The Isabelle Refinement Framework

Peter Lammich

University of Twente

May 2021

1/23

Introduction

® Peter Lammich
® new assistant professor in FMT group
® previously in Miinster, Munich, Virginia Tech, Manchester

® research: software verification

2/23

Introduction

® Peter Lammich
® new assistant professor in FMT group
® previously in Miinster, Munich, Virginia Tech, Manchester
® research: software verification

® if I'm not working: you'll probably find me rock-climbing

2/23

Introduction

® Peter Lammich
® new assistant professor in FMT group
® previously in Miinster, Munich, Virginia Tech, Manchester
® research: software verification
® if I'm not working: you'll probably find me rock-climbing

® but | also enjoy hiking, biking (mtb, road, trek), racket sports (squash,
badminton), ...

2/23

The Sloth, HVS ba, at the Roaches in Peak District

Bull's Crack, HVS ba, at Heptonstall

Sport Climbing (somewhere in the Peaks

g* v ‘

)

TransAlp

after

T
ge]
pust
T
O
Q
X~
T
—
4
(gv]

(

Mountainbiking

Hiking in the Alps

7/23

. and now to the serious part: Software Verification

® Desirable properties of software

8/23

. and now to the serious part: Software Verification

® Desirable properties of software
® correct

8/23

. and now to the serious part: Software Verification

® Desirable properties of software
® correct (formally verified)

8/23

. and now to the serious part: Software Verification

® Desirable properties of software

® correct (formally verified)
e fast

8/23

. and now to the serious part: Software Verification

® Desirable properties of software

® correct (formally verified)
® fast
® manageable implementation effort

8/23

. and now to the serious part: Software Verification

® Desirable properties of software

® correct (formally verified)
® fast
® manageable implementation and proof effort

8/23

. and now to the serious part: Software Verification

® Desirable properties of software

® correct (formally verified)
® fast
® manageable implementation and proof effort

® Choose two!

8/23

. and now to the serious part: Software Verification

® Desirable properties of software

® correct (formally verified)
® fast
® manageable implementation and proof effort

® Choose two!

® This talk: towards faster verified algorithms at manageable effort

8/23

Introduction

® What does it need to formally verify an algorithm?

9/23

Introduction

® What does it need to formally verify an algorithm?
® E.g. maxflow algorithms

9/23

Introduction

® What does it need to formally verify an algorithm?
® E.g. maxflow algorithms
procedure AUGMENT(g, f, p)
¢y min{gr(u,v) | (u,v) € p}
for all (u,v) € p do
if (u,v) € gthen f(u,v) < f(u,v)+c,
else f(v,u) < f(v,u) — ¢
return f
procedure EDMONDS-KARP(g, s, t)
f < Au,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f <~ AUGMENT(g, f, p)

g: flow network s, t: source, target gr: residual network

9/23

Correctness

procedure EDMONDsS-KARP(g, s, t)
f < Xu,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f < AUGMENT(g, f, p)

10/23

Correctness

procedure EDMONDsS-KARP(g, s, t)
f < Xu,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f < AUGMENT(g, f, p)

Theorem (Ford-Fulkerson)

For a flow network g and flow f, the following 3 statements are equivalent
® 7 is a maximum flow
® the residual network gr contains no augmenting path

© |f| is the capacity of a (minimal) cut of g

10/23

Correctness

procedure EDMONDsS-KARP(g, s, t)
f < Xu,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f < AUGMENT(g, f, p)

Theorem (Ford-Fulkerson)

For a flow network g and flow f, the following 3 statements are equivalent
® 7 is a maximum flow
® the residual network gr contains no augmenting path

© |f| is the capacity of a (minimal) cut of g

Proof.
a few pages of definitions and textbook proof (e.g. Cormen).

