
Generating Verified LLVM from Isabelle/HOL1

Peter Lammich2

The University of Manchester3

peter.lammich@manchester.ac.uk4

Abstract5

We present a framework to generate verified LLVM programs from Isabelle/HOL. It is based on a6

code generator that generates LLVM text from a simplified fragment of LLVM, shallowly embedded7

into Isabelle/HOL. On top, we have developed a separation logic, a verification condition generator,8

and an LLVM backend to the Isabelle Refinement Framework.9

As case studies, we have produced verified LLVM implementations of binary search and the10

Knuth-Morris-Pratt string search algorithm. These are one order of magnitude faster than the11

Standard-ML implementations produced with the original Refinement Framework, and on par with12

unverified C implementations. Adoption of the original correctness proofs to the new LLVM backend13

was straightforward.14

The trusted code base of our approach is the shallow embedding of the LLVM fragment and the15

code generator, which is a pretty printer combined with some straightforward compilation steps.16

2012 ACM Subject Classification Theory of computation → Program verification; Theory of com-17

putation → Logic and verification; Theory of computation → Separation logic18

Keywords and phrases Isabelle/HOL,LLVM,Separation Logic,Verification Condition Generator,Code19

Generation20

Digital Object Identifier 10.4230/LIPIcs...21

Supplement Material http://www21.in.tum.de/~lammich/isabelle_llvm22

1 Introduction23

The Isabelle Refinement Framework [33, 26, 27] features a stepwise refinement approach to24

verified algorithms, using the Isabelle/HOL theorem prover [42, 41]. It has been successfully25

applied to verify many algorithms and software systems, among them LTL and timed automata26

model checkers [15, 6, 48], network flow algorithms [32, 31], a SAT-solver certification27

tool [29, 30], and even a SAT solver [16]. Using Isabelle/HOL’s code generator [18], the28

verified algorithms can be extracted to functional languages like Haskell or Standard ML.29

However, the code generator only provides partial correctness guarantees, i.e., termination of30

the generated code cannot be proved. Moreover, the generated code is typically slower than31

the same algorithms implemented in C or Java.32

The original Refinement Framework [33, 26] could only generate purely functional code.33

The first remedy to the performance problem was to introduce array data structures that34

behave like functional lists on the surface, but are implemented by destructively updated35

arrays behind the scenes, similar to Haskell’s now deprecated DiffArray. While this gained36

some performance, the array implementation itself was not verified, such that we had to trust37

its correctness. Moreover, an array access still required a significant amount of overhead38

compared to a simple pointer dereference in C.39

The next step towards more efficient verified implementations was the Sepref tool [27]. It40

generates code for Imperative HOL [7], which provides a heap monad inside Isabelle/HOL,41

and a code generator extension to generate code that uses the stateful arrays provided by42

ML, or the heap monad of Haskell. The Sepref tool performs automatic data refinement from43

abstract data types like maps or sets to concrete implementations like hash tables, which can44

be placed on the heap and destructively updated. Moreover, it provides tools [28] to assist45

© Peter Lammich;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peter.lammich@manchester.ac.uk
https://doi.org/10.4230/LIPIcs...
http://www21.in.tum.de/~lammich/isabelle_llvm
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Generating Verified LLVM from Isabelle/HOL

in the definition of new data structures, exploiting ‘free theorems’ [45] that it obtains from46

parametricity properties of the abstract data types. Using Imperative HOL as backend, we47

gained some additional performance: For example, the GRAT tool [29, 30] provides a verified48

checker for UNSAT certificates in the DRAT format [47]. It is faster than the unverified49

state-of-the art checker drat-trim [47], which is written in C. However, the GRAT tool50

spends most of its run time in an unverified certificate preprocessor. Nevertheless, optimizing51

the verified part of the code is important: The very same technique was also implemented in52

Coq, using purely functional data structures [12, 11]. There, the verified code was actually53

the bottleneck1.54

This paper presents a next step towards efficient verified algorithms: A refinement55

framework to generate verified code in LLVM intermediate representation [35] with total56

correctness guarantees. LLVM is an imperative intermediate language with a powerful57

and well-tested optimizing compiler. We first formalize the semantics of Isabelle-LLVM, a58

simple imperative language shallowly embedded into Isabelle/HOL, and designed to be easily59

translated to actual LLVM text (§2). On top of Isabelle-LLVM, we build a separation logic60

and a verification condition generator, which allows convenient reasoning about Isabelle-61

LLVM programs (§3). Finally, we modify the Sepref tool to target Isabelle-LLVM instead of62

Imperative/HOL (§4), connecting the Refinement Framework to our LLVM code generator.63

This only affects the last refinement step, such that most parts of existing verifications can64

be reused. As case studies (§5), we verify a binary search algorithm and adopt an existing65

formalization [19] of the Knuth-Morris-Pratt string search algorithm [24]. The resulting66

LLVM code is significantly faster than the corresponding Standard-ML code and on par with67

unverified C implementations. The paper ends with the discussion of future work (§6) and68

related work (§7). The Isabelle theories described in this paper are available as supplement69

material (URL displayed in paper header).70

2 Isabelle-LLVM71

2.1 State Monad72

The basis of Isabelle-LLVM is a state-error monad, which we use to conveniently model the73

preconditions of instructions, their effect on memory, as well as arbitrary recursive programs.74

We define the algebraic data types:75

76

(′a,′s) M = M (run: ′s ⇒ (′a,′s) mres) (′a,′s) mres = NTERM | FAIL | SUCC ′a ′s77
78

An entity of type ‹(′a,′s) M › contains a function ‹run› that maps a start state of type ‹′s› to79

a monad result that indicates either nontermination, a failure, or a successful execution with80

a result of type ‹′a› and a new state. We define the standard monad combinators:81

82

return x = M (λs. SUCC x s) get = M (λs. SUCC s s)83

fail = M (λ . FAIL) set s = M (λ . SUCC () s)84

bind m f = M (λs. case run m s of SUCC x s ⇒ run (f x) s | r ⇒ r)85

assert Φ = if Φ then return () else fail86
87

That is, ‹return x› returns result ‹x› without changing the state, ‹fail› aborts the com-88

putation, ‹get› returns the current state, and ‹set s› updates the current state. Finally,89

‹bind m f› first executes ‹m›, and then ‹f› with the result of ‹m›. If ‹m› fails or does not90

1 Later, the checker was rewritten in ACL2, also using imperative data structures [11, 20]

P. Lammich XX:3

terminate, the whole bind fails or does not terminate. The derived ‹assert Φ› combinator91

can be conveniently used to abort the computation if some precondition is violated, e.g., on92

division by zero.93

We use do-notation, i.e. ‹do { x←m; f x }› is short for ‹bind m (λx. f x)›. Moreover,94

we define a flat chain complete partial order [37] on ‹mres›, with ‹⊥ := NTERM›. For a95

monotonic function ‹F :: (′a ⇒ (′b,′s) M) ⇒ ′a ⇒ (′b,′s) M›, ‹REC F› is the least fixed point.96

As functions defined using the monad combinators are monotonic by construction [25], we97

can define arbitrary recursive computations. The partial function package [25] provides98

automation for monotonicity proofs and for defining simple recursive functions. Mutual99

recursion still requires some manual effort, though it could be automated, too.100

2.2 Memory Model101

We use a high-level memory model that does not directly expose the bit-level representation102

of values and assumes an infinite supply of memory. The memory is modeled as a list of103

blocks. Each block is either deallocated, or it is a list of values. A value is a pair of values, a104

pointer, or an integer. We model memory by the following data types2:105

106

memory = MEMORY (block list) block = val list option107

val = PAIR val val | PRIM primval primval = PV INT lint | PV PTR rptr108
109

Here, the type ‹lint› is a fixed bit width word type with a two’s complement semantics, as110

used by LLVM, and pair corresponds to a 2-element structure in LLVM. The type ‹rptr› is111

either null or an address. An address is a path through the memory structure to a value:112

