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Abstract. We describe a formally verified checker for unsatisfiability
certificates in the LRAT format, which can be run in parallel with the
SAT solver, processing the certificate while it is being produced. It is
implemented time and memory efficiently, thus increasing the trust in
the SAT solver at low additional cost.
The verification is done w.r.t. a grammar of the DIMACS format and
a semantics of CNF formulas, down to the LLVM code of the checker.
In this paper, we report on the checker and its design process using the
Isabelle-LLVM stepwise refinement approach.

Keywords: UNSAT certificates · LRAT · Isabelle-LLVM · Verified
Software.

1 Introduction

SAT solvers are highly complex and highly optimized programs, which are used
to verify critical properties of other systems. To increase the trust in them,
SAT solvers produce certificates that can be independently checked by formally
verified checkers [10,9,16,23,34,35,5]. Here, the focus is on certificates for unsat-
isfiability, as certificates for satisfiability are (considered) trivial.

Typically, certificate checking proceeds in two phases: An unverified elabora-
tor adds additional information to the certificate produced by the SAT solver,
and then a formally verified checker checks the elaborated certificate against the
original formula. This approach moves some complicated and computationally
expensive tasks into the unverified elaborator, making checking of the elaborated
certificate simpler and less expensive.

However, the elaborator has to recompute information which is, in princi-
ple, known to the solver, and elaboration typically takes as long as solving.
More recent techniques accelerate elaboration by including this information into
the certificate [2]. The most recent development are solvers that directly pro-
duce elaborated certificates [29]. This allows for streaming the certificates from
the solver into the checker: solving and checking are done in parallel, and the
potentially large certificates need not be stored on disk. When implemented ap-
propriately, the memory footprint of the checker is similar to that of the solver.

There are different formats for elaborated unsatisfiability certificates, such as
PB [4] and GRAT [23]. The de-facto standard is the LRUP format [10], and its
backwards compatible generalizations LRAT [9] and LPR [35]. These correspond
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to the non-elaborated DRUP [17], DRAT [36], and DPR [35] formats. With an
exception in 2023, LRUP is sufficient for all top performing solvers in the SAT
competitions of the last years [29].

In this paper, we present a formally verified checker that can stream LRUP
certificates. We benchmark our tool on the CaDiCaL solver [29], where it only
causes a minimal additional computation overhead, and has a memory usage
similar to that of the solver. Our checker is as fast as the highly optimized un-
verified lrat-trim checker [29], and at least one order of magnitude faster than any
other verified checker we know of. Using the Isabelle Refinement Framework [22],
our checker is verified down to the LLVM intermediate representation [26] of its
code, and against a formal grammar of the DIMACS CNF format, which is the
standard for representing CNF formulas [32]. To the best of our knowledge, our
checker is the first that comes with a verified parser. Our tool and benchmark
data is available at https://github.com/lammich/lrat_isa.

In the rest of this paper, we describe our formal specification (Sec. 2), the
abstract certificate checking algorithm (Sec. 3), and its implementation (Sec. 4).
We then report on our benchmark results (Sec. 5). Finally we conclude the paper
and discuss related and future work (Sec. 6).

2 Specification

We prove soundness of our checker, i.e., it accepts a string only if it is a repre-
sentation of an unsatisfiable formula in DIMACS CNF format1. In this section
we present the formalization of this specification.

2.1 Conjunctive Normal Form

Throughout this paper, we will use some simplified Isabelle/HOL notation, and
explain unusual notations where they first occur. For definitions we use ≡. Data
types are written in prefix notation, e.g., lit set for a set of literals. Function
application is denoted as f x1 . . . xn.

The following is the abstract syntax and semantics of CNF, taken from the
GRAT tool [23] and slightly adapted to our needs:

typedef var ≡ {v::nat. v 6= 0}
lit ≡ Pos var | Neg var clause ≡ lit set cnf ≡ clause set

valuation ≡ var ⇒ bool
sem lit :: lit ⇒ valuation ⇒ bool
sem lit (Pos v) σ ≡ σ v sem lit (Neg v) σ ≡ ¬ σ v

sem cnf :: cnf ⇒ valuation ⇒ bool
1 Note that proving completeness is less interesting: even if we show that our checker

accepts all valid certificates, the elaborator or solver may still fail to produce one.
We verify completeness empirically on a large set of benchmarks.
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sem cnf F σ ≡ ∀C∈F. ∃l∈C. sem lit l σ

sat :: cnf ⇒ bool sat F ≡ ∃σ. sem cnf F σ

A variable is a positive natural number, a literal is a positive or negative variable,
a clause is a set of literals, and a cnf-formula is a set of clauses. A valuation
assigns truth values to variables. For a valuation σ, the semantics assigns truth
values to literals (sem lit) and formulas (sem cnf): a positive literal is true iff its
variable is true, and a negative literal is true iff its variable is false. A formula
is true iff every clause contains a true literal, and it is satisfiable if there is a
valuation for which it is true.

