
The Isabelle Refinement Framework

Peter Lammich

University of Twente

May 2021

1 / 23

Introduction

• Peter Lammich
• new assistant professor in FMT group

• previously in Münster, Munich, Virginia Tech, Manchester
• research: software verification

• if I’m not working: you’ll probably find me rock-climbing

• but I also enjoy hiking, biking (mtb, road, trek), racket sports (squash,
badminton), ...

2 / 23

Introduction

• Peter Lammich
• new assistant professor in FMT group

• previously in Münster, Munich, Virginia Tech, Manchester
• research: software verification

• if I’m not working: you’ll probably find me rock-climbing

• but I also enjoy hiking, biking (mtb, road, trek), racket sports (squash,
badminton), ...

2 / 23

Introduction

• Peter Lammich
• new assistant professor in FMT group

• previously in Münster, Munich, Virginia Tech, Manchester
• research: software verification

• if I’m not working: you’ll probably find me rock-climbing
• but I also enjoy hiking, biking (mtb, road, trek), racket sports (squash,

badminton), ...

2 / 23

The Sloth, HVS 5a, at the Roaches in Peak District

3 / 23

Bull’s Crack, HVS 5a, at Heptonstall

4 / 23

Sport Climbing (somewhere in the Peaks)

5 / 23

Mountainbiking (at Lake Garda, after TransAlp)

6 / 23

Hiking in the Alps

7 / 23

... and now to the serious part: Software Verification

• Desirable properties of software

• correct (formally verified)

• fast
• manageable implementation effort

• Choose two!
• This talk: towards faster verified algorithms at manageable effort

8 / 23

... and now to the serious part: Software Verification

• Desirable properties of software
• correct

(formally verified)
• fast
• manageable implementation effort

• Choose two!
• This talk: towards faster verified algorithms at manageable effort

8 / 23

... and now to the serious part: Software Verification

• Desirable properties of software
• correct (formally verified)

• fast
• manageable implementation effort

• Choose two!
• This talk: towards faster verified algorithms at manageable effort

8 / 23

... and now to the serious part: Software Verification

• Desirable properties of software
• correct (formally verified)
• fast

• manageable implementation effort
• Choose two!
• This talk: towards faster verified algorithms at manageable effort

8 / 23

... and now to the serious part: Software Verification

• Desirable properties of software
• correct (formally verified)
• fast
• manageable implementation effort

• Choose two!
• This talk: towards faster verified algorithms at manageable effort

8 / 23

... and now to the serious part: Software Verification

• Desirable properties of software
• correct (formally verified)
• fast
• manageable implementation and proof effort

• Choose two!
• This talk: towards faster verified algorithms at manageable effort

8 / 23

... and now to the serious part: Software Verification

• Desirable properties of software
• correct (formally verified)
• fast
• manageable implementation and proof effort

• Choose two!

• This talk: towards faster verified algorithms at manageable effort

8 / 23

... and now to the serious part: Software Verification

• Desirable properties of software
• correct (formally verified)
• fast
• manageable implementation and proof effort

• Choose two!
• This talk: towards faster verified algorithms at manageable effort

8 / 23

Introduction

• What does it need to formally verify an algorithm?

• E.g. maxflow algorithms
procedure augment(g , f , p)

cp ← min{gf (u, v) | (u, v) ∈ p}
for all (u, v) ∈ p do

if (u, v) ∈ g then f (u, v)← f (u, v)+cp
else f (v , u)← f (v , u)− cp

return f
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

s

a

b

c

d

t

3

5

6

3

4

4

33

3

3

g : flow network s, t: source, target gf : residual network

9 / 23

Introduction

• What does it need to formally verify an algorithm?
• E.g. maxflow algorithms

procedure augment(g , f , p)
cp ← min{gf (u, v) | (u, v) ∈ p}
for all (u, v) ∈ p do

