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Abstract. Identifying a Markov decision process’s maximal end compo-
nents is a prerequisite for applying sound probabilistic model checking
algorithms. In this paper, we present the first mechanized correctness
proof of a maximal end component decomposition algorithm, which is
an important algorithm in model checking, using the Isabelle/HOL the-
orem prover. We iteratively refine the high-level algorithm and proof into
an imperative LLVM bytecode implementation that we integrate into the
Modest Toolset’s existing mcsta model checker. We bring the benefits
of interactive theorem proving into practice by reducing the trusted code
base of a popular probabilistic model checker and we experimentally show
that our new verified maximal end component decomposition in mcsta
performs on par with the tool’s previous unverified implementation.

1 Introduction

Model checking [12] is a verification technique that determines the validity of
properties specified as temporal logics formulae on formal models of systems
ranging from hardware circuits [6,13] and concurrent programs [21] to cyber-
physical systems [15,45]. The model’s semantics is traditionally some form of
transition system [3]. Extended model checking approaches deal with, for exam-
ple, real-time systems using a timed automata semantics [1,7], or probabilistic
systems [2] using Markov chains or Markov decision processes (MDP) [5,47].
Given the often safety- or mission-critical nature of the systems being model-
checked, the correctness of the model checker is of utmost importance.

As of today, however, few model checkers themselves are formally verified,
and none of those is widely used. The Cava LTL model checker [8,18], for exam-
ple, is fully verified, from algorithmic correctness all the way down to a cor-
rect implementation. Yet, for the same purpose, Spin [31] remains the tool of
choice for practitioners despite being unverified. This is because Cava supports
only a fragment of the Promela input language [44], and is much slower due
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to its purely functional-programming implementation, while Spin’s algorithms
and code have been highly optimised. Similarly, the fully verified Munta model
checker for timed automata [55] is significantly slower than the de-facto standard
tool UPPAAL [4], despite Munta’s refinement resulting in Standard ML code
that uses imperative elements such as arrays to obtain better performance.

While initiatives like Cava and Munta constitute major achievements in
interactive theorem proving (ITP) research, they have not managed to bring the
benefits of ITP into verification practice. Their approach towards the goal of a
fully-verified model checker is top-down: Create a new tool from scratch, nec-
essarily starting (and ultimately remaining) with a limited scope that prevents
practical adoption. In addition, they are limited by the technology available in
their time for refining abstract algorithms into executable code.

We instead propose a bottom-up approach: Starting from an existing model
checker that is competitive and has an established user base, replace its unver-
ified code by provably correct implementations component-by-component. In
this way, the tool is not immediately fully verified, but the trusted code base is
reduced step-by-step. Crucially, by exploiting recent advances in refinement tech-
nology [39,41] that deliver highly-efficient LLVM bytecode, our verified replace-
ment components perform similarly to the unverified originals implemented in
e.g. C or C#. The incremental approach is thus “invisible” to the users, leading
to an immediate adoption of the benefits of ITP in verification practice.

Our contributions are to formalise an algorithm for maximum end component
(MEC) decomposition in MDPs with Isabelle/HOL, prove its correctness, and
iteratively refine the abstract algorithm to imperative code and data structures
in LLVM bytecode. We integrate the resulting verified implementation into an
existing probabilistic model checker and experimentally show that it performs
on par with the previous unverified implementation.

A MEC is a subset of the states of an MDP for which a strategy exists that
remains within the MEC with probability 1. In an MDP with nontrivial MECs,
the Bellman operator used in sound numeric algorithms for probabilistic model
checking (PMC) for indefinite-horizon properties [22,26,48] has multiple fixed
points, leading to divergence [22] and/or breaking the algorithm’s correctness
proof [26]. Eliminating or later deflating [17] the MECs of an MDP is thus a nec-
essary step in PMC. To the best of our knowledge, ours is the first mechanical
formalisation and correctness proof of MEC decomposition. We use the
Isabelle Refinement Framework [42] to refine our algorithm down to LLVM code
which we integrate into an existing model checker. We target mcsta of the Mod-
est Toolset [25]. Its performance is competitive [9], and it has been used for
various case studies by different teams of researchers [24,50,53]. Our verification
and refinement of MEC decomposition constitutes a critical step on the long-
term bottom-up path towards a fully-verified probabilistic model checker, laying
the foundation for verifying the actual numeric algorithm as the next step. MEC
decomposition is also used in probabilistic planning [57] as part of the FRET1

1 Here, end components are called “traps”; FRET is “find, revise, eliminate traps” [33].
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approach [33,51], and can be generalised from MDP to stochastic games where it
is equally necessary for sound algorithms [17]. Our work can thus be transferred
to tools in these areas.