10/23

Correctness

procedure EDMONDsS-KARP(g, s, t)
f < Xu,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f < AUGMENT(g, f, p)

Theorem (Ford-Fulkerson)

For a flow network g and flow f, the following 3 statements are equivalent
® 7 is a maximum flow
® the residual network gr contains no augmenting path

© |f| is the capacity of a (minimal) cut of g

Proof.
a few pages of definitions and textbook proof (e.g. Cormen).
using basic concepts such as numbers, sets, and graphs. O

10/23

Correctness

procedure EDMONDsS-KARP(g, s, t)
f < Xu,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f < AUGMENT(g, f, p)

Theorem
Let d¢ be the length of a shortest s, t - path in gf.
When augmenting with a shortest path,

® cjther ¢ decreases

® jf remains the same, and the number of edges in gr that lie on a
shortest path decreases.

10/23

Correctness

procedure EDMONDsS-KARP(g, s, t)
f < Xu,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f < AUGMENT(g, f, p)

Theorem
Let d¢ be the length of a shortest s, t - path in gf.
When augmenting with a shortest path,

® cjther ¢ decreases

® jf remains the same, and the number of edges in gr that lie on a
shortest path decreases.

Proof.

two more textbook pages.

O

10/23

Correctness

procedure EDMONDsS-KARP(g, s, t)
f < Xu,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f < AUGMENT(g, f, p)

Theorem
Let d¢ be the length of a shortest s, t - path in gf.
When augmenting with a shortest path,

® cjther ¢ decreases

® jf remains the same, and the number of edges in gr that lie on a
shortest path decreases.

Proof.
two more textbook pages.
using lemmas about graphs and shortest paths.

O

10/23

Background Theory

® E.g. graph theory

11/23

Background Theory

® E.g. graph theory
® Typically requires powerful (interactive) prover
® with good library support (to not re-invent too many wheels)

11/23

Background Theory

® E.g. graph theory
® Typically requires powerful (interactive) prover
® with good library support (to not re-invent too many wheels)

® we use Isabelle

11/23

Background Theory

® E.g. graph theory
® Typically requires powerful (interactive) prover

® with good library support (to not re-invent too many wheels)
® we use Isabelle

® |sabelle/HOL: based on Higher-Order Logic

Ho

o
&

11/23

Background Theory

® E.g. graph theory
® Typically requires powerful (interactive) prover

® with good library support (to not re-invent too many wheels)
® we use Isabelle

® |sabelle/HOL: based on Higher-Order Logic
® powerful automation (e.g. sledgehammer)

SR |
B A

11/23

Background Theory

® E.g. graph theory
® Typically requires powerful (interactive) prover

® with good library support (to not re-invent too many wheels)
® we use Isabelle

® |sabelle/HOL: based on Higher-Order Logic
® powerful automation (e.g. sledgehammer)
® |arge collection of libraries

b A8

11/23

Background Theory

® E.g. graph theory
® Typically requires powerful (interactive) prover

® with good library support (to not re-invent too many wheels)
® we use Isabelle

Isabelle/HOL: based on Higher-Order Logic
powerful automation (e.g. sledgehammer)
large collection of libraries

Archive of Formal Proofs

@ N w

11/23

Background Theory

® E.g. graph theory
® Typically requires powerful (interactive) prover

® with good library support (to not re-invent too many wheels)
® we use Isabelle

Isabelle/HOL: based on Higher-Order Logic
powerful automation (e.g. sledgehammer)
large collection of libraries

Archive of Formal Proofs

mature, production quality IDE, based on JEdit

5 A B & U
w AN G

11/23

Implementation

int edmonds_karp(int s, int t) {

procedure EDMONDS-KARP(g, s, t)
f+ Mu,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f <+ AUGMENT(g, f, p)

i

int flow = 0;
vector<int> parent(n);
int new_flow;

while (new_flow = bfs(s, t, parent)) {
flow += new_flow;
int cur = t;
while (cur I=s) {
int prev = parent|cur];

capacity[prev][cur] —= new_flow;
capacity|cur][prev] += new_flow;

cur = prev;

}

return flow;

textbook proof typically covers abstract algorithm.

