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Abstract7

The Bernoulli numbers Bk are a sequence of rational numbers that is ubiquitous in mathematics,8

but difficult to compute efficiently (compared to e.g. approximating π).9

In 2008, Harvey gave the currently fastest known practical way for computing them: his algorithm10

computes Bk mod p in time O(p log1+o(1) p). By doing this for O(k) many small primes p in parallel11

and then combining the results with the Chinese Remainder Theorem, one recovers the value of Bk12

as a rational number in O(k2 log2+o(1) k) time. One advantage of this approach is that the expensive13

part of the algorithm is highly parallelisable and has very low memory requirements. This algorithm14

still holds the world record with its computation of B108 .15

We give a verified efficient LLVM implementation of this algorithm. This was achieved by16

formalising the necessary mathematical background theory in Isabelle/HOL, proving an abstract17

version of the algorithm correct, and refining this abstract version down to LLVM using Lammich’s18

Isabelle-LLVM framework, including many low-level optimisations. The performance of the resulting19

LLVM code is comparable with Harvey’s original unverified and hand-optimised C++ implementation.20
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1 Introduction28

The Bernoulli numbers Bk are a sequence of rational numbers that is ubiquitous in mathem-29

atics and has connections to, among other things: the closed-form expression for
∑n

i=1 ik
30

(Faulhaber’s formula), regular primes and cyclotomic fields, the combinatorics of alternating31

permutations, the Riemann zeta function, the Euler–Maclaurin summation formula, and the32

Maclaurin series of the tangent and cosecant functions.33

Algorithmically, they are quite difficult to compute efficiently: Bernoulli himself only34

computed them up to B10 = 5/66 in the 17th century. Euler extended this up to B30 =35

8615841276005/14322 in 1748, Adams up to B124 in 1877 [1], and Lehmer up to B220 in36

1936 [22] – all by hand.37

Interestingly, it is often claimed that the first non-trivial computer program ever written38

was Lovelace’s Note G, published in 1843. This was an algorithm designed for Babbage’s39

Analytical Engine (which was sadly never built) to compute Bernoulli numbers.1 [9]40

1 Accounts differ on whether it was Lovelace or Babbage himself who authored the program, but the
prevailing view seems to be that it was Lovelace.
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23:2 Verifying an Efficient Algorithm for Computing Bernoulli Numbers

The first actual use of a digital computer (that we are aware of) in computing Bernoulli41

numbers (and the first big step forward after Lehmer in 1936) was when Knuth and Buckholtz42

gave a table of the values up to B836 in 1967 [16] (the numerator of B836 already has 142143

decimal digits). The first large jump to higher indices happened in 1996, when Fee and44

Plouffe [10] computed the single value B750,000 and a few others up to B5,000,000 in the45

following years, using an entirely different method based on approximating the Riemann46

zeta function. Unlike previous methods, this method allowed computing a value Bk without47

knowing the preceding values B0, . . . , Bk−1.48

In 2010, Harvey [14] computed the value of B108 using an entirely different method: He49

gave a fast algorithm to compute Bk modulo a prime p. This can then be run in parallel50

for many different primes, followed by an invocation of the Chinese Remainder Theorem to51

reconstruct the value of Bk as a rational number. While this approach is not asymptotically52

faster than the one based on the zeta function, it is much faster in practice, as Harvey53

demonstrated. To this day, Harvey’s algorithm is still the state of the art for practical54

computation of a single Bernoulli number, and his record of B108 still stands. His algorithm55

takes time O(k2 log2+o(1) k) to compute Bk.256

In this paper, we verify Harvey’s algorithm in Isabelle/HOL. Using the Isabelle Refinement57

Framework [21] and its parallel LLVM back end [20], our verification spans from a definition58

of Bernoulli numbers down to efficient LLVM code with performance comparable to Harvey’s59

original algorithm. As a side product, we also verified several other interesting numerical60

algorithms and number-theoretic results, such as prime sieves and fast Chinese remaindering.61

Our trusted code base consists of Isabelle, the Isabelle LLVM code generator, and the62

LLVM compiler. Only in the reconstruction phase, we additionally rely on correct integer63

operations in the GNU Multiple Precision Arithmetic Library [12].64

2 Mathematical Background65

The Bernoulli numbers Bk are defined as the coefficients of the exponential generating66

function B(z) = z/(exp(z)−1) or, following an alternative convention, z/(1− exp(−z)). The67

only difference between the two conventions is that the first one yields B1 = − 1
2 , and the68

second one yields B1 = 1
2 . We shall adopt the first convention. We use the Isabelle/HOL69

formalisation of Bernoulli numbers in the Archive of Formal Proofs (AFP) by Bulwahn and70

Eberl [4], which already contains many useful results on Bernoulli numbers.71

▶ Remark 1 (Notation). We shall write Nk and Dk for the numerator and denominator of72

Bk, respectively.73

Both in this presentation and in our Isabelle proofs, we use the notation x ≡n y. If x, y74

are integers, the meaning is that x mod n = y mod n or, equivalently, n | (x − y). The75

corresponding notation in Isabelle/HOL is [x = y] (mod n).76

We extend this definition to rational numbers in the natural way: We define a
b mod n =77

ab−1 mod n, where b−1 denotes a modular inverse of b modulo n. Note that this is only78

well-defined if the denominators are coprime to n. In Isabelle, we use the notation x qmod n79

for the infix operator ‘qmod’ and [x = y] (qmod n) for the congruence relation.80

The notation ordn(x) denotes the multiplicative order of the element x in the ring Z/nZ,81

i.e. the smallest positive integer k such that xk ≡n 1.82

2 For comparison, π has been approximated to trillions of digits and is much easier to compute (O(n log3 n)
time for n digits with Chudnovsky’s formula and binary splitting). [26]
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Lastly, as is common in number theory, any sum or product with an index variable p is83

meant to be interpreted with p being restricted to the prime numbers.84

The sequence of Bernoulli numbers shows an obvious pattern: if k > 1 then Bk = 0 if k85

is odd, Bk > 0 if k ≡4 2, and Bk < 0 if k ≡4 0. The vanishing of Bk for odd k > 1 is easily86

proved from the formal power series given above. The result about the sign of Bk for even87

k > 1 is obtained from a well-known connection between Bk and the Riemann zeta function:88

▶ Theorem 2 (The connection between Bk and ζ). If k > 0, we have:89

ζ(2k) =
∑
n≥1

n−2k = (−1)k+1(2π)2kB2k

2(2k)!90

Proof. We apply the Residue Theorem to the integral
∮

Rm
B(z)/z2k+1 dz. Here, Rm is a91

rectangle of width 2m and height 2(2m + 1)π centred around the origin. Letting m→∞92

establishes our claim. ◀93

The next important ingredient gives us an easy way to compute the denominator of Bk:94

