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Abstract. High-performance probabilistic model checkers like the Mod-
est Toolset’s mcsta follow the topological ordering of an MDP’s strongly
connected components (SCCs) to speed up the numerical analysis. They
use hand-coded and -optimised implementations of SCC-finding algo-
rithms. Verified SCC-finding implementations so far were orders of mag-
nitudes slower than their unverified counterparts. In this paper, we show
how to use a refinement approach with the Isabelle theorem prover to
formally verify an imperative SCC-finding implementation that can be
swapped in for mcsta’s current unverified one. It uses the same state
space representation as mcsta, avoiding costly conversions of the repre-
sentation. We evaluate the verified implementation’s performance using
an extensive benchmark, and show that its use does not significantly
influence mcsta’s overall performance. Our work exemplifies a practical
approach to incrementally increase the trustworthiness of existing model
checking software by replacing unverified components with verified ver-
sions of comparable performance.

1 Introduction

Probabilistic model checking [2] is an automated verification technique for
system models with randomness, such as Markov decision processes (MDPs).
Today’s probabilistic model checkers like PRISM [26], STORM [22], or the MOD-
EST TOOLSET [17] check MDPs of tens to hundreds of millions of states on
common desktop hardware in minutes. This performance is in part achieved by
using the “topological approach” [8,18] where the analysis treats every sub-MDP
corresponding to a strongly connected component (SCC) in the MDP’s state-
transition graph separately, solving them in their reverse topological order. The
most well-known such method is topological value iteration [8], but the same
idea applies to other approaches like using linear programming (LP) solvers,
with one linear program generated for each SCC.

As verification tools, probabilistic model checkers are critical software: we use
them in the design and evaluation of safety- and performance-critical systems,
and rely on them delivering correct results. Yet, they are not thoroughly verified
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themselves: they constitute large trusted code bases (the MODEST TOOLSET,
for example, consists of approx. 150k lines of C# code as of the writing of
this paper) developed ad-hoc in academic contexts. In addition to the danger of
implementation bugs, unsound algorithms have been used in probabilistic model
checking in the past [14], and published pseudocode contains mistakes (e.g. that
of the sound value iteration algorithm given in [41]). This calls for the application
of verification technology to the probabilistic model checkers themselves.

Replacing a complete model checker’s code base by a fully verified one,
keeping the original tool’s capabilities and performance, is a gigantic task. For
this reason, we today only see inefficient fully verified (non-probabilistic) model
checkers [6,44], and fully verified certifiers [43,45] that a posteriori establish the
correctness of an unverified model checker’s result. The latter, however, require
cooperation from the unverified tool to produce an additional compact certifi-
cate, and the existence of an efficient certificate verification procedure.

In this paper, we exemplify a third, practical approach with an emphasis on
performance: to incrementally replace an existing tool’s unverified code by veri-
fied implementations of verified algorithms, component-by-component. In order
to avoid performance regressions, the new components must use the original data
structures and interfaces, and the verifier must work with or generate efficient
imperative implementations. With every step, the trusted code base shrinks, and
the trustworthiness of the larger tool increases. At every step, the new verified
code can be thoroughly benchmarked and optimised.

We apply this approach to the mcsta probabilistic model checker of the MoD-
EST TOOLSET. It consists of components with well-defined interfaces, ranging
from input language semantics over state space exploration, graph-based pre-
computations [12], finding SCCs, end component elimination, and essential states
reduction [9] to the actual numeric solution methods like variants of value iter-
ation or linear programming. Of these components, we chose to replace the step
of finding SCCs that enables the topological solution methods. This is because
(i) it is a critical step for both the performance of the solution method and the
correctness of the final result, and (ii) we can reuse parts of an existing formal-
ization [30] of Gabow’s SCC-finding algorithm [13], allowing us to focus on the
performance and tool integration challenges.

To produce a verified algorithm that works directly on the imperative data
structures of mcsta, we use the Isabelle LLVM tool [32,34] that produces ver-
ified LLVM code using the Isabelle theorem prover [38]. To keep the abstract
algorithmic ideas separate from the actual implementations and data structures,
we use a stepwise refinement approach supported by the Isabelle Refinement
Framework [35], consisting of four conceptual steps: A correctness proof for gen-
eral path-based SCC algorithms (Sect.3), the use of Gabow’s particular data
structures (Sect. 4), the imperative implementation (Sect. 5), and the generation
of LLVM code (Sect. 6). The first two steps are an adaptation of the ideas of the
existing verified but slow functional implementation of Gabow’s algorithm [30]
to prepare for the imperative refinement. The last two steps are entirely new,
using new imperative data structures both internally and on the interface to
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mcsta. In particular, the algorithm needs to work with mcsta’s representation of
the graph (in terms of an MDP) and return the information about the found
SCCs to mcsta.

To assess the impact of replacing an unverified component of a probabilistic
model checker by a correct-by-construction version, we performed an extensive
experimental comparison using benchmarks from the Quantitative Verification
Benchmark Set [20] (Sect. 7). We found that, by using an imperative implemen-
tation and avoiding costly glue code and transformations or copies of the data
(e.g. of mcsta’s MDP data structures into a more generic graph representation),
our verified implementation outperforms the existing implementation of Tar-
jan’s algorithm in mcsta (being around twice as fast) and achieves performance
comparable to a manually-optimised unverified C implementation of Gabow’s
algorithm that we newly built as a comparison baseline (which on average is
only a bit faster). This means that we have replaced a unverified algorithm with
a faster, provably correct one.

Related Work. Only a few verified model checker implementations exist that
can be applied to significant problem sizes: CAVA [6,10] is a fully verified LTL
model checker, featuring a fragment of Promela [37] as input language. While
able to check medium-size examples in reasonable time, it is much slower than
highly optimized unverified tools such as SPIN [25]. Similarly, the fully veri-
fied MUNTA model checker [44] for timed automata is still significantly slower
than the highly optimized unverified counterpart UPPAAL [5], and the verified
IsaSAT solver [11] placed last in the SAT2022 competition [4].