12/23

Implementation

int edmonds_karp(int s, int t) {

procedure EDMONDS-KARP(g, s, t)
f+ Mu,v). 0
while exists augmenting path in gr do
p < shortest augmenting path
f <+ AUGMENT(g, f, p)

i

int flow = 0;
vector<int> parent(n);
int new_flow;

while (new_flow = bfs(s, t, parent)) {
flow += new_flow;
int cur = t;
while (cur I=s) {
int prev = parent|cur];

capacity[prev][cur] —= new_flow;
capacity|cur][prev] += new_flow;
cur = prev;

}

return flow;

textbook proof typically covers abstract algorithm.
but this is quite far from implementation. Still missing:

12/23

Implementation

int edmonds_karp(int s, int t) {
int flow = 0;
vector<int> parent(n);
int new_flow;

while (new_flow = bfs(s, t, parent)) {

procedure EDMONDS-KARP(g, s, t) oy o o,
f(-)\(U, V). 0 int cur = t;
. . . . hil 1=
while exists augmenting path in grdo * lijt(;ferv Z Sp)ar{ent[cur];
p < shortest augmenting path capacity[prev][cur] —= new_flow;
f f capacity|cur][prev] += new_flow;
<_AUGMENT(g7) P) cur = prev;
}
}
return flow;
}

textbook proof typically covers abstract algorithm.
but this is quite far from implementation. Still missing:
® optimizations: e.g., work on residual network instead of flow

12/23

Implementation

int edmonds_karp(int s, int t) {
int flow = 0;
vector<int> parent(n);
int new_flow;

’ _ while (new_flow = bfs(s, t, parent)) {
procedure EDMONDS-KARP(g, s, t) oy o o,

f(-)\(U7 V). 0 int cur = t;
while (cur I=s) {

while exists augmenting path in gr do it prev — parentfcur]
p < shortest augmenting path capacity[prev][cur] —= new_flow;
f . f capacity|cur][prev] += new_flow;
<_AUGMENT(gv) P) cur = prev;
}
}
return flow;
}

textbook proof typically covers abstract algorithm.

but this is quite far from implementation. Still missing:
® optimizations: e.g., work on residual network instead of flow
® algorithm to find shortest augmenting path (BFS)

12/23

Implementation

int edmonds_karp(int s, int t) {
int flow = 0;
vector<int> parent(n);
int new_flow;

’ _ while (new_flow = bfs(s, t, parent)) {
procedure EDMONDS-KARP(g, s, t) oy o o,

f(-A(U, V). 0 int cur = t;
while (cur I=s) {

while exists augmenting path in gr do it prev — parentfcur]
p < shortest augmenting path capacity[prev][cur] —= new_flow;
f . f capacity|cur][prev] += new_flow;
<_AUG'MENT(gv) P) cur = prev;
}
}
return flow;
}

textbook proof typically covers abstract algorithm.
but this is quite far from implementation. Still missing:
® optimizations: e.g., work on residual network instead of flow
® algorithm to find shortest augmenting path (BFS)
e cfficient data structures: adjacency lists, weight matrix, FIFO-queue,

12/23

Implementation

int edmonds_karp(int s, int t) {
int flow = 0;
vector<int> parent(n);
int new_flow;

’ _ while (new_flow = bfs(s, t, parent)) {
procedure EDMONDS-KARP(g, s, t) oy o o,

f(-A(U, V). 0 int cur = t;
while (cur I=s) {

while exists augmenting path in gr do it prev — parentfcur]
p < shortest augmenting path capacity[prev][cur] —= new_flow;
capacity|cur][prev] += new_flow;
f <+ AUGMENT(g, f, p) cur — prev;
}
}
return flow;
}

textbook proof typically covers abstract algorithm.
but this is quite far from implementation. Still missing:
® optimizations: e.g., work on residual network instead of flow
® algorithm to find shortest augmenting path (BFS)
e cfficient data structures: adjacency lists, weight matrix, FIFO-queue,

® code extraction
12/23

Keeping it Manageable

® A manageable proof needs modularization:

13/23

Keeping it Manageable

® A manageable proof needs modularization:
® Prove separately, then assemble

13/23

Keeping it Manageable

® A manageable proof needs modularization:
® Prove separately, then assemble
® Formal framework: Refinement

13/23

Keeping it Manageable

® A manageable proof needs modularization:
® Prove separately, then assemble
® Formal framework: Refinement
® e.g. implement BFS, and prove it finds shortest paths

13/23

Keeping it Manageable

® A manageable proof needs modularization:
® Prove separately, then assemble
® Formal framework: Refinement

® e.g. implement BFS, and prove it finds shortest paths
® insert implementation into EDMONDSKARP

13/23

Keeping it Manageable

® A manageable proof needs modularization:
® Prove separately, then assemble
® Formal framework: Refinement

® e.g. implement BFS, and prove it finds shortest paths
® insert implementation into EDMONDSKARP

® Data refinement

13/23

Keeping it Manageable

® A manageable proof needs modularization:
® Prove separately, then assemble
® Formal framework: Refinement

® e.g. implement BFS, and prove it finds shortest paths
® insert implementation into EDMONDSKARP

® Data refinement

® BFS implementation uses adjacency lists. EDMONDSKARP used
abstract graphs.

13/23

Keeping it Manageable

® A manageable proof needs modularization:
® Prove separately, then assemble
® Formal framework: Refinement

® e.g. implement BFS, and prove it finds shortest paths
® insert implementation into EDMONDSKARP

® Data refinement

® BFS implementation uses adjacency lists. EDMONDSKARP used
abstract graphs.
® refinement relations between
® nodes and int64s (nodegs);
® adjacency lists and graphs (adjl);
® arrays and paths (array).

13/23

Keeping it Manageable

® A manageable proof needs modularization:
® Prove separately, then assemble
® Formal framework: Refinement

® e.g. implement BFS, and prove it finds shortest paths
® insert implementation into EDMONDSKARP

® Data refinement

® BFS implementation uses adjacency lists. EDMONDSKARP used
abstract graphs.
® refinement relations between
® nodes and int64s (nodegs);
® adjacency lists and graphs (adjl);
® arrays and paths (array).

(s+,5) € nodegs; (t4,t) € nodegs; (gt,8) € adjl
= (bfs s; t; g, find_shortest s t g) € array

13/23

Keeping it Manageable

® A manageable proof needs modularization:
® Prove separately, then assemble
® Formal framework: Refinement

® e.g. implement BFS, and prove it finds shortest paths
® insert implementation into EDMONDSKARP

® Data refinement

® BFS implementation uses adjacency lists. EDMONDSKARP used
abstract graphs.
® refinement relations between
® nodes and int64s (nodegs);
® adjacency lists and graphs (adjl);
® arrays and paths (array).

(s+,5) € nodegs; (t4,t) € nodegs; (gt,8) € adjl
= (bfs s; t; g, find_shortest s t g) € array

Shortcut notation: (bfs,find_shortest) € nodegs—nodegs —adjl—array

13/23

Keeping it Manageable

® A manageable proof needs modularization:
® Prove separately, then assemble
® Formal framework: Refinement
® e.g. implement BFS, and prove it finds shortest paths
® insert implementation into EDMONDSKARP
® Data refinement
® BFS implementation uses adjacency lists. EDMONDSKARP used

abstract graphs.
® refinement relations between

® nodes and int64s (nodegs);
® adjacency lists and graphs (adjl);
® arrays and paths (array).

(s+,5) € nodegs; (t4,t) € nodegs; (gt,8) € adjl

= (bfs s; t; g, find_shortest s t g) € array

Shortcut notation: (bfs,find_shortest) € nodegs—nodegs —adjl—array
® Implementations used for different parts must fit together!