▶ Theorem 3 (Von Staudt–Clausen theorem). If k ≥ 2 is even, then Dk =
∏

(p−1)|k p.95

We omit the proofs of this fact and of the following ones from this presentation for reasons96

of space. All results up to this point are part of the AFP entry by Bulwahn and Eberl [4].97

The core of Harvey’s algorithm are two closely related congruences involving Bernoulli98

numbers modulo a prime or a prime power:99

▶ Theorem 4 (Voronoi’s congruence). Let k ≥ 2 be even and let n > 0 and a be coprime100

integers. Then:101

(ak − 1)Nk ≡n kak−1Dk

∑
1≤m<n

mk−1
⌊ma

n

⌋
102

▶ Theorem 5 (Kummer’s congruence). Let p be a prime number and e ≥ 0 and k, k′ ≥ e + 1103

be integers with k, k′ even and k ≡pe−1(p−1) k′ and (p− 1) ∤ k. Then Bk/k ≡pe Bk′/k′.104

Proof. The Isabelle proofs closely follow Cohen [5, Prop. 9.5.20, Cor. 9.5.25] and are relatively105

straightforward. ◀106

These congruences were not previously available in the AFP and were formalised in the107

course of this project [7].108

By setting e := 1 and k′ := k mod (p − 1) in Kummer’s congruence, we obtain the109

range-reduction congruence Bk ≡p k/k′Bk′ . Thus we can w.l.o.g. assume that 2 ≤ k ≤ p− 3.110

Voronoi’s congruence gives us a closed-form expression for computing Bk mod p. Harvey111

tweaks this congruence to obtain the following:112

▶ Theorem 6 (Voronoi’s congruence, Harvey’s first version). Let p ≥ 5 be prime and 2 ≤ k ≤113

p− 3 and 1 < c < p with ck ̸≡p 1. Then:114

Bk ≡p
k

1− ck

∑
1≤m<p

mk−1h(m) where h(m) = m− c((mc−1) mod p)
p

+ c− 1
2 ∈ Q115

Here, c−1 denotes a modular inverse of c modulo p. Note that h(m) is either an integer or a116

half-integer, depending on whether c is even or odd.117

We will later pick a convenient value for the parameter c in this theorem.118

CVIT 2016
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3 Computing Nk Modulo a Prime119

The main part of Harvey’s algorithm is to gather ‘modular information’, i.e. to compute120

Bk mod p for many different primes p. Note that since p | Dk if (p−1) | k, the term Bk mod p121

is actually undefined if (p− 1) | k, which is why Harvey does not use such primes.122

We on the other hand decided to instead compute Nk mod p, which is well-defined for all123

primes. Since Dk mod p is easy to compute via von Staudt–Clausen, it is easy to convert124

between Nk mod p and Bk mod p if the latter is well-defined.125

Depending on p and k, we use one of three different methods to compute Nk mod p:126

Case 1: If (p−1) ∤ k, we use a version of Theorem 6 to compute Bk mod p and then multiply127

the result with Dk mod p to obtain Nk mod p. To avoid big-integer arithmetic, we do128

the latter part by simply multiplying with q mod p for every prime q with (q − 1) | k.129

There are two sub-cases for how we compute Bk mod p:130

Case 1.1 If 2k ̸≡p 1, we use a highly optimised version of Theorem 6 which we refer to131

as harvey_fastsum in our Isabelle formalisation.132

Case 1.2 If 2k ≡p 1, we fall back to Harvey’s Algorithm 1, which is a much less optimised133

version of Theorem 6. In our Isabelle formalisation, we refer to this as harvey_slowsum.134

Case 2 If (p − 1) | k, we recall that Bk mod p is not well-defined. However, it is easy to135

show that in this case we have Nk ≡p −Dk/p, which is easy to compute.136

It would in principle be possible to only use the primes that fall into Case 1.1 in order to137

keep the algorithm simpler and make it slightly faster. However, little is known about their138

distribution in practice, which makes it impossible to find an a-priori bound for how many139

primes we will need. Omitting Case 2 primes on the other hand, as Harvey does, is easy to140

do but brings no real benefit.141

Since Case 1.1 is by far the most frequent and most optimised one, we dedicate the142

remainder of this section to it. For Case 1.2, we refer the reader to Harvey’s paper.143

Harvey derives the congruence behind Case 1.1 from Theorem 6 by choosing c = 1
2 mod p.144

He then picks a generator g of Z/pZ (also referred to as a primitive root modulo p) and,145

with some elementary algebra and clever reindexing, derives the following:146

▶ Theorem 7 (The harvey_fastsum congruence). Let p ≥ 5 be prime with 2k ̸≡p 1 and147

2 ≤ k ≤ p − 3 and g a generator of Z/pZ. Let n = ordp(2)/2 if ordp(2) is even and148

n = ordp(2) otherwise. Let m = (p− 1)/(2n). Then:149

Bk ≡p
k

2(2−k − 1)
∑

0≤i<m

gi(k−1)
∑

0≤j<n

(2k−1)jσ(p, 2jgi) where σ(p, x) = sgn(p−2(x mod p))150

Empirically, m is small for most primes.3 Thus, just like Harvey, we focus on optimising the151

inner sum. We will process the inner sum in chunks of w′ blocks of size w. Currently, we152

pick w = w′ = 8 for hardware architecture reasons that will become clear later.153

Concretely, generalise 2k−1 to x and gi to s in the inner sum in Theorem 7 and let154

n1 = ⌊n/(ww′)⌋ and n2 = n mod (ww′). Then:155

n−1∑
0≤j<n

xjσ(p, 2js) =

 ∑
0≤j<n1ww′

xjσ(p, 2js)

 + xn1ww′

 ∑
0≤j<n2

xjσ(p, 2j+n1ww′
s)

156

That is, we split the sum into a ‘chunk-aligned’ part, and a remainder.157

3 The mean value of m for the first 106 odd primes is approximately 9.80. Less than 3% of these primes
have m ≥ 30.
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3.1 The Inner Sum in General158

For presentation purposes, we start by describing the algorithm for the remainder, which159

works for arbitrary n. The algorithm for chunk-aligned n uses the same implementation160

techniques with the addition of a tabulation optimisation, which we describe in Section 3.2.161

3.1.1 Abstract Algorithm162

We compute the sum
∑

0≤j<n xjσ(p, 2js) for arbitrary n with a simple loop with two local163

variables z and s′ that hold the current values of xj mod p and 2js mod p, respectively.164

