
Refinement of Parallel Algorithms down to LLVM
applied to practically efficient parallel sorting

Peter Lammich1*

1*Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente Enschede Netherlands.

Corresponding author(s). E-mail(s): p.lammich@utwente.nl;

Abstract
We present a stepwise refinement approach to develop verified parallel algorithms,
down to efficient LLVM code. The resulting algorithms’ performance is compet-
itive with their counterparts implemented in C++. Our approach is backwards
compatible with the Isabelle Refinement Framework, such that existing sequential
formalizations can easily be adapted or re-used. As case study, we verify a parallel
quicksort algorithm that is competitive to unverified state-of-the-art algorithms.

Keywords: Isabelle,Concurrent Separation Logic,Parallel Sorting,LLVM

1 Introduction
We present a stepwise refinement approach to develop verified and efficient parallel
algorithms. Our method can verify total correctness down to LLVM intermediate code.
The resulting verified implementations are competitive with state-of-the-art unverified
implementations. Our approach is backwards compatible to the Isabelle Refinement
Framework (IRF) [1], a powerful tool to verify efficient sequential software, such as
model checkers [2–4], SAT solvers [5–7], or graph algorithms [8–10]. This paper adds
parallel execution to the IRF’s toolbox, without invalidating the existing formaliza-
tions, which can now be used as sequential building blocks for parallel algorithms, or
be modified to add parallelization.

As a case study, we verify total correctness of a parallel quicksort algorithm, re-
using an existing verification of state-of-the-art sequential sorting algorithms [11]. Our
verified parallel sorting algorithm is competitive to state-of-the-art parallel sorting
algorithms from GNU’s C++ standard library and the Boost C++ Libraries.

1

Algorithms and Data Structures

NE-Monad Low-Level Algorithms
and Data StructuresSepref

Program Logic and VCG

Back
End

Trusted Code Base

Code GeneratorInstructionsPreprocessor

Memory Model

SE-Monad

Fig. 1: Components of the IRF, with focus on the back end.

This paper is an extended version of our ITP 2022 paper [12]. The main new con-
tribution is a verified parallel partitioning algorithm, which significantly improves the
efficiency and scalability of our sorting algorithm from [12]. To this end, we added
a description of the interval list data structure (Section 4.3) and the with_idxs
combinator (Section 4.4), which are required by the parallel partitioner. The paral-
lel partitioning algorithm itself is described in Section 5.3, and Section 5.5 contains
updated and more extensive benchmarks.

Isabelle LLVM is hosted at lammich.github.io/isabelle llvm. The version described
in this paper has been archived [13].

1.1 Overview
This paper is based on the Isabelle Refinement Framework, a continuing effort to
verify efficient implementations of complex algorithms, using stepwise refinement
techniques [1, 14–18]. Figure 1 displays the components of the Isabelle Refinement
Framework. The back end layer handles the translation from Isabelle/HOL to the
actual target language. The instructions of the target language are shallowly embed-
ded into Isabelle/HOL, using a state-error (SE) monad. An instruction with undefined
behaviour, or behaviour outside our supported fragment, raises an error. The state of
the monad is the memory, represented via a memory model. The code generator trans-
lates the instructions to actual code. These components form the trusted code base,
while all the remaining components of the Isabelle Refinement Framework generate
proofs. In the back-end, the preprocessor transforms expressions to the syntactically
restricted format required by the code generator, proving semantic equality of the
original and transformed expression. While there exist back ends for purely functional
code [15, 16], and sequential imperative code [1, 17], this paper describes a back end
for parallel imperative LLVM code (Section 2).

On top of the back-end, we formalize a concurrent separation logic [19] and
implement a verification condition generator (VCG), cf. Section 3.

2

https://lammich.github.io/isabelle_llvm/index.html

At the level of the program logic and VCG, our framework can be used to verify
simple low-level algorithms and data structures, like dynamic arrays and linked lists.
More complex developments typically use a stepwise refinement approach, starting at
purely functional programs modelled in a nondeterminism-error (NE) monad [15]. A
semi-automatic refinement procedure (Sepref [1, 17]) translates from the purely func-
tional code to imperative code, refining abstract functional data types to concrete
imperative ones. In Section 4, we describe our extensions to support refinement to par-
allel executions, and a fine-grained tracking of pointer equalities, required to parallelize
computations that work on disjoint parts of the same array.

