File ‹cconv.ML›
infix 1 then_cconv
infix 0 else_cconv
signature BASIC_CCONV =
sig
type cconv = conv
val then_cconv: cconv * cconv -> cconv
val else_cconv: cconv * cconv -> cconv
val CCONVERSION: cconv -> int -> tactic
end
signature CCONV =
sig
include BASIC_CCONV
val no_cconv: cconv
val all_cconv: cconv
val first_cconv: cconv list -> cconv
val abs_cconv: (cterm * Proof.context -> cconv) -> Proof.context -> cconv
val combination_cconv: cconv -> cconv -> cconv
val comb_cconv: cconv -> cconv
val arg_cconv: cconv -> cconv
val fun_cconv: cconv -> cconv
val arg1_cconv: cconv -> cconv
val fun2_cconv: cconv -> cconv
val rewr_cconv: thm -> cconv
val rewrs_cconv: thm list -> cconv
val params_cconv: int -> (Proof.context -> cconv) -> Proof.context -> cconv
val prems_cconv: int -> cconv -> cconv
val with_prems_cconv: int -> cconv -> cconv
val concl_cconv: int -> cconv -> cconv
val fconv_rule: cconv -> thm -> thm
val gconv_rule: cconv -> int -> thm -> thm
end
structure CConv : CCONV =
struct
type cconv = conv
val concl_lhs_of = Thm.cprop_of #> Drule.strip_imp_concl #> Thm.dest_equals_lhs
val concl_rhs_of = Thm.cprop_of #> Drule.strip_imp_concl #> Thm.dest_equals_rhs
fun transitive th1 th2 = Drule.transitive_thm OF [th1, th2]
fun abstract_rule_thm n =
let
val eq = \<^cprop>‹⋀x::'a::{}. (s::'a ⇒ 'b::{}) x ≡ t x›
val x = \<^cterm>‹x::'a::{}›
val thm =
Thm.assume eq
|> Thm.forall_elim x
|> Thm.abstract_rule n x
|> Thm.implies_intr eq
in Drule.export_without_context thm end
val no_cconv = Conv.no_conv
val all_cconv = Conv.all_conv
val op else_cconv = Conv.else_conv
fun (cv1 then_cconv cv2) ct =
let
val eq1 = cv1 ct
val eq2 = cv2 (concl_rhs_of eq1)
in
if Thm.is_reflexive eq1 then eq2
else if Thm.is_reflexive eq2 then eq1
else transitive eq1 eq2
end
fun first_cconv cvs = fold_rev (curry op else_cconv) cvs no_cconv
fun rewr_cconv rule ct =
let
val rule1 = Thm.incr_indexes (Thm.maxidx_of_cterm ct + 1) rule
val lhs = concl_lhs_of rule1
val rule2 = Thm.rename_boundvars (Thm.term_of lhs) (Thm.term_of ct) rule1
val rule3 =
Thm.instantiate (Thm.match (lhs, ct)) rule2
handle Pattern.MATCH => raise CTERM ("rewr_cconv", [lhs, ct])
val concl = rule3 |> Thm.cprop_of |> Drule.strip_imp_concl
val rule4 =
if Thm.dest_equals_lhs concl aconvc ct then rule3
else
let val ceq = Thm.dest_fun2 concl
in rule3 RS Thm.trivial (Thm.mk_binop ceq ct (Thm.dest_equals_rhs concl)) end
in
transitive rule4 (Thm.beta_conversion true (concl_rhs_of rule4))
end
fun rewrs_cconv rules = first_cconv (map rewr_cconv rules)
fun combination_cconv cv1 cv2 cterm =
let val (l, r) = Thm.dest_comb cterm in
@{lemma ‹f ≡ g ⟹ s ≡ t ⟹ f s ≡ g t› for f g :: ‹'a::{} ⇒ 'b::{}› by simp}
OF [cv1 l, cv2 r]
end
fun comb_cconv cv = combination_cconv cv cv
fun fun_cconv conversion =
combination_cconv conversion all_cconv
fun arg_cconv conversion =
combination_cconv all_cconv conversion
fun abs_cconv cv ctxt ct =
(case Thm.term_of ct of
Abs (x, _, _) =>
let
fun abstract_rule v eq =
let