Our MEC decomposition algorithm, or MEC algorithm for short, follows
the standard approach [3, Algorithm 47]: (i) find all strongly connected com-
ponents (SCCs) of the MDP’s graph, (ii) identify all bottom SCCs as MECs
and remove them, (iii) delete all transitions with nonzero probability to leave
an SCC, and (iv) repeat until no more states remain. After defining MDPs and
MECs in Sect. 2, we present the algorithm, our formalisation in Isabelle/HOL,
and our correctness proof in Sect. 3. We introduce the efficient data structures
for the implementation in Sect. 4. We had earlier verified Gabow’s SCC-finding
algorithm and refined it into efficient LLVM code for mcsta [28]. We were able
to integrate the SCC algorithm’s high-level correctness proof into our MEC
algorithm formalisation with minor technical adaptations. However, the SCC
algorithm could assume the graph to be static, whereas the MEC algorithm
iteratively changes the MDP graph. We thus need a new data structure that
allows deleting states and transitions, which we describe together with the cor-
responding refinement proofs in Sect. 4. In this part, we also extended proofs
and refinement relations for the SCC-finding aspect due to an extended data
structure. In Sect. 5, we describe the LLVM code generation and integration into
mcsta. By adopting mcsta’s existing MDP representation, we minimise costly
glue code and transformations or copies of the data. This is important for the
scalability and performance of our end result, which we experimentally show in
Sect. 6.

Related Work. Certification is an alternative to verification: A formally verified
certifier checks the results of an unverified tool. This requires a practical certi-
fication mechanism and the support of the unverified model checker. Formally
verified certification tools that work on significant problem sizes exist for e.g.
timed automata model checking [54,56] and SAT solving [29,40].

Probabilistic models have been the subject of ITP work before. Notably,
there are some formalisations of MDPs and the value iteration algorithm in
Isabelle/HOL [30] and Coq [52], but executable code does not appear to have
been extracted from these proofs. Additionally, there is a formalisation of value
iteration for discounted expected rewards [43] which extracts Standard ML code
from the proof. We note that MEC decomposition is not necessary in the dis-
counted case, thus [43] and the many current works in machine learning/artificial
intelligence based on reinforcement learning typically avoid the problem.

The standard MEC decomposition approach computes SCCs. SCC-finding
algorithms have been formalised with various tools, including Isabelle/HOL [38],
Coq [46], and Why3 [11]. Of these, only [38] extracted executable code, which
however performed poorly. Our earlier verification and high-performance refine-
ment of Gabow’s SCC-finding algorithm [28] built upon ideas from [38]. An
asymptotically faster MEC algorithm has been proposed [10]. It combines SCC-
finding with a lock-step depth-first search. The algorithm has not been adopted
by PMC tools so far, likely due to its implementation complexity.
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2 Background

We introduce MDPs and MECs in the context of probabilistic model checking,
then explain the refinement-based approach to program verification that we use.

Probabilistic Model Checking. Let [0, 1] ⊆ R be the interval of real numbers
from 0 to 1 and 2X the power set of X. A (discrete) probability distribution over
X is a function μ : X → [0, 1] where

∑
x∈X μ(x) = 1 that has countable support

Sp(μ) = { v | μ(v) > 0 }. Dist(X) is the set of probability distributions over X.

Definition 1. A Markov decision process (MDP) is a pair (S,K) where S is a
finite set of states and K is the kernel of type S → 2Dist(S).

An MDP models the interaction of an agent with a random environment: In
current state u, the agent makes a decision, i.e. non-deterministically chooses
a distribution μ ∈ K(u). The environment then updates the current state by
sampling μ. By repeating this process, we trace a path with a certain probability.
A strategy represents an agent’s decisions of which distribution to pick next based
on the path traced so far. Combining an MDP and a strategy removes all non-
determinism, resulting in a Markov chain on which a probability measure over
paths can be defined in the standard way [3]. We characterise interesting sets of
paths via properties; for this work, we are particularly interested in reachability :

Definition 2. Given sets A, T ⊆ S, a reachability property is an LTL formula
¬A U T (characterising the set of paths that do not visit avoid states (A) before
a target state (T ) which is visited eventually). Under a given strategy, the prob-
ability of satisfying a property is the probability mass of the (measurable) set of
paths satisfying that property.

Fig. 1. MDP (S, K)

There is a strategy that minimises and one that max-
imises the probability of satisfying ¬AUT [3], which
induce the minimum/maximum reachability proba-
bilities.

Example 1. Figure 1 shows an MDP with S =
{ 0, 1, 2, 3 }. The edges represent K where α, β and
γ label the non-deterministic choices followed by the
probability mass of each state. The minimum probability to satisfy ¬{ 1 }U { 3 }
is 0 for the strategy that always chooses β and γ. The maximum probability is
0.5 by choosing α twice. After this, we are either in target state 3 or in avoid
state 1.

The edges of an MDP kernel are Edges(K) = { (u, v) | ∃μ ∈ K(u) : μ(v) > 0 }.
A sub-MDP of (S,K) is a pair (C,D) where C ⊆ S and D(u) ⊆ K(u).