Using our approach, complex algorithms and data structures can be developed and
refined to optimized efficient code. The stepwise refinement ensures a separation of
concerns between high-level algorithmic ideas and low-level optimizations. We have
already used this approach to verify a wide range of practically efficient sequential algo-
rithms [2–11]. In Section 5, we use our extended techniques to verify a parallel sorting
algorithm, with competitive performance wrt. unverified state-of-the-art algorithms.

Section 6 concludes the paper and discusses related and future work.

1.2 Notation
Formal statements in this paper correspond to theorems proved in our Isabelle/HOL
formalization, though sometimes simplified to improve the clarity of the presentation.

We mainly use Isabelle/HOL notation, with some shortcuts and adaptations for
presentation in a paper. In this section, we give examples of the more unusual nota-
tions: for implication, we always write =⇒ , e.g., ∀x. x < 4 =⇒ x≤ 4 (in Isabelle,
one must use −→ here). Free variables are universally quantified at the top-level.

Type variables are ′a, ′b, . . . and function types are written curried as ′a ⇒ ′b ⇒ ′c.
Types can be annotated to any term, e.g., (x::nat)< 4 =⇒ x≤ 3. Function applica-
tion is written as f x y, and function update is f(x:=y). For definitions, we use ≡, e.g.,
f x ≡ x+1.

Algebraic datatypes are written as ′a option ≡ Some (the: ′a) | None. This
also defines the selector function the :: ′a option ⇒ ′a. Values of the tuple type
′a1 × . . . × ′an are written as (a1,. . . ,an). Lists have type ′a list, and we write [] for the
empty list, x#xs for the list with head x and tail xs, and xs1@ xs2 for list concatenation.
We also use the list notation [1,2,3]. The length of list xs is |xs|.

The empty set is {} :: ′a set. The set {l..<h} contains all elements between l inclu-
sive and h exclusive, and the set {l..} contains all elements greater than or equal
to l. Disjoint union is written as ∪̇. We only write ∪̇ if it is clear from the context
where the disjointness constraint belongs to. Otherwise, we will explicitly write, e.g.,
s = s1 ∪ s2 ∧ s1 ∩ s2 = {}. The cardinality of a finite set s is |s|.

Lambda abstraction is written as λx. x+1. When clear from the context, we omit
the λ, e.g. spec x. x > 42. We also use Haskell-like sections for infix operators, e.g.
(+1) for λx. x+1. We also use underscores to indicate the parameter positions, e.g.,
{ ..< } for λl h. {l..<h}.

3

2 A Back End for LLVM with Parallel Execution
We formalize a semantics for parallel execution, shallowly embedded into
Isabelle/HOL. As for the existing sequential back ends [1, 17], the shallow embedding
is key to the flexibility and feasibility of the approach. The main idea is to make an
execution report its accessed memory, and use this information to raise an error when
joining executions that would have exhibited a data race. We use this to model an
instruction that calls two functions in parallel, and waits until both have returned.

2.1 State-Nondeterminism-Error Monad with Access Reports
We define the underlying monad in two steps. We start with a nondeterminism-
error monad, and then lift it to a state monad and add access reports. Defining a
nondeterminism-error monad is straightforward in Isabelle/HOL:
′a neM ≡ spec (′a ⇒ bool) | fail
return x ≡ spec (λr. r=x)
bind fail f ≡ fail
bind (spec P) f ≡ if ∃x. P x ∧ f x = fail then fail

else spec (λr. ∃x Q. P x ∧ f x = spec Q ∧ Q r)

A program either fails, or yields a possible set of results (spec P), described by its
characteristic function P. The return operation yields exactly one result, and bind
combines all possible results, failing if there is a possibility to fail. We use the notation
x←m; f x for bind m (λx. f x), and m1; m2 for bind m1 (λ . m2).

Now assume that we have a state (memory) type µ, and an access report type
ρ, which forms a monoid (0,+). With this, we define our state-nondeterminism-error
monad with access reports, just called M for brevity:
′x M ≡ µ ⇒ (′x × ρ × µ) neM
returnM x µ ≡ returnne (x,0,µ)
bindM m f µ ≡ (x1,r1,µ) ← m µ; (x2,r2,µ) ← f x1 µ; returnne (x2,r1+r2,µ)

Here, return does not change the state, and reports no accesses (0), and bind sequen-
tially composes the executions, threading through the state µ and adding up the access
reports r1 and r2. Note that we use the names r :: ρ for reports, µ :: µ for memory,
and m :: M for monads.

