
Constraints (2013) 18:478–534
DOI 10.1007/s10601-013-9146-2

SURVEY

Iterative and core-guided MaxSAT solving:
A survey and assessment

Antonio Morgado · Federico Heras · Mark Liffiton ·
Jordi Planes · Joao Marques-Silva

Published online: 20 July 2013
© Springer Science+Business Media New York 2013

Abstract Maximum Satisf iability (MaxSAT) is an optimization version of SAT, and
many real world applications can be naturally encoded as such. Solving MaxSAT
is an important problem from both a theoretical and a practical point of view. In
recent years, there has been considerable interest in developing efficient algorithms
and several families of algorithms have been proposed. This paper overviews recent
approaches to handle MaxSAT and presents a survey of MaxSAT algorithms based
on iteratively calling a SAT solver which are particularly effective to solve problems
arising in industrial settings. First, classic algorithms based on iteratively calling a
SAT solver and updating a bound are overviewed. Such algorithms are referred to as
iterative MaxSAT algorithms. Then, more sophisticated algorithms that additionally
take advantage of unsatisf iable cores are described, which are referred to as core-
guided MaxSAT algorithms. Core-guided MaxSAT algorithms use the information
provided by unsatisfiable cores to relax clauses on demand and to create simpler
constraints. Finally, a comprehensive empirical study on non-random benchmarks is

A. Morgado (B) · F. Heras · J. Marques-Silva
CSI/CASL, University College Dublin, Dublin, Ireland
e-mail: ajrm@ucd.ie

F. Heras
e-mail: fheras@ucd.ie

M. Liffiton
Illinois Wesleyan University, Bloomington, IL, USA
e-mail: mliffito@iwu.edu

J. Planes
Universitat de Lleida, Lleida, Spain
e-mail: jplanes@diei.udl.cat

J. Marques-Silva
IST/INESC-D, Universidade Tecnica de Lisboa, Lisboa, Portugal
e-mail: jpms@ucd.ie

Constraints (2013) 18:478–534 479

conducted, including not only the surveyed algorithms, but also other state-of-the-
art MaxSAT solvers. The results indicate that (i) core-guided MaxSAT algorithms in
general abort in less instances than classic solvers based on iteratively calling a SAT
solver and that (ii) core-guided MaxSAT algorithms are fairly competitive compared
to other approaches.

Keywords MaxSAT · MaxSMT · Boolean optimization · Optimization problems

1 Introduction

The Satisf iability problem in propositional logic (SAT) is the task of deciding
whether a given propositional formula has a model. MaxSAT is an optimization
variant of SAT and it can be seen as a generalization of the SAT problem. Given
a propositional formula in conjunctive normal form (CNF), a conjunction of disjunc-
tions (clauses), the objective of the MaxSAT problem is to find an assignment for the
Boolean variables that maximizes the number of satisfied clauses.

In weighted MaxSAT, each clause has an associated weight and the goal becomes
maximizing the sum of the weights of the satisfied clauses. In many problems origi-
nating from real world domains, a subset of the clauses must be satisfied (referred to
as hard clauses), and the remaining (referred to as soft) clauses may be satisfied or
not. Weights are usually modeled as natural numbers, and hard clauses are modeled
by giving each a sufficiently large weight [31].

There are several variants of the MaxSAT problem [31] depending on the
distribution of soft and hard clauses. When all clauses are soft and their weight is
1, the problem is referred to as unweighted MaxSAT. When all clauses are soft and
some weights are greater than 1, it is referred to as weighted MaxSAT. When all
soft clauses have weight 1 and there is a set of hard clauses, it is referred to as
partial MaxSAT. Finally, when some soft clauses have a weight greater than 1 and
there is a set of hard clauses, it is referred to as weighted partial MaxSAT. For all
MaxSAT variants, this paper considers the cost of a given truth assignment (whether
an optimum solution or not) to be the sum of the weights of the clauses not satisfied
by that assignment. The goal of every variant is thus to find an assignment with
minimum cost.

The remainder of this section is organized as follows. First, example applica-
tions of MaxSAT are outlined, followed by an overview of the existing MaxSAT
algorithms in the literature. Then, a general description of the MaxSAT algorithms
surveyed in this paper is given. The section concludes with the goals and structure of
the survey.

1.1 MaxSAT applications

Many important problems can be naturally expressed as MaxSAT. These include
academic problems such as Max-Cut or Max-Clique, as well as problems from many
industrial domains. Concrete examples include the following domains: Routing prob-
lems [127]; different problems of BioInformatics, such as Protein Alignment [120],
Haplotyping with Pedigrees [56], Reasoning over Biological Networks[58]; Hardware
Debugging, both on Design Debugging [111], as well as on Circuit Debugging [34, 81];

480 Constraints (2013) 18:478–534

Software Debugging (of C code) [66, 67]; Scheduling [124]; Planning [38, 68, 108, 129];
Course Timetabling [17, 18]; Probabilistic Reasoning [102]; Electronic Markets [112];
Credential-Based interactions as a way to minimize the disclosure of private informa-
tion [12]; Enumeration of MUSes/MCSes [27, 78, 107]; Software Package Upgrades
[13, 15, 16, 80, 123]; Combinatorial Auctions [60]; Quantif ied Boolean Formulas [30].

Additionally, MaxSAT algorithms have also been successfully applied as a way
to compute the Binate/Unate Covering problem [59], where it has been applied to
Haplotype Inference [57], to Digital Filter Design [1], to FSM Synthesis and Logic
Minimization [59], among others. Analogously, many problems originally formulated
in other optimization frameworks can be easily reformulated as MaxSAT including
the Pseudo-Boolean Optimization framework [3], the Weighted CSP framework [73]
and the MaxSMT framework [96].

1.2 MaxSAT algorithms

The last two decades have witnessed significant progress in the development of
theoretical and practical work on MaxSAT. Early theoretical MaxSAT research
provided insights in the complexity of the problem [21, 100].

Early practical works on MaxSAT were based on stochastic local search (SLS)
[65, 115, 116] with the objective of approximating the MaxSAT solution. SLS
algorithms randomly compute an initial assignment of the variables, and at each
iteration the value of one variable is f lipped (from true to f alse or vice-versa)
in a process that attempts to find an assignment satisfying more clauses than the
largest number found thus far. SLS algorithms do not guarantee to find the optimum
solution and for this reason are referred to as incomplete algorithms. Whereas the
mentioned SLS algorithms were initially developed for the SAT problem, they can
be directly applied to approximate (unweighted) MaxSAT and for the most general
Weighted Partial MaxSAT [31]. For example, the most successful SLS algorithms for
SAT have been extended for approximating MaxSAT in the Ubcsat system [122].
SLS has been shown to be among the most effective algorithms to solve randomly
generated problems, but recent work on semidef inite programming has been shown
to be quite promising for approximating random Max2Sat instances [5, 54]. A recent
survey on SLS algorithms can be found in [64].

In the last decade, different complete (or exact) algorithms have been proposed
for solving MaxSAT to optimality. Some of the existing approaches are based on
reducing the MaxSAT problem into a well-known optimization problem and then
use an off-the-shelf solver for such problem. For example, a natural approach to
solve the MaxSAT problem is to model it as a Integer Linear Program (ILP). The
ILP problem can then be solved directly by a dedicated solver such as CPLEX. A
ILP problem restricted to 0-1 inequalities (pseudo-Boolean constraints) is usually
referred to as Pseudo-Boolean Optimization problem [23, 110]. Several approaches
have been developed to handle the PBO problem. Most of the existing PBO
algorithms, either adapt a modern SAT solver to natively handle pseudo-Boolean
constraints [3, 32, 117] or directly solve a sequence of SAT problems [45]. In both
cases, the aim is to take advantage of modern SAT solvers with powerful clause
learning and backjumping techniques [44, 88, 93].

Another example of reducing MaxSAT includes Answer Set Programming (ASP)
[50], in particular its optimization version MaxASP [48]. Recent algorithms for

Constraints (2013) 18:478–534 481

MaxASP include a branch and bound approach [98] and the adapted versions of
some core-guided MaxSAT algorithms presented in this survey [4]. The last relevant
reduction include the Weighted Constraint Satisfaction Problem (WCSP), e.g. [42].
Current approaches for solving WCSP are based on branch and bound algorithms
which apply local consistency to boost the search [39], as well as stochastic local
search approaches [94].

Besides reductions, other approaches for MaxSAT are based on adapting a
modern SAT solver by either (i) forcing an order on the selection of variables during
the search, that by construction leads to the optimum solution [51, 52, 109], or (ii) by
integrating knowledge compilation-based lower bounds and exploiting them during
the search [103, 106].

A large family of contemporary exact MaxSAT solvers follow a branch and bound
(BB) algorithm [29, 41, 61, 72, 76, 99, 126]. BB algorithms assign a variable at each
node of a search tree, simplify the current formula and compute lower bounds and
upper bounds on the value of any assignment that may be found below that node.
Whenever the lower bound matches the upper bound, no solution better than the
current one can be found in that branch, and the algorithm can backtrack. The branch
and bound MaxSAT algorithm proposed in [29] is organized in two phases. In the
first phase, a SLS algorithm is used to compute an initial upper bound. Then, in
a second phase, the actual branch and bound takes place in which primitive lower
bounds and simplif ication rules were applied at each of the nodes of the search tree.
Later works added more effective techniques in order to boost the search. Namely,
more efficient data-structures, new branching heuristics, new simplification rules and
more accurate lower bounds [95, 118, 121, 126]. Modern BB solvers additionally
exploit unit propagation [75] to compute powerful lower bounds, as well as new
inference rules [61, 72, 76] based on the resolution rule for MaxSAT [28, 71, 72].
Those algorithms have been recently surveyed in [74] and are particularly effective
on random and crafted benchmarks as consistently demonstrated by the MaxSAT
Evaluations since 2008 [14].

Another large family of MaxSAT algorithms is based on iteratively calling a SAT
solver. This paper presents a survey on those algorithms which are characterized
by using a SAT solver to iteratively search for satisfiable subsets of a formula’s
clauses within cardinality bounds determined differently by each algorithm. Those
algorithms are particularly suitable for benchmarks coming from industrial settings,
as observed in past MaxSAT Evaluations [14]. For example, in the 2012 MaxSAT
Evaluation, all the three top places of industrial categories are occupied by algo-
rithms that are based on iteratively calling a SAT solver, as well as for partial crafted
and weighted partial benchmarks. The next subsection briefly introduces this class of
MaxSAT algorithms.

1.3 Iterative and core-guided MaxSAT algorithms

Iterative and core-guided MaxSAT Algorithms operate by instrumenting a CNF
formula with fresh Boolean variables (called the relaxation variables) added to the
soft clauses. The soft clauses in a formula relaxed in this way can then be “disabled”
with a temporary assignment to their relaxation variables, effectively allowing a SAT
solver to search through the space of clause subsets to find satisfiable subsets, given
that the complete formula is unsatisfiable. Each temporary assignment is associated

482 Constraints (2013) 18:478–534

to a cost represented by the sum of weights of the relaxed soft clauses whose
relaxation variable(s) is assigned True, which implicitly defines a satisfying clause
subset.

Additionally, these algorithms utilize cardinality constraints [45, 110], pseudo-
Boolean constraints [45, 110] that place a bound k on a set of variables, allowing
the sum of weights associated to True variables to be at most k. These are often
called at most constraints (abbreviated in this paper as AtMostK). The MaxSAT
algorithms described in this section use AtMostK constraints over sets of relaxation
variables in order to place bounds on the cost of the assignments discovered by the
SAT solver. This way, each algorithm can search through a sequence of satisfiable
clause subset until the largest such size is determined, yielding the desired, optimum
solution with lowest cost. The differences in these algorithms lie primarily in the
selection of clauses to relax and in the progression of bounds each uses during
its search.

Early theoretical works (e.g. [55, 100, 101]) introduced binary search in order
to characterize the complexity of the MaxSAT problem and other optimization
problems. The idea of the algorithm is to initially relax all soft clauses and use
AtMostK constraints to refine a lower and an upper bound on the solution cost.
Similarly, linear search can be applied in order to refine only one bound. As such,
algorithms based on linear search can be of one of two main variants: those that
refine an upper bound on the cost of the optimum solution, and those that refine a
lower bound.

Algorithms that iteratively refine upper bounds will be referred to as linear search
Sat-Unsat (LIN-SU), denoting that all calls to the SAT solver but the last will
declare the given formula as satisf iable. Several MaxSAT tools are available that
follow a linear search Sat-Unsat strategy, for example SAT4J [25] and QMAXSAT
[69]. Note that using a SAT solver following linear Sat-Unsat scheme has also been
used in other domains, for example in the PBO solvers PBS [2], minisat+ [45] and
SAT4J [25].

Algorithms that iteratively refine lower bounds on the solution cost will be
referred to as linear search Unsat-Sat (LIN-US), denoting that all calls to a SAT
solver but the last will return unsatisf iable. There are no known implementations
of the linear search Unsat-Sat algorithm specifically for MaxSAT, though CAMUS
[77], which computes minimal unsatisf iable subsets (MUS) of an input formula,
does use such an approach in its first phase, solving MaxSAT as a side-effect of its
primary goal.

In order to apply a binary search [47] strategy, both lower and upper bounds
are maintained. Essentially, the binary search algorithm computes the midpoint
ν between the upper and lower bounds and calls a SAT solver to test whether
there exists a solution whose cost is less than or equal to ν. If the SAT solver
returns satisfiable, the upper bound can be updated to the value of the model found.
Alternatively, if the solver returns unsatisfiable, the lower bound can be updated to
the middle value just tested. Observe that, in the worst case, binary search requires
a number of calls to the SAT solver linear in the problem size (in fact the number of
soft clauses), whereas linear search may require an exponential number of calls due
to the clause weights. A MaxSAT solver that follows the binary search scheme was
introduced in [47]. Also, one of the algorithms introduced in [69] alternates binary
search and linear search Sat-Unsat at each iteration. In [35] binary search was used to

Constraints (2013) 18:478–534 483

solve an optimization version of the SMT framework. Bit-based search [37, 53] aims
to find the optimum solution by exploring its binary representation and also requires
a linear number of calls to a SAT solver. A prolog implementation was proposed in
[37] for bit-based search.

The algorithms described so far require the SAT solver to report the satisf iable
(SAT) or unsatisf iable (UNSAT) outcomes and to provide models on SAT out-
comes. Additionally, such algorithms relax all soft clauses before calling the SAT
solver for the first time. Those algorithms are referred to as iterative MaxSAT
algorithms.

More recent algorithms based on iteratively calling a SAT solver take advantage
of the information provided by unsatisf iable cores [128] to guide the search. Such
algorithms are referred to as core-guided MaxSAT algorithms. Hence, core-guided
MaxSAT additionally requires the SAT solver to be able to produce unsatisfiable
cores on UNSAT outcomes. In particular, unsatisfiable cores are used to relax soft
clauses on demand and/or to create constraints which are shorter in the sense that
they involve a smaller set of relaxation variables. Existing core-guided MaxSAT
algorithms follow an algorithmic scheme similar to linear or binary search.

The seminal core-guided algorithm was introduced in [47] (referred in this paper
as MSU1), being restricted to unweighted partial MaxSAT. At each iteration, a relax-
ation variable is added to each soft clause involved in a newly extracted unsatisfiable
core, and a new constraint is added to the formula. Several improvements were
introduced later in MSU1.1 [86], and MSU1.2 [85]. The extension to the weighted
case was proposed concurrently in [82] and [8] (respectively, WMSU1 and WPM1). Both
WMSU1 and WPM1 [47] algorithms may require more than one relaxation variable per
soft clause and use AtMost1 constraints (instead of general AtMostK constraints).

More recent algorithms relax soft clauses on demand, add at most one relaxation
variable per soft clause, and use general AtMostK constraints. MSU3 was the first
algorithm to follow such organization, and it is based on refining a lower bound.
Similarly, PM2 and PM2.1 also refine a lower bound and add additional constraints
to the formula based on a heuristic that counts how many previous unsatisfiable
cores are contained at each new unsatisfiable core. PM2.1 is the first algorithm to
take advantage of disjoint cores (or covers) to add smaller constraints to the formula.
Essentially, a disjoint core is an unsatisfiable core that does not share any soft clause
with previous unsatisfiable cores. A weighted version of PM2.1 can be found in WPM2
[9]. WPM2 introduced a technique based on the subset sum problem to refine the lower
bound at each iteration. A simplified version of such technique is borrowed in this
paper to extend several iterative and core-guided MaxSAT algorithms, which were
originally presented in their unweighted version, to handle weighted clauses.
MSU4 [87] alternates satisfiable and unsatisfiable calls to the SAT solver and also

relaxes soft clauses on demand. Core-guided binary search [63] relaxes soft clauses
on demand and follows a binary search strategy. Finally, core-guided binary search
with disjoint cores [63] enhances the previous algorithm by maintaining disjoint cores.
Note that WMSU4 and both versions of core-guided binary search refine both a lower
bound and an upper bound.

Figure 1 presents algorithms and publications in chronological order along with
their citation graph. These references are for papers reporting on implementations
of iterative and core-guided algorithms examined in this work as well as more recent

484 Constraints (2013) 18:478–534

2006 [47]BIN, LIN-SU, MSU1/PM1

2007 [53]BIT [86]MSU3

2008 [37]BIT
[87]MSU4

[85]MSU2

2009
[8]PM2,WPM1

[7]PM2.1
[82]WMSU1

2010 [26]SAT4J [83]WBO [9]WPM2

2011 [40]MAXHS [63]BIN-C, BIN-C-D

2012 [6]WPM1 [69]QMAXSAT [89]PAR [92]BIN-C-D2

2013 [10]WPM1/PM2 [90]WBO

Fig. 1 Chronology and citation map. Algorithms covered in this survey are shaded in grey. Dashed
line paths indicate the citation graph within this set of papers

works not covered by this survey. In the figure, algorithms covered by this work have
been shaded in grey. The names of the algorithms are as they have been introduced
in the respective papers, except for the algorithm of [47]. Additionally, Table 1
presents all the iterative and core-guided MaxSAT algorithms as studied in the paper,
together with the references to where the algorithms were published and a reference
to where the respective pseudo-code can be found in the paper. The names of the
algorithms in the table are as used in this survey.

Note that several works have been proposed to handle other optimization prob-
lems using similar or adapted versions of the iterative and core-guided MaxSAT
algorithms presented so far. As mentioned before, linear search Sat-Unsat has been
widely used for PBO and an adapted version of MSU1 and MSU3 for MaxASP [4].
Additionally, several works have been recently presented to handle an optimization
version of the Satisfiability Modulo Theories (SMT) framework, referred in this
paper as MaxSMT. Such works include [22, 36, 97, 114] to name a few. In this paper, it
is explained how iterative and core-guided MaxSAT algorithms can be easily adapted
to handle the MaxSMT problem.

Contemporary MaxSAT algorithms are based not only on iteratively calling a
SAT solver to retrieve models or unsatisfiable cores, but also require the integration
of additional sophisticated techniques. Such approaches include an algorithm [40]
that uses linear programming technology to handle the cardinality and pseudo-
Boolean constraints, more aggressive computation of lower bounds and upper
bounds at each disjoint core for the core-guided binary search with disjoint cores
algorithm [92], and the integration of several techniques in WMSU1, including Boolean

Constraints (2013) 18:478–534 485

Table 1 Iterative and core-guided MaxSAT algorithms studied

Iterative MaxSAT algorithms

Linear Search Unsat-Sat: LIN-US Algorithm 2 (page 13)
Linear Search Sat-Unsat: LIN-SU [25, 47, 69] Algorithm 4 (page 16)
Binary Search: BIN [47, 69] Algorithm 5 (page 17)
Alternating Binary Search with Linear Search Algorithm 6 (page 18)

Sat-Unsat: BIN/LIN-SU [69]
Bit-Based Search: BIT [37, 53] Algorithm 7 (page 19)

Core-GuidedMaxSAT algorithms

WMSU1/WPM1 [8, 47, 82] Algorithm 8 (page 21)
MSU2 [85] Algorithm 9 (page 24)
WMSU3 [86] Algorithm 10 (page 26)
WMSU4 [87] Algorithm 11 (page 26)
PM2 [8] Algorithm 12 (page 27)
PM2.1 [7] Algorithm 13 (page 28)
WPM2 [9] Algorithm 14 (page 30)
Core-Guided Binary Search: BIN-C [63] Algorithm 15 (page 31)
Core-Guided Binary Search with Disjoint Cores: BIN-C-D [63] Algorithm 16 (page 34)

multilevel optimization [84] , MaxSAT resolution [62], breaking symmetries [6], and
partitioning soft clauses [89].