On the other hand, the results of model checking can be certified by a for-
mally verified certifier. This requires the existence of a practical certification
mechanism, and the support of the unverified model checker. Formally verified
certification tools that work on significant problem sizes exist for e.g. timed
automata model checking [43,45] and SAT solving [23,33].

There are some formalizations of Markov decision processes and value itera-
tion in Isabelle/HOL [24] and Coq [42]. However, there is no documentation on
extracting executable code from these proofs. Additionally, there is a formaliza-
tion of value iteration for discounted expected rewards [36] which extracts Stan-
dard ML code from the proof. Strongly connected component finding algorithms
have been formally verified with various tools, including Isabelle/HOL [30],
Coq [39], and Why3 [7]. However, [39] and [7] do not report on extracting exe-
cutable code from their verification at all, and the code extracted from [30] is
roughly one order of magnitude slower than a textbook reference implementation
of the same algorithm in Java.

Our replacement of mcsta’s unverified SCC-finding implementation by a ver-
ified one is part of a larger effort to improve the trustworthiness of the tool, in
which we already developed an efficient sound variant of value iteration [19] and
proposed a way to avoid floating-point rounding errors with limited performance
impact [16], but did not yet apply verification to the tool itself.
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2 Preliminaries

R is the set of real numbers; [0, 1] C R denotes the real numbers from 0 to 1. For
aset X, 2% is its power set. A (discrete) probability distribution over a set X is
a function p: X — [0, 1] where support(u) = {z € X| p(x) > 0} is finite and
> wesupport(u) 11(®) = 1. Dist(X) is the set of probability distributions over X.

2.1 Markov Decision Processes

Our work is implemented in the context of the probabilistic model checker mcsta.
One of the core problems in probabilistic model checking are reachability prop-
erties, where an optimal solution regarding some metric towards reaching a set
of target states is computed in a Markov decision process (MDP) [40].

Definition 1. An MDP is a triple M = (S, sy, prob) of a finite set of states S
with initial state s, € S and a transition function prob: S — 2P,

An MDP moves in discrete time steps. In each step, from current state s, one
distribution p € prob(s) is chosen non-deterministically and sampled to obtain
the next state. A policy resolves the non-determinism in an MDP by choosing
one probability distribution for each state. The goal is to find a policy that
maximizes,/minimizes the probability or expected reward to reach a target state.

Ezxample 1. Figure 1 shows an MDP with states sg to s3 where sg is the initial
state. Using distribution «, we go to state s; with probability 0.3 and to sy with
probability 0.7. Using distribution 3, we go to state sg and s; with probability
0.9 and 0.1 respectively. The maximal probability to reach state s; is 1, achieved
by the policy that chooses 8 until we reach s;, where it chooses a indefinitely.

A graph is a pair G = (V, E) of a set of vertices V' connected by edges E C V x V.
E* is the reflexive transitive closure of F.

Definition 2. A strongly connected component (SCC) of G is a set U C V
such that U x U C E* (it is strongly connected) and VU’ 2 U: -(U' x U’ C E*)
(it is mazimal).

Given M = (S, sy, prob), let Epq < {(s,5") | I € prob(s): s’ € support(u) }.
Then (S, Erq) is the graph of M. U is an SCC of M iff U is an SCC of (S, Enq).
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Example 2. Figure 2 shows the graph G, of MDP M, from Fig. 1. It also shows
the three SCCs of G, outlined in green, blue, and red.

The optimal value (probability or expected reward) of a state (and consequently
the decision of the optimal policy) only depends on the optimal values of its suc-
cessors. Decomposing the MDP into its SCCs and solving the SCCs in reverse
topological order guarantees that each state’s successors have either been solved
to (e-)optimality before, or are being considered in the current SCC. This app-
roach breaks down the MDP into smaller subproblems; if the MDP consists of
many similarly sized SCCs, the computation uses much less time and memory
than naive methods [8,18]. mcsta currently implements topological LP solving.

2.2 Program Verification Based on Refinement in Isabelle/HOL

To comprehend (and verify) the optimized implementation of an algorithm, we
use a stepwise refinement approach. We start with the abstract algorithmic idea
describing the essence of the algorithm on the level of manipulating mathematical
objects like maps and sets. We then use a series of refinement steps to gradually
replace the abstract mathematical objects by actual data structures until we
arrive at the executable implementation. In the process, we prove that each
refinement step preserves correctness. The steps are typically independent, which
helps to keep the overall proof structured and manageable. Different components
can be refined independently (e.g. separating data and program refinement), to
be assembled at a later stage or used in other algorithms, without re-playing the
intermediate steps. A good refinement design is key to a manageable proof, and,
as all design choices, requires experience and involves trade-offs.

The Isabelle Refinement Framework (IRF) [35] implements stepwise refine-
ment on top of Isabelle/HOL. It provides a formal notion of programs and refine-
ment, tools like a verification condition generator that facilitate proving, and a
library of reusable verified data structures. Its recent LLVM backend [32] sup-
ports the generation of LLVM bytecode. In the following, we give a brief overview
of the IRF. For an in-depth description, we refer the reader to [32,35].

Programs are modelled by shallow embedding into a nondeterminism error
monad ‘a nres = fail | spec (‘a = bool). Intuitively, a program fails (fail) or
nondeterministically returns a result that satisfies P (spec P). The return z
combinator returns the only result z, and the bind combinator do {z—m; f z}
selects a result x of m, and then executes f x. A program fails if there is at
least one nondeterministic possibility to fail. Thus, do {z«m; f z} fails if m
fails, or if f fails for at least one possible result of m. The assert P combinator
does nothing (i.e. returns a unit value) if P holds, and fails otherwise. The IRF
provides further combinators and syntax for control flow.