Definition 3. Given an MDP (S,K), an end component (EC) [14] is a sub-
MDP (C,D) such that C×C ⊆ Edges(D)∗ (it is strongly connected) and (u, v) ∈
Edges(K) ∧ u ∈ C ⇒ v ∈ C (it is closed). A maximal end component (MEC) is
an EC that is not a sub-MDP of another EC.
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SCCs are weaker than MECs: They are maximal strongly connected subsets of
states rather than closed sub-MDPs. In other words, for every state, there exists
a strategy such that the next state is in the SCC with probability > 0, while for
a MEC the probability is 1. MECs play an essential role in sound algorithms for
evaluating reachability probabilities: Collapsing the MECs (i.e. replacing every
MEC by a single state that collects all edges out of the MEC) guarantees a single
fixed point for these algorithms. We find MECs through a graph analysis that
requires the computation of SCCs. Graph analysis means that we only need to
know whether probabilities are non-zero, i.e. we work with the MDP structure
that maps state u to its set of supports {Sp(μ) | μ ∈ K(u) } ⊆ 2S . We call
elements of the outer set transitions and elements of the inner sets branches.

Example 2. In the MDP structure for Fig. 1, state 0 is mapped to { { 0, 1 }, { 2 } }.
The MDP has two SCCs: { 0, 1, 2 } and { 3 }. Set { 0, 1 } is not an SCC as it is
not maximal. There are three MECs: { 0, 1 }, { 2 }, and { 3 }. While state 2 has
an edge to 1, it is not in the same MEC as it cannot go back with probability 1.

We also use models that are Markov automata (MA) [16] and probabilistic
timed automata (PTA) [37]. Untimed reachability on a MA can be checked on
its embedded MDP, while PTA can be converted to MDP using e.g. digital
clocks [36].

Verification by Refinement. We aim for efficient verified executable code.
This requires reasoning about the high-level behaviour of algorithms as well as
about lower-level concepts like efficient data structures. To keep these indepen-
dent concerns separate, we use an iterative refinement approach:

We represent the algorithm with the nondeterministic result (nres) monad
of the Isabelle Refinement Framework (IRF) [42]. It has two possible states:
result and fail. The former captures the set of outputs of all non-deterministic
behaviours (e.g. picking an element of a set) of a program while the latter occurs
if any behaviour of the program fails (e.g. non-termination). For abstract pro-
gram A and concrete program C, the refinement relation C ≤⇓ R A holds iff each
result of C relates to a result of A via relation R. If A fails, then C always refines
it. We use predefined relations like Rsize and Rbool to relate natural numbers and
booleans to 64 and 1 bit words, respectively, or br α I = {(c,a). a=α c ∧ I c}
to build a relation from abstraction function α which converts concrete data to
abstract data and invariant I that holds if the data is in valid form. We use
notation (C,A) ∈ [λ a1...an. P a1...an] R1 → . . . → Rn → R for
P a1...an=⇒(c1, a1)∈R1. . .=⇒(cn, an)∈Rn=⇒(C c1...cn) ≤ ⇓ R (Aa1...an)

where P is a precondition over the abstract program. To refine e.g. addition of
natural numbers (a + b) to addition of 64-bit words, we need the precondition
a + b ≤ 263 − 1; the maximal value of 64-bit signed words.

As they are transitive, we can compose refinements. The final step is an
automatic refinement to a model of LLVM using the sepref tool [39]. It uses
assertions of separation logic [49] to map data structures to concrete memory
contents; e.g. A′

size and A′
bool map 64 and 1 bit words to memory, respectively,
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Fig. 2. An execution of the MEC algorithm using 3 iterations.

and Alist maps a list to memory using a heap. We combine relations and asser-
tions through composition; e.g. Asize = Rsize O A′

size maps natural numbers to
memory.

Example 3. We show an example of a bitset, abstractly represented as a nat set.
We implement operation sget, which tests whether a value is in a bitset.

(∗1∗) sget bs i = i ∈ bs bs get bs i ≡ (bi ! (i div 64) !! (i mod 64))
(∗2∗) bs α bs = Collect (λ i. bitset get i bs ∧ i < 64 ∗ length bs)
bs inv n bs = (n ≤ 64 ∗ length bs) Rbs = br bs α bs inv
(∗3∗) (bs get, sget) ∈ Rbs n → (Rnbn n) → Rbool

(∗4∗) (bs geti, bs get) ∈ [λ(i,l). i<length l ∗ 64] Asize → Alist → Abool

(∗5∗) Abs = Rbs O Alist (bs geti, sget) ∈ (Anbn n) → Abs → Abool

Here, we (1) define an abstract function sget, which is a membership test,
and an implementation bs get over bs::64 word list (i.e. a list of 64-bit binary
words) and an index i::nat . This function obtains the i-th bit in the sequence:
bs ! j obtains the j-th word and x !! k the k-th bit in word x. We then (2) relate
64 word list to a nat set using Rbs ; we provide bs α as abstraction function to
convert 64 word lists to nat sets, and bs inv as invariant that makes sure that n
values fit in our bitset. Next, (3) we prove refinement of sget to bs get. Rnbn n
maps all values up to n to themselves. (4) Function bs geti is an LLVM program
automatically generated by sepref and refines bs get. The precondition guarantees
that the index is in bounds. Finally (5) through composition we obtain Abs that
maps a nat set to a bitset on the heap. This allows sepref to generate LLVM code
for every occurence of sget. Note that we simplified the notation e.g. to match the
relation refinement and we omitted notation for (non-)destructive heap access.

