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Abstract

We present a formalization of the Ford-Fulkerson method for com-
puting the maximum flow in a network. Our formal proof closely fol-
lows a standard textbook proof, and is accessible even without be-
ing an expert in Isabelle/HOL— the interactive theorem prover used
for the formalization. We then use stepwise refinement to obtain the
Edmonds-Karp algorithm, and formally prove a bound on its complex-
ity. Further refinement yields a verified implementation, whose execu-
tion time compares well to an unverified reference implementation in
Java.
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1 Introduction

Computing the maximum flow of a network is an important problem in
graph theory. Many other problems, like maximum-bipartite-matching,
edge-disjoint-paths, circulation-demand, as well as various scheduling and
resource allocating problems can be reduced to it. The Ford-Fulkerson
method [8] describes a class of algorithms to solve the maximum flow prob-
lem. An important instance is the Edmonds-Karp algorithm [7], which was
one of the first algorithms to solve the maximum flow problem in polynomial
time for the general case of networks with real valued capacities.

In this paper, we present a formal verification of the Edmonds-Karp al-
gorithm and its polynomial complexity bound. The formalization is con-
ducted entirely in the Isabelle/HOL proof assistant [20]. Stepwise refine-
ment techniques [24, 1, 2] allow us to elegantly structure our verification
into an abstract proof of the Ford-Fulkerson method, its instantiation to
the Edmonds-Karp algorithm, and finally an efficient implementation. The
abstract parts of our verification closely follow the textbook presentation
of Cormen et al. [5]. Being developed in the Isar [23] proof language, our
proofs are accessible even to non-Isabelle experts.

While there exists another formalization of the Ford-Fulkerson method in
Mizar [17], we are, to the best of our knowledge, the first that verify a poly-
nomial maximum flow algorithm, prove the polynomial complexity bound,
or provide a verified executable implementation. Moreover, this paper is a
case study on elegantly formalizing algorithms.

2 Flows, Cuts, and Networks

theory Network
imports Graph
begin

In this theory, we define the basic concepts of flows, cuts, and (flow) net-
works.

2.1 Definitions

2.1.1 Flows

An s-t flow on a graph is a labeling of the edges with real values, such that:

capacity constraint the flow on each edge is non-negative and does not
exceed the edge’s capacity;

conservation constraint for all nodes except s and t, the incoming flows
equal the outgoing flows.
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type-synonym ′capacity flow = edge ⇒ ′capacity

locale Flow = Graph c for c :: ′capacity ::linordered-idom graph +
fixes s t :: node
fixes f :: ′capacity ::linordered-idom flow

assumes capacity-const : ∀ e. 0 ≤ f e ∧ f e ≤ c e
assumes conservation-const : ∀ v ∈ V − {s, t}.

(
∑

e ∈ incoming v . f e) = (
∑

e ∈ outgoing v . f e)
begin

The value of a flow is the flow that leaves s and does not return.

definition val :: ′capacity
where val ≡ (

∑
e ∈ outgoing s. f e) − (

∑
e ∈ incoming s. f e)

end

locale Finite-Flow = Flow c s t f + Finite-Graph c
for c :: ′capacity ::linordered-idom graph and s t f

2.1.2 Cuts

A cut is a partitioning of the nodes into two sets. We define it by just
specifying one of the partitions.

type-synonym cut = node set

locale Cut = Graph +
fixes k :: cut
assumes cut-ss-V : k ⊆ V

2.1.3 Networks

A network is a finite graph with two distinct nodes, source and sink, such
that all edges are labeled with positive capacities. Moreover, we assume that

• the source has no incoming edges, and the sink has no outgoing edges

• we allow no parallel edges, i.e., for any edge, the reverse edge must not
be in the network

• Every node must lay on a path from the source to the sink

locale Network = Graph c for c :: ′capacity ::linordered-idom graph +
fixes s t :: node
assumes s-node: s ∈ V
assumes t-node: t ∈ V
assumes s-not-t : s 6= t
assumes cap-non-negative: ∀ u v . c (u, v) ≥ 0
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assumes no-incoming-s: ∀ u. (u, s) /∈ E
assumes no-outgoing-t : ∀ u. (t , u) /∈ E
assumes no-parallel-edge: ∀ u v . (u, v) ∈ E −→ (v , u) /∈ E
assumes nodes-on-st-path: ∀ v ∈ V . connected s v ∧ connected v t
assumes finite-reachable: finite (reachableNodes s)

begin

Our assumptions imply that there are no self loops

lemma no-self-loop: ∀ u. (u, u) /∈ E
using no-parallel-edge by auto

A flow is maximal, if it has a maximal value

definition isMaxFlow :: - flow ⇒ bool
where isMaxFlow f ≡ Flow c s t f ∧

(∀ f ′. Flow c s t f ′ −→ Flow .val c s f ′ ≤ Flow .val c s f )

end

2.1.4 Networks with Flows and Cuts

For convenience, we define locales for a network with a fixed flow, and a
network with a fixed cut

locale NFlow = Network c s t + Flow c s t f
for c :: ′capacity ::linordered-idom graph and s t f

lemma (in Network) isMaxFlow-alt :
isMaxFlow f ←→ NFlow c s t f ∧

(∀ f ′. NFlow c s t f ′ −→ Flow .val c s f ′ ≤ Flow .val c s f )
unfolding isMaxFlow-def
by (auto simp: NFlow-def ) (intro-locales)

A cut in a network separates the source from the sink

locale NCut = Network c s t + Cut c k
for c :: ′capacity ::linordered-idom graph and s t k +
assumes s-in-cut : s ∈ k
assumes t-ni-cut : t /∈ k

begin

The capacity of the cut is the capacity of all edges going from the source’s
side to the sink’s side.

definition cap :: ′capacity
where cap ≡ (

∑
e ∈ outgoing ′ k . c e)

end

A minimum cut is a cut with minimum capacity.

definition isMinCut :: - graph ⇒ nat ⇒ nat ⇒ cut ⇒ bool
where isMinCut c s t k ≡ NCut c s t k ∧

(∀ k ′. NCut c s t k ′ −→ NCut .cap c k ≤ NCut .cap c k ′)
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2.2 Properties

2.2.1 Flows

context Flow
begin

Only edges are labeled with non-zero flows

lemma zero-flow-simp[simp]:
(u,v)/∈E =⇒ f (u,v) = 0
by (metis capacity-const eq-iff zero-cap-simp)

We provide a useful equivalent formulation of the conservation constraint.

lemma conservation-const-pointwise:
assumes u∈V − {s,t}
shows (

∑
v∈E‘‘{u}. f (u,v)) = (

∑
v∈E−1‘‘{u}. f (v ,u))

using conservation-const assms
by (auto simp: sum-incoming-pointwise sum-outgoing-pointwise)

end — Flow

context Finite-Flow
begin

The summation of flows over incoming/outgoing edges can be extended to a
summation over all possible predecessor/successor nodes, as the additional
flows are all zero.

lemma sum-outgoing-alt-flow :
fixes g :: edge ⇒ ′capacity
assumes u∈V
shows (

∑
e∈outgoing u. f e) = (

∑
v∈V . f (u,v))

apply (subst sum-outgoing-alt)
using assms capacity-const
by auto

lemma sum-incoming-alt-flow :
fixes g :: edge ⇒ ′capacity
assumes u∈V
shows (

∑
e∈incoming u. f e) = (

∑
v∈V . f (v ,u))

apply (subst sum-incoming-alt)
using assms capacity-const
by auto

end — Finite Flow

2.2.2 Networks

context Network
begin
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The network constraints implies that all nodes are reachable from the source
node

lemma reachable-is-V [simp]: reachableNodes s = V
proof

show V ⊆ reachableNodes s
unfolding reachableNodes-def using s-node nodes-on-st-path

by auto
qed (simp add : s-node reachable-ss-V )

sublocale Finite-Graph
apply unfold-locales
using reachable-is-V finite-reachable by auto

lemma cap-positive: e ∈ E =⇒ c e > 0
unfolding E-def using cap-non-negative le-neq-trans by fastforce

lemma V-not-empty : V 6={} using s-node by auto
lemma E-not-empty : E 6={} using V-not-empty by (auto simp: V-def )

end — Network

2.2.3 Networks with Flow

context NFlow
begin

sublocale Finite-Flow by unfold-locales

As there are no edges entering the source/leaving the sink, also the corre-
sponding flow values are zero:

lemma no-inflow-s: ∀ e ∈ incoming s. f e = 0 (is ?thesis)
proof (rule ccontr)

assume ¬(∀ e ∈ incoming s. f e = 0 )
then obtain e where obt1 : e ∈ incoming s ∧ f e 6= 0 by blast
then have e ∈ E using incoming-def by auto
thus False using obt1 no-incoming-s incoming-def by auto

qed

lemma no-outflow-t : ∀ e ∈ outgoing t . f e = 0
proof (rule ccontr)

assume ¬(∀ e ∈ outgoing t . f e = 0 )
then obtain e where obt1 : e ∈ outgoing t ∧ f e 6= 0 by blast
then have e ∈ E using outgoing-def by auto
thus False using obt1 no-outgoing-t outgoing-def by auto

qed

Thus, we can simplify the definition of the value:

corollary val-alt : val = (
∑

e ∈ outgoing s. f e)
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unfolding val-def by (auto simp: no-inflow-s)

For an edge, there is no reverse edge, and thus, no flow in the reverse direc-
tion:

lemma zero-rev-flow-simp[simp]: (u,v)∈E =⇒ f (v ,u) = 0
using no-parallel-edge by auto

end — Network with flow

end — Theory

3 Residual Graph

theory ResidualGraph
imports Network
begin

In this theory, we define the residual graph.

3.1 Definition

The residual graph of a network and a flow indicates how much flow can
be effectively pushed along or reverse to a network edge, by increasing or
decreasing the flow on that edge:

definition residualGraph :: - graph ⇒ - flow ⇒ - graph
where residualGraph c f ≡ λ(u, v).

if (u, v) ∈ Graph.E c then
c (u, v) − f (u, v)

else if (v , u) ∈ Graph.E c then
f (v , u)

else
0

Let’s fix a network with a flow f on it

context NFlow
begin

We abbreviate the residual graph by cf.

abbreviation cf ≡ residualGraph c f
sublocale cf !: Graph cf .
lemmas cf-def = residualGraph-def [of c f ]

3.2 Properties

The edges of the residual graph are either parallel or reverse to the edges of
the network.
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lemma cfE-ss-invE : Graph.E cf ⊆ E ∪ E−1

unfolding residualGraph-def Graph.E-def
by auto

The nodes of the residual graph are exactly the nodes of the network.

lemma resV-netV [simp]: cf .V = V
proof

show V ⊆ Graph.V cf
proof

fix u
assume u ∈ V
then obtain v where (u, v) ∈ E ∨ (v , u) ∈ E unfolding V-def by auto

moreover {
assume (u, v) ∈ E
then have (u, v) ∈ Graph.E cf ∨ (v , u) ∈ Graph.E cf
proof (cases)

assume f (u, v) = 0
then have cf (u, v) = c (u, v)

unfolding residualGraph-def using 〈(u, v) ∈ E 〉 by (auto simp:)
then have cf (u, v) 6= 0 using 〈(u, v) ∈ E 〉 unfolding E-def by auto
thus ?thesis unfolding Graph.E-def by auto

next
assume f (u, v) 6= 0
then have cf (v , u) = f (u, v) unfolding residualGraph-def

using 〈(u, v) ∈ E 〉 no-parallel-edge by auto
then have cf (v , u) 6= 0 using 〈f (u, v) 6= 0 〉 by auto
thus ?thesis unfolding Graph.E-def by auto

qed
} moreover {

assume (v , u) ∈ E
then have (v , u) ∈ Graph.E cf ∨ (u, v) ∈ Graph.E cf
proof (cases)

assume f (v , u) = 0
then have cf (v , u) = c (v , u)

unfolding residualGraph-def using 〈(v , u) ∈ E 〉 by (auto)
then have cf (v , u) 6= 0 using 〈(v , u) ∈ E 〉 unfolding E-def by auto
thus ?thesis unfolding Graph.E-def by auto

next
assume f (v , u) 6= 0
then have cf (u, v) = f (v , u) unfolding residualGraph-def

using 〈(v , u) ∈ E 〉 no-parallel-edge by auto
then have cf (u, v) 6= 0 using 〈f (v , u) 6= 0 〉 by auto
thus ?thesis unfolding Graph.E-def by auto

qed
} ultimately show u∈cf .V unfolding cf .V-def by auto

qed
next

show Graph.V cf ⊆ V using cfE-ss-invE unfolding Graph.V-def by auto
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qed

Note, that Isabelle is powerful enough to prove the above case distinctions
completely automatically, although it takes some time:

lemma cf .V = V
unfolding residualGraph-def Graph.E-def Graph.V-def
using no-parallel-edge[unfolded E-def ]
by auto

As the residual graph has the same nodes as the network, it is also finite:

sublocale cf !: Finite-Graph cf
by unfold-locales auto

The capacities on the edges of the residual graph are non-negative

lemma resE-nonNegative: cf e ≥ 0
proof (cases e; simp)

fix u v
{

assume (u, v) ∈ E
then have cf (u, v) = c (u, v) − f (u, v) unfolding cf-def by auto
hence cf (u,v) ≥ 0

using capacity-const cap-non-negative by auto
} moreover {

assume (v , u) ∈ E
then have cf (u,v) = f (v , u)

using no-parallel-edge unfolding cf-def by auto
hence cf (u,v) ≥ 0

using capacity-const by auto
} moreover {

assume (u, v) /∈ E (v , u) /∈ E
hence cf (u,v) ≥ 0 unfolding residualGraph-def by simp

} ultimately show cf (u,v) ≥ 0 by blast
qed

Again, there is an automatic proof

lemma cf e ≥ 0
apply (cases e)
unfolding residualGraph-def
using no-parallel-edge capacity-const cap-positive
by auto

All edges of the residual graph are labeled with positive capacities:

corollary resE-positive: e ∈ cf .E =⇒ cf e > 0
proof −

assume e ∈ cf .E
hence cf e 6= 0 unfolding cf .E-def by auto
thus ?thesis using resE-nonNegative by (meson eq-iff not-le)

qed
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lemma reverse-flow : Flow cf s t f ′ =⇒ ∀ (u, v) ∈ E . f ′ (v , u) ≤ f (u, v)
proof −

assume asm: Flow cf s t f ′

{
fix u v
assume (u, v) ∈ E

then have cf (v , u) = f (u, v)
unfolding residualGraph-def using no-parallel-edge by auto

moreover have f ′ (v , u) ≤ cf (v , u) using asm[unfolded Flow-def ] by auto
ultimately have f ′ (v , u) ≤ f (u, v) by metis

}
thus ?thesis by auto

qed

end — Network with flow

end — Theory

4 Augmenting Flows

theory Augmenting-Flow
imports ResidualGraph
begin

In this theory, we define the concept of an augmenting flow, augmentation
with a flow, and show that augmentation of a flow with an augmenting flow
yields a valid flow again.

We assume that there is a network with a flow f on it

context NFlow
begin

4.1 Augmentation of a Flow

The flow can be augmented by another flow, by adding the flows of edges
parallel to edges in the network, and subtracting the edges reverse to edges
in the network.

definition augment :: ′capacity flow ⇒ ′capacity flow
where augment f ′ ≡ λ(u, v).

if (u, v) ∈ E then
f (u, v) + f ′ (u, v) − f ′ (v , u)

else
0

We define a syntax similar to Cormen et el.:
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abbreviation (input) augment-syntax (infix ↑ 55 )
where

∧
f f ′. f ↑f ′ ≡ NFlow .augment c f f ′

such that we can write f ↑f ′ for the flow f augmented by f ′.