113

rptr = NULL | ADDR nat nat (va dir list) va dir = PFST | PSND114
115

An address consists of a block index, a value index, and a value address, which is a list of116

directions to either descend into the first or the second value of a pair.117

For the rest of this paper, we will use the state monad with a memory as state. Thus,118

we define the type ‹′a llM = (′a,memory) M›. It is straightforward to define functions119

‹load :: rptr ⇒ val llM› and ‹put :: val ⇒ rptr ⇒ unit llM› to read/write a value from/to a120

pointer, or fail if the pointer is invalid. For the actual store function, we check that the121

structure of the value does not change, i.e. pairs remain pairs, pointers remain pointers, and122

words of width w remain words of width w:123

124

store x p = do { y ← load p; assert (vstruct x = vstruct y); put x p }125

where126

vstruct (PAIR a b) = VS PAIR (vstruct a) (vstruct b)127

vstruct (PRIM (PV PTR)) = VS PTR128

vstruct (PRIM (PV INT w)) = VS INT (width w)129
130

2 We have slightly simplified the presentation. The actual implementation defines the concepts memory,
block, and value in a modular fashion, in order to ease future extensions.

XX:4 Generating Verified LLVM from Isabelle/HOL

Similarly, we define an allocate and a free function:131

allocn v n = do {
blocks ← get;
set (blocks@[Some (replicate n v)]);
return (ADDR |blocks| 0 []) }

free (ADDR bi 0 []) = do {
blocks ← get;
assert (bi < |blocks| ∧ blocks!bi 6= None);
set (blocks[bi:=None]) }

free = fail

132

Here, ‹l1@l2› concatenates two lists, ‹|l|› is the length of list ‹l›, ‹l!i› is the ith element of133

‹l›, and ‹l[i:=x]› replaces the ith element of ‹l› by ‹x›. The allocate function takes an initial134

value and a block size, appends a new block to the memory, and returns a pointer to the135

start of the new block (value index 0, and value address []). The free function expects a136

pointer to the start of a block, checks that this block is not already deallocated, and then137

deallocates the block by setting it to ‹None›.138

2.3 Towards a Shallow Embedding139

While we explicitly model values in memory by the type ‹val›, we model values in registers140

in a more shallow fashion: We identify LLVM registers with Isabelle variables that have a141

type of shape ‹T = T × T | n word | T ptr ›. Here, ‹×› is Isabelle’s product type, ‹n word›142

is the n bit word type from Isabelle’s word library3, and ‹′a ptr› is a pointer with an attached143

phantom type for the value pointed to (‹′a ptr = PTR rptr›). For each type ‹′a› of shape144

‹T ›, we define the functions:145

146

to val :: ′a ⇒ val struct of :: ′a itself ⇒ vstruct147

from val :: val ⇒ ′a init :: ′a148
149

such that150

151

from val o to val = id vstruct (to val x) = (struct of TYPE(′a))152

to val init = zero initializer (struct of TYPE(′a))153
154

Here, ‹TYPE(′a) :: ′a itself › reflects type ‹′a› into a term. The functions ‹to val› and155

‹from val› inject a T-shaped type ‹′a› into a value with structure ‹struct of TYPE(′a)›.156

Moreover, ‹init::′a› corresponds to the all-zeroes value, i.e., the value where all pointers are157

null pointers, and all integers are 0.158

2.4 Instructions159

In a next step, we define the instructions of Isabelle-LLVM. Each instruction is identified160

with an Isabelle constant. For example, the load instruction is modeled by:161

162

l l load :: ′a ptr ⇒ ′a llM163

l l load (PTR p) = do {164

v ← load p;165

assert (vstruct v = struct of TYPE(′a));166

return (from val v) }167
168

3 For convenient notation, we use the type ‹n word› as if it were a type depending on a variable n.
Isabelle/HOL is not dependently typed. Instead, n is actually a type variable with type-class ‹len›,
which provides a function ‹len of :: ′a::len itself ⇒ nat› to extract the length as a term.

P. Lammich XX:5

It loads a value from the specified pointer, checks that its structure matches the expected169

type ‹′a›, and then converts the value to ‹′a›.170

For allocation and deallocation, we provide the instructions:171
172

l l malloc :: ′a itself ⇒ n word ⇒ ′a ptr llM ll free :: ′a ptr ⇒ unit llM173
174

Note that LLVM does not contain a heap manager. Instead, we assume that the generated175

code will be linked with the C standard library, and let the code generator produce calls to176

‹calloc› and ‹free›. We also define instructions to access the elements of a pair, to offset a177

pointer, and to advance a pointer into a pair. The code generator maps these instructions to178

the corresponding LLVM instructions ‹getelementptr›, ‹insertvalue›, and ‹extractvalue›.179

Integer instructions are defined on the ‹n word› type. For example, we define:180
181

l l udiv :: n word ⇒ n word ⇒ n word llM182

l l udiv a b = do { assert (b 6= 0); return (a div b) }183
184

where ‹div› is the unsigned division from Isabelle’s word library. Note the use of assertions185

to exclude undefined behavior, e.g., division by zero.186

2.5 Modeling Control Flow187

Next, we put together instructions to form procedure bodies. We only allow structured188

control flow via if-then-else, while, procedure calls, and sequential composition: The body of189

a procedure is modeled by an Isabelle term of type ‹′a llM› and shape ‹block›, where190
191

block = do { var ← cmd; block } | return var192

cmd = ll <opcode> arg∗ | proc name arg∗ | l lc if arg block block | l lc while block block193

arg = var | number | null | init194
195

with196
197

l lc if :: 1 word ⇒ ′a llM ⇒ ′a llM ⇒ ′a llM198

l lc if b t e = if b=1 then t else e199

200

l lc while :: (′a ⇒ 1 word llM) ⇒ (′a ⇒ ′a llM) ⇒ ′a ⇒ ′a llM201

l lc while b c s = do {ctd ← b s; llc if ctd (do {s ← c s; llc while b c s}) (return s)}202
203

That is, a block is a list of commands whose results are bound to variables, terminated by a204

return instruction. A command is either an instruction, a procedure call, or an if-then-else or205

while statement. The arguments of instructions and procedure calls, as well as the condition206

of an if-then-else statement, must be variables or constants (i.e., numbers, the null pointer, or207

a zero-initialized value). The condition of a while statement is modeled as a block returning208

a ‹1 word ›, such that it can be re-evaluated prior to each loop iteration. A program is209

represented by a set of (monomorphic) theorems of the shape ‹proci x1 . . . xn = block›,210

where the ‹proci› are Isabelle functions, the ‹xi› are variables, and all free variables on the211

right hand side are among the ‹xi›.212

I Example 1. Figure 1 shows the Isabelle specification of a procedure named ‹fib›, which213

takes a 64 bit word argument, and returns a 64 bit word. Our semantics can be directly214

executed inside Isabelle. The following Isabelle command evaluates ‹fib› on the first few215

natural numbers, and an empty memory:216
217

value ‹map (λn. run (fib n) (MEMORY [])) [0,1,2,3]›218

(∗ output: [SUCC 0 (MEMORY []), SUCC 1 . . . , SUCC 1 . . . , SUCC 2 . . .] ∗)219
220

XX:6 Generating Verified LLVM from Isabelle/HOL

fib:: 64 word ⇒ 64 word llM
fib n = do {
t ← l l icmp ule n 1;
llc if t (return n) (do {
n1 ← l l sub n 1;
a ← fib n1;
n2 ← l l sub n 2;
b ← fib n2;
c ← l l add a b;
return c
}) }