3 Correctness of the MEC Algorithm

The standard MEC algorithm iteratively culls the MDP as follows: (1) Calculate
the SCC decomposition of the current MDP, (2) find the SCCs that are MECs,
and (3) remove the found MECs, and remove all transitions with branches to
a different SCC. Figure 2 shows 3 iterations of this algorithm on the MDP of
Fig. 1. SCCs are marked by dotted lines, states of SCCs that are MECs are
coloured, and culled branches in the current/previous iteration are red/gray.
This algorithm is loosely based on those of [3,10] where [10] uses an attractor
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computation to remove more states per iteration for which we were unable to
find an efficient implementation while [3] excludes step 2, not identifying MECs
early, which means computations may be repeated on them. Our approach is
based on the existing code in mcsta, which includes step 2 and omits the attrac-
tor computation.

3.1 Abstract MDP Structure

We represent the MDP structure as mapping each state to a list of lists of states,
i.e. it is of type ′a mdp K = ′a ⇒ ′a list list . We chose a list-based representa-
tion over a set-based one for straightforward compatibility with our earlier SCC
implementation [28] while still being abstract enough for our purposes. The MEC
algorithm takes the states (S0 :: ′v set ) and the MDP kernel (K0 :: ′v mdp K )
as parameters. We use Isabelle/HOL’s locale mechanism for general constructs.
A locale creates a block in which user-specified assumptions hold. We define an
MDP locale with some natural well-formedness assumptions:

definition closed mdp S K ≡ ∀u ∈ S. ∀ a ∈ set (K u). set a ⊆ S
locale mdp = fixes S :: ′v set and K :: ′v mdp K +
assumes 1: u ∈ S =⇒ [] /∈ set (K u) and 2: finite S and 3: closed mdp S K

This locale states that transitions have at least one branch, the state space is
finite, and the MDP is closed, i.e. all transitions starting in S end in S.

3.2 Specification

Let sc S K denote that the MDP is strongly connected. Given mdp S K:

sub mdp S1 K1 S2 K2 ≡ S1 ⊆ S2 ∧ (∀u ∈ S1. set (K1 u) ⊆ set (K2 u))
is ec S′ K′ ≡ S′ 
= {} ∧ sub mdp S′ K′ S K ∧ closed mdp S′ K′ ∧ sc S′ K′

is mec S′ K′ ≡ is ec S′ K′ ∧ (�S′′ K′′. is ec S′′ K′′ ∧ psub mdp S′ K′ S′′ K′′)

where psub mdp is the proper sub mdp. Here, sub mdp S1 K1 S2 K2 holds if
(S1,K1) is a sub-MDP of (S2,K2). We allow reorderings and (de)duplications of
the transitions as they do not alter the MDP structure. An EC is a strongly
connected, closed sub-MDP with at least one state. A MEC is an EC that is
not a proper sub-MDP of another EC. With these definitions, we specify MEC
algorithms as those that return a list with the MECs of the input MDP structure:

definition compute MEC spec ≡ spec (λ r. set r = {S′ |S′ K′. is mec S′ K′ })

3.3 Abstract Algorithm

We now define the MEC algorithm, focusing on its abstract, high-level behaviour;
we refine this to concrete data structures in Sect. 4. The definition in Isabelle is:
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1 compute MEC ≡ do {
2 let (M,S,K) = op init mdp (S0,K0);
3 (M,S,K) ← while (compute MEC invar S0 K0) op states non empty
4 (λ(M,S,K). do {
5 C ← compute sccs (M,S,K);
6 (C,V) ← identify mecs C (M,S,K);
7 (M,S,K) ← cull graph (C,V) (M,S,K);
8 return (M,S,K)
9 }) (M,S,K);

10 return (op get mecs (M,S,K))

We initialise the loop state in line 2 as an empty list M to store the MECs and
S = S0 and K = K0. We bundle this data into one tuple so that we can refine
them through a single assertion in Sect. 4.2. We iterate as long as there are states
for which we have not found a MEC in line 3. We then perform the three-step
process described earlier: We (1) compute C in line 5 such that scc list C S K
holds (i.e. C is a distinct list of all SCCs of the graph structure of S and K).
We then (2) obtain list V which contains all SCCs of C that are also MECs in
line 6. We finally (3) remove MECs and transitions between different SCCs in
line 7. At the end of the program, we extract M which contains the MECs.

These operations are defined by high-level behaviour; e.g. for cull graph:

cull graph (C,V) (M,S,K) ≡ spec
(λ (M′,S′,K′). M′ = M@V ∧ S′ = S−⋃

(set V) ∧ culled edges C V K K′))

We elided the definition of predicate culled edges which holds if K′ only contains
the transitions in K whose branches all remain within the same SCC as their
source. Also, cull graph adds the identified MECs to M and removes them from S.

These definitions are still far from an efficient implementation. We first refine
each operation to a control flow (definitions elided). The operations of that
control flow are implemented in the respective data structures in Sect. 4. The
SCC algorithm has been refined separately in [28].