2.2 Specification of the DIMACS CNF Format

DIMACS CNF is the de-facto standard format for representing CNF formulas.

c start with comments
c
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0

Fig. 1: Example formula in
DIMACS CNF

Figure 1 displays an example: the file can start
with optional comment lines, indicated by a head-
ing ’c’. After the comments, there is a header of
the form p cnf n m, where n is the maximum
variable, and m is the number of clauses. Then
the clauses follow, encoded as zero-terminated se-
quences of integers, where a positive integer rep-
resents a positive literal, and a negative integer
represents a negative literal. We need to specify
how a word in DIMACS format corresponds to a
formula. While a language is a set of words, we use
a relation between words and corresponding abstract syntax. By slight abuse of
naming, we call such relations grammars. We shallowly embed regular grammars
into Isabelle HOL’s logic:

(′a,′r) gM ≡ (′a list × ′r) set
return x ≡ {([],x)} 〈C〉 ≡ { ([c],c) | c∈C }
bind g f ≡ { (w1@w2,r) | ∃x. (w1,x) ∈ g ∧ (w2,r) ∈ f x }

Here, (w, r) ∈ g means that the grammar g relates the word w to the result r.
The empty relation {} corresponds to the empty language. The relation return x
relates the empty word to the result x. It corresponds to the language {[]} of
only the empty word. The relation 〈C〉 relates single-character words to the
corresponding character from the set C. Finally, the relation bind g f relates a
word w1w2 to a result r, if g relates w1 to some intermediate result x, and f x
relates w2 to r. This corresponds to concatenation of languages.

The type gM is a monad, and we use the usual shortcut notation for bind:

x←g; f x ≡ bind g (λx. f x) g1;g2 ≡ bind g1 (λ . g2)

We also define shortcuts to apply a function to the result of a monad, to lift a
binary function into a monad, and to concatenate two grammars, ignoring the
result of the latter:
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a 〈&〉 f ≡ x←a; return (f x)
lift2 f a b ≡ x←a; y←b; return (f x y)
a � b ≡ r←a; b; return r

We then define the relational versions of the power function and the Kleene star:

g pow g 0 ≡ return [] g pow g (n+1) ≡ lift2 (#) g (g pow g n)
g∗ ≡

⋃
n::nat. g pow g n

where x#xs prepends the element x to the list xs. That is, g pow g n and g∗
relate the input to lists, the elements being the results produced by g. We also
define g? ≡ (g 〈&〉 Some) ∪ (return None).

Using the grammar monad, we specify a grammar for the simplified DIMACS
format as used by SAT competitions since 2009 [32]. We start with defining sets
of ASCII characters:

whitespace, digits1, digits :: 8 word set
whitespace ≡ {‘ ’, ‘\t’, ‘\n’, ‘\v’, ‘\f’, ‘\r’}
digits1 ≡ {‘1’, . . . , ‘9’} digits ≡ {‘0’, . . . , ‘9’}

Here, 8 word is the 8-bit word type from Isabelle’s machine word library [11,3].
Note whitespace includes all 6 ASCII whitespace characters. Based on this, we
define a grammar g dimacs :: (8 word × cnf) set:

g ws ≡ 〈whitespace〉∗; return () g ws1 ≡ 〈whitespace〉; g ws

g variable ≡ x←〈digits1〉; xs←〈digits〉∗; return (nat of str (x#xs)))
g literal ≡ (〈{‘-’}〉; g variable 〈&〉 Neg) ∪ (g variable 〈&〉 Pos)
g clause ≡ (g literal � g ws1)∗ 〈&〉 set � 〈{‘0’}〉
g cnf ≡ (return {})
∪ (c←g clause; cs ← (g ws1; g clause)∗; return ({c} ∪ set cs))

g comment ≡ 〈{‘c’}〉; 〈−{‘\n’}〉∗; 〈{‘\n’}〉; return ()
g p header ≡ 〈{‘p’}〉; 〈−{‘\n’}〉∗; 〈{‘\n’}〉; return ()
g comments ≡ (g ws ∪ g comment)∗; return ()

g dimacs ≡ g comments; g p header?; g ws; g cnf � g ws

Here, nat of str :: 8 word list ⇒ nat converts a string to a natural number, and
set :: ′a list ⇒ ′a set yields the set of elements in a list.

Note that we do not check the contents of the header, which contains auxiliary
information for parsing, but does not affect the represented formula. We also
accept multiple clauses per line and clauses spanning several lines, as well as extra
whitespace anywhere in the file. Many SAT solvers support similar relaxations
of the format, and we wanted this flexibility in our tool, too.

As a sanity check, we prove that our grammar is unambiguous, i.e., that it
relates the same word to at most one formula:

(w, f1) ∈ g dimacs ∧ (w, f2) ∈ g dimacs =⇒ f1 = f2
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2.3 Correctness Specification

At this point, we can formalize the postcondition for our checker’s specification:
∃F. (w,F) ∈ g dimacs ∧ ¬sat F means that the sequence of bytes w is a valid
DIMACS CNF representation of an unsatisfiable formula.

3 Certificates for Unsatisfiability

RUP (reverse unit propagation) certificates contain the clauses learned by the
solver. The checker justifies that addition of each clause preserves satisfiability.
For an unsatisfiable formula, the last learned clause is the empty clause. Adding
the empty clause yields an unsatisfiable formula, and, as each clause addition is
justified to preserve satisfiability, the original formula is unsatisfiable, too.