Typically, the access report will contain read and written addresses, such that data
races can be detected. Moreover, if parallel executions can allocate memory, we must
detect those executions where the memory manager allocated the same block in both
parallel strands. As we assume a thread safe memory manager, those infeasible execu-
tions can safely be ignored. Let feasible :: ρ ⇒ ρ ⇒ bool and norace :: ρ ⇒ ρ ⇒ bool
be symmetric predicates, and let combine :: (ρ × µ) ⇒ (ρ × µ) ⇒ (ρ × µ) be a com-
mutative operator to combine two pairs of access reports and states. Then, we define
a parallel composition operator for M:

(m1 || m2) µ ≡
(x1,r1,µ1) ← m1 µ; (x2,r2,µ2) ← m2 µ; — execute both strands
assume feasible ρ1 ρ2; — ignore infeasible combinations

4

assert norace ρ1 ρ2; — fail on data race
returnne ((x1,x2), combine (ρ1,µ1) (ρ2,µ2)) — combine results

assume P ≡ if P then return () else spec (λ . False)
assert P ≡ if P then return () else fail

Here, we use assume to ignore infeasible executions, and assert to fail on data races.
Note that, if one parallel strand fails, and the other parallel strand has no possi-
ble results (spec (λ . False)), the behaviour of the parallel composition is not clear.
For this reason, we fix an invariant invarM :: (µ ⇒ (′x × ρ × µ) neM) ⇒ bool, which
implies that every non-failing execution has at least one possible result. We define
the actual type M as the subtype satisfying invarM . Thus, we have to prove that
every combinator and instruction of our semantics preserves the invariant, which is
an important sanity check. As additional sanity check, we prove symmetry of parallel
composition:

m1 || m2 = mswap (m2 || m1) where mswap m ≡ (x1,x2)←m; return (x2,x1)

2.2 Memory Model
Our memory model supports blocks of values, where values can be integers, structures,
or pointers into a block:

bidx ≡ nat
addr ≡ ADDR bidx nat
ptr ≡ PTR NULL | PTR ADDR (the addr: addr)
val ≡ LL INT lint | LL STRUCT val list | LL PTR ptr

block ≡ FRESH | FREED | is alloc: ALLOC (vals: val list)
typedef memory ≡ { µ :: bidx ⇒ block. finite {b. µ b ̸= FRESH} }
A block is either fresh, freed, or allocated, and a memory is a mapping from block
indexes (bidx) to blocks, such that only finitely many blocks are not fresh. Every block’s
state transitions from fresh to allocated to freed. This avoids ever reusing the same
block, and thus allows us to semantically detect use after free errors. Every program
execution can only allocate finitely many blocks, such that we will never run out of
fresh blocks1. An allocated block contains an array of values, modelled as a list. Thus,
an address ADDR bi i consists of a block index bi, and an index i into the array.

To access and modify memory, we define the functions valid, get, and put:

valid µ (ADDR b i) ≡ is alloc (µ b) ∧ i < |vals (µ b)|
get µ (ADDR b i) ≡ vals (µ b) ! i
put µ (ADDR b i) x ≡ µ(b := ALLOC ((vals (µ b))[i:=x]))

where |xs| is the length of list xs, xs!i returns the ith element of list xs, and xs[i:=x]
replaces the ith element of xs by x.

Note that our LLVM semantics does not support conversion of pointers to integers,
nor comparison or difference of pointers to different blocks. This way, a program cannot

1If the actual system does run out of memory, we will terminate the program in a defined way.

5

see the internal representation of a pointer, and we can choose a simple abstract
representation, while being faithful wrt. any actual memory manager implementation.

2.3 Access Reports
We now fix the state of the M-monad to be memory, and the access reports to be tuples
(r,w,a,f) of read and written addresses, as well as sets of allocated and freed blocks:

acc ≡ addr set × addr set × bidx set × bidx set
0 ≡ ({},{},{},{})
(r1,w1,a1,f1) + (r2,w2,a2,f2) ≡ (r1 ∪ r2, w1 ∪ w2, a1 ∪ a2, f1 ∪ f2)

Two parallel executions are feasible if they did not allocate the same block. They
have a data race if one execution accesses addresses or blocks modified by the other:

feasible (r1,w1,a1,f1) (r2,w2,a2,f2) ≡ a1 ∩ a2 = {}

norace (r1,w1,a1,f1) (r2,w2,a2,f2) ≡
let m1 = w1 ∪ { ADDR b i. b ∈ a1 ∪ f1 } in
let m2 = w2 ∪ { ADDR b i. b ∈ a2 ∪ f2 } in
(r1 ∪ m1) ∩ m2 = {} ∧ m1 ∩ (r2 ∪ m2) = {}