Invariant. We define the following invariant for the main loop of the algorithm:

locale compute MEC invar = mdp S0 K0 for S0 K0 (M,S,K) +
assumes 1: S ∩ ⋃

(set M) = {} and 2: S0 =
⋃
(set M) ∪ S

and 3: pairwise disjnt (set M) and 4: distinct M and 5: sub mdp of S K S0 K0

and 6: mdp S K and 7: is mec S′ K′ =⇒ S′ ∈ set M ∨ sub mdp of S′ K′ S K
and 8: S 	= {} =⇒ mdp def.is mec S K S′ K′ =⇒ is mec S′ K′

and 9: S′ ∈ set M =⇒ ∃K′. is mec S′ K′ and 10: scc list C S K =⇒ a ∈ set (K0 u)
=⇒ S′ ∈ set C =⇒ u ∈ S′ =⇒ ∀v∈set a. v ∈ S′ =⇒ a ∈ set (K u)

It states that (1) the states (S) and MECs (M) are disjoint and (2) cover the
original statespace. Also, (3,4) M is pairwise disjoint and contains no duplicates.
The current graph structure is (5) a sub-MDP of the input and (6) an MDP
itself. Further, (7) all MECs are either in M or in the current graph structure,
(8) a MEC of the current graph structure is a MEC of the original one, (9) each
element of M is a MEC, and (10) transitions in the original graph structure within
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one SCC are preserved in the current one. We have proven that the invariant is
preserved throughout the while-loop and if S is empty the specification holds.

Termination is guaranteed as every non-empty graph has at least one bottom-
SCC (BSCC), i.e. an SCC with no outgoing edges. Our algorithms finds MECs
by identifying BSCCs; we find at least one MEC per iteration and remove it
from the state space. Since the state space is finite, we necessarily terminate.

4 Data Structures and Refinement

The next step is to define the data structures to efficiently implement the abstract
operations specified in Sect. 3.3. For input and output, we formalize the data
structures that mcsta uses, so that we can integrate our implementation without
costly conversions. Using the IRF, the refinement is done modularly, and in
multiple steps to structure the correctness proof and keep it manageable.

4.1 Supplementary Data Structures

We introduce auxiliary data structures that are part of mcsta’s data structure:

Intervals. In mcsta, intervals of natural numbers {l..<h} are represented as
a single 64 bit word, where the 20 most significant bits encode the length,
and the 44 remaining bits encode the starting point l. Like in [28], we express
this refinement in two levels: the relation Asn relates a 64 bit word to a pair
(n, i) of type sn = nat × nat , and the functions sn intv (n,i) = {i..<i+n} and
ls intv (n,i) = [i..<i+n] represent these as set and list, respectively.

Disjoint Nat Set List. Our implementation requires a map from states to indices
of MECs or SCCs. Low-valued indices are MECs while high-valued ones are
SCCs. Abstractly, we represent this as two lists of sets of states such that each
state occurs at most once. We highlight some operations here:

type synonym dslt = nat set list × nat set list
d empty :: dslt where d empty = ([],[])
d count1 :: dslt ⇒ nat where d count1(xs,ys) = length xs
d move1 :: dslt ⇒ nat ⇒ nat ⇒ dslt where d move1 (xs,ys) v i =
((map (λ x. x − {v}) xs)[i:=(xs ! i) ∪ {v}], (map (λ y. y − {v}) ys))

Operation d empty constructs a tuple of empty lists, d count1 returns the length
of the first list, and d move1 ds v i moves state v into index i of the first list
(removing it from anywhere else if necessary). Every operation on the first list
(with suffix 1) has a corresponding operation on the second one (with suffix 2).
We omit some further operations for this data structure.

We implement the data structure as an array map that maps values to the
index of the set that they are in. This means that we flatten the two lists into
one map. We introduce a bound L which is the maximal size of the first list.
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Indices i < L represent indices to sets in the first list; indices i ≥ L represent
index i − L in the second list. Values that are not in any set get a −1 entry. We
capture this mapping in assertion Adslt .

Example 4. Let L = 3 and N = 5. Then Adslt maps the abstract nat dslt
([{1}, {}, {2}], [{0, 4}]) to array a = [3, 0, 2,−1, 3]: We have a[1] < L so value 1
must be in the first list; since a[1] = 0, we find value 1 in the set at index 0. We
also have a[4] ≥ L so value 4 is in the second list. Since a[4] = 3, we find it at
index 3 − L = 0. Lastly, we have a[3] = −1, which means that value 3 is not in
any of the sets.