Justification is done by reverse unit propagation [14]: a clause C can be added
to the formula F , if the formula F ∧¬C is unsatisfiable, and if this can be shown
by generating an empty clause via unit propagation. For RUP, the checker has to
implement unit propagation itself, for example with a two-watched-literals data
structure [28]. LRUP (linear RUP) certificates annotate each clause addition,
with the relevant unit clauses in the order they become unit, and the final conflict
clause. This makes the checker simpler and more efficient, as it only needs to
check if clauses are unit, rather then find unit clauses.

The certificates also contain clauses deleted by the solver. This allows the
checker to also delete those clauses from its data structures, freeing up memory.
Note that deleting a clause trivially preserves satisfiability.

The actual LRUP format uses natural numbers to identify clauses, rather
than spelling them out whenever they are referenced. The n clauses of the initial
formula implicitly get the ids [1, . . . , n]. A clause addition has the form <id>
<literal>* 0 <id>+ 0. It consists of the id under which this clause shall be
added, a zero-terminated list of the literals of the clause, and a zero terminated
list of the unit clauses and the conflict clause to justify the addition. A clause
deletion has the form <id>+ 0, and consists of a zero terminated list of the ids
of the clauses to be deleted. There is an ASCII and a more compact binary
encoding for LRUP certificates.

3.1 Abstract Checker

In this section, we present our formalization of the abstract checker algorithm.
We start with defining some basic concepts:

− :: lit ⇒ lit −Pos v ≡ Neg v −Neg v ≡ Pos v
pan ≡ lit ⇒ bool consistent (A::pan) ≡ ∀l. ¬ (A l ∧ A (−l))
sat wrt F A ≡ ∃σ. sem cnf F σ ∧ (∀l. A l =⇒ sem lit l σ)
conflict A C ≡ ∀l∈C. A (−l)
is uot A C l ≡ l∈C ∧ ¬A(−l) ∧ (∀l′∈C−{l}. A(−l′))
taut C ≡ ∃l. l∈C ∧ −l∈C
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The literal −l is the negation of the literal l. A partial assignment (pan) char-
acterizes a set of literals that are assigned (to true). It is consistent if it does
not assign both a literal and its negation. A formula F is satisfiable w.r.t. a
partial assignment A (sat wrt F A), if A can be extended to a satisfying valua-
tion; A is in conflict with a clause C (conflict A C), if the negations of all the
clause’s literals are assigned. The clause C is unit or true w.r.t. A and a literal
l (is uot A C l), if l is the only literal in C whose negation is not assigned. A
clause is a tautology (taut C), if it contains both a literal and its negation.

Correctness of a RUP step adding C to F is implied by the following lemmas:
(1) Let C be a non-tautological clause. Then, the initial assignment λl. −l∈C,

which assigns the negated version of each literal in C, is consistent, and F ∧¬C
is satisfiable iff F is satisfiable w.r.t. the initial assignment:

¬taut C =⇒ consistent (λl. −l∈C) ∧ sat (F ∧ ¬ C) = sat wrt F (λl. −l∈C)

(2) If the formula contains a unit or true clause, assigning its literal preserves
consistency and does not change satisfiability:

consistent A ∧ C∈F ∧ is uot A C l
=⇒ consistent (A(l := True)) ∧ sat wrt F A = sat wrt F (A(l := True))

(3) If the formula contains a conflict clause, it is unsatisfiable:

consistent A ∧ C∈F ∧ conflict A C =⇒ ¬sat wrt F A

Note that the learned clause cannot be a tautology. While adding tautologies
trivially preserves satisfiability, they yield an inconsistent initial assignment.
Instead of spending computation time to detect tautologies, we let our checker
run with the inconsistent assignment: should it succeed, we add the clause, which
is safe.

We formalize the abstract checker as a transition system over the state:

checker state ≡ CNF formula | CLS formula clause pan
| PRF formula clause pan | PDN formula clause | UNSAT | FAIL

The transition relation → is the least relation that satisfies the following rules:

(del clauses) F′ ⊆ F =⇒ CNF F → CNF F′

(start clause) CNF F → CLS F {} (λ . False)
(add lit) CLS F C A → CLS F ({l} ∪ C) (A(−l:=True))
(start proof) CLS F C A → PRF F C A
(add unit) uC∈F ∧ is uot A uC ul

=⇒ PRF F C A → PRF F C (A(ul:=True))
(add conflict) uC∈F ∧ conflict A uC =⇒ PRF F C A → PDN F C
(finish proof) C6={} =⇒ PDN F C → CNF ({C} ∪ F)
(finish proof unsat) PDN F {} → UNSAT
(to fail) s → FAIL

The checker starts in state CNF F, with some formula F . To delete clauses
(del clauses), they are removed from F . A clause addition is split into mul-
tiple smaller steps: First, we initiate adding a clause by going to state CLS
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(start clause). We also maintain a partial assignment, starting with the empty
assignment λ . False. We then add the literals of the clause, one by one (add lit).
For each added literal l, we assign the negated literal −l. When all literals have
been added, we start the proof (start proof) going to state PRF. During the
proof, we add unit clauses, assigning the unit literal (add unit). When we have
added enough unit clauses, we add a conflict clause (add conflict), going to state
PDN (proof done). From there, we either go to state UNSAT if we have proved
the empty clause (finish proof unsat), or back to state CNF with the new clause
added to the formula (finish proof). We can always go to FAIL (to fail), indi-
cating that the proof failed.