We have σ(p, 2js) = σ(p, 2js mod p) = σ(p, s′) and also σ(p, s′) = −1 if p ≤ 2s′ and165

σ(p, s′) = 1 otherwise. This leads us to the following simple algorithm:166

167
1 harvey_restsum1 p x s n = doN {168

2 (_,_,acc) ← for 0 n (λj (z,s’,acc). doN {169

3 assert (s’ ∈ {0..<p}); let s’ = 2*s’;170

4 if s’<p then return (z*x,s’,acc+z) else return (z*x,s’-p,acc-z)171

5 }) (1,s,0);172

6 return acc }173174

This algorithm is phrased in the nondeterminism-error monad of the Isabelle Refinement175

Framework (IRF) [21]. It iterates over the values j = 0, 1, . . . , n− 1, maintaining the state176

(z, s′, acc) with the invariants z = xj and s′ = 2js mod p and acc ≡p

∑
0≤j′<j xj′

σ(p, 2j′
s).177

Given the ideas above, we can prove the algorithm correct:178

179
1 lemma harvey_restsum1_correct:180

2 assumes "s∈{0..<p}" "odd p"181

3 shows "harvey_restsum1 p x s n ≤ return ((
∑

j<n. x^j * σ p (2^j * s)))"182

4 (* proof elided *)183184

In words: assuming that 0 ≤ s < p and that p is odd, our algorithm refines the program185

that just returns the desired sum.186

If m and m′ are programs, the refinement relation m ≤ m′ means that every possible187

result of program m is also a possible result of program m′, or m′ fails. Moreover, m can188

only fail if m′ fails. In the above lemma, m′ is a deterministic program that does not fail,189

thus our algorithm does not fail and has either no results or the desired result. The case of190

having no results will only be excluded later, when we subsequently refine our algorithm to191

Isabelle-LLVM, which provably cannot have an empty set of results.192

An assertion fails if the asserted predicate does not hold. In the context of stepwise193

refinement, assertions are a valuable tool to organise proof obligations: during the proof of194

the algorithm, we know that s′ < p (it follows from the invariant s′ = 2js mod p). Making195

this knowledge explicit as an assertion allows us to use it later on, when we further refine196

the algorithm: since a failed algorithm is refined by any program, we can assume that the197

algorithm to be refined does not fail, and thus that the assertions hold. Also, as in unverified198

programming, assertions are an engineering tool, making flawed proof attempts fail early.199

For the sake of readability, we will often elide assertions from presented listings.200

For this paper, we will elide most actual Isabelle proofs and rather describe their ideas.201

The Isabelle listings shown are slightly edited for presentation purposes. Lemma and function202

names coincide with the actual formalisation.203

CVIT 2016



23:6 Verifying an Efficient Algorithm for Computing Bernoulli Numbers

1 harvey_restsum2 W p’ p x s n = doN {
2 z←to_mont1 W p p’ 1;
3 (_,_,acc) ← for 0 n (λ_ (z,s’,acc). doN {
4 pl ← cast_u.op (2*W) p; s’ ← cast_u.op (2*W) s’; s’ ← mul_uuu.op (2*W) 2 s’;
5 z’ ← mont_times1 W p p’ z x;
6 if s’<pl then doN {
7 acc ← mont_add_relaxed1 W acc z; s’ ← cast_u.op W s’; return (z’,s’,acc)
8 } else doN {
9 acc ← mont_diff_relaxed1 W p acc z;

10 s’ ← sub_uuu.op (2*W) s’ pl; s’ ← cast_u.op W s’;
11 return (z’,s’,acc) }
12 }) (z,s,mont_zero_relaxed1 W);
13 return acc }

Figure 1 Computing the inner sum using Montgomery form

3.1.2 Introducing Montgomery Form204

In a next step, we use the Montgomery arithmetic (also known as REDC arithmetic) [23] for205

the accumulator and xj . We also insert annotations for type casting. The algorithm is shown206

in Fig. 1. Here, W is the bit width for numeric operations (in our case 32). The accumulator207

is maintained as a double-width word that will not overflow during the loop. Thus, we can208

defer the reduction modulo p until after the loop.209

Moreover, the code contains annotations for type casts, bit widths, and the types of210

operations. For example, the operation mul_uuu.op (2*W) a b multiplies its unsigned double-211

width (2W ) arguments a and b, asserting that there is no overflow. While these annotations212

are not strictly necessary, they make the next refinement step simpler (cf. Sec. 3.1.3).213

Some operations for the Montgomery form also require extra parameters apart from the214

bit width W . For example, the multiplication requires both the modulus p and p′, its inverse215

modulo 2W . The inverse p′ is pre-computed once and passed as an extra parameter to the216

function. We show that this function is a refinement of the above harvey_restsum1:217

218
1 lemma harvey_restsum2_refine:219

2 assumes "mont_ctxt_refine’ W p p’ ctxt" "n<2^W" "(xi,x)∈mont_rel ctxt"220

3 shows "harvey_restsum2 W p’ p xi s n221

4 ≤ ⇓(mont_rel_relaxed ctxt (n+1)) (harvey_restsum1 p x s n)"222223

The first assumption states that ctxt is a Montgomery refinement context4 for bit width W ,224

modulus p and its inverse p′. The lemma then states that if n is in bounds, and xi is the225

Montgomery form of x, then harvey_restsum2 W p’ p xi s n refines harvey_restsum1 p x s n226

wrt. the relation mont_rel_relaxed ctxt (n+1). This relation indicates that the left value227

modulo p is the Montgomery form of the right value, and that the left value is less than228

(n + 1)p. The counter (n + 1) is used to keep track of an upper bound for the accumulator,229

while we keep adding values < p to it.230

Note that we can easily prove the non-overflow assertions on this level. The assertion231

s′ < p from the previous refinement level helps here, as it allows us to assume s′ < p.232

4 The formalisation of Montgomery form uses these contexts, while our algorithms use explicit parameters.
These are independent design choices, which slightly clash here.
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3.1.3 Refinement to LLVM233

The last step uses the sepref [18] tool to refine to (an Isabelle model of) LLVM code.234

235
1 sepref_def harvey_restsum_impl is "harvey_restsum2 32"236

2 :: "u32A * u32A * u32A * u32A * u64A → u64A"237

3 unfolding harvey_restsum2_def for_by_while238

4 apply (annot_unat_const "TYPE(64)", annot_uint_const "TYPE(32)")239

5 by sepref240241

The already proved bounds annotations make this proof easy: after unfolding the definition242

and unfolding the for loop into a while loop (which sepref can process), we annotate the243

number literals with their respective bit-width, and then invoke sepref. This generates LLVM244

code and a refinement lemma, stating that the parameters p, p′, xi, s are implemented by245

unsigned 32-bit words (u32A), the parameter n is implemented by an unsigned 64-bit word246