1.4 Goals and structure

The main goal of this paper is to present a survey of iterative and core-guided
MaxSAT algorithms as of 2012. Some of the algorithms were originally introduced
in their unweighted version. In this paper, these algorithms are extended to handle
weighted partial MaxSAT. In particular, a total of 14 algorithms are described
in detail and characterized in terms of different properties. Such algorithms were
implemented in the same software platform so that they could be fairly compared
in order to better understand which are the most competitive algorithms indepen-
dently of implementation details. A comprehensive empirical study was conducted
including not only the algorithms described in this paper but also other state-of-
the-art MaxSAT solvers. The results on non-random benchmarks from MaxSAT
Evaluations indicate that (i) core-guided MaxSAT algorithms in general abort in
fewer instances than classic algorithms based on iteratively calling a SAT solver
and that (ii) core-guided MaxSAT algorithms are fairly competitive compared to
the other approaches.

The paper is structured as follows. Section 2 formally defines the MaxSAT
problem and related notation, as well as preliminary notation that will be used when
describing MaxSAT algorithms (Section 2.3). Section 3 briefly surveys Cardinality
and Pseudo-Boolean encodings used by the MaxSAT algorithms based on calling
a SAT solver in order to transform the specific constraints into a set of (hard)
clauses. Iterative MaxSAT algorithms are introduced in Section 4 and core-guided
algorithms in Section 5. Section 6 presents the MaxSMT problem, which can be seen
as a generalization of the MaxSAT problem, and shows how current SMT solvers
can be easily turned into MaxSMT solvers implementing any of the algorithms

486 Constraints (2013) 18:478–534

described in this survey. The experimental investigation is shown in Section 7.
Finally, Section 8 concludes the paper.

2 Preliminaries

This section presents the necessary definitions and notation related to the SAT
and MaxSAT problems, as well as the notation used for describing the MaxSAT
algorithms in the remainder of the paper.

2.1 Boolean satisfiability (SAT)

Let X = {x1, x2, . . . , xn} be a set of Boolean variables. A literal is either a variable
xi or its negation ¬xi. The variable to which a literal l refers is denoted by var(l).
Given a literal l, its negation ¬l is ¬xi if l is xi and it is xi if l is ¬xi. A clause c is a
disjunction of literals. Hereafter, lower case letters from the start of the alphabet will
represent clauses. The size of a clause, noted |c|, is the number of literals it contains.
A formula in conjunctive normal form (CNF) ϕ is a set of clauses. An assignment
is a set of literals A = {l1, l2, . . . , ln} such that for all li ∈ A, its variable var(li) = xi is
assigned to a value (true or f alse). If variable xi is assigned to true, literal xi is satisf ied
and literal ¬xi is unsatisf ied (or falsif ied). Similarly, if variable xi is assigned to f alse,
literal ¬xi is satisfied and literal xi is unsatisfied. If all variables in X are assigned, the
assignment is called complete, otherwise it is called partial. An assignment satisf ies a
literal iff it belongs to the assignment, it satisfies a clause iff it satisfies one or more
of its literals and it unsatisf ies a clause iff it contains the negation of all its literals.

A model is a complete assignment that satisfies all the clauses in a CNF formula ϕ.
SAT is the problem of deciding whether there exists a model for a given propositional
formula. Given an unsatisfiable SAT formula ϕ, a subset of clauses ϕC whose
conjunction is still unsatisfiable is called an unsatisf iable core of the original formula.
Given an unsatisfiable formula, modern SAT solvers can be instructed to generate
an unsatisfiable core [128].

2.2 Maximum satisfiability (MaxSAT)

A weighted clause is a pair (ci, wi), where ci is a clause and wi is the cost of falsifying it,
also called its weight. Many real problems contain clauses that must be satisfied. Such
clauses are called mandatory (or hard) and are associated with a special weight �.
Note that any weight wi ≥ � indicates that the associated clause must be necessarily
satisfied. Thus, wi can be replaced by � without changing the problem. Consequently,
all weights take values in {0, . . . ,�}. Non-mandatory clauses are also called soft
clauses. A formula in weighted conjunctive normal form (WCNF) ϕ = ϕH ∪ ϕS is
a set of weighted clauses where ϕH is the set of hard clauses, and ϕS is the set of
soft clauses.

A model is a complete assignment A that satisfies all mandatory clauses. The cost
of a model is the sum of weights of the soft clauses that it falsifies. Given a WCNF
formula ϕ = ϕH ∪ ϕS, Weighted Partial MaxSAT is the problem of finding a model
of minimum cost. In other words, the objective is to find an assignment that satisfies
all hard clauses in ϕH and minimizes the sum of weights of unsatisfied soft clauses

Constraints (2013) 18:478–534 487

Function RelaxCls(R, ϕ, ψ)

in ϕS. If the set of hard clauses is empty (ϕH = ∅), the problem is called weighted
MaxSAT problem. When all the weights are equal to 1 (∀i : wi = 1), then the problem
is called partial MaxSAT problem. Finally, if both the set of hard clauses is empty
(ϕH = ∅), and all the weights are equal to 1 (∀i : wi = 1), then the problem is called
(unweighted) MaxSAT problem.

2.3 Describing MaxSAT algorithms

The algorithms described in this paper are based on iteratively calling a SAT solver.
At each iteration, the algorithm creates a CNF instance and invokes a SAT solver
on it. Depending on the result given by the SAT solver, the algorithm updates
the CNF formula accordingly and starts a new iteration. Two types of algorithms
are considered in this paper: Iterative MaxSAT algorithms that on each iteration
update a bound depending on the result returned by the SAT solver (satisfiable
or unsatisfiable) and core-guided MaxSAT algorithms that additionally exploit the
information in the unsatisf iable cores returned by the SAT solver on unsatisfiable
outcomes.

All the algorithms make use of relaxation variables. Relaxation variables are new
Boolean variables that are added to the soft clauses of the formula. Unless otherwise
indicated, the algorithms associate at most one unique relaxation variable with each
soft clause. In terms of notation, relaxation variables are maintained in a set R, and
the relaxation variable ri is associated to the clause ci with weight wi where 1 ≤ i ≤ m.
This paper assumes that any weighted formula ϕ has m soft clauses.

In order to add relaxation variables to soft clauses, the algorithms use function
RelaxCls(R, ϕ, ψ), which receives a set of relaxation variables R, a WCNF formula ϕ,
and a set of soft clauses ψ . It returns the pair (Ro, ϕo), where ϕo corresponds to a copy
of ϕ whose soft clauses included in ψ have been augmented with fresh relaxation
variables, and Ro corresponds to R augmented with the relaxation variables added
in ϕo. Function RelaxCls show the pseudo-code of RelaxCls(R, ϕ, ψ).

Given the set of relaxation variables R, the algorithms add cardinality/pseudo-
Boolean constraints [47] and translate them to hard clauses. Such constraints usu-
ally state that the sum of the weights of the relaxed clauses is bounded above
(AtMostK constraint with

∑m
i=1 wiri ≤ K) or bounded below (AtLeastK constraint

with
∑m

i=1 wiri ≥ K) by a specific value K.
Opt(ϕ) will refer to the optimum solution of instance ϕ. The algorithms may use

the following variables: λ for a lower bound, μ for an upper bound, ν for the value

488 Constraints (2013) 18:478–534

Algorithm 1 MaxSAT Wrapper Algorithm

the algorithm is searching (in the current iteration), and ι for one bit of the binary
representation of that value. The algorithms also make use of the following functions:

– Soft(ϕ) returns the set of all soft clauses in ϕ.
– hard(ϕ) returns the set of all hard clauses in ϕ.
– SAT(ϕ) makes a call to the SAT solver which returns whether ϕ is satisfiable

(SAT) or unsatisfiable (UNSAT).
The SAT solver returns a complete assignment A if ϕ is satisfiable, otherwise A is
empty. When ϕ is unsatisfiable, the SAT solver is able to return an unsatisfiable
core ϕC.

– CNF(c) returns a set of clauses that encode the pseudo-Boolean constraint c into
CNF.

– Init(A) , given the assignment A, returns the set of assignments in A to the initial
variables of the input formula ϕ.

Without loss of generality, all the algorithms presented in this paper assume
that the input formula is not empty and that the set of hard clauses of the input
formula has a model. In practice, it is expected that some wrapper checks these
assumptions before calling the actual MaxSAT algorithm. The pseudo-code for such
a wrapper can be found in Algorithm 1. The parameters of the wrapper are a WCNF
formula (ϕ), the algorithm to execute (MSAlgorithm) and the upper bound and
lower bound heuristic to compute (LBHeuristic and U BHeuristic). Initially, a SAT
solver is called with the hard clauses of the formula (line 1). If the SAT solver returns
unsatisfiable, it means that the problem has no solution (line 2). Otherwise, the
specific MaxSAT solver is called in line 3. If an upper bound or a lower bound are
used, these are computed in lines 4 and 5, and the specified MaxSAT algorithm is
called with the computed bounds in line 6. The MaxSAT algorithms are described
in Sections 4 and 5. Lower and upper bound heuristics are described in detail in [63]
and briefly reviewed below.

First, the upper bound μ is described. Each soft clause in ϕ is extended with a new
relaxation variable obtaining a new formula ϕ’. Then, a SAT solver is called with the
resulting formula ϕ’ and no additional constraints. Clearly, a satisfying assignment
A exists for ϕ’. Then, the sum of weights of soft clauses which are unsatisfied by A
(disregarding relaxation variables) corresponds to a correct upper bound μ.

The lower bound λ is initially set to 0, and an initial working formula is created
from the original formula. The working formula is iteratively tested for satisfiability
with a SAT solver until a satisfiable instance is reached, in which case the lower
bound has been computed. On each unsatisfiable outcome, an unsatisfiable core ϕC

is obtained and the working formula is updated by dropping the soft clauses of ϕC.

Constraints (2013) 18:478–534 489

Additionally, the minimum weight m among the soft clauses in ϕC is added to the
lower bound (λ = λ + m).

3 Cardinality and Pseudo-Boolean constraint encodings

During the execution of any of the MaxSAT algorithms described in this paper,
different constraints are added to the working formula. Such constraints need to be
encoded as (hard) clauses. Depending on the type of constraint different encodings
can be used. If the constraint can be represented by a clause then it is directly
encoded as such. This is the case when the constraint to encode is of the form r1 +
. . . + rn ≥ 1 (where ri represents a pseudo-Boolean variable). Then the constraint is
encoded as the clause (x1 ∨ . . . ∨ xn).

In general, the constraints used by the MaxSAT solvers based on iteratively calling
a SAT oracle, can be represented as

∑m
i=1 wi × ri#K where ri is a relaxation variable

associated to the soft clause i and wi is its weight. The operator # can assume one of
the symbols: ≤ for AtMostK constraints, ≥ for AtLeastK constraints. The value
K can be equal 1 to form AtMost1 and AtLeast1 constraints. Otherwise, they
are called AtMostK and AtLeastK constraints. If all the weights wi are equal to
1 then the constraint is referred to as a Cardinality constraint. Differently, if some
of the weights wi are different than 1, the constraint is called a Pseudo-Boolean
constraint. If the constraint represents a cardinality constraint, then some of the
available encodings in the literature are one of the following encodings: the pairwise
and bitwise encodings [104, 105] (but only for AtMost1 and AtLeast1), the
ladder encoding [49], sequential counters [119], sorting networks [24, 45], cardinality
networks [19], and binary decision diagrams (BDDs) [45]. For pseudo-Boolean
constraints available CNF encodings in the literature include BDDs [45], sorting
networks [45] and the Warners’ encoding [125] . The previous lists of encodings
are not exhaustive, as cardinality and pseudo-Boolean encodings are active research
fields. A survey on the subject can be found in [110]. The performance of some of
the above encodings was analyzed in [91], where in general the conclusions are:

– The pairwise encoding is the best encoding for AtMost1 and AtLeast1 cardi-
nality constraints.

– Cardinality networks is the best encoding for AtMostK and AtLeastK cardinal-
ity constraints (but in some very specific cases sequential counters is better).

– For pseudo-Boolean constraints BDDs is the best option but it can result in a
very large set of clauses.

The encodings selected for the experimental results in this paper correspond to the
best performing encodings analyzed in [91].

4 Iterative algorithms

Iterative algorithms can be classified in two; either being based on a linear search, or
being based on binary search (or a conjunction of both). In the following is presented
the algorithms based on linear search, and then the algorithms based on binary
search. The section ends with a characterization of all the iterative algorithms.

490 Constraints (2013) 18:478–534

Algorithm 2 LIN-US: The Linear Search Unsat-Sat Algorithm

4.1 Linear search algorithms

This section presents iterative MaxSAT algorithms that are based on linear search.
Two algorithms are shown: Linear Search Unsat-Sat and Linear Search Sat-Unsat
that differ on the direction in which the search is made.

A straightforward approach for MaxSAT solving using a SAT solver is to iter-
atively convert the optimization problem into a decision problem: Given a WCNF
formula ϕ, the algorithm checks the satisfiability of ϕ together with a constraint (ex-
pressed in clauses) stating that the solution cost, i.e. the sum of weights of unsatisfied
clauses, is bounded by a given K. The algorithm can start from a lower bound λ

with the minimum possible cost (K =)λ = 0, meaning all clauses are satisfied, and
increase it up to the optimum solution, or it can start with an upper bound μ with the
maximum possible cost (K =)μ = ∑m

i=1 wi, allowing all clauses to be falsified, and
decrease down to the optimum solution.

The Linear Search Unsat-Sat algorithm starts with λ = 0, looking for an optimum
solution by checking unsatisfiable instances (all values of λ less than the optimum
solution) until a satisfiable instance is identified. That first satisfiable instance must
lie at the boundary between the unsatisfiable and the satisfiable, and thus it must
be the optimum solution. At every step, the value λ, which is a lower bound on the
optimum solution, is increased to the next possible cost (depending on the weights)
until the solution is found. The pseudo-code of Linear Search Unsat-Sat is shown
in Algorithm 2. Initially, all soft clauses are relaxed (line 1) and the lower bound is
initialized to 0 (line 2). Then, the main loop (line 3) iterates while the SAT solver
returns unsatisfiable (line 5). At each iteration, the SAT solver is called with the
clauses of the current working formula and the encoding of the AtMostK constraint∑m

i=1 wi · ri ≤ λ (line 4). Essentially, the AtMostK constraint requires that, for any
satisfying assignment, the sum of weights of the clauses whose relaxation variables
are assigned to true is lower or equal to the lower bound λ. If the SAT solver
returns unsatisfiable, the lower bound λ is increased (line 6); otherwise the algorithm
terminates (line 5) and returns the satisfying assignment A restricted to the original
variables.

Example 1 Let ϕ = ϕS ∪ ϕH be a partial MaxSAT instance with 6 variables, a set of
7 soft clauses ϕS, where ϕS = {(x1, 1), (x2, 1), (x3, 1), (x4, 1), (x5, 1), (x6, 1), (¬x6, 1)},
and a set of 5 hard clauses ϕH , where ϕH = {(¬x1 ∨ ¬x2, �), (¬x2 ∨ ¬x3,�), (¬x3 ∨
¬x4,�), (¬x4 ∨ ¬x5,�), (¬x5 ∨ ¬x1,�)}. From here on, in order to make the exam-
ples easier to follow, the weights are removed; i.e. assume the weights of every soft

Constraints (2013) 18:478–534 491

Table 2 Running example for the linear Unsat-Sat algorithm

ϕW = {(x1 ∨ r1), (x2 ∨ r2), (x3 ∨ r3), (x4 ∨ r4), (x5 ∨ r5), (x6 ∨ r6), (¬x6 ∨ r7)} ∪ ϕH

λ = 0;

#1 Constraint to include: CNF(r1 + r2 + r3 + r4 + r5 + r6 + r7 ≤ 0)

st = UNSAT;
λ = 1;

#2 Constraint to include: CNF(r1 + r2 + r3 + r4 + r5 + r6 + r7 ≤ 1)

st = UNSAT;
λ = 2;

#3 Constraint to include: CNF(r1 + r2 + r3 + r4 + r5 + r6 + r7 ≤ 2)

st = UNSAT;
λ = 3;

#4 Constraint to include: CNF(r1 + r2 + r3 + r4 + r5 + r6 + r7 ≤ 3)

st = UNSAT;
λ = 4;

#5 Constraint to include: CNF(r1 + r2 + r3 + r4 + r5 + r6 + r7 ≤ 4)

st = SAT;

Init(A) = {x3 = x5 = 1; x1 = x2 = x4 = x6 = 0}
#i represents the i-th iteration of the algorithm

clause is set to 1 and of every hard clause is set to �. If instance ϕ is solved with
the Linear Search Unsat-Sat algorithm (Algorithm 2), the sequence of iterations is
as shown in Table 2. The first column of the table shows the number of the iteration,
where the first row is the initial iteration (before any call to the SAT solver). The
second column shows the status of some of the structures of the algorithm, namely
for the initial iteration both the working formula ϕW and the lower bound λ are
presented. Since the Linear Search Unsat-Sat algorithm starts by relaxing all soft
clauses in the working formula, then in the initial iteration ϕW is a union of all the
hard clauses (ϕH) together with the set of soft clauses ϕS already relaxed. For the
remaining iterations, Table 2 shows the constraint that together with the working
formula is tested for satisfiability with the SAT solver. Variable st gives the outcome
of the SAT solver call. This value is unsatisfiable (UNSAT) for iterations #1 to #4
and the lower bound is increased by 1 each time. For iteration #5, the SAT solver
reports the formula to be satisfiable (SAT) and the satisfying assignment is shown
in the last row of the table (restricted to the original variables). In the remaining of
the paper, examples of the execution for several algorithms are presented in a similar
fashion to this example.

Observe that in the pseudo-code, λ is updated by RefineBound{ωi|1 ≤ i ≤ m}, λ
instead of just by 1. Function RefineBound() takes as parameters (i) a vector of
weights and (ii) a bound, and it returns a refinement of the given bound. The possible
refinements depend on the distribution of the weights. The following refinements are
considered:

– λ ← λ + 1
– λ ← Sub SetSum({ωi|1 ≤ i ≤ m}, λ) (as suggested in [9])

For unweighted MaxSAT instances (i.e., all weights equal to 1), the bound
refinement cannot be better than λ + 1. However, for weighted MaxSAT the bound

492 Constraints (2013) 18:478–534

Algorithm 3 The Linear Sat-Unsat Algorithm

refinement using the subset sum could save a considerable number of iterations [9].
Given a set of integers and an integer k, the subset sum problem asks if there is
any subset of integers such that their sum equals k. The subset sum problem is a
well-known NP-hard problem which can be solved by a pseudo-polynomial algo-
rithm, for example, a dynamic programming algorithm [9]. The bound refinement
Sub SetSum({ωi|1 ≤ i ≤ m}, λ) receives the current lower bound λ and the set of
weights of the soft clauses, and it returns the next value for λ such that the subset
sum is true.

Example 2 Let ϕ be a weighted formula with four soft clauses with weights 1, 2, 3,
and 100 and a set of hard clauses. The only possible values for the optimum solution
are in 0, . . . , 6 and in 100, . . . , 106. So, there is no need to assign λ to any of the
values in 7, . . . , 99 for the Linear Search Unsat-Sat algorithm. If the algorithm is
run on this instance and the bound refinement is just λ + 1, it will iterate over all
the values 0, . . . , 106 in the worst case (i.e., Opt(ϕ) = 106). Alternatively, using the
bound refinement based on the subset sum, it will iterate only over the values in
0, . . . , 6 and 100, . . . , 106 in the worst case.

Unless otherwise indicated, function RefineBound() will be used in the remain-
ing algorithms that refine a lower bound.

Algorithm 3 shows the pseudo-code for Linear Search Sat-Unsat, which searches in
the opposite direction than Linear Search Unsat-Sat. Here, in every iteration but the
last, the instance is satisfiable. The optimum solution is found immediately before the
first unsatisf iable instance. Starting from the sum of the weights of the soft clauses,
an upper bound μ is decreased until the MaxSAT solution is found. Initially, all soft
clauses are relaxed (line 1), and the upper bound is initialized to the sum of the
weights plus one (line 2). The main loop (line 3) iterates until an unsatisfiable formula
is found (line 5). At each iteration, the SAT solver is called with the clauses of the
working formula and the encoding of the AtMostK constraint

∑m
i=1 wi · ri ≤ μ − 1

(line 4). Otherwise, the upper bound is updated and the current assignment is
stored (line 6). The algorithm terminates whenever an unsatisfiable formula is found
(line 5).

An improved version of Algorithm 3 is presented in Algorithm 4 [25]. The
advantage of this algorithm is that the value of μ may be decreased by a value greater
than 1, since the assignment A in line 6 provides a possibly stronger upper bound
Opt(ϕ) ≤ ∑m

i=1 wi ≤ μ, and (μ − ∑m
i=1 wi) ≥ 1. Hence, Algorithm 4 represents the

actual Linear Search Sat-Unsat that will be evaluated in the empirical investigation.