4.2 The mcsta Data Structure

The mcsta data structure is a tuple SS = (St, Tr, Br, Av, Ta). St, Tr and Br
represent the states, transitions, and branches of the MDP structure, respec-
tively. Additionally, Av and Ta are sets representing the avoid and target states
of the reachability property being verified (corresponding to sets A and T of Def.
2). We define a relation RMdi that relates our model of the mcsta data structure
to an MDP structure:

S0 α N = {0..<N} K0 α N SS :: nat mdp K (∗ elided ∗)
MG0 α N SS = (S0 α N, K0 α N SS)

locale Md input inv = mdp S0::nat set K0 fixes N (St,Tr,Br,Av,Ta) +
assumes 1: N = length St and 2: Av ⊆ {0..<N} and 3: Ta ⊆ {0..<N}
and 4: i < length St =⇒ uid (St!i) ≤ length Tr and 5: i < length Tr =⇒

uid (Tr!i) ≤ length Br and 6: i < length Br =⇒ Br!i < length St
and 7: i < length St =⇒ cnt (St!i)>0 and 8: i < length Tr =⇒ cnt (Tr!i)>0
and 9: i < length Tr =⇒ j < i =⇒ sn intv (Tr ! i) ∩ sn intv (Tr ! j) = {}
and 10: S0 = S0 α N and 11: K0 = K0 α N (St,Tr,Br,Av,Ta)

RMdi S0 K0 N = br (MG0 α N) (Md input inv S0 K0 N)

The states of an MDP in mcsta are numbered from 0 to N −1. K0 α derives the
kernel from the data structure as follows: St and Tr are lists of intervals (repre-
sented as tuples, see Sect. 4.1) and Br is a list of state indices. If St ! v = (n,i),
the next n transitions starting at index i in Tr belong to state v. This means
that a transition is an index i ≤ t < n + i. Similarly, Tr ! t is a tuple pointing to
an interval of indices on Br. A branch is thus an index i ≤ b < n + i and Br ! b
is the target state of the branch. Furthermore, if v ∈ Av ∨ v ∈ Ta , we ignore
all outgoing edges. The invariant states the following: (1) it fixes the number of
states to N for the bounds calculations in sepref. It states that (2,3) our target
and avoid states are a subset of S0. It also states that (4,5,6) St points to valid
indices on Tr, Tr points to valid indices on Br and Br points to a valid indices
on St, (7,8) St and Tr do not contain empty intervals, (9) transitions cannot
overlap, and (10,11) the input MDP structure remains constant. The relation
RMdi relates the input MDP structure to the concrete data structure. Using
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sepref and composition, we obtain the according assertion AMdi . We refine the
concrete data structure to LLVM using the IRF standard library and the sup-
plementary data structures from Sect. 4.1: We implement St and Tr as lists of
bit-packed intervals, Br as a list of 64-bit values, and Av and Tr as bitsets.

Example 5. One possibility to represent Fig. 1 is St = [(2, 0), (1, 2), (1, 3), (1, 3)],
Tr = [(1, 0), (2, 1), (1, 3), (2, 4), (1, 6)], Br = [2, 0, 1, 0, 3, 1, 3]. For state 0 we have
St !0 = (2, 0), i.e. it has 2 successors (α and β) starting at index 0. Similarly,
for transition 1 (corresponding to β in this case) we have Tr !1 = (2, 1), which
means that this transition has 2 branches starting at index 1 in Br (i.e. state
Br !1 = 0 and Br !2 = 1). Note that we have not defined Av and Ta yet as
these are dependent on the property. If we assume the property of Example
1 then Av = {1} and Ta = {3}. These translate to the bitsets ...0010 and
...1000 respectively, which removes the outgoing transitions from those states
(not visualized).

mcsta directly passes this data to our implementation. However, as we have
seen in Sect. 3.3, our algorithm needs to be able to efficiently remove states and
transitions. The data structure that we have presented so far cannot implement
this functionality efficiently.

Cullable MDP Structure. The implementation of op init mdp from Sect. 3.3 sup-
plements the input data structure with the dslt data structure from Sect. 4.1,
which is a tuple of lists of sets of states. States in the first list of the tuple are
removed while states in the second one are not. Furthermore, a transition start-
ing in some state v is “activated” if all branches of that transition are within
the same set. If any branch connects different sets, the transition is deactivated.
With this approach, we place states of the same SCC into the same set, dis-
abling transitions between SCCs in the process. Additionally, we use the tuple
structure to distinguish between MECs in the first list and SCCs in the second,
which means that it eventually stores the MEC decomposition.

is act u t = t∈sn intv (St!u) ∧ (∀b∈sn intv (Tr!t) b −→ d eqset Mm u (Br!b))
S α N Mm = {v. v < N ∧ (∀ i < length (fst Mm). v /∈ (fst Mm) ! i)}
K α N (SS,Mm) :: nat mdp K (∗ elided ∗)
MSK α N (SS,Mm) = (fst Mm,S α N Mm,K α N (SS,Mm))

locale Md mdp cullable inv = Md mdp input inv S0 K0 N (St,Tr,Br,Av,Ta)
+ mdp S0 K0 for S0::nat set and K0 N (St,Tr,Br,Av,Ta,Mm,Nr) + . . .

With is act we test if a transition is activated by checking that all branches
are in the same set (d eqset which is a dslt operation) as the source state. We
use this to derive the culled kernel K α which contains exactly the activated
transitions of K0 α. S α omits the states that have been identified as a MEC.
The MECs are stored in the first list of Mm directly. Variable Nr is the number
of remaining states, i.e. for which no MEC has been identified. We use this for
implementing the termination criterion. We omit the definition of the invariant
which mainly concerns well-formedness of Mm. This data structure allows us to
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efficiently implement cull graph from Sect. 3.3 by putting states from the same
SCC into the same set. This update is straightforward to implement as it merely
involves updating the value of unfinished states in the map to the corresponding
index of the SCC, which is also stored in a map for the SCC algorithm.