Figure 1 Isabelle-LLVM pro-
gram

define i64 @fib(i64 %x) {
start:
%t = icmp ule i64 %x, 1
br i1 %t, label %then, label %else

then:
br label %ctd if

else:
%n 1 = sub i64 %x, 1
%a = call i64 @fib (i64 %n 1)
%n 2 = sub i64 %x, 2
%b = call i64 @fib (i64 %n 2)
%c = add i64 %a, %b
br label %ctd if

ctd if:
%x1a = phi i64 [%x, %then], [%c, %else]
ret i64 %x1a }

Figure 2 Generated LLVM text

2.6 Code Generation221

The LLVM intermediate representation [35] is a strongly typed control flow graph (CFG)222

based intermediate language that uses single static assignment (SSA) form [13]. A procedure223

is a list of basic blocks, the first block in the list being the entry point of the procedure.224

A basic block is a list of instructions, finished by a terminator instruction that determines225

the next basic block to execute (or to return from the current procedure). Each non-void226

instruction defines a fresh register containing its result. A register can only be accessed in227

the part of the CFG that is dominated by its definition. To transfer values from registers228

to other parts of the CFG, φ-instructions are used. A φ-instruction must be located at the229

start of a basic block. It lists, for each possible predecessor block, an accessible register230

in this predecessor block. The φ-instruction evaluates to the value of the register from231

those predecessor block from which execution was actually transferred. The result of the232

φ-instruction is bound to a fresh register, which can then be accessed from the current basic233

block.234

It is straightforward to map an Isabelle-LLVM program to an actual LLVM program.235

Each equation of the form ‹proc x1 .. xn = block› is mapped to an LLVM function named236

‹proc›. A block is mapped to a control flow graph. Instructions and procedure calls are237

directly mapped to LLVM instructions and calls. An ‹x ← l lc if b t e› is translated to238

conditional branching, using a φ-instruction to define the result register ‹x› when joining the239

control flow. An ‹x ← l lc while b c s› is translated similarly.240

I Example 2. Figure 2 displays the output of our code generator for the ‹fib› constant241

displayed in Figure 1.242

2.6.1 Mapping the Memory Model243

Mapping the abstract memory model of Isabelle-LLVM to actual LLVM is slightly more244

involved. For example, recall the ‹l l malloc :: ′a itself ⇒ n word ⇒ ′a ptr llM› instruction.245

It has to be mapped to the function ‹void∗ calloc(size t, size t)› from the C standard library.246

P. Lammich XX:7

For this, we have to parameterize the code generator with the architecture dependent size247

of the ‹size t› type. Next, we have to obtain the size of type ‹′a› and cast the ‹n word›248

parameter to ‹size t›. Here, our code generator will refuse downcast, as this might result249

in bits being dropped. Finally, we have to cast the returned ‹void∗› to the correct return250

type. Moreover, the ‹calloc› function returns ‹null› if not enough memory is available. In251

contrast, our semantics always returns a new block of memory. We insert code to terminate252

the program in a defined way if it runs out of memory. The relation between our semantics253

and the actual LLVM program then becomes: Either the program terminates with an out-of-254

memory condition, or it behaves as modeled by the semantics. Our current implementation255

prints an error message and terminates the process with exit code 1 if it runs out of memory.256

A similar issue arises when comparing pointers: LLVM does not have instructions for257

pointer comparison. Instead, pointers have to be cast to integers, which can then be258

compared. However, this requires to know the bit-width of a pointer, which we cannot model259

in our semantics that admits unboundedly many different pointers. Instead, we model the260

instructions ‹l l ptrcmp eq› and ‹l l ptrcmp ne›, and let the code generator generate the cast261

to integers and the integer comparison.262

2.7 Preprocessing263

In the previous sections we have described the semantics of Isabelle-LLVM and its translation264

to actual LLVM. However, Isabelle-LLVM programs have to adhere to a very restrictive265

shape (cf. §2.5), which makes them easy to map to actual LLVM code, but tedious to266

write directly. Thus, we implement a preprocessor that tries to automatically transform267

user-specified equations to valid Isabelle-LLVM. While the preprocessing is highly incomplete,268

i.e., it cannot convert every equation to a well-shaped one, it works well in practice, allowing269

for concise specifications. Note that the preprocessor proves the new equations from the270

original ones. Thus, errors in the preprocessor cannot affect soundness: Either, it fails to271

prove the equations, or it produces ill-shaped equations, which the code generator will reject.272

The user specifies an initial set of constants, which must be instantiated to monomorphic273

types, i.e., must not contain any type variables. For each constant, the preprocessor then274

gathers the defining equation, instantiates it to the actual monomorphic type of the constant,275

transforms it by inlining and fixed point unfolding, and then repeats the process for any new276

constant occurring on the right-hand side of the transformed equation. Note that a constant277

is identified by its name and type, such that a constant with the same name can occur278

multiple times in the final Isabelle-LLVM program. The code generator will disambiguate279

the names. At the end, we have a set of monomorphic equations that define all constants280

that occur in the final program, and can be passed to the actual code generator. We now281

describe the inlining and fixed point unfolding transformations.282

2.7.1 Inlining283

Inlining first applies user defined rewrite rules and then flattens nested expressions, converting284

function calls to the shape ‹r ← f x1 . . . xn› or ‹r ← return (f x1 . . . xn)›, where the xi285

are either constants, variables, or monadic arguments of type ‹. . . ⇒ l lM›. Subterms of286

type ‹ l lM› are recursively flattened. We iterate the rewriting and flattening steps until a287

fixed point is reached.288

I Example 3. Consider the following definition of the constant ‹fib′›:289

290

fib′ :: m word ⇒ m word llM291

XX:8 Generating Verified LLVM from Isabelle/HOL

fib′ n = if n ≤ 1 then return n292

else do { n1 ← fib′ (n − 1); n2 ← fib′ (n − 2); return (n1 + n2) }293
294

When started with ‹fib′ :: 64 word ⇒ 64 word llM›, the preprocessor automatically translates295

this equation to the equation displayed in Figure 1. During the translation, it uses the296

following inlining rules:297

298

if b then c else t = llc if (from bool b) c t return (a + b) = ll add a b299

return (from bool (a≤b)) = ll icmp ule a b return (a − b) = ll sub a b300
301

Our default setup contains similar rules for the other operations, as well as rules to map302

tuples and case-distinctions over tuples to ‹insertvalue› and ‹extractvalue› instructions.303

2.7.2 Fixed-Point Unfolding304

The preprocessor generates recursive functions from fixed-point combinators. It examines305

the right hand side of an equation for patterns ‹p› for which it has an unfold rule of the form306

‹p = F p›. It then defines a new constant ‹f x1 . . . xn = F (f x1 . . . xn)›, where the ‹xi› are307

the free variables in the pattern ‹p›. Finally, it replaces ‹p› by ‹f x1 . . . xn› in the equation.308

This way, specifications with fixed point combinators are automatically transformed to a set309

of recursive equations, as required by the code generator.310

For example, the ‹l lc while› combinator is defined as a fixed point (cf. §2.5). Using its311

definition as an unfold rule, the preprocessor will automatically convert while loops into312

tail calls. This allows for using while-loops without trusting their translation in the code313

generator. A configuration option in our tool lets the user choose between direct while-loop314

translation or unfolding into a tail call.315

I Example 4. Consider the following program:316

317

euclid :: 64 word ⇒ 64 word ⇒ 64 word318

euclid a b = do {319

(a,b) ← l lc while320

(λ(a,b) ⇒ l l cmp (a 6= b))321

(λ(a,b) ⇒ if (a≤b) then return (a,b−a) else return (a−b,b))322

(a,b);323

return a }324
325

From this, the preprocessor proves the following two equations (before inlining):326