Constraints (2013) 18:478–534 493

Algorithm 4 LIN-SU: The Linear Sat-Unsat Algorithm with Assignment Leap [25]

Table 3 Running example for the linear Search Sat-Unsat algorithm with Assignment Leap

ϕW = {(x1 ∨ r1), (x2 ∨ r2), (x3 ∨ r3), (x4 ∨ r4), (x5 ∨ r5), (x6 ∨ r6), (¬x6 ∨ r7)} ∪ ϕH

μ = 8

#1 Constraint to include: CNF(r1+r2+r3+r4+r5+r6+r7 ≤ 7)

st = SAT;
A = {r7 = 0; r1 = r2 = r3 = r4 = r5 = r6 = 1} ∪ Init(A)

μ = 6

#2 Constraint to include: CNF(r1+r2+r3+r4+r5+r6+r7 ≤ 5)

st = SAT;
A = {r5 = r7 = 0; r1 = r2 = r3 = r4 = r6 = 1} ∪ Init(A)

μ = 5

#3 Constraint to include: CNF(r1+r2+r3+r4+r5+r6+r7 ≤ 4)

st = SAT;
A = {r3 = r5 = r7 = 0; r1 = r2 = r4 = r6 = 1} ∪ Init(A)

μ = 4

#4 Constraint to include: CNF(r1+r2+r3+r4+r5+r6+r7 ≤ 3)

st = UNSAT;
A = ∅
Init(lastA) = {x3 = x5 = 1; x1 = x2 = x4 = x6 = 0}

#i represents the i-th iteration of the algorithm

Example 3 Consider that the instance ϕ of Example 1 is given to Linear Search
Sat-Unsat with Assignment Leap (Algorithm 4). Table 3 presents the iterations
obtained from running Algorithm 4 on ϕ. In the first iteration, the call to the SAT
solver returns a satisfying assignment A with 5 relaxation variables assigned to true.
Given that each soft clause has weight 1, the upper bound can be safely updated to
5. This makes Algorithm 4 skip two iterations that Algorithm 3 would make.

4.2 Binary search based algorithms

This section presents iterative MaxSAT algorithms based on binary search. First
is presented the binary search algorithm, followed by an algorithm that alternates
between binary search and linear search. Then is presented an algorithm based on
binary search in the binary representation of the value of the optimum cost.

Linear search-based algorithms for MaxSAT can take a number of iterations
that grows linearly with

∑m
i=1 wi, and so are exponential in the size of the problem

494 Constraints (2013) 18:478–534

Algorithm 5 BIN: The Binary Search Algorithm [47]

instance1. Since we are searching for a value on a monotonic scale (the set of solution
costs), binary search can be used instead. Two bounds (upper and lower) can be
maintained, and binary search can be used to locate the optimum solution, again as
the cost at the boundary between satisfiable and unsatisfiable.

Binary Search [47] (See Algorithm 5) maintains both a lower bound λ and an
upper bound μ. Initially, all soft clauses are relaxed (line 1), and the lower and upper
bounds are initialized, respectively, to −1 and to one plus the sum of the weights of
the soft clauses (line 2). At each iteration, the middle value ν is computed (line 4),
an AtMostK constraint is added to the working formula, requiring the sum of the
weights of relaxed soft clauses to be lower or equal to ν, and the SAT solver is
called on the resulting CNF formula (line 5). If the formula is satisfiable (line 6),
then the optimum solution must be lower than ν, and the upper bound is updated.
If the formula is unsatisfiable, then the optimum solution must be larger than ν and
the lower bound is updated (line 7). The algorithm terminates when λ + 1 = μ. The
number of iterations of binary search grows with log (

∑m
i=1 wi), and so it is linear in

the size of the problem instance.

Example 4 Consider the execution of Binary Search (Algorithm 5) on the instance
ϕ of Example 1. The sequence of steps of the algorithm is shown in Table 4, where it
is assumed that RefinedBound() always returns ν + 1.

Algorithm 6 shows the pseudo-code for the algorithm introduced in [69], which
implements a mix of the two previous algorithms and will be referred to as
BIN/LIN-SU. The authors (in [69]) motivate this algorithm by stating, “Generally
speaking, binary search is better than linear search. Practically, however, there are
instances for which linear search is better than binary search. [...] [The algorithm]
alternates binary search and linear search in order to benefit from both searches.”
The algorithm can be in one of two possible execution modes: linear or binary
search. Initially, all soft clauses are relaxed (line 1), and the lower and upper
bounds are initialized to −1 and to the sum of the weights plus one, respectively
(line 2). Additionally, the execution mode is also initialized to binary search (line
2). At each iteration, the SAT solver is called with the current working formula
and an AtMostK constraint (line 5). Depending on the current execution mode,
the AtMostK constraint is bounded with the upper bound (Linear Search Sat-Unsat

1Here, size denotes the number of bits used to represent the instance.

Constraints (2013) 18:478–534 495

Table 4 Running example for the Binary Search Algorithm

ϕW = {(x1 ∨ r1), (x2 ∨ r2), (x3 ∨ r3), (x4 ∨ r4), (x5 ∨ r5), (x6 ∨ r6), (¬x6 ∨ r7)} ∪ ϕH

μ = 8, λ = −1;

#1 ν = 3
Constraint to include: CNF(r1 + r2 + r3 + r4 + r5 + r6 + r7 ≤ 3)

st = UNSAT;
μ = 8, λ = 3;

#2 ν = 5
Constraint to include: CNF(r1 + r2 + r3 + r4 + r5 + r6 + r7 ≤ 5)

st = SAT;
A = {r3 = r5 = r7 = 0; r1 = r2 = r4 = r6 = 1} ∪ Init(A)

μ = 4, λ = 3;

Init(lastA) = {x3 = x5 = 1; x1 = x2 = x4 = x6 = 0}
#i represents the i-th iteration of the algorithm

mode) or with the middle value between the lower and upper the bound (Binary
Search mode). If the SAT solver returns satisfiable, the upper bound is updated. If
the SAT solver returns unsatisfiable, the lower bound is updated to the middle value
(line 7). As shown, in each iteration, the execution mode is swapped (line 8).

One additional approach related to binary search, exploits the fact that the
solution is a natural number, which can be represented as a sequence of bits. The
optimum solution can thus be found by “narrowing in” on the boundary between
satisfiable and unsatisfiable instances bit-by-bit, such that each bit’s optimum value is
determined before moving to the next. The algorithm starts from the most significant
bit (MSB) and moves, iteration by iteration, to the least significant bit, at which point
it has found the exact solution. Algorithm 7 presents the pseudo-code for Bit-Based
Search. Initially, all soft clauses are relaxed (line 1). The sum of the weights of the
soft clauses is an upper bound on the optimum solution. Such an upper bound is used
to decide how many bits are needed to represent the solution and thus which bit will
be the MSB (line 2). The index of the current bit of interest is stored in ι, whereas ν

is the actual solution value being constructed (line 3).
The main loop iterates until it has reached the least significant bit when ι = 0

(line 4). Inside the loop, a call to the SAT solver is made stating that the sum of
weights of the relaxed soft clauses should be lower than ν (line 5). If the SAT solver
returns unsatisfiable, the search continues to the next most significant bit (line 13),
and the value ν is increased by 2ι (line 14), given that the solution is clearly greater
than the current value of ν. If the SAT solver returns satisfiable, then the sum
of weights of unsatisfied soft clauses by the current assignment is computed and
the associated set of bits representing that value is created using a set of constants
s0, . . . , sk (line 8). The index to the current bit ι is decreased to the next index j < ι

such that the associated constant s j is assigned to 1 (line 9). If no such bit exists, ι is
set to −1 so that the algorithm terminates (line 9). Otherwise, the value ν is updated
according to the set of constants assigned to 1.

Example 5 Consider the execution of Bit-Based Search (Algorithm 7) on the the
instance ϕ of Example 1. The sequence of main steps of the algorithm is shown in
Table 5.

496 Constraints (2013) 18:478–534

Algorithm 6 BIN/LIN-SU: Alternating Binary Search and Linear Search Sat-Unsat
[69]

Algorithm 7 BIT: The Bit-Based Search Algorithm [37, 53]

4.3 Characterization of iterative algorithms

Table 6 presents a characterization of iterative MaxSAT algorithms. The first column
enumerates several characteristics. The remaining columns refer to the following
iterative MaxSAT algorithms: LIN-US is Linear Search Unsat-Sat, LIN-SU is Linear
Search Sat-Unsat, BIN is Binary Search, BIN/LIN-SU alternates Binary Search with
Linear Search Sat-Unsat and BIT is Bit-Based Search. The considered characteristics
are:

– Progression: indicates if the algorithm refines a lower bound (LB) or an upper
bound (UB).

– # Relax. Vars./Clause: The number of relaxation variables per soft clause.

Constraints (2013) 18:478–534 497

Table 5 Running example for the Bit-Based Search Algorithm

ϕW = {(x1 ∨ r1), (x2 ∨ r2), (x3 ∨ r3), (x4 ∨ r4), (x5 ∨ r5), (x6 ∨ r6), (¬x6 ∨ r7)} ∪ ϕH

k = 2
ι = 2
ν = 22 = 4

#1 Constraint to include: CNF(r1 + r2 + r3 + r4 + r5 + r6 + r7 < 22)

st = UNSAT
ι = 1
ν = 22 + 21 = 6

#2 Constraint to include: CNF(r1 + r2 + r3 + r4 + r5 + r6 + r7 < 22 + 21)

st = SAT;
A = {r1 = r2 = r4 = r6 = 1, r3 = r5 = r7 = 0} ∪ Init(A)

{s0 = s1 = 0; s2 = 1}
ι = −1

Init(lastA) = {x3 = x5 = 1; x1 = x2 = x4 = x6 = 0}
#i represents the i-th iteration of the algorithm

– Total # Relax. Vars.: The total number of relaxation variables added to the
formula throughout the algorithm.

– # Const./Iteration: The number of constraints added at each iteration.
– Total # Const.: The total number of constraints added to the formula throughout

the algorithm.
– Calls SAT Oracle: The theoretical worst case number of calls to a SAT oracle

(solver).
– Weighted: If the algorithm handles weighted MaxSAT.

Recall that m is the total number of soft clauses in ϕ = ϕS ∪ ϕH (i.e., m = |ϕS|)
and W be the sum of weights of soft clauses W = ∑m

i=1 wi. Because all algorithms
start by relaxing all soft clauses, all algorithms use exactly m relaxation variables,
precisely one for each soft clause. All 5 algorithms maintain one AtMostK constraint
at each iteration and in the last call to the SAT solver. Also, all 5 algorithms have
been presented in their weighted MaxSAT version. The main differences between
the algorithms are their progression and the worst case number of calls to a SAT
solver. Linear Search Unsat-Sat refines a lower bound, whereas Linear Search Sat-
Unsat refines an upper bound. Binary Search, Bit-Based Search and BIN/LIN-SU
refine a lower and upper bound (LB+UB). Linear Search Unsat-Sat and Sat-Unsat
require a worst case exponential number of calls to the SAT solver on the problem
instance size whereas Binary Search, Bit-Based Search and BIN/LIN-SU require a
linear number of calls (worst case).

5 Core-guided algorithms

This section describes several algorithms for MaxSAT that are guided by the
discovery of unsatisfiable cores [128]. As such, the algorithms assume that the SAT
solver used is able to return an unsatisfiable core whenever the input instance to
the SAT solver is unsatisfiable. On the pseudo-code presented in this section, the
function SAT(ϕ) returns a triple (st, ϕC,A), where st represents the satisfiability of

498 Constraints (2013) 18:478–534

Table 6 Characteristics of Iterative MaxSAT Algorithms

Characteristic LIN-US LIN-SU BIN BIN/LIN-SU BIT

Progression LB UB LB + UB LB+UB LB + UB

Relax. Vars./Clause 1 1 1 1 1

Total # Relax. Vars. m m m m m

Const./Iteration 1 1 1 1 1

Total # Const. 1 1 1 1 1

Calls SAT oracle O(W) O(W) O(log(W)) O(log(W)) O(log(W))

Weighted Yes Yes Yes Yes Yes

m is the number of soft clauses of ϕ and W is the sum of weights of soft clauses W = ∑m
i=1 wi

Algorithm 8 The WMSU1 Algorithm [8, 47, 82]

ϕ (SAT or UNSAT), ϕC represents the set of clauses in the core if ϕ is unsatisfiable,
and A represents an assignment if ϕ is satisfiable.

In order to facilitate the presentation of the core-guided algorithms, the algo-
rithms have been divided in three sections. First is presented the algorithms that
consider possibly more than one relaxation variable per soft clause relaxed. These
correspond to the WMSU1 and MSU2 algorithms.

Then, the algorithms that add at most one relaxation variable per soft clause are
introduced. These algorithms were further divided in the set of algorithms are not
based on binary search and the set of algorithms based on binary search. The section
ends with a characterization of all the algorithms.

5.1 Algorithms based on multiple relaxation variables per soft clause

This section presents the WMSU1 and the MSU2 algorithms. As core-guided MaxSAT
algorithms, both algorithms take advantage of unsatisfiable core to relax soft clauses
belonging to cores. These algorithms are characterized by adding more than one
relaxation variable to a soft clause, in the case that such clause belongs to more than
one of the computed cores. The difference between the two algorithms is the way the
relaxation variables and cardinality constraints are used by each algorithm.

Constraints (2013) 18:478–534 499

The first core-guided algorithm in the literature is due to Fu & Malik [47]. It is
similar to the Linear Search Unsat-Sat algorithm, but it limits the clauses it relaxes
(thus reducing the search space) by using unsatisfiable cores. The algorithm is based
on iteratively calling a SAT solver on a working formula ϕW , initially set to be the
input formula ϕ. If ϕW is satisfiable, then the current satisfying assignment (provided
by the SAT solver) is an optimum assignment, and the number of iterations required
so far corresponds to the MaxSAT solution.

If ϕW is unsatisfiable, then the SAT solver provides a reason for the unsatisfiability
of the formula, namely an unsatisfiable core ϕC. In this case, the algorithm proceeds
by relaxing in ϕW each of the soft clauses of ϕC, and adding a new cardinality
constraint to ϕW stating that one and only one of the new relaxation variables
(created due to the current ϕC), must the assigned true (all others must be assigned
false). Observe that each soft clause that belongs to more than one of the cores found
gets relaxed more than once.

The original algorithm proposed in [47] used the one-hot constraint (the cardi-
nality constraint is an equality = 1, i.e., one and only one variable in the constraint
will be assigned true) which is quadratic on the input size, and was restricted to
unweighted MaxSAT. In more recent works, the one-hot constraint is replaced by
an AtMost1 constraint with more efficient encodings such as the bitwise encoding
[85] or the regular encoding [8].

The extension of the Fu & Malik algorithm [47] to handle weighted MaxSAT was
presented simultaneously in [8, 82]. In [8], the resulting algorithm is referred to as
WPM1, while in [82] the resulting algorithm is referred as WMSU1.2

The pseudo-code (for the weighted version) of WMSU1 is presented in Algorithm 8.
The algorithm progresses through unsatisfiable instances until a satisfiable instance
is found. The working formula ϕW is maintained between iterations (line 1). Each
time the working formula is found to be unsatisfiable (line 4), an unsatisfiable core
ϕC is obtained (line 5), and each soft clause in the core is augmented with a fresh
relaxation variable (line 8). Then, a new hard constraint is added to the formula
to limit the number of the relaxation variables to be assigned true to at most one
(line 13).
WMSU1 was improved in [86] by adding an additional cardinality constraints to

ϕW for each soft clause with more than one relaxation variable. Since on these
clauses at most one of the relaxation variables gets assigned true, then the cardinality
constraint allows at most one of these relaxation variables to be assigned true
(optional constraint in line 9).

The introduction of weights in WMSU1 requires clause replication. Let minϕC be the
minimum weight of the soft clauses in the current unsatisfiable core ϕC (line 5). The
weighted version of WMSU1 proceeds (line 6) by replicating each soft clause in ϕC

and extending each replicated clause with an additional relaxation variable (line 8).
Further, each replicated clause is assigned weight minϕC (line 8). Finally, the weight of
each soft clause in ϕC is decremented by minϕC (line 10). Note that in the unweighted
version of WMSU1 each soft clause has a weight of 1, and as such line 10 is never
applied (since minϕC is always 1).

2In the remainder of this work, we will abuse the naming and refer to the algorithm of Fu & Ma-
lik [47], to the WPM1 algorithm of [8] and to the WMSU1 algorithm of [8], by the same name WMSU1.

500 Constraints (2013) 18:478–534

Table 7 Running example for the WMSU1 Algorithm

ϕW = ϕH ∪ {(x1), (x2), (x3), (x4), (x5), (x6), (¬x6)}
#1 st = UNSAT;

Soft(ϕC) = {(x6), (¬x6)};
New relaxation variables r1, r2;
Resulting ϕW = ϕH ∪ {(x1), (x2), (x3), (x4), (x5), (x6 ∨ r1), (¬x6 ∨ r2)}

∪ CNF(r1 + r2 ≤ 1)

#2 st = UNSAT;
Soft(ϕC) = {(x1), (x2)};
New relaxation variables r3, r4;
Resulting ϕW = ϕH ∪ {(x1 ∨ r3), (x2 ∨ r4), (x3), (x4), (x5), (x6 ∨ r1), (¬x6 ∨ r2)}

∪ CNF(r1 + r2 ≤ 1) ∪ CNF(r3 + r4 ≤ 1)

#3 st = UNSAT;
Soft(ϕC) = {(x3), (x4)};
New relaxation variables r5, r6;
Resulting ϕW = ϕH ∪ {(x1 ∨ r3), (x2 ∨ r4), (x3 ∨ r5), (x4 ∨ r6), (x5), (x6 ∨ r1), (¬x6 ∨ r2)}

∪ CNF(r1 + r2 ≤ 1) ∪ CNF(r3 + r4 ≤ 1) ∪ CNF(r5 + r6 ≤ 1)

#4 st = UNSAT; Soft(ϕC) = {(x1 ∨ r3), (x2 ∨ r4), (x3 ∨ r5), (x4 ∨ r6), (x5)};
New relaxation variables r7, r8, r9, r10, r11;
Resulting ϕW = ϕH ∪ {(x1 ∨ r3 ∨ r7), (x2 ∨ r4 ∨ r8), (x3 ∨ r5 ∨ r9), (x4 ∨ r6 ∨ r10), (x5 ∨ r11),

(x6 ∨ r1), (¬x6 ∨ r2)} ∪ CNF(r1 + r2 ≤ 1) ∪ CNF(r3 + r4 ≤ 1)

∪CNF(r5 + r6 ≤ 1) ∪ CNF(r7 + r8 + r9 + r10 + r11 ≤ 1)

#5 st = SAT; Init(A) = {x3 = x5 = 1; x1 = x2 = x4 = x6 = 0}
#i represents the i−th iteration of the algorithm

Example 6 Consider that the instance ϕ of Example 1 is solved with algorithm WMSU1
(Algorithm 8). The execution sequence of WMSU1 would be as in Table 7.

Example 7 Let ϕC = {(x1 ∨ x2, 5), (¬x1 ∨ x2, 6), (x1 ∨ ¬x2, 7), (¬x1 ∨ ¬x2, 8)} be an
unsatisfiable core with just soft clauses found by the SAT solver. The minimum
weight among such clauses is minϕC = 5. Clause replication will create the follow-
ing set of clauses with an additional relaxation variable: {(x1 ∨ x2 ∨ r1, 5), (¬x1 ∨
x2 ∨ r2, 5), (x1 ∨ ¬x2 ∨ r3, 5), (¬x1 ∨ ¬x2 ∨ r4, 5)} and the weight of the original soft
clauses will be decremented by minϕC resulting in {(¬x1 ∨ x2, 1), (x1 ∨ ¬x2, 2),

(¬x1 ∨ ¬x2, 3)}.

Observe that WMSU1 is the only MaxSAT algorithm that adds more than one
relaxation variable per soft clause. Whereas the remaining MaxSAT algorithms
described in this paper add and remove AtMostK constraints at each iteration,
WMSU1 is the only algorithm that just adds AtMost1 and AtLeast1 constraints that
become part of the working formula. For this reason, WMSU1 is said to transform each
problem instance into an equivalent one at each iteration in [8].

The MSU2 algorithm [85] aims to reduce the number of relaxation variables added
by working directly with the auxiliary variables of the bitwise encoding [105]. In MSU2,
the bitwise encoding operates on the soft clauses of each identified unsatisfiable core.
This essentially allows it to eliminate the relaxation variables by working directly with
the auxiliary variables used by the encoding. For an unsatisfiable core with k soft

Constraints (2013) 18:478–534 501

Algorithm 9 The MSU2 Algorithm [85]

clauses, the bitwise encoding requires n auxiliary variables, where n = 1 if k = 1 and
n = log2�k� if k > 1. Moreover, the encoding requires O(log k) new clauses for each
original clause in the unsatisfiable core. Assume a clause cij , relaxed from an original
clause ci, is included in an identified unsatisfiable core. Then all clauses generated
from ci need to be re-relaxed. For this reason, the pseudo-code assumes an auxiliary
function, getAssocCls(ϕW, c) that, given a set of clauses ϕW and an initial clause c,
returns the subset of clauses of ϕW that originated from c. Note that MSU2 does not
use the function RelaxCls, and instead uses the BinRelax function for relaxing the
soft clauses as explained below.