(u64A), and the result is returned as an unsigned 64-bit word.247

3.2 Further Optimisation of the Inner Sum248

For the aligned part of the summation, we apply another crucial optimisation that is also249

described by Harvey. Instead of iterating through the sum in single steps, we iterate in250

chunks of size ww′. Note that σ(p, 2js) being 1 or −1 is equivalent to the jth digit of the251

binary expansion of s/p being 0 or 1, which allows us to determine the values of σ(p, 2js) for252

ww′ consecutive values of j in a single step by computing the corresponding ww′ bits of the253

binary expansion of s/p. For this we define254

255
1 modf b x p i = (b^i * x) mod p256

2 digf b x p i = (b * modf b x p i) div p257

3 dsgn d = if d ̸= 0 then -1 else 1258

4 blbits i j = digf (2 ^ (w * w’)) s p i div 2 ^ (j * w) mod 2 ^ w259260

and rewrite the inner sum for multiples of ww′ as261 ∑
0≤j<nww′

xjσ(p, 2js) =
∑

0≤j<nww′

xjdsgn(digf(2, s, p, j))262

We split the sum into chunks and blocks, and introduce the tabulation263

=
∑

0≤k<w

xk
∑

0≤j<w′

xjw
∑

0≤i<n

xiww′
dsgn(blbits(i, j) ! k)264

=
∑

0≤b<2w

 ∑
0≤k<w

xkbk

 ·
 ∑

0≤j<w′

xjwtab(j, b)

265

where · ! k selects the kth bit of its argument, such that blbits(i, j) ! k = digf(2, iww′ +jw+k).266

The table is defined as267

tab(j, b) =
∑

0≤i<n

{
xiww′ if b = blbits(i, j)
0 otherwise

268

Since n is typically much larger than w and 2w, most of the computational work goes269

into computing the table, which our optimisations make cheap: in an outer loop, we obtain270

chunks of ww′ bits of the binary expansion and incrementally maintain xiww′ . The inner271

loop only bit-shifts and masks these bits, indexes into the table, and adds xiww′ to table272

CVIT 2016
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1 harvey_tab_mod2 invp p p’ x s n = doN {
2 let curs = s; curx ← to_mont1 32 p p’ 1; xww’ ← mont_exp 32 p p’ x (w*w’);
3 let tab = 0; (* Initialise table to all 0s *)
4 (curs,curx,tab) ← for 0 n (λi (curs,curx,tab). doN {
5 (cbits,curs) ← invp_push_div_mod1 invp curs p; (* Get 64 more bits of s/p *)
6 (_,tab) ← for 0 w’ (λj (cbits,tab). doN {
7 let bbits = cbits AND (2^w-1); cbits = cbits>>w; (* Obtain block bits *)
8 (* Update table *)
9 v ← mop_tab_lookup tab j bbits; v ← mont_add_relaxed1 32 v curx;

10 tab ← mop_tab_upd tab j bbits v;
11 return (cbits,tab)
12 }) (cbits,tab);
13 curx ← mont_times1 32 p p’ curx xww’; (* Maintain curx *)
14 return (curs,curx,tab)
15 }) (curs,curx,tab);
16 return tab }

Figure 2 Computation of the inner-sum table

entries. Additionally, the implementation makes similar optimisations to those we described273

in Sec. 3. In particular, we use the relaxed Montgomery form for the table entries to allow274

for a mostly branch free implementation of the inner loop.5 Moreover, the size of the table275

(w′2w double-width machine words, i.e. 16 KiB in our current setting) is chosen such that it276

fits comfortably inside the L1d cache of a typical modern CPU.277

To incrementally obtain the bits of the binary expansion, we maintain the value of278

modf, and observe that modf(b, x, p, i + 1) = (b ·modf(b, x, p, i)) mod p. However, instead279

of performing an expensive division by p, we apply a further optimisation: we define280

p− = ⌊2128/p⌋. Then, for p < 232 and x < p, we have ⌊264x/p⌋ ∈ {⌊p−x/264⌋, ⌊p−x/264⌋+1}.281

Using this, we can reduce the division and modulo operation to a multiplication operation.282

To be able to detect the +1 case, we limit p < 231, and define:283

284
1 invp_push_div_mod invp x p =285

2 let z = (invp*x)>>64; x’ = (-z*p) AND (2^32-1) in286

3 if x’<p then (z,x’) else ((z+1) AND (2^64-1),(x’-p) AND (2^32-1))287288

Here, >> denotes the left shift operation and AND the bitwise ‘and’. With this, we get:289

290
1 lemma compute_next_bits:291

2 assumes "invp = 2 ^ 128 div p" "curs = modf (2 ^ 64) s p i"292

3 assumes "0 ≤ s" "s < p" "p<2^31"293

4 shows "invp_push_div_mod 32 64 128 invp curs p294

5 = (digf (2 ^ 64) s p i, modf (2 ^ 64) s p (i+1))"295296

This shows how to obtain the next digit and maintain the value of modf. Note that ⌊2128/p⌋297

is precomputed outside the loop. Figure 2 displays the algorithm for computing the table.298

After some initialisation, the outer loop iterates over the chunks. In each iteration of the299

outer loop, the binary expansion of s/p is maintained and another 64 bits of digits are300

5 The computation of the binary expansion of s/p we describe below does use a branch to correct a
possible ‘off-by-one’ error. However, this happens so rarely that due to branch prediction, the cost of
this branch is negligible.
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1 bernoulli_num_harvey_wrapper2 dfs p g op2 k = doN {
2 p’ ← mk_mont_N1’ p; (* Compute p’ *)
3 r ← if p-1 dvd k then doN { (* Case 2: p-1 | k *)
4 t ← prod_list_exc2 p p’ p dfs; mont_diff1 p (mont_zero1) t
5 } else doN { (* Case 1 *)
6 t ← if k < p - 1 then harvey_select2 p’ p op2 k g
7 else doN { (* Apply range reduction *)
8 let k’ = k mod (p - 1); t ← harvey_select2 p’ p op2 k’ g;
9 t2 ← to_mont1_relaxed p p’ k; t ← mont_times1 p p’ t t2;

10 kinv’ ← to_mont1 p p’ k’; t3 ← mont_inv1 p p’ kinv’; mont_times1 p p’ t t3
11 };
12 t’ ← prod_list2 p p’ dfs; mont_times1 p p’ t t’ }; (* Multiply with D_k *)
13 r ← of_mont1 p p’ r; return r } (* Convert to normal numbers *)