if (u, v) ∈ g then f (u, v)← f (u, v)+cp
else f (v , u)← f (v , u)− cp

return f
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

s

a

b

c

d

t

3

5

6

3

4

4

33

3

3

g : flow network s, t: source, target gf : residual network

9 / 23

Introduction

• What does it need to formally verify an algorithm?
• E.g. maxflow algorithms

procedure augment(g , f , p)
cp ← min{gf (u, v) | (u, v) ∈ p}
for all (u, v) ∈ p do

if (u, v) ∈ g then f (u, v)← f (u, v)+cp
else f (v , u)← f (v , u)− cp

return f
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

s

a

b

c

d

t

3

5

6

3

4

4

33

3

3

g : flow network s, t: source, target gf : residual network

9 / 23

Correctness
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

10 / 23

Correctness
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

Theorem (Ford-Fulkerson)
For a flow network g and flow f , the following 3 statements are equivalent

1 f is a maximum flow
2 the residual network gf contains no augmenting path
3 |f | is the capacity of a (minimal) cut of g

Proof.
a few pages of definitions and textbook proof (e.g. Cormen).

using basic concepts such as numbers, sets, and graphs.

10 / 23

Correctness
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

Theorem (Ford-Fulkerson)
For a flow network g and flow f , the following 3 statements are equivalent

1 f is a maximum flow
2 the residual network gf contains no augmenting path
3 |f | is the capacity of a (minimal) cut of g

Proof.
a few pages of definitions and textbook proof (e.g. Cormen).

using basic concepts such as numbers, sets, and graphs.

10 / 23

Correctness
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

Theorem (Ford-Fulkerson)
For a flow network g and flow f , the following 3 statements are equivalent

1 f is a maximum flow
2 the residual network gf contains no augmenting path
3 |f | is the capacity of a (minimal) cut of g

Proof.
a few pages of definitions and textbook proof (e.g. Cormen).
using basic concepts such as numbers, sets, and graphs.

10 / 23

Correctness
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

Theorem
Let δf be the length of a shortest s, t - path in gf .
When augmenting with a shortest path,
• either δf decreases
• δf remains the same, and the number of edges in gf that lie on a

shortest path decreases.

Proof.
two more textbook pages.

using lemmas about graphs and shortest paths.

10 / 23

Correctness
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

Theorem
Let δf be the length of a shortest s, t - path in gf .
When augmenting with a shortest path,
• either δf decreases
• δf remains the same, and the number of edges in gf that lie on a

shortest path decreases.

Proof.
two more textbook pages.

using lemmas about graphs and shortest paths.

10 / 23

Correctness
procedure Edmonds-Karp(g , s, t)

f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

Theorem
Let δf be the length of a shortest s, t - path in gf .
When augmenting with a shortest path,
• either δf decreases
• δf remains the same, and the number of edges in gf that lie on a

shortest path decreases.

Proof.
two more textbook pages.
using lemmas about graphs and shortest paths.

10 / 23

Background Theory

• E.g. graph theory

• Typically requires powerful (interactive) prover
• with good library support (to not re-invent too many wheels)

• we use Isabelle

• Isabelle/HOL: based on Higher-Order Logic
• powerful automation (e.g. sledgehammer)
• large collection of libraries
• Archive of Formal Proofs
• mature, production quality IDE, based on JEdit

λ
→

∀
=Is

ab
el
le

β

α

HOL

λ
→

∀
=Is

ab
el
le

β

α

AFP

11 / 23

Background Theory

• E.g. graph theory
• Typically requires powerful (interactive) prover

• with good library support (to not re-invent too many wheels)

• we use Isabelle

• Isabelle/HOL: based on Higher-Order Logic
• powerful automation (e.g. sledgehammer)
• large collection of libraries
• Archive of Formal Proofs
• mature, production quality IDE, based on JEdit