The pseudo-code of MSU2 is shown in Algorithm 9. In the main loop, the algorithm
iteratively calls the SAT solver with the current working formula (line 22). Whenever
the SAT solver returns satisfiable, the algorithm terminates and returns the solution
(line 23). Otherwise, the algorithm traverses the set of soft clauses in the unsatisfiable
core and creates two sets ϕI and ϕR. For each soft clause cR in the unsatisfiable core
(line 25), the original clause c associated with cR is retrieved (line 26) and added to
ϕI (line 27). Moreover, all soft clauses originating from c are added to ϕR (line 28).
Then, the working formula is updated by removing the clauses in ϕR and adding the
new set of soft clauses provided by the bitwise encoding (line 30).

Function BinRelax receives the set of original soft clauses ϕI and the working
formula and returns a set of new soft clauses ϕo. Initially, ϕo is empty (line 3). For

502 Constraints (2013) 18:478–534

Table 8 Running example for the MSU2 Algorithm

ϕW = {(x1), (x2), (x3), (x4), (x5), (x6), (¬x6)} ∪ ϕH

#1 st = UNSAT; Soft(ϕC) = {(x6), (¬x6)};
New relaxation variable r1;
Resulting ϕW = {(x1), (x2), (x3), (x4), (x5), (x6 ∨ ¬r1), (¬x6 ∨ r1)} ∪ ϕH

#2 st = UNSAT; Soft(ϕC) = {(x1), (x2)};
New relaxation variable r2;
Resulting ϕW = {(x1 ∨ ¬r2), (x2 ∨ r2), (x3), (x4), (x5), (x6 ∨ ¬r1), (¬x6 ∨ r1)} ∪ ϕH

#3 st = UNSAT; Soft(ϕC) = {(x3), (x4)};
New relaxation variable r3;
Resulting ϕW = {(x1 ∨ ¬r2), (x2 ∨ r2), (x3 ∨ ¬r3), (x4 ∨ r3), (x5), (x6 ∨ ¬r1), (¬x6 ∨ r1)} ∪ ϕH

#4 st = UNSAT; Soft(ϕC) = {(x1 ∨ ¬r2), (x2 ∨ r2), (x3 ∨ ¬r3), (x4 ∨ r3), (x5)};
New relaxation variables r4, r5, r6;
Resulting ϕW = {(x1 ∨ ¬r2 ∨ ¬r4), (x1 ∨ ¬r2 ∨ ¬r5), (x1 ∨ ¬r2 ∨ ¬r6),

(x2 ∨ r2 ∨ r4), (x2 ∨ r2 ∨ ¬r5), (x2 ∨ r2 ∨ ¬r6),

(x3 ∨ ¬r3 ∨ ¬r4), (x3 ∨ ¬r3 ∨ r5), (x3 ∨ ¬r3 ∨ ¬r6),

(x4 ∨ r3 ∨ r4), (x4 ∨ r3 ∨ r5), (x4 ∨ r3 ∨ ¬r6),

(x5 ∨ ¬r4), (x5 ∨ ¬r5), (x5 ∨ r6),

(x6 ∨ ¬r1), (¬x6 ∨ r1)} ∪ ϕH

#5 st = SAT; Init(A) = {x3 = x5 = 1; x1 = x2 = x4 = x6 = 0}
#i represents the i−th iteration of the algorithm

an unsatisfiable core with k original soft clauses (i.e., k = |ϕI |), the bitwise encoding
requires n auxiliary variables, where n = 1 if k = 1 and n = log2�k� if k > 1 (lines 3
and 4). Observe that those auxiliary variables are at the same time the relaxation
variables associated with soft clauses. For this reason, the pseudo-code refers to
them simply as relaxation variables (line 5). For each original soft clause ci in ϕI

(line 7), the algorithm iterates over each soft clause cR originating from ci. Then, cR

is replicated n times. Each replicated clause j with 0 ≤ j ≤ (n − 1) is extended with
the relaxation variable r j if the binary representation of i has value 1 in position j
(line 10), otherwise it is extended with ¬r j (line 11). The replicated clauses are added
to 17).

Example 8 Consider that the instance ϕ of Example 1 is solved with algorithm MSU2
(Algorithm 9). Table 8 shows the execution of the algorithm.

5.2 Non-binary search based algorithms

This section presents five core-guided MaxSAT algorithms whose underlying search
is not based in binary search. Unlike the two algorithms of the previous section,
the algorithms presented in this section consider adding to the soft clauses at most
one relaxation variable. The differences between the solvers include the direction in
which the search proceeds, which bound(s) are considered, among others.
WMSU3 [86] aims to use a smaller number of relaxation variables. This is achieved

by adding relaxation variables on demand and only one relaxation variable is added
per soft clause, in order to keep the number of new variables low. As it is shown in

Constraints (2013) 18:478–534 503

Algorithm 10 The WMSU3 Algorithm [86]

Algorithm 11 The WMSU4 Algorithm [87]

Algorithm 10, WMSU3 initializes the lower bound λ to 0 (line 1). Then, WMSU3 iterates
(line 2) through unsatisfiable instances until a satisfiable instance is found (line 4).
However, in contrast to WMSU1, it only adds one relaxation variable per soft clause
(line 5) and only one at most constraint is maintained (line 3). For each unsatisfiable
core found, each soft clause not yet relaxed gets a new relaxation variable (line 5)
and the lower bound λ is updated to the next value. Observe that this algorithm is
very similar to Linear Search Unsat-Sat (Algorithm 2) and that the main difference
is the relaxation of soft clauses. In the latter, the relaxation of variables is done to all
soft clauses prior to the main loop, whereas in WMSU3 it is only done depending on
the unsatisfiable cores found.

Similarly to the previous algorithm, WMSU4 [87] (Algorithm 11) relaxes each soft
clause at most once. However, WMSU4 maintains both an upper bound μ and a lower
bound λ. On the calls to the SAT solver that return satisfiable, μ is updated according
to the assignment A (line 4). On the unsatisfiable ones, every soft clause of the core
which is not yet relaxed, is extended with a fresh relaxation variable (line 6) and
λ is increased (line 8). If all soft clauses of an unsatisfiable core found have been
relaxed, then the algorithm exits the main loop (line 7). In the original description of
the algorithm [87] an additional cardinality constraint is added every time a core is
found

∑
r∈I r ≥ 1 (line 8).

Example 9 For the WMSU4, a different example is presented instead of the run-
ning example. Consider the formula ϕ = ϕS ∪ ϕH , where ϕS = {(x1, 1), (x2, 1),

(x3, 1), (x4, 1)} and ϕH = {(¬x1 ∨ ¬x2, �), (¬x1 ∨ ¬x3, �), (¬x1 ∨ ¬x4,�), (¬x2 ∨
¬x3 ∨ ¬x4, �)}. A possible set of iterations for WMSU4 with ϕ is shown in Table 9.

504 Constraints (2013) 18:478–534

Table 9 Running example for the WMSU4 Algorithm

ϕW = {(x1), (x2), (x3), (x4)} ∪ ϕH

μ = 5; λ = −1;

#1 st = UNSAT; Soft(ϕC) = {(x2), (x3), (x4)};
λ = 0; New relaxation variables r1, r2, r3;
Resulting ϕW = {(x1), (x2 ∨ r1), (x3 ∨ r2), (x4 ∨ r3)} ∪ ϕH

#2 Constraint to include: CNF(r1 + r2 + r3 ≤ 4)

st = SAT;A = {x1 = r1 = r2 = r3 = 1; x2 = x3 = x4 = 0}
μ = 3;

#3 Constraint to include: CNF(r1 + r2 + r3 ≤ 2)

st = UNSAT; Soft(ϕC) = {(x1), (x2 ∨ r1), (x3 ∨ r2), (x4 ∨ r3)};
λ = 1; New relaxation variable r4;
Resulting ϕW = {(x1 ∨ r4), (x2 ∨ r1), (x3 ∨ r2), (x4 ∨ r3)} ∪ ϕH

#4 Constraint to include: CNF(r1 + r2 + r3 + r4 ≤ 2)

st = SAT;A = {x1 = x2 = r3 = r4 = 0; x3 = x4 = r1 = r2 = 1}
μ = 2;

#i represents the i−th iteration of the algorithm

Algorithm 12 The PM2 Algorithm [8]

Observe that on this particular example, WMSU4 changes between satisfiable and
unsatisfiable iterations.

The original PM2 [8] is similar to a Linear Search Unsat-Sat approach. The
main difference is that PM2 adds an additional AtLeastK cardinality constraint
to the working formula at each iteration. PM2 and subsequent algorithms record
information regarding the unsatisfiable cores found so far. The information main-
tained for each unsatisfiable core is the set of relaxation variables associated with
each soft clause. No information about hard clauses is recorded.

In particular, PM2 (Algorithm 12) maintains a record of each unsatisfiable core
found so far in a structure C that contains the set of relaxation variables for each core.
C and the set of AtLeastK constraints AL are initially empty and the lower bound
λ is initialized to 0 (line 2). All soft clauses are relaxed (line 1) before entering the

Constraints (2013) 18:478–534 505

Algorithm 13 The PM2.1 Algorithm [7]

main loop (line 3). The SAT solver is called at each iteration with the current working
formula, the set of AtLeastK constraints AL, and an AtMostK constraint bounded
to the current lower bound λ (line 4). For each new core, the relaxation variables
associated with each soft clause are stored in RC (line 6), and the information of
the new core is added to the C structure (line 7). Then, the recorded cores C are
traversed to check whether their soft clauses are included in the new core. Finally,
an AtLeastK cardinality constraint is added to the AL set (line 9), meaning that the
number of variables in the set of relaxation variables of the new core RC that need to
be one is at least the number of cores k included in such a new core, including itself
(line 8). For the sake of clarity, the set of AtLeastK constraints AL is maintained as
an independent set but indeed each new AtLeastK constraint becomes part of the
working formula. However, the AtMostK constraint (line 4) is actually added and
removed at each iteration.
PM2.1 [7] is an extension of PM2 that maintains sets of covers. Basically, each

unsatisfiable core will result in an AtLeastK cardinality constraint, and every cover
in an AtMostK cardinality constraint. Let C be a set of unsatisfiable cores. Each core
R1 ∈ C is defined by the set of relaxation variables associated with the soft clauses. A
set of relaxation variables R2 is a cover of C if it is a minimal set such that, for each
R1 ∈ C, if R1 ∩ R2 �= ∅, then R1 ⊆ R2. The expression CoversOf (C) denotes the set
of covers of C.

Algorithm 13 corresponds to PM2.1, and is similar to PM2 (lines 1 to 9). The main
difference is that an additional set of AtMostK constraints AM is maintained which
is initially empty (line 1). At each iteration, the SAT solver is called with the current
working formula and the sets AL and AM (line 3). Then, the set of AtLeastK
constraints AL is augmented in the same way as in PM2 (lines 6 to 9). Finally, the
set of AtMostK constraints AM is prepared for the next iteration. First, the set AM
is emptied. Then, for each cover in C, AM is augmented with an additional AtMostK
constraint. Function CoversOf (C) divides the set of cores stored in C into a set of
covers. This function traverses the set of cores C and joins together the relaxation

506 Constraints (2013) 18:478–534

(i) (ii)

Fig. 2 Representation of clauses, cores and covers in Example 10i and Example 11ii

variables of those cores in C sharing some relaxation variable (line 11). The resulting
sets of relaxation variables are the so-called covers. Then, for each set of relaxation
variables Rcover of a cover, a new AtMostK constraint bounded to k is added (line 13),
where k is the total number of cores that were joined to obtain such cover (line 12).

Table 10 Running example for the PM2.1 Algorithm

ϕW = {(x1 ∨ r1), (x2 ∨ r2), (x3 ∨ r3), (x4 ∨ r4), (x5 ∨ r5), (x6 ∨ r6), (¬x6 ∨ r7)} ∪ ϕH

C = ∅ ; AL = ∅
AM = (r1 ≤ 0), (r2 ≤ 0), (r3 ≤ 0), (r4 ≤ 0), (r5 ≤ 0), (r6 ≤ 0), (r7 ≤ 0)

#1 st = UNSAT; Soft(ϕC) = {(x6 ∨ r6), (¬x6 ∨ r7)}
RC = {r6, r7}
C = {{r6, r7}}
k = 1
AL = {(r6 + r7 ≥ 1)}
AM = {(r1 ≤ 0), (r2 ≤ 0), (r3 ≤ 0), (r4 ≤ 0), (r5 ≤ 0), (r6 + r7 ≤ 1)}

#2 st = UNSAT; Soft(ϕC) = {(x1 ∨ r1), (x2 ∨ r2)}
RC = {r1, r2}
C = {{r6, r7}, {r1, r2}}
k = 1
AL = {(r6 + r7 ≥ 1), (r1 + r2 ≥ 1)}
AM = {(r3 ≤ 0), (r4 ≤ 0), (r5 ≤ 0), (r6 + r7 ≤ 1), (r1 + r2 ≤ 1)}

#3 st = UNSAT; Soft(ϕC) = {(x3 ∨ r3), (x4 ∨ r4)}
RC = {r3, r4}
C = {{r1, r2}, {r6, r7}, {r3, r4}}
k = 1
AL = {(r1 + r2 ≥ 1), (r6 + r7 ≥ 1), (r3 + r4 ≥ 1)}
AM = {(r1 + r2 ≤ 1), (r5 ≤ 0), (r6 + r7 ≤ 1), (r3 + r4 ≤ 1)}

#4 st = UNSAT; Soft(ϕC) = {(x1 ∨ r1), (x2 ∨ r2), (x3 ∨ r3), (x4 ∨ r4), (x5 ∨ r5)}
RC = {r1, r2, r3, r4, r5}
C = {{r1, r2}, {r3, r4}, {r6, r7}, {r1, r2, r3, r4, r5}}
k = 3
AL = {(r1 + r2 ≥ 1), (r3 + r4 ≥ 1), (r6 + r7 ≥ 1), (r1 + r2 + r3 + r4 + r5 ≥ 1)}
AM = {(r6 + r7 ≤ 1), (r1 + r2 + r3 + r4 + r5 ≤ 3)}

#5 st = SAT; Init(A) = {x3 = x5 = 1; x1 = x2 = x4 = x6 = 0}
#i represents the i−th iteration of the algorithm

Constraints (2013) 18:478–534 507

Algorithm 14 The WPM2 Algorithm [9]

Example 10 Let C be the set of unsatisfiable cores found so far with C =
{{r1, r2}, {r1, r3}, {r4, r5, r6}}, as represented in Fig. 2i. The inner circles represent
clauses, the ellipses represent unsatisfiable cores and the rectangles are the covers.
Observe that C contains 3 cores. The first two cores in C share the relaxation variable
r1. Hence, CoversOf (C) = {{r1, r2, r3}, {r4, r5, r6}} returns two covers. The first cover
is formed by two cores in C (i.e., k = 2), whereas the second cover is formed by
one core in C (i.e., k = 1). As a result, PM2.1 would add two AtMostK constraints
AM = {r1 + r2 + r3 ≤ 2, r4 + r5 + r6 ≤ 1}.

Example 11 Consider that the instance ϕ of Example 1 is solved with algorithm
PM2.1 (Algorithm 13). Table 10 shows the execution of the algorithm. Note that the
core found in iteration #4 is equivalent to the cover of the cores found in iterations
#2, #3 and #4. Figure 2ii presents a drawing of the cores and the covers at such
execution step.

PM2.1was extended to handle weighted MaxSAT in the WPM2 algorithm [9]. WPM2
(Algorithm 14) starts by adding a relaxation variable ri to each soft clause ci (line 8)
and initializes the set of covers SC = {{1}, . . . , {m}} (line 9). The set of AtLeastK
constraints is empty AL = ∅ (line 10) and the set of AtMostK constraints AM =
{w1r1 ≤ 0, ..., wmrm ≤ 0} (line 11). Initially, each soft clause represents a cover and
the associated AtMostK constraint to each cover has a k with value 0.

The main loop (line 12) iterates until a satisfiable solution is found (line 14). At
each iteration, the algorithm calls a SAT solver with the current working formula
and the constraints in sets AL and AM (line 13). If it returns unsatisfiable, then the
information of the unsatisfiable core obtained by the SAT solver is used to update
the sets SC, AL, and AM. Observe that there is one AtMostK constraint for each
cover at each iteration, whereas one AtLeastK constraint for each cover is added

508 Constraints (2013) 18:478–534

Algorithm 15 BIN-C: The core-guided binary search Algorithm [63]

to the working formula at each iteration. One contribution of WPM2 is the way it
computes the bound k associated with each AtMostK and AtLeastK constraints,
which is stronger for weighted MaxSAT than just using the subset sum approach.
First, the algorithm computes the set of all indexes A of the relaxation variables
associated with soft clauses in the unsatisfiable core (line 15). Then, the set of covers
in SC that share some variable with A are stored in RC (line 16). The covers in RC
should be merged in just one cover. The indexes of the relaxation variables contained
in RC are stored in B (line 17). At this point, the algorithm proceeds by computing
the value k for the new cover defined over the relaxation variables in B. This is done
in function Newbound (line 18).

An initial bound k is computed that is essentially the sum of all k of the previous
covers contained in the new one (line 2). Then, the function iteratively refines the
value of k until a valid value is obtained given the set of weights. The subset sum
is computed with the set of weights of the soft clauses referenced by the indexes
in B and the current k (line 4). Then, the SAT solver is called with the set of
AtLeastK constraints AL and an equality constraint that states that the weights in
B should be equal to k (line 5). The algorithm iterates until the SAT solver returns
satisfiable.
WPM2 continues by removing the set of covers in RC from SC and replacing

them with the new unique cover defined in B (line 19). Then, the set of AtLeastK
constraints AL is augmented with an additional AtLeastK constraint bounded
by the variables in B and the obtained k (line 20). Finally, the set of AtMostK
constraints related to the covers in RC are removed from AM and a new AtMostK
constraint is added again bounded by the variables in B and the obtained k
(line 21).

Example 12 Consider that the instance ϕ of Example 1 is solved with algorithm WPM2
(Algorithm 14). Notice in iteration #4 the core detected intersects with the cores
found in iterations #2 and #3. This makes the computation of the bound k = 3, which
is the number of cores found in the cover {1, 2, 3, 4, 5}. Table 11 shows the execution
of the algorithm.