Figure 3 Computation of a single remainder (slightly simplified)

obtained in cbits. The inner loop iterates over the blocks, obtains the current block bits, and301

updates the table. After the inner loop, the outer loop maintains the value curx of xiww′ .302

3.3 Putting Things Together303

Finally, we assemble the aligned inner sum, the computation of the remainder, and the304

fallback to the slower algorithm when 2k ≡p 0 (i.e. when k mod ordp(2) = 0) to obtain the305

algorithm harvey_select2 with the following correctness theorem:306

307
1 lemma harvey_select2_correct:308

2 assumes "mont_ctxt_refine’ W p p’ ctxt"309

3 and "even k" "¬(p-1) dvd k" "k ∈ {2..p - 1}" "prime p" "5≤p"310

4 and "op2 = ord p 2" "g < p" "residue_primroot p g"311

5 shows "harvey_select2 p’ p op2 k g312

6 ≤ ⇓(mont_rel ctxt) (SPEC (λr. [r = bernoulli_rat k] (qmod p)))"313314

That is, under the listed preconditions, harvey_select2 will return the Montgomery form of315

an integer r with r ≡p Bk.316

Next, we address some of the preconditions. First, we compute p′ = p−1 mod 2W via317

Hensel lifting. Next, as mentioned before, when (p− 1) | k we have Nk ≡p −Dk/p, which318

allows us to easily determine Nk mod p directly. Moreover, when k ≥ p− 1, we apply the319

previously-mentioned range reduction based on Kummer’s congruence. Finally, we multiply320

the result with Dk to obtain Nk mod p, and convert the result from Montgomery form to321

normal numbers.322

The resulting algorithm is displayed in Fig. 3. In addition to the parameters p, g, op2 ,323

and k, it also takes the prime factorisation dfs of Dk. The function prod_list_exc2 computes324

Dk/p by multiplying all prime factors except p. The correctness theorem is:325

326
1 lemma bernoulli_num_harvey_wrapper2_correct:327

2 assumes "even k" "k̸=0" "prime p" "3≤p" "p<2^31"328

3 assumes "dfs = denom_factors k" "residue_primroot p g" "g<p" "op2 = ord p 2"329

4 shows "bernoulli_num_harvey_wrapper2 dfs p g op2 k330

5 ≤ SPEC (λr. r = bernoulli_num k mod p)"331332

In words: the algorithm returns Nk mod p for any even natural number k ̸= 0 and any odd333

prime less than 231.334

CVIT 2016



23:10 Verifying an Efficient Algorithm for Computing Bernoulli Numbers

1 compute_primes_mods_est t d k = doN {
2 (ok,Y) ← estimate_check_a_priori_bound k; (* A-priori bound *)
3 if ¬ok then return (False, (0,[],[])) (* Out-of-bounds *)
4 else doN {
5 (fc,pc) ← mk_factor_prime_cache (max (k+2) Y); (* Prime sieve *)
6 dfs ← filter_denom_factors pc k; (* Get factorisation of D_k *)
7 (_,pc) ← adjust_primes2 dfs k pc; (* Precise bound *)
8 pgos ← compute_harvey_pgos pc fc; (* Compute generator and ord 2 p *)
9 result ← pm.pmap_par_array (max 2 t) d (k,dfs) pgos (length pgos);

10 return (True, (length result,result,dfs)) } } (* Ret result and D_k factors *)

Figure 4 Parallel computation of the prime numbers and remainders

4 Computing Bk as a Rational Number335

The full algorithm consists of a preprocessing phase to create a large array of independent336

‘tasks’, each being represented with a triple (p, gp, ordp(2)), then the main part of computing337

Bk mod p for each of these, and finally a modular reconstruction phase to determine Bk as a338

rational number. Figure 4 shows a high-level view of the algorithm without the modular339

reconstruction phase.340

First, we compute a rough a-priori upper bound Y for the largest prime that will be341

needed to gather enough modular information to reconstruct Bk. We also check that k is342

small enough to not cause overflows later, and otherwise return an error. Next, we use a343

simple sieving algorithm to compute all primes up to Y and a factor map fc that maps344

every composite number to a prime factor. Next, we compute the prime factors of Dk using345

the von Staudt–Clausen theorem. We then use this information to determine a good upper346

bound for log2 |Nk| and drop the unnecessary primes from the list. For each remaining prime347

p, we then compute ordp(2) and find a generator gp of Z/pZ. We refer to the list of triples348

(p, gp, ordp(2)) as the ‘task list’ (or, in the Isabelle formalisation, the ‘pgo list’). Finally, we349

compute the modular information for each of the primes in parallel and return the result as350

well as the prime factorisation of Dk.351

In the following sections, we will explain each of these steps as well as the modular352

reconstruction step in some detail.353

4.1 A-priori bound354

The function estimate_check_a_priori_bound k (cf. Fig. 4) returns a pair (ok, Y + 1). If355

ok = True, then Y is an upper bound for the largest prime number that will be needed356

to reconstruct Nk. If ok = False, we cannot guarantee that our 32-bit arithmetic will not357

overflow, and we abort the algorithm. The first ingredient to compute Y is a bound on Bk:358

▶ Theorem 8 (Upper bound for Bk). Let k ≥ 4 be an even integer. Then359

log2 |Bk| ≤ (k + 1
2 ) log2 k − c1k + c2360

where c1 = 1
ln 2 + log2 π + 1 ≈ 4.0942 and c2 = 3

2 + 9
2 log2 π − log2 90 + 1

48 ln 2 ≈ 2.4699.361

Proof. We use Theorem 2 to express |Bk| in terms of ζ(k). The monotonicity of ζ(x) for362

real x > 1 implies ζ(k) ≤ ζ(4) = π4/90 ≈ 1.082. Combining this with Stirling’s inequality363

ln(k!) ≤ 1
2 ln(2πk) + k ln k − k + 1

12k and noting that 1
12k ≤

1
48 yields the result. ◀364
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We can convert this into a bound on Nk by combining it with the von Staudt–Clausen365

theorem: it implies Dk | 2(2k − 1) and therefore log2 Dk < k + 1. Lastly, a weak (but366

non-asymptotic) version of the Prime Number Theorem states that
∑

p≤x ln p ≥ 0.82x for367

all x ≥ 97 [6]. This was also formalised specifically for this project. Combining all of these368

bounds, we obtain the following:369

▶ Theorem 9 (A-priori prime bound). Let k > 0 be an integer. Then |Nk| <
∏

p≤Y p where370

Y = max(97, c1(k + 1
2 )⌈log2 k⌉ − c2k + c3)371

for constants c1 = 625
738 ≈ 0.8469, c2 = 50941792385100000

19440408116330496 ≈ 2.6204, c3 = 23688125
8060928 ≈ 2.9386.372

In our algorithm, we use the following slightly weaker upper bound:373

Y = max
(

97,
⌈

217k⌈log2 k⌉
256

⌉
+

⌈
217⌈log2 k⌉

512

⌉
+ 3−

⌊ 335k
128

⌋)
374

If Y ≥ 231, we return ok = False. We prove that Y will be in bounds for k ≤ 105,946,388.375