327

euclid a b = do {328

(a, b) ← euclid0 (a, b);329

return a }330

euclid0 s = do {331

ctd ← case s of (a, b) ⇒ l l cmp (a 6= b);332

l lc if ctd (do {333

s ← case s of (a, b) ⇒ if a ≤ b then return (a, b − a) else return (a − b, b);334

euclid0 s335

}) (return s) }336
337

That is, it defined a new constant ‹euclid0 › to replace the while loop by tail recursion.338

P. Lammich XX:9

3 Verification Condition Generator339

The next step towards generating verified LLVM programs is to establish a reasoning340

infrastructure. In this section, we describe our separation logic [43] based verification341

condition generator. Note that, while applying complex operations on the proof state, at the342

end, our VCG conducts a proof that goes through Isabelle’s inference kernel. Thus, bugs in343

the VCG cannot cause unsoundness.344

3.1 Separation Algebra345

The first step to obtain a separation logic is to define a separation algebra on a suitable346

abstraction of the memory. A separation algebra [8] is a structure with a zero, a disjointness347

predicate a#b, and a disjoint union a+ b. Intuitively, elements describe parts of the memory.348

Zero describes the empty memory, a#b means that a and b describe disjoint parts of the349

memory, and a+ b describes the memory described by the union of a and b. For the exact350

definition of a separation algebra, we refer to [8, 22]. We note that separation algebras351

naturally extend over functions, pairs, and option types.352

We abstract a value by a partial function from value addresses (‹va dir list›) to primitive353

values, such that the addresses in the domain of the function are independent, i.e., no address354

is the prefix of another address:355

356

typedef aval = { m :: vaddr ⇒ ′a option. ∀va,va′∈dom m. va6=va′ −→ indep va va′ }357

val α :: val ⇒ aval358

val α (PRIM x) = [[] 7→ x]359

val α (PAIR x y) = PFST · val α x + PSND · val α y360
361

Here, ‹[k 7→v]› is the partial function that maps ‹k› to ‹v›, and ‹i · a› prepends the item ‹i›362

to all addresses in the domain of ‹a›. It is straightforward (though technically involved) to363

show that abstract values form a separation algebra, where the empty map is zero, maps are364

disjoint iff their domains are pairwise independent, and union merges two maps.365

A natural abstraction of a block (‹val list›) would be a function from indexes to abstract366

values, mapping invalid indexes to 0. However, this abstraction does not contain enough367

information to reason about deallocation. In order to deallocate a block, we have to own the368

whole block. However, from the abstraction, we cannot infer the size of the block, and thus369

we cannot specify an assertion that ensures that we own the whole block. A remedy (which370

the author has seen in [1]) is to additionally abstract a block to its size. Thus, abstract blocks371

have the type ‹ablock = (nat ⇒ aval) × nat option›. The option type is required to make372

the second elements of the tuples a separation algebra. We use the trivial separation algebra373

here, where two elements are only disjoint if at least one of them is ‹None›. Finally, we374

define ‹amemory = nat ⇒ ablock›, and a function ‹α :: memory ⇒ amemory› that abstracts375

memory by a function from block indexes to abstract blocks, mapping deallocated or invalid376

indexes to zero.377

3.2 Basic Reasoning Infrastructure378

Predicates of type ‹assn = amemory ⇒ bool› are called assertions. The weakest precondition379

of a program ‹c :: ′a llM›, a postcondition ‹Q :: ′a ⇒ assn›, and a memory ‹s› is defined as:380

381

wp c Q s = (∃r s′. run c s = SUCC r s′ ∧ Q r (α s′))382
383

XX:10 Generating Verified LLVM from Isabelle/HOL

Intuitively, ‹wp c Q s› states that program ‹c›, if run on memory ‹s›, terminates successfully384

with the result ‹r›, and the abstraction of the new state ‹s′› satisfies ‹Q›.385

For assertions ‹P› and ‹Q›, the separating conjunction ‹P∗Q› describes a memory that386

can be split into two disjoint parts described by ‹P› and ‹Q›, respectively:387

388

(P ∗ Q) s = ∃s1 s2. s1 # s2 ∧ s = s1 + s2 ∧ P s1 ∧ Q s2389
390

Validity of a Hoare triple ‹{P} c {Q}› is defined as follows:391

392

|= {P} c {Q} = ∀F s. (P∗F) (α s) −→ wp c (λr s′. (Q r ∗ F) s′) s393
394

That is, if the memory can be split into a part described by the precondition ‹P›, and a395

frame described by ‹F›, then command ‹c› will succeed, and the new memory consists of a396

part described by the postcondition ‹Q› and the unchanged frame. Our Hoare triples satisfy397

the frame rule: ‹|= {P} c {Q} =⇒ |= {P ∗ F} c {λr. Q r ∗ F}› for all ‹F›.398

3.3 Basic Rules399

Once we have set up the separation algebra and the abstraction function, we can prove Hoare400

triples for the basic operations of our memory model. For example, we prove the following401

rules for ‹allocn› and ‹free›:402

403

|= {@} allocn v n {λp. malloc tag n p ∗ range {0..<n} (λ . v) p}404

|= {malloc tag n p ∗ ∃blk. range {0..<n} blk p} free p {λ . @}405
406

where ‹@ = λs. s=0› describes the empty memory, ‹malloc tag n p› asserts that ‹p› points to407

the beginning of a block, and the size field of this block’s abstraction is ‹n›, and ‹range I f p›408

describes that for all ‹i ∈ I›, ‹p+ i› points to value ‹f i›. Intuitively, ‹allocn› creates a block409

of size ‹n›, initialized with values ‹v›, and a tag. If one possesses both, the whole block and410

the tag, it can be deallocated by free. For the Isabelle-LLVM memory instructions, we obtain411

the following rules:412

413

|= {n 6=0} l l malloc TYPE(′a) n {λp. range {0..<n} (λ . init) p ∗ malloc tag n p}414

|= {range {0..<n} blk p ∗ malloc tag n p} l l free p {λ . @}415

|= {pto x p} l l load p {λr. r=x ∗ pto x p}416

|= {pto xx p} l l store x p {λ . pto x p}417
418

Here, ‹pto x p› describes that p points to value x, and we write predicates as if they were419

assertions on the empty memory, e.g., ‹n 6=0› instead of ‹λs. s=0 ∧ n 6=0›. We prove similar420

rules for the other instructions.421

3.4 Automating the VCG422

In order to efficiently prove Hoare triples, some automation is required. We provide a423

verification condition generator with a frame inference heuristics. The first step to prove a424

Hoare triple is to convert it to a proposition on weakest preconditions:425

426

J
∧
F s. STATE (P∗F) s =⇒ wp c (λr s′. (Q r ∗ F) s′) sK =⇒ |= {P} c {Q}427

428

where ‹STATE P s = P (α s)›. In general, the VCG operates on subgoals of the form429

‹STATE P s =⇒ wp c Q s›. It then iteratively performs one of the following steps4:430

4 This is a simplified presentation. The actual VCG is an instantiation of a generic VCG framework that
can be configured with various solvers, rules, and heuristics.