A (concrete) program m’ refines an (abstract) program m (written m’ < m)
if every possible result of m’ is a result of m. Also, m’ < fail and fail £ spec P:
the intuition is to assume that the abstract program does not fail, i.e. the concrete
program can do anything in case the abstract program fails. We lift a refinement
relation R between concrete and abstract data to program m using |} R m, which
returns all concrete results that are related to some abstract result of m.
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Ezample 8. We use the IRF to refine a pop operation of a stack:

(x1x)

ssel ::'a set = (‘a X 'a set) nres; lpop ::'a list = (‘a X 'a list) nres

ssel s = do { assert s£{}; spec A (,5). z€s A §=s—z }

Ipop | = do { assert I#[]; return (last [, butlast I)}

‘a da = 64 word x 64 word X 'a ptr (x length, capacity, pointer to array *)

apop ::'c da = (‘¢ x 'c da) UM

apop (lc,a) = do { l—ll_sub | 1; p—li_ofs_ptr a I; r—Ili_load p; return (r,(l,c,a)) }

(x2x)

Ris ::'a list X 'a set; Ris = { (ws,set xs) | zs. distinct zs }

(l,s) € Ris = lpop I <|(Id x Rys) (ssel's) (short: lpop,ssel : Ris — Id X Ris )
Agq 2 ('a='c = assn) = 'a list = 'c da = assn; (x definition elided )

apop, lpop : (Age €) — e X Agq e

(#3%)

Ager 2 (la = 'c = assn) = 'a set = 'c da = assn; Aser € = Aga € O Ry

apop, ssel : (Aset e)d — e X Ager €

First (1) we define functions to remove an arbitrary element from a non-empty
set (ssel) and to pop the last entry of a non-empty list and dynamic array
(Ipop/apop). Then (2) we define the refinement relation Rj; between distinct
lists and sets. We show for related arguments (I,s)€ R;s that all possible outputs
of lpop [ and ssel s are related through Id x Ry, i.e. the first elements of the
pair are equal, and the second elements are related by R;s. We also introduce
a shortcut notation that elides the parameter names. We then define a refine-
ment between dynamic arrays and lists: Ay, e [ d is a separation logic assertion
that states that the dynamic array d contains the elements from list I, where
the elements themselves are refined by e!. The annotation ¢ on a parameter
refinement indicates that this refinement is no longer valid after execution of the
concrete program (typically the data has been destructively updated). Finally
(3) we compose (O) our assertion with a relation to show that apop refines ssel.

2.3 Existing Formalisation of Gabow’s Algorithm

Our work builds on an existing formalisation [30] of Gabow’s algorithm [13]. That
formalisation uses an early version of the IRF [29], targeting purely functional
SML code; it is an order of magnitude slower than a reference implementation in
Java. While incompatible with our goal of creating a fast drop-in replacement to
be used directly on the mcsta data structures, we can reuse parts of the existing
abstract formalisation. In the following sections, we indicate the parts we reused,
referring to the existing work as the original formalization.

! Note that the order of the refinement relations ((‘a x'c) set) is different from the
assertions (‘c='a=-assn).
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3 Abstract Path-Based Algorithm

Gabow’s SCC-finding algorithm is a path-based algorithm: It maintains a path
from the start node that is extended in each iteration via an edge from the path’s
tail. When the edge leads back onto the path, the resulting cycle is collapsed
into a single node. When there are no more outgoing edges left, the last node
corresponds to an SCC and is removed from the path. We follow a similar design
approach as the original formalization: We first define a skeleton algorithm that
performs the DF'S, but discards the found SCCs. We then reuse parts of the skele-
ton to define an actual SCC-finding algorithm. This technique makes the proof
more modular, factoring out general properties of Gabow-style algorithms [30].

3.1 The Skeleton Algorithm

1 skeleton = do {

2 let DO = {};

3 r« foreach outer_invar VO (Av0 DO. do {

4 if v0¢ DO then do {

5 s «— initial v0 DO;

6 (p,D,pE,vE) «— while (invar v0 D0) (A(p,—). p # [) (A(p,D,pE,vE). do {
7 (vo,(p,D,pE,vE)) «— select_edge (p,D,pE,vE);

8 case vo of

9 None = do { return (pop (p,D,pE,vE)) }

10 | Some v = do {

11 if v € |J(set p) then do { return (collapse v (p,D,pE,vE)) }
12 else if v¢ D then do { push v (p,D,pE,vE) }
13 else do { return (p,D,pE,vE) }

14 }

15 }) s

16 return D

17 } else return DO

18 1) Do;

19 return r}

The outer loop of the skeleton (1. 3) iterates over all nodes V0. The inner loop
performs a DFS, maintaining a program state consisting of a segmented path
p ::'v set list, the “done” nodes D :: v set, pending edges pFE :: 'v multiset, and
visited edges vE :: 'v set. The operations perform changes to that state, e.g.

definition collapse v (p,D,pE,vE) =
let i=idz_of p v; p = take i p @ [\ J(set (drop i p))] in (p,D,pE,vE)

where @ appends two lists, idz_of p v returns the index of v in p (which we
prove to exist) and take i p/drop i p yields/discards the first i elements of p. In
essence this operation combines all segments from index i onwards. For the other
operations we refer to the supplementary material.

In each step, the skeleton selects a pending edge from the last segment of
the path (1. 7). If no such edge exists (1. 9), the last segment is an SCC. In the
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Fig. 3. The state of the path based SCC algorithm before and after a collapse step.
The dotted nodes and edges are not yet visited by the algorithm.

skeleton, we pop the last segment from the path. Later, we will perform some
extra work to mark the found SCC. Otherwise (1. 10), if the selected edge goes
back into the path (1. 11), we have found a cycle, and collapse all its nodes into
a single segment. If the edge leads to a new node (1. 12), we add this node to the
current path. Otherwise (1. 13), the edge leads to a done node and we ignore it.