We leave it to future work to delay the check until after we have pruned the list of primes376

with the more precise bound.377

Note that our bound Y is lower than Harvey’s since, first, we can make use of all primes378

≤Y because we compute Nk instead of Bk, and secondly because we use a somewhat sharper379

inequality for
∏

p≤x p.380

4.2 Sieving381

The prime sieving algorithm mk_factor_prime_cache K returns a tuple (fc, pc), where pc382

(“prime cache”) is the list of primes p with 2 < p < K, and fc (“factor cache”) encodes383

a mapping that maps any integer between 0 and K to its smallest prime factor (if it is384

composite) or to 0 (if it is prime or ≤ 1). The sieving algorithm starts by mapping all385

numbers to 0 and then proceeds in the usual fashion. When sieving is finished, the list of386

primes is extracted from the factor cache.387

The advantage of the factor cache is that it allows us to not only quickly list prime388

numbers and determine whether a number is prime, but also to factor numbers efficiently.389

This speeds up the compute_harvey_pgos algorithm (cf. Sec 4.4).390

4.3 Computing the Denominator and Precise Bounding391

We can now determine the prime factorisation of Dk by simply taking all primes p ≤ k with392

(p− 1) | k. The algorithm adjust_primes2 dfs k pc sums up log2 p for all of these to get an393

approximation of log2 Dk that easily fits in a machine integer. Together with our estimate394

for log2 |Bk|, we can now compute a relatively precise estimate of log2 |Nk|.395

We then choose a prefix P of the sieved primes such that
∑

p∈P log2(p) ≥ log2 |Nk|. For396

this, we use a fixed-point approximation of log2 p. This avoids using floating-point numbers397

or arbitrary precision integers and is still precise enough in practice. Note that we do not398

actually store the prime 2 in the sieve or pruned list of primes, but still consider it for the399

bound. Before reconstructing |Nk| (cf. Sec. 4.6), we do add the congruence Nk ≡2 1 (which400

holds for any even k) to our modular information.401

4.4 Preparing the Task List402

The algorithm compute_harvey_pgos pc fc takes the pruned prime list and the factor map403

and computes a list of task entries of the form (p, g, o, 0). Here, p is the prime itself, g is a404
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1 lemma pm.pmap_par_array_correct:
2 assumes "n=length pgos" "1<t" "∀pgo∈set pgos. bernpre (k,dfs) pgo"
3 shows "pm.pmap_par_array t d (k,dfs) pgos n
4 ≤ SPEC (λpgos’. list_all2 (bernspec (k,dfs)) pgos pgos’)"

where the pre- and postconditions are defined as:

1 bernpre (k,dfs) (p,g,op2,rX) =
2 prime p ∧ p∈{3..<2^(num_len-1)} ∧ residue_primroot p g
3 ∧ g < p ∧ op2 = ord p 2 ∧ dfs = denom_factors k
4 bernspec (k,dfs) (p,g,op2,rX) (p’,g’,op2’,r) =
5 (p’,g’,op2’) = (p,g,op2) ∧ r = bernoulli_num k mod (int p)

Figure 5 Correctness lemma for parallel computation of the modular information. The input
list contains tuples of the form (p, g, op2 , rX), where the last element rX is the not yet specified
result. In the result list, the last element is replaced by the correct result, and the other elements
are unchanged. Here, list_all2 is the natural relator on lists, relating lists of the same length
element-wise. Note that the parameters t and d are used to control the level of parallelisation and
do not affect the result.

generator of Z/pZ, o is the multiplicative order of 2 in Z/pZ, and 0 is a placeholder that will405

be filled in by Harvey’s algorithm.406

A number g is a generator of Z/pZ iff it has maximal order, i.e. if ordp(g) = p− 1. We407

can determine whether g is a generator by checking that g(p−1)/q ̸≡p 1 for all prime factors q408

of p− 1. We find the smallest generator gp by simply checking g = 2, 3, . . . , p− 1 and taking409

the first one that works.6410

As for computing the order: ordp(2) is defined as the smallest positive integer n such411

that 2n ≡p 1. Lagrange’s theorem tells us that ordp(2) | p − 1. Therefore, every factor q412

in the prime factorisation of ordp(2) must also be a factor of p− 1, and we can determine413

its multiplicity νq(ordp(2)) by letting i ← 0, x ← 2(p−1)/qe mod p (where e = νq(p − 1))414

and then repeating i← i + 1, x← xq mod p until x = 1, at which point i = νq(ordp(2)) as415

desired.416

We are not aware of better algorithms for computing the order and finding a generator;417

however, even the worst-case running time of these is negligible compared to the main part418

of our algorithm.419

4.5 Parallel Map420

To compute the modular information in parallel, we instantiate a generic parallel map421

combinator with bernoulli_num_harvey_wrapper2 (cf. Sec. 3.3). We elide the boilerplate code422

for the instantiation, and only display the resulting correctness lemma in Fig. 5.423

4.6 Postprocessing424

Figure 6 displays our Isabelle formalisation of Harvey’s full algorithm. After handling some425

special cases for k = 0, k = 1, and odd k, it computes the modular information and a prime426

6 Empirically, gp is almost always quite small. For the first 106 primes, the mean and maximum of gp are
4.91 and 94, with gp ∈ {2, 3} in 60 % of the cases. It is known that gp ∈ O(p

1
4 +ε) and the generalised

Riemann hypothesis implies gp ∈ O(log6 p).
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1 "bern_crt t d k = doN {
2 if k=0 then return (True,1,1) else if k=1 then return (True,-1,2)
3 else if odd k then return (True,0,1)
4 else doN { (* Regular case: even k, k>1 *)
5 (ok, (n,pgors,dfs)) ← compute_primes_mods_est t d k; (* Compute mod. info *)
6 if ¬ok then return (False,0,0) (* Out-of-bounds *)
7 else doN {
8 (n,ams) ← map_to_ams2 n pgors; (* Map to (r,p)-pairs, add (1,2) *)
9 (num,m) ← crt n ams; (* Chinese remaindering *)

10 let num = (if 4 dvd k then num-m else num); (* Sign adjustment *)
11 let denom = (

∏
x←dfs. x); (* Compute D_k *)

12 return (True,num,denom)
13 } } }"