Example 6. Assuming the middle situation in Fig. 2, consider the input data
from Example 5 and additionally Mm = ([{3}, {2}], [{0, 1}]). For state 0, β is
activated since its branches (to 0 and 1) are in the same set as the source (0).
However, α branches to 2 which is in another set, so the transition was deleted.

4.3 Filter List

Given the number of states N and the number of MECs M , we have M ≤ N .
This is essential for our bounds calculation: Since the ID of a MEC is represented
as a 64-bit value, we need to bound M . We require a “dense” indexing for the
MECs, i.e. they must be numbered from 0 to M − 1 efficiently. This way, we
can do our bounds calculation solely using N , which we know a priori. We do so
by iterating over all states, and if we find any transitions leaving the SCC, the
SCC is not a MEC and we filter it. We implemented a filter set and filter list to
implement this memory- and time-efficiently.

The filter list is an extension of any data structure representing a list. On
the abstract layer, it is of type ′a list × ′a list where the first list of the pair is
the original list that we want to filter and the second one is the filtered variant.
Concretely, it is of type ′v list × nat option list × nat . The first list (xs) is the
original list, the second list (ids) is a map containing indices, and the natural
number is a counter representing the length of the filtered list c. The list ids is
the core of this data structure. It maps an index i of the unfiltered list to None
if xs ! i is filtered or to Some j if xs ! i is at index j in the filtered list. The filter
set is similar to the filter list but ids either maps to None (entry is filtered) or
Some 0 (entry is unfiltered). We then convert the filter set to a list by assigning
a unique index to each unfiltered entry.

Example 7. Assume unfiltered list [a,b,c,d] out of which we want to filter a and
c. Abstractly, we have ([a,b,c,d],[b,d]). Its concrete implementation is the triple
([a,b,c,d],[None,Some 0,None,Some 1],2). Since a (index 0) and c (index 2) are
filtered, we have ids ! 0 = ids ! 2 = None. Similarly, we find b (index 1) at index
0 in the filtered list. Therefore ids ! 1 = Some 0.

5 Code Generation and Integration

Using the algorithm of Sect. 3 and the data structures of Sect. 4, we derive
an LLVM program Md compute MEC using sepref. Through transitivity of the
refinement relation, we can show that this program refines the specification from
Sect. 3.2. The IRF provides the setup to extract a separation logic Hoare triple
from our correctness proof. Let � be the separation conjunction. Then we obtain:
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theorem Md compute MEC htriple: llvm htriple (
(∗1∗) Asize N ni � AMdi N S0 K0 (S0, K0) mdpi
(∗2∗) � ll pto mdpi p mdpi � ll pto anything resp
(∗3∗) � (mdp S0 K0 ∧ N < 262 ∧ S0={0..<N}))
(∗4∗) (Md compute MEC ni p mdpi resp)
(∗5∗) (λ . EXS M resi.
(∗6∗) Asize N ni � AMdi N S0 K0 (S0, K0) mdpi � AMdo N N M resi
(∗7∗) � ll pto resi resp � ll pto mdpi p mdpi
(∗8∗) � (set M = {S′ |S′ K′. mdp.is mec S0 K0 S′ K′ }))

where AMdo is derived from Adslt mapping only its first list to memory given
that the second list is empty. The precondition consists of several parts: (1) The
input consists of a value N representing the number of states with its 64 bit
representation ni and an input MDP structure (S0,K0) which is represented in
memory by mdpi . (2) We are provided a pointer to the MDP structure (p mdpi)
and one to an address where we can store our output. (3) (S0,K0) is an MDP
structure that has fewer than 262 states and a dense numbering S. Given these
preconditions we (4) run our program Md compute MEC with the specified input
parameters. We then get (5) a MEC decomposition M and its representation in
memory resi such that (6) the input parameters are preserved and we addition-
ally obtain the MEC decomposition, (7) the provided pointer (resp) points to
that decomposition and (8) M is the set of MECs.

The IRF has built-in functionality to translate Md compute MEC to LLVM
code with a header file, which can be called as an external function from mcsta.
Note that we use indirection through pointers to avoid problems with different
ABIs when passing structures as parameters or return values. It is invoked as:

export llvm Md compute MEC is
void compute MEC(modest size t, modest input mdp t ∗, mec output t ∗)

5.1 Compatibility with mcsta

We refer to the verified LLVM code as the verified implementation and to the pre-
existing C# implementation in mcsta as the integrated implementation. While
the data format of the verified implementation is compatible with mcsta, there
were some important differences that we fix using glue code for post-processing:

First, collapsing the MECs for interval iteration, which is currently not ver-
ified, requires the MECs to be sorted in exploration order. The algorithm we
formalised does not do that out of the box and we are not aware of an algorithm
that does preserve this order. That is why we decided to reorder the MEC indices
as a post-processing step.