Ezample 4. Figure 3 visualizes a step in the program where p = [{0}, {1, 3}, {2}],
D ={}, pE ={(1,4),(2,3)} and vE = {(0,3), (3,1), (1, 3),(1,2)}. Then, explor-
ing e.g. back edge (2,3) collapses all segments in that cycle. Now p = [{0},
{1,3,2}], D = {}, pE = {(1,4)} and vE = {(0,3),(3,1),(1,3), (1,2), (2,3)}.

The original formalization only supports successor functions that return a set of
nodes. However, the successor function on the graph data structure of mcsta is
more efficient if we allow duplicates in the list of successors. This can cause the
same edge to be explored multiple times, which, however, does not matter as
the target node is marked as done on successive explorations. To later allow this
implementation, we had to change pFE to be a multiset of pending edges in the
abstract algorithm. This revealed a problem in the original formalization: the set
of visited edges was defined implicitly, but a multiset of pending edges does not
allow for such implicit representation. We solved this by explicitly introducing
vE into the abstract state, which even simplified the existing proofs. Note that
vE is a ghost variable, i.e. no other parts of the state depend on it. Thus, we can
easily eliminate it in the next refinement step (Sect. 4.1).

Invariants. To define the invariants, we use Isabelle’s locale mechanism [3]
that allows us to define named hierarchical contexts with fixed variables and
assumptions. First, we define a set of initial nodes V0. Then, we define finite
graphs as an adjacency function F_succ that maps each node to a list of adjacent
nodes and an according abstraction E_« that returns the set of edges induced
by E_succ:

locale fr_graph = fixes V0 :: v set and E_succ :: ("v ="v list)
assumes I: finite (E_a* ““ V0)

The invariant of the outer loop extends fr_graph, adding the loop’s state (it,D):

locale outer_invar_loc = fr_graph V0 E_succ
for V0 and E_succ :: ('v ='v list) + fixes it :: 'v set and D :: 'v set
assumes I: itCV0and 2: VO — it C D
and 8: DCE o*“V0and 4: E_a‘“D C D
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The invariant guarantees that (1) the nodes we still have to iterate over (it) are
in V0, (2) the nodes we already have iterated over (V0 — it) are done, (3) done
nodes are reachable, and (4) done nodes can only reach other done nodes. The
invariant ¢nvar_loc of the inner loop is defined using the same locale construct,
but with more extensions. The invariant states that: all nodes within a segment
of path p are mutually reachable and segments are topologically ordered; done
nodes remain done, are reachable, and only reach other done nodes; edges in pF
start in p; and visited edges lead to segments that are topological successors of
the source segment. Furthermore, we added restrictions to the new set of visited
edges. These state that: edges from done nodes are visited; visited edges only
exist between done and path nodes; and unvisited edges from p are pending.

The termination proof of the original formalization was more involved. But
using vF we were able to simplify it significantly: Each iteration of the inner loop
decreases the lexicographic ordering of the number of unvisited edges, pending
edges, and length of the path. Using the IRF’s verification condition generator
(VCG), we prove that every operation preserves the invariant and decreases the
termination ordering. Equipped with these lemmas, the VCG can automatically
show that the skeleton terminates and preserves the invariant.

3.2 Abstract SCC-Finding Algorithm

We can then refine the algorithm to also compute a list I:/v set list of the SCCs
in topological order. Formally:

sce_set = {sce. is_scc E_a sce N sce C E_a* ““ VO}
ordered | = (Vij. i <j— j <lengthl — Ui x UjNn E_a* ={})
compute_SCC_spec = spec (Al. set | = scc_set A\ ordered )

For this, we add a list [ of discovered SCCs to the algorithm’s state and amend the
pop function to add the identified SCC to that list. We call that new algorithm
compute_SCC. To prove it correct, we extend the invariant of both the outer and
inner loop by the statement that [ contains exactly the SCCs of the done part
of the graph, in topological order (definition elided). With this extension, and
reusing the lemmas we have already proved for the skeleton, it is straightforward
to show:

theorem compute_SCC_correct: compute_SCC < compute_SCC_spec

4 Formalizing Gabow’s Algorithm

The main challenge of path-based approaches is finding efficient data structures
to capture the segments. Gabow’s data structure exploits the behaviour of the
DF'S: it stores the path as a stack of nodes, in the order they are visited. Adjacent
nodes in the path are in the same SCC or in a topological successor/predecessor,
such that a list of boundary indices can be used to encode the segmentation.
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4.1 The Skeleton of Gabow’s Algorithm

To refine our algorithm to use Gabow’s data structure, we again work in two
steps: We first refine the skeleton, then reuse this refinement for an actual SCC-
finding algorithm. Gabow’s data structure uses three stacks and a map to rep-
resent the state: The sequence stack S :: v list contains the states on the path
in the order they were first visited. The boundaries stack B :: nat list contains
natural numbers representing indices (or bounds) on stack S: all nodes on S
between subsequent entries in B form a segment, the last entry of B being the
start index of the last segment. The working list P :: ('"v x 'v list) list contains a
tuple of nodes on the path and a nonempty list of pending successors. Finally,
the node state map I :: v = node_state option maps nodes to node states:

datatype node_state = STACK nat | DONE nat

I v = None indicates that node v has not yet been discovered, Some (STACK 1)
indicates that v is on the sequence stack S at index i, and Some (DONE j)
indicates that v is done and belongs to SCC number j. Note that we do not use
j in the skeleton, but already add it to node_state for convenience.

Similarly to the abstract algorithm, the operations perform changes to the
concrete program state, e.g.

definition collapse_impl_fr (S,B,I,P) v = do {
i—idz_of_impl (S,B,I,P) v; assert (i+1 < length B);
let B = take (i+1) B; return (S,B,I.P) }

where idx_of_impl implements idz_of through a lookup using I and B. For the
other implementations we refer to the supplementary material.