Constraints (2013) 18:478–534 509

Table 11 Running example for the WPM2 Algorithm

ϕS = {(x1 ∨ r1), (x2 ∨ r2), (x3 ∨ r3), (x4 ∨ r4), (x5 ∨ r5), (x6 ∨ r6), (¬x6 ∨ r7)}
ϕW = ϕS ∪ ϕH

SC = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}
AL = ∅
AM = {(r1 ≤ 0), (r2 ≤ 0), (r3 ≤ 0), (r4 ≤ 0), (r5 ≤ 0), (r6 ≤ 0), (r7 ≤ 0)}

#1 st = UNSAT; Soft(ϕC) = {(x6), (¬x6)};
A = {6, 7}
RC = {{6}, {7}}
B = {6, 7}
k = 1
SC = {{1}, {2}, {3}, {4}, {5}, {6, 7}}
AL = {(r6 + r7 ≥ 1)}
AM = {(r1 ≤ 0), (r2 ≤ 0), (r3 ≤ 0), (r4 ≤ 0), (r5 ≤ 0), (r6 + r7 ≤ 1)}

#2 st = UNSAT; Soft(ϕC) = {(x1), (x2)};
A = {1, 2}
RC = {{1}, {2}}
B = {1, 2}
k = 1
SC = {{3}, {4}, {5}, {6, 7}, {1, 2}}
AL = {(r6 + r7 ≥ 1), (r1 + r2 ≥ 1)}
AM = {(r3 ≤ 0), (r4 ≤ 0), (r5 ≤ 0), (r6 + r7 ≤ 1), (r1 + r2 ≤ 1)}

#3 st = UNSAT; Soft(ϕC) = {(x3), (x4)};
A = {3, 4}
RC = {{3}, {4}}
B = {3, 4}
k = 1
SC = {{1, 2}, {5}, {6, 7}, {3, 4}}
AL = {(r6 + r7 ≥ 1), (r1 + r2 ≥ 1), (r3 + r4 ≥ 1)}
AM = {(r1 + r2 ≤ 1), (r5 ≤ 0), (r6 + r7 ≤ 1), (r3 + r4 ≤ 1)}

#4 st = UNSAT; Soft(ϕC) = {(x1), (x2), (x3), (x4), (x5)};
A = {1, 2, 3, 4, 5}
RC = {{1, 2}, {3, 4}, {5}}
B = {1, 2, 3, 4, 5}
k = 3
SC = {{6, 7}, {1, 2, 3, 4, 5}}
AL = {(r6 + r7 ≥ 1), (r1 + r2 ≥ 1), (r3 + r4 ≥ 1), (r1 + r2 + r3 + r4 + r5 ≥ 3)}
AM = {(r6 + r7 ≤ 1), (r1 + r2 + r3 + r4 + r5 ≤ 3)}

#5 st = SAT; Init(A) = {x3 = x5 = 1; x1 = x2 = x4 = x6 = 0}
#i represents the i−th iteration of the algorithm

5.3 Binary search based algorithms

This section presents two core-guided MaxSAT algorithms that are based on binary
search. First is shown the core-guided binary search algorithm followed by the core-
guided binary search with disjoint cores. Similar to the algorithms in the previous
section, a maximum of one relaxation variable is added per soft clause relaxed.
The difference between the two algorithms has to do with the second algorithm

510 Constraints (2013) 18:478–534

Table 12 Running example for the core-guided binary search Algorithm

R = ∅; ϕW = ϕ; ϕS = {(x1), (x2), (x3), (x4), (x5), (x6), (¬x6)};
μ = 8; λ = −1; lastA = ∅;

#1 ν = 3; Constraint to include: CNF(∅) = ∅;
st = UNSAT; Soft(ϕC) = {(x6), (¬x6)};
R = {r1, r2};
ϕW = {(x6 ∨ r1), (¬x6 ∨ r2), (x1), (x2), (x3), (x4), (x5)} ∪ ϕH ;

#2 ν = 3; Constraint to include: CNF(r1 + r2 ≤ 3);
st = UNSAT; Soft(ϕC) = {(x1), (x2)};
R = {r1, r2, r3, r4};
ϕW = {(x6 ∨ r1), (¬x6 ∨ r2), (x1 ∨ r3), (x2 ∨ r4), (x3), (x4), (x5)} ∪ ϕH ;

#3 ν = 3; Constraint to include: CNF(r1 + r2 + r3 + r4 ≤ 3);
st = UNSAT; Soft(ϕC) = {(x3), (x4)};
R = {r1, r2, r3, r4, r5, r6};
ϕW = {(x6 ∨ r1), (¬x6 ∨ r2), (x1 ∨ r3), (x2 ∨ r4), (x3 ∨ r5), (x4 ∨ r6), (x5)} ∪ ϕH ;

#4 ν = 3; Constraint to include: CNF(r1 + r2 + r3 + r4 + r5 + r6 ≤ 3);
st = UNSAT; Soft(ϕC) = {(x6 ∨ r1), (¬x6 ∨ r2), (x1 ∨ r3), (x2 ∨ r4), (x3 ∨ r5),

(x4 ∨ r6), (x5)};
R = {r1, r2, r3, r4, r5, r6, r7};
ϕW = {(x6 ∨ r1), (¬x6 ∨ r2), (x1 ∨ r3), (x2 ∨ r4), (x3 ∨ r5), (x4 ∨ r6), (x5 ∨ r7)} ∪ ϕH ;

#5 ν = 3; Constraint to include: CNF(r1 + r2 + r3 + r4 + r5 + r6 + r7 ≤ 3);
st = UNSAT; Soft(ϕC) = {(x6∨r1), (¬x6∨r2), (x1∨r3), (x2∨r4), (x3∨r5),

(x4∨r6), (x5∨r7)};
λ = 3;

#6 ν = 5; Constraint to include: CNF(r1 + r2 + r3 + r4 + r5 + r6 + r7 ≤ 5);
st = SAT; lastA = A = {r2 = r5 = r7 = 0; r1 = r3 = r4 = r6 = 1} ∪ Init(A);
μ = 4;

Init(lastA) = {x3 = x5 = 1; x1 = x2 = x4 = x6 = 0}
#i represents the i−th iteration of the algorithm

maintaining disjoint parts of the formula disjoint, namely unsatisfiable cores that do
not intersect previous discovered cores.

Similar to the (iterative) binary search (Algorithm 5 of Section 4), core-guided
binary search [63] (Algorithm 15) maintains two bounds, an upper bound μ and a
lower bound λ, which are initialized to the sum of weights of soft clauses plus 1 and
to −1 (line 2) , respectively. Unlike binary search, core-guided binary search does
not add relaxation variables to the soft clauses before starting the main loop (line 3).
The algorithm proceeds by iteratively calling a SAT solver with the current formula
and with an AtMostK constraint considering only the relaxation variables added so
far (line 5) and the middle value ν between both bounds (line 4). If the formula is
unsatisfiable, it checks whether all soft clauses in the core have been relaxed and λ

is updated (line 8). Otherwise, non-relaxed clauses in the core are relaxed (line 9). If
the SAT solver returns satisfiable, μ is updated (line 6).

Example 13 Consider that the instance ϕ of Example 1 is solved with the core-guided
binary search algorithm [63] (Algorithm 15). Table 12 shows the execution of the
algorithm.

Constraints (2013) 18:478–534 511

Algorithm 16 BIN-C-D: The core-guided binary search with disjoint cores Algo-
rithm [63]

Core-guided binary search was extended to maintain disjoint cores [63]. The
resulting algorithm is referred to as core-guided binary search with disjoint cores.
The concept of disjoint core [63] is essentially equivalent to the concept of cover
[7]. Let U = {U1, . . . , Uk} be a set of cores, and each core Ui has a set of relaxation
variables Ri. A core Ui ∈ U is disjoint when ∀U j∈U (Ri ∩ R j = ∅ ∧ i �= j). The goal
of core-guided binary search with disjoint cores [63] (Algorithm 16) is to maintain
smaller lower and upper bounds for each disjoint core rather than just one global
lower bound and one global upper bound. As a result, the algorithm will add several
smaller AtMostK constraints rather than just one global AtMostK constraint.

The algorithm maintains information about the previous cores in a set C which
is initially empty (line 1). Whenever a new core i is found, a new entry in C is
created containing: the set of relaxation variables Ri in the core (after relaxing the
required soft clauses), a lower bound λi, an upper bound μi, and the current middle
value νi, i.e. Ci =< Ri, λi, νi, μi >. The algorithm iterates while there exists a Ci for
which λi + 1 < μi (line 2). Before calling the SAT solver (line 4), for each disjoint
core Ci ∈ C, its middle value νi is computed with the current bounds (line 3) and
an AtMostK constraint is added to the working formula (line 4). If the SAT solver
returns false, then subC is computed with IntersectingCores() (line 9), and contains
every Ci in C that intersects the current core (i.e., subC ⊆ C). If no soft clause needs
to be relaxed and |subC| = 1, then subC = {< R, λ, ν, μ >} and λ is updated to ν

(line 10). Otherwise, all the required soft clauses are relaxed (line 12), and an entry
for the new core is added to C, which aggregates the information of the previous
cores in subC (lines 13 and 14). Also, each Ci ∈ subC is removed from C (line 15). If

512 Constraints (2013) 18:478–534

the SAT solver returns true, the algorithm iterates over each disjoint core Ci ∈ C and
its upper bound μi is updated according to the satisfying assignment A (line 7).

Example 14 Consider that the instance ϕ of Example 1 is given to core-guided
binary search with disjoint cores (Algorithm 16). Table 13 shows the execution of
the algorithm.

5.4 Characterization of the algorithms

Table 14 presents a characterization of the algorithms presented. The characteri-
zation of the iterative algorithms is repeated for a better comparison and a better
readability. The first column enumerates several characteristics, which are as follows:

– Progression: indicates if the algorithm refines a lower bound (LB) or an upper
bound (UB).

– # Relax. Vars./Clause: The number of relaxation variables per soft clause.
– Total # Relax. Vars.: The total number of relaxation variables added to the

formula throughout the algorithm.
– # Const./Iteration: The number of constraints added at each iteration.
– Total # Const.: The total number of constraints added to the formula throughout

the algorithm.
– Calls SAT Oracle: The theoretical worst case number of calls to a SAT oracle

(solver).
– Weighted: If the algorithm handles weighted MaxSAT.

The second and remaining columns of Table 14 refer to the iterative MaxSAT
algorithms: LIN-US, LIN-SU, BIN, BIN/LIN-SU, BIT, followed by the core-
guided MaxSAT algorithms: WMSU1, MSU2, WMSU3, WMSU4, PM2, PM2.1, WPM2, core-
guided binary search as BIN-C and core-guided binary search with disjoint cores
as BIN-C-D. For an explanation on the iterative MaxSAT algorithms, we refer to
Table 6 on page 20.

Recall that m is the total number of soft clauses in ϕ = ϕS ∪ ϕH (i.e., m = |ϕS|)
and W be the sum of weights of soft clauses W = ∑m

i=1 wi. First, observe that except
MSU2, PM2, and PM2.1, the algorithms are presented in their weighted MaxSAT
version. WMSU1, MSU2, WMSU3, PM2, PM2.1 and WPM2 all refine a lower bound.
Differently, WMSU4 alternates the refinement of a lower bound and an upper bound.
Core-guided binary search and core-guided binary search with disjoint cores both
compute the middle value between the lower bound and upper bound.
PM2, PM2.1, and WPM2 add exactly one relaxation variable per soft clause and

exactly a total of m relaxation variables. WMSU3, WMSU4, core-guided binary search
and core-guided binary search with disjoint cores relax variables on demand, so they
may add one relaxation variable or none to each soft clause and a total of m in
the worst case (i.e., all soft clauses are relaxed). MSU2 requires log(m) relaxation
variables per soft clause and a total of O(m log(m)) relaxation variables throughout
the algorithm. WMSU1 is the only algorithm that adds more than one relaxation
variable per soft clause. In the worst case, each soft clause can be relaxed W times.
The total number of relaxation variables γ for WMSU1 is detailed in the Appendix.
WMSU1 adds one AtMost1 constraint at each iteration and a total of W in the

worse case. MSU2 has no constraints; it just adds relaxation variables. WMSU3, WMSU4,

Constraints (2013) 18:478–534 513

Table 13 Running example for core-guided binary search with disjoint cores

ϕW = ϕ; ϕS = {(x1), (x2), (x3), (x4), (x5), (x6), (¬x6)}; C = ∅; lastA = ∅;

#1 Constraints to include: ∅
st = UNSAT; Soft(ϕC) = {(x6), (¬x6)}
subC = ∅
R = {r1, r2}
ϕW = {(x6 ∨ r1), (¬x6 ∨ r2), (x1), (x2), (x3), (x4), (x5)} ∪ ϕH

λ = 0
μ = 3
C = {< {r1, r2}, 0, 0, 3 >}

#2 Constraints to include: {(r1 + r2 ≤ 1)}
st = UNSAT; Soft(ϕC) = {(x1), (x2)}
subC = ∅
R = {r3, r4}
ϕW = {(x6 ∨ r1), (¬x6 ∨ r2), (x1 ∨ r3), (x2 ∨ r4), (x3), (x4), (x5)} ∪ ϕH

λ = 0
μ = 3
C = {< {r1, r2}, 0, 0, 3 >,< {r3, r4}, 0, 0, 3 >}

#3 Constraints to include: {(r1 + r2 ≤ 1), (r3 + r4 ≤ 1)}
st = UNSAT; Soft(ϕC) = {(x3), (x4)}
subC = ∅
R = {r5, r6}
ϕW = {(x6 ∨ r1), (¬x6 ∨ r2), (x1 ∨ r3), (x2 ∨ r4), (x3 ∨ r5), (x4 ∨ r6), (x5)} ∪ ϕH

λ = 0
μ = 3
C = {< {r1, r2}, 0, 0, 3 >,< {r3, r4}, 0, 0, 3 >,< {r5, r6}, 0, 0, 3 >}

#4 Constraints to include: {(r1 + r2 ≤ 1), (r3 + r4 ≤ 1), (r5 + r6 ≤ 1)}
st = UNSAT; Soft(ϕC) = {(x1 ∨ r3), (x2 ∨ r4), (x3 ∨ r5), (x4 ∨ r6), (x5)}
subC = {< {r3, r4}, 0, 0, 3 >,< {r5, r6}, 0, 0, 3 >}
R = {r3, r4, r5, r6, r7}
ϕW = {(x6 ∨ r1), (¬x6 ∨ r2), (x1 ∨ r3), (x2 ∨ r4), (x3 ∨ r5), (x4 ∨ r6), (x5 ∨ r7)} ∪ ϕH

λ = 0
μ = 8
C = {< {r1, r2}, 0, 0, 3 >,< {r3, r4, r5, r6, r7}, 0, 0, 8 >}

#5 Constraints to include: {(r1 + r2 ≤ 1), (r3 + r4 + r5 + r6 + r7 ≤ 4)}
st = SAT; A \ Init(A) = {r2 = r3 = r5 = r7 = 0; r1 = r4 = r6 = 1}
C = {< {r1, r2}, 0, 0, 1 >,< {r3, r4, r5, r6, r7}, 0, 0, 2 >}

#6 Constraints to include: {(r1 + r2 ≤ 0), (r3 + r4 + r5 + r6 + r7 ≤ 1)}
st = UNSAT; Soft(ϕC) = {(x1 ∨ r3), (x2 ∨ r4), (x3 ∨ r5), (x4 ∨ r6), (x5 ∨ r7)}
subC = < {r3, r4, r5, r6, r7}, 0, 0, 2 >

C = {< {r1, r2}, 0, 0, 1 >,< {r3, r4, r5, r6, r7}, 1, 0, 2 >}
#7 st = SAT; Init(A) = {x3 = x5 = 1; x1 = x2 = x4 = x6 = 0}
#i represents the i−th iteration of the algorithm

PM2, and BIN-C add (and remove) one AtMostK constraint at each iteration.
PM2.1, WPM2, and BIN-C-D add (and remove) at most m AtMostK constraints at
each iteration, exactly one for each cover/disjoint core. Additionally, PM2, PM2.1,
and WPM2 add one AtLeastK constraint at each iteration. All of the algorithms

514 Constraints (2013) 18:478–534

T
ab

le
14

C
ha

ra
ct

er
is

ti
cs

of
it

er
at

iv
e

an
d

co
re

-g
ui

de
d

M
ax

SA
T

A
lg

or
it

hm
s

C
ha

ra
ct

.
L
I
N
-
U
S

L
I
N
-
S
U

B
I
N

B
I
N
/
L
I
N
-
S
U

B
I
T

W
M
S
U

1
M
S
U
2

W
M
S
U

3
W
M
S
U

4
P
M
2

P
M
2
.
1

W
P
M

2
B
I
N
-
C

B
I
N
-
C
-
D

P
ro

gr
es

si
on

L
B

U
B

L
B

+U
B

L
B

+U
B

L
B

+U
B

L
B

L
B

L
B

L
B

+U
B

L
B

L
B

L
B

L
B

+U
B

L
B

+U
B

#
R

el
ax

.
1

1
1

1
1

O
(W

)
O

(l
og

(m
))

1
or

0
1

or
0

1
1

1
1

or
0

1
or

0
V

ar
s.

/
C

la
us

e

T
ot

al
#

m
m

m
m

m
γ

O
(m

lo
g(

m
))

O
(m

)
O

(m
)

m
m

m
O

(m
)

O
(m

)

R
el

ax
.

V
ar

s.

#
C

on
st

./
1

1
1

1
1

1
0

1
1

1
+

1
1

+
O

(m
)

1
+

O
(m

)
1

O
(m

)

It
er

at
io

n

T
ot

al
#

1
1

1
1

1
O

(W
)

0
1

1
1

+
O

(m
)

O
(m

)
+

O
(m

)
O

(W
)
+

O
(m

)
1

O
(m

)

C
on

st
.

C
al

ls
O

(W
)

O
(W

)
O

(l
og

(W
))

O
(l

og
(W

))
O

(l
og

(W
))

O
(W

)
O

(m
)

O
(W

)
O

(W
)

O
(m

)
O

(m
)

O
(W

)
m

+
O

(l
og

(W
))

m
+

O
(l

og
(W

))

SA
T

O
ra

cl
e

W
ei

gh
te

d
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
N

o
Y

es
Y

es
N

o
N

o
Y

es
Y

es
Y

es

m
is

th
e

nu
m

be
r

of
so

ft
cl

au
se

s
of

ϕ
an

d
W

is
th

e
su

m
of

w
ei

gh
ts

of
so

ft
cl

au
se

s
W

=
∑

m i=
1
w

i

Constraints (2013) 18:478–534 515

require an exponential number of calls to the SAT solver, except BIN-C and
BIN-C-D which require a linear number of calls.

6 MaxSMT: a MaxSAT generalization for SMT

The Satisf iability Modulo Theories problem, or SMT, is an extension of Boolean
Satisfiability where the goal is to check the satisfiability of an SMT formula with
respect to a background theory T [22, 97, 113]. As such, an SMT formula is allowed to
have atomic formulas or predicates in higher-level theories, such as linear arithmetic
or a higher-order logic, in addition to Boolean variables and their negations. As an
example, the following SMT formula mixes Boolean literals and linear inequalities:
(a ∨ (5x − y ≤ 3)) ∧ (¬a ∨ (x + y ≤ 12)).

Algorithms for solving SMT problems often have a core engine that is similar to
a modern SAT solver. The core engine then employs additional theory solvers that
can process conjunctions of literals over the given theories (every SMT solver handles
some subset of possible theories). Further details on SMT, theories, and SMT solving
can be obtained in [97, 113].

The MaxSMT problem is a generalization of MaxSAT to the SMT domain. Given
an SMT formula ϕ, MaxSMT is the problem of finding a model A, consistent with the
theories in ϕ, that maximizes the number of satisfied clauses in ϕ. As in SAT, weights
can be given to every clause in a SMT formula, and Weighted Partial MaxSMT
follows directly from its SAT equivalent.

Given the similarities between SAT and SMT, many algorithms for MaxSAT
can be adapted to the MaxSMT problem, and existing MaxSMT algorithms closely
resemble the MaxSAT algorithms presented in this survey.

The first work to address MaxSMT can be found in [96]. In this work, SMT
is extended to allow theories to be strengthened, essentially letting the context
in which a formula is evaluated change without altering the formula itself. Then,
an approach is proposed using their framework to solve weighted MaxSMT by
placing information about an objective function, and a bound on it, in the theory
solver itself. In this approach, initially every weighted clause (ci, wi) receives a new
Boolean variable pi, and the constraints (pi → (ki = wi)), and (¬pi → (ki = 0))

are added to the theory. Further, the constraint (k1 + . . . + km ≤ B) is added to
the theory together with the relation (B < B0) (where B0 is an estimation of the
initial cost). Each time a new cost Bi is found, the theory is strengthened by adding
the relation (B < Bi) to the theory. In this way, progressively better solutions are
found, minimizing the total cost of unsatisfied clauses by making the theory solver
reject models worse than the best known thus far. The final model found will be
a MaxSMT solution. Of the MaxSAT algorithms presented earlier, this algorithm
is similar to the Linear Search Sat-Unsat algorithm; both explore a solution space
of models that satisfy some subset of clauses, requiring ever lower costs for those
clauses not satisfied by the models, until no further models can be found. The
related Linear Search Unsat-Sat algorithm could not be applied in this extended
SMT framework directly, as it requires relaxing the constraint that bounds the cost
of unsatisfied clauses in each iteration, and the framework only allows theories to be
strengthened.

516 Constraints (2013) 18:478–534

The work in [35] proposed a “theory of Costs” C, along with a decision procedure
for it, that allows modeling multiple cost functions within the SMT framework.
In [35], the theory of costs C is used to address the problem of minimizing the value
of one cost function subject to the satisfaction of an SMT formula named as the
Boolean Optimization Modulo Theory (BOMT) problem. The optimization itself
can be performed by asserting atoms of C that bound one cost function and using
an incremental SMT solver.

Essentially, [35] proposed to encode the weighted partial MaxSMT problem into
BOMT by adding a new Boolean variable Ai

j to each soft clause. Then, the cost
function is the sum of the weights of the soft clauses whose variable Ai

j is assigned
true. Again, this is similar to existing MaxSAT approaches that use relaxation
variables, and so an algorithm similar to Linear Search Sat-Unsat is described in
such paper as well as a Binary Search. While this is similar to the early work in [96],
it differs in that it allows for multiple cost functions and in that it does not require
strengthening the theory to update cost bounds.

While both of the above techniques require a specialized SMT solver, many
MaxSAT algorithms that use a SAT solver as a black box can be made MaxSMT
algorithms by substituting a black box SMT solver instead. Furthermore, if the SMT
solver can produce unsatisfiable cores, the core-guided MaxSAT algorithms can be
so adapted as well. In this way, the full range of MaxSAT algorithms overviewed
in this survey can become MaxSMT algorithms. The Z3 SMT solver [43] has been
recently extended to handle (unweighted) MaxSMT in this way, and it currently
implements MSU1 and Linear Search Sat-Unsat algorithms for MaxSMT.

Note that while the MaxSAT algorithms make use of cardinality constraints
encoded to Boolean CNF, SMT allows for cardinality constraints in other forms. A
constraint of the form

∑m
i=1 wi · ri ≤ k is an atomic formula in the theory of linear

integer arithmetic, and so it can be included natively, with no translation, given an
SMT solver with that theory. This may provide better performance than a CNF
encoding of the same constraint, though this will depend on the SMT solver used.