P. Lammich XX:11

simplification Apply a rewrite rule to transform ‹wp c Q s› into some equivalent proposition.431

For example, binding is resolved by the rule:432

433

wp (do {x←m; f x}) Q s = wp m (λx. wp (f x) Q) s434
435

rule If there is a Hoare triple of the form ‹|= {P′} c {Q′}›, the VCG tries to infer a frame ‹F›436

such that ‹P ` P′∗F›, and replaces the goal by ‹STATE (Q′∗F) s′ =⇒ Q s′› for a fresh437

‹s′›. Here, ‹P ` Q = ∀s. P s =⇒ Q s› denotes entailment.438

final If the goal has the form ‹STATE P s =⇒ Q s› such that ‹Q› is not of the form439

‹wp ›, a heuristics is used to prove ‹P ` Q›.440

The actual verification conditions are generated during frame inference and the final proof441

heuristics. For example, the rule for ‹l l malloc› requires to prove that the size operand is442

not zero. The VCG will try to prove these goals by a default tactic, and leave them to the443

user if this tactic fails.444

I Example 5. Recall the function ‹euclid :: 64 word ⇒ 64 word ⇒ 64 word llM› from Ex-445

ample 4. We prove the following Hoare triple:446

447

|= {uint64 a a† ∗ uint64 b b† ∗ 0<a ∗ 0<b} euclid a† b† {λr†. uint64 (gcd a b) r†}448
449

Here, ‹uint64 a a†› states that ‹a†::64 word› is an unsigned integer with value ‹a::int›, where450

‹int› is the type of (mathematical) integers in Isabelle, and ‹gcd› is Isabelle’s greatest common451

divisor function. After annotating a suitable loop invariant, the VCG generates the following452

two verification conditions:453

454

J gcd x y = gcd a b; x 6= y; x ≤ y; . . . K =⇒ gcd x (y − x) = gcd a b455

J gcd x y = gcd a b; ¬ x ≤ y; . . . K =⇒ gcd (x − y) y = gcd a b456
457

These are straightforward to prove in Isabelle, e.g., using sledgehammer [3].458

3.5 Data Structures and Basic Refinement459

Recall Example 5. The Hoare triple that is proved there first maps the 64 bit word arguments460

and results to mathematical integers, and then phrases the correctness statement in terms461

of mathematical integers. This approach is often more feasible than stating correctness on462

the concrete implementation directly. In our case, we would have to define the concept of463

greatest common divisor for 64 bit words. In general, an algorithm often computes some464

function on abstract mathematical concepts like integers or sets, but has to implement these465

by concrete data structures like 64 bit words or hash-tables. Thus, a concise way to specify466

the correctness statement is to first map the implementations back to the abstract concepts,467

and then state the actual correctness abstractly.468

In separation logic based reasoning, a data structure provides a refinement assertion469

‹A x x† :: assn›, which describes that the abstract value ‹x› is implemented by the concrete470

value ‹x†›. We define refinement assertions to implement integers and natural numbers by n471

bit words, and to implement lists by blocks of memory. On top of that, we define more complex472

data structures like dynamic arrays. Note that new data structures can easily be added. In473

general, an implementation does not completely implement an abstract mathematical concept.474

For example, n bit words can only represent the integers ‹sints n = {−2n−1.. < 2n−1}›, and475

hash-tables can only represent finite sets. Thus, the rules for the operations generally come476

with additional preconditions. For example, the rule to implement subtraction on integers by477

subtraction on n bit words is the following:478

XX:12 Generating Verified LLVM from Isabelle/HOL

479

|= {sintn a a† ∗ sintn b b† ∗ a−b ∈ sints n} l l sub a† b† {λr†. sintn (a−b) r†}480

for a† b† :: n word and a b :: int481
482

Here, ‹sintn› implements mathematical integers by n-bit words. Note that the postcondition483

does not mention the operands ‹a,b› again, though they are still valid after the operation.484

As ‹sintn› is pure, i.e., does not use the memory, our VCG will automatically add the485

corresponding assertions to the postcondition.486

4 Automatic Refinement487

Our basic VCG infrastructure can be used to verify simple algorithms like ‹euclid› from488

Example 5. However, many complex algorithms have already been verified using the Isabelle489

Refinement Framework [33]. It features a non-deterministic programming language with a490

refinement calculus and a VCG. It allows to express an algorithm using abstract mathematical491

concepts, and then refine it in multiple steps towards an efficient implementation. The last492

step of a refinement is typically performed by the Sepref tool [27], which translates a program493

from the non-deterministic monad of the Refinement Framework into the deterministic heap494

monad of Imperative HOL [7], replacing abstract data types by concrete implementations.495

We have modified the Sepref tool to translate to Isabelle-LLVM’s monad instead. We only496

had to modify the translation phase. The preprocessing phases, which only work on the497

abstract program, remained unchanged.498

The translation phase works by symbolically executing the abstract program, thereby499

synthesizing a structurally similar concrete program. During the symbolic execution, the500

relation between the abstract and concrete variables is modeled by refinement assertions.501

The predicate ‹hnr Γ m† Γ′ R m› means that concrete program ‹m†› implements abstract502

program ‹m›, where ‹Γ› contains the refinements for the variables before the execution, ‹Γ′›503

contains the refinements after the execution, and ‹R› is the refinement assertion for the result504

of ‹m›. For example, a ‹bind› is processed by the following rule:505
506

1 J hnr Γ m† Γ′ Rx m;507

2
∧
x x†. hnr (Rx x x† ∗ Γ′) (f† x†) (R′x x x† ∗ Γ′′) Ry (f x);508

3 MK FREE R′x free;509

4 K =⇒ hnr Γ (do {x†←m†;r†←f† x†; free x†; return r†}) Γ′′ Ry (do {x←m; f x})510
511

To refine ‹x←m; f x›, we first execute ‹m›, synthesizing the concrete program ‹m†› (line 1).512

The state after ‹m› is ‹Rx x x† ∗ Γ′›, where ‹x› is the result created by ‹m›. From this state,513

we execute ‹f x› (line 2). The new state is ‹R′x x x† ∗ Γ′′ ∗ Ry y y†›, where ‹y› is the result514

of ‹f x›. Now, the variable ‹x› goes out of scope, such that it has to be deallocated. The515

predicate ‹MK FREE R′x free = ∀x x†. |= {R′x x x†} free x† {λ . @}› (line 3) states that516

‹free› is a deallocator for data structures implemented by refinement assertion ‹R′x›. Note517

that the refinement for variable ‹x› may change: If ‹f† x†› overwrites ‹x†›, the refinement518

assertion for ‹x› will be changed to the special assertion ‹invalid›. The deallocator for519

‹invalid› is simply a no-op. Adding support for deallocators was the most substantial change520

we applied to the Sepref tool. Its original target language, Imperative HOL, is garbage521

collected, such that there is no need for explicit deallocation.522

4.1 Data Structure Library523

Once the basic Sepref tool is adapted, we can define data structures. Reusing the basic data524

structures from the original Sepref tool is not possible, as Imperative HOL uses arbitrary525

P. Lammich XX:13

precision integers and algebraic data types, while we have only fixed width words and pairs.526

Up to now, we have added the implementation of integers and natural numbers by n bit words527

and some basic container data structures like dynamic arrays, bit-vectors, and min-heaps.528

Thereby, we could reuse the existing infrastructure of the Sepref tool: For example, there is529

support to automatically generate rules that also support refinement of the elements of a530

data structure, exploiting ‘free theorems’ [45] which stem from parametricity properties of531

the abstract types.532

5 Case Studies533

To assess the usability of our approach, we have verified a binary search algorithm and the534

Knuth-Morris-Pratt string search [24] algorithm. Both algorithms have also been verified535

with the original Sepref tool, such that we can compare the two approaches.536

5.1 Binary Search537

Binary search is a simple algorithm to find a value in a sorted array. Despite its simplicity, it538

has a history of flawed implementations5, making it a natural example for formal verification.539

We start with a high-level specification: For a list ‹xs› and a value ‹x›, find the index of540

the first element greater or equal to ‹x›. We define the following constant:541

542

fi spec xs x = spec i. i = find index (λy. x≤y) xs543
544

where ‹find index P xs› is a standard list function that returns the index of the first element545

in ‹xs› that satisfies ‹P›, or ‹length xs› if there is no such element.546

Next, we phrase the binary search algorithm in the Isabelle Refinement Framework:547