4.2 Augmentation yields Valid Flow

We show that, if we augment the flow with a valid flow of the residual graph,
the augmented flow is a valid flow again, i.e. it satisfies the capacity and
conservation constraints:

context
— Let the residual flow f ′ be a flow in the residual graph
fixes f ′ :: ′capacity flow
assumes f ′-flow : Flow cf s t f ′

begin

interpretation f ′!: Flow cf s t f ′ by (rule f ′-flow)

4.2.1 Capacity Constraint

First, we have to show that the new flow satisfies the capacity constraint:

lemma augment-flow-presv-cap:
shows 0 ≤ (f ↑f ′)(u,v) ∧ (f ↑f ′)(u,v) ≤ c(u,v)

proof (cases (u,v)∈E ; rule conjI )
assume [simp]: (u,v)∈E
hence f (u,v) = cf (v ,u)

using no-parallel-edge by (auto simp: residualGraph-def )
also have cf (v ,u) ≥ f ′(v ,u) using f ′.capacity-const by auto
finally have f ′(v ,u) ≤ f (u,v) .

have (f ↑f ′)(u,v) = f (u,v) + f ′(u,v) − f ′(v ,u)
by (auto simp: augment-def )

also have . . . ≥ f (u,v) + f ′(u,v) − f (u,v)
using 〈f ′(v ,u) ≤ f (u,v)〉 by auto

also have . . . = f ′(u,v) by auto
also have . . . ≥ 0 using f ′.capacity-const by auto
finally show (f ↑f ′)(u,v) ≥ 0 .

have (f ↑f ′)(u,v) = f (u,v) + f ′(u,v) − f ′(v ,u)
by (auto simp: augment-def )

also have . . . ≤ f (u,v) + f ′(u,v) using f ′.capacity-const by auto
also have . . . ≤ f (u,v) + cf (u,v) using f ′.capacity-const by auto
also have . . . = f (u,v) + c(u,v) − f (u,v)

by (auto simp: residualGraph-def )
also have . . . = c(u,v) by auto
finally show (f ↑f ′)(u, v) ≤ c(u, v) .

qed (auto simp: augment-def cap-positive)
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4.2.2 Conservation Constraint

In order to show the conservation constraint, we need some auxiliary lemmas
first.

As there are no parallel edges in the network, and all edges in the residual
graph are either parallel or reverse to a network edge, we can split summa-
tions of the residual flow over outgoing/incoming edges in the residual graph
to summations over outgoing/incoming edges in the network.

private lemma split-rflow-outgoing :
(
∑

v∈cf .E‘‘{u}. f ′ (u,v)) = (
∑

v∈E‘‘{u}. f ′(u,v)) + (
∑

v∈E−1‘‘{u}. f ′(u,v))
(is ?LHS = ?RHS )

proof −
from no-parallel-edge have DJ : E‘‘{u} ∩ E−1‘‘{u} = {} by auto

have ?LHS = (
∑

v∈E‘‘{u} ∪ E−1‘‘{u}. f ′ (u,v))
apply (rule setsum.mono-neutral-left)
using cfE-ss-invE
by (auto intro: finite-Image)

also have . . . = ?RHS
apply (subst setsum.union-disjoint [OF - - DJ ])
by (auto intro: finite-Image)

finally show ?LHS = ?RHS .
qed

private lemma split-rflow-incoming :
(
∑

v∈cf .E−1‘‘{u}. f ′ (v ,u)) = (
∑

v∈E‘‘{u}. f ′(v ,u)) + (
∑

v∈E−1‘‘{u}. f ′(v ,u))
(is ?LHS = ?RHS )

proof −
from no-parallel-edge have DJ : E‘‘{u} ∩ E−1‘‘{u} = {} by auto

have ?LHS = (
∑

v∈E‘‘{u} ∪ E−1‘‘{u}. f ′ (v ,u))
apply (rule setsum.mono-neutral-left)
using cfE-ss-invE
by (auto intro: finite-Image)

also have . . . = ?RHS
apply (subst setsum.union-disjoint [OF - - DJ ])
by (auto intro: finite-Image)

finally show ?LHS = ?RHS .
qed

For proving the conservation constraint, let’s fix a node u, which is neither
the source nor the sink:

context
fixes u :: node
assumes U-ASM : u∈V − {s,t}

begin

We first show an auxiliary lemma to compare the effective residual flow on
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incoming network edges to the effective residual flow on outgoing network
edges.

Intuitively, this lemma shows that the effective residual flow added to the
network edges satisfies the conservation constraint.

private lemma flow-summation-aux :
shows (

∑
v∈E‘‘{u}. f ′ (u,v)) − (

∑
v∈E‘‘{u}. f ′ (v ,u))

= (
∑

v∈E−1‘‘{u}. f ′ (v ,u)) − (
∑

v∈E−1‘‘{u}. f ′ (u,v))
(is ?LHS = ?RHS is ?A − ?B = ?RHS )

proof −

The proof is by splitting the flows, and careful cancellation of the summands.

have ?A = (
∑

v∈cf .E‘‘{u}. f ′ (u, v)) − (
∑

v∈E−1‘‘{u}. f ′ (u, v))
by (simp add : split-rflow-outgoing)

also have (
∑

v∈cf .E‘‘{u}. f ′ (u, v)) = (
∑

v∈cf .E−1‘‘{u}. f ′ (v , u))
using U-ASM
by (simp add : f ′.conservation-const-pointwise)

finally have ?A = (
∑

v∈cf .E−1‘‘{u}. f ′ (v , u)) − (
∑

v∈E−1‘‘{u}. f ′ (u, v))
by simp

moreover
have ?B = (

∑
v∈cf .E−1‘‘{u}. f ′ (v , u)) − (

∑
v∈E−1‘‘{u}. f ′ (v , u))

by (simp add : split-rflow-incoming)
ultimately show ?A − ?B = ?RHS by simp

qed

Finally, we are ready to prove that the augmented flow satisfies the conser-
vation constraint:

lemma augment-flow-presv-con:
shows (

∑
e ∈ outgoing u. augment f ′ e) = (

∑
e ∈ incoming u. augment f ′ e)

(is ?LHS = ?RHS )
proof −

We define shortcuts for the successor and predecessor nodes of u in the
network:

let ?Vo = E‘‘{u} let ?Vi = E−1‘‘{u}

Using the auxiliary lemma for the effective residual flow, the proof is straight-
forward:

have ?LHS = (
∑

v∈?Vo. augment f ′ (u,v))
by (auto simp: sum-outgoing-pointwise)

also have . . .
= (

∑
v∈?Vo. f (u,v) + f ′(u,v) − f ′(v ,u))

by (auto simp: augment-def )
also have . . .

= (
∑

v∈?Vo. f (u,v)) + (
∑

v∈?Vo. f ′ (u,v)) − (
∑

v∈?Vo. f ′ (v ,u))
by (auto simp: setsum-subtractf setsum.distrib)

also have . . .
= (

∑
v∈?Vi . f (v ,u)) + (

∑
v∈?Vi . f ′ (v ,u)) − (

∑
v∈?Vi . f ′ (u,v))
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by (auto simp: conservation-const-pointwise[OF U-ASM ] flow-summation-aux )
also have . . .

= (
∑

v∈?Vi . f (v ,u) + f ′ (v ,u) − f ′ (u,v))
by (auto simp: setsum-subtractf setsum.distrib)

also have . . .
= (

∑
v∈?Vi . augment f ′ (v ,u))

by (auto simp: augment-def )
also have . . .

= ?RHS
by (auto simp: sum-incoming-pointwise)

finally show ?LHS = ?RHS .
qed

Note that we tried to follow the proof presented by Cormen et al. [5] as
closely as possible. Unfortunately, this proof generalizes the summation to
all nodes immediately, rendering the first equation invalid. Trying to fix this
error, we encountered that the step that uses the conservation constraints
on the augmenting flow is more subtle as indicated in the original proof.
Thus, we moved this argument to an auxiliary lemma.

end — u is node

As main result, we get that the augmented flow is again a valid flow.

corollary augment-flow-presv : Flow c s t (f ↑f ′)
using augment-flow-presv-cap augment-flow-presv-con
by unfold-locales auto

4.3 Value of the Augmented Flow

Next, we show that the value of the augmented flow is the sum of the values
of the original flow and the augmenting flow.

lemma augment-flow-value: Flow .val c s (f ↑f ′) = val + Flow .val cf s f ′

proof −
interpret f ′′!: Flow c s t f ↑f ′ using augment-flow-presv [OF assms] .

For this proof, we set up Isabelle’s rewriting engine for rewriting of sums. In
particular, we add lemmas to convert sums over incoming or outgoing edges to sums
over all vertices. This allows us to write the summations from Cormen et al. a bit
more concise, leaving some of the tedious calculation work to the computer.

Note that, if neither an edge nor its reverse is in the graph, there is also no edge in
the residual graph, and thus the flow value is zero.

{
fix u v
assume (u,v)/∈E (v ,u)/∈E
with cfE-ss-invE have (u,v)/∈cf .E by auto
hence f ′(u,v) = 0 by auto

} note aux1 = this
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Now, the proposition follows by straightforward rewriting of the summations:

have f ′′.val = (
∑

u∈V . augment f ′ (s, u) − augment f ′ (u, s))
unfolding f ′′.val-def by simp

also have . . . = (
∑

u∈V . f (s, u) − f (u, s) + (f ′ (s, u) − f ′ (u, s)))
— Note that this is the crucial step of the proof, which Cormen et al. leave as

an exercise.
by (rule setsum.cong) (auto simp: augment-def no-parallel-edge aux1 )

also have . . . = val + Flow .val cf s f ′

unfolding val-def f ′.val-def by simp
finally show ?thesis .

qed

end — Augmenting flow
end — Network flow

end — Theory

5 Augmenting Paths

theory Augmenting-Path
imports ResidualGraph
begin

We define the concept of an augmenting path in the residual graph, and the
residual flow induced by an augmenting path.

We fix a network with a flow f on it.

context NFlow
begin

5.1 Definitions

An augmenting path is a simple path from the source to the sink in the
residual graph:

definition isAugmentingPath :: path ⇒ bool
where isAugmentingPath p ≡ cf .isSimplePath s p t

The residual capacity of an augmenting path is the smallest capacity anno-
tated to its edges:

definition resCap :: path ⇒ ′capacity
where resCap p ≡ Min {cf e | e. e ∈ set p}

lemma resCap-alt : resCap p = Min (cf‘set p)
— Useful characterization for finiteness arguments
unfolding resCap-def apply (rule arg-cong [where f =Min]) by auto
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An augmenting path induces an augmenting flow, which pushes as much
flow as possible along the path:

definition augmentingFlow :: path ⇒ ′capacity flow
where augmentingFlow p ≡ λ(u, v).

if (u, v) ∈ (set p) then
resCap p

else
0

5.2 Augmenting Flow is Valid Flow

In this section, we show that the augmenting flow induced by an augmenting
path is a valid flow in the residual graph.

We start with some auxiliary lemmas.

The residual capacity of an augmenting path is always positive.

lemma resCap-gzero-aux : cf .isPath s p t =⇒ 0<resCap p
proof −

assume PATH : cf .isPath s p t
hence set p 6={} using s-not-t by (auto)
moreover have ∀ e∈set p. cf e > 0

using cf .isPath-edgeset [OF PATH ] resE-positive by (auto)
ultimately show ?thesis unfolding resCap-alt by (auto)

qed

lemma resCap-gzero: isAugmentingPath p =⇒ 0<resCap p
using resCap-gzero-aux [of p]
by (auto simp: isAugmentingPath-def cf .isSimplePath-def )

As all edges of the augmenting flow have the same value, we can factor this
out from a summation:

lemma setsum-augmenting-alt :
assumes finite A
shows (

∑
e ∈ A. (augmentingFlow p) e)

= resCap p ∗ of-nat (card (A∩set p))
proof −

have (
∑

e ∈ A. (augmentingFlow p) e) = setsum (λ-. resCap p) (A∩set p)
apply (subst setsum.inter-restrict)
apply (auto simp: augmentingFlow-def assms)
done

thus ?thesis by auto
qed

lemma augFlow-resFlow : isAugmentingPath p =⇒ Flow cf s t (augmentingFlow
p)
proof (unfold-locales; intro allI ballI )

assume AUG : isAugmentingPath p
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hence SPATH : cf .isSimplePath s p t by (simp add : isAugmentingPath-def )
hence PATH : cf .isPath s p t by (simp add : cf .isSimplePath-def )

{

We first show the capacity constraint

fix e
show 0 ≤ (augmentingFlow p) e ∧ (augmentingFlow p) e ≤ cf e
proof cases

assume e ∈ set p
hence resCap p ≤ cf e unfolding resCap-alt by auto
moreover have (augmentingFlow p) e = resCap p

unfolding augmentingFlow-def using 〈e ∈ set p〉 by auto
moreover have 0 < resCap p using resCap-gzero[OF AUG ] by simp
ultimately show ?thesis by auto

next
assume e /∈ set p
hence (augmentingFlow p) e = 0 unfolding augmentingFlow-def by auto
thus ?thesis using resE-nonNegative by auto

qed
}

{

Next, we show the conservation constraint

fix v
assume asm-s: v ∈ Graph.V cf − {s, t}

have card (Graph.incoming cf v ∩ set p) = card (Graph.outgoing cf v ∩ set p)
proof (cases)

assume v∈set (cf .pathVertices-fwd s p)
from cf .split-path-at-vertex [OF this PATH ] obtain p1 p2 where

P-FMT : p=p1 @p2
and 1 : cf .isPath s p1 v
and 2 : cf .isPath v p2 t
.

from 1 obtain p1 ′ u1 where [simp]: p1 =p1 ′@[(u1 ,v)]
using asm-s by (cases p1 rule: rev-cases) (auto simp: split-path-simps)

from 2 obtain p2 ′ u2 where [simp]: p2 =(v ,u2 )#p2 ′

using asm-s by (cases p2 ) (auto)
from

cf .isSPath-sg-outgoing [OF SPATH , of v u2 ]
cf .isSPath-sg-incoming [OF SPATH , of u1 v ]
cf .isPath-edgeset [OF PATH ]

have cf .outgoing v ∩ set p = {(v ,u2 )} cf .incoming v ∩ set p = {(u1 ,v)}
by (fastforce simp: P-FMT cf .outgoing-def cf .incoming-def )+

thus ?thesis by auto
next

assume v /∈set (cf .pathVertices-fwd s p)
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then have ∀ u. (u,v)/∈set p ∧ (v ,u)/∈set p
by (auto dest : cf .pathVertices-edge[OF PATH ])

hence cf .incoming v ∩ set p = {} cf .outgoing v ∩ set p = {}
by (auto simp: cf .incoming-def cf .outgoing-def )

thus ?thesis by auto
qed
thus (

∑
e ∈ Graph.incoming cf v . (augmentingFlow p) e) =

(
∑

e ∈ Graph.outgoing cf v . (augmentingFlow p) e)
by (auto simp: setsum-augmenting-alt)

}
qed

5.3 Value of Augmenting Flow is Residual Capacity

Finally, we show that the value of the augmenting flow is the residual ca-
pacity of the augmenting path

lemma augFlow-val :
isAugmentingPath p =⇒ Flow .val cf s (augmentingFlow p) = resCap p

proof −
assume AUG : isAugmentingPath p
with augFlow-resFlow interpret f !: Flow cf s t augmentingFlow p .

note AUG
hence SPATH : cf .isSimplePath s p t by (simp add : isAugmentingPath-def )
hence PATH : cf .isPath s p t by (simp add : cf .isSimplePath-def )
then obtain v p ′ where p=(s,v)#p ′ (s,v)∈cf .E

using s-not-t by (cases p) auto
hence cf .outgoing s ∩ set p = {(s,v)}

using cf .isSPath-sg-outgoing [OF SPATH , of s v ]
using cf .isPath-edgeset [OF PATH ]
by (fastforce simp: cf .outgoing-def )

moreover have cf .incoming s ∩ set p = {} using SPATH no-incoming-s
by (auto

simp: cf .incoming-def 〈p=(s,v)#p ′〉 in-set-conv-decomp[where xs=p ′]
simp: cf .isSimplePath-append cf .isSimplePath-cons)

ultimately show ?thesis
unfolding f .val-def
by (auto simp: setsum-augmenting-alt)

qed

end — Network with flow
end — Theory

6 The Ford-Fulkerson Theorem

theory Ford-Fulkerson
imports Augmenting-Flow Augmenting-Path
begin
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In this theory, we prove the Ford-Fulkerson theorem, and its well-known
corollary, the min-cut max-flow theorem.

We fix a network with a flow and a cut

locale NFlowCut = NFlow c s t f + NCut c s t k
for c :: ′capacity ::linordered-idom graph and s t f k

begin

lemma finite-k [simp, intro!]: finite k
using cut-ss-V finite-V finite-subset [of k V ] by blast

6.1 Net Flow

We define the net flow to be the amount of flow effectively passed over the
cut from the source to the sink:

definition netFlow :: ′capacity
where netFlow ≡ (

∑
e ∈ outgoing ′ k . f e) − (

∑
e ∈ incoming ′ k . f e)

We can show that the net flow equals the value of the flow. Note: Cormen
et al. [5] present a whole page full of summation calculations for this proof,
and our formal proof also looks quite complicated.

lemma flow-value: netFlow = val
proof −

let ?LCL = {(u, v). u ∈ k ∧ v ∈ k ∧ (u, v) ∈ E}
let ?AOG = {(u, v). u ∈ k ∧ (u, v) ∈ E}
let ?AIN = {(v , u) | u v . u ∈ k ∧ (v , u) ∈ E}
let ?SOG = λu. (

∑
e ∈ outgoing u. f e)

let ?SIN = λu. (
∑

e ∈ incoming u. f e)
let ?SOG ′ = (

∑
e ∈ outgoing ′ k . f e)

let ?SIN ′ = (
∑

e ∈ incoming ′ k . f e)

Some setup to make finiteness reasoning implicit

note [[simproc finite-Collect ]]

have
netFlow = ?SOG ′ + (

∑
e ∈ ?LCL. f e) − (?SIN ′ + (

∑
e ∈ ?LCL. f e))

(is - = ?SAOG − ?SAIN )
using netFlow-def by auto

also have ?SAOG = (
∑

y ∈ k − {s}. ?SOG y) + ?SOG s
proof −

have ?SAOG = (
∑

e∈(outgoing ′ k ∪ ?LCL). f e)
by (rule setsum.union-disjoint [symmetric]) (auto simp: outgoing ′-def )

also have outgoing ′ k ∪ ?LCL = (
⋃

y∈k−{s}. outgoing y) ∪ outgoing s
by (auto simp: outgoing-def outgoing ′-def s-in-cut)

also have (
∑

e∈(UNION (k − {s}) outgoing ∪ outgoing s). f e)
= (

∑
e∈(UNION (k − {s}) outgoing). f e) + (

∑
e∈outgoing s. f e)

by (rule setsum.union-disjoint)
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(auto simp: outgoing-def intro: finite-Image)
also have (

∑
e∈(UNION (k − {s}) outgoing). f e)

= (
∑

y ∈ k − {s}. ?SOG y)
by (rule setsum.UNION-disjoint)

(auto simp: outgoing-def intro: finite-Image)
finally show ?thesis .

qed
also have ?SAIN = (

∑
y ∈ k − {s}. ?SIN y) + ?SIN s

proof −
have ?SAIN = (

∑
e∈(incoming ′ k ∪ ?LCL). f e)

by (rule setsum.union-disjoint [symmetric]) (auto simp: incoming ′-def )
also have incoming ′ k ∪ ?LCL = (

⋃
y∈k−{s}. incoming y) ∪ incoming s

by (auto simp: incoming-def incoming ′-def s-in-cut)
also have (

∑
e∈(UNION (k − {s}) incoming ∪ incoming s). f e)

= (
∑

e∈(UNION (k − {s}) incoming). f e) + (
∑

e∈incoming s. f e)
by (rule setsum.union-disjoint)

(auto simp: incoming-def intro: finite-Image)
also have (

∑
e∈(UNION (k − {s}) incoming). f e)

= (
∑

y ∈ k − {s}. ?SIN y)
by (rule setsum.UNION-disjoint)

(auto simp: incoming-def intro: finite-Image)
finally show ?thesis .

qed
finally have netFlow =

((
∑

y ∈ k − {s}. ?SOG y) + ?SOG s)
− ((

∑
y ∈ k − {s}. ?SIN y) + ?SIN s)

(is netFlow = ?R) .
also have ?R = ?SOG s − ?SIN s
proof −

have (
∧

u. u ∈ k − {s} =⇒ ?SOG u = ?SIN u)
using conservation-const cut-ss-V t-ni-cut by force

thus ?thesis by auto
qed
finally show ?thesis unfolding val-def by simp

qed

The value of any flow is bounded by the capacity of any cut. This is in-
tuitively clear, as all flow from the source to the sink has to go over the
cut.

corollary weak-duality : val ≤ cap
proof −

have (
∑

e ∈ outgoing ′ k . f e) ≤ (
∑

e ∈ outgoing ′ k . c e) (is ?L ≤ ?R)
using capacity-const by (metis setsum-mono)

then have (
∑

e ∈ outgoing ′ k . f e) ≤ cap unfolding cap-def by simp
moreover have val ≤ (

∑
e ∈ outgoing ′ k . f e) using netFlow-def

by (simp add : capacity-const flow-value setsum-nonneg)
ultimately show ?thesis by simp

qed
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end — Cut

6.2 Ford-Fulkerson Theorem

context NFlow begin

We prove three auxiliary lemmas first, and the state the theorem as a corol-
lary

lemma fofu-I-II : isMaxFlow f =⇒ ¬ (∃ p. isAugmentingPath p)
unfolding isMaxFlow-alt
proof (rule ccontr)

assume asm: NFlow c s t f
∧ (∀ f ′. NFlow c s t f ′ −→ Flow .val c s f ′ ≤ Flow .val c s f )

assume asm-c: ¬ ¬ (∃ p. isAugmentingPath p)
then obtain p where obt : isAugmentingPath p by blast
have fct1 : Flow cf s t (augmentingFlow p) using obt augFlow-resFlow by auto
have fct2 : Flow .val cf s (augmentingFlow p) > 0 using obt augFlow-val

resCap-gzero isAugmentingPath-def cf .isSimplePath-def by auto
have NFlow c s t (augment (augmentingFlow p))

using fct1 augment-flow-presv Network-axioms unfolding NFlow-def by auto
moreover have Flow .val c s (augment (augmentingFlow p)) > val

using fct1 fct2 augment-flow-value by auto
ultimately show False using asm by auto

qed

lemma fofu-II-III :
¬ (∃ p. isAugmentingPath p) =⇒ ∃ k ′. NCut c s t k ′ ∧ val = NCut .cap c k ′

proof (intro exI conjI )
let ?S = cf .reachableNodes s
assume asm: ¬ (∃ p. isAugmentingPath p)
hence t /∈?S

unfolding isAugmentingPath-def cf .reachableNodes-def cf .connected-def
by (auto dest : cf .isSPath-pathLE )

then show CUT : NCut c s t ?S
proof unfold-locales

show Graph.reachableNodes cf s ⊆ V
using cf .reachable-ss-V s-node resV-netV by auto

show s ∈ Graph.reachableNodes cf s
unfolding Graph.reachableNodes-def Graph.connected-def
by (metis Graph.isPath.simps(1 ) mem-Collect-eq)

qed
then interpret NCut c s t ?S .
interpret NFlowCut c s t f ?S by intro-locales

have ∀ (u,v)∈outgoing ′ ?S . f (u,v) = c (u,v)
proof (rule ballI , rule ccontr , clarify) — Proof by contradiction

fix u v
assume (u,v)∈outgoing ′ ?S
hence (u,v)∈E u∈?S v /∈?S
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by (auto simp: outgoing ′-def )
assume f (u,v) 6= c (u,v)
hence f (u,v) < c (u,v)

using capacity-const by (metis (no-types) eq-iff not-le)
hence cf (u, v) 6= 0

unfolding residualGraph-def using 〈(u,v)∈E 〉 by auto
hence (u, v) ∈ cf .E unfolding cf .E-def by simp
hence v∈?S using 〈u∈?S 〉 by (auto intro: cf .reachableNodes-append-edge)
thus False using 〈v /∈?S 〉 by auto

qed
hence (

∑
e ∈ outgoing ′ ?S . f e) = cap

unfolding cap-def by auto
moreover
have ∀ (u,v)∈incoming ′ ?S . f (u,v) = 0
proof (rule ballI , rule ccontr , clarify) — Proof by contradiction

fix u v
assume (u,v)∈incoming ′ ?S
hence (u,v)∈E u /∈?S v∈?S by (auto simp: incoming ′-def )
hence (v ,u)/∈E using no-parallel-edge by auto

assume f (u,v) 6= 0
hence cf (v , u) 6= 0

unfolding residualGraph-def using 〈(u,v)∈E 〉 〈(v ,u)/∈E 〉 by auto
hence (v , u) ∈ cf .E unfolding cf .E-def by simp
hence u∈?S using 〈v∈?S 〉 cf .reachableNodes-append-edge by auto
thus False using 〈u /∈?S 〉 by auto

qed
hence (

∑
e ∈ incoming ′ ?S . f e) = 0

unfolding cap-def by auto
ultimately show val = cap

unfolding flow-value[symmetric] netFlow-def by simp
qed

lemma fofu-III-I :
∃ k . NCut c s t k ∧ val = NCut .cap c k =⇒ isMaxFlow f

proof clarify
fix k
assume NCut c s t k
then interpret NCut c s t k .
interpret NFlowCut c s t f k by intro-locales

assume val = cap
{

fix f ′

assume Flow c s t f ′

then interpret fc ′!: NFlow c s t f ′ by intro-locales
interpret fc ′!: NFlowCut c s t f ′ k by intro-locales

have fc ′.val ≤ cap using fc ′.weak-duality .
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also note 〈val = cap〉[symmetric]
finally have fc ′.val ≤ val .

}
thus isMaxFlow f unfolding isMaxFlow-def

by simp unfold-locales
qed

Finally we can state the Ford-Fulkerson theorem:

theorem ford-fulkerson: shows
isMaxFlow f ←→
¬ Ex isAugmentingPath and ¬ Ex isAugmentingPath ←→
(∃ k . NCut c s t k ∧ val = NCut .cap c k)
using fofu-I-II fofu-II-III fofu-III-I by auto

6.3 Corollaries

In this subsection we present a few corollaries of the flow-cut relation and
the Ford-Fulkerson theorem.

The outgoing flow of the source is the same as the incoming flow of the
sink. Intuitively, this means that no flow is generated or lost in the network,
except at the source and sink.

lemma inflow-t-outflow-s: (
∑

e ∈ incoming t . f e) = (
∑

e ∈ outgoing s. f e)
proof −

We choose a cut between the sink and all other nodes

let ?K = V − {t}
interpret NFlowCut c s t f ?K

using s-node s-not-t by unfold-locales auto

The cut is chosen such that its outgoing edges are the incoming edges to the sink,
and its incoming edges are the outgoing edges from the sink. Note that the sink
has no outgoing edges.

have outgoing ′ ?K = incoming t
and incoming ′ ?K = {}
using no-self-loop no-outgoing-t
unfolding outgoing ′-def incoming-def incoming ′-def outgoing-def V-def
by auto

hence (
∑

e ∈ incoming t . f e) = netFlow unfolding netFlow-def by auto
also have netFlow = val by (rule flow-value)
also have val = (

∑
e ∈ outgoing s. f e) by (auto simp: val-alt)

finally show ?thesis .
qed

As an immediate consequence of the Ford-Fulkerson theorem, we get that
there is no augmenting path if and only if the flow is maximal.

lemma noAugPath-iff-maxFlow : ¬ (∃ p. isAugmentingPath p) ←→ isMaxFlow f
using ford-fulkerson by blast
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end — Network with flow

The value of the maximum flow equals the capacity of the minimum cut

lemma (in Network) maxFlow-minCut : [[isMaxFlow f ; isMinCut c s t k ]]
=⇒ Flow .val c s f = NCut .cap c k

proof −
assume isMaxFlow f isMinCut c s t k
then interpret Flow c s t f + NCut c s t k

unfolding isMaxFlow-def isMinCut-def by simp-all
interpret NFlowCut c s t f k by intro-locales

from ford-fulkerson 〈isMaxFlow f 〉

obtain k ′ where K ′: NCut c s t k ′ val = NCut .cap c k ′

by blast
show val = cap

using 〈isMinCut c s t k 〉 K ′ weak-duality
unfolding isMinCut-def by auto

qed

end — Theory

7 The Ford-Fulkerson Method

theory FordFulkerson-Algo
imports

Ford-Fulkerson
Refine-Add-Fofu
Refine-Monadic-Syntax-Sugar

begin

In this theory, we formalize the abstract Ford-Fulkerson method, which is
independent of how an augmenting path is chosen

context Network
begin

7.1 Algorithm

We abstractly specify the procedure for finding an augmenting path: As-
suming a valid flow, the procedure must return an augmenting path iff there
exists one.

definition find-augmenting-spec f ≡ do {
assert (NFlow c s t f );
selectp p. NFlow .isAugmentingPath c s t f p
}

We also specify the loop invariant, and annotate it to the loop.
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abbreviation fofu-invar ≡ λ(f ,brk).
NFlow c s t f
∧ (brk −→ (∀ p. ¬NFlow .isAugmentingPath c s t f p))

Finally, we obtain the Ford-Fulkerson algorithm. Note that we annotate
some assertions to ease later refinement

definition fofu ≡ do {
let f = (λ-. 0 );

(f ,-) ← whilefofu-invar

(λ(f ,brk). ¬brk)
(λ(f ,-). do {

p ← find-augmenting-spec f ;
case p of

None ⇒ return (f ,True)
| Some p ⇒ do {

assert (p 6=[]);
assert (NFlow .isAugmentingPath c s t f p);
let f ′ = NFlow .augmentingFlow c f p;
let f = NFlow .augment c f f ′;
assert (NFlow c s t f );
return (f , False)
}

})
(f ,False);

assert (NFlow c s t f );
return f
}

7.2 Partial Correctness

Correctness of the algorithm is a consequence from the Ford-Fulkerson the-
orem. We need a few straightforward auxiliary lemmas, though:

The zero flow is a valid flow

lemma zero-flow : NFlow c s t (λ-. 0 )
unfolding NFlow-def Flow-def
using Network-axioms
by (auto simp: s-node t-node cap-non-negative)

Augmentation preserves the flow property

lemma (in NFlow) augment-pres-nflow :
assumes AUG : isAugmentingPath p
shows NFlow c s t (augment (augmentingFlow p))

proof −
note augment-flow-presv [OF augFlow-resFlow [OF AUG ]]
thus ?thesis
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by intro-locales
qed

Augmenting paths cannot be empty

lemma (in NFlow) augmenting-path-not-empty :
¬isAugmentingPath []
unfolding isAugmentingPath-def using s-not-t by auto

Finally, we can use the verification condition generator to show correctness

theorem fofu-partial-correct : fofu ≤ (spec f . isMaxFlow f )
unfolding fofu-def find-augmenting-spec-def
apply (refine-vcg)
apply (vc-solve simp:

zero-flow
NFlow .augment-pres-nflow
NFlow .augmenting-path-not-empty
NFlow .noAugPath-iff-maxFlow [symmetric])

done

7.3 Algorithm without Assertions

For presentation purposes, we extract a version of the algorithm without
assertions, and using a bit more concise notation

definition (in NFlow) augment-with-path p ≡ augment (augmentingFlow p)

context begin

private abbreviation (input) augment
≡ NFlow .augment-with-path

private abbreviation (input) is-augmenting-path f p
≡ NFlow .isAugmentingPath c s t f p

definition ford-fulkerson-method ≡ do {
let f = (λ(u,v). 0 );

(f ,brk) ← while (λ(f ,brk). ¬brk)
(λ(f ,brk). do {

p ← selectp p. is-augmenting-path f p;
case p of

None ⇒ return (f ,True)
| Some p ⇒ return (augment c f p, False)
})
(f ,False);

return f
}

end — Anonymous context
end — Network
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theorem (in Network) ford-fulkerson-method ≤ (spec f . isMaxFlow f )

proof −
have [simp]: (λ(u,v). 0 ) = (λ-. 0 ) by auto
have ford-fulkerson-method ≤ fofu

unfolding ford-fulkerson-method-def fofu-def Let-def find-augmenting-spec-def
apply (rule refine-IdD)
apply (refine-vcg)
apply (refine-dref-type)
apply (vc-solve simp: NFlow .augment-with-path-def )
done

also note fofu-partial-correct
finally show ?thesis .

qed

end — Theory

8 Edmonds-Karp Algorithm

theory EdmondsKarp-Algo
imports FordFulkerson-Algo
begin

In this theory, we formalize an abstract version of Edmonds-Karp algorithm,
which we obtain by refining the Ford-Fulkerson algorithm to always use
shortest augmenting paths.

Then, we show that the algorithm always terminates within O(V E) itera-
tions.

8.1 Algorithm

context Network
begin

First, we specify the refined procedure for finding augmenting paths

definition find-shortest-augmenting-spec f ≡ ASSERT (NFlow c s t f ) �

SELECTp (λp. Graph.isShortestPath (residualGraph c f ) s p t)

Note, if there is an augmenting path, there is always a shortest one

lemma (in NFlow) augmenting-path-imp-shortest :
isAugmentingPath p =⇒ ∃ p. Graph.isShortestPath cf s p t
using Graph.obtain-shortest-path unfolding isAugmentingPath-def
by (fastforce simp: Graph.isSimplePath-def Graph.connected-def )

lemma (in NFlow) shortest-is-augmenting :
Graph.isShortestPath cf s p t =⇒ isAugmentingPath p
unfolding isAugmentingPath-def using Graph.shortestPath-is-simple
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by (fastforce)

We show that our refined procedure is actually a refinement

lemma find-shortest-augmenting-refine[refine]:
(f ′,f )∈Id =⇒ find-shortest-augmenting-spec f ′ ≤ ⇓Id (find-augmenting-spec f )
unfolding find-shortest-augmenting-spec-def find-augmenting-spec-def
apply (refine-vcg)
apply (auto

simp: NFlow .shortest-is-augmenting
dest : NFlow .augmenting-path-imp-shortest)

done

Next, we specify the Edmonds-Karp algorithm. Our first specification still
uses partial correctness, termination will be proved afterwards.

definition edka-partial ≡ do {
let f = (λ-. 0 );

(f ,-) ← whilefofu-invar

(λ(f ,brk). ¬brk)
(λ(f ,-). do {

p ← find-shortest-augmenting-spec f ;
case p of

None ⇒ return (f ,True)
| Some p ⇒ do {

assert (p 6=[]);
assert (NFlow .isAugmentingPath c s t f p);
assert (Graph.isShortestPath (residualGraph c f ) s p t);
let f ′ = NFlow .augmentingFlow c f p;
let f = NFlow .augment c f f ′;
assert (NFlow c s t f );
return (f , False)
}

})
(f ,False);

assert (NFlow c s t f );
return f
}

lemma edka-partial-refine[refine]: edka-partial ≤ ⇓Id fofu
unfolding edka-partial-def fofu-def
apply (refine-rcg bind-refine ′)
apply (refine-dref-type)
apply (vc-solve simp: find-shortest-augmenting-spec-def )
done

end — Network
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8.2 Complexity and Termination Analysis

In this section, we show that the loop iterations of the Edmonds-Karp algo-
rithm are bounded by O(V E).

The basic idea of the proof is, that a path that takes an edge reverse to an
edge on some shortest path cannot be a shortest path itself.

As augmentation flips at least one edge, this yields a termination argument:
After augmentation, either the minimum distance between source and target
increases, or it remains the same, but the number of edges that lay on a
shortest path decreases. As the minimum distance is bounded by V , we get
termination within O(V E) loop iterations.

context Graph begin

The basic idea is expressed in the following lemma, which, however, is not
general enough to be applied for the correctness proof, where we flip more
than one edge simultaneously.

lemma isShortestPath-flip-edge:
assumes isShortestPath s p t (u,v)∈set p
assumes isPath s p ′ t (v ,u)∈set p ′

shows length p ′ ≥ length p + 2
using assms

proof −
from 〈isShortestPath s p t 〉 have

MIN : min-dist s t = length p and
P : isPath s p t and

DV : distinct (pathVertices s p)
by (auto simp: isShortestPath-alt isSimplePath-def )

from 〈(u,v)∈set p〉 obtain p1 p2 where [simp]: p=p1 @(u,v)#p2
by (auto simp: in-set-conv-decomp)

from P DV have [simp]: u 6=v
by (cases p2 ) (auto simp add : isPath-append pathVertices-append)

from P have DISTS : dist s (length p1 ) u dist u 1 v dist v (length p2 ) t
by (auto simp: isPath-append dist-def intro: exI [where x=[(u,v)]])

from MIN have MIN ′: min-dist s t = length p1 + 1 + length p2 by auto

from min-dist-split [OF dist-trans[OF DISTS (1 ,2 )] DISTS (3 ) MIN ′] have
MDSV : min-dist s v = length p1 + 1 by simp

from min-dist-split [OF DISTS (1 ) dist-trans[OF DISTS (2 ,3 )]] MIN ′ have
MDUT : min-dist u t = 1 + length p2 by simp

from 〈(v ,u)∈set p ′〉 obtain p1 ′ p2 ′ where [simp]: p ′=p1 ′@(v ,u)#p2 ′

by (auto simp: in-set-conv-decomp)
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from 〈isPath s p ′ t 〉 have
DISTS ′: dist s (length p1 ′) v dist u (length p2 ′) t
by (auto simp: isPath-append dist-def )

from DISTS ′[THEN min-dist-minD , unfolded MDSV MDUT ] show
length p + 2 ≤ length p ′ by auto

qed

To be used for the analysis of augmentation, we have to generalize the lemma
to simultaneous flipping of edges:

lemma isShortestPath-flip-edges:
assumes Graph.E c ′ ⊇ E − edges Graph.E c ′ ⊆ E ∪ (prod .swap‘edges)
assumes SP : isShortestPath s p t and EDGES-SS : edges ⊆ set p
assumes P ′: Graph.isPath c ′ s p ′ t prod .swap‘edges ∩ set p ′ 6= {}
shows length p + 2 ≤ length p ′

proof −
interpret g ′!: Graph c ′ .

{
fix u v p1 p2 ′

assume (u,v)∈edges
and isPath s p1 v and g ′.isPath u p2 ′ t

hence min-dist s t < length p1 + length p2 ′

proof (induction p2 ′ arbitrary : u v p1 rule: length-induct)
case (1 p2 ′)
note IH = 1 .IH [rule-format ]
note P1 = 〈isPath s p1 v 〉

note P2 ′ = 〈g ′.isPath u p2 ′ t 〉

have length p1 > min-dist s u
proof −

from P1 have length p1 ≥ min-dist s v
using min-dist-minD by (auto simp: dist-def )

moreover from 〈(u,v)∈edges〉 EDGES-SS
have min-dist s v = Suc (min-dist s u)

using isShortestPath-level-edge[OF SP ] by auto
ultimately show ?thesis by auto

qed

from isShortestPath-level-edge[OF SP ] 〈(u,v)∈edges〉 EDGES-SS
have

min-dist s t = min-dist s u + min-dist u t
and connected s u

by auto

show ?case
proof (cases prod .swap‘edges ∩ set p2 ′ = {})
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— We proceed by a case distinction whether the suffix path contains swapped
edges

case True
with g ′.transfer-path[OF - P2 ′, of c] 〈g ′.E ⊆ E ∪ prod .swap ‘ edges〉

have isPath u p2 ′ t by auto
hence length p2 ′ ≥ min-dist u t using min-dist-minD

by (auto simp: dist-def )
moreover note 〈length p1 > min-dist s u〉

moreover note 〈min-dist s t = min-dist s u + min-dist u t 〉

ultimately show ?thesis by auto
next

case False
— Obtain first swapped edge on suffix path
obtain p21 ′ e ′ p22 ′ where [simp]: p2 ′=p21 ′@e ′#p22 ′ and

E-IN-EDGES : e ′∈prod .swap‘edges and
P1-NO-EDGES : prod .swap‘edges ∩ set p21 ′ = {}
apply (rule split-list-first-propE [of p2 ′ λe. e∈prod .swap‘edges])
using 〈prod .swap ‘ edges ∩ set p2 ′ 6= {}〉 apply auto []
apply (rprems, assumption)
apply auto
done

obtain u ′ v ′ where [simp]: e ′=(v ′,u ′) by (cases e ′)

— Split the suffix path accordingly
from P2 ′ have P21 ′: g ′.isPath u p21 ′ v ′ and P22 ′: g ′.isPath u ′ p22 ′ t

by (auto simp: g ′.isPath-append)
— As we chose the first edge, the prefix of the suffix path is also a path in

the original graph
from

g ′.transfer-path[OF - P21 ′, of c]
〈g ′.E ⊆ E ∪ prod .swap ‘ edges〉

P1-NO-EDGES
have P21 : isPath u p21 ′ v ′ by auto
from min-dist-is-dist [OF 〈connected s u〉]
obtain psu where

PSU : isPath s psu u and
LEN-PSU : length psu = min-dist s u
by (auto simp: dist-def )

from PSU P21 have P1n: isPath s (psu@p21 ′) v ′

by (auto simp: isPath-append)
from IH [OF - - P1n P22 ′] E-IN-EDGES have

min-dist s t < length psu + length p21 ′ + length p22 ′

by auto
moreover note 〈length p1 > min-dist s u〉

ultimately show ?thesis by (auto simp: LEN-PSU )
qed

qed
} note aux=this
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— Obtain first swapped edge on path
obtain p1 ′ e p2 ′ where [simp]: p ′=p1 ′@e#p2 ′ and

E-IN-EDGES : e∈prod .swap‘edges and
P1-NO-EDGES : prod .swap‘edges ∩ set p1 ′ = {}
apply (rule split-list-first-propE [of p ′ λe. e∈prod .swap‘edges])
using 〈prod .swap ‘ edges ∩ set p ′ 6= {}〉 apply auto []
apply (rprems, assumption)
apply auto
done

obtain u v where [simp]: e=(v ,u) by (cases e)

— Split the new path accordingly
from 〈g ′.isPath s p ′ t 〉 have

P1 ′: g ′.isPath s p1 ′ v and
P2 ′: g ′.isPath u p2 ′ t
by (auto simp: g ′.isPath-append)

— As we chose the first edge, the prefix of the path is also a path in the original
graph

from
g ′.transfer-path[OF - P1 ′, of c]
〈g ′.E ⊆ E ∪ prod .swap ‘ edges〉

P1-NO-EDGES
have P1 : isPath s p1 ′ v by auto

from aux [OF - P1 P2 ′] E-IN-EDGES
have min-dist s t < length p1 ′ + length p2 ′

by auto
thus ?thesis using SP

by (auto simp: isShortestPath-min-dist-def )
qed

end — Graph

We outsource the more specific lemmas to their own locale, to prevent name
space pollution

locale ek-analysis-defs = Graph +
fixes s t :: node

locale ek-analysis = ek-analysis-defs + Finite-Graph
begin

definition (in ek-analysis-defs)
spEdges ≡ {e. ∃ p. e∈set p ∧ isShortestPath s p t}

lemma spEdges-ss-E : spEdges ⊆ E
using isPath-edgeset unfolding spEdges-def isShortestPath-def by auto

lemma finite-spEdges[simp, intro]: finite (spEdges)
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using finite-subset [OF spEdges-ss-E ]
by blast

definition (in ek-analysis-defs) uE ≡ E ∪ E−1

lemma finite-uE [simp,intro]: finite uE
by (auto simp: uE-def )

lemma E-ss-uE : E⊆uE
by (auto simp: uE-def )

lemma card-spEdges-le:
shows card spEdges ≤ card uE
apply (rule card-mono)
apply (auto simp: order-trans[OF spEdges-ss-E E-ss-uE ])
done

lemma card-spEdges-less:
shows card spEdges < card uE + 1
using card-spEdges-le[OF assms]
by auto

definition (in ek-analysis-defs) ekMeasure ≡
if (connected s t) then

(card V − min-dist s t) ∗ (card uE + 1 ) + (card (spEdges))
else 0

lemma measure-decr :
assumes SV : s∈V
assumes SP : isShortestPath s p t
assumes SP-EDGES : edges⊆set p
assumes Ebounds:

Graph.E c ′ ⊇ E − edges ∪ prod .swap‘edges
Graph.E c ′ ⊆ E ∪ prod .swap‘edges

shows ek-analysis-defs.ekMeasure c ′ s t ≤ ekMeasure
and edges − Graph.E c ′ 6= {}

=⇒ ek-analysis-defs.ekMeasure c ′ s t < ekMeasure
proof −

interpret g ′!: ek-analysis-defs c ′ s t .

interpret g ′!: ek-analysis c ′ s t
apply intro-locales
apply (rule g ′.Finite-Graph-EI )
using finite-subset [OF Ebounds(2 )] finite-subset [OF SP-EDGES ]
by auto

from SP-EDGES SP have edges ⊆ E
by (auto simp: spEdges-def isShortestPath-def dest : isPath-edgeset)
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with Ebounds have Veq [simp]: Graph.V c ′ = V
by (force simp: Graph.V-def )

from Ebounds 〈edges ⊆ E 〉 have uE-eq [simp]: g ′.uE = uE
by (force simp: ek-analysis-defs.uE-def )

from SP have LENP : length p = min-dist s t
by (auto simp: isShortestPath-min-dist-def )

from SP have CONN : connected s t
by (auto simp: isShortestPath-def connected-def )

{
assume NCONN2 : ¬g ′.connected s t
hence s 6=t by auto
with CONN NCONN2 have g ′.ekMeasure < ekMeasure

unfolding g ′.ekMeasure-def ekMeasure-def
using min-dist-less-V [OF SV ]
by auto

} moreover {
assume SHORTER: g ′.min-dist s t < min-dist s t
assume CONN2 : g ′.connected s t

— Obtain a shorter path in g′

from g ′.min-dist-is-dist [OF CONN2 ] obtain p ′ where
P ′: g ′.isPath s p ′ t and LENP ′: length p ′ = g ′.min-dist s t
by (auto simp: g ′.dist-def )

{ — Case: It does not use prod .swap ‘ edges. Then it is also a path in g, which
is shorter than the shortest path in g, yielding a contradiction.
assume prod .swap‘edges ∩ set p ′ = {}
with g ′.transfer-path[OF - P ′, of c] Ebounds have dist s (length p ′) t

by (auto simp: dist-def )
from LENP ′ SHORTER min-dist-minD [OF this] have False by auto

} moreover {
— So assume the path uses the edge prod .swap e.
assume prod .swap‘edges ∩ set p ′ 6= {}
— Due to auxiliary lemma, those path must be longer
from isShortestPath-flip-edges[OF - - SP SP-EDGES P ′ this] Ebounds
have length p ′ > length p by auto
with SHORTER LENP LENP ′ have False by auto

} ultimately have False by auto
} moreover {

assume LONGER: g ′.min-dist s t > min-dist s t
assume CONN2 : g ′.connected s t
have g ′.ekMeasure < ekMeasure

unfolding g ′.ekMeasure-def ekMeasure-def
apply (simp only : Veq uE-eq CONN CONN2 if-True)
apply (rule mlex-fst-decrI )
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using card-spEdges-less g ′.card-spEdges-less
and g ′.min-dist-less-V [OF - CONN2 ] SV
and LONGER

apply auto
done

} moreover {
assume EQ : g ′.min-dist s t = min-dist s t
assume CONN2 : g ′.connected s t

{
fix p ′

assume P ′: g ′.isShortestPath s p ′ t
have prod .swap‘edges ∩ set p ′ = {}
proof (rule ccontr)

assume EIP ′: prod .swap‘edges ∩ set p ′ 6= {}
from P ′ have

P ′: g ′.isPath s p ′ t and
LENP ′: length p ′ = g ′.min-dist s t
by (auto simp: g ′.isShortestPath-min-dist-def )

from isShortestPath-flip-edges[OF - - SP SP-EDGES P ′ EIP ′] Ebounds
have length p + 2 ≤ length p ′ by auto
with LENP LENP ′ EQ show False by auto

qed
with g ′.transfer-path[of p ′ c s t ] P ′ Ebounds have isShortestPath s p ′ t

by (auto simp: Graph.isShortestPath-min-dist-def EQ)
} hence SS : g ′.spEdges ⊆ spEdges by (auto simp: g ′.spEdges-def spEdges-def )

{
assume edges − Graph.E c ′ 6= {}
with g ′.spEdges-ss-E SS SP SP-EDGES have g ′.spEdges ⊂ spEdges

unfolding g ′.spEdges-def spEdges-def by fastforce
hence g ′.ekMeasure < ekMeasure

unfolding g ′.ekMeasure-def ekMeasure-def
apply (simp only : Veq uE-eq EQ CONN CONN2 if-True)
apply (rule mlex-snd-decrI )
apply (simp add : EQ)
apply (rule psubset-card-mono)
apply simp
by simp

} note G1 = this

have G2 : g ′.ekMeasure ≤ ekMeasure
unfolding g ′.ekMeasure-def ekMeasure-def
apply (simp only : Veq uE-eq CONN CONN2 if-True)
apply (rule mlex-leI )
apply (simp add : EQ)
apply (rule card-mono)
apply simp
by fact
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note G1 G2
} ultimately show

g ′.ekMeasure ≤ ekMeasure
edges − Graph.E c ′ 6= {} =⇒ g ′.ekMeasure < ekMeasure
using less-linear [of g ′.min-dist s t min-dist s t ]
apply −
apply (fastforce)+
done

qed

end — Analysis locale

As a first step to the analysis setup, we characterize the effect of augmenta-
tion on the residual graph

context Graph
begin

definition augment-cf edges cap ≡ λe.
if e∈edges then c e − cap
else if prod .swap e∈edges then c e + cap
else c e

lemma augment-cf-empty [simp]: augment-cf {} cap = c
by (auto simp: augment-cf-def )

lemma augment-cf-ss-V : [[edges ⊆ E ]] =⇒ Graph.V (augment-cf edges cap) ⊆ V

unfolding Graph.E-def Graph.V-def
by (auto simp add : augment-cf-def ) []

lemma augment-saturate:
fixes edges e
defines c ′ ≡ augment-cf edges (c e)
assumes EIE : e∈edges
shows e /∈Graph.E c ′

using EIE unfolding c ′-def augment-cf-def
by (auto simp: Graph.E-def )

lemma augment-cf-split :
assumes edges1 ∩ edges2 = {} edges1−1 ∩ edges2 = {}
shows Graph.augment-cf c (edges1 ∪ edges2 ) cap

= Graph.augment-cf (Graph.augment-cf c edges1 cap) edges2 cap
using assms
by (fastforce simp: Graph.augment-cf-def intro!: ext)

end — Graph
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context NFlow begin

lemma augmenting-edge-no-swap: isAugmentingPath p =⇒ set p ∩ (set p)−1 =
{}

using cf .isSPath-nt-parallel-pf
by (auto simp: isAugmentingPath-def )

lemma aug-flows-finite[simp, intro!]:
finite {cf e |e. e ∈ set p}
apply (rule finite-subset [where B=cf‘set p])
by auto

lemma aug-flows-finite ′[simp, intro!]:
finite {cf (u,v) |u v . (u,v) ∈ set p}
apply (rule finite-subset [where B=cf‘set p])
by auto

lemma augment-alt :
assumes AUG : isAugmentingPath p
defines f ′ ≡ augment (augmentingFlow p)
defines cf ′ ≡ residualGraph c f ′

shows cf ′ = Graph.augment-cf cf (set p) (resCap p)
proof −
{

fix u v
assume (u,v)∈set p
hence resCap p ≤ cf (u,v)

unfolding resCap-def by (auto intro: Min-le)
} note bn-smallerI = this

{
fix u v
assume (u,v)∈set p
hence (u,v)∈cf .E using AUG cf .isPath-edgeset

by (auto simp: isAugmentingPath-def cf .isSimplePath-def )
hence (u,v)∈E ∨ (v ,u)∈E using cfE-ss-invE by (auto)

} note edge-or-swap = this

show ?thesis
apply (rule ext)
unfolding cf .augment-cf-def
using augmenting-edge-no-swap[OF AUG ]
apply (auto

simp: augment-def augmentingFlow-def cf ′-def f ′-def residualGraph-def
split : prod .splits
dest : edge-or-swap
)

done
qed
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lemma augmenting-path-contains-resCap:
assumes isAugmentingPath p
obtains e where e∈set p cf e = resCap p

proof −
from assms have p 6=[] by (auto simp: isAugmentingPath-def s-not-t)
hence {cf e | e. e ∈ set p} 6= {} by (cases p) auto
with Min-in[OF aug-flows-finite this, folded resCap-def ]

obtain e where e∈set p cf e = resCap p by auto
thus ?thesis by (blast intro: that)

qed

Finally, we show the main theorem used for termination and complexity
analysis: Augmentation with a shortest path decreases the measure function.

theorem shortest-path-decr-ek-measure:
fixes p
assumes SP : Graph.isShortestPath cf s p t
defines f ′ ≡ augment (augmentingFlow p)
defines cf ′ ≡ residualGraph c f ′

shows ek-analysis-defs.ekMeasure cf ′ s t < ek-analysis-defs.ekMeasure cf s t
proof −

interpret cf !: ek-analysis cf by unfold-locales
interpret cf ′!: ek-analysis-defs cf ′ .

from SP have AUG : isAugmentingPath p
unfolding isAugmentingPath-def cf .isShortestPath-alt by simp

note BNGZ = resCap-gzero[OF AUG ]

have cf ′-alt : cf ′ = cf .augment-cf (set p) (resCap p)
using augment-alt [OF AUG ] unfolding cf ′-def f ′-def by simp

obtain e where
EIP : e∈set p and EBN : cf e = resCap p
by (rule augmenting-path-contains-resCap[OF AUG ]) auto

have ENIE ′: e /∈cf ′.E
using cf .augment-saturate[OF EIP ] EBN by (simp add : cf ′-alt)

{ fix e
have cf e + resCap p 6= 0 using resE-nonNegative[of e] BNGZ by auto

} note [simp] = this

{ fix e
assume e∈set p
hence e ∈ cf .E

using cf .shortestPath-is-path[OF SP ] cf .isPath-edgeset by blast
hence cf e > 0 ∧ cf e 6= 0 using resE-positive[of e] by auto
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} note [simp] = this

show ?thesis
apply (rule cf .measure-decr(2 ))
apply (simp-all add : s-node)
apply (rule SP)
apply (rule order-refl)

apply (rule conjI )
apply (unfold Graph.E-def ) []
apply (auto simp: cf ′-alt cf .augment-cf-def ) []

using augmenting-edge-no-swap[OF AUG ]
apply (fastforce

simp: cf ′-alt cf .augment-cf-def Graph.E-def
simp del : cf .zero-cap-simp) []

apply (unfold Graph.E-def ) []
apply (auto simp: cf ′-alt cf .augment-cf-def ) []
using EIP ENIE ′ apply auto []
done

qed

end — Network with flow

8.2.1 Total Correctness

context Network begin

We specify the total correct version of Edmonds-Karp algorithm.

definition edka ≡ do {
let f = (λ-. 0 );

(f ,-) ← whileT
fofu-invar

(λ(f ,brk). ¬brk)
(λ(f ,-). do {

p ← find-shortest-augmenting-spec f ;
case p of

None ⇒ return (f ,True)
| Some p ⇒ do {

assert (p 6=[]);
assert (NFlow .isAugmentingPath c s t f p);
assert (Graph.isShortestPath (residualGraph c f ) s p t);
let f ′ = NFlow .augmentingFlow c f p;
let f = NFlow .augment c f f ′;
assert (NFlow c s t f );
return (f , False)
}

})
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(f ,False);
assert (NFlow c s t f );
return f
}

Based on the measure function, it is easy to obtain a well-founded relation
that proves termination of the loop in the Edmonds-Karp algorithm:

definition edka-wf-rel ≡ inv-image
(less-than-bool <∗lex∗> measure (λcf . ek-analysis-defs.ekMeasure cf s t))
(λ(f ,brk). (¬brk ,residualGraph c f ))

lemma edka-wf-rel-wf [simp, intro!]: wf edka-wf-rel
unfolding edka-wf-rel-def by auto

The following theorem states that the total correct version of Edmonds-Karp
algorithm refines the partial correct one.

theorem edka-refine[refine]: edka ≤ ⇓Id edka-partial
unfolding edka-def edka-partial-def
apply (refine-rcg bind-refine ′

WHILEIT-refine-WHILEI [where V =edka-wf-rel ])
apply (refine-dref-type)
apply (simp; fail)

Unfortunately, the verification condition for introducing the variant requires a bit
of manual massaging to be solved:

apply (simp)
apply (erule bind-sim-select-rule)
apply (auto split : option.split

simp: assert-bind-spec-conv
simp: find-shortest-augmenting-spec-def
simp: edka-wf-rel-def NFlow .shortest-path-decr-ek-measure

; fail)

The other VCs are straightforward

apply (vc-solve)
done

8.2.2 Complexity Analysis

For the complexity analysis, we additionally show that the measure function
is bounded by O(V E). Note that our absolute bound is not as precise as
possible, but clearly O(V E).

lemma ekMeasure-upper-bound :
ek-analysis-defs.ekMeasure (residualGraph c (λ-. 0 )) s t
< 2 ∗ card V ∗ card E + card V

proof −
interpret NFlow c s t (λ-. 0 )
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unfolding NFlow-def Flow-def using Network-axioms
by (auto simp: s-node t-node cap-non-negative)

interpret ek !: ek-analysis cf
by unfold-locales auto

have cardV-positive: card V > 0 and cardE-positive: card E > 0
using card-0-eq [OF finite-V ] V-not-empty apply blast
using card-0-eq [OF finite-E ] E-not-empty apply blast
done

show ?thesis proof (cases cf .connected s t)
case False hence ek .ekMeasure = 0 by (auto simp: ek .ekMeasure-def )
with cardV-positive cardE-positive show ?thesis

by auto
next

case True

have cf .min-dist s t > 0
apply (rule ccontr)
apply (auto simp: Graph.min-dist-z-iff True s-not-t [symmetric])
done

have cf = c
unfolding residualGraph-def E-def
by auto

hence ek .uE = E∪E−1 unfolding ek .uE-def by simp

from True have ek .ekMeasure
= (card cf .V − cf .min-dist s t) ∗ (card ek .uE + 1 ) + (card (ek .spEdges))
unfolding ek .ekMeasure-def by simp

also from
mlex-bound [of card cf .V − cf .min-dist s t card V ,

OF - ek .card-spEdges-less]
have . . . < card V ∗ (card ek .uE+1 )

using 〈cf .min-dist s t > 0 〉 〈card V > 0 〉

by (auto simp: resV-netV )
also have card ek .uE ≤ 2∗card E unfolding 〈ek .uE = E∪E−1〉

apply (rule order-trans)
apply (rule card-Un-le)
by auto

finally show ?thesis by (auto simp: algebra-simps)
qed

qed

Finally, we present a version of the Edmonds-Karp algorithm which is instru-
mented with a loop counter, and asserts that there are less than 2|V ||E|+
|V | = O(|V ||E|) iterations.

Note that we only count the non-breaking loop iterations.
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The refinement is achieved by a refinement relation, coupling the instru-
mented loop state with the uninstrumented one

definition edkac-rel ≡ {((f ,brk ,itc), (f ,brk)) | f brk itc.
itc + ek-analysis-defs.ekMeasure (residualGraph c f ) s t

< 2 ∗ card V ∗ card E + card V
}

definition edka-complexity ≡ do {
let f = (λ-. 0 );

(f ,-,itc) ← whileT

(λ(f ,brk ,-). ¬brk)
(λ(f ,-,itc). do {

p ← find-shortest-augmenting-spec f ;
case p of

None ⇒ return (f ,True,itc)
| Some p ⇒ do {

let f ′ = NFlow .augmentingFlow c f p;
let f = NFlow .augment c f f ′;
return (f , False,itc + 1 )
}

})
(f ,False,0 );

assert (itc < 2 ∗ card V ∗ card E + card V );
return f
}

lemma edka-complexity-refine: edka-complexity ≤ ⇓Id edka
proof −

have [refine-dref-RELATES ]:
RELATES edkac-rel
by (auto simp: RELATES-def )

show ?thesis
unfolding edka-complexity-def edka-def
apply (refine-rcg)
apply (refine-dref-type)
apply (vc-solve simp: edkac-rel-def )
using ekMeasure-upper-bound apply auto []
apply auto []
apply (drule (1 ) NFlow .shortest-path-decr-ek-measure; auto)
done

qed

We show that this algorithm never fails, and computes a maximum flow.

theorem edka-complexity ≤ (spec f . isMaxFlow f )
proof −

note edka-complexity-refine
also note edka-refine
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also note edka-partial-refine
also note fofu-partial-correct
finally show ?thesis .

qed

end — Network
end — Theory

9 Implementation of the Edmonds-Karp Algorithm

theory EdmondsKarp-Impl
imports

EdmondsKarp-Algo
Augmenting-Path-BFS
Capacity-Matrix-Impl

begin

We now implement the Edmonds-Karp algorithm. Note that, during the
implementation, we explicitly write down the whole refined algorithm several
times. As refinement is modular, most of these copies could be avoided—
we inserted them deliberately for documentation purposes.

9.1 Refinement to Residual Graph

As a first step towards implementation, we refine the algorithm to work
directly on residual graphs. For this, we first have to establish a relation
between flows in a network and residual graphs.

definition (in Network) flow-of-cf cf e ≡ (if (e∈E ) then c e − cf e else 0 )

lemma (in NFlow) E-ss-cfinvE : E ⊆ Graph.E cf ∪ (Graph.E cf )−1

unfolding residualGraph-def Graph.E-def
apply (clarsimp)
using no-parallel-edge
unfolding E-def
apply (simp add : )
done

locale RGraph — Locale that characterizes a residual graph of a network
= Network +

fixes cf
assumes EX-RG : ∃ f . NFlow c s t f ∧ cf = residualGraph c f

begin
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lemma this-loc: RGraph c s t cf
by unfold-locales

definition f ≡ flow-of-cf cf

lemma f-unique:
assumes NFlow c s t f ′

assumes A: cf = residualGraph c f ′

shows f ′ = f
proof −

interpret f ′!: NFlow c s t f ′ by fact

show ?thesis
unfolding f-def [abs-def ] flow-of-cf-def [abs-def ]
unfolding A residualGraph-def
apply (rule ext)
using f ′.capacity-const unfolding E-def
apply (auto split : prod .split)
by (metis antisym)

qed

lemma is-NFlow : NFlow c s t (flow-of-cf cf )
apply (fold f-def )
using EX-RG f-unique by metis

sublocale f !: NFlow c s t f unfolding f-def by (rule is-NFlow)

lemma rg-is-cf [simp]: residualGraph c f = cf
using EX-RG f-unique by auto

lemma rg-fo-inv [simp]: residualGraph c (flow-of-cf cf ) = cf
using rg-is-cf
unfolding f-def
.

sublocale cf !: Graph cf .

lemma resV-netV [simp]: cf .V = V
using f .resV-netV by simp

sublocale cf !: Finite-Graph cf
apply unfold-locales
apply simp
done
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lemma E-ss-cfinvE : E ⊆ cf .E ∪ cf .E−1

using f .E-ss-cfinvE by simp

lemma cfE-ss-invE : cf .E ⊆ E ∪ E−1

using f .cfE-ss-invE by simp

lemma resE-nonNegative: cf e ≥ 0
using f .resE-nonNegative by auto

end

context NFlow begin
lemma is-RGraph: RGraph c s t cf

apply unfold-locales
apply (rule exI [where x=f ])
apply (safe; unfold-locales)
done

lemma fo-rg-inv : flow-of-cf cf = f
unfolding flow-of-cf-def [abs-def ]
unfolding residualGraph-def
apply (rule ext)
using capacity-const unfolding E-def
apply (clarsimp split : prod .split)
by (metis antisym)

end

lemma (in NFlow)
flow-of-cf (residualGraph c f ) = f
by (rule fo-rg-inv)

9.1.1 Refinement of Operations

context Network
begin

We define the relation between residual graphs and flows

definition cfi-rel ≡ br flow-of-cf (RGraph c s t)

It can also be characterized the other way round, i.e., mapping flows to
residual graphs:

lemma cfi-rel-alt : cfi-rel = {(cf ,f ). cf = residualGraph c f ∧ NFlow c s t f }
unfolding cfi-rel-def br-def

by (auto simp: NFlow .is-RGraph RGraph.is-NFlow RGraph.rg-fo-inv NFlow .fo-rg-inv)

Initially, the residual graph for the zero flow equals the original network

lemma residualGraph-zero-flow : residualGraph c (λ-. 0 ) = c
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unfolding residualGraph-def by (auto intro!: ext)
lemma flow-of-c: flow-of-cf c = (λ-. 0 )

by (auto simp add : flow-of-cf-def [abs-def ])

The residual capacity is naturally defined on residual graphs

definition resCap-cf cf p ≡ Min {cf e | e. e∈set p}
lemma (in NFlow) resCap-cf-refine: resCap-cf cf p = resCap p

unfolding resCap-cf-def resCap-def ..

Augmentation can be done by Graph.augment-cf.

lemma (in NFlow) augment-cf-refine-aux :
assumes AUG : isAugmentingPath p
shows residualGraph c (augment (augmentingFlow p)) (u,v) = (

if (u,v)∈set p then (residualGraph c f (u,v) − resCap p)
else if (v ,u)∈set p then (residualGraph c f (u,v) + resCap p)
else residualGraph c f (u,v))

using augment-alt [OF AUG ] by (auto simp: Graph.augment-cf-def )

lemma augment-cf-refine:
assumes R: (cf ,f )∈cfi-rel
assumes AUG : NFlow .isAugmentingPath c s t f p
shows (Graph.augment-cf cf (set p) (resCap-cf cf p),

NFlow .augment c f (NFlow .augmentingFlow c f p)) ∈ cfi-rel
proof −

from R have [simp]: cf = residualGraph c f and NFlow c s t f
by (auto simp: cfi-rel-alt br-def )

then interpret f : NFlow c s t f by simp

show ?thesis
proof (simp add : cfi-rel-alt ; safe intro!: ext)

fix u v
show Graph.augment-cf f .cf (set p) (resCap-cf f .cf p) (u,v)

= residualGraph c (f .augment (f .augmentingFlow p)) (u,v)
unfolding f .augment-cf-refine-aux [OF AUG ]
unfolding f .cf .augment-cf-def
by (auto simp: f .resCap-cf-refine)

qed (rule f .augment-pres-nflow [OF AUG ])
qed

We rephrase the specification of shortest augmenting path to take a residual
graph as parameter

definition find-shortest-augmenting-spec-cf cf ≡
assert (RGraph c s t cf ) �

SPEC (λ
None ⇒ ¬Graph.connected cf s t
| Some p ⇒ Graph.isShortestPath cf s p t)

lemma (in RGraph) find-shortest-augmenting-spec-cf-refine:
find-shortest-augmenting-spec-cf cf
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≤ find-shortest-augmenting-spec (flow-of-cf cf )
unfolding f-def [symmetric]
unfolding find-shortest-augmenting-spec-cf-def

and find-shortest-augmenting-spec-def
by (auto

simp: pw-le-iff refine-pw-simps
simp: this-loc rg-is-cf
simp: f .isAugmentingPath-def Graph.connected-def Graph.isSimplePath-def
dest : cf .shortestPath-is-path
split : option.split)

This leads to the following refined algorithm

definition edka2 ≡ do {
let cf = c;

(cf ,-) ← whileT

(λ(cf ,brk). ¬brk)
(λ(cf ,-). do {

assert (RGraph c s t cf );
p ← find-shortest-augmenting-spec-cf cf ;
case p of

None ⇒ return (cf ,True)
| Some p ⇒ do {

assert (p 6=[]);
assert (Graph.isShortestPath cf s p t);
let cf = Graph.augment-cf cf (set p) (resCap-cf cf p);
assert (RGraph c s t cf );
return (cf , False)
}

})
(cf ,False);

assert (RGraph c s t cf );
let f = flow-of-cf cf ;
return f
}

lemma edka2-refine: edka2 ≤ ⇓Id edka
proof −
have [refine-dref-RELATES ]: RELATES cfi-rel by (simp add : RELATES-def )

show ?thesis
unfolding edka2-def edka-def
apply (rewrite in let f ′ = NFlow .augmentingFlow c - - in - Let-def )
apply (rewrite in let f = flow-of-cf - in - Let-def )
apply (refine-rcg)
apply refine-dref-type
apply vc-solve

— Solve some left-over verification conditions one by one
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apply (drule NFlow .is-RGraph;
auto simp: cfi-rel-def br-def residualGraph-zero-flow flow-of-c;
fail)

apply (auto simp: cfi-rel-def br-def ; fail)
using RGraph.find-shortest-augmenting-spec-cf-refine
apply (auto simp: cfi-rel-def br-def ; fail)
apply (auto simp: cfi-rel-def br-def simp: RGraph.rg-fo-inv ; fail)
apply (drule (1 ) augment-cf-refine; simp add : cfi-rel-def br-def ; fail)
apply (simp add : augment-cf-refine; fail)
apply (auto simp: cfi-rel-def br-def ; fail)
apply (auto simp: cfi-rel-def br-def ; fail)
done

qed

9.2 Implementation of Bottleneck Computation and Aug-
mentation

We will access the capacities in the residual graph only by a get-operation,
which asserts that the edges are valid

abbreviation (input) valid-edge :: edge ⇒ bool where
valid-edge ≡ λ(u,v). u∈V ∧ v∈V

definition cf-get
:: ′capacity graph ⇒ edge ⇒ ′capacity nres
where cf-get cf e ≡ ASSERT (valid-edge e) � RETURN (cf e)

definition cf-set
:: ′capacity graph ⇒ edge ⇒ ′capacity ⇒ ′capacity graph nres
where cf-set cf e cap ≡ ASSERT (valid-edge e) � RETURN (cf (e:=cap))

definition resCap-cf-impl :: ′capacity graph ⇒ path ⇒ ′capacity nres
where resCap-cf-impl cf p ≡

case p of
[] ⇒ RETURN (0 :: ′capacity)
| (e#p) ⇒ do {

cap ← cf-get cf e;
ASSERT (distinct p);
nfoldli

p (λ-. True)
(λe cap. do {

cape ← cf-get cf e;
RETURN (min cape cap)
})
cap

}

lemma (in RGraph) resCap-cf-impl-refine:
assumes AUG : cf .isSimplePath s p t
shows resCap-cf-impl cf p ≤ SPEC (λr . r = resCap-cf cf p)
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proof −

note [simp del ] = Min-insert
note [simp] = Min-insert [symmetric]
from AUG [THEN cf .isSPath-distinct ]
have distinct p .
moreover from AUG cf .isPath-edgeset have set p ⊆ cf .E

by (auto simp: cf .isSimplePath-def )
hence set p ⊆ Collect valid-edge

using cf .E-ss-VxV by simp
moreover from AUG have p 6=[] by (auto simp: s-not-t)

then obtain e p ′ where p=e#p ′ by (auto simp: neq-Nil-conv)
ultimately show ?thesis

unfolding resCap-cf-impl-def resCap-cf-def cf-get-def
apply (simp only : list .case)
apply (refine-vcg nfoldli-rule[where

I = λl l ′ cap.
cap = Min (cf‘insert e (set l))
∧ set (l@l ′) ⊆ Collect valid-edge])

apply (auto intro!: arg-cong [where f =Min])
done

qed

definition (in Graph)
augment-edge e cap ≡ (c(

e := c e − cap,
prod .swap e := c (prod .swap e) + cap))

lemma (in Graph) augment-cf-inductive:
fixes e cap
defines c ′ ≡ augment-edge e cap
assumes P : isSimplePath s (e#p) t
shows augment-cf (insert e (set p)) cap = Graph.augment-cf c ′ (set p) cap
and ∃ s ′. Graph.isSimplePath c ′ s ′ p t

proof −
obtain u v where [simp]: e=(u,v) by (cases e)

from isSPath-no-selfloop[OF P ] have [simp]:
∧

u. (u,u)/∈set p u 6=v by auto

from isSPath-nt-parallel [OF P ] have [simp]: (v ,u)/∈set p by auto
from isSPath-distinct [OF P ] have [simp]: (u,v)/∈set p by auto

show augment-cf (insert e (set p)) cap = Graph.augment-cf c ′ (set p) cap
apply (rule ext)
unfolding Graph.augment-cf-def c ′-def Graph.augment-edge-def
by auto
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have Graph.isSimplePath c ′ v p t
unfolding Graph.isSimplePath-def
apply rule
apply (rule transfer-path)
unfolding Graph.E-def
apply (auto simp: c ′-def Graph.augment-edge-def ) []
using P apply (auto simp: isSimplePath-def ) []
using P apply (auto simp: isSimplePath-def ) []
done

thus ∃ s ′. Graph.isSimplePath c ′ s ′ p t ..

qed

definition augment-edge-impl cf e cap ≡ do {
v ← cf-get cf e; cf ← cf-set cf e (v−cap);
let e = prod .swap e;
v ← cf-get cf e; cf ← cf-set cf e (v+cap);
RETURN cf
}

lemma augment-edge-impl-refine:
assumes valid-edge e ∀ u. e 6=(u,u)
shows augment-edge-impl cf e cap
≤ (spec r . r = Graph.augment-edge cf e cap)

using assms
unfolding augment-edge-impl-def Graph.augment-edge-def
unfolding cf-get-def cf-set-def
apply refine-vcg
apply auto
done

definition augment-cf-impl
:: ′capacity graph ⇒ path ⇒ ′capacity ⇒ ′capacity graph nres
where
augment-cf-impl cf p x ≡ do {

(recT D . λ
([],cf ) ⇒ return cf
| (e#p,cf ) ⇒ do {

cf ← augment-edge-impl cf e x ;
D (p,cf )
}

) (p,cf )
}

Deriving the corresponding recursion equations

lemma augment-cf-impl-simps[simp]:
augment-cf-impl cf [] x = return cf
augment-cf-impl cf (e#p) x = do {

cf ← augment-edge-impl cf e x ;
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augment-cf-impl cf p x}
apply (simp add : augment-cf-impl-def )
apply (subst RECT-unfold , refine-mono)
apply simp

apply (simp add : augment-cf-impl-def )
apply (subst RECT-unfold , refine-mono)
apply simp
done

lemma augment-cf-impl-aux :
assumes ∀ e∈set p. valid-edge e
assumes ∃ s. Graph.isSimplePath cf s p t
shows augment-cf-impl cf p x ≤ RETURN (Graph.augment-cf cf (set p) x )
using assms
apply (induction p arbitrary : cf )
apply (simp add : Graph.augment-cf-empty)

apply clarsimp
apply (subst Graph.augment-cf-inductive, assumption)

apply (refine-vcg augment-edge-impl-refine[THEN order-trans])
apply simp
apply simp
apply (auto dest : Graph.isSPath-no-selfloop) []
apply (rule order-trans, rprems)

apply (drule Graph.augment-cf-inductive(2 )[where cap=x ]; simp)
apply simp

done

lemma (in RGraph) augment-cf-impl-refine:
assumes Graph.isSimplePath cf s p t
shows augment-cf-impl cf p x ≤ RETURN (Graph.augment-cf cf (set p) x )
apply (rule augment-cf-impl-aux )

using assms cf .E-ss-VxV apply (auto simp: cf .isSimplePath-def dest !:
cf .isPath-edgeset) []

using assms by blast

Finally, we arrive at the algorithm where augmentation is implemented al-
gorithmically:

definition edka3 ≡ do {
let cf = c;

(cf ,-) ← whileT

(λ(cf ,brk). ¬brk)
(λ(cf ,-). do {

assert (RGraph c s t cf );
p ← find-shortest-augmenting-spec-cf cf ;
case p of
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None ⇒ return (cf ,True)
| Some p ⇒ do {

assert (p 6=[]);
assert (Graph.isShortestPath cf s p t);
bn ← resCap-cf-impl cf p;
cf ← augment-cf-impl cf p bn;
assert (RGraph c s t cf );
return (cf , False)
}

})
(cf ,False);

assert (RGraph c s t cf );
let f = flow-of-cf cf ;
return f
}

lemma edka3-refine: edka3 ≤ ⇓Id edka2
unfolding edka3-def edka2-def
apply (rewrite in let cf = Graph.augment-cf - - - in - Let-def )
apply refine-rcg
apply refine-dref-type
apply (vc-solve)
apply (drule Graph.shortestPath-is-simple)
apply (frule (1 ) RGraph.resCap-cf-impl-refine)
apply (frule (1 ) RGraph.augment-cf-impl-refine)
apply (auto simp: pw-le-iff refine-pw-simps)
done

9.3 Refinement to use BFS

We refine the Edmonds-Karp algorithm to use breadth first search (BFS)

definition edka4 ≡ do {
let cf = c;

(cf ,-) ← whileT

(λ(cf ,brk). ¬brk)
(λ(cf ,-). do {

assert (RGraph c s t cf );
p ← Graph.bfs cf s t ;
case p of

None ⇒ return (cf ,True)
| Some p ⇒ do {

assert (p 6=[]);
assert (Graph.isShortestPath cf s p t);
bn ← resCap-cf-impl cf p;
cf ← augment-cf-impl cf p bn;
assert (RGraph c s t cf );
return (cf , False)
}
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})
(cf ,False);

assert (RGraph c s t cf );
let f = flow-of-cf cf ;
return f
}

A shortest path can be obtained by BFS

lemma bfs-refines-shortest-augmenting-spec:
Graph.bfs cf s t ≤ find-shortest-augmenting-spec-cf cf
unfolding find-shortest-augmenting-spec-cf-def
apply (rule le-ASSERTI )
apply (rule order-trans)
apply (rule Graph.bfs-correct)
apply (simp add : RGraph.resV-netV s-node)
apply (simp add : RGraph.resV-netV )
apply (simp)
done

lemma edka4-refine: edka4 ≤ ⇓Id edka3
unfolding edka4-def edka3-def
apply refine-rcg
apply refine-dref-type
apply (vc-solve simp: bfs-refines-shortest-augmenting-spec)
done

9.4 Implementing the Successor Function for BFS

We implement the successor function in two steps. The first step shows
how to obtain the successor function by filtering the list of adjacent nodes.
This step contains the idea of the implementation. The second step is purely
technical, and makes explicit the recursion of the filter function as a recursion
combinator in the monad. This is required for the Sepref tool.

Note: We use filter-rev here, as it is tail-recursive, and we are not interested
in the order of successors.

definition rg-succ am cf u ≡
filter-rev (λv . cf (u,v) > 0 ) (am u)

lemma (in RGraph) rg-succ-ref1 : [[is-adj-map am]]
=⇒ (rg-succ am cf u, Graph.E cf‘‘{u}) ∈ 〈Id〉list-set-rel
unfolding Graph.E-def
apply (clarsimp simp: list-set-rel-def br-def rg-succ-def filter-rev-alt ;

intro conjI )
using cfE-ss-invE resE-nonNegative
apply (auto

simp: is-adj-map-def less-le Graph.E-def
simp del : cf .zero-cap-simp zero-cap-simp) []
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apply (auto simp: is-adj-map-def ) []
done

definition ps-get-op :: - ⇒ node ⇒ node list nres
where ps-get-op am u ≡ assert (u∈V ) � return (am u)

definition monadic-filter-rev-aux
:: ′a list ⇒ ( ′a ⇒ bool nres) ⇒ ′a list ⇒ ′a list nres

where
monadic-filter-rev-aux a P l ≡ (recT D . (λ(l ,a). case l of

[] ⇒ return a
| (v#l) ⇒ do {

c ← P v ;
let a = (if c then v#a else a);
D (l ,a)
}

)) (l ,a)

lemma monadic-filter-rev-aux-rule:
assumes

∧
x . x∈set l =⇒ P x ≤ SPEC (λr . r=Q x )

shows monadic-filter-rev-aux a P l ≤ SPEC (λr . r=filter-rev-aux a Q l)
using assms
apply (induction l arbitrary : a)

apply (unfold monadic-filter-rev-aux-def ) []
apply (subst RECT-unfold , refine-mono)
apply (fold monadic-filter-rev-aux-def ) []
apply simp

apply (unfold monadic-filter-rev-aux-def ) []
apply (subst RECT-unfold , refine-mono)
apply (fold monadic-filter-rev-aux-def ) []
apply (auto simp: pw-le-iff refine-pw-simps)
done

definition monadic-filter-rev = monadic-filter-rev-aux []

lemma monadic-filter-rev-rule:
assumes

∧
x . x∈set l =⇒ P x ≤ (spec r . r=Q x )

shows monadic-filter-rev P l ≤ (spec r . r=filter-rev Q l)
using monadic-filter-rev-aux-rule[where a=[]] assms
by (auto simp: monadic-filter-rev-def filter-rev-def )

definition rg-succ2 am cf u ≡ do {
l ← ps-get-op am u;
monadic-filter-rev (λv . do {

x ← cf-get cf (u,v);
return (x>0 )
}) l
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}

lemma (in RGraph) rg-succ-ref2 :
assumes PS : is-adj-map am and V : u∈V
shows rg-succ2 am cf u ≤ return (rg-succ am cf u)

proof −
have ∀ v∈set (am u). valid-edge (u,v)

using PS V
by (auto simp: is-adj-map-def Graph.V-def )

thus ?thesis
unfolding rg-succ2-def rg-succ-def ps-get-op-def cf-get-def
apply (refine-vcg monadic-filter-rev-rule[

where Q=(λv . 0 < cf (u, v)), THEN order-trans])
by (vc-solve simp: V )

qed

lemma (in RGraph) rg-succ-ref :
assumes A: is-adj-map am
assumes B : u∈V
shows rg-succ2 am cf u ≤ SPEC (λl . (l ,cf .E‘‘{u}) ∈ 〈Id〉list-set-rel)
using rg-succ-ref1 [OF A, of u] rg-succ-ref2 [OF A B ]
by (auto simp: pw-le-iff refine-pw-simps)

9.5 Adding Tabulation of Input

Next, we add functions that will be refined to tabulate the input of the algo-
rithm, i.e., the network’s capacity matrix and adjacency map, into efficient
representations. The capacity matrix is tabulated to give the initial residual
graph, and the adjacency map is tabulated for faster access.

Note, on the abstract level, the tabulation functions are just identity, and
merely serve as marker constants for implementation.

definition init-cf :: ′capacity graph nres
— Initialization of residual graph from network
where init-cf ≡ RETURN c

definition init-ps :: (node ⇒ node list) ⇒ -
— Initialization of adjacency map
where init-ps am ≡ ASSERT (is-adj-map am) � RETURN am

definition compute-rflow :: ′capacity graph ⇒ ′capacity flow nres
— Extraction of result flow from residual graph
where
compute-rflow cf ≡ ASSERT (RGraph c s t cf ) � RETURN (flow-of-cf cf )

definition bfs2-op am cf ≡ Graph.bfs2 cf (rg-succ2 am cf ) s t

We split the algorithm into a tabulation function, and the running of the
actual algorithm:
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definition edka5-tabulate am ≡ do {
cf ← init-cf ;
am ← init-ps am;
return (cf ,am)
}

definition edka5-run cf am ≡ do {
(cf ,-) ← whileT

(λ(cf ,brk). ¬brk)
(λ(cf ,-). do {

assert (RGraph c s t cf );
p ← bfs2-op am cf ;
case p of

None ⇒ return (cf ,True)
| Some p ⇒ do {

assert (p 6=[]);
assert (Graph.isShortestPath cf s p t);
bn ← resCap-cf-impl cf p;
cf ← augment-cf-impl cf p bn;
assert (RGraph c s t cf );
return (cf , False)
}

})
(cf ,False);

f ← compute-rflow cf ;
return f
}

definition edka5 am ≡ do {
(cf ,am) ← edka5-tabulate am;
edka5-run cf am
}

lemma edka5-refine: [[is-adj-map am]] =⇒ edka5 am ≤ ⇓Id edka4
unfolding edka5-def edka5-tabulate-def edka5-run-def

edka4-def init-cf-def compute-rflow-def
init-ps-def Let-def nres-monad-laws bfs2-op-def

apply refine-rcg
apply refine-dref-type
apply (vc-solve simp: )
apply (rule refine-IdD)
apply (rule Graph.bfs2-refine)
apply (simp add : RGraph.resV-netV )
apply (simp add : RGraph.rg-succ-ref )
done

end
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9.6 Imperative Implementation

In this section we provide an efficient imperative implementation, using the
Sepref tool. It is mostly technical, setting up the mappings from abstract
to concrete data structures, and then refining the algorithm, function by
function.

This is also the point where we have to choose the implementation of ca-
pacities. Up to here, they have been a polymorphic type with a typeclass
constraint of being a linearly ordered integral domain. Here, we switch to
capacity-impl (capacity-impl).

locale Network-Impl = Network c s t for c :: capacity-impl graph and s t

Moreover, we assume that the nodes are natural numbers less than some
number N, which will become an additional parameter of our algorithm.

locale Edka-Impl = Network-Impl +
fixes N :: nat
assumes V-ss: V⊆{0 ..<N }

begin
lemma this-loc: Edka-Impl c s t N by unfold-locales

Declare some variables to Sepref.

lemmas [id-rules] =
itypeI [Pure.of N TYPE (nat)]
itypeI [Pure.of s TYPE (node)]
itypeI [Pure.of t TYPE (node)]
itypeI [Pure.of c TYPE (capacity-impl graph)]

Instruct Sepref to not refine these parameters. This is expressed by using
identity as refinement relation.

lemmas [sepref-import-param] =
IdI [of N ]
IdI [of s]
IdI [of t ]
IdI [of c]

9.6.1 Implementation of Adjacency Map by Array

definition is-am am psi
≡ ∃Al . psi 7→a l
∗ ↑(length l = N ∧ (∀ i<N . l !i = am i)
∧ (∀ i≥N . am i = []))

lemma is-am-precise[constraint-rules]: precise (is-am)
apply rule
unfolding is-am-def
apply clarsimp
apply (rename-tac l l ′)
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apply prec-extract-eqs
apply (rule ext)
apply (rename-tac i)
apply (case-tac i<length l ′)
apply fastforce+
done

typedecl i-ps

definition (in −) ps-get-imp psi u ≡ Array .nth psi u

lemma [def-pat-rules]: Network .ps-get-op$c ≡ UNPROTECT ps-get-op by simp
sepref-register PR-CONST ps-get-op i-ps ⇒ node ⇒ node list nres

lemma ps-get-op-refine[sepref-fr-rules]:
(uncurry ps-get-imp, uncurry (PR-CONST ps-get-op))
∈ is-amk ∗a (pure Id)k →a hn-list-aux (pure Id)

unfolding hn-list-pure-conv
apply rule apply rule
using V-ss
by (sep-auto

simp: is-am-def pure-def ps-get-imp-def
simp: ps-get-op-def refine-pw-simps)

lemma is-pred-succ-no-node: [[is-adj-map a; u /∈V ]] =⇒ a u = []
unfolding is-adj-map-def V-def
by auto

lemma [sepref-fr-rules]: (Array .make N , PR-CONST init-ps)
∈ (pure Id)k →a is-am
apply rule apply rule
using V-ss
by (sep-auto simp: init-ps-def refine-pw-simps is-am-def pure-def

intro: is-pred-succ-no-node)

lemma [def-pat-rules]: Network .init-ps$c ≡ UNPROTECT init-ps by simp
sepref-register PR-CONST init-ps (node ⇒ node list) ⇒ i-ps nres

9.6.2 Implementation of Capacity Matrix by Array

lemma [def-pat-rules]: Network .cf-get$c ≡ UNPROTECT cf-get by simp
lemma [def-pat-rules]: Network .cf-set$c ≡ UNPROTECT cf-set by simp

sepref-register
PR-CONST cf-get capacity-impl i-mtx ⇒ edge ⇒ capacity-impl nres

sepref-register
PR-CONST cf-set capacity-impl i-mtx ⇒ edge ⇒ capacity-impl
⇒ capacity-impl i-mtx nres
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lemma [sepref-fr-rules]: (uncurry (mtx-get N ), uncurry (PR-CONST cf-get))
∈ (is-mtx N )k ∗a (hn-prod-aux (pure Id) (pure Id))k →a pure Id
apply rule apply rule
using V-ss
by (sep-auto simp: cf-get-def refine-pw-simps pure-def )

lemma [sepref-fr-rules]:
(uncurry2 (mtx-set N ), uncurry2 (PR-CONST cf-set))
∈ (is-mtx N )d ∗a (hn-prod-aux (pure Id) (pure Id))k ∗a (pure Id)k

→a (is-mtx N )
apply rule apply rule
using V-ss
by (sep-auto simp: cf-set-def refine-pw-simps pure-def hn-ctxt-def )

lemma init-cf-imp-refine[sepref-fr-rules]:
(uncurry0 (mtx-new N c), uncurry0 (PR-CONST init-cf ))
∈ (pure unit-rel)k →a is-mtx N

apply rule apply rule
using V-ss
by (sep-auto simp: init-cf-def )

lemma [def-pat-rules]: Network .init-cf $c ≡ UNPROTECT init-cf by simp
sepref-register PR-CONST init-cf capacity-impl i-mtx nres

9.6.3 Representing Result Flow as Residual Graph

definition (in Network-Impl) is-rflow N f cfi
≡ ∃Acf . is-mtx N cf cfi ∗ ↑(RGraph c s t cf ∧ f = flow-of-cf cf )

lemma is-rflow-precise[constraint-rules]: precise (is-rflow N )
apply rule
unfolding is-rflow-def
apply clarsimp
apply (rename-tac l l ′)
apply prec-extract-eqs
apply simp
done

typedecl i-rflow

lemma [sepref-fr-rules]:
(λcfi . return cfi , PR-CONST compute-rflow) ∈ (is-mtx N )d →a is-rflow N
apply rule
apply rule

apply (sep-auto simp: compute-rflow-def is-rflow-def refine-pw-simps hn-ctxt-def )
done

lemma [def-pat-rules]:
Network .compute-rflow$c$s$t ≡ UNPROTECT compute-rflow by simp

sepref-register

61



PR-CONST compute-rflow capacity-impl i-mtx ⇒ i-rflow nres

9.6.4 Implementation of Functions

schematic-lemma rg-succ2-impl :
fixes am :: node ⇒ node list and cf :: capacity-impl graph
notes [id-rules] =

itypeI [Pure.of u TYPE (node)]
itypeI [Pure.of am TYPE (i-ps)]
itypeI [Pure.of cf TYPE (capacity-impl i-mtx )]

notes [sepref-import-param] = IdI [of N ]
shows hn-refine (hn-ctxt is-am am psi ∗ hn-ctxt (is-mtx N ) cf cfi ∗ hn-val

nat-rel u ui) (?c::? ′c Heap) ?Γ ?R (rg-succ2 am cf u)
unfolding rg-succ2-def APP-def monadic-filter-rev-def monadic-filter-rev-aux-def

using [[id-debug , goals-limit = 1 ]]
by sepref-keep

concrete-definition (in −) succ-imp uses Edka-Impl .rg-succ2-impl
prepare-code-thms (in −) succ-imp-def

lemma succ-imp-refine[sepref-fr-rules]:
(uncurry2 (succ-imp N ), uncurry2 (PR-CONST rg-succ2 ))
∈ is-amk ∗a (is-mtx N )k ∗a (pure Id)k →a hn-list-aux (pure Id)

apply rule
using succ-imp.refine[OF this-loc]
by (auto simp: hn-ctxt-def hn-prod-aux-def mult-ac split : prod .split)

lemma [def-pat-rules]: Network .rg-succ2 $c ≡ UNPROTECT rg-succ2 by simp
sepref-register

PR-CONST rg-succ2 i-ps ⇒ capacity-impl i-mtx ⇒ node ⇒ node list nres

lemma [sepref-import-param]: (min,min)∈Id→Id→Id by simp

abbreviation is-path ≡ hn-list-aux (hn-prod-aux (pure Id) (pure Id))

schematic-lemma resCap-imp-impl :
fixes am :: node ⇒ node list and cf :: capacity-impl graph and p pi
notes [id-rules] =

itypeI [Pure.of p TYPE (edge list)]
itypeI [Pure.of cf TYPE (capacity-impl i-mtx )]

notes [sepref-import-param] = IdI [of N ]
shows hn-refine

(hn-ctxt (is-mtx N ) cf cfi ∗ hn-ctxt is-path p pi)
(?c::? ′c Heap) ?Γ ?R
(resCap-cf-impl cf p)

unfolding resCap-cf-impl-def APP-def
using [[id-debug , goals-limit = 1 ]]
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by sepref-keep
concrete-definition (in −) resCap-imp uses Edka-Impl .resCap-imp-impl
prepare-code-thms (in −) resCap-imp-def

lemma resCap-impl-refine[sepref-fr-rules]:
(uncurry (resCap-imp N ), uncurry (PR-CONST resCap-cf-impl))
∈ (is-mtx N )k ∗a (is-path)k →a (pure Id)

apply rule
apply (rule hn-refine-preI )
apply (clarsimp

simp: uncurry-def hn-list-pure-conv hn-ctxt-def
split : prod .split)

apply (clarsimp simp: pure-def )
apply (rule hn-refine-cons ′[OF - resCap-imp.refine[OF this-loc] -])
apply (simp add : hn-list-pure-conv hn-ctxt-def )
apply (simp add : pure-def )
apply (simp add : hn-ctxt-def )
apply (simp add : pure-def )
done

lemma [def-pat-rules]:
Network .resCap-cf-impl$c ≡ UNPROTECT resCap-cf-impl
by simp

sepref-register PR-CONST resCap-cf-impl
capacity-impl i-mtx ⇒ path ⇒ capacity-impl nres

schematic-lemma augment-imp-impl :
fixes am :: node ⇒ node list and cf :: capacity-impl graph and p pi
notes [id-rules] =

itypeI [Pure.of p TYPE (edge list)]
itypeI [Pure.of cf TYPE (capacity-impl i-mtx )]
itypeI [Pure.of cap TYPE (capacity-impl)]

notes [sepref-import-param] = IdI [of N ]
shows hn-refine

(hn-ctxt (is-mtx N ) cf cfi ∗ hn-ctxt is-path p pi ∗ hn-val Id cap capi)
(?c::? ′c Heap) ?Γ ?R
(augment-cf-impl cf p cap)

unfolding augment-cf-impl-def augment-edge-impl-def APP-def
using [[id-debug , goals-limit = 1 ]]
by sepref-keep

concrete-definition (in −) augment-imp uses Edka-Impl .augment-imp-impl
prepare-code-thms (in −) augment-imp-def

lemma augment-impl-refine[sepref-fr-rules]:
(uncurry2 (augment-imp N ), uncurry2 (PR-CONST augment-cf-impl))
∈ (is-mtx N )d ∗a (is-path)k ∗a (pure Id)k →a is-mtx N

apply rule
apply (rule hn-refine-preI )

apply (clarsimp simp: uncurry-def hn-list-pure-conv hn-ctxt-def split : prod .split)
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apply (clarsimp simp: pure-def )
apply (rule hn-refine-cons ′[OF - augment-imp.refine[OF this-loc] -])
apply (simp add : hn-list-pure-conv hn-ctxt-def )
apply (simp add : pure-def )
apply (simp add : hn-ctxt-def )
apply (simp add : pure-def )
done

lemma [def-pat-rules]:
Network .augment-cf-impl$c ≡ UNPROTECT augment-cf-impl
by simp

sepref-register PR-CONST augment-cf-impl
capacity-impl i-mtx ⇒ path ⇒ capacity-impl ⇒ capacity-impl i-mtx nres

sublocale bfs!: Impl-Succ
snd
TYPE (i-ps × capacity-impl i-mtx )
λ(am,cf ). rg-succ2 am cf
hn-prod-aux is-am (is-mtx N )
λ(am,cf ). succ-imp N am cf
unfolding APP-def
apply unfold-locales
apply constraint-rules
apply (simp add : fold-partial-uncurry)
apply (rule hfref-cons[OF succ-imp-refine[unfolded PR-CONST-def ]])
by auto

definition (in −) bfsi ′ N s t psi cfi
≡ bfs-impl (λ(am, cf ). succ-imp N am cf ) (psi ,cfi) s t

lemma [sepref-fr-rules]:
(uncurry (bfsi ′ N s t),uncurry (PR-CONST bfs2-op))
∈ is-amk ∗a (is-mtx N )k →a hn-option-aux is-path

unfolding bfsi ′-def [abs-def ]
using bfs.bfs-impl-fr-rule
apply (simp add : uncurry-def bfs.op-bfs-def [abs-def ] bfs2-op-def )
apply (clarsimp simp: hfref-def all-to-meta)
apply (rule hn-refine-cons[rotated ])
apply rprems
apply (sep-auto simp: pure-def )
apply (sep-auto simp: pure-def )
apply (sep-auto simp: pure-def )
done

lemma [def-pat-rules]: Network .bfs2-op$c$s$t ≡ UNPROTECT bfs2-op by
simp

sepref-register PR-CONST bfs2-op
i-ps ⇒ capacity-impl i-mtx ⇒ path option nres
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schematic-lemma edka-imp-tabulate-impl :
notes [sepref-opt-simps] = heap-WHILET-def
fixes am :: node ⇒ node list and cf :: capacity-impl graph
notes [id-rules] =

itypeI [Pure.of am TYPE (node ⇒ node list)]
notes [sepref-import-param] = IdI [of am]
shows hn-refine (emp) (?c::? ′c Heap) ?Γ ?R (edka5-tabulate am)
unfolding edka5-tabulate-def
using [[id-debug , goals-limit = 1 ]]
by sepref-keep

concrete-definition (in −) edka-imp-tabulate
uses Edka-Impl .edka-imp-tabulate-impl

prepare-code-thms (in −) edka-imp-tabulate-def

lemma edka-imp-tabulate-refine[sepref-fr-rules]:
(edka-imp-tabulate c N , PR-CONST edka5-tabulate)
∈ (pure Id)k →a hn-prod-aux (is-mtx N ) is-am
apply (rule)
apply (rule hn-refine-preI )
apply (clarsimp

simp: uncurry-def hn-list-pure-conv hn-ctxt-def
split : prod .split)

apply (rule hn-refine-cons[OF - edka-imp-tabulate.refine[OF this-loc]])
apply (sep-auto simp: hn-ctxt-def pure-def )+
done

lemma [def-pat-rules]:
Network .edka5-tabulate$c ≡ UNPROTECT edka5-tabulate
by simp

sepref-register PR-CONST edka5-tabulate
(node ⇒ node list) ⇒ (capacity-impl i-mtx × i-ps) nres

schematic-lemma edka-imp-run-impl :
notes [sepref-opt-simps] = heap-WHILET-def
fixes am :: node ⇒ node list and cf :: capacity-impl graph
notes [id-rules] =

itypeI [Pure.of cf TYPE (capacity-impl i-mtx )]
itypeI [Pure.of am TYPE (i-ps)]

shows hn-refine
(hn-ctxt (is-mtx N ) cf cfi ∗ hn-ctxt is-am am psi)
(?c::? ′c Heap) ?Γ ?R
(edka5-run cf am)

unfolding edka5-run-def
using [[id-debug , goals-limit = 1 ]]
by sepref-keep
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concrete-definition (in −) edka-imp-run uses Edka-Impl .edka-imp-run-impl
prepare-code-thms (in −) edka-imp-run-def

thm edka-imp-run-def
lemma edka-imp-run-refine[sepref-fr-rules]:

(uncurry (edka-imp-run s t N ), uncurry (PR-CONST edka5-run))
∈ (is-mtx N )d ∗a (is-am)k →a is-rflow N

apply rule
apply (clarsimp

simp: uncurry-def hn-list-pure-conv hn-ctxt-def
split : prod .split)

apply (rule hn-refine-cons[OF - edka-imp-run.refine[OF this-loc] -])
apply (sep-auto simp: hn-ctxt-def )+
done

lemma [def-pat-rules]:
Network .edka5-run$c$s$t ≡ UNPROTECT edka5-run
by simp

sepref-register PR-CONST edka5-run
capacity-impl i-mtx ⇒ i-ps ⇒ i-rflow nres

schematic-lemma edka-imp-impl :
notes [sepref-opt-simps] = heap-WHILET-def
fixes am :: node ⇒ node list and cf :: capacity-impl graph
notes [id-rules] =

itypeI [Pure.of am TYPE (node ⇒ node list)]
notes [sepref-import-param] = IdI [of am]
shows hn-refine (emp) (?c::? ′c Heap) ?Γ ?R (edka5 am)
unfolding edka5-def
using [[id-debug , goals-limit = 1 ]]
by sepref-keep

concrete-definition (in −) edka-imp uses Edka-Impl .edka-imp-impl
prepare-code-thms (in −) edka-imp-def
lemmas edka-imp-refine = edka-imp.refine[OF this-loc]

end

export-code edka-imp checking SML-imp

9.7 Correctness Theorem for Implementation

We combine all refinement steps to derive a correctness theorem for the
implementation

context Network-Impl begin
theorem edka-imp-correct :

assumes VN : Graph.V c ⊆ {0 ..<N }
assumes ABS-PS : is-adj-map am
shows
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<emp>
edka-imp c s t N am

<λfi . ∃Af . is-rflow N f fi ∗ ↑(isMaxFlow f )>t

proof −
interpret Edka-Impl by unfold-locales fact

note edka5-refine[OF ABS-PS ]
also note edka4-refine
also note edka3-refine
also note edka2-refine
also note edka-refine
also note edka-partial-refine
also note fofu-partial-correct
finally have edka5 am ≤ SPEC isMaxFlow .
from hn-refine-ref [OF this edka-imp-refine]
show ?thesis

by (simp add : hn-refine-def )
qed

end
end

10 Combination with Network Checker

theory Edka-Checked-Impl
imports NetCheck EdmondsKarp-Impl
begin

In this theory, we combine the Edmonds-Karp implementation with the
network checker.

10.1 Adding Statistic Counters

We first add some statistic counters, that we use for profiling

definition stat-outer-c :: unit Heap where stat-outer-c = return ()
lemma insert-stat-outer-c: m = stat-outer-c � m

unfolding stat-outer-c-def by simp
definition stat-inner-c :: unit Heap where stat-inner-c = return ()
lemma insert-stat-inner-c: m = stat-inner-c � m

unfolding stat-inner-c-def by simp

code-printing
code-module stat ⇀ (SML) 〈

structure stat = struct
val outer-c = ref 0 ;
fun outer-c-incr () = (outer-c := !outer-c + 1 ; ())
val inner-c = ref 0 ;
fun inner-c-incr () = (inner-c := !inner-c + 1 ; ())

end
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〉

| constant stat-outer-c ⇀ (SML) stat .outer ′-c ′-incr
| constant stat-inner-c ⇀ (SML) stat .inner ′-c ′-incr

schematic-lemma [code]: edka-imp-run-0 s t N f brk = ?foo
apply (subst edka-imp-run.code)
apply (rewrite in ◊ insert-stat-outer-c)
by (rule refl)

schematic-lemma [code]: bfs-impl-0 t u l = ?foo
apply (subst bfs-impl .code)
apply (rewrite in ◊ insert-stat-inner-c)
by (rule refl)

10.2 Combined Algorithm

definition edmonds-karp el s t ≡ do {
case prepareNet el s t of

None ⇒ return None
| Some (c,am,N ) ⇒ do {

f ← edka-imp c s t N am ;
return (Some (c,am,N ,f ))

}
}
export-code edmonds-karp checking SML

lemma network-is-impl : Network c s t =⇒ Network-Impl c s t by intro-locales

theorem edmonds-karp-correct :
<emp> edmonds-karp el s t <λ

None ⇒ ↑(¬ln-invar el ∨ ¬Network (ln-α el) s t)
| Some (c,am,N ,fi) ⇒
∃Af . Network-Impl .is-rflow c s t N f fi
∗ ↑(ln-α el = c ∧ Graph.is-adj-map c am
∧ Network .isMaxFlow c s t f
∧ ln-invar el ∧ Network c s t ∧ Graph.V c ⊆ {0 ..<N })

>t

unfolding edmonds-karp-def
using prepareNet-correct [of el s t ]
by (sep-auto

split : option.splits
heap: Network-Impl .edka-imp-correct
simp: ln-rel-def br-def network-is-impl)

context
begin
private definition is-rflow ≡ Network-Impl .is-rflow theorem
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fixes el defines c ≡ ln-α el
shows <emp> edmonds-karp el s t <λ

None ⇒ ↑(¬ln-invar el ∨ ¬Network c s t)
| Some (-,-,N ,cf ) ⇒
↑(ln-invar el ∧ Network c s t ∧ Graph.V c ⊆ {0 ..<N })
∗ (∃Af . is-rflow c s t N f cf ∗ ↑(Network .isMaxFlow c s t f ))>t unfolding

c-def is-rflow-def
by (sep-auto heap: edmonds-karp-correct [of el s t ] split : option.split)

end

10.3 Usage Example: Computing Maxflow Value

We implement a function to compute the value of the maximum flow.

lemma (in Network) am-s-is-incoming :
assumes is-adj-map am
shows E‘‘{s} = set (am s)
using assms no-incoming-s
unfolding is-adj-map-def
by auto

context RGraph begin

lemma val-by-adj-map:
assumes is-adj-map am
shows f .val = (

∑
v∈set (am s). c (s,v) − cf (s,v))

proof −
have f .val = (

∑
v∈E‘‘{s}. c (s,v) − cf (s,v))

unfolding f .val-alt
by (simp add : sum-outgoing-pointwise f-def flow-of-cf-def )

also have . . . = (
∑

v∈set (am s). c (s,v) − cf (s,v))
by (simp add : am-s-is-incoming [OF assms])

finally show ?thesis .
qed

end

context Network
begin

definition get-cap e ≡ c e
definition (in −) get-am :: (node ⇒ node list) ⇒ node ⇒ node list

where get-am am v ≡ am v

definition compute-flow-val am cf ≡ do {
let succs = get-am am s;
setsum-impl
(λv . do {
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let csv = get-cap (s,v);
cfsv ← cf-get cf (s,v);
return (csv − cfsv)
}) (set succs)
}

lemma (in RGraph) compute-flow-val-correct :
assumes is-adj-map am
shows compute-flow-val am cf ≤ (spec v . v = f .val)
unfolding val-by-adj-map[OF assms]
unfolding compute-flow-val-def cf-get-def get-cap-def get-am-def
apply (refine-vcg setsum-imp-correct)
apply (vc-solve simp: s-node)
unfolding am-s-is-incoming [symmetric, OF assms]
by (auto simp: V-def )

For technical reasons (poor foreach-support of Sepref tool), we have to add
another refinement step:

definition compute-flow-val2 am cf ≡ (do {
let succs = get-am am s;
nfoldli succs (λ-. True)
(λx a. do {

b ← do {
let csv = get-cap (s, x );
cfsv ← cf-get cf (s, x );
return (csv − cfsv)
};

return (a + b)
})

0
})

lemma (in RGraph) compute-flow-val2-correct :
assumes is-adj-map am
shows compute-flow-val2 am cf ≤ (spec v . v = f .val)

proof −
have [refine-dref-RELATES ]: RELATES (〈Id〉list-set-rel)

by (simp add : RELATES-def )
show ?thesis

apply (rule order-trans[OF - compute-flow-val-correct [OF assms]])
unfolding compute-flow-val2-def compute-flow-val-def setsum-impl-def
apply (rule refine-IdD)
apply (refine-rcg LFO-refine bind-refine ′)
apply refine-dref-type
apply vc-solve
using assms
by (auto

simp: list-set-rel-def br-def get-am-def is-adj-map-def
simp: refine-pw-simps)
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qed

end

context Edka-Impl begin
term is-am

lemma [sepref-import-param]: (c,PR-CONST get-cap) ∈ Id×rId → Id
by (auto simp: get-cap-def )

lemma [def-pat-rules]:
Network .get-cap$c ≡ UNPROTECT get-cap by simp

sepref-register
PR-CONST get-cap node×node ⇒ capacity-impl

lemma [sepref-import-param]: (get-am,get-am) ∈ Id → Id → 〈Id〉list-rel
by (auto simp: get-am-def intro!: ext)

schematic-lemma compute-flow-val-imp:
fixes am :: node ⇒ node list and cf :: capacity-impl graph
notes [id-rules] =

itypeI [Pure.of am TYPE (node ⇒ node list)]
itypeI [Pure.of cf TYPE (capacity-impl i-mtx )]

notes [sepref-import-param] = IdI [of N ] IdI [of am]
shows hn-refine

(hn-ctxt (is-mtx N ) cf cfi)
(?c::? ′d Heap) ?Γ ?R (compute-flow-val2 am cf )

unfolding compute-flow-val2-def
using [[id-debug , goals-limit = 1 ]]
by sepref-keep

concrete-definition (in −) compute-flow-val-imp for c s N am cfi
uses Edka-Impl .compute-flow-val-imp

prepare-code-thms (in −) compute-flow-val-imp-def

end

context Network-Impl begin

lemma compute-flow-val-imp-correct-aux :
assumes VN : Graph.V c ⊆ {0 ..<N }
assumes ABS-PS : is-adj-map am
assumes RG : RGraph c s t cf
shows
<is-mtx N cf cfi>

compute-flow-val-imp c s N am cfi
<λv . is-mtx N cf cfi ∗ ↑(v = Flow .val c s (flow-of-cf cf ))>t
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proof −
interpret rg !: RGraph c s t cf by fact

have EI : Edka-Impl c s t N by unfold-locales fact
from hn-refine-ref [OF

rg .compute-flow-val2-correct [OF ABS-PS ]
compute-flow-val-imp.refine[OF EI ], of cfi ]

show ?thesis
apply (simp add : hn-ctxt-def pure-def hn-refine-def rg .f-def )
apply (erule cons-post-rule)
apply sep-auto
done

qed

lemma compute-flow-val-imp-correct :
assumes VN : Graph.V c ⊆ {0 ..<N }
assumes ABS-PS : Graph.is-adj-map c am
shows
<is-rflow N f cfi>

compute-flow-val-imp c s N am cfi
<λv . is-rflow N f cfi ∗ ↑(v = Flow .val c s f )>t

apply (rule hoare-triple-preI )
apply (clarsimp simp: is-rflow-def )
apply vcg
apply (rule cons-rule[OF - - compute-flow-val-imp-correct-aux [where cfi=cfi ]])
apply (sep-auto simp: VN ABS-PS )+
done

end

definition edmonds-karp-val el s t ≡ do {
r ← edmonds-karp el s t ;
case r of

None ⇒ return None
| Some (c,am,N ,cfi) ⇒ do {

v ← compute-flow-val-imp c s N am cfi ;
return (Some v)
}

}

theorem edmonds-karp-val-correct :
<emp> edmonds-karp-val el s t <λ

None ⇒ ↑(¬ln-invar el ∨ ¬Network (ln-α el) s t)
| Some v ⇒ ↑(∃ f N .

ln-invar el ∧ Network (ln-α el) s t
∧ Graph.V (ln-α el) ⊆ {0 ..<N }
∧ Network .isMaxFlow (ln-α el) s t f
∧ v = Flow .val (ln-α el) s f )
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>t

unfolding edmonds-karp-val-def
by (sep-auto

intro: network-is-impl
heap: edmonds-karp-correct Network-Impl .compute-flow-val-imp-correct)

10.4 Exporting Code

export-code nat-of-integer integer-of-nat int-of-integer integer-of-int
edmonds-karp edka-imp edka-imp-tabulate edka-imp-run prepareNet
compute-flow-val-imp edmonds-karp-val
in SML-imp
module-name Fofu
file evaluation/fofu−SML/Fofu-Export .sml

end

11 Conclusion

We have presented a verification of the Edmonds-Karp algorithm, using a
stepwise refinement approach. Starting with a proof of the Ford-Fulkerson
theorem, we have verified the generic Ford-Fulkerson method, specialized it
to the Edmonds-Karp algorithm, and proved the upper bound O(V E) for
the number of outer loop iterations. We then conducted several refinement
steps to derive an efficiently executable implementation of the algorithm,
including a verified breadth first search algorithm to obtain shortest aug-
menting paths. Finally, we added a verified algorithm to check whether the
input is a valid network, and generated executable code in SML. The run-
time of our verified implementation compares well to that of an unverified
reference implementation in Java. Our formalization has combined several
techniques to achieve an elegant and accessible formalization: Using the
Isar proof language [23], we were able to provide a completely rigorous but
still accessible proof of the Ford-Fulkerson theorem. The Isabelle Refine-
ment Framework [16, 12] and the Sepref tool [14, 15] allowed us to present
the Ford-Fulkerson method on a level of abstraction that closely resembles
pseudocode presentations found in textbooks, and then formally link this
presentation to an efficient implementation. Moreover, modularity of refine-
ment allowed us to develop the breadth first search algorithm independently,
and later link it to the main algorithm. The BFS algorithm can be reused
as building block for other algorithms. The data structures are re-usable,
too: although we had to implement the array representation of (capacity)
matrices for this project, it will be added to the growing library of verified
imperative data structures supported by the Sepref tool, such that it can be
re-used for future formalizations. During this project, we have learned some
lessons on verified algorithm development:
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• It is important to keep the levels of abstraction strictly separated. For
example, when implementing the capacity function with arrays, one
needs to show that it is only applied to valid nodes. However, proving
that, e.g., augmenting paths only contain valid nodes is hard at this
low level. Instead, one can protect the application of the capacity
function by an assertion— already on a high abstraction level where
it can be easily discharged. On refinement, this assertion is passed
down, and ultimately available for the implementation. Optimally,
one wraps the function together with an assertion of its precondition
into a new constant, which is then refined independently.

• Profiling has helped a lot in identifying candidates for optimization.
For example, based on profiling data, we decided to delay a possible
deforestation optimization on augmenting paths, and to first refine the
algorithm to operate on residual graphs directly.

• “Efficiency bugs” are as easy to introduce as for unverified software.
For example, out of convenience, we implemented the successor list
computation by filter. Profiling then indicated a hot-spot on this
function. As the order of successors does not matter, we invested
a bit more work to make the computation tail recursive and gained
a significant speed-up. Moreover, we realized only lately that we had
accidentally implemented and verified matrices with column major or-
dering, which have a poor cache locality for our algorithm. Changing
the order resulted in another significant speed-up.

We conclude with some statistics: The formalization consists of roughly
8000 lines of proof text, where the graph theory up to the Ford-Fulkerson
algorithm requires 3000 lines. The abstract Edmonds-Karp algorithm and
its complexity analysis contribute 800 lines, and its implementation (includ-
ing BFS) another 1700 lines. The remaining lines are contributed by the
network checker and some auxiliary theories. The development of the theo-
ries required roughly 3 man month, a significant amount of this time going
into a first, purely functional version of the implementation, which was later
dropped in favor of the faster imperative version.

11.1 Related Work

We are only aware of one other formalization of the Ford-Fulkerson method
conducted in Mizar [19] by Lee. Unfortunately, there seems to be no publi-
cation on this formalization except [17], which provides a Mizar proof script
without any additional comments except that it “defines and proves correct-
ness of Ford/Fulkerson’s Maximum Network-Flow algorithm at the level of
graph manipulations”. Moreover, in Lee et al. [18], which is about graph
representation in Mizar, the formalization is shortly mentioned, and it is
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clarified that it does not provide any implementation or data structure for-
malization. As far as we understood the Mizar proof script, it formalizes an
algorithm roughly equivalent to our abstract version of the Ford-Fulkerson
method. Termination is only proved for integer valued capacities. Apart
from our own work [13, 21], there are several other verifications of graph
algorithms and their implementations, using different techniques and proof
assistants. Noschinski [22] verifies a checker for (non-)planarity certificates
using a bottom-up approach. Starting at a C implementation, the Au-
toCorres tool [10, 11] generates a monadic representation of the program
in Isabelle. Further abstractions are applied to hide low-level details like
pointer manipulations and fixed size integers. Finally, a verification condi-
tion generator is used to prove the abstracted program correct. Note that
their approach takes the opposite direction than ours: While they start at a
concrete version of the algorithm and use abstraction steps to eliminate im-
plementation details, we start at an abstract version, and use concretization
steps to introduce implementation details.

Charguéraud [4] also uses a bottom-up approach to verify imperative pro-
grams written in a subset of OCaml, amongst them a version of Dijkstra’s
algorithm: A verification condition generator generates a characteristic for-
mula, which reflects the semantics of the program in the logic of the Coq
proof assistant [3].

11.2 Future Work

Future work includes the optimization of our implementation, and the for-
malization of more advanced maximum flow algorithms, like Dinic’s algo-
rithm [6] or push-relabel algorithms [9]. We expect both formalizing the
abstract theory and developing efficient implementations to be challenging
but realistic tasks.
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