λ
→

∀
=Is

ab
el
le

β

α

HOL

λ
→

∀
=Is

ab
el
le

β

α

AFP

11 / 23

Background Theory

• E.g. graph theory
• Typically requires powerful (interactive) prover

• with good library support (to not re-invent too many wheels)
• we use Isabelle

• Isabelle/HOL: based on Higher-Order Logic
• powerful automation (e.g. sledgehammer)
• large collection of libraries
• Archive of Formal Proofs
• mature, production quality IDE, based on JEdit

λ
→

∀
=Is

ab
el
le

β

α

HOL

λ
→

∀
=Is

ab
el
le

β

α

AFP

11 / 23

Background Theory

• E.g. graph theory
• Typically requires powerful (interactive) prover

• with good library support (to not re-invent too many wheels)
• we use Isabelle

• Isabelle/HOL: based on Higher-Order Logic

• powerful automation (e.g. sledgehammer)
• large collection of libraries
• Archive of Formal Proofs
• mature, production quality IDE, based on JEdit

λ
→

∀
=Is

ab
el
le

β

α

HOL

λ
→

∀
=Is

ab
el
le

β

α

AFP

11 / 23

Background Theory

• E.g. graph theory
• Typically requires powerful (interactive) prover

• with good library support (to not re-invent too many wheels)
• we use Isabelle

• Isabelle/HOL: based on Higher-Order Logic
• powerful automation (e.g. sledgehammer)

• large collection of libraries
• Archive of Formal Proofs
• mature, production quality IDE, based on JEdit

λ
→

∀
=Is

ab
el
le

β

α

HOL

λ
→

∀
=Is

ab
el
le

β

α

AFP

11 / 23

Background Theory

• E.g. graph theory
• Typically requires powerful (interactive) prover

• with good library support (to not re-invent too many wheels)
• we use Isabelle

• Isabelle/HOL: based on Higher-Order Logic
• powerful automation (e.g. sledgehammer)
• large collection of libraries

• Archive of Formal Proofs
• mature, production quality IDE, based on JEdit

λ
→

∀
=Is

ab
el
le

β

α

HOL

λ
→

∀
=Is

ab
el
le

β

α

AFP

11 / 23

Background Theory

• E.g. graph theory
• Typically requires powerful (interactive) prover

• with good library support (to not re-invent too many wheels)
• we use Isabelle

• Isabelle/HOL: based on Higher-Order Logic
• powerful automation (e.g. sledgehammer)
• large collection of libraries
• Archive of Formal Proofs

• mature, production quality IDE, based on JEdit

λ
→

∀
=Is

ab
el
le

β

α

HOL

λ
→

∀
=Is

ab
el
le

β

α

AFP

11 / 23

Background Theory

• E.g. graph theory
• Typically requires powerful (interactive) prover

• with good library support (to not re-invent too many wheels)
• we use Isabelle

• Isabelle/HOL: based on Higher-Order Logic
• powerful automation (e.g. sledgehammer)
• large collection of libraries
• Archive of Formal Proofs
• mature, production quality IDE, based on JEdit

λ
→

∀
=Is

ab
el
le

β

α

HOL

λ
→

∀
=Is

ab
el
le

β

α

AFP

11 / 23

Implementation

procedure Edmonds-Karp(g , s, t)
f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

int edmonds karp(int s, int t) {
int flow = 0;
vector<int> parent(n);
int new flow;

while (new flow = bfs(s, t, parent)) {
flow += new flow;
int cur = t;
while (cur != s) {

int prev = parent[cur];
capacity[prev][cur] −= new flow;
capacity[cur][prev] += new flow;
cur = prev;

}
}

return flow;
}

textbook proof typically covers abstract algorithm.

but this is quite far from implementation. Still missing:

• optimizations: e.g., work on residual network instead of flow
• algorithm to find shortest augmenting path (BFS)
• efficient data structures: adjacency lists, weight matrix, FIFO-queue,
...
• code extraction