7 Experimental analysis

This section presents an empirical evaluation of the algorithms described in the
paper. The objective of the experimental analysis is to evaluate the performance of
all the algorithms under the same implementation framework, with the same internal
data structures, the same encodings for cardinality and pseudo-Boolean constraints,
and the same underlying SAT solver. The purpose of the experiment is to understand
which are the most effective algorithms without the influence of implementation
details, which can have a an impact on the performance of the resulting algorithm.

Based on the results of the experimental evaluation, an analysis is presented in
Section 7.1, to evaluate the performance of the algorithms, but taking in consider-
ation the optimum value of the instances with respect to the sum of weights of the
soft clauses.

For the experimental evaluation, all the algorithms described have been imple-
mented in the MSUnCore system [91]. Additionally, the weighted version of several
algorithms are evaluated for the first time. All non-random instances from the

Constraints (2013) 18:478–534 517

MaxSAT Evaluations3 between 2009 and 2011, inclusive, have been considered. The
instances are classified in 8 sets depending on whether they are unweighted/weighted,
partial/non-partial, crafted/industrial or an aggregation of all the instances. The
classes of instances are referred to as follows:

– MS Crafted: plain MaxSAT crafted instances
– MS Industrial: plain MaxSAT industrial instances
– PMS Crafted: (unweighted) partial MaxSAT crafted instances
– PMS Industrial: (unweighted) partial MaxSAT industrial instances
– WMS Crafted: weighted (non-partial) MaxSAT crafted instances
– WPMS Crafted: weighted partial MaxSAT crafted instances
– WPMS Industrial: weighted partial MaxSAT industrial instances
– All: aggregation of all the non-random MaxSAT Evaluation instances 2009–2011

Experiments were conducted on a HPC cluster with 50 nodes; each node contains
a Xeon E5450 3GHz CPU and 32GB RAM and runs Linux. For each run, the time
limit was set to 1800 seconds, and the memory limit was set to 4GB.

The empirical results are presented in cactus plots that show the total number
of solved instances and the run time of the algorithms implemented in MSUnCore
system. The plots also contain results for several publicly available MaxSAT solvers
that participated in recent MaxSAT Evaluations, referred to as other tools. The plots
are presented in five figures depending on whether the plots refer to plain MaxSAT,
partial MaxSAT, weighted MaxSAT, weighted partial MaxSAT or an aggregation of
all instances. Each figure shows on its left hand side the cactus plots of the algorithms
implemented in MSUnCore, while the right hand side shows cactus plots of the three
best algorithms implemented in MSUnCore together with the other tools. On the
top-left corner of each figure, is presented a legend of all the solvers considered for
the figure. The solvers are ordered in decreasing order of number of solved instances.

The algorithms implemented in the MSUnCore system are:

– Linear Search Unsat-Sat (Algorithm 2): LIN-US
– Linear Search Sat-Unsat (Algorithm 4): LIN-SU
– Binary Search (Algorithm 5): BIN
– Alternating Binary Search with Linear Search Sat-Unsat (Algorithm 6):

BIN/LIN-SU
– Bit-Based Search (Algorithm 7): BIT
– WMSU1 (Algorithm 8)
– WMSU3 (Algorithm 10)
– WMSU4 (Algorithm 11)
– PM2 (Algorithm 12)
– PM2.1 (Algorithm 13)
– WPM2 (Algorithm 14)
– Core-Guided Binary Search (Algorithm 15): BIN-C
– Core-Guided Binary Search with Disjoint Cores (Algorithm 16): BIN-C-D

All algorithms have been implemented in C++ inside the MSUnCore system
[91] which uses picosat [26] as its underlying non-incremental SAT solver, with the

3http://www.maxsat.udl.cat

http://www.maxsat.udl.cat

518 Constraints (2013) 18:478–534

exception of MSU2. Note that MSU2 is based on a specific encoding of the AtMostK
constraints, it is unclear if can be extended to handle weighted MaxSAT and was
not competitive in practice [85]. For those reasons, it has not been considered to
be implemented. Note also that picosat was built to be an efficient SAT solver for
“application/industrial” benchmarks, which are the type of target instances in this
survey. All algorithms use cardinality constraints and pseudo-Boolean constraints
to represent AtLeastK and AtMostK constraints, except WMSU1. For all these
algorithms cardinality networks [19] are used to encode cardinality constraints,
and BDDs [45] are used to encode pseudo-Boolean constraints. For WMSU1, only
AtMost1 constraints are needed, which are translated into clauses using the bitwise
encoding [105]. Those encodings were selected based on the results of a recent
evaluation of encodings available at [91]. Additionally, all the algorithms compute
an initial lower bound and upper bound as suggested in [63]. The initial bounds allow
them to save a remarkable number of iterations, specially for algorithms that may
require an exponential number of calls to a SAT oracle in the worst case.

The other tools are the original implementation of some of the algorithms de-
scribed in this paper. In order to distinguish the implementations in MSUnCore
from the original tools, the algorithms in MSUnCore are all tagged with (MSUC).
The remaining tools implement state-of-the-art algorithms based on a branch and
bound scheme or on translating the MaxSAT instance to a different optimization
framework and apply a native solver for the specific framework (i.e., PBO and ASP).
In particular, the tools considered are:

– The original WPM1 solver that uses the regular encoding [11] for the AtMost1
constraints (MaxSAT 2011 Evaluation version).

– The original PM2.1 solver. It is restricted to unweighted plain and partial
MaxSAT. Given that the original PM2.1 solver was implemented on top of
the original PM2 solver, the latter is no longer available. It uses the sequential
counters for the AtMostK and AtLeastK constraints.

– The original WPM2 solver that uses different encodings for cardinality and
pseudo-Boolean constraints inherited from Minisat+ [45].

– The original QMAXSAT 0.11 solver, which applies a Linear Search Sat-Unsat,
and QMAXSAT 0.4, which alternates Binary Search and Linear Search Sat-Unsat.
The QMAXSAT solver is restricted to unweighted plain and partial MaxSAT. The
encoding for the AtMostK constraints corresponds to [20].

– SAT4JMAXSAT and PWBO translate the MaxSAT problem to a Pseudo-Boolean
Optimization Problem (PBO). They make use of PB constraints and handle them
natively (they are not encoded into clauses). SAT4JMAXSAT [25] follows a Linear
Search Sat-Unsat scheme. PWBO [83] allows the execution of multiple threads in
parallel (in the experiments the default of two threads was used). In particular,
one computes an upper bound using a Linear Search Sat-Unsat approach and
the other refines a lower bound using a WMSU1-like approach.

– CLASPMAXSAT [4, 48] translates the MaxSAT problem into the MaxASP prob-
lem and solves it with a MaxASP solver.

– 3 branch and bound (BB) MaxSAT algorithms that apply equivalence pre-
serving transformations and compute lower bounds and underestimations
using unit propagation. The considered BB algorithms are AKMAXSAT [70],
MINIMAXSAT [61], which additionally applies clause learning on hard clauses,
and INCWMAXSATZ [79], which incrementally computes the underestimations.

Constraints (2013) 18:478–534 519

Recall that both original versions of QMAXSAT (0.11 and 0.4), PM2, and PM2.1 do
not handle weighted MaxSAT. Hence, they will not appear on comparisons including
weighted MaxSAT benchmarks.

Figure 3 presents 4 cactus plots for unweighted plain crafted and industrial
MaxSAT instances. The performance of iterative and core-guided MaxSAT algo-
rithms is quite poor on plain crafted MaxSAT instances as shown in Fig. 3a. No algo-
rithm solves more than 9 instances. The same pattern is observed in Fig. 3b with the
original tools implementing iterative and core-guided MaxSAT algorithms, whereas
branch and bound algorithms (AKMAXSAT, INCWMAXSATZ and MINIMAXSAT) are
the best option for those benchmarks, being able to solve 140 or more instances.

The results for plain MaxSAT industrial instances can be found in Fig. 3c. In
general, iterative algorithms solve significantly fewer instances than core-guided
MaxSAT algorithms. In particular, bit-based search (BIT) is the best performing
iterative algorithm, solving only 30 instances. WPM2, WMSU4, BIN-C, BIN-C-D,
WMSU3 and PM2 (ordered from worst to best performing algorithm) solve from 64
(WPM2) to 92 (PM2.1) instances. Finally, WMSU1 is the best algorithm solving 105
instances. The results including the other tools are presented in Fig. 3d. Core-guided
MaxSAT algorithms are the best option in this category. WMSU1 (MSUC) and WPM1
which are different implementations of the same algorithm, are the best performing
solvers (105 and 102 solved instances, respectively). Then, the original tool PM2.1
and its implementation in MSUnCore solve 95 and 92 instances, respectively. The
remaining algorithms solve fewer instances, but most of them solve at least 70
instances. The only exceptions are branch and bound algorithms, none of which solve
more than 4 instances, and SAT4JMAXSAT that solves 28 instances.

Figure 4 shows 4 cactus plots for unweighted partial crafted and industrial
MaxSAT instances. The cactus plot on Fig. 4a shows the performance of iterative
and core-guided MaxSAT algorithms on partial crafted instances. BIN-C is the
best performing algorithm (266 instances solved) followed by BIT (261), BIN (261),
BIN/LIN-SU (260), BIN-C-D and WMSU3 (both 255), PM2.1 and LIN-US (both
250) and WMSU4 (247). Interestingly, iterative algorithms such as bit-based (BIT) and
binary search (BIN) perform better than several core-guided MaxSAT algorithms
which can be explained by their linear number of calls to a SAT oracle in the worst
case. LIN-SU (185) is slightly better than WPM2 (165) and PM2 (124), whereas WMSU1
is the worst algorithm solving only 58 instances. The cactus plot on Fig. 4b includes
the original tools. Branch and bound algorithms seem more appropriate for those
benchmarks with MINIMAXSAT, AKMAXSAT, and INCWMAXSATZ solving 305, 285,
and 283 instances, respectively. However, the two different versions of QMAXSAT
0.11 and 0.4 are quite competitive, ranking second (295) and third (294). The 3
best performing algorithms in MSUnCore solve more instances than the remaining
algorithms, with an WMSU1-like algorithm (WPM1) again being the worst option.

The cactus plot on Fig. 4c shows the results for iterative and core-guided MaxSAT
algorithms on partial industrial MaxSAT instances. WMSU1 is again the worse al-
gorithm and only solves 564 instances. PM2 and WPM2 perform slightly better than
WMSU1 but are still far from the best performing algorithms, BIN-C-D (882) and
BIN-C (854). The remaining algorithms solve fewer instances than BIN-C but are
quite close. The cactus plot on Fig. 4d shows the results including the original tools.
BIN-C-D (MSUC) is still the best algorithm, and BIN-C (MSUC) is the third best
option, only behind the original QMAXSAT 0.11 solver. Branch and bound algorithms

520 Constraints (2013) 18:478–534

MSUnCore Implementations
M

S
C

ra
ft

ed

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5 6 7 8 9

BIN-C-D (MSUC)
PM2.1 (MSUC)

BIT (MSUC)
WMSU3 (MSUC)

BIN-C (MSUC)
LIN-US (MSUC)
WPM2 (MSUC)

WMSU4 (MSUC)
BIN (MSUC)

BIN/LIN-SU (MSUC)
PM2 (MSUC)

LIN-SU (MSUC)
WMSU1 (MSUC)

(a)

M
S

In
du

st
ri

al

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

WMSU1 (MSUC)
PM2.1 (MSUC)

WMSU3 (MSUC)
BIN-C-D (MSUC)

BIN-C (MSUC)
WMSU4 (MSUC)

WPM2 (MSUC)
BIT (MSUC)

LIN-SU (MSUC)
LIN-US (MSUC)

PM2 (MSUC)
BIN (MSUC)

BIN/LIN-SU (MSUC)

(c)

MSUnCore + Other Tools

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140

AKMAXSAT
INCWMAXSATZ

MINIMAXSAT
PM2.1

QMAXSAT 0.11
QMAXSAT 0.4

BIN-C-D (MSUC)
PM2.1 (MSUC)

BIT (MSUC)
PWBO
WPM2
WPM1

SAT4J-MAXSAT
CLASPMAXSAT

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

WMSU1 (MSUC)
WPM1
PM2.1

PM2.1 (MSUC)
WMSU3 (MSUC)

WPM2
PWBO

CLASPMAXSAT
SAT4J-MAXSAT

QMAXSAT 0.4
AKMAXSAT

INCWMAXSATZ
QMAXSAT 0.11

(d)

Fig. 3 Run time distributions for MaxSAT instances

perform poorly, and WPM1 (583) is the only core-guided MaxSAT algorithm with
similar poor performance.

Figure 5 introduces 2 cactus plots for weighted crafted MaxSAT instances. The
results for iterative and core-guided MaxSAT algorithms can be found in Fig. 5a.
The performance of all the algorithms is quite similar. Most of the algorithms
solve between 60 and 37 instances, with BIT solving 60 instances and WMSU1
solving 37. Figure 5b analyzes the results including the other tools. Similarly
to plain crafted MaxSAT, the best performing algorithms are based on branch
and bound (AKMAXSAT,INCWMAXSATZ and MINIMAXSAT) and solve over 110 in-
stances. The remaining solvers solve between 40 (WPM1) and 60 (BIT (MSUC))
instances.

Figure 6 presents the results for weighted partial crafted and industrial MaxSAT
instances. The cactus plot in Fig. 6a presents the results for iterative and core-
guided MaxSAT algorithms for weighted partial crafted instances. Most of the
algorithms are able to solve around 350 instances (BIN-C-D, BIT, BIN/LIN-SU,
BIN-C, BIN and WMSU4). In particular, BIN-C-D is the best algorithm (364). WMSU1
is again the worst performing algorithm (225), followed by LIN-US (262), WPM2
(260), WMSU3 (263), and LIN-SU (337). The experiments including the other tools
are presented in Fig. 6b. The results indicate that branch and bound solvers are the
best option for those benchmarks with MINIMAXSAT (448), INCWMAXSATZ (448) and
AKMAXSAT (433). CLASPMAXSAT and SAT4JMAXSAT are the next best performing

Constraints (2013) 18:478–534 521

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300

MINIMAXSAT
QMAXSAT 0.11
QMAXSAT 0.4

AKMAXSAT
INCWMAXSATZ

BIN-C (MSUC)
BIT (MSUC)
BIN (MSUC)

SAT4J-MAXSAT
PM2.1
PWBO

CLASPMAXSAT
WPM2
WPM1

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 200 300 400 500 600 700 800

BIN-C-D (MSUC)
QMAXSAT 0.11
BIN-C (MSUC)
QMAXSAT 0.4
PM2.1 (MSUC)

PWBO
PM2.1

SAT4J-MAXSAT
WPM2

CLASPMAXSAT
MINIMAXSAT

WPM1
INCWMAXSATZ

AKMAXSAT

MSUnCore + Other Tools

b)(

(d)

PM
S

C
ra

ft
ed

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

BIN-C (MSUC)
BIT (MSUC)
BIN (MSUC)

BIN/LIN-SU (MSUC)
BIN-C-D (MSUC)
WMSU3 (MSUC)

PM2.1 (MSUC)
LIN-US (MSUC)

WMSU4 (MSUC)
LIN-SU (MSUC)
WPM2 (MSUC)

PM2 (MSUC)
WMSU1 (MSUC)

PM
S

In
du

st
ri

al

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 300 400 500 600 700 800

BIN-C-D (MSUC)
BIN-C (MSUC)
PM2.1 (MSUC)

BIT (MSUC)
BIN (MSUC)

WMSU3 (MSUC)
BIN/LIN-SU (MSUC)

WMSU4 (MSUC)
LIN-US (MSUC)
WPM2 (MSUC)

PM2 (MSUC)
LIN-SU (MSUC)

WMSU1 (MSUC)

MSUnCore Implementations

(a

(c

)

)

Fig. 4 Run time distributions for partial MaxSAT instances

solvers, and surprisingly WPM1 solves 396 instances. This could be explained by the
stratif ied approach included in the considered version [6]. BIN-C-D (MSUC) and
BIT (MSUC) are far from the best performing solvers but are still much better than
the original WPM2 (276).

The cactus plot in Fig. 6c presents the results for iterative and core-guided
MaxSAT algorithms for weighted partial industrial instances. WMSU1 is the best

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

AKMAXSAT
INCWMAXSATZ

MINIMAXSAT
BIT (MSUC)

WPM2
BIN/LIN-SU (MSUC)

WMSU4 (MSUC)
SAT4J-MAXSAT
CLASPMAXSAT

PWBO
WPM1

MSUnCore + Other Tools

(b)

W
M

S
C

ra
ft

ed

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 20 25 30 35 40 45 50 55 60 65

BIT (MSUC)
BIN/LIN-SU (MSUC)

WMSU4 (MSUC)
BIN (MSUC)

BIN-C (MSUC)
LIN-US (MSUC)

WMSU3 (MSUC)
BIN-C-D (MSUC)

WPM2 (MSUC)
LIN-SU (MSUC)

WMSU1 (MSUC)

MSUnCore Implementations

(a)

Fig. 5 Run time distributions for weighted MaxSAT crafted instances

522 Constraints (2013) 18:478–534

W
PM

S
C

ra
ft

ed

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 150 200 250 300 350

BIN-C-D (MSUC)
BIT (MSUC)

WMSU4 (MSUC)
BIN/LIN-SU (MSUC)

BIN-C (MSUC)
BIN (MSUC)

LIN-SU (MSUC)
WMSU3 (MSUC)
LIN-US (MSUC)
WPM2 (MSUC)

WMSU1 (MSUC)

W
PM

S
In

du
st

ri
al

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200

WMSU1 (MSUC)
WPM2 (MSUC)

BIN-C-D (MSUC)
BIN-C (MSUC)

WMSU3 (MSUC)
BIN (MSUC)
BIT (MSUC)

BIN/LIN-SU (MSUC)
LIN-US (MSUC)

WMSU4 (MSUC)
LIN-SU (MSUC)

MSUnCore Implementations

(a)

(c)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 150 200 250 300 350 400

MINIMAXSAT
INCWMAXSATZ

AKMAXSAT
CLASPMAXSAT
SAT4J-MAXSAT

WPM1
PWBO

BIN-C-D (MSUC)
BIT (MSUC)

WMSU4 (MSUC)
WPM2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200

WPM1
WMSU1 (MSUC)

WPM2
WPM2 (MSUC)

BIN-C-D (MSUC)
INCWMAXSATZ

PWBO
SAT4J-MAXSAT
CLASPMAXSAT

MSUnCore + Other Tools

(b)

(d)

Fig. 6 Run time distributions for weighted partial MaxSAT instances

approach for these benchmarks and solves 193 instances. The next best algorithms
are core-guided MaxSAT algorithms including WPM2 (161), BIN-C-D (157) and
BIN-C (111). The remaining core-guided and iterative MaxSAT algorithms perform
poorly. The results in Fig. 6d present the performance of the remaining tools. Again,
WMSU1 (MSUC) and WPM1 are the best approaches, followed by WPM2/WPM2 (MSUC)
and BIN-C-D (MSUC) as in the previous plot. The remaining approaches including
branch and bound algorithms, PBO, and ASP tools are quite far from the best
performing algorithms.

Figure 7 introduces 2 cactus plots aggregating all of the instances considered.
The cactus plot in Fig. 7a shows the results for iterative and core-guided MaxSAT
algorithms. The best overall performing algorithm is BIN-C-D followed by BIN-C.
The third best solver is WMSU4 and it is followed by other algorithms which compute
a middle value between a lower bound and upper bound. Algorithms based on
exclusively refining a lower bound or an upper bound perform worse. Whereas
WMSU1 is the overall worst performing solver, recall that it is in fact the best approach
in two industrial categories.

The cactus plot in Fig. 7b shows the results for the other tools. Again, BIN-C-D
(MSUC) and BIN-C (MSUC) are the overall best algorithms. From these results,
several conclusions can be extracted. First, core-guided MaxSAT algorithms perform
better than classic iterative algorithms. Branch and bound algorithms are more
appropriate for crafted instances, specially on non-partial benchmarks. However, it-
erative and core-guided MaxSAT algorithms also achieve very good performance on

Constraints (2013) 18:478–534 523

A
ll

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 600 800 1000 1200 1400 1600 1800

BIN-C-D (MSUC)
BIN-C (MSUC)

WMSU4 (MSUC)
BIT (MSUC)
BIN (MSUC)

BIN/LIN-SU (MSUC)
WMSU3 (MSUC)

WPM2 (MSUC)
LIN-US (MSUC)
LIN-SU (MSUC)

WMSU1 (MSUC)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1100 1200 1300 1400 1500 1600 1700 1800

BIN-C-D (MSUC)
BIN-C (MSUC)
MINIMAXSAT

PWBO
INCWMAXSATZ
WMSU4 (MSUC)
SAT4J-MAXSAT
CLASPMAXSAT

WPM2
AKMAXSAT

WPM1

MSUnCore Implementations MSUnCore + Other Tools

(a) (b)

Fig. 7 All: run time distributions for all non-random MaxSAT instances

partial crafted instances. For industrial instances, core-guided MaxSAT algorithms
are the most effective; WMSU1-like algorithms are the best option for unweighted
plain and weighted partial MaxSAT instances, and core-guided binary search with
disjoint cores (BIN-C-D) is the best approach for unweighted partial MaxSAT.
Finally, the most robust approach overall is BIN-C-D.