Data Structure Invariants. The invariant oGS_invar makes sure that the
stack is empty on the outer loop. GS_invar for Gabow’s data structure remained
largely unchanged w.r.t. the original formalization: it ensures that B is sorted,
distinct, and points to a node on S; as long as there are nodes in S, there are
bounds in B starting at 0; I specifies that node v lies at index j in S; parent
nodes in P are also in S and have unprocessed successors; parent nodes in P
are distinct and sorted by their index in S. We added that S consists only of
reachable nodes (set S C (E_a* “V0)). While this is not required to show the
correctness of the data structure at this abstraction level, it comes in handy
to show that the length of the stack is bounded when we refine the indexes to
64-bit machine words in the next step. This is a recurring design pattern: some
assertions that are only required for a concrete refinement step are most easily
proved already on the abstract level.

Example 5. A possible encoding of Fig.3 in Gabow’s data structure is S =
[0,3,1,2], B=10,1,3], I: [0 — Some (STACK 0),1 — Some (STACK 2),2 —
Some (STACK 38),3 — Some (STACK 1),4 — None], P = [(1,[4]),(2,[3])]-
Then, back edge (2,3) is explored. We pop that entry in P, i.e. P = [(1,[4])].
I(3) = Some (STACK 1) so we pop B until we reach v < 1; B becomes [0, 1].
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Iterators. We implement P as a stack containing pairs of a node of the graph
and an iterator over its successors. We also considered implementing P as a
stack of stacks, where the inner stacks contain the unvisited successors. This
was slower in practice as it requires more memory allocations and deallocations.
While the iterator is an implementation detail of the data structure that we con-
sider in Sect. 5, we reason about iterators here because we expect that reasoning
about the link between the iterators and the graph in separation logic in the
next refinement layer would be more complex. We define an iterator as a tuple
of a node uw and an index ci representing the ci-th index of E_succ u. We let
succ_count u = length (E_succ u) and define five operations for the iterator:

index_begin u = (u,0) get_state = X\ (u,ci). u
successor_at = A\ (u,ci). (E_succ uw) ! ci
has_next = X (u,ci). Suc ci < succ_count u next_index = X (u,ci). (u,ci + 1)

index_begin creates an iterator pointing to the start of the iteration sequence;
get_state returns the source node of the iterator (in other words the state whose
successors we iterate over); successor_at returns the element that the iterator
points to; has_next checks if there exists a next element in the sequence (in our
case it checks there are unprocessed successors left); and next_index updates the
iterator to point to the next element in the sequence.

Refinement Relation. We connect Gabow’s data structure to the abstract
program state via an abstraction function:

seg_start i = Bli  seg_end i = if i+1 = length B then length S else B/(i+1)
seg i = {5l | j. seg_start i < jA j < seg_end i } TEMAINING_SUCCessors

= (X (u,ci). map (X ci. successor_at (u,ci)) [ci.. <succ_count u))
edges_of_succs = (A (u,ci). map (Av. (uw,v)) (remaining_successors (u,ci)))
p_a = map seg [0..<length B]  D_a = {v. 3i. I v = Some (DONE 1)}
pE_a = mset (concat (map edges_of_succs P))
GS_a = (p_a,D_a,pE_«)  0GS_a I={v. 3 i Iv=Some (DONE i)}

Here, map f xs returns a list in which each element in zs is mapped using f,
mset turns a list into a multiset and concat concatenates a list of lists into a
single list. This reconstructs the p, D, and pE parts of the abstract state from
the concrete state. The vFE part is a ghost variable and remains unconstrained
in the refinement relation. We define:

GS_rel = { (¢,(p,D,pE,vE)) . (¢,(p,D,pE)) € br GS_a (GS_invar VO E_succ) }
0GS_rel = br 0GS_a (0GS_invar VO E_succ)

Here, br a Inv = {(¢, @ ¢) | ¢. Inv ¢} builds a relation from an abstraction func-
tion and invariant.

Refinement Proof. We first show that the concrete operations refine the cor-
responding abstract ones, e.g.
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lemma collapse_refine: (s,(p,D,pE,vE))€GS_rel A (v,v)eld N\ vE|J(set p)
= collapse_impl_fr v s <} GS_rel (RETURN (collapse v/ (p,D,pE,vE)))

We proceed analogously for the other operations. This allows us to show that
the concrete inner loop refines the abstract inner loop. This works similarly for
the outer loop. Finally, we get the following theorem:

theorem skeleton_impl_refine: skeleton_impl < {JoGS_rel skeleton

4.2 Gabow’s SCC-Finding Algorithm

We implement the list [ of SCCs in the abstract algorithm by the length 7 of the
list and the node state map: the nodes of the SCC [!j have state Some (DONE j):

SCC_at I j= {v. I v= Some (DONE j)}
SCC_« (i,1) = map (SCC_at I) [0..<1]

locale GSS_invar_ext = ... +
assumes [: j < i= SCC_at [j# {}and 2: j > i= SCC_at I j = {}
assumes 3: finite (SCC_at I j) and 4: [ v # None = v € E_a*“V0

locale SCC_invar = GSS_invar_ext + assumes 5: I v # Some (STACK 1)
SCC_rel = br SCC_a SCC_invar

The invariant ensures that (1) every index j < ¢ is assigned to a non-empty
SCC, and (2) no indices j > ¢ have been assigned. Moreover, (3) SCCs are finite
and (4) only assigned to reachable nodes. During the outer loop, and for the
representation of the returned result (SCC_rel), we additionally know (5) that
the stack is empty.

The algorithm compute_SCC_impl adds the counter i to the skeleton algo-
rithm. Reusing the lemmas from refining the skeleton algorithm, it is straight-
forward to show

theorem compute_SCC_impl_refine:
compute_SCC_impl < | SCC_rel compute_SCC

That is, our new algorithm returns a pair (¢, I) that represents the topologically
ordered list of SCCs returned by the abstract algorithm compute_SCC.

5 Refinement to LLVM

We now make the step from our model of Gabow’s algorithm with abstract
data types (compute_SCC_impl) to a model of an LLVM implementation with
concrete LLVM data types along mcsta’s interface (Modest_compute_SCC_impl).
At this point, we depart from the path taken by the original formalisation.