13/23

Refinement Architecture (simplified)

14 /23

Refinement Architecture (simplified)

shortest-path-spec

14/23

Refinement Architecture (simplified)

shortest-path-spec

bfs-1

14/23

Refinement Architecture (simplified)

shortest-path-spec
"textbook” proof

bfs-1

14/23

Refinement Architecture (simplified)

shortest-path-spec

"textbook” proof

4

bfs-1

bfs

14/23

Refinement Architecture (simplified)

shortest-path-spec

"textbook” proof

Y
bfs-1

graph — adj.-list
| queue — ring-buffer

bfs

14/23

Refinement Architecture (simplified)

shortest-path-spec

"textbook” proof

Y
bfs-1

graph — adj.-list
| queue — ring-buffer

bfs

14/23

Refinement Architecture (simplified)

shortest-path-spec maxflow-spec

"textbook” proof

Y
bfs-1

graph — adj.-list
| queue — ring-buffer

bfs

14/23

Refinement Architecture (simplified)

shortest-path-spec maxflow-spec

"textbook” proof

4

bfs-1 EdmondsKarp-1
graph — adj.-list
| queue — ring-buffer

bfs

14/23

Refinement Architecture (simplified)

shortest-path-spec

"textbook” proof

Y
bfs-1

graph — adj.-list
| queue — ring-buffer

bfs

maxflow-spec
"textbook" proof

EdmondsKarp-1

14/23

Refinement Architecture (simplified)

shortest-path-spec maxflow-spec
"textbook” proof "textbook" proof
4 Y
bfs-1 EdmondsKarp-1

graph — adj.-list
| queue — ring-buffer

bfs EdmondsKarp-2

14/23

Refinement Architecture (simplified)

shortest-path-spec

"textbook” proof

Y
bfs-1

graph — adj.-list
| queue — ring-buffer

bfs

maxflow-spec

"textbook" proof
Y

EdmondsKarp-1

modify residual graph

4
EdmondsKarp-2

14/23

Refinement Architecture (simplified)

shortest-path-spec

"textbook” proof

Y
bfs-1

graph — adj.-list
| queue — ring-buffer

bfs

maxflow-spec

"textbook" proof
Edmond'sKarp—l

modify residual graph

4
EdmondsKarp-2

EdmondsKarp

14/23

Refinement Architecture (simplified)

shortest-path-spec maxflow-spec
"textbook” proof "textbook" proof
4 Y
bfs-1 r EdmondsKarp-1

graph — adj.-list
| queue — ring-buffer

bfs

modify residual graph

4
EdmondsKarp-2

node — int

graph — adj.-list
capacity,flow — array
shortest-path — bfs

Y

EdmondsKarp

14/23

Refinement Architecture (simplified)

shortest-path-spec maxflow-spec

"textbogk” proof

bfs-1 *:
graph {p adj.-list }

| queue ring-buffer

/|

substantial ideas
requires interactive proof

bfs

node — int

graph — adj.-list
capacity,flow — array
shortest-path — bfs

Y

EdmondsKarp

14/23

Refinement Architecture (simplified)

shortest-path-spec maxflow-spec
"textbook” proof "textbook" proof
4 Y
bfs-1 ¥ EdmondsKarp-1
graph — adj.-list }))
queue — fring-buffer | modify residual graph
' | v
bfs 1 EdmondsKarp-2
| node — int
L N graph — adj.-list

straightforward L ———————capacity,flow — array
shortest-path — bfs

mainly automatic

EdmondsKarp

14/23

The Isabelle Refinement Framework

® Formalization of Refinement in Isabelle/HOL

15/23

The Isabelle Refinement Framework

® Formalization of Refinement in Isabelle/HOL

® Tools 4+ Automation

15/23

The Isabelle Refinement Framework

® Formalization of Refinement in Isabelle/HOL
® Tools + Automation

® | ibraries

15/23

The Isabelle Refinement Framework

Formalization of Refinement in Isabelle/HOL

Tools 4+ Automation

Libraries
Down to Ocaml/Haskell/Scala/SML and LLVM

15/23

IRF Core

® Nondetermistic programs shallowly embedded in HOL
® As monad

a M = FAIL | SPEC (a = bool)

return, bind

16/23

IRF Core

® Nondetermistic programs shallowly embedded in HOL
® As monad

a M = FAIL | SPEC (a = bool)

return, bind
® + if-then-else, recursion (via flat ccpo)

16/23

IRF Core

® Nondetermistic programs shallowly embedded in HOL
® As monad

a M = FAIL | SPEC (a = bool)

return, bind
® + if-then-else, recursion (via flat ccpo)
® + derived constructs (while, foreach, ...)