With the above Lemmas 1–3, some bookkeeping that add lit steps construct
the correct initial assignment, and a special case for tautologies, we prove:

Theorem 1 (Soundness of Abstract Checker). If the abstract checker can
reach UNSAT from the initial state CNF F, then the formula F is unsatisfiable:
CNF F →∗ UNSAT =⇒ ¬sat F

Note that we do not yet model clause identifiers on this level. They will be
introduced in a later refinement step.

4 Implementation

We have specified a grammar to relate strings in DIMACS format to formulas, a
semantics to define satisfiability of formulas, and an abstract certificate checker.
We now refine these to the actual implementation of a certificate checker.

We use the Isabelle Refinement Framework [24], which supports refinement in
multiple steps and in a modular fashion. Each step focuses on a different aspect of
the algorithm, thus structuring the correctness proof, and making it manageable
in the first place. In this section, we first describe the data structures that we
use in our implementation, to represent abstract concepts such as literals and
clauses (cf. Sec. 2.1). We then describe how we implement the abstract checker
algorithm (cd. Sec. 3.1), using these data structures. Finally, we describe how
we integrate the checker with the parser, to obtain the actual verified tool.

4.1 Basic Concepts and Data Structures

We use data structures such as arrays, dynamic arrays, and array lists from
Isabelle LLVM’s library [22]. For technical reasons, sizes and counters are im-
plemented as non-negative signed 64-bit integers, or, equivalently, as unsigned
64-bit integers less than 263. Formally, refinement relations between concrete
and abstract types are used. For example, size rel :: (64 word × nat) set relates
non-negative 64-bit signed integers to natural numbers. Similarly, Booleans are
implemented by 1-bit words, via the relation bool1 rel :: (1 word × bool) set.

Clause identifiers are modelled as 64-bit unsigned integers less than 263 − 1,
via the relation cid rel :: (64 word × nat) set. This bound allows us to use clause
identifiers as indexes into an array whose length is represented by a size.
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Literals are first refined to natural numbers via nlit rel :: (nat × lit) set,
where a number n > 1 represents the variable bn/2c, and the literal is negative iff
n is odd. The natural numbers are further refined to unsigned 32-bit integers, via
u32 rel :: (32 word × nat) set. When we compose the two refinement relations,
we get a relation between 32-bit integers and literals: ulit rel ≡ u32 rel O nlit rel.
Using 0 for None, we can also refine optional literals to 32-bit integers via the re-
lation ulito rel :: (32 word × lit option) set. For each operation on the abstract
data type, we define a corresponding operation on the concrete data type. For
example, we define:

nlit neg :: nat ⇒ nat nlit neg n ≡ if even n then n+1 else n−1
ulit neg :: 32 word ⇒ 32 word ulit neg w ≡ w XOR 1

We show that the concrete operations refine their abstract counterparts:

ulit neg, nlit neg :: u32 rel → u32 rel nlit neg, (−) :: nlit rel → nlit rel

Here, f,g :: R1 → R2 is a shorthand notation for ∀(x,y)∈R1. (f x, g y) ∈ R2.
Combining these refinement theorems yields ulit neg, (−) :: ulit rel → ulit rel.

Clauses are implemented as zero-terminated arrays of 32-bit words, via the
relation zcl assn :: 32 word ptr ⇒ clause ⇒ assn. As arrays are stored on the
heap, this relation is expressed as separation logic assertion (assn). By conven-
tion, pure refinement relations have the suffix rel, while those that use the heap
have the suffix assn.

A clause database cdb ≡ nat ⇒ clause option is a partial function from clause
identifiers to clauses. It is implemented by a dynamic array of pointers to clauses
cdbi ≡ 32 word ptr larray, via cdb assn :: cdbi ⇒ cdb ⇒ assn. The array is in-
dexed by the clause identifier. For clause identifiers not in the database, the array
contains a null pointer. Consider the abstract operation cdb ins cid C db that
inserts a clause C with identifier cid into the database db, its concrete version
cdb ins impl, and the corresponding refinement theorem:

cdb ins :: nat ⇒ clause ⇒ cdb ⇒ cdb
cdb ins impl :: 64 word ⇒ 32 word ptr ⇒ cdbi ⇒ cdbi
cdb ins impl, cdb ins :: cid rel → zcl assnd → cdb assnd → cdb assn

The concrete operation destructively updates the array, thus the abstract cdb
parameter does no longer correspond to any concrete value. Also, the ownership
of the inserted clause is transferred into the clause database, thus the abstract
clause parameter does no longer correspond to any (visible) concrete value. We
call those parameters destroyed, indicated by a d in the refinement theorem [21].