7.1 Analysis of optimum vs sum of weights of soft clauses

The previous evaluation does not take into consideration the optimum value with
regards to the sum of weights of the soft clauses. Taking such consideration in
account, it can be expected that if the optimum value is close to 0, then algorithms
that are based on refining a lower bound potentially have fewer iterations, and
algorithms based on refining an upper bound may have to search through a higher
number of satisfying assignments before reporting the optimum. On the other side of
the spectrum, if the optimum value is closer to the sum of weights of soft clauses, then
algorithms based on refining a lower bound may have to perform a higher number
of iterations until the optimum is found, and algorithms based on refining an upper
bound may have a better performance.

Based on the previous observation and on the results of the previous section, all
the instances solved by any of the implementations in the MSUnCore system were
collected. The reason for collecting data only for the algorithms implemented in
MSUnCore is for no influence of any factor, other than the type of algorithm.

For each instance X, both the optimum value (Optimum(X)) and the sum of
weights of soft clauses (SumWeightSof t(X)) were computed. Then a percentage was
calculated as the division between both values as Optimum(X)/SumWeightSof t(X).
For unweighted instances, each clause was considered to have weight 1. In partial
instances, hard clauses were disregarded. In the remainder of the analysis the
percentage Optimum(X)/SumWeightSof t(X) is named as POvsS.

The instances were then grouped according to the POvsS percentage and to their
category. The results are presented in Table 15. The first row of Table 15 shows the
intervals of percentage considered, from 0 to 100 % (intervals of size 10 %). The first
column shows the category to which the instances belong to, that is, MS for MaxSAT
instances, PMS for partial MaxSAT instances, WMS for weighted MaxSAT instances

524 Constraints (2013) 18:478–534

Table 15 Number of instances according to the POvsS percentage

[0; 0.1[[0.1; 0.2[[0.2; 0.3[[0.3; 0.4[[0.4; 0.5[[0.5; 0.6[[0.6; 0.7[[0.7; 0.8[[0.8; 0.9[[0.9; 1]
MS Crafted 2 5 1 0 0 0 0 0 0 0

Industrial 106 0 0 0 0 0 0 0 0 0

PMS Crafted 20 27 30 21 45 23 8 3 6 88
Industrial 324 125 155 100 73 104 5 1 0 1

WMS Crafted 61 2 0 0 0 0 0 0 0 0

WPMS Crafted 125 53 33 19 24 18 34 13 10 84
Industrial 199 0 0 0 0 0 0 0 0 0

ALL 837 212 219 140 142 145 47 17 16 173

and WPMS for weighted partial MaxSAT instances. The ALL considers all instances
independent of the category. The second column shows whether the instances are
crafted or industrial. The remaining cells show the number of instances that fall in a
certain category (given by the row) and have a POvsS percentage in a certain interval
(given by the column). As it can be seen, the majority of instances have an optimum
value that is below 10 % of the sum of weights of the soft clauses. In fact it represents
43 % (837/1948) of the total of instances considered. This is specially true in industrial
instances, the only category that has instances with an optimum greater than 10 % of
the sum of weights of clauses is the industrial partial MaxSAT category.

Given the data in Table 15, the instances were further grouped in three intervals of
POvsS percentages, namely [0; 0.1[, [0.1; 0.6[, and [0.6; 1]. A cactus plot was created
for each of the intervals. Figure 8a, b, and c present the cactus plots for each of the
intervals for all of the instances (independent of category they belong to). Figure 8d
presents the cactus plot for the instances with a POvsS in [0; 0.1[that belong to the
WPMS Industrial category.

From Fig. 8a, it can be seen that for a low POvsS (within [0; 0.1[), two of the top
three algorithms to have a better performance are based on refining a lower bound,
namely WMSU1 and WPM2. The best performing algorithm is BIN-C-D that refines
both a lower and an upper bound, but restricting these instances to WPMS Industrial
instances (Fig. 8d) it can be seen that WMSU1 performs better than BIN-C-D or WPM2
on these instances. The main reason for this is due to the low POvsS of these instances
as well as the fact that both BIN-C-D and WPM2 have to encode pseudo-Boolean
constraints on these instances whereas WMSU1 always encodes cardinality constraints.

From Fig. 8c, it can be seen that for a high POvsS (within [0.6; 1]), the best
performing algorithm is WMSU4. Despite WMSU4 refining both a lower and an upper
bound, WMSU4 is much more oriented by satisfying assignments than by the unsat-
isfiable cores. On the other hand, both WMSU1 and WPM2 (characterized by refining
lower bounds) are the worst performing algorithms for these instances, since the
number of iterations required by these algorithms is high.

For the instances that have a POvsS within [0.1; 0.6[, Fig. 8b shows that the best
performing algorithms (all very close) are based on binary search or bit-based search
(similar to a binary search on the bit value of the optimum).

The experiments is this section indicates that depending on the location of the
optimum value with regards to the sum of weights of soft clauses, then one type
of algorithm may perform better than others, namely on instances with a very low
POvsS is expected that algorithms that refine lower bounds, such as WMSU1 and

Constraints (2013) 18:478–534 525

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700

BIN-C-D (MSUC)
WMSU1 (MSUC)

WPM2 (MSUC)
BIN-C (MSUC)

WMSU3 (MSUC)
WMSU4 (MSUC)

BIT (MSUC)
BIN (MSUC)

LIN-US (MSUC)
BIN/LIN-SU (MSUC)

LIN-SU (MSUC)

(a) [0; 0.1[

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200

WMSU4 (MSUC)
BIT (MSUC)

BIN-C (MSUC)
BIN/LIN-SU (MSUC)

BIN (MSUC)
BIN-C-D (MSUC)

LIN-SU (MSUC)
WMSU3 (MSUC)
LIN-US (MSUC)
WPM2 (MSUC)

WMSU1 (MSUC)

(c) [0.6; 1]

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800

BIN-C-D (MSUC)
BIT (MSUC)

BIN-C (MSUC)
BIN/LIN-SU (MSUC)

BIN (MSUC)
WMSU4 (MSUC)
WMSU3 (MSUC)
LIN-US (MSUC)
LIN-SU (MSUC)
WPM2 (MSUC)

WMSU1 (MSUC)

(b) [0.1; 0.6[

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140 160 180

WMSU1 (MSUC)
WPM2 (MSUC)

BIN-C-D (MSUC)
BIN-C (MSUC)

WMSU3 (MSUC)
BIN (MSUC)
BIT (MSUC)

BIN/LIN-SU (MSUC)
LIN-US (MSUC)

WMSU4 (MSUC)
LIN-SU (MSUC)

(d) [0; 0.1[WPMS Industrial

Fig. 8 Run time distributions for non-random MaxSAT instances with given POvsS percentage

WPM2 have a better performance. On the other hand if the instance is known to have
a high POvsS, then algorithms like WMSU4 which are heavily oriented by satisfying
assignments, are expected to perform better.

Finally, if the POvsS of the instance is somewhere in the middle or it is unknown,
then an algorithm based on binary search such as BIN-C-D may be a better choice.

8 Conclusions

MaxSAT is an optimization variant of the Satisfiability problem that finds a wide
range of applications. In particular, MaxSAT has recently been applied in industrial
contexts including Design Debugging [33, 111], Fault Localization of ANSI-C Pro-
grams [66, 67], Post-Silicon Validation [130], Planning [38, 68, 108, 129], and Model-
Based-Diagnosis [46], to name a few.

In the last decade, a large number of exact algorithms have been proposed for
MaxSAT, some of which are based on iteratively calling a SAT solver and are called
iterative MaxSAT solvers. Exploiting the ability of SAT solvers to compute reasons
for unsatisfiable formulas (unsatisfiable cores), new approaches for MaxSAT solving
have emerged that take advantage of the presence of cores to further enhance their
performance. These algorithms are called core-guided MaxSAT algorithms.

This paper overviews existing iterative and core-guided MaxSAT algorithms and
characterizes them in terms of number of relaxation variables, number of constraints

526 Constraints (2013) 18:478–534

and number of calls to a SAT oracle. Additionally, several algorithms originally
available only for unweighted MaxSAT have been extended to handle weighted
formulas.

Iterative algorithms initially relax all soft clauses. Then, they iteratively add a
cardinality constraint on the number of relaxation variables allowed to be assigned
true and call a SAT solver. In the case of weighted versions of the algorithms, instead
of the cardinality constraint, a pseudo-Boolean constraint is added that constrains
the allowed weight of the associated cost function. Core-guided MaxSAT algorithms
compute unsatisfiable cores when the outcome of the SAT solver is unsatisf iable,
and use the information of unsatisfiable cores to relax soft clauses on demand and to
compute more precise and smaller constraints.

An extensive empirical study has been conducted that considers all non-random
instances from recent MaxSAT Evaluations, the surveyed algorithms and other
state-of-the-art approaches such as branch and bound MaxSAT solvers, pseudo-
Boolean solvers and ASP solvers. The iterative and core-guided MaxSAT algorithms
were developed in the same implementation framework, which allows for a fair
comparison of all algorithmic schemes independently of implementation details.
Both original (if any) and our own implementation of each iterative and core-guided
MaxSAT algorithm were considered. Branch and bound algorithms [61, 70, 79] are
known to be the best complete approach to handle random benchmarks, and the
results in this paper indicate that they are also the best approach to handle non-
partial crafted benchmarks. Differently, for crafted partial benchmarks iterative and
core-guided MaxSAT algorithms are quite competitive. Regarding industrial (partial
and non-partial) benchmarks, core-guided MaxSAT algorithms followed by iterative
MaxSAT algorithms are among the best approaches, whereas branch and bound
algorithms perform poorly. In fact, the results indicate that WMSU1/WPM1 is the best
approach to handle industrial unweighted MaxSAT and weighted partial industrial
MaxSAT, whereas core-guided binary search with disjoint cores is the best approach
for partial MaxSAT industrial benchmarks and it is quite robust in general.

Additionally, a study of the optimum value of the instances with regards to the
sum of weights of all the soft clauses was conducted, where the POvsS percentage
was computed as the division between those two values (for each instance). The
results suggest that for instances with a high value of POvsS, algorithms that are
oriented by satisfying assignments may perform better, such as the WMSU4 algorithm.
On the other hand, algorithms that are based on refining a lower bound have a better
behavior on instances with a low POvsS; for example WMSU1 and WPM2. For values
of POvsS that fall in the middle, then algorithms that are based on binary search like
BIN-C-D may be a better choice.

Overall, this survey attempts to highlight some of the algorithms for MaxSAT
that are based on iteratively calling a SAT solver, whether they take advantage of
unsatisfiable cores or not. Such algorithms have been consecutively demonstrated to
be the best performing MaxSAT algorithms for industrial benchmarks, by MaxSAT
evaluations since 2008 [14]. The area itself is an active research field where new
algorithms and new techniques emerge every year ([6, 10, 89, 90, 92] to name a few).

An extensive experimental evaluation is carried on the survey, and in general
the results indicate that core-guided MaxSAT algorithms (which take advantage of
unsatisfiable core) are better than iterative algorithms and that core-guided MaxSAT
algorithms are fairly competitive compared to the remaining approaches and the
current best approach for industrial benchmarks.

Constraints (2013) 18:478–534 527

Acknowledgements The authors thank the reviewers for the many suggestions made. which helped
improving the manuscript significantly. This work is partially supported by SFI PI grant BEACON
(09/IN.1/I2618), by FCT grants ATTEST (CMU-PT/ELE/0009/2009), POLARIS (PTDC/EIA-CCO/
123051/2010), and INESC-ID’s multiannual PIDDAC funding PEst-OE/EEI/LA0021/2013, and by
Spanish MICINN Project ARINF (TIN2009-14704-C03-01).

Appendix

WMSU1—worst-case number of relaxation variables

This section presents the general idea to obtain the worst case total number of
relaxation variables added by WMSU1.

The number of relaxation variables added is related to the quality of the unsat-
isfiable subformulas computed by the SAT solver. In the following, it is assumed the
worst case scenario where the SAT solver always returns the complete CNF formula
as the unsatisfiable core. In practice SAT solvers return reasonably accurate unsat-
isfiable cores. A detailed characterization of the worst-case number of relaxation
variables/iterations in this case is an open research topic.

Consider an input WCNF formula ϕ given to WMSU1. It is assumed the worst
case scenario where ϕ contains a clause with weight 1. Since the unsatisfiable core
is always the complete formula, then in particular contains a clause with weight 1.
Thus in the following, the minimum weight of the unsatisfiable cores returned by the
SAT solver is always 1.

Suppose that ϕ has m soft clauses with different weights that range from 1 to α,
that is α = max{wi|(ci, wi) ∈ ϕ, 1 ≤ i ≤ m}. Also, let W represent the sum of weights
of all soft clauses (W = ∑m

i=1 wi). In the worst case scenario the optimum cost of the
unsatisfiable clauses is W.

As explained in Section 5, WMSU1 works by making calls to the SAT solver until
a satisfiable outcome is obtained. In each unsatisfiable iteration, each soft clause
belonging to the core with a weight of 1 is augmented with a new relaxation variable.
On the other hand, soft clauses belonging to the core with a weight greater than 1
are replicated, which means that the clause is duplicated and the duplicated clause is
augmented with a new relaxation variable. Under the assumptions explained above,
the new relaxed clause due to replication is associated with a weight of 1, and the
weight of the original clause is reduced by 1.
WMSU1 obtains a satisfiable iteration when the sum of the contributions of each

core reaches the optimum solution. In this case each unsatisfiable core contributes
with a cost of 1 and the optimum cost is assumed to be W, then there are total of W
iterations.

Consider that variables Ni represent the number of soft clauses in ϕ with a weight
i, where 1 ≤ i ≤ α. Table 16 shows the total number of relaxation variables, and total
number of new clauses (due to replication) added to the formula after each iteration
lower or equal to α. In the table, the brackets [and] represent that none of the clauses
associated to the expression inside were replicated, that is, all the clauses associated
to the expression inside have weight 1.

For the first iteration, each clause with weight 1 is augmented with a new
relaxation variable. As there are N1 such clauses, then WMSU1 adds N1 new relaxation
variables. The clauses with a weight greater than 1 are replicated, meaning new
clauses are created each containing a new relaxation variable. Since there are

528 Constraints (2013) 18:478–534

Table 16 Total number of relaxation variables and number of clauses added after each iteration
lower or equal to α

Iteration Number of relaxation variables Number of added clauses

1 [N1] + N2 + N3 + . . . + Nα N2 + . . . + Nα

2 [2N1] + [2N2 + N2] + 2N3 + N3 + . . . + 2Nα + Nα [N2] + [N3] + N3 + . . . + [Nα] + Nα

3 [3N1] + [3N2 + 2N2] + [3N3 + 2N3 + N3] + . . . [N2] + [2N3] + [2N4] + N4 + . . .

. . . + 3Nα + 2Nα + Nα . . . + [2Nα] + Nα

.

.

.
.
.
.

.

.

.

α [αN1]+ [N2]+
[αN2 + (α − 1)N2]+ [2N3]+
[αN3 + (α − 1)N3 + (α − 2)N3]+ [3N4]+

.

.

.
.
.
.

[αNα + (α − 1)Nα + . . . + Nα] [(α − 1)Nα]

N2 + . . . + Nα clauses with weight greater than 1, then N2 + . . . + Nα new relaxation
variables are added, and N2 + . . . + Nα new clauses are created.

The second and following iterations are similar, but taking into account the clauses
with weight 1 created from the replicated clauses in the previous iteration. Also,
as the weight of the original clauses are decreased by 1, then after iteration i, the
weight of the clauses originally with weight i is decreased to 1 and they are no longer
replicated but are still augmented with new relaxation variables.

After iteration α all clauses have weight 1. Any clause belonging to an unsat-
isfiable core is then relaxed with a new relaxation variable (and no replication of
clauses is performed). As such the total number of clauses added by WMSU1 in these
conditions is given in the last line of Table 16 in the last column, and is bounded by
the following expression where is considered that Ni ≤ m:

#newcls =
∑α

i=2

(
(i − 1)Ni

)

≤
∑α

i=2

(
(i − 1)m

)

= mα(α − 1)

2

For iterations (α + 1) to W, the total number of relaxation variables added is
shown in Table 17. The main difference is the addition of relaxation variables
without replication of clauses, thus the increase of the constants. The total number
of relaxation variables added by WMSU1 is given in the last line of Table 17 and is
bounded by the following expression where again is considered that Ni ≤ m:

#rvars =
∑α

i=1

(∑W

j=W−i+1
jNi

)

=
∑α

i=1

(
Ni

∑W

j=W−i+1
j
)

≤ m
∑α

i=1

(2W − i + 1)

2
i

= mα(α + 1)(3W − α + 1)

6

Constraints (2013) 18:478–534 529

Table 17 Number of
relaxation variables added
after each iteration greater
than α

Iteration Number of relaxation variables

α + 1 [(α + 1)N1]+
[(α + 1)N2 + αN2]+
[(α + 1)N3 + αN3 + (α − 1)N3]+

.

.

.

[(α + 1)Nα + αNα + . . . + 2Nα]
.
.
.

.

.

.

α + k [(α + k)N1]+
[(α + k)N2 + (α + k − 1)N2]+
[(α + k)N3 + (α + k − 1)N3 + (α + k − 2)N3]+

.

.

.

[(α + k)Nα + (α + k − 1)Nα + . . . + (k + 1)Nα]
.
.
.

.

.

.

W [W N1]+
[W N2 + (W − 1)N2]+
[W N3 + (W − 1)N3 + (W − 2)N3]+

.

.

.

[W Nα + (W − 1)Nα + . . . + (W − α + 1)Nα]

References

1. Aksoy, L., daCosta, E.A.C., Flores, P.F., Monteiro, J. (2008). Exact and approximate algorithms
for the optimization of area and delay in multiple constant multiplications. IEEE Transactions
on CAD of Integrated Circuits and Systems on CAD, 27(6), 1013–1026.

2. Aloul, F., Ramani, A., Markov, I., Sakallah, K. (2002). PBS: A backtrack search pseudo-
Boolean solver. In Symposium on theory and applications of satisf iability testing (pp. 346–353).

3. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A. (2002). Generic ILP versus specialized
0-1 ILP: An update. In International conference on computer-aided design (pp. 450–457).

4. Andres, B., Kaufmann, B., Matheis, O., Schaub, T. (2012). Unsatisfiability-based optimiza-
tion in clasp. In International conference on logic programming (Technical communications)
(pp. 211–221).

5. Anjos, M.F. (2006). Semidefinite optimization approaches for satisfiability and maximum-
satisfiability problems. Journal on Satisfiability, Boolean Modeling and Computation, 1(1), 1–
47.

6. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J. (2012). Improving SAT-based weighted
MaxSAT solvers. In International conference on principles and practice of constraint program-
ming (pp. 86–101).

7. Ansótegui, C., Bonet, M.L., Levy, J. (2009). On solving MaxSAT through SAT. In International
conference of the Catalan Association for artif icial intelligence (pp. 284–292).

8. Ansótegui, C., Bonet, M.L., Levy, J. (2009). Solving (weighted) partial MaxSAT through sat-
isfiability testing. In International conference on theory and applications of satisf iability testing
(pp. 427–440).

9. Ansótegui, C., Bonet, M.L., Levy, J. (2010). A new algorithm for weighted partial MaxSAT. In
AAAI conference on artif icial intelligence (pp. 3–8).

10. Ansótegui, C., Bonet, M.L., Levy, J. (2013). SAT-based MaxSAT algorithms. In Artif icial
inteligence journal (Vol. 196, pp. 77–105).

11. Ansótegui, C., & Manyà, F. (2004). Mapping problems with finite-domain variables into
problems with Boolean variables. In International conference on theory and applications of
satisf iability testing (pp. 111–119).

530 Constraints (2013) 18:478–534

12. Ardagna, C.A., diVimercati, S.D.C., Foresti, S., Paraboschi, S., Samarati, P. (2010). Minimizing
disclosure of private information in credential-based interactions: A graph-based approach. In
International conference on social computing/international conference on privacy, security, risk
and trust (pp. 743–750).

13. Argelich, J., Berre, D.L., Lynce, I., Marques-Silva, J., Rapicault, P. (2010). Solving linux up-
gradeability problems using Boolean optimization. In International workshop on logics for
component conf iguration (pp. 11–22).

14. Argelich, J., Li, C.M., Manya, F., Planes, J. (2011). Experimenting with the instances of the
MaxSAT Evaluation. In International conference of the catalan association for artificial intelli-
gence (pp. 360–361).

15. Argelich, J., & Lynce, I. (2008). CNF instances from the software package installation prob-
lem. In RCRA international workshop on “Experimental Evaluation of Algorithms for solving
problems with combinatorial explosion”.

16. Argelich, J., Lynce, I., Marques-Silva, J. (2009). On solving Boolean multilevel optimization
problems. In International joint conference on artificial intelligence (pp. 393–398).

