche. Toward good elimination orders for sym-
bolic sat solving. In Proceedings of the 16th IEEE International Con-
ference on Tools with Artificial Intelligence (ICTAI), pages 566–573,
2004.

[HKB96] R. Hojati, S. C. Krishnan, and R. K. Brayton. Early quantification
and partitioned transition relations. In ICCD ’96: Proceedings of the
1996 International Conference on Computer Design, VLSI in Com-
puters and Processors, pages 12–19, Washington, DC, USA, 1996.
IEEE Computer Society.

[Hua07a] J. Huang. A case for simple sat solvers. In CP, pages 839–846, 2007.
[Hua07b] J. Huang. The effect of restarts on the efficiency of clause learning. In

Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI-07), pages 2318–2323, 2007.

[JS04] H. Jin and F. Somenzi. Circus : Hybrid satifiability solver. In Pro-
ceedings of the Seventh International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT 2004), 2004.

[Li00] C. M. Li. Integrating equivalency reasoning into davis-putnam proce-
dure. In AAAI: 17th National Conference on Artificial Intelligence.
AAAI / MIT Press, 2000.

Chapter 3. Complete Algorithms 125

[LLM03] J. Lang, P. Liberatore, and P. Marquis. Propositional independence:
Formula-variable independence and forgetting. J. Artif. Intell. Res.
(JAIR), 18:391–443, 2003.

[Mar00] P. Marquis. Consequence finding algorithms. Handbook on Defea-
sible Reasonging and Uncertainty Management Systems, Volume 5:
Algorithms for Uncertain and Defeasible Reasoning, pages 41–145,
2000.

[MM02] D. Motter and I. Markov. A compressed breadth-first search for
satisfiability. In Proceedings of ALENEX 2002., 2002.

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient sat solver. 39th Design Automation Confer-
ence (DAC), 2001.

[MSS99] J. Marques-Silva and K. Sakallah. Grasp: A search algorithm for
propositional satisfiability. IEEE Trans. Computers, (5):506–521,
1999.

[PD07] K. Pipatsrisawat and A. Darwiche. Rsat 2.0: Sat solver description.
Technical Report D–153, Automated Reasoning Group, Computer
Science Department, UCLA, 2007.

[Pro93] P. Prosser. Hybrid algorithms for the constraint satisfaction problem.
Computational Intelligence, (9(3)):268–299, August 1993.

[PV04] G. Pan and M. Vardi. Symbolic techniques in satisfiability solving. In
Proceedings of the Seventh International Conference on Theory and
Applications of Satisfiability Testing (SAT 2004), 2004.

[RAB+95] R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. Efficient
bdd algorithms for fsm synthesis and verification. In Proceedings of
IEEE/ACM International Workshop on Logic Synthesis, Lake Tahoe,
USA, May 1995., 1995.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. J. ACM, 12(1):23–41, 1965.

[Rya04] L. Ryan. Efficient Algorithms for Clause-Learning SAT Solvers. Mas-
ter’s thesis, Simon Fraser University, 2004.

[Sab05] A. Sabharwal. Symchaff: A structure-aware satisfiability solver. In
AAAI, pages 467–474, 2005.

[SB06] C. Sinz and A. Biere. Extended resolution proofs for conjoining bdds.
In CSR, pages 600–611, 2006.

[SBK05] T. Sang, P. Beame, and H. A. Kautz. Heuristics for fast exact model
counting. In Proceedings of SAT’05, pages 226–240, 2005.

[SKM97] B. Selman, H. A. Kautz, and D. A. McAllester. Ten challenges in
propositional reasoning and search. In Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI’97),
pages 50–54, 1997.

[SS77] R. M. Stallman and G. J. Sussman. Forward reasoning and
dependency-directed backtracking in a system for computer-aided
circuit analysis. Artificial Intelligence, 9, October 1977.

[SS90] G. St̊almarck and M. Säflund. Modeling and verifying systems and
software in propositional logic. In B.K. Daniels, editor, Safety of
Computer Control Systems, 1990 (SAFECOMP’90), 1990.

126 Chapter 3. Complete Algorithms

[St̊a94] G. St̊almarck. System for determining propositional logic theorems
by applying values and rules to triplets that are generated from
boolean formula., 1994. United States Patent number 5,276,897; see
also Swedish Patent 467 076.

[TSL+90] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Implicit state enumeration of finite state machines us-
ing bdd’s. In Proceedings of IEEE International Conference on
Computer-Aided Design (ICCAD-90)., pages 130–133, 1990.

[TY84] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selec-
tively reduce acyclic hypergraphs. SIAM J. Comput., 13(3):566–579,
1984.

[Van02] A. Van Gelder. Extracting (easily) checkable proofs from a satisfia-
bility solver that employs both preorder and postorder resolution. In
AMAI, 2002.

[VG01] A. Van Gelder. Combining preorder and postorder resolution in
a satisfiability solver. In IEEE/ASL LICS Satisfiability Workshop,
Boston, 2001.

[Wid96] F. Widebäck. St̊almarck’s notion of n-saturation. Technical Report
NP-K-FW-200, Prover Technology AB, 1996.

[ZM03] L. Zhang and S. Malik. Validating sat solvers using an independent
resolution-based checker: Practical implementations and other ap-
plications. In DATE ’03: Proceedings of the conference on Design,
Automation and Test in Europe, page 10880, Washington, DC, USA,
2003. IEEE Computer Society.

[ZMMM01] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient
conflict driven learning in boolean satisfiability solver. In ICCAD,
pages 279–285, 2001.

	Complete Algorithms
	Introduction
	Technical Preliminaries
	Satisfiability by Existential Quantification
	Satisfiability by Inference Rules
	Satisfiability by Search: The DPLL Algorithm
	Satisfiability by Combining Search and Inference
	Conclusions
	References