Figure 6 The abstract version of Harvey’s algorithm in Isabelle

factorisation of the denominator. If the ok flag is false, we abort the algorithm. Otherwise,427

the (p, g, o, r) tuples in pgors are converted to (r, p) pairs in ams. We also add the pair (1, 2)428

since Nk is always odd. At this point, we know that for each pair (r, p) ∈ ams, we have429

Nk mod p = r. Moreover, the primes P in these pairs are disjoint, and their product is430

greater than Nk. Chinese remaindering gives us a pair (num, m) with num = Nk mod m431

and m =
∏

p∈P p. Thus, Nk = num if Nk ≥ 0 and Nk = num −m if Nk < 0, and we know432

that Nk < 0 iff 4 | k. Finally, we compute the denominator denom = Dk from its prime433

factorisation.434

4.6.1 Fast Chinese Remaindering435

The Chinese Remainder Theorem (CRT) allows us to determine Nk mod (
∏

p∈P p) from the436

values of Nk mod p for every p ∈ P .437

A naïve implementation of the CRT is too slow for numbers as big as ours. We therefore438

follow the approach called remainder trees outlined in the classic textbook by von zur Gathen439

and Gerhard [24]. The basic data structure is a binary tree where every leaf has a pair of440

modular data and modulus of the form (y mod p, p) attached to it, and every internal node441

has a modulus attached to it that is the product of the moduli of its children. Given this442

tree t, we can compute our desired result y mod (
∏

p∈P p) as f(
∏

p∈P p, t), where f is the443

following simple recursive function:444

f(M, Leaf(x, p)) = (x · ((M mod m2)/p)−1) mod p445

f(M, Node(l, m, r)) = f(M mod m2, l) · root(r) + f(M mod m2, r) · root(l)446

This can also be parallelised easily since different branches of the tree are independent.447

While the abstract version of our algorithm uses a tree data structure, which is initially448

created from the list of input pairs, we later refine this to use the list of input pairs directly449

for the leafs, and another array for the inner nodes. This implementation is slightly more450

memory-efficient than using a data structure with explicit pointers. However, in practice, we451

expect memory usage to be dominated by the space for the integers.452

4.6.2 Arbitrary Precision Integers453

While all other parts of our algorithm use machine words, CRT and the computation of Dk454

require large integers. We take a pragmatic approach and import the GNU Multiprecision455
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Library (GMP) [12] into our formalisation. We declare an assertion mpzA for big integers,456

and the GMP library functions and use Isabelle’s specification mechanism to specify the457

Hoare-triples for them. We then instruct Isabelle LLVM to translate calls to the specified458

functions to the corresponding symbols from the GMP library.459

The specification mechanism ensures that we do not know more about the constants than460

what was specified. Any such knowledge is dangerous, as it could be used to prove behaviour461

that is not exhibited by the GMP library. At the same time, the specification mechanism462

requires us to prove that a model for the specification exists. This is an important sanity463

check, as it prevents us from accidentally specifying contradictory statements.464

Note that a verified big integer library is orthogonal to this work: it could easily replace465

our use of GMP, with little effect on the rest of the formalization.466

5 Code Export and Final Correctness Theorem467

Finally, we use sepref to refine bern_crt(cf. 4.6) to Isabelle LLVM and prove:468

469
1 bern_crt_impl is bern_crt :: "sn64A * sn64A * u32A → u1A × mpzA × mpzA"470471

Note that Isabelle LLVM uses non-negative signed integers in various places, which are472

related to natural numbers by the sn64A refinement assertion. To make the algorithm usable473

from C++, we define the wrapper function bern_crt_impl_wrapper that returns void and474

uses pointer parameters to pass the results instead. Combining the refinement lemmas yields475

the following correctness theorem:476

477
1 theorem bern_crt_impl_wrapper_correct: "llvm_htriple (478

2 ll_pto okX okp * ll_pto numX nump * ll_pto denomX denomp479

3 * sn64A t ti * sn64A d di * u32A k ki)480

4 (bern_crt_impl_wrapper okp nump denomp ti di ki)481

5 (λ_. EXS ok numi denomi num denom.482

6 ll_pto ok okp * ll_pto numi nump * ll_pto denomi denomp483

7 * mpzA num numi * mpzA denom denomi484

8 * (k≤105946388 −→ ok ̸=0) * (ok̸=0 −→ num = N k ∧ denom = D k)"485486

The preconditions of this Hoare-triple are that okp, nump, and denomp point to valid memory,487

that ti and di are 64-bit non-negative signed integers, and that ki is a 32-bit unsigned with488

value k. Then, after calling bern_crt_impl_wrapper okp nump denomp ti di ki, the pointers489

okp, nump, and denomp will point to the values ok, numi, and denomi; numi and denomi will be490

valid GMP numbers representing the integers num, and denom; and if k ≤ 105,946,388, ok will491

be non-zero, and if ok is non-zero, num and denom represent the Bernoulli number Bk. Note492

that we explicitly specified Nk and Dk here, as this also guarantees that num and denom have493

no common divisors.494

This correctness theorem only depends on the Isabelle LLVM model, the formalisation of495

separation logic, our specification of GMP, and the definition of Bernoulli numbers. All the496

intermediate refinement steps need not to be trusted.497

Finally, we use Isabelle LLVM to export the function to actual LLVM text and to generate498

a header file to interface with the generated code from C/C++.499

500
1 export_llvm bern_crt_impl_wrapper is "void bern_crt (501

2 uint8_t *, gmp_mpz_struct**, gmp_mpz_struct**, sint64_t, sint64_t, uint32_t)"502

3 file "../../llvm_export/bern_crt.ll"503504

We then implement a command line interface in C++, with which we run our experiments505

to generate actual Bernoulli numbers. For the more detailed timing measurements, we506
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Input k 105 ⌈105.5⌉ 106 ⌈106.5⌉ 107 ⌊107.5⌋ 108

time elapsed (s) 1.12 1.41 5.75 44.6 432.3 4,215 45,458
CPU time (s) 12.56 61.45 430.11 4,318.58 46,960 475,160 5,330,806
CPU factor 12.1 44.0 74.9 96.9 108.6 112.7 117.3
memory (MB) 48.9 124.4 378.8 1220 3,948 11,775 36,769

sieving 0.4% 1.3% 1.1% 0.7% 0.3% 0.1% 0.0%
generator/ord(2) 6.5% 18.9% 15.6% 7.3% 2.7% 0.9% 0.3%
main phase 25.8% 61.5% 64.6% 81.2% 92.4% 96.9% 98.9%
reconstruction 30.5% 8.4% 8.2% 4.5% 1.9% 0.7% 0.3%
writing result 2.1% 8.7% 10.0% 6.2% 2.7% 1.3% 0.5%