4.2 Data Structures with Capacity Bounds

Several data structures in our checker use counters. For example, during parsing,
the literals of a clause are collected in an array list, which uses a counter for its
size. We prove non-overflow of these counters from the bounded size of the CNF
file, and a limit on how many literals we can read from the certificate before the
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checker rejects it2. While we elide the details, we note that some abstract data
structures have a capacity bound field. This is a ghost field, i.e., it is not present
in the implementation.

The clause builder uses a dynamic array to store the literals of the clause
that is currently parsed, and also keeps track of the maximum literal encoun-
tered so far. Its abstract type is cbld ≡ nat × lit list × nat. A clause builder
(ml,ls,bnd) :: cbld consists of the maximum encountered literal ml, the current
list of literals ls, and a (ghost) bound bnd that limits the length of ls. We de-
fine a data type invariant cbld inv :: cbld ⇒ bool that characterizes valid clause
builders (i.e., the bound and maximum literal are consistent with the list of lit-
erals). The relation cbld assn :: (32 word × 32 word array list) ⇒ cbld ⇒ assn
implements clause builders.

A partial assignment (cf. Sec. 3.1) is implemented by an array of bits indexed
by the literals, as well as an array list that contains all set literals. This array
list allows for efficiently resetting the assignment in between proof steps. We
use the type rpani :: 1 word larray × 32 word array list for the implementation,
and rpan :: bool list × nat list × nat for the functional representation, related by
rpan assn :: rpani ⇒ rpan ⇒ assn. The last field of rpan is a (ghost) capacity
bound. The type rpan comes with an invariant rpan inv, and an abstraction
function rpan α :: rpan ⇒ pan to the encoded partial assignment.

4.3 Proof Checker Implementation

We implement the abstract checker state (Sec. 3.1) by the following types:

cs op ≡ bool × bool × cdb × cbld × rpan — outside proof (CNF, UNSAT)
cs bc ≡ bool × rpan × cbld × cdb — build clause (CLS)
cs ip ≡ bool × bool × rpan × cbld × cdb — inside proof (PRF, PDN)

All data structures start with an error flag, which indicates a failed proof (ab-
stract state FAIL). Outside a proof, i.e., in abstract states CNF and UNSAT,
the checker state is represented by a tuple (err,unsat,db,bld,A) :: cs op, where
unsat indicates that the formula has been proved unsatisfiable and db is the
clause database holding the formula. The builder state bld and assignment A
are unused here, but threaded through such that they can be reused when the
next proof begins. When building a clause (abstract state CLS), the state is rep-
resented as (err,A,bld,db) :: cs bc. Finally, inside a proof (abstract states PRF
and PDN), the state is (err,confl,A,bld,db) :: cs ip. Here, confl indicates that a
conflict clause has been found.

We define invariants cs op inv, cs bc inv, cs ip inv; and abstraction func-
tions cs op α, cs bc α, cs ip α to the abstract checker state. We then show
that the functions on the concrete states preserve the invariants and implement
the transition relation →∗ on the corresponding abstract states. For example,
the following function handles a proof step, adding a unit or a conflict clause:
2 The size of the formula plus the number of literals in the certificate cannot exceed
263. We don’t expect this limit to be ever hit in practice.
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cs prf step :: nat ⇒ cs ip ⇒ cs ip nres
cs ip inv cap cs ∧ cap>0
=⇒ cs prf step cid cs ≤ spec cs′. cs ip inv (cap−1) cs′

∧ (cs ip α cs) →∗ (cs ip α cs′)
Here, ′a nres is the Isabelle Refinement Framework’s type of programs that re-
turn a result of type ′a, and P =⇒ c ≤ spec r. Q r is a Hoare-triple with pre-

1 check uot :: rpan ⇒ cdb ⇒ nat
2 ⇒ (lit option × bool) nres
3 check uot A cdb cid ≡ if cid ∈ dom cdb then
4 let C = the (cdb cid);
5 assume finite C
6 foreach C (λl (ul,err).
7 assert rpan in bounds (−l) A
8 if A (−l) then return (ul,err)
9 else if ul = None then return (Some l,err)

10 else return (ul,True)
11 ) (None,False)
12 else return (None,True)

Fig. 2: Function to check if a clause is unit, true, or
conflict.

condition P, program c,
and postcondition Q [24].
That is, if the con-
crete checker state cs has
some capacity left, then
the cs prf step function
preserves the invariant
cs ip inv and implements
the abstract transition re-
lation →. The available
capacity of the checker
state decreases by one.

The implementation of
cs prf step uses a func-
tion to check if a clause
is unit, true, or a conflict.

It is displayed in Fig. 2. It first checks (l. 3) if the clause identifier is valid, and
looks it up in the database (l. 4). Then (l. 6), it loops over the literals of the
clause, maintaining a state consisting of an optional literal and an error flag
(ul,err). Initially (l. 11), the state is (None,False). The loop assigns to ul the
first literal that is not false (l. 9). If a second non-false literal is encountered,
the error flag is set (l. 10). The function returns the state after the loop, or
(None,True) if the clause was invalid (l. 12). Note that we assume (l. 5) a finite
clause. On the abstract level, we can use this to justify termination of the loop.
When implementing the function, we have to prove finiteness, which is trivial,
as the clause is stored in an array. Dually, we assert (l. 7) that the literals of
the clause are in bounds of the assignment. This has to be proved on the ab-
stract level. When implementing, we can use it to justify that the array access
for looking up the literal is in bounds. This way, assertions and assumptions are
used to pass proof obligations up and down the refinement chain, proving them
at the most convenient abstraction level.