12 / 23

Implementation

procedure Edmonds-Karp(g , s, t)
f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

int edmonds karp(int s, int t) {
int flow = 0;
vector<int> parent(n);
int new flow;

while (new flow = bfs(s, t, parent)) {
flow += new flow;
int cur = t;
while (cur != s) {

int prev = parent[cur];
capacity[prev][cur] −= new flow;
capacity[cur][prev] += new flow;
cur = prev;

}
}

return flow;
}

textbook proof typically covers abstract algorithm.
but this is quite far from implementation. Still missing:

• optimizations: e.g., work on residual network instead of flow
• algorithm to find shortest augmenting path (BFS)
• efficient data structures: adjacency lists, weight matrix, FIFO-queue,

...
• code extraction

12 / 23

Implementation

procedure Edmonds-Karp(g , s, t)
f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

int edmonds karp(int s, int t) {
int flow = 0;
vector<int> parent(n);
int new flow;

while (new flow = bfs(s, t, parent)) {
flow += new flow;
int cur = t;
while (cur != s) {

int prev = parent[cur];
capacity[prev][cur] −= new flow;
capacity[cur][prev] += new flow;
cur = prev;

}
}

return flow;
}

textbook proof typically covers abstract algorithm.
but this is quite far from implementation. Still missing:
• optimizations: e.g., work on residual network instead of flow

• algorithm to find shortest augmenting path (BFS)
• efficient data structures: adjacency lists, weight matrix, FIFO-queue,

...
• code extraction

12 / 23

Implementation

procedure Edmonds-Karp(g , s, t)
f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

int edmonds karp(int s, int t) {
int flow = 0;
vector<int> parent(n);
int new flow;

while (new flow = bfs(s, t, parent)) {
flow += new flow;
int cur = t;
while (cur != s) {

int prev = parent[cur];
capacity[prev][cur] −= new flow;
capacity[cur][prev] += new flow;
cur = prev;

}
}

return flow;
}

textbook proof typically covers abstract algorithm.
but this is quite far from implementation. Still missing:
• optimizations: e.g., work on residual network instead of flow
• algorithm to find shortest augmenting path (BFS)

• efficient data structures: adjacency lists, weight matrix, FIFO-queue,
...
• code extraction

12 / 23

Implementation

procedure Edmonds-Karp(g , s, t)
f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

int edmonds karp(int s, int t) {
int flow = 0;
vector<int> parent(n);
int new flow;

while (new flow = bfs(s, t, parent)) {
flow += new flow;
int cur = t;
while (cur != s) {

int prev = parent[cur];
capacity[prev][cur] −= new flow;
capacity[cur][prev] += new flow;
cur = prev;

}
}

return flow;
}

textbook proof typically covers abstract algorithm.
but this is quite far from implementation. Still missing:
• optimizations: e.g., work on residual network instead of flow
• algorithm to find shortest augmenting path (BFS)
• efficient data structures: adjacency lists, weight matrix, FIFO-queue,
...

• code extraction

12 / 23

Implementation

procedure Edmonds-Karp(g , s, t)
f ← λ(u, v). 0
while exists augmenting path in gf do

p ← shortest augmenting path
f ←augment(g , f , p)

int edmonds karp(int s, int t) {
int flow = 0;
vector<int> parent(n);
int new flow;

while (new flow = bfs(s, t, parent)) {
flow += new flow;
int cur = t;
while (cur != s) {

int prev = parent[cur];
capacity[prev][cur] −= new flow;
capacity[cur][prev] += new flow;
cur = prev;

}
}

return flow;
}

textbook proof typically covers abstract algorithm.
but this is quite far from implementation. Still missing:
• optimizations: e.g., work on residual network instead of flow
• algorithm to find shortest augmenting path (BFS)
• efficient data structures: adjacency lists, weight matrix, FIFO-queue,
...
• code extraction

12 / 23

Keeping it Manageable
• A manageable proof needs modularization:

• Prove separately, then assemble
• Formal framework: Refinement

• e.g. implement BFS, and prove it finds shortest paths
• insert implementation into EdmondsKarp

• Data refinement

• BFS implementation uses adjacency lists. EdmondsKarp used
abstract graphs.