Some of the data structures we refine to are standard and well-supported by
the IRF library: we represent nodes and indices as 64-bit words, use dynamic
arrays for the stacks S, B, and P in the algorithm state, and represent I by
an array map: an array of node states indexed by the nodes. In this section, we
highlight the two most interesting refinements.
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5.1 Node State

Recall (cf. Sect.4.1) that the node state is either None, STACK j, or DONE k,
where j is an index into the stack S, and k is the number of the SCC that the
node belongs to. For a graph with N nodes, we have j,k < N. This gives us
a straightforward encoding of node states into 64-bit words: None becomes —1,
STACK jbecomes j, and DONE k becomes k+ N. While certainly not optimal,
this encoding is easy to realise with the IRF standard library. We consider the
incurred graph size bound of N < 2%2 to be sufficient.

5.2 MDP Graph Data Structure

Performance-wise, it is crucial that our algorithm works on the state space
(MDP) data structure provided by mcsta, rather than copying to its own data
structure. mcsta encodes a state (node) as a 64-bit word < N, where N is the
number of states in the MDP. It represents the graph structure of the MDP by
three arrays St, Tr, and Br. Each element of St indicates an interval in the Tr
array, describing the outgoing transitions (i.e. distributions) of a state. Similarly,
Tr represents intervals in the Br array, describing the outgoing branches (i.e.
elements of the distribution’s support) of the transition. Finally, the Br array
contains the target nodes of the branches. The intervals in St and Tr are encoded
as a 20-bit length and 44-bit start index, packed into a single 64 bit word.

The iterator on the graph is independent of mcsta. We use a structure for the
iterator consisting of five 64-bit words (v, tc, te, be, be). v represents the state, tc
and te represent the current and last index of the iteration sequence to 7r and
be and be represent the current and last index to Br.

Ezample 6. By representing the bit-packing as a tuple of natural numbers we
have that St = [(2,0),(1,2),(1,3),(1,4)], Tr = [(2,0),(2,2),(2,4),(1,6),(1,7)]
and Br =[1,2,0,1,1,3,2,1] encodes G., from Fig. 2. State s; (at index 1) has 1
transition at index 2 (derived from St[1] = (1,2)). This transition has 2 branches
starting at index 4 (derived from Tr[2] = (2,4)). The successors of s; are thus s;
(as Br[4] = 1) and s3 (as Br[5] = 3). The iterator (v, tc, te, bc, be) = (1,0,1,1,2)
points to s3. We observe v = 1 which means we consider a successor of state s;.
We also observe that t¢c = 0 which means that the iterator points to transition
index 0. We also remember that the transition sequence for this state starts at
index 2 (St[1] = (1,2)) which we add to tc. So the index points to transition
2. Lastly, we observe that bc = 1, which is also relative. The branch sequence
for transition 2 starts at 4 (Tr[2] = (2,4)) which we add to be. So the iterator
points to branch 5. Since Br[5] = 3 the iterator points to state ss.

We have to implement the graph and the iterator with its operations from Sect. 4.
We choose a two-step approach, following a similar structure as in Example 3.
We model the graph as mg; :: (nat x nat) list X (nat x nat) list X nat list and
the iterator as it; :: (nat X nat X nat X nat X nat):

Rygi N 2 (mgi x ('v ='v list)) set; Rypg1t N = br mg_a (mg_invar N)
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Rit1 2 (ity x (v =" list)) set; Riyn = br it_a (it_invar)
succ_aty :: mgy = ity = nat nres; (definition elided)
succ_aty, successor—at : Rypg1 N — Ry — 1d

Refinement relation R,,41 N uses abstraction functions mg_o« and mg_invar (def-
initions elided) that encode that we have N states, indices are in bounds, and
intervals do not overlap, which ensures that the numbers of successors are
bounded by N. Refinement relation R;;; uses abstraction functions #t_a and
it_invar (definitions elided) which encode that the iterator is valid for the given
graph structure and is within bounds. Function succ_at; refines successor_at
w.r.t.Ryg1 and R, which we prove using the IRF’s VCG. The representation
of the result does not change (as indicated by the Id relation).

In the next step, we do the bit-packing (Asp), represent nodes by 64-bit words
(Asnat), and use arrays for the lists (Aqy-). The output list is refined by

Ay 2 nat X nat = 64 word = assn Agnar i nat = 64 word
Agrr 22 (la = "c = assn) = 'a list = 'c ptr = assn

mgs = 64 word ptr X 64 word ptr X 64 word ptr
Amg2 mgr = Mmyga = assn; AmgQ = Aarr Abp X Aarr Abp X Aarr Asnat

its = 64 word X 64 word X 64 word X 64 word X 64 word
Ait2 Z.tl = Z't2 = assn; Ait2 = Asnat X Asnat X Asnat X Asnat X Asnat

succ_aty :: mge = ity = 64 word da UM (def. elided, generated by Sepref)
succ_aty, succ_aty : Apmgo — Ajz — Asnat

The definition of succ_at; and the refinement lemma are synthesised by Sepref,
which implements a heuristics to apply data refinements automatically [31].

Finally, we combine the two steps to get the desired refinement from abstract
graphs to mcsta’s concrete MDP data structure, which we can then use to refine
our main algorithm:

Apg N :: ('v ="v list) = mga = assn
Apg = Apmgo O Ryt N Ay = Ayo O Ry

succ_aty, successors_at :: Apmg N — Ay — Aspar

We have omitted similar steps for the other iterator operations. For those, we
refer to the supplementary material.