17. Asín, R., & Nieuwenhuis, R. (2010). Curriculum-based course timetabling with SAT and
MaxSAT. In International conference on the practice and theory of automated timetabling (pp.
42–56).

18. Asín, R., & Nieuwenhuis, R. (2012). Curriculum-based course timetabling with SAT and
MaxSAT. Annals of Operations Research, 1–21.

19. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E. (2011). Cardinality networks:
a theoretical and empirical study. Constraints, 16(2), 195–221.

20. Bailleux, O., & Boufkhad, Y. (2003). Efficient CNF encoding of Boolean cardinality constraints.
In International conference on principles and practice of constraint programming (pp. 108–122).

21. Bansal, N., & Raman, V. (1999). Upper bounds for MaxSat: Further improved. In International
symposium on algorithms and computation (pp. 247–258).

22. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C. (2009). Satisfiability modulo theories. In
Handbook of satisfiability (pp. 825–884). IOS Press.

23. Barth, P. (1995). A Davis-Putnam enumeration algorithm for linear pseudo-Boolean optimiza-
tion. Technical Report MPI-I-95-2-003, Max Plank Institute for Computer Science.

24. Batcher, K.E. (1968). Sorting networks and their applications. In AFIPS spring joint computing
conference (pp. 307–314).

25. Berre, D.L., & Parrain, A. (2010). The Sat4j library, release 2.2. Journal on Satisf iability,
Boolean Modeling and Computation, 7, 59–64.

26. Biere, A. (2008). PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Compu-
tation, 2, 75–97.

27. Birnbaum, E., & Lozinskii, E.L. (2003). Consistent subsets of inconsistent systems: structure
and behaviour. Journal of Experimental and Theoretical Artificial Intelligence, 15(1), 25–46.

28. Bonet, M.L., Levy, J., Manyà, F. (2007). Resolution for Max-SAT. Artificial Intelligence Journal,
171(8–9), 606–618.

29. Borchers, B., & Furman, J. (1999). A two-phase exact algorithm for MAX-SAT and weighted
MAX-SAT problems. Journal of Combinatorial Optimization, 2, 299–306.

30. Brihaye, T., Bruyère, V., Doyen, L., Ducobu, M., Raskin, J.-F. (2011). Antichain-based QBF
solving. In International symposium on automated technology for verification and analysis
(pp. 183–197).

31. Cha, B., Iwama, K., Kambayashi, Y., Miyazaki, S. (1997). Local search algorithms for partial
MaxSAT. In AAAI conference on artif icial intelligence/IAAI innovative applications of artificial
intelligence conference (pp. 263–268).

32. Chai, D., & Kuehlmann, A. (2003). A fast pseudo-Boolean constraint solver. In Design automa-
tion conference (pp. 830–835).

33. Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.G. (2010). Automated design debugging
with maximum satisfiability. IEEE Transactions on CAD of Integrated Circuits and Systems,
29(11), 1804–1817.

34. Chen, Y., Safarpour, S., Veneris, A., Marques-Silva, J. (2009). Spatial and temporal design
debug using partial MaxSAT. In IEEE great lakes symposium on VLSI.

35. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C. (2010). Satisfiability modulo the
theory of costs: Foundations and applications. In International conference tools and algorithms
for the construction and analysis of systems (pp. 99–113).

36. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R. (2013). A modular approach to
MaxSAT modulo theories. In International conference on theory and applications of sat-
isf iability testing (pp. 150–165).

Constraints (2013) 18:478–534 531

37. Codish, M., Lagoon, V., Stuckey, P.J. (2008). Logic programming with satisfiability. Journal of
Theory and Practice of Logic Programming, 8(1), 121–128.

38. Cooper, M.C., Cussat-Blanc, S., deRoquemaurel, M., Régnier, P. (2006). Soft arc consistency
applied to optimal planning. In International conference on principles and practice of constraint
programming (pp. 680–684).

39. Cooper, M.C., deGivry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T. (2010). Soft arc
consistency revisited. Artif icial Intelligence Journal, 174(7–8), 449–478.

40. Davies, J., & Bacchus, F. (2011). Solving MaxSAT by solving a sequence of simpler SAT
instances. In International conference on principles and practice of constraint programming
(pp. 225–239).

41. Davies, J., Cho, J., Bacchus, F. (2010). Using learnt clauses in MaxSAT. In International confer-
ence on principles and practice of constraint programming (pp. 176–190).

42. deGivry, S., Larrosa, J., Meseguer, P., Schiex, T. (2003). Solving Max-SAT as weighted CSP. In
International conference on principles and practice of constraint programming (pp. 363–376).

43. deMoura, L.M., & Bjørner, N. (2008). Z3: An efficient SMT solver. In International conference
tools and algorithms for the construction and analysis of systems (pp. 337–340).

44. Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In International conference on
theory and applications of satisf iability testing (pp. 502–518).

45. Een, N., & Sörensson, N. (2006). Translating pseudo-Boolean constraints into SAT. Journal on
Satisf iability, Boolean Modeling and Computation, 2, 1–26.

46. Feldman, A., Provan, G., deKleer, J., Robert, S., van Gemund, A. (2010). Solving model-based
diagnosis problems with MaxSAT solvers and vice versa. In International workshop on the
principles of diagnosis.

47. Fu, Z., & Malik, S. (2006). On solving the partial MAX-SAT problem. In International confer-
ence on theory and applications of satisf iability testing (pp. 252–265).

48. Gebser, M., Kaufmann, B., Schaub, T. (2009). The conflict-driven answer set solver clasp:
Progress report. In International conference on logic programming and nonmonotonic reasoning
(pp. 509–514).

49. Gent, I.P., & Nightingale, P. (2004). A new encoding of alldifferent into SAT. In International
workshop on modelling and reformulating constraint satisfaction problems (pp. 95–110).

50. Giunchiglia, E., Lierler, Y., Maratea, M. (2006). Answer set programming based on proposi-
tional satisfiability. Journal of Automated Reasoning, 36(4), 345–377.

51. Giunchiglia, E., & Maratea, M. (2006). Optsat: A tool for solving SAT related optimization
problems. In European conference on logics in artificial intelligence (JELIA) (pp. 485–489).

52. Giunchiglia, E., & Maratea, M. (2006). Solving optimization problems with DLL. In European
conference on artificial intelligence (pp. 377–381).

53. Giunchiglia, E., & Maratea, M. (2007). Planning as satisfiability with preferences. In AAAI
conference on artif icial intelligence (pp. 987–992).

54. Gomes, C.P., van Hoeve, W.J., Leahu, L. (2006). The power of semidefinite programming
relaxations for Max-SAT. In International conference integration of AI and OR techniques in
constraint programming for combinatorial optimization problems (pp. 104–118).

55. Gottlob, G. (1995). NP trees and Carnap’s modal logic. Journal of ACM, 42(2), 421–457.
56. Graca, A., Lynce, I., Marques-Silva, J., Oliveira, A. (2010). Efficient and accurate haplo-

type inference by combining parsimony and pedigree information. In International conference
algebraic and numeric biology (pp. 38–56).

57. Graca, A., Marques-Silva, J., Lynce, I., Oliveira, A. (2011). Haplotype inference with pseudo-
Boolean optimization. Annals of Operations Research, 184(1), 137–162.

58. Guerra, J., & Lynce, I. (2012). Reasoning over biological networks using maximum sat-
isfiability. In International conference on principles and practice of constraint programming
(pp. 941–956).

59. Hachtel, G.D., & Somenzi, F. (1996). Logic synthesis and verification algorithms. Kluwer.
60. Heras, F., Larrosa, J., deGivry, S., Schiex, T. (2008). 2006 and 2007 Max-SAT evaluations:

contributed instances. Journal on Satisfiability, Boolean Modeling and Computation, 4(2–4),
239–250.

61. Heras, F., Larrosa, J., Oliveras, A. (2008). MiniMaxSat: an efficient weighted Max-SAT solver.
Journal of Artificial Intelligence Research, 31, 1–32.

62. Heras, F., & Marques-Silva, J. (2011). Read-once resolution for unsatisfiability-based Max-SAT
algorithms. In International joint conference on artificial intelligence (pp. 572–577).

63. Heras, F., Morgado, A., Marques-Silva, J. (2011). Core-guided binary search for maximum
satisfiability. In AAAI conference on artif icial intelligence.

532 Constraints (2013) 18:478–534

64. Hoos, H., & Stützle, T. (2005). Stochastic local search: Foundations and applications. Morgan
Kaufmann.

65. Hoos, H.H. (2002). An adaptive noise mechanism for WalkSAT. In AAAI conference
on artif icial intelligence/IAAI innovative applications of artif icial intelligence conference
(pp. 655–660).

66. Jose, M., & Majumdar, R. (2011). Bug-assist: Assisting fault localization in ANSI-C programs.
In International conference on computer aided verif ication (pp. 504–509).

67. Jose, M., & Majumdar, R. (2011). Cause clue clauses: Error localization using maximum sat-
isfiability. In ACM SIGPLAN conference on programming language design and implementation
(pp. 437–446).

68. Juma, F., Hsu, E.I., McIlraith, S.A. (2012). Preference-based planning via MaxSAT.
In Canadian conference on AI (pp. 109–120).

69. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R. (2012). QMaxSAT: a partial Max-SAT
solver. Journal on Satisf iability, Boolean Modeling and Computation, 8, 95–100.

70. Kuegel, A. (2010). Improved exact solver for the weighted MAX-SAT problem. In Pragmatics
of SAT.

71. Larrosa, J., & Heras, F. (2005). Resolution in Max-SAT and its relation to local consistency in
weighted CSPs. In International joint conference on artif icial intelligence (pp. 193–198).

72. Larrosa, J., Heras, F., deGivry, S. (2008). A logical approach to efficient Max-SAT solving.
Artif icial Inteligence Journal, 172(2–3), 204–233.

73. Larrosa, J., & Schiex, T. (2004). Solving weighted CSP by maintaining arc consistency. Artif icial
Inteligence Journal, 159(1–2), 1–26.

74. Li, C.M., & Manyà, F. (2009). MaxSAT, hard and soft constraints. In Handbook of satisf iability
(pp. 613–632). IOS Press.

75. Li, C.M., Manyà, F., Planes, J. (2005). Exploiting unit propagation to compute lower bounds in
branch and bound Max-SAT solvers. In International conference on principles and practice of
constraint programming (pp. 403–414).

76. Li, C.M., Manyà, F., Planes, J. (2007). New inference rules for Max-SAT. Journal of Artif icial
Intelligence Research, 30, 321–359.

77. Liffiton, M.H., Sakallah, K.A. (2005). On finding all minimally unsatisfiable subformu-
las. In International conference on theory and applications of satisf iability testing (pp. 173–
186).

78. Liffiton, M.H., & Sakallah, K.A. (2008). Algorithms for computing minimal unsatisfiable sub-
sets of constraints. Journal Automated Reasoning, 40(1), 1–33.

79. Lin, H., Su, K., Li, C.M. (2008). Within-problem learning for efficient lower bound computation
in Max-SAT solving. In AAAI conference on artif icial intelligence (pp. 351–356).

80. Mancinelli, F., Boender, J., diCosmo, R., Vouillon, J., Durak, B., Leroy, X., Treinen, R. (2006).
Managing the complexity of large free and open source package-based software distributions.
In International conference on automated software engineering (pp. 199–208).

81. Mangassarian, H., Veneris, A.G., Safarpour, S., Najm, F.N., Abadir, M.S. (2007). Maximum cir-
cuit activity estimation using pseudo-Boolean satisfiability. In Conference on design, automation
and test in Europe (pp. 1538–1543).

82. Manquinho, V., Marques-Silva, J., Planes, J. (2009). Algorithms for weighted Boolean op-
timization. In International conference on theory and applications of satisf iability testing
(pp. 495–508).

83. Manquinho, V., Martins, R., Lynce, I. (2010). Improving unsatisfiability-based algorithms for
Boolean optimization. In International conference on theory and applications of satisf iability
testing (pp. 181–193).

84. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I. (2011). Boolean lexicographic optimiza-
tion: Algorithms & applications. Annals of Mathematics and Artif icial Intelligence, 62(3–4),
317–343.

85. Marques-Silva, J., & Manquinho, V. (2008). Towards more effective unsatisfiability-based
maximum satisfiability algorithms. In International conference on theory and applications of
satisf iability testing (pp. 225–230).

86. Marques-Silva, J., & Planes, J. (2007). On using unsatisfiability for solving maximum sat-
isfiability. Computing Research Repository. arXiv: abs/0712.0097.

87. Marques-Silva, J., Planes, J. (2008). Algorithms for maximum satisfiability using unsatisfiable
cores. In Conference on design, automation and testing in Europe (pp. 408–413).

88. Marques-Silva, J., & Sakallah, K.A. (1996). GRASP—a new search algorithm for satisfiability.
In International conference on computer-aided design (pp. 220–227).

http://arxiv.org/abs/0712.0097

Constraints (2013) 18:478–534 533

89. Martins, R., Manquinho, V., Lynce, I. (2012). On partitioning for maximum satisfiability. In
European conference on artif icial intelligence (pp. 913–914).

90. Martins, R., Manquinho, V.M., Lynce, I. (2013). Community-based partitioning for MaxSAT
solving. In International conference on theory and applications of satisf iability testing (pp. 182–
191).

91. Morgado, A., Heras, F., Marques-Silva, J. (2011). The MSUnCore MaxSAT solver. In Pragmat-
ics of SAT.

92. Morgado, A., Heras, F., Marques-Silva, J. (2012). Improvements to core-guided binary search
for MaxSAT. In Theory and applications of satisf iability testing (pp. 284–297).

93. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S. (2001). Chaff: Engineering an
efficient SAT solver. In Design automation conference (pp. 530–535).

94. Neveu, B., Trombettoni, G., Glover, F. (2004). ID Walk: A candidate list strategy with a
simple diversification device. In International conference on principles and practice of constraint
programming (pp. 423–437).

95. Niedermeier, R., Rossmanith, P. (2000). New upper bounds for maximum satisfiability. Journal
of Algorithms, 36(1), 63–88.

96. Nieuwenhuis, R., & Oliveras, A. (2006). On SAT modulo theories and optimization problems.
In International conference on theory and applications of satisf iability testing (pp. 156–169).

97. Nieuwenhuis, R., Oliveras, A., Tinelli, C. (2006). Solving SAT and SAT modulo theories: from
an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of ACM,
53(6), 937–977.

98. Oikarinen, E., Järvisalo, M. (2009). Max-ASP: Maximum satisfiability of answer set programs.
In International conference on logic programming and nonmonotonic reasoning (pp. 236–249).

99. Palubeckis, G. (2009). A new bounding procedure and an improved exact algorithm for the
MAX-2-SAT problem. Applied Mathematics and Computation, 215(3), 1106–1117.

100. Papadimitriou, C. (1994). Computational complexity. USA: Addison-Wesley.
101. Papadimitriou, C., & Zachos, S. (1983). Two remarks on the power of counting. Theoretical

Computer Science, 269–276.
102. Park, J.D. (2002). Using weighted MAX-SAT engines to solve MPE. In AAAI conference on

artif icial intelligence (pp. 682–687).
103. Pipatsrisawat, K., Palyan, A., Chavira, M., Choi, A., Darwiche, A. (2008). Solving weighted

Max-SAT problems in a reduced search space: a performance analysis. Journal on Satisf iability
Boolean Modeling and Computation, 4, 191–217.

104. Prestwich, S. (2009). CNF encodings. In Handbook of satisf iability (pp. 75–98). IOS Press.
105. Prestwich, S.D. (2007). Variable dependency in local search: Prevention is better than cure. In

International conference on theory and applications of satisf iability testing (pp. 107–120).
106. Ramírez, M., & Geffner, H. (2007). Structural relaxations by variable renaming and their

compilation for solving MinCostSAT. In International conference on principles and practice of
constraint programming (pp. 605–619).

107. Reiter, R. (1987). A theory of diagnosis from first principles. Artif icial Inteligence Journal,
32(1), 57–95.

108. Robinson, N., Gretton, C., Pham, D.N., Sattar, A. (2010). Partial weighted MaxSAT for optimal
planning. In Pacif ic rim international conference on artif icial intelligence (pp. 231–243).

109. Rosa, E.D., Giunchiglia, E., Maratea, M. (2010). Solving satisfiability problems with prefer-
ences. Constraints, 15(4), 485–515.

110. Roussel, O., & Manquinho, V. (2009). Pseudo-Boolean and cardinality constraints. In Hand-
book of satisf iability (pp. 695–734). IOS Press.

111. Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H., Sakallah, K.A. (2007). Improved
design debugging using maximum satisfiability. In Formal methods in computer-aided design.

112. Sandholm, T. (1999). An algorithm for optimal winner determination in combinatorial auctions.
In International joint conference on artif icial intelligence (pp. 542–547).

113. Sebastiani, R. (2007). Lazy satisfiability modulo theories. Journal on Satisf iability, Boolean
Modeling and Computation, 3, 141–224.

114. Sebastiani, R., & Tomasi, S. (2012). Optimization in SMT with LA(Q) cost functions. In
International joint conference in automated reasoning (pp. 484–498).

115. Selman, B., Kautz, H.A., Cohen, B. (1994). Noise strategies for improving local search. In AAAI
conference on artif icial intelligence (pp. 337–343).

116. Selman, B., Levesque, H.J., Mitchell, D.G. (1992). A new method for solving hard satisfiability
problems. In AAAI conference on artif icial intelligence (pp. 440–446).

534 Constraints (2013) 18:478–534

117. Sheini, H., & Sakallah, K. (2006). Pueblo: a hybrid pseudo-Boolean SAT solver. Journal on
Satisf iability, Boolean Modeling and Computation, 2(3–4), 165–189.

118. Shen, H., & Zhang, H. (2005). Improving exact algorithms for MAX-2-SAT. Annals of Mathe-
matics and Artif icial Intelligence, 44(4), 419–436.

119. Sinz, C. (2005). Towards an optimal CNF encoding of Boolean cardinality constraints. In
International conference on principles and practice of constraint programming (pp. 827–831).

120. Strickland, D., Barnes, E., Sokol, J. (2005). Optimal protein structure alignment using maximum
cliques. Operations Research, 53(3), 389–402.

121. Teresa Alsinet, J.P., Manyà, F. (2004). A Max-SAT solver with lazy data structures. In Ibero-
American conference on AI (IBERAMIA) (pp. 334–342).

122. Tompkins, D.A.D., & Hoos, H.H. (2004). UBCSAT: An implementation and experimentation
environment for SLS algorithms for SAT & Max-SAT. In International conference on theory
and applications of satisf iability testing (pp. 37–46).

123. Tucker, C., Shuffelton, D., Jhala, R., Lerner, S. (2007). OPIUM: Optimal package in-
stall/uninstall manager. In International conference on software engineering (pp. 178–188).

124. Vasquez, M., & Hao, J. (2001). A logic-constrained knapsack formulation and a tabu algorithm
for the daily photograph scheduling of an earth observation satellite. Journal of Computational
Optimization and Applications, 20(2), 137–157.

125. Warners, J.P. (1998). A linear-time transformation of linear inequalities into conjunctive normal
form. Information Processing Letters, 68(2), 63–69.

126. Xing, Z., & Zhang, W. (2005). MaxSolver: an efficient exact algorithm for (weighted) maximum
satisfiability. Artif icial Inteligence Journal, 164(1–2), 47–80.

127. Xu, H., Rutenbar, R., Sakallah, K. (2002). sub-SAT: A formulation for relaxed boolean
satisfiability with applications in routing. In International symposium on physical design
(pp. 182–187).

128. Zhang, L., & Malik, S. (2003). Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In Conference on design, automation
and testing in Europe (pp. 10880–10885).

129. Zhang, L., & Bacchus, F. (2012). MaxSAT heuristics for cost optimal planning. In AAAI
conference on artif icial intelligence (pp. 1846–1852).

130. Zhu, C.S., Weissenbacher, G., Malik, S. (2011). Post-silicon fault localisation using maximum
satisfiability and backbones. In Formal methods in computer-aided design (pp. 63–66).

	Iterative and core-guided MaxSAT solving: A survey and assessment
	Abstract
	Introduction
	MaxSAT applications
	MaxSAT algorithms
	Iterative and core-guided MaxSAT algorithms
	Goals and structure

	Preliminaries
	Boolean satisfiability (SAT)
	Maximum satisfiability (MaxSAT)
	Describing MaxSAT algorithms

	Cardinality and Pseudo-Boolean constraint encodings
	Iterative algorithms
	Linear search algorithms
	Binary search based algorithms
	Characterization of iterative algorithms

	Core-guided algorithms
	Algorithms based on multiple relaxation variables per soft clause
	Non-binary search based algorithms
	Binary search based algorithms
	Characterization of the algorithms

	MaxSMT: a MaxSAT generalization for SMT
	Experimental analysis
	Analysis of optimum vs sum of weights of soft clauses

	Conclusions
	Appendix
	WMSU1---worst-case number of relaxation variables
	References