• refinement relations between
• nodes and int64s (node64);
• adjacency lists and graphs (adjl);
• arrays and paths (array).

(s†,s) ∈ node64; (t†,t) ∈ node64; (g†,g) ∈ adjl
=⇒ (bfs s† t† g†, find shortest s t g) ∈ array

Shortcut notation: (bfs,find shortest) ∈ node64→node64→adjl→array

• Implementations used for different parts must fit together!

13 / 23

Keeping it Manageable
• A manageable proof needs modularization:

• Prove separately, then assemble

• Formal framework: Refinement

• e.g. implement BFS, and prove it finds shortest paths
• insert implementation into EdmondsKarp

• Data refinement

• BFS implementation uses adjacency lists. EdmondsKarp used
abstract graphs.

• refinement relations between
• nodes and int64s (node64);
• adjacency lists and graphs (adjl);
• arrays and paths (array).

(s†,s) ∈ node64; (t†,t) ∈ node64; (g†,g) ∈ adjl
=⇒ (bfs s† t† g†, find shortest s t g) ∈ array

Shortcut notation: (bfs,find shortest) ∈ node64→node64→adjl→array

• Implementations used for different parts must fit together!

13 / 23

Keeping it Manageable
• A manageable proof needs modularization:

• Prove separately, then assemble
• Formal framework: Refinement

• e.g. implement BFS, and prove it finds shortest paths
• insert implementation into EdmondsKarp

• Data refinement

• BFS implementation uses adjacency lists. EdmondsKarp used
abstract graphs.

• refinement relations between
• nodes and int64s (node64);
• adjacency lists and graphs (adjl);
• arrays and paths (array).

(s†,s) ∈ node64; (t†,t) ∈ node64; (g†,g) ∈ adjl
=⇒ (bfs s† t† g†, find shortest s t g) ∈ array

Shortcut notation: (bfs,find shortest) ∈ node64→node64→adjl→array

• Implementations used for different parts must fit together!

13 / 23

Keeping it Manageable
• A manageable proof needs modularization:

• Prove separately, then assemble
• Formal framework: Refinement

• e.g. implement BFS, and prove it finds shortest paths

• insert implementation into EdmondsKarp
• Data refinement

• BFS implementation uses adjacency lists. EdmondsKarp used
abstract graphs.

• refinement relations between
• nodes and int64s (node64);
• adjacency lists and graphs (adjl);
• arrays and paths (array).

(s†,s) ∈ node64; (t†,t) ∈ node64; (g†,g) ∈ adjl
=⇒ (bfs s† t† g†, find shortest s t g) ∈ array

Shortcut notation: (bfs,find shortest) ∈ node64→node64→adjl→array

• Implementations used for different parts must fit together!

13 / 23

Keeping it Manageable
• A manageable proof needs modularization:

• Prove separately, then assemble
• Formal framework: Refinement

• e.g. implement BFS, and prove it finds shortest paths
• insert implementation into EdmondsKarp

• Data refinement

• BFS implementation uses adjacency lists. EdmondsKarp used
abstract graphs.

• refinement relations between
• nodes and int64s (node64);
• adjacency lists and graphs (adjl);
• arrays and paths (array).

(s†,s) ∈ node64; (t†,t) ∈ node64; (g†,g) ∈ adjl
=⇒ (bfs s† t† g†, find shortest s t g) ∈ array

Shortcut notation: (bfs,find shortest) ∈ node64→node64→adjl→array

• Implementations used for different parts must fit together!