548

bin search xs x ≡ do {549

(l,h) ← while550

(λ(l,h). l<h)551

(λ(l,h). do {552

assert (l<length xs ∧ h≤length xs ∧ l≤h);553

let m = l + (h−l) div 2;554

if xs!m < x then return (m+1,h) else return (l,m)555

})556

(0,length xs);557

return l }558
559

It is a standard exercise to prove that the algorithm adheres to its specification:560

561

bs correct: sorted xs =⇒ bin search xs x ≤ fi spec xs x562
563

Finally, we invoke our adapted Sepref tool:564

565

sepref definition bs impl [l lvm code] is bin search566

:: (larray64 sint64)k → sintk64 → snat64567

unfolding bin search def [. . .] by sepref568

export llvm bs impl file bin search.ll569

lemmas bs impl correct = bs impl.refine[FCOMP bs correct]570
571

5 A buggy implementation in the Java Standard Library has gone undetected for nearly a decade [5].

XX:14 Generating Verified LLVM from Isabelle/HOL

This produces an Isabelle-LLVM program ‹bs impl›, exports it to actual LLVM text, and572

proves the refinement theorem ‹bs impl correct›:573

574

(bs impl, fi spec) : [λ(xs,). sorted xs] (larray64 sint64)k × sintk64 → snat64575
576

Here, ‹snatw › implements natural numbers by signed w-bit words6. Moreover, ‹larrayw A›577

refines a list to an array and a w-bit length field, the elements of the list being refined578

by assertion ‹A›. The notation ‹[Φ] Ak|d
1 × . . . × A

k|d
n → R› specifies a refinement with579

precondition ‹Φ›, such that the arguments are refined by ‹A1 . . . An › and the result is refined580

by ‹R›. The ·k|d annotations specify whether an argument is overwritten (k for keep, d for581

destroy). While we use this notation a lot in the Refinement Framework, it is straightforward582

to prove a standard Hoare triple from it. By unfolding some definitions we get:583

584

|= {larray64 sint64 xs xs† ∗ sint64 x x† ∗ sorted xs }585

bs impl xs† x†586

{λi†. ∃i. larray64 sint64 xs xs† ∗ snat64 i i† ∗ i=find index (λy. x≤y) xs}587
588

That is, if we start with an array ‹xs†› representing the sorted list ‹xs›, and a 64-bit word589

‹x†› representing the integer ‹x›, then the array still represents ‹xs†›, and the result ‹i†›590

represents a natural number ‹i›, which is equal to the correct index.591

The Sepref tool implements mathematical integers by 64-bit words, proving absence of592

overflows. This is only possible because the assertion in ‹bin search› explicitly states that593

the indexes are in bounds. Moreover, note the expression ‹l + (h−l) div 2› that we used to594

compute the midpoint index. On mathematical integers, it is equal to ‹(l+h) div 2 ›. However,595

on fixed-width words, the latter may overflow, while the former does not7.596

5.2 Knuth-Morris-Pratt String Search597

Next, we regard the Knuth-Morris-Pratt (KMP) string search algorithm [24], a well-known598

linear time algorithm to find the index of the first occurrence of a string s in a string t:599

600

ss spec s t = spec601

None ⇒ @i. sublist at s t i |602

Some i ⇒ sublist at s t i ∧ (∀ii<i. ¬sublist at s t ii))603
604

where ‹sublist at s t i› specifies that list ‹s› occurs in list ‹t› at index ‹i›:605

606

sublist at s t i = ∃ps ss. t = ps@s@ss ∧ i = length ps607
608

We have recently formalized KMP with the original Sepref tool [19]. The adaption of the609

existing formalization was straightforward: In the abstract part, we had to explicitly add610

a few in-bounds assertions. Most of them were already contained implicitly in the original611

proof. For the synthesis step, we only had to add setup for the fixed-width word types. The612

result of the automatic synthesis is an Isabelle-LLVM program ‹kmp impl›, and the theorem:613

614

(kmp impl, ss spec)615

: [λs t. |s| + |t| < 263] (larray64 sint64)k × (larray64 sint64)k → snat option64616
617

Here ‹snat option64› implements the type ‹nat option› by signed 64-bit words, mapping618

‹None› to −1.619

6 As LLVM’s index operations are on signed words, it’s convenient to always implement sizes and indexes
by signed types, even if they are natural numbers.

7 Exactly this overflow caused the infamous bug in the Java Standard Library [5].

P. Lammich XX:15

n/106 C LLVM SML SML∗

1 121 100 1999 139
2 251 204 4209 289
3 379 304 6516 440
4 513 412 8843 600
5 635 514 11494 756
6 767 617 13646 917
7 908 726 16032 1076
8 1038 854 18421 1250
9 1162 945 20957 1409
10 1293 1045 23409 1564

Table 1 Time (ms) to search for the values
0, 2, . . . < 5n in an array [0, 5, . . . < 5n].

a-l C++ LLVM SML SML∗

16-8 499 597 4616 918
16-64 511 598 4621 926
16-512 513 590 4573 909
32-8 453 551 4471 850
32-64 465 552 4523 857
32-512 463 544 4456 840
64-8 418 530 4433 803
64-64 420 531 4514 809
64-512 416 523 4411 799
Table 2 Time (ms) to run the a-l benchmark

suite from StringBench [44]. Here a is the alpha-
bet size, and l the pattern size. The sample size
is 3 · 220 characters. The algorithm stops after
finding the first match.

5.3 Runtime620

We have compared our verified LLVM implementations to unverified C/C++ implementations621

of the same algorithms, as well as to the Standard ML (SML) implementations generated622

by the original Sepref tool. While we have implemented binary search in C ourselves, we623

used a publicly available code snippet [34] for KMP8. The programs were compiled with624

MLton-2018 [39] and clang-6.0 [10], and run on a standard laptop machine (2.8GHz Quadcore625

i7 with 16MiB RAM). Tables 1 and 2 display the results: The verified LLVM implementations626

are on par with the unverified C/C++ implementations, and an order of magnitude faster627

than the SML implementations.628

Isabelle’s code generator uses arbitrary precision integers, which tend to be significantly629

slower than fixed-width integers. The SML∗ column shows the results when we manually630

replace the arbitrary precision integers by 64-bit integers in the generated code. While this is631

unsound in general, it gives us a lower bound of what would be possible in SML with more632

elaborate code generator configurations9. SML∗ is significantly faster than the original SML,633

but still 1.5 times slower than LLVM.634

6 Future Work635

While our case studies only cover medium complex algorithms, we expect that our approach636

will scale to more complex algorithms, e.g. model checkers [48, 16] and SAT solvers [16],637

which have already been formalized with the original refinement framework. While these638

formalizations use a combination of functional and imperative data structures, the LLVM639

backend only supports imperative data structures. We expect the necessary changes to640

be manageable, but non-trivial. In particular, the current Sepref tool only supports pure641

data structures to be nested in containers. In the Imperative HOL setting, we simply use642

functional data structures inside containers. For LLVM, nested container data structures643

8 One easily finds many C implementations of KMP, mainly differing in the loop structure. We tried to
choose one that is close to our implementation.