5.3 Main Algorithm

We again use Sepref to synthesise an implementation of compute_SCC_impl
which we call Modest_compute_SCC_impl. We use the aforementioned refine-
ments to achieve this. We combine all refinements to relate it with the specifi-
cation compute_SCC_spec (cf. Sect. 3.2). The resulting theorem states that our
implementation is correct. As this is part of the trusted code base, we invested
some effort into making the theorem readable and eliminate unnecessary depen-
dencies on internal IRF concepts. At the end, we obtain a Hoare triple using
separation logic and refinement assertions for the input and output data types:
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theorem Modest_graph_SCC_impl_correct_htriple: llvm_htriple

(x1%) (Asnat N ni* Apg N E_suce Ei x N < 202)

(%2%) (Modest_compute_SCC_impl ni Ej)

(x3%) (Ari. EXS 1. Agnat N nix Apmg N E_succ Ei * N < 252 x A,y 1 ri *
(x4%) set r = scc_set A ordered )

The precondition (1) requires a signed 64-bit integer ni with value N :: nat, and
an MDP graph data structure F¢ representing an abstract successor function
E_succ with N nodes. We also assume that N is within the bounds incurred
by our encoding of node states (cf. Sect.5.1). Then (2) running our LLVM pro-
gram Modest_compute_SCC_impl ni Ei yields that (3) ni and the graph remain
unaltered, and (4) the result ri encodes a list r of SCCs in topological order.

Here, ri = (ii, Ii) contains the number of SCCs and an array that contains
the SCC number for each node. The assertion A,,; first maps ri to a natural
number and an actual map (Agp,), and then uses SCC_rel (cf. Sect. 4.2) to map
that to a list of SCCs:

Aout = (Asnat X Aam) 0 SCC_rel

6 Implementation in the Modest Toolset

We have now refined our specification into a model of LLVM in Isabelle/HOL.
As the last step in our approach, we extract executable LLVM code. We generate
a C header with type definitions to encapsulate our data so that it can be used
by LLVM as well as from C. This allows us to easily align the header with the
format that mcsta supports. The export_llvim command generates the LLVM
code of our SCC finding algorithm as well as the corresponding C header file:

export_llvim Modest_compute_SCC_impl is
void compute_SCC(my_size_t, modest_graph_t *, scc_result_t x) defines <
typedef wint6/_t my_size_t; typedef my_size_t node_t;
typedef wint6j_t shared_nat_t; typedef uint64_t xbitset_t;
typedef struct { shared_nat_t xstates; struct
{ shared_nat_t xtransitions; node_t xbranches; }; } modest_graph_t;
typedef struct { my_size_t num_sccs; node_t *scc_map;
} sce_result_t;
> file modest_gabow.ll

The nested anonymous struct in modest_graph_t reflects Isabelle/HOL’s mod-
elling of tuples as right-nested pairs. We compile the LLVM code into a shared
library and invoke the functions in this library from mcsta via C#’s “P /Invoke”
mechanism to use libraries following the C ABI. In mcsta, we added a command-
line option to choose the SCC algorithm to use for its topological LP implemen-
tation: the previous unverified C# implementation of Tarjan’s algorithm; a new,
manually implemented and optimized version of Gabow’s algorithm in C that we
added for a fairer performance comparison; and the new verified Isabelle LLVM
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implementation. This allows us to easily run tests and performance benchmarks
on the three algorithms.

The topological LP implementation in mcsta requires not only that the SCCs
are topologically sorted—which is a postcondition of our LLVM program—Dbut
also that the states are sorted by SCC. The latter is done on-the-fly by mcsta’s
Tarjan implementation, and currently by unverified “glue code” integrating the
new algorithms. We aim to either remove this requirement from mcsta, or adapt
the verified implementation to include the on-the-fly sorting of states as well.

7 Benchmarks

We benchmark our new SCC implementation to show that unverified and verified
code have similar performance. We do so by comparing the runtime of all three
algorithms now available in mcsta on a set of benchmark instances (combinations
of a parametrised system model, parameter values, and a property to check) from
the Quantitative Verification Benchmark Set (QVBS) [20].

7.1 Benchmark Selection

We consider three types of models from the QVBS for our benchmark set:
DTMC, MDP, and probabilistic timed automata (PTA) [28]. mcsta syntacti-
cally converts the latter to MDP via the digital clocks approach [27]. As SCC
algorithms have linear complexity, we need large state spaces to stress-test the
implementations. This means that memory is our main bottleneck. We thus
selected all DTMC, MDP, and PTA benchmark instances from the QVBS that
have between 1 and 100 million states. We found that models with fewer states
finish too quickly for reliable runtime measurements, while larger models lead to
out-of-memory situations on the machine we use.

A benchmark instance includes a property (e.g. a query for a maximum
reachability probability) to check. Since our focus is not on the actual numeric
algorithms computing the value of the property, but the SCC-finding prepro-
cessing step, we limit ourselves to one property per applicable model-parameters
combination, and instruct mcsta via its --exhaustive option to explore the full
state space. This leaves us with 39 different instances to benchmark.

7.2 Benchmarking Setup

All our benchmarks were performed on an Intel Core i7-12700H system with
32 GB of RAM running 64-bit Ubuntu Linux 22.04. We use the mobench utility
of the MODEST TOOLSET to run the benchmarks in an automated fashion based
on a JSON file specifying the benchmark instances to use and tools to execute.
For the latter, we specify three command line invocations for mcsta: one for our
new verified implementation of Gabow’s algorithm (“Isabelle Gabow”), one for
the manual C implementation of the same algorithm (“C Gabow”), and one for
the pre-existing C# implementation of Tarjan’s algorithm (“Tarjan”). Running
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mobench yields a CSV file with all measurements, and log files for each individual
benchmark run. We then use the MODEST TOOLSET’s moplot utility to generate
the scatter plots shown in the remainder of this paper. Each benchmark instance
results in one point (z,y) indicating that the z-axis task took x seconds to
complete while the y-axis task took y seconds for this instance. We note that
the “consensus” instance with parameter values K = 2, N = 8 ran out of memory,
and the “zeroconf” model caused the LP solver to time out on both its instances.
We thus omit these 3 failed instances in our plots.