13 / 23

Keeping it Manageable
• A manageable proof needs modularization:

• Prove separately, then assemble
• Formal framework: Refinement

• e.g. implement BFS, and prove it finds shortest paths
• insert implementation into EdmondsKarp

• Data refinement

• BFS implementation uses adjacency lists. EdmondsKarp used
abstract graphs.

• refinement relations between
• nodes and int64s (node64);
• adjacency lists and graphs (adjl);
• arrays and paths (array).

(s†,s) ∈ node64; (t†,t) ∈ node64; (g†,g) ∈ adjl
=⇒ (bfs s† t† g†, find shortest s t g) ∈ array

Shortcut notation: (bfs,find shortest) ∈ node64→node64→adjl→array
• Implementations used for different parts must fit together!

13 / 23

Keeping it Manageable
• A manageable proof needs modularization:

• Prove separately, then assemble
• Formal framework: Refinement

• e.g. implement BFS, and prove it finds shortest paths
• insert implementation into EdmondsKarp

• Data refinement
• BFS implementation uses adjacency lists. EdmondsKarp used

abstract graphs.

• refinement relations between
• nodes and int64s (node64);
• adjacency lists and graphs (adjl);
• arrays and paths (array).

(s†,s) ∈ node64; (t†,t) ∈ node64; (g†,g) ∈ adjl
=⇒ (bfs s† t† g†, find shortest s t g) ∈ array

Shortcut notation: (bfs,find shortest) ∈ node64→node64→adjl→array
• Implementations used for different parts must fit together!

13 / 23

Keeping it Manageable
• A manageable proof needs modularization:

• Prove separately, then assemble
• Formal framework: Refinement

• e.g. implement BFS, and prove it finds shortest paths
• insert implementation into EdmondsKarp

• Data refinement
• BFS implementation uses adjacency lists. EdmondsKarp used

abstract graphs.
• refinement relations between

• nodes and int64s (node64);
• adjacency lists and graphs (adjl);
• arrays and paths (array).

(s†,s) ∈ node64; (t†,t) ∈ node64; (g†,g) ∈ adjl
=⇒ (bfs s† t† g†, find shortest s t g) ∈ array

Shortcut notation: (bfs,find shortest) ∈ node64→node64→adjl→array

• Implementations used for different parts must fit together!

13 / 23

Keeping it Manageable
• A manageable proof needs modularization:

• Prove separately, then assemble
• Formal framework: Refinement

• e.g. implement BFS, and prove it finds shortest paths
• insert implementation into EdmondsKarp

• Data refinement
• BFS implementation uses adjacency lists. EdmondsKarp used

abstract graphs.
• refinement relations between

• nodes and int64s (node64);
• adjacency lists and graphs (adjl);
• arrays and paths (array).

(s†,s) ∈ node64; (t†,t) ∈ node64; (g†,g) ∈ adjl
=⇒ (bfs s† t† g†, find shortest s t g) ∈ array

Shortcut notation: (bfs,find shortest) ∈ node64→node64→adjl→array

• Implementations used for different parts must fit together!

13 / 23

Keeping it Manageable
• A manageable proof needs modularization:

• Prove separately, then assemble
• Formal framework: Refinement

• e.g. implement BFS, and prove it finds shortest paths
• insert implementation into EdmondsKarp

• Data refinement
• BFS implementation uses adjacency lists. EdmondsKarp used

abstract graphs.
• refinement relations between

• nodes and int64s (node64);
• adjacency lists and graphs (adjl);
• arrays and paths (array).

(s†,s) ∈ node64; (t†,t) ∈ node64; (g†,g) ∈ adjl
=⇒ (bfs s† t† g†, find shortest s t g) ∈ array

Shortcut notation: (bfs,find shortest) ∈ node64→node64→adjl→array

• Implementations used for different parts must fit together!

