
The Isabelle Refinement Framework

Peter Lammich

University of Twente

May 2021

1 / 23



Introduction

• Peter Lammich
• new assistant professor in FMT group

• previously in Münster, Munich, Virginia Tech, Manchester
• research: software verification

• if I’m not working: you’ll probably find me rock-climbing
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The Sloth, HVS 5a, at the Roaches in Peak District
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Bull’s Crack, HVS 5a, at Heptonstall
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Sport Climbing (somewhere in the Peaks)

5 / 23



Mountainbiking (at Lake Garda, after TransAlp)
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Hiking in the Alps
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... and now to the serious part: Software Verification

• Desirable properties of software

• correct (formally verified)

• fast
• manageable implementation effort

• Choose two!
• This talk: towards faster verified algorithms at manageable effort
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Introduction

• What does it need to formally verify an algorithm?

• E.g. maxflow algorithms
procedure augment(g , f , p)

cp ← min{gf (u, v) | (u, v) ∈ p}
for all (u, v) ∈ p do

if (u, v) ∈ g then f (u, v)← f (u, v)+cp
else f (v , u)← f (v , u)− cp

return f
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)
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g : flow network s, t: source, target gf : residual network
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Correctness
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)
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procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

Theorem (Ford-Fulkerson)
For a flow network g and flow f , the following 3 statements are equivalent

1 f is a maximum flow
2 the residual network gf contains no augmenting path
3 |f | is the capacity of a (minimal) cut of g

Proof.
a few pages of definitions and textbook proof (e.g. Cormen).

using basic concepts such as numbers, sets, and graphs.
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Correctness
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

Theorem
Let δf be the length of a shortest s, t - path in gf .
When augmenting with a shortest path,
• either δf decreases
• δf remains the same, and the number of edges in gf that lie on a

shortest path decreases.

Proof.
two more textbook pages.

using lemmas about graphs and shortest paths.
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Background Theory

• E.g. graph theory

• Typically requires powerful (interactive) prover
• with good library support (to not re-invent too many wheels)

• we use Isabelle

• Isabelle/HOL: based on Higher-Order Logic
• powerful automation (e.g. sledgehammer)
• large collection of libraries
• Archive of Formal Proofs
• mature, production quality IDE, based on JEdit
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Implementation

procedure Edmonds-Karp(g , s, t)
f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

int edmonds karp(int s, int t) {
int flow = 0;
vector<int> parent(n);
int new flow;

while (new flow = bfs(s, t, parent)) {
flow += new flow;
int cur = t;
while (cur != s) {

int prev = parent[cur];
capacity[prev][cur] −= new flow;
capacity[cur][prev] += new flow;
cur = prev;

}
}

return flow;
}

textbook proof typically covers abstract algorithm.

but this is quite far from implementation. Still missing:

• optimizations: e.g., work on residual network instead of flow
• algorithm to find shortest augmenting path (BFS)
• efficient data structures: adjacency lists, weight matrix, FIFO-queue,
...
• code extraction
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Keeping it Manageable
• A manageable proof needs modularization:

• Prove separately, then assemble
• Formal framework: Refinement

• e.g. implement BFS, and prove it finds shortest paths
• insert implementation into EdmondsKarp

• Data refinement

• BFS implementation uses adjacency lists. EdmondsKarp used
abstract graphs.

• refinement relations between
• nodes and int64s (node64);
• adjacency lists and graphs (adjl);
• arrays and paths (array).

(s†,s) ∈ node64; (t†,t) ∈ node64; (g†,g) ∈ adjl
=⇒ (bfs s† t† g†, find shortest s t g) ∈ array

Shortcut notation: (bfs,find shortest) ∈ node64→node64→adjl→array

• Implementations used for different parts must fit together!
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Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs
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The Isabelle Refinement Framework

• Formalization of Refinement in Isabelle/HOL

• Tools + Automation
• Libraries
• Down to Ocaml/Haskell/Scala/SML and LLVM
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IRF Core

• Nondetermistic programs shallowly embedded in HOL
• As monad

α M = FAIL | SPEC (α ⇒ bool)

return, bind

• + if-then-else, recursion (via flat ccpo)
• + derived constructs (while, foreach, ...)
• = usable programming language

• Refinement Calculus for Program and Data Refinement
• Automation: VCG, semi-automatic data refinement
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Imperative-HOL Backend

• imperative + functional language
• code generation to Ocaml/Haskell/Scala/SML
• automatic refinement of functional to imperative DS

• if used linearly
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Isabelle-LLVM Backend

• only imperative + bounded integers
• automatic placement of destructors
• semi-automatic in-bound proofs (eg for int → int64)
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Refinement with Time

• Prove correctness and complexity
• Resource currencies to structure complexity proofs along refinement
• Down to Imperative-HOL / LLVM
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Libraries

• Functional and Imperative data structures
• readily usable for your developments

• Functional:
• hashtable, red-black-trees, tries, Finger-Trees, (Skew) binomial queues,

...
• Imperative:

• dynarray, heap, matrix, linked-list, hashtable, bit-vector, union-find,
ROBDDs, B-Trees, ...
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Highlight Verifications

• CAVA model checker
• fully fledged LTL model checker
• developed independently by 3 groups
• newer development: MUNTA for timed automata

• Maxflow: Edmonds-Karp and Push-Relabel
• textbook-level abstract correctness proof
• efficient implementation

• GRAT: SAT-Solver verification tool
• faster than unverified state-of-the-art tool drat-trim

• Introsort + Pdqsort
• verified correctness and complexity
• on par with C++ impls from GNU libstdc++ and Boost
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Future Work

• Concurrency
• Consolidate frameworks and tools
• Interesting algorithms to verify
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Conclusions

Isabelle Refinement Framework
powerful interactive theorem prover

+ stepwise refinement
+ libraries for standard DS
+ lot’s of automation
+ efficient backend (LLVM)
= verified and efficient algorithms, at manageable effort
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