The loop in check uot is the innermost loop of the checker, and special care
has been taken to optimize it: while an actual certificate always contains unit
clauses, we also allow clauses with one true literal (cf. is uot in Sec. 3.1). This
avoids indexing both A(l) and A(−l) to distinguish between the two cases.

The correctness theorem for check uot is as follows:

rpan inv A ∧ cdb cid = Some C ∧ cdb vars cdb ⊆ rpan dom A =⇒
check uot cdb cid A ≤ spec (ul,err). ¬ err −→ case ul of

Some l ⇒ is uot (rpan α A) C l | None ⇒ conflict (rpan α A) C
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I.e., if the partial assignment satisfies its invariant, the clause identifier identifies
clause C, and the clause database contains only variables within the bounds of
the partial assignment, then the function will either return an error, or some
literal l such that C is unit or true w.r.t. l, or None and C is a conflict clause.

4.4 A Verified DIMACS Parser

We present the parsing function’s signature and correctness theorem. Its imple-
mentation is elided due to page limit constraints:

read dimacs cs :: 8 word list ⇒ (cs op × nat) nres
read dimacs cs str ≤ spec (cs,cap). ∃ F. cs op inv cap cs

∧ (cs op α cs = FAIL ∨ (str,F) ∈ g dimacs ∧ cs op α cs = CNF F)
This function parses a string, and returns a checker state. On a parsing error, the
checker state corresponds to the abstract state FAIL. Otherwise, it corresponds
to CNF F for the formula F parsed from the string. The function also returns
the capacity left for the certificate after parsing the formula.

4.5 Assembling the Whole Program

Having implemented functions for the proof steps, we combine them with a parser
(details elided) for LRAT proofs, resulting in a function that reads an LRAT
proof from a buffered reader (brd rs), performs the corresponding transitions on
the proof state, and finally checks if the proof state has reached UNSAT:

main checker loop :: cs op ⇒ brd rs ⇒ (bool × brd rs) nres

1 read check lrat :: 8 word list ⇒ bool nres
2 read check lrat cnf ≡
3 (cs, cap) ← read dimacs cs cnf;
4 if ¬ csop is err cs then
5 prf = brd rs new cap
6 (res, ) = main checker loop cs prf
7 return res
8 else return False

Fig. 3: The checker program.

The certificate checker,
displayed in Fig. 3, com-
bines the main checker loop
with the DIMACS parser. It
takes a string cnf, parses
it as formula (l. 3), ini-
tializes a buffered reader
for the certificate stream
(l. 5), and runs the main
checker loop with that reader
(l. 6). From the correctness
of the parser (Sec. 4.4), the
fact that all proof steps in
main checker loop implement
the abstract checker, and the fact that the abstract checker is sound (Thm. 1),
we prove:

Theorem 2 (Soundness of Functional Checker). If read check lrat cnf re-
turns true, then cnf is a valid representation of an unsatisfiable formula:

read check lrat cnf ≤ spec r. r =⇒ ∃F. (cnf, F) ∈ g dimacs ∧ ¬ sat F
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4.6 Refinement to LLVM Code

In Sec. 4.1 and Sec. 4.2 we have indicated how we implement the basic data struc-
tures of our checker. Then, we have mostly presented functional code. Given im-
plementations of the data structures, refining this functional code to imperative
code is mostly straightforward. Actually, much of this process can be automated
by the Sepref tool [22], which we use to generate implementations for each data
structure and algorithm. For example, for the function check uot (cf. Sec. 4.3):

sepref def check uot impl is
check uot :: rpan assn → cdb assn → cid rel → ulito rel × bool1 rel
unfolding check uot def by sepref

This generates the function check uot impl and proves the refinement theorem:

check uot impl, check uot
:: rpan assn → cdb assn → cid rel → ulito rel × bool1 rel

To read the certificate, we use an external C function based on fread:

size t fread from certificate(void ∗p, size t n) {
if (!cert file) return 0;
return fread(p,1,n,cert file); }

Inside Isabelle, this function is specified by:

htriple (arr assn xsi xs ? size rel ni n ? n ≤ length xs)
fread from certificate xsi ni
(λri. ∃r ys. size rel ri r ? arr assn xsi ys ?

? r≤n ? length ys = length xs ? drop r ys = drop r xs)

Where htriple is the Hoare triple for LLVM programs and ? is the separating
conjunction. This matches the specification of POSIX’s fread function [30],
except that we do not specify what data is read. This is sound, as it is a valid
over-approximation of the actual behaviour.

