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Introduction

® Peter Lammich
® new assistant professor in FMT group
® previously in Miinster, Munich, Virginia Tech, Manchester
® research: software verification
® if I'm not working: you'll probably find me rock-climbing

® but | also enjoy hiking, biking (mtb, road, trek), racket sports (squash,
badminton), ...
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. and now to the serious part: Software Verification

® Desirable properties of software

® correct (formally verified)
® fast
® manageable implementation and proof effort

® Choose two!

® This talk: towards faster verified algorithms at manageable effort
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Introduction

® What does it need to formally verify an algorithm?
® E.g. maxflow algorithms
procedure AUGMENT(g, f, p)
¢y min{gr(u,v) | (u,v) € p}
for all (u,v) € p do
if (u,v) € gthen f(u,v) < f(u,v)+c,
else f(v,u) < f(v,u) — ¢
return f
procedure EDMONDS-KARP(g, s, t)
f < Au,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f <~ AUGMENT(g, f, p)

g: flow network s, t: source, target gr: residual network
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procedure EDMONDsS-KARP(g, s, t)
f < Xu,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f < AUGMENT(g, f, p)

Theorem
Let d¢ be the length of a shortest s, t - path in gf.
When augmenting with a shortest path,

® cjther ¢ decreases

® jf remains the same, and the number of edges in gr that lie on a
shortest path decreases.

Proof.
two more textbook pages.
using lemmas about graphs and shortest paths.

O
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Background Theory

® E.g. graph theory
® Typically requires powerful (interactive) prover

® with good library support (to not re-invent too many wheels)
® we use Isabelle

Isabelle/HOL: based on Higher-Order Logic
powerful automation (e.g. sledgehammer)
large collection of libraries

Archive of Formal Proofs

mature, production quality IDE, based on JEdit
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Implementation

int edmonds_karp(int s, int t) {

procedure EDMONDS-KARP(g, s, t)
f+ Mu,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f <+ AUGMENT(g, f, p)

i

int flow = 0;
vector<int> parent(n);
int new_flow;

while (new_flow = bfs(s, t, parent)) {
flow += new_flow;
int cur = t;
while (cur I=s) {
int prev = parent|cur];

capacity[prev][cur] —= new_flow;
capacity|cur][prev] += new_flow;

cur = prev;

}

return flow;

textbook proof typically covers abstract algorithm.
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int flow = 0;
vector<int> parent(n);
int new_flow;

’ _ while (new_flow = bfs(s, t, parent)) {
procedure EDMONDS-KARP(g, s, t) oy o o,

f(-A(U, V). 0 int cur = t;
while (cur I=s) {

while exists augmenting path in gr do it prev — parentfcur]
p < shortest augmenting path capacity[prev][cur] —= new_flow;
capacity|cur][prev] += new_flow;
f <+ AUGMENT(g, f, p) cur — prev;
}
}
return flow;
}

textbook proof typically covers abstract algorithm.
but this is quite far from implementation. Still missing:
® optimizations: e.g., work on residual network instead of flow
® algorithm to find shortest augmenting path (BFS)
e cfficient data structures: adjacency lists, weight matrix, FIFO-queue,

® code extraction
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Keeping it Manageable

® A manageable proof needs modularization:
® Prove separately, then assemble
® Formal framework: Refinement
® e.g. implement BFS, and prove it finds shortest paths
® insert implementation into EDMONDSKARP
® Data refinement
® BFS implementation uses adjacency lists. EDMONDSKARP used

abstract graphs.
® refinement relations between

® nodes and int64s (nodegs);
® adjacency lists and graphs (adjl);
® arrays and paths (array).