9 Fleury et al. [16] have successfully experimented with such code generator tuning.

XX:16 Generating Verified LLVM from Isabelle/HOL

currently require ad-hoc proofs on the separation logic level. We leave the lifting of Sepref to644

support nested imperative data structures to future work.645

Moreover, the refinement from arbitrary precision integers to fixed size integers was quite646

straightforward for our case studies, and we expect these refinements to be more complex in647

general. We leave it to future work to explore this issue more systematically, and to provide648

semi-automated tools, e.g. along the lines of AutoCorres [17].649

Our code generator, as well as most standard code generators in theorem provers, translates650

from logic to target language code, implicitly identifying logical concepts with programming651

language concepts. This approach is simple, however, the translation algorithm and its652

implementation become part of the trusted code base. More recently, code generators that653

translate into a deeply embedded semantics of the target language have been developed [40, 21].654

We leave a translation to a deep embedding of LLVM to future work, and note that a deep655

embedding will also enable more advanced control flow constructs like exceptions and breaking656

from loops, without significantly increasing the trusted code base.657

Compared to actual LLVM, Isabelle-LLVM makes a few simplifying assumptions: We658

do not support floating point arithmetic, though this could be added, e.g. based on Lei659

Yu’s floating point formalization [49]. Moreover, we only support two-element structures660

(pairs). This nicely fits Isabelle HOL’s product datatype, and the nested structures resulting661

from longer tuples should not be a problem for LLVM’s optimizer. Also, we do not support662

concepts that are handy for program optimization, but not required for code generation,663

like poison values. Isabelle-LLVM assumes an infinite supply of memory, and thus cannot664

assign a bit-size to pointers. This assumption helps us to retain a deterministic semantics,665

which is executable inside the theorem prover (cf. Example 1). We plan to use this feature666

for systematic testing of our code generator against the actual LLVM compiler. A similar667

assumption is implicitly made for the stack, as our semantics permits arbitrarily deep recursive668

procedure calls. We remedy this mismatch between semantics and reality by terminating the669

program in a defined way if it runs out of heap. To protect against stack overflows, LLVM670

provides mechanisms like stack probing or split stack, which, however, require some effort671

to enable. We leave that to future work, and note that our generated code allocates no672

large blocks of memory on the stack. Thus, stack overflows are likely to hit the guard pages673

inserted by most operating systems, which will cause defined termination of the process.674

Currently, we interface our generated LLVM code from C programs compiled by clang.675

However, the ABIs of C and LLVM only partially match, and some LLVM constructs cannot676

be expressed in C at all. Currently, it is the user’s responsibility to implement a correct677

header file. We plan to automatically generate header files and adapter functions to make678

the exported code accessible from C.679

7 Related Work680

This project would not have been possible without several independent Isabelle developments:681

We use the Separation Algebra library [23, 22] as basis for our separation logic. We682

substantially extended this library by a frame inference heuristics, and formalized the683

extension of separation algebras over functions, products, and options. Moreover, we use684

Isabelle’s machine word library [2] to model the 2’s complement arithmetic of LLVM. We685

slightly extended this library by adding a few lemmas. Finally, the Eisbach language [38]686

was a great help for prototyping the verification condition generator, although most of the687

final VCG is now implemented directly in the more low-level Isabelle/ML.688

The Vellvm project [50, 51] verifies LLVM program transformations in Coq. To be useful,689

P. Lammich XX:17

e.g. as backend for clang, they have to formalize a substantial fragment of LLVM. On the690

other hand, we can afford to formalize a simplified and abstract semantics that is just691

powerful enough to cover what Sepref generates.692

We drew some of the ideas for our separation logic from the Verifiable C project [1], a693

Coq formalization of a separation logic on top of the CompCert C semantics [4].694

There exists various formalizations of low-level imperative languages, eg [36, 46]. These695

are focused on specifying the semantics, and we are not aware of any complex algorithm696

verifications using these formalizations.697

The DeepSpec project [14] aims at a completely verified computation environment, down698

to machine code, including the operating system. This is much more ambitious than the699

work presented here, which stops at a (simplified) LLVM semantics. For proving correct700

imperative programs, they have a separation logic based VCG for a fragment of C [1, 9],701

which they apply to several small C programs, mainly for cryptographic algorithms.702

8 Conclusions703

We have developed Isabelle-LLVM, a shallowly embedded imperative language designed704

to be easily translated to actual LLVM text. On top of this, we have built a verification705

infrastructure, and re-targeted the Sepref tool to connect the Refinement Framework to706

LLVM. As case studies, we have generated verified LLVM code for a binary search algorithm707

and the Knuth-Morris-Pratt string search algorithm. Both implementations are an order708

of magnitude faster than the ones generated with the original Sepref tool, and on par with709

unverified C implementations. The additional effort required to refine to LLVM instead of710

Standard ML was quite low.711

Acknowledgement712

We thank Maximilian P. L. Haslbeck and Simon Wimmer for proofreading and useful suggestions. We713

received funding from DFG grant LA 3292/1 "Verifizierte Model Checker" and VeTSS grant "Formal714

Verification of Information Flow Security for Relational Databases".715

XX:18 Generating Verified LLVM from Isabelle/HOL

References716

1 Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon717

Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for Certified Compilers. Cambridge718

University Press, New York, NY, USA, 2014.719

2 Joel Beeren, Matthew Fernandez, Xin Gao, Gerwin Klein, Rafal Kolanski, Japheth Lim,720

Corey Lewis, Daniel Matichuk, and Thomas Sewell. Finite machine word library. Archive721

of Formal Proofs, June 2016. http://isa-afp.org/entries/Word_Lib.html, Formal proof722

development.723

3 Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending sledge-724

hammer with SMT solvers. J. Autom. Reasoning, 51(1):109–128, 2013. doi:10.1007/725

s10817-013-9278-5.726

4 Sandrine Blazy and Xavier Leroy. Mechanized semantics for the Clight subset of the C727

language. Journal of Automated Reasoning, 43(3):263–288, 2009. URL: http://xavierleroy.728

org/publi/Clight.pdf.729

5 Joshua Bloch. Extra, extra - read all about it: Nearly all binary searches730

and mergesorts are broken. URL: http://googleresearch.blogspot.com/2006/06/731

extra-extra-read-all-about-it-nearly.html.732

6 Julian Brunner and Peter Lammich. Formal verification of an executable LTL model733

checker with partial order reduction. J. Autom. Reasoning, 60(1):3–21, 2018. doi:734

10.1007/s10817-017-9418-4.735

7 Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkök, and John Matthews.736

Imperative functional programming with Isabelle/HOL. In Otmane Aït Mohamed, César A.737

Muñoz, and Sofiène Tahar, editors, TPHOLs 2008, volume 5170 of LNCS, pages 134–149.738

Springer, 2008.739

8 C. Calcagno, P.W. O’Hearn, and Hongseok Yang. Local action and abstract separation logic.740

In LICS 2007, pages 366–378, July 2007.741

9 Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel.742

Vst-floyd: A separation logic tool to verify correctness of C programs. Journal of Automated743

Reasoning, 61, 02 2018. doi:10.1007/s10817-018-9457-5.744

10 Clang: a C language family frontend for LLVM. URL: https://clang.llvm.org/.745

11 Luís Cruz-Filipe, Marijn Heule, Warren Hunt, Matt Kaufmann, and Peter Schneider-Kamp.746

Efficient certified RAT verification. In Proc. of CADE. Springer, 2017.747

12 Luís Cruz-Filipe, Joao Marques-Silva, and Peter Schneider-Kamp. Efficient certified resolution748

proof checking. In Proc. of TACAS, pages 118–135. Springer, 2017.749

13 Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.750

Efficiently computing static single assignment form and the control dependence graph. ACM751

Trans. Program. Lang. Syst., 13(4):451–490, October 1991. URL: http://doi.acm.org/10.752

1145/115372.115320, doi:10.1145/115372.115320.753

14 Deep spec project web page. URL: https://deepspec.org/.754

15 Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, and755

Jan-Georg Smaus. A fully verified executable LTL model checker. In CAV, volume 8044 of756

LNCS, pages 463–478. Springer, 2013.757

16 Mathias Fleury, Jasmin Christian Blanchette, and Peter Lammich. A verified SAT solver with758

watched literals using Imperative HOL. In Proc. of CPP, pages 158–171, 2018.759

17 David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein. Don’t sweat the small760

stuff: formal verification of C code without the pain. In Proc. of PLDI ’14, pages 429–439,761