The combine function joins the access reports and memories, preferring allocated over
fresh, and freed over allocated memory. When joining two allocated blocks, the written
addresses from the access report are used to join the blocks. We skip the rather techni-
cal definition of combine, and just state the relevant properties: Let ρ1=(r1,w1,a1,f1)
and ρ2=(r2,w2,a2,f2) be feasible and race free access reports, and µ1, µ2 be memo-
ries that have evolved from a common memory µ, consistently with the access reports
ρ1, ρ2. Let (ρ′,µ′) = combine (ρ1,µ1) (ρ2,µ2). Then

(1) µ′ b = FRESH ←→ µ b = FRESH ∧ b /∈ a1 ∪ a2
(2) is alloc (µ′ b) ←→ (is alloc (µ b) ∨ b ∈ a1 ∪ a2) ∧ b /∈ f1 ∪ f2
(3) µ′ b = FREED ←→ µ b = FREED ∨ b ∈ f1 ∪ f2
Moreover, for all addresses addr = ADDR b i with valid µ′ addr:

(4) addr ∈ w1 ∨ b ∈ a1 =⇒ get µ′ addr = get µ1 addr
(5) addr ∈ w2 ∨ b ∈ a2 =⇒ get µ′ addr = get µ2 addr
(6) addr /∈ w1 ∪ w2 ∧ b /∈ a1 ∪ a2 =⇒ get µ′ addr = get µ addr

The properties (1)–(3) define the state of blocks in the combined memory: a fresh block
in µ′ was fresh already in µ, and has not been allocated (1); an allocated block was
already allocated or has been allocated, but has not been freed (2); and a freed block
was already freed, or has been freed (3). The properties (4)–(6) define the content:
addresses written or allocated in the first or second execution get their content from
µ1 (4) or µ2 (5) respectively. Addresses not written nor allocated at all keep their
original content (6).

2.4 The Interface of the M-Monad
The invariant for M states that blocks transition only from fresh to allocated to free,
allocated blocks never change their size, and the access report matches the observable

6

state change (consistent). It also states, that for each finite set of blocks B, there is
an execution that does not allocate blocks from B. The latter is required to show that
we always find feasible parallel executions:

invarM c ≡ ∀µ P. c µ = spec P =⇒
(∀x ρ µ′. P (x,ρ,µ′) =⇒ consistent µ ρ µ′)
∧ (∀B. finite B =⇒ (∃x ρ µ′. P (x,ρ,µ′) ∧ ρ.a ∩ B = {}))

To define functions in the M-monad, we have to show that they satisfy this invari-
ant. For return and bind, this is straightforward. The proof for the parallel operator
is slightly more involved, using the properties of combine, and the invariant for the
operands to obtain a feasible parallel execution.

Moreover, the M monad provides the memory management functions Mmalloc,
Mfree, Mload, Mstore, and Mvalid addr. The latter function checks if a given address
is valid, and is used to check if pointer arithmetic can be performed on that address.
Currently, it behaves like loading from that address, in particular it does not support
pointers one past the end of an allocated block. We leave integration of such pointers
to future work.
Example 1 (Memory Allocation). To define memory allocation in M, we first define
the allocation function in the underlying nondeterminism-error monad:

malloc vs µ ≡
b ← spec b. is FRESH µ b;
return (b, ({},{},{b},{}), µ(b:=ALLOC vs))

This function selects an arbitrary fresh block b, and initializes it with the given list vs
of values. It returns the allocated block, an access report for the allocation, and the
updated memory.

We then show that malloc satisfies the invariant of M: we correctly report the allo-
cated block. Moreover, we can select any fresh block. As our memory model guarantees
an infinite supply of fresh blocks, any finite set of blocks can be avoided.

invarM malloc: invarM (malloc vs)

Finally, we define the corresponding function in the M monad, using Isabelle’s
lifting and transfer package [20]:

lift definition Mmalloc :: val list ⇒ M is malloc by (rule invarM malloc)

The other memory management functions are defined analogously.

2.5 LLVM Instructions
Based on the M-monad, we define shallowly embedded LLVM instructions. For most
instructions, this is analogous to the sequential case [1]. Additionally, we define an
instruction for a parallel function call:

llc par f g a b ≡ f a || g b

The code generator only accepts this, if f and g are constants (i.e., function names).
It then generates some type-casting boilerplate, and a call to an