16/23

IRF Core

® Nondetermistic programs shallowly embedded in HOL
® As monad

a M = FAIL | SPEC (a = bool)

return, bind
® + if-then-else, recursion (via flat ccpo)
® + derived constructs (while, foreach, ...)
® — usable programming language

16/23

IRF Core

® Nondetermistic programs shallowly embedded in HOL
® As monad

a M = FAIL | SPEC (a = bool)

return, bind
® + if-then-else, recursion (via flat ccpo)
® + derived constructs (while, foreach, ...)
® — usable programming language

® Refinement Calculus for Program and Data Refinement

16/23

IRF Core

® Nondetermistic programs shallowly embedded in HOL
® As monad

a M = FAIL | SPEC (a = bool)

return, bind
® + if-then-else, recursion (via flat ccpo)
® + derived constructs (while, foreach, ...)
® — usable programming language

® Refinement Calculus for Program and Data Refinement

® Automation: VCG, semi-automatic data refinement

16/23

Imperative-HOL Backend

® imperative 4+ functional language
® code generation to Ocaml/Haskell /Scala/SML

® automatic refinement of functional to imperative DS
® if used linearly

17/23

Isabelle-LLVM Backend

® only imperative + bounded integers
® jutomatic placement of destructors

® semi-automatic in-bound proofs (eg for int — int64)

18/23

Refinement with Time

® Prove correctness and complexity
® Resource currencies to structure complexity proofs along refinement
® Down to Imperative-HOL / LLVM

19/23

Libraries

® Functional and Imperative data structures
® readily usable for your developments
® Functional:
® hashtable, red-black-trees, tries, Finger-Trees, (Skew) binomial queues,

® Imperative:

® dynarray, heap, matrix, linked-list, hashtable, bit-vector, union-find,
ROBDDs, B-Trees, ...

20/23

Highlight Verifications

® CAVA model checker

® fully fledged LTL model checker
® developed independently by 3 groups
® newer development: MUNTA for timed automata

21/23

Highlight Verifications

® CAVA model checker

® fully fledged LTL model checker
® developed independently by 3 groups
® newer development: MUNTA for timed automata

® Maxflow: Edmonds-Karp and Push-Relabel

® textbook-level abstract correctness proof
® efficient implementation

21/23

Highlight Verifications

® CAVA model checker

® fully fledged LTL model checker
® developed independently by 3 groups
® newer development: MUNTA for timed automata

® Maxflow: Edmonds-Karp and Push-Relabel

® textbook-level abstract correctness proof
® efficient implementation

o GRAT: SAT-Solver verification tool

® faster than unverified state-of-the-art tool drat-trim

21/23

Highlight Verifications

CAVA model checker

® fully fledged LTL model checker
® developed independently by 3 groups
® newer development: MUNTA for timed automata

Maxflow: Edmonds-Karp and Push-Relabel

® textbook-level abstract correctness proof
® efficient implementation

GRAT: SAT-Solver verification tool
® faster than unverified state-of-the-art tool drat-trim
Introsort + Pdgsort

® verified correctness and complexity
® on par with C++ impls from GNU libstdc++ and Boost

21/23

Future Work

e Concurrency
® Consolidate frameworks and tools

® |Interesting algorithms to verify

22/23

Conclusions

Isabelle Refinement Framework

+ o+ o+ o+

powerful interactive theorem prover

stepwise refinement

libraries for standard DS

lot's of automation

efficient backend (LLVM)

verified and efficient algorithms, at manageable effort

23/23