13 / 23

Keeping it Manageable
• A manageable proof needs modularization:

• Prove separately, then assemble
• Formal framework: Refinement

• e.g. implement BFS, and prove it finds shortest paths
• insert implementation into EdmondsKarp

• Data refinement
• BFS implementation uses adjacency lists. EdmondsKarp used

abstract graphs.
• refinement relations between

• nodes and int64s (node64);
• adjacency lists and graphs (adjl);
• arrays and paths (array).

(s†,s) ∈ node64; (t†,t) ∈ node64; (g†,g) ∈ adjl
=⇒ (bfs s† t† g†, find shortest s t g) ∈ array

Shortcut notation: (bfs,find shortest) ∈ node64→node64→adjl→array
• Implementations used for different parts must fit together!

13 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

substantial ideas
requires interactive proof

substantial ideas
requires interactive proof

substantial ideas
requires interactive proof

substantial ideas
requires interactive proof

substantial ideas
requires interactive proof

substantial ideas
requires interactive proof

14 / 23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

bfs

”textbook” proof

graph → adj.-list
queue → ring-buffer

maxflow-spec

EdmondsKarp-1

EdmondsKarp-2

EdmondsKarp

”textbook” proof

modify residual graph

node → int
graph → adj.-list
capacity,flow → array
shortest-path → bfs

straightforward
mainly automatic
straightforward
mainly automatic
straightforward
mainly automatic
straightforward
mainly automatic

14 / 23

The Isabelle Refinement Framework

• Formalization of Refinement in Isabelle/HOL

• Tools + Automation
• Libraries
• Down to Ocaml/Haskell/Scala/SML and LLVM

15 / 23

The Isabelle Refinement Framework

• Formalization of Refinement in Isabelle/HOL
• Tools + Automation

• Libraries
• Down to Ocaml/Haskell/Scala/SML and LLVM

15 / 23

The Isabelle Refinement Framework

• Formalization of Refinement in Isabelle/HOL
• Tools + Automation
• Libraries

• Down to Ocaml/Haskell/Scala/SML and LLVM

15 / 23

The Isabelle Refinement Framework

• Formalization of Refinement in Isabelle/HOL
• Tools + Automation
• Libraries
• Down to Ocaml/Haskell/Scala/SML and LLVM

15 / 23

IRF Core

• Nondetermistic programs shallowly embedded in HOL
• As monad

α M = FAIL | SPEC (α ⇒ bool)

return, bind

• + if-then-else, recursion (via flat ccpo)
• + derived constructs (while, foreach, ...)
• = usable programming language

• Refinement Calculus for Program and Data Refinement
• Automation: VCG, semi-automatic data refinement

16 / 23

IRF Core

• Nondetermistic programs shallowly embedded in HOL
• As monad

α M = FAIL | SPEC (α ⇒ bool)

return, bind
• + if-then-else, recursion (via flat ccpo)

• + derived constructs (while, foreach, ...)
• = usable programming language

• Refinement Calculus for Program and Data Refinement
• Automation: VCG, semi-automatic data refinement

16 / 23

IRF Core

• Nondetermistic programs shallowly embedded in HOL
• As monad

α M = FAIL | SPEC (α ⇒ bool)

return, bind
• + if-then-else, recursion (via flat ccpo)
• + derived constructs (while, foreach, ...)

• = usable programming language
• Refinement Calculus for Program and Data Refinement
• Automation: VCG, semi-automatic data refinement

16 / 23

IRF Core

• Nondetermistic programs shallowly embedded in HOL
• As monad

α M = FAIL | SPEC (α ⇒ bool)

return, bind
• + if-then-else, recursion (via flat ccpo)
• + derived constructs (while, foreach, ...)
• = usable programming language

• Refinement Calculus for Program and Data Refinement
• Automation: VCG, semi-automatic data refinement

16 / 23

IRF Core

• Nondetermistic programs shallowly embedded in HOL
• As monad

α M = FAIL | SPEC (α ⇒ bool)

return, bind
• + if-then-else, recursion (via flat ccpo)
• + derived constructs (while, foreach, ...)
• = usable programming language