Table 1 Upper half: Performance statistics of the exported LLVM code as given by the GNU
time command. The CPU factor is an indicator for the amount of actual parallelism (best possible
would be 128); Lower half: Percentage of elapsed time spent in each part of the algorithm. Note that
the “writing” phase is conducted by an (unverified) GMP routine and contains both the conversion
of the GMP integer into a base-10 string and the actual writing of that string to the result file.

instrumented the LLVM code to invoke callbacks into our C++ program when certain phases507

of the algorithm are completed.508

6 Benchmarks509

Table 1 shows the performance data of the exported LLVM code, compiled with Clang 18.1.8510

and running on a single “standard” node of the LEO5 cluster operated by the University of511

Innsbruck with two 32-core 2.60 GHz Intel Xeon Platinum 8358 CPUs with hyperthreading.512

Among other things, the table shows the percentage of elapsed time spent in the various513

parts of the algorithm. It can be seen that especially for larger inputs, the main phase (i.e.514

computing the modular information Bk mod p for each prime p) dominates the running time515

so that optimisation of the other parts will not result in a noticeable speed-up.516

Figure 7 shows the relative performance of our verified LLVM implementation and517

Harvey’s unverified C++ implementation on different machines: a 12-core desktop computer,518

a 16-core server, and a cluster node with two 32-core server CPUs. For the desktop computer,519

we also show the single-core performance. Figure 8 gives a closer look at the single-core520

performance on the desktop computer, which is less noisy and thus allows a better comparison.521

The data suggests that our implementation is significantly slower than Harvey’s for522

small inputs but competitive on the more interesting larger inputs (roughly k ≥ 3 · 105).523

Interestingly, our implementation slightly outperforms Harvey’s on the cluster in the range524

3 · 105 ≤ k ≤ 5 · 106. This may be due to the different implementation of parallelisation.525

Analyzing where and why our implementation is slower than Harvey’s will require526

thorough microbenchmarking. Also note that the results shown in this section are not a527

statistically rigorous performance analysis, but merely some experiments to establish that528

the performance of our implementation is roughly comparable to that of Harvey’s.529

7 Related Work530

We are not aware of any other work on the verification of algorithms involving Bernoulli531

numbers. As far as proof assistants are concerned, we are only aware of two others that532
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2.6 AMD Ryzen 9 9900X single-threaded

AMD Ryzen 9 9900X 12-Core
AMD Ryzen 7950X3D 16-Core
2× Intel Xeon Platinum 8358 32-Core

Figure 7 The ratio of the elapsed time of our verified implementation divided by that of Harvey’s,
for a range of input indices k and on several different machines.
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Figure 8 Single-core performance of Harvey’s implementation against ours (AMD Ryzen 9 9900X)

even have a definition of Bernoulli numbers, namely HOL Light and Lean. However, neither533

system’s library seems to have an algorithm for computing them other than using the534

recurrence that follows directly from their definition. We are not aware of any verification535

efforts for Bernoulli number algorithms outside proof assistants either.536

As for unverified algorithms, there are various approaches apart from Harvey’s 2010537

algorithm (which we formalised in this paper) that are more efficient than the naïve approach:538

as the Akiyama–Tanigawa transform of the sequence ( 1
k+1 )k∈N [2, 15]539

by computing Dk and approximating ζ(k) to sufficient precision540

by performing the division sin(z)/ cos(z) as formal power series, either directly or via541

Kronecker substitution (cf. e.g. Brent and Harvey [3])542

Harvey discusses some of these in some more detail in his paper. The first of them is already543

available in Isabelle [4], but it is quite inefficient for even moderate values of k. The last two544

have the same asymptotic running time as the algorithm we verify, namely O(k2 log2+o(1) k),545

but for various reasons discussed in Harvey’s paper, they seem to perform much worse546
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Component LOC

Voronoi/Kummer congruences [7] 2,397
Prime bounds [6] 1,814

Fixed-point approximation of log2 n 892
Prime sieving, ordp(x), generators 2,765
Fast Chinese remaindering 3,801
Montgomery arithmetic 2,317
Binary fraction expansion of 1/p 968
Miscellaneous 1,373

Component (cont’d) LOC

GMP bindings for Isabelle-LLVM 1,749
Additions to sepref /Isabelle-LLVM 4,365

Main algorithm (abstract) 1,569
Main algorithm (refinement) 8,568

Total 32,578

Table 2 Size summary of the different parts of our Isabelle contributions

in practice. Note however that the third algorithm computes not only Bk but the entire547

sequence B0, . . . , Bk.548

In 2012, Harvey also published another multi-modular algorithm for computing Bk which549

achieves subquadratic running time by computing Bk modulo prime powers instead of simply550

primes. Asymptotically, this is a large improvement over all previously known algorithms;551

however, to date, there is still no implementation, and it is not clear how well it would552

perform for feasible input sizes in practice. In fact, it seems that the only fast algorithms553

that have actual implementations are the ones based on approximating ζ(k) and Harvey’s554

2010 algorithm.555

The Isabelle LLVM framework has been used for verifying efficient implementations of556

several tools and algorithms, mainly for SAT solving [11, 19] and model checking [17, 13].557

Its parallel extension has only been used for sorting algorithms [20] so far.558

Verified implementations of Montgomery arithmetic exist in VeriFun by Walther [25] or559

in Coq as part of the Fiat Cryptography library by Erbsen et al. [8].560

8 Conclusion561

We fully verified a challenging state-of-the-art mathematical algorithm to compute Bernoulli562

numbers, achieving performance comparable to highly optimised hand-written C++ code. A563

large amount of machinery had to be developed to achieve this, including:564

Mathematical background: bounds for Bernoulli numbers, the Voronoi and Kummer con-565

gruences [7], bounds on the distribution of primes [6]566

Algorithms, abstractly and verified down to LLVM: prime sieving, Chinese remaindering567

via remainder trees, computing ⌈log2 n⌉, fixed-point approximations of log2 n, efficient568

computation of the binary fraction expansion of a rational number, Hensel lifting, the569

extended Euclidean algorithm, Montgomery (‘REDC’) arithmetic, computing ordn(x),570

finding generators in Z/nZ571

Extending the Isabelle/LLVM framework: axiomatisation of GMP integers, destructive par-572

allel maps over an array, low-level bit arithmetic573

We expect many of these developments to be useful for other applications.574

The total development comprises about 32 kLOC in Isabelle (see Table 2 for more details).575

The mathematical core of the development is relatively small (about 6 kLOC or 20 %), which576

matches our experience that proofs about algorithms tend to be bulkier than proofs about577

mathematics.578
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