fun mk_concl eq =
let
fun abs t = lambda v t $ v
fun equals_cong f = Logic.dest_equals #> apply2 f #> Logic.mk_equals
in
Thm.concl_of eq
|> equals_cong abs
|> Logic.all v
|> Thm.cterm_of ctxt
end
val rule = abstract_rule_thm x
val inst = Thm.match (hd (Drule.cprems_of rule), mk_concl eq)
val gen = (Names.empty, Names.make_set [#1 (dest_Free v)])
in
(Drule.instantiate_normalize inst rule OF [Drule.generalize gen eq])
|> Drule.zero_var_indexes
end
val ((v, ct'), ctxt') = Variable.dest_abs_cterm ct ctxt
val eq = cv (v, ctxt') ct'
in
if Thm.is_reflexive eq
then all_cconv ct
else abstract_rule (Thm.term_of v) eq
end
| _ => raise CTERM ("abs_cconv", [ct]))
val arg1_cconv = fun_cconv o arg_cconv
val fun2_cconv = fun_cconv o fun_cconv
fun params_cconv n cv ctxt ct =
if n <> 0 andalso Logic.is_all (Thm.term_of ct)
then arg_cconv (abs_cconv (params_cconv (n - 1) cv o #2) ctxt) ct
else cv ctxt ct
fun prems_cconv 0 cv ct = cv ct
| prems_cconv n cv ct =
(case ct |> Thm.term_of of
\<^Const_>‹Pure.imp for _ _› =>
((if n = 1 then fun_cconv else I) o arg_cconv) (prems_cconv (n-1) cv) ct
| _ => cv ct)
fun imp_cong A =
\<^instantiate>‹A in
lemma (schematic) ‹(PROP A ⟹ PROP B ≡ PROP C) ⟹ (PROP A ⟹ PROP B) ≡ (PROP A ⟹ PROP C)›
by (fact Pure.imp_cong)›
fun concl_cconv 0 cv ct = cv ct
| concl_cconv n cv ct =
(case try Thm.dest_implies ct of
NONE => cv ct
| SOME (A,B) => (concl_cconv (n-1) cv B) RS imp_cong A)
local
fun rewr_imp C =
\<^instantiate>‹C in
lemma (schematic) ‹PROP A ≡ PROP B ⟹ (PROP A ⟹ PROP C) ≡ (PROP B ⟹ PROP C)› by simp›
fun cut_rl A =
\<^instantiate>‹A in
lemma (schematic) ‹(PROP A ⟹ PROP B) ⟹ PROP A ⟹ PROP B› by this›
in
fun with_prems_cconv n cv ct =
let
fun strip_prems 0 As B = (As, B)
| strip_prems i As B =
case try Thm.dest_implies B of
NONE => (As, B)
| SOME (A,B) => strip_prems (i - 1) (A::As) B
val (prem, (prems, concl)) = ct |> Thm.dest_implies ||> strip_prems n []
val th1 = cv prem RS rewr_imp concl
val nprems = Thm.nprems_of th1
fun f p th =
Conv.fconv_rule (Conv.concl_conv nprems (Conv.rewr_conv @{thm imp_cong_eq}))
(th RS cut_rl p)
in fold f prems th1 end
end
fun fconv_rule cv th =
let
val eq = cv (Thm.cprop_of th)
in
if Thm.is_reflexive eq then th
else th COMP (Thm.permute_prems 0 (Thm.nprems_of eq) (eq RS Drule.equal_elim_rule1))
end
fun gconv_rule cv i th =
(case try (Thm.cprem_of th) i of
SOME ct =>
let
val eq = cv ct
fun with_subgoal i f thm =
let
val num_prems = Thm.nprems_of thm
val rotate_to_front = rotate_prems (i - 1)
fun rotate_back thm = rotate_prems (1 - i + num_prems - Thm.nprems_of thm) thm
in
thm |> rotate_to_front |> f |> rotate_back
end
in
if Thm.is_reflexive eq then th
else with_subgoal i (fconv_rule (arg1_cconv (K eq))) th
end
| NONE => raise THM ("gconv_rule", i, [th]))
fun CCONVERSION cv i st = Seq.single (gconv_rule cv i st)
handle THM _ => Seq.empty
| CTERM _ => Seq.empty
| TERM _ => Seq.empty
| TYPE _ => Seq.empty
end
structure Basic_CConv: BASIC_CCONV = CConv
open Basic_CConv