4.7 Soundness Theorem

Finally, we generate an implementation of read check lrat (Sec. 4.5), obtaining:

read check lrat impl :: 8 word ptr × 64 word ⇒ 1 word llM
read check lrat impl, read check lrat :: inp assn → bool1 rel

Here, inp assn implements the input string by an array and its length. In order
to smoothly interface this function from C/C++, we eliminate the tuple type
and return a byte instead of a bit. We define:

lrat checker :: 8 word ptr ⇒ 64 word ⇒ 8 word llM
lrat checker p n ≡

if read check lrat impl (p,n) then return 1 else return 0

Isabelle LLVM’s code generator creates LLVM code, and a matching header file:
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export llvm lrat checker is uint8 t lrat checker(uint8 t ∗, int64 t)
file ../code/lrat checker export.{ll,h}

We link this with a small C program that reads the command line, memory-maps
the formula file, provides the function fread from certificate (cf. Sec. 4.6), calls
the verified checker, and prints the result.

Chaining together the correctness of the functional checker (Thm. 2) and the
refinement theorem for read check lrat, and unfolding some definitions yields:

Theorem 3 (Soundness of Implementation). When we pass the checker
a pointer cp to an array of size cszi holding the bytes c, then the checker will
terminate with the array being unchanged, and if the result is not zero, the bytes
c in the array are a syntactically correct encoding of an unsatisfiable CNF:

htriple (arr assn cp c ? size rel cszi csz ? csz=length c)
(lrat checker cp cszi)
(λr. arr assn cp c ? (r6=0 =⇒ (∃F. (c,F)∈g dimacs ∧ ¬sat F)))

Note that this theorem does not depend on any complex data structures or
refinements. Apart from the basic notions of Hoare triples, separation logic,
machine words, and pointers to arrays, it only depends on our semantics of
formulas (Sec. 2.1), and our grammar for the DIMACS format (Sec. 2.2).

5 Benchmarks

For our benchmarks, we have used the latest stable versions of the tools avail-
able at the time of writing: CaDiCaL 1.9.4 [7], lrat-trim 0.2.0 [27], cake lpr
7a207e9 [8], gratchk dc6dd9d [15], lrat-check 9ee016c [12], and lrat-acl2 (incre-
mental) 8.5 [1] on gcl 2.6.13pre [13]. We used an AMD Ryzen 9 7950X3D machine
with 128 GB DDR5 RAM and a 2.0 TB Samsung 990 Pro SSD disk.

We have used problems from the 2022 SAT competition3 [33]: out of the 156
problems proved unsatisfiable in the main track, CaDiCaL timed out on 5 after
5000s. The remaining 151 problems form our benchmark set.

Checker n tc/ts ls lc mc/ms w/wf w/wb

Our tool 151 6% 97% 5% 80% 102% 110%
cake lpr 138 61% 85% 47% 162× 130% 143%

Table 1: Benchmark results in streaming mode.
The table displays the averages over the success-
fully certified problems (n).

First, we let the checker
run in parallel to CaDi-
CaL, streaming the certifi-
cate directly into the checker.
We used our checker and
cake lpr4. We measure the
computing times (the sum of
user and system time) that
3 We did not choose the 2023 competition, because the problems there are biased

towards checkers that use techniques not available for direct LRAT generation in
CaDiCaL.

4 We didn’t include a Coq based lrat-checker [9], nor an ACL2 based one [16]: the
former is reportedly less efficient than cake lpr [35], and the latter supports, to the
best of our knowledge, no streaming of the certificate.
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were allocated to the sat solver (ts) and checker (tc). The ratio tc/ts indicates
how the work is distributed between solver and checker. The smaller this ratio,
the less time the checker needs in comparison to the solver. Next, we measure
the average CPU loads allocated to the solver (ls) and checker (lc). A solver
load less than 100% indicates that the solver was slowed down. The less load the
checker produces, the fewer additional computing power is needed for checking.
We also measure the peak memory consumption (maximum resident set size)
of the solver (ms) and checker (mc). The ratio mc/ms indicates the additional
memory required for checking. Finally, we measure the wall-clock time until cer-
tification finishes (w), and compare that to the time required by the solver to
solve the problem and write the certificate to a file (wf ), and to the solving time
without producing a certificate at all (wb). The ratios w/wf and w/wb indicate
the observed extra time required for certification. The results are displayed in
Table 1: Our checker verified all problems, adding about 6% more computation
time and 80% more memory on top of solving and certificate producing. It does
not significantly slow down the solver, which runs at 97% CPU load. Compared
to writing the certificate to a file, streaming it directly to the checker is 2%
slower, and the overhead added by the whole certification process is 10%. The
cake lpr checker failed to certify 13 problems5. For the remaining problems, it
added 61% of computation time, and the solver only ran at 85% load. Streaming
the certificate to cake lpr is 30% slower than writing the certificate to a file,
and 43% slower than solving without producing a certificate. Moreover, for each
cake lpr run, maximum heap and stack sizes have to be determined upfront,
and cake lpr is likely to use all available heap6. Without prior knowledge of
the problem, it is impossible to guess good sizes. For our experiments, we used
8GiB stack and 16GiB heap, based on the maximum of 11GiB that our tool
needed. With this, cake lpr ran out of memory for six problems, and maxed out
at around 16GiB memory usage for most of the remaining problems (131/138).
On average, it needed 162 times more memory than the solver.