• Refinement Calculus for Program and Data Refinement

• Automation: VCG, semi-automatic data refinement

16 / 23

IRF Core

• Nondetermistic programs shallowly embedded in HOL
• As monad

α M = FAIL | SPEC (α ⇒ bool)

return, bind
• + if-then-else, recursion (via flat ccpo)
• + derived constructs (while, foreach, ...)
• = usable programming language

• Refinement Calculus for Program and Data Refinement
• Automation: VCG, semi-automatic data refinement

16 / 23

Imperative-HOL Backend

• imperative + functional language
• code generation to Ocaml/Haskell/Scala/SML
• automatic refinement of functional to imperative DS

• if used linearly

17 / 23

Isabelle-LLVM Backend

• only imperative + bounded integers
• automatic placement of destructors
• semi-automatic in-bound proofs (eg for int → int64)

18 / 23

Refinement with Time

• Prove correctness and complexity
• Resource currencies to structure complexity proofs along refinement
• Down to Imperative-HOL / LLVM

19 / 23

Libraries

• Functional and Imperative data structures
• readily usable for your developments

• Functional:
• hashtable, red-black-trees, tries, Finger-Trees, (Skew) binomial queues,

...
• Imperative:

• dynarray, heap, matrix, linked-list, hashtable, bit-vector, union-find,
ROBDDs, B-Trees, ...

20 / 23

Highlight Verifications

• CAVA model checker
• fully fledged LTL model checker
• developed independently by 3 groups
• newer development: MUNTA for timed automata

• Maxflow: Edmonds-Karp and Push-Relabel
• textbook-level abstract correctness proof
• efficient implementation

• GRAT: SAT-Solver verification tool
• faster than unverified state-of-the-art tool drat-trim

• Introsort + Pdqsort
• verified correctness and complexity
• on par with C++ impls from GNU libstdc++ and Boost

21 / 23

Highlight Verifications

• CAVA model checker
• fully fledged LTL model checker
• developed independently by 3 groups
• newer development: MUNTA for timed automata

• Maxflow: Edmonds-Karp and Push-Relabel
• textbook-level abstract correctness proof
• efficient implementation

• GRAT: SAT-Solver verification tool
• faster than unverified state-of-the-art tool drat-trim

• Introsort + Pdqsort
• verified correctness and complexity
• on par with C++ impls from GNU libstdc++ and Boost

21 / 23

Highlight Verifications

• CAVA model checker
• fully fledged LTL model checker
• developed independently by 3 groups
• newer development: MUNTA for timed automata

• Maxflow: Edmonds-Karp and Push-Relabel
• textbook-level abstract correctness proof
• efficient implementation

• GRAT: SAT-Solver verification tool
• faster than unverified state-of-the-art tool drat-trim

• Introsort + Pdqsort
• verified correctness and complexity
• on par with C++ impls from GNU libstdc++ and Boost

21 / 23

Highlight Verifications

• CAVA model checker
• fully fledged LTL model checker
• developed independently by 3 groups
• newer development: MUNTA for timed automata

• Maxflow: Edmonds-Karp and Push-Relabel
• textbook-level abstract correctness proof
• efficient implementation

• GRAT: SAT-Solver verification tool
• faster than unverified state-of-the-art tool drat-trim

• Introsort + Pdqsort
• verified correctness and complexity
• on par with C++ impls from GNU libstdc++ and Boost

21 / 23

Future Work

• Concurrency
• Consolidate frameworks and tools
• Interesting algorithms to verify

22 / 23

Conclusions

Isabelle Refinement Framework
powerful interactive theorem prover

+ stepwise refinement
+ libraries for standard DS
+ lot’s of automation
+ efficient backend (LLVM)
= verified and efficient algorithms, at manageable effort

23 / 23