2014. doi:10.1145/2594291.2594296.762

18 Florian Haftmann, Alexander Krauss, Ondřej Kunčar, and Tobias Nipkow. Data refinement763

in Isabelle/HOL. In Proc. of ITP, pages 100–115. Springer, 2013.764

19 Fabian Hellauer and Peter Lammich. The string search algorithm by Knuth, Morris and Pratt.765

Archive of Formal Proofs, December 2017. http://isa-afp.org/entries/Knuth_Morris_766

Pratt.html, Formal proof development.767

http://isa-afp.org/entries/Word_Lib.html
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
http://xavierleroy.org/publi/Clight.pdf
http://xavierleroy.org/publi/Clight.pdf
http://xavierleroy.org/publi/Clight.pdf
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/s10817-018-9457-5
https://clang.llvm.org/
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://deepspec.org/
https://doi.org/10.1145/2594291.2594296
http://isa-afp.org/entries/Knuth_Morris_Pratt.html
http://isa-afp.org/entries/Knuth_Morris_Pratt.html
http://isa-afp.org/entries/Knuth_Morris_Pratt.html

P. Lammich XX:19

20 Marijn Heule, Warren Hunt, Matt Kaufmann, and Nathan Wetzler. Efficient, verified checking768

of propositional proofs. In Proc. of ITP. Springer, 2017.769

21 Lars Hupel and Tobias Nipkow. A verified compiler from Isabelle/HOL to CakeML. In Amal770

Ahmed, editor, Programming Languages and Systems, pages 999–1026, Cham, 2018. Springer771

International Publishing.772

22 Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Mechanised separation algebra. In ITP,773

pages 332–337. Springer, Aug 2012.774

23 Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Separation algebra. Archive of Formal775

Proofs, May 2012. http://isa-afp.org/entries/Separation_Algebra.html, Formal proof776

development.777

24 Donald E. Knuth, Jr. James H. Morris, and Vaughan R. Pratt. Fast pattern matching in strings.778

SIAM Journal on Computing, 6(2):323–350, 1977. arXiv:https://doi.org/10.1137/0206024,779

doi:10.1137/0206024.780

25 Alexander Krauss. Recursive definitions of monadic functions. In Proc. of PAR, volume 43,781

pages 1–13, 2010.782

26 Peter Lammich. Automatic data refinement. In ITP, volume 7998 of LNCS, pages 84–99.783

Springer, 2013.784

27 Peter Lammich. Refinement to Imperative/HOL. In ITP, volume 9236 of LNCS, pages 253–269.785

Springer, 2015.786

28 Peter Lammich. Refinement based verification of imperative data structures. In Jeremy Avigad787

and Adam Chlipala, editors, CPP 2016, pages 27–36. ACM, 2016.788

29 Peter Lammich. Efficient verified (UN)SAT certificate checking. In Proc. of CADE. Springer,789

2017.790

30 Peter Lammich. The GRAT tool chain - efficient (UN)SAT certificate checking with formal791

correctness guarantees. In SAT, pages 457–463, 2017.792

31 Peter Lammich and S. Reza Sefidgar. Formalizing the Edmonds-Karp algorithm. In Proc. of793

ITP, pages 219–234, 2016.794

32 Peter Lammich and S. Reza Sefidgar. Formalizing network flow algorithms: A refine-795

ment approach in Isabelle/HOL. J. Autom. Reasoning, 62(2):261–280, 2019. doi:10.1007/796

s10817-017-9442-4.797

33 Peter Lammich and Thomas Tuerk. Applying data refinement for monadic programs to798

Hopcroft’s algorithm. In Lennart Beringer and Amy P. Felty, editors, ITP 2012, volume 7406799

of LNCS, pages 166–182. Springer, 2012.800

34 Yong Li. Knuth-Morris-Pratt code snippet. URL: https://gist.github.com/yongpitt/801

5704216.802

35 LLVM language reference manual. URL: https://llvm.org/docs/LangRef.html.803

36 Andreas Lochbihler. Java and the Java Memory Model - A unified, machine-checked formali-804

sation. In Proc. of ESOP, pages 497–517, 2012. doi:10.1007/978-3-642-28869-2_25.805

37 George Markowsky. Chain-complete posets and directed sets with applications. algebra806

universalis, 6(1):53–68, Dec 1976. doi:10.1007/BF02485815.807

38 Daniel Matichuk, Toby Murray, and Makarius Wenzel. Eisbach: A proof method language808

for Isabelle. Journal of Automated Reasoning, 56(3):261–282, Mar 2016. doi:10.1007/809

s10817-015-9360-2.810

39 MLton. URL: http://mlton.org/.811

40 Magnus O. Myreen and Scott Owens. Proof-producing translation of higher-order logic812

into pure and stateful ML. J. Funct. Program., 24(2-3):284–315, 2014. doi:10.1017/813

S0956796813000282.814

41 Tobias Nipkow and Gerwin Klein. Concrete Semantics: With Isabelle/HOL. Springer Publish-815

ing Company, Incorporated, 2014.816

42 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant817

for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.818

http://isa-afp.org/entries/Separation_Algebra.html
http://arxiv.org/abs/https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
https://gist.github.com/yongpitt/5704216
https://gist.github.com/yongpitt/5704216
https://gist.github.com/yongpitt/5704216
https://llvm.org/docs/LangRef.html
https://doi.org/10.1007/978-3-642-28869-2_25
https://doi.org/10.1007/BF02485815
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/s10817-015-9360-2
http://mlton.org/
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1017/S0956796813000282

XX:20 Generating Verified LLVM from Isabelle/HOL

43 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc of.819

Logic in Computer Science (LICS), pages 55–74. IEEE, 2002.820

44 Stringbench benchmark suite. URL: https://github.com/almondtools/stringbench.821

45 Philip Wadler. Theorems for free! In Proc. of FPCA, pages 347–359. ACM, 1989.822

46 Conrad Watt. Mechanising and verifying the webassembly specification. In Proc. of CPP,823

pages 53–65, 2018. doi:10.1145/3167082.824

47 Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. DRAT-trim: Efficient checking825

and trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, SAT826

2014, volume 8561 of LNCS, pages 422–429. Springer, 2014.827

48 Simon Wimmer and Peter Lammich. Verified model checking of timed automata. In TACAS828

2018, pages 61–78, 2018.829

49 Lei Yu. A formal model of ieee floating point arithmetic. Archive of Formal Proofs, July 2013.830

http://isa-afp.org/entries/IEEE_Floating_Point.html, Formal proof development.831

50 Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. Formalizing832

the LLVM intermediate representation for verified program transformations. In Proc. of833

POPL, pages 427–440. ACM, 2012. URL: http://doi.acm.org/10.1145/2103656.2103709,834

doi:10.1145/2103656.2103709.835

51 Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. Formal836

verification of SSA-based optimizations for LLVM. SIGPLAN Not., 48(6):175–186, June 2013.837

URL: http://doi.acm.org/10.1145/2499370.2462164, doi:10.1145/2499370.2462164.838

https://github.com/almondtools/stringbench
https://doi.org/10.1145/3167082
http://isa-afp.org/entries/IEEE_Floating_Point.html
http://doi.acm.org/10.1145/2103656.2103709
https://doi.org/10.1145/2103656.2103709
http://doi.acm.org/10.1145/2499370.2462164
https://doi.org/10.1145/2499370.2462164

	Introduction
	Isabelle-LLVM
	State Monad
	Memory Model
	Towards a Shallow Embedding
	Instructions
	Modeling Control Flow
	Code Generation
	Mapping the Memory Model

	Preprocessing
	Inlining
	Fixed-Point Unfolding

	Verification Condition Generator
	Separation Algebra
	Basic Reasoning Infrastructure
	Basic Rules
	Automating the VCG
	Data Structures and Basic Refinement

	Automatic Refinement
	Data Structure Library

	Case Studies
	Binary Search
	Knuth-Morris-Pratt String Search
	Runtime

	Future Work
	Related Work
	Conclusions