Checker n ttot tavg mavg

lrat-trim 151 116% 118% 96%
lrat-check 150 357% 384% 116%
gratchk 147 917% 994% 80×
cake lpr 138 1666% 1797% 208×
lrat-acl2 57 105× 8200% 158×

Table 2: Benchmark results in file
mode.

To measure the performance of just
the checker, we ran it on certificates stored
in files. For this experiment we also in-
cluded the gratchk tool, which is re-
ported to be faster than cake lpr [35], the
lrat-acl2 tool, and the unverified checker
implementations lrat-trim (forward) and
lrat-check, to compare our verified tool
against unverified but highly optimized
implementations. For the garbage col-

lected tools (gratchk, cake lpr, lrat-acl2), we set a heap limit of 16GiB. If pos-

5 6 memouts, 6 parsing errors, most likely due to benchmarks incompatible with
CakeLPR’s strict interpretation of the DIMACS CNF format, and one timeout at
5000s.

6 We assume that the garbage collector only becomes active when available memory
has filled up.
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sible, we used binary LRAT encoding (our tool and lrat-trim), and did not in-
clude conversion time from LRAT to GRAT (gratchk). Using our tool as baseline
(100%), we display the ratio of the total computation times over all problems
(ttot), and the average ratios of computation time and peak memory usage per
problem (tavg and mavg). The results are displayed in Table 2: our tool is slightly
faster but uses slightly more memory than lrat-trim. It is significantly faster and
uses less memory than any other verified or unverified tool we tested. After
14:30h, lrat-acl2 had processed 66 problems and succeeded on 57. The same
problems took 3:25m to check by our tool. We aborted the experiment at that
point, as, by extrapolation, it would have taken 5 more days to complete.

6 Conclusion

We have used the Isabelle LLVM framework to formally verify soundness of
an unsatisfiability certificate checker. Our checker is verified w.r.t. a grammar
of the DIMACS format, a semantics of CNF, and down to the LLVM code
that implements the checker. Completeness of the checker has been empirically
verified by showing that it accepts a large set of benchmarks. Our checker accepts
the LRUP fragment of the LRAT format, which makes it suitable for checking
certificates from many top-performing SAT solvers. For solvers that support
streaming of LRAT certificates, our tool can be run in parallel to the solver,
eliminating the need to store the potentially large certificate, and coming back
with the certification result the moment the solver is finished. For CaDiCaL, this
is only 10% slower than running just the solver, and 2% slower than writing the
certificate to a file without checking it. Our implementation is slightly faster and
uses only 4% more memory than the unverified and highly optimized lrat-trim
checker. It is significantly faster and more memory efficient than any other LRAT
checker we know of, verified or unverified. This makes it possible to routinely
run the checker with the solver, increasing the confidence at low cost.

To design our checker, we first implemented and profiled prototypes in C++
to determine the important optimizations. This took roughly 40 person hours.
We then used the Isabelle Refinement Framework to produce a verified version of
the checker. This was done in a top-down refinement process, which was guided
by the experience from the unverified prototypes. This took another 200 hours.

6.1 Related Work

The closest work to ours is the verified cake lpr checker [35,34]. It supports
streaming certificates7 and the full LPR format. The cake lpr checker is verified
down to assembly code (with a thin C wrapper around it), while our checker is
verified down to LLVM intermediate code. While verifying an LLVM compiler
is orthogonal to this project, we would immediately profit from such a verified
7 Surprisingly, we have not found reports on using cake lpr in streaming mode. In

particular, Pollit et. al. [29] did not consider this possibility when they extended
CaDiCaL to directly produce LRUP certificates.



16 Peter Lammich

compiler, further reducing our trusted code base. Moreover, our checker is ver-
ified w.r.t. a grammar of DIMACS CNF, while cake-lpr’s parser is not verified.
It only comes with a sanity check, showing that the parser is left inverse to a
pretty printer. Our checker is significantly faster than cake lpr, and only allo-
cates as much memory as needed, while cake-lpr’s memory size has to be set
upfront, making it uncontrollable without background information about the
problem. In particular in streaming mode, such information is not available. Fi-
nally, cake lpr uses the ASCII encoding of LRAT, while our checker uses the
more compact binary encoding.8

There are other verified certificate checkers [5,9,16,23], which, however, do
not support streaming or are significantly slower than cake lpr.

6.2 Future Work

There are no principle problems to extend our tool to the more powerful LRAT
and LPR formats. We leave this to future work, as we are not aware of any solver
that would support streaming these formats.

While our parser was manually implemented and then verified, there is work
on verified parser generators [20,19,25,18,31,6]. We leave it to future work to
integrate similar techniques into the Isabelle LLVM workflow.

While faster than parsing the ASCII encoding, decompression of the binary
encoding is a hot-spot in our checker. In streaming mode, we could probably use
a less compact but faster to read format, which we leave to future work.

8 Conversion between the encodings is easy, and we leave native support of the ASCII
encoding in our checker to future work.
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