Second, the integrated algorithm groups all target states into one collapsed
target state and does the same for avoid states. The verified algorithm puts each
target and avoid state in its own MEC. Both approaches are correct, but the
verified algorithm therefore calculates at least as many MECs as the integrated
one. We considered formalising this collapsing of states in our proofs, but we
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decided against it as it would complicate them. Since we decided for the post-
processing approach for reordering, we included the latter as well.

Fig. 3. Comparison of runtime to complete the MEC decomposition routine

6 Experimental Evaluation

We have embedded the verified implementation into the mcsta tool of the Mod-
est Toolset. Since it uses mcsta’s regular input and output data structures,
we do not need any expensive conversions and minimal glue code with negligible
runtime. Furthermore, we implemented a reference implementation in C++ that
we manually optimised. We now compare the performance of these two and the
integrated implementation.

6.1 Experimental Setup

We use all applicable benchmarks (i.e. all MDP models, PTA models trans-
formed into their digital clocks MDP, and MA transformed into the embedded
MDP for untimed properties) from the Quantitative Verification Benchmark Set
(QVBS) [27], which however rarely contain any nontrivial MECs. MEC decom-
position is still necessary since we do not know a priori whether nontrivial MECs
exist in a model and the algorithm may still require multiple iterations to obtain
this result. To study the performance when nontrivial MECs exist, we adapt
a benchmark set for long-run average rewards (LRA) from [20]. We test one
reachability property per model to trigger the MEC algorithm and inflated the
parameters to challenge the implementations. This benchmark set contains the
mer Mars rover case study from [19], the sensors case study from [34], and other
models from the PRISM benchmarks. We added parameters where sensible to
allow scaling the model. We also created MDP adaptations of the stochastic
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games originally hand-crafted to contain interesting MEC structures for the eval-
uation of [35]. This gave us 61 benchmark instances to test our implementation
on. We aimed to benchmark models between 500,000 and 100 million states.
Smaller models terminate too quickly to benchmark while larger models run
out of memory. We ran all benchmarks on an Intel Core i7-12700H system with
32GB of RAM running Linux Mint 21.3.

6.2 Results

We ran each benchmark three times and report the averages of those runs.
Figure 3 compares the wall clock runtime, with the left scatter plot comparing
the verified to the integrated implementation and the right comparing the ver-
ified to the reference implementation. Each dot is a pair of runtime values for
one benchmark instance. We distinguish benchmarks for PTA, MA and MDP
from the QVBS (Q) or the LRA benchmarks (L). With our setup, we found that
our verified implementation performs on par with the reference and integrated
implementations, with a slight edge for the integrated implementation, but with
little optimisation potential. We observe that this pattern also seems to hold
independently of the type of model. One noteworthy outcome is the fact that
the integrated implementation crashes for one instance whereas the reference and
verified implementations do not. This is caused by the integrated implementation
requiring more memory. We compared peak memory usage (working set) of the
verified and integrated implementations. While this approach may be influenced
by external factors like garbage collection, it can still provide a useful indication
of relative memory consumption. Peak memory was higher for the integrated
implementation in 42 out of the 61 instances. On average, the integrated imple-
mentation used about 8.2% more memory than the verified implementation.
In isolated instances it reached up to 36.4% more. In comparison, the verified
implementation used at most 28.4% more than the integrated implementation
for isolated instances. The instance that crashed (tireworld with n = 45) lies
on the verge of what a laptop with 32 GB of RAM can process: Peak memory
reached almost 31GB for this instance using the verified algorithm.

7 Conclusion

We have formally verified a MEC decomposition algorithm in Isabelle/HOL. As
far as we know, this is the first such formalization. We have refined this algorithm
down to LLVM and generated efficient executable code which we embedded into
the mcsta probabilistic model checker of the Modest Toolset. This is a step
towards a fully verified model checking toolchain. We aim to replace algorithms
in the toolchain piece by piece, monitoring the performance impact in each step.
Where previous attempts at formally verified model checkers have not been com-
petitive in terms of performance and functionality, our approach yields compara-
ble performance to manual implementations. Additionally, if desired, cross-usage
with other (unverified) functionality is possible. While the performance of our
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verified implementation is comparable to the integrated implementation, it is
a clear improvement over the integrated implementation in terms of memory
usage.

Future Work. Comparisons with the manual implementations suggest that the
verified implementation does not have a lot of optimization potential. We con-
sider it more useful to focus on other algorithms at this point. One candidate
is the improved MEC algorithm by Chatterjee et al. [10], which has a better
theoretical complexity than our implementation; deriving a competitive imple-
mentation from this would be highly relevant. Another candidate is the interval
iteration algorithm [22] which uses the MEC algorithm as a pre-processing step.
An efficient implementation of interval iteration requires a representation of real
or rational numbers with low overhead. Unverified implementations rely on IEEE
floating-point values (floats) which are suitable for high-performance computa-
tions but come with rounding errors [23]. This requires an extension of the IRF
in order to refine real numbers to floats and reason about rounding.

Data availability. The proofs and benchmarks presented in this paper are
archived and available at https://doi.org/10.4121/3f2a4539-e69b-4d16-b665-
530c1abddfbc [32].
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