(s+,5) € nodegs; (t4,t) € nodegs; (gt,8) € adjl

= (bfs s; t; g, find_shortest s t g) € array

Shortcut notation: (bfs,find_shortest) € nodegs—nodegs —adjl—array
® Implementations used for different parts must fit together!
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Refinement Architecture (simplified)

shortest-path-spec maxflow-spec

"textbogk” proof

bfs-1 *:
graph {p adj.-list }

| queue ring-buffer

/|

substantial ideas
requires interactive proof

bfs

node — int

graph — adj.-list
capacity,flow — array
shortest-path — bfs

Y

EdmondsKarp
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Refinement Architecture (simplified)

shortest-path-spec maxflow-spec
"textbook” proof "textbook" proof
4 Y
bfs-1 ¥ EdmondsKarp-1
graph — adj.-list } ) )
queue — fring-buffer | modify residual graph
' | v
bfs 1 EdmondsKarp-2
| node — int
L N graph — adj.-list

straightforward L ———————capacity,flow — array
shortest-path — bfs

mainly automatic

EdmondsKarp
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The Isabelle Refinement Framework

Formalization of Refinement in Isabelle/HOL

Tools 4+ Automation

Libraries
Down to Ocaml/Haskell/Scala/SML and LLVM

15/23



IRF Core

® Nondetermistic programs shallowly embedded in HOL
® As monad

a M = FAIL | SPEC (a = bool)

return, bind

16/23



IRF Core

® Nondetermistic programs shallowly embedded in HOL
® As monad

a M = FAIL | SPEC (a = bool)

return, bind
® + if-then-else, recursion (via flat ccpo)

16/23



IRF Core

® Nondetermistic programs shallowly embedded in HOL
® As monad

a M = FAIL | SPEC (a = bool)

return, bind
® + if-then-else, recursion (via flat ccpo)
® + derived constructs (while, foreach, ...)

16/23



IRF Core

® Nondetermistic programs shallowly embedded in HOL
® As monad

a M = FAIL | SPEC (a = bool)

return, bind
® + if-then-else, recursion (via flat ccpo)
® + derived constructs (while, foreach, ...)
® — usable programming language

16/23



IRF Core

® Nondetermistic programs shallowly embedded in HOL
® As monad

a M = FAIL | SPEC (a = bool)

return, bind
® + if-then-else, recursion (via flat ccpo)
® + derived constructs (while, foreach, ...)
® — usable programming language

® Refinement Calculus for Program and Data Refinement

16/23



IRF Core

® Nondetermistic programs shallowly embedded in HOL
® As monad

a M = FAIL | SPEC (a = bool)

return, bind
® + if-then-else, recursion (via flat ccpo)
® + derived constructs (while, foreach, ...)
® — usable programming language

® Refinement Calculus for Program and Data Refinement

® Automation: VCG, semi-automatic data refinement
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Imperative-HOL Backend

® imperative 4+ functional language
® code generation to Ocaml/Haskell /Scala/SML

® automatic refinement of functional to imperative DS
® if used linearly
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Isabelle-LLVM Backend

® only imperative + bounded integers
® jutomatic placement of destructors

® semi-automatic in-bound proofs (eg for int — int64)
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Refinement with Time

® Prove correctness and complexity
® Resource currencies to structure complexity proofs along refinement
® Down to Imperative-HOL / LLVM
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Libraries

® Functional and Imperative data structures
® readily usable for your developments
® Functional:
® hashtable, red-black-trees, tries, Finger-Trees, (Skew) binomial queues,

® Imperative:

® dynarray, heap, matrix, linked-list, hashtable, bit-vector, union-find,
ROBDDs, B-Trees, ...
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Highlight Verifications

CAVA model checker

® fully fledged LTL model checker
® developed independently by 3 groups
® newer development: MUNTA for timed automata

Maxflow: Edmonds-Karp and Push-Relabel

® textbook-level abstract correctness proof
® efficient implementation

GRAT: SAT-Solver verification tool
® faster than unverified state-of-the-art tool drat-trim
Introsort + Pdgsort

® verified correctness and complexity
® on par with C++ impls from GNU libstdc++ and Boost
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Future Work

e Concurrency
® Consolidate frameworks and tools

® |Interesting algorithms to verify
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Conclusions

Isabelle Refinement Framework

+ o+ o+ o+

powerful interactive theorem prover

stepwise refinement

libraries for standard DS

lot's of automation

efficient backend (LLVM)

verified and efficient algorithms, at manageable effort
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