7.3 Benchmarking Results

Figure4 compares the runtime of all three implementations of the core SCC-
finding algorithms, excluding any time used by the glue code described in Sect. 6.
Replacing the C# Tarjan implementation by the verified one of Gabow’s algo-
rithm appears to boost the performance, with benchmarks that are more than
twice as fast. We suspect the two most important reasons for the difference in
performance to be that the Tarjan implementation additionally sorts the MDP’s
states on-the-fly, and that we compare two different algorithms. However, we
have no reliable data to determine the influence on the performance for the lat-
ter, if it exists. On the other hand, the manual C implementation of Gabow’s
algorithm appears to perform similarly to the verified implementation, with the
manual implementation having a slight edge in general. This is expected as we
have more control over micro-optimizations in the manual implementation.
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Figure5 shows the same comparison but including the time spent in the
“glue code” that sorts the MDP’s states by SCC for the topological LP solver.
Recall that, for Tarjan’s algorithm in mcsta, this is done on-the-fly, so we can-
not measure it separately. The “fair” difference in performance for these two
implementations thus lies between what is shown in Figs. 4 and 5. As expected,
the runtime shifts in favour of the Tarjan implementation here, yet the perfor-
mance boost remains considerable, with speedups of up to two times. This is
because the glue code generally takes much less time than the actual SCC algo-
rithm. When comparing the manual C implementation to the verified Isabelle
LLVM implementation in this setting, the manual implementation still wins.
Both implementations use the same glue code, so effectively we see a fixed offset
added to both runtimes.

Finally, Fig. 6 compares the entire model checking procedure, including state
space exploration and LP solving (using mcsta’s default LP solver, which is cur-
rently GLOP, part of the Google OR Tools). We see that, in the grand scheme
of things, we maintain the performance of mcsta by replacing the existing unver-
ified Tarjan implementation by a verified implementation of Gabow’s algorithm.
We improved the performance of the SCC calculation, but since this is only a
small fragment of the model checking procedure it does not show in the figure.
It does however mean that we have replaced an important part of our model
checker without affecting the performance.

We see one outlier in Fig. 6, which is the instance of the “ij” model with
parameters num_tokens_var = 20. This is caused by a combination of two effects:
First, mcsta converts the probabilities in the model to floating-point numbers at
some point, which incurs a rounding error and may lead to the accumulation of
imprecisions on further processing. This instance works with very small numbers,
causing the imprecisions to accumulate along the topology, eventually resulting
in a linear program that the LP solver considers infeasible. This causes mcsta
to abort with a corresponding error message to the user?. Second, topological
orderings are not unique, and different implementations of different SCC-finding
algorithms can produce different orderings. For this benchmark instance, our
implementations of Tarjan’s and Gabow’s algorithms in fact produce different
orderings; and the one obtained by Tarjan’s finds an infeasible SCC much later
than the one of Gabow’s. As a result, the topological LP procedure—solving the
SCCs in reverse topological order—aborts much earlier on the Tarjan ordering.

Another notable benchmark instance was of the “zeroconf” model, where the
LP solver did not terminate for unknown reasons no matter which SCC-finding
algorithm we used (and which was therefore excluded from Figs.4, 5 and 6).
This highlights the need to verify code—especially for the core components such
as SCC finding or LP solving of safety-critical software like a model checker.

2 Despite the error, we did not exclude this instance from the figures because the
error is after the SCC computation, so mobench did not flag it as a problem—and
ultimately, this provides an interesting insight.
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8 Conclusion

We have replaced the SCC-finding algorithm of the state-of-the-art probabilistic
model checker mcsta, part of the MODEST TOOLSET, by a verified version, with-
out negatively affecting mcsta’s overall performance. We see this work as a first
step in gradually replacing the unverified components of a probabilistic model
checker by verified ones. While this approach does not immediately produce a
fully verified model checker, we can benchmark and optimize each verified com-
ponent to avoid performance regressions, while decreasing the trusted code base
of the model checker with each replacement step. To avoid expensive copying
of data representations at the interface between verified and unverified compo-
nents, the verified algorithms have to work on the same data structures as the
original model checker. To this end, we used a stepwise refinement approach to
obtain verified LLVM code which can readily be linked with mcsta.

Our verification is based on an existing verification of a rather inefficient
purely functional SCC algorithm, which we significantly extended: we general-
ized the abstract algorithm to support duplicate successor nodes, and clarified
the proof by introducing a ghost variable. Moreover, we added additional data
structure invariants that are required for in-bounds checks when refining to 64-bit
integers. Finally, we replaced the whole implementation by an efficient impera-
tive one. In particular, we accurately modelled mcsta’s graph data structure.

We embedded the resulting verified LLVM code into mcsta, and extensively
benchmarked it. Our verified algorithm in isolation is faster than the original
unverified one used by mcsta, so its use has no negative effect on mcsta’s overall
performance. To explore the optimisation potential for future work, we also
benchmarked a hand-optimized C implementation.

Future Work. The biggest bottleneck in the current implementation is the glue
code. We aim to remove this by means of a different encoding, by removing
from mcsta the need for states to be sorted by SCC, or by extending the verified
implementation by an on-the-fly sorting. Beyond that, our experiments suggest
that further optimizing our verified SCC implementation will only have a minute
effect on the overall performance. Thus, it is also worth looking at other com-
ponents of the model checker: Maximal end component finding algorithms [1]
are required for sound (i.e. guaranteed e-correct) MDP solution algorithms like
interval iteration [15]. As they require an SCC algorithm as a subroutine, they
are an obvious next candidate for verification. Interval iteration itself is a fur-
ther promising verification target, in particular its floating-point-correct vari-
ants [16]. To this end, we are already working on extending the IRF to reason
about floating-point numbers.

Data Awvailibility Statement. Our supplementary material, proofs, and the tools
used to obtain the results presented in this paper are archived and available at DOI
10.4121/aff9553-0e9e-4ec2-90e0-20c5b6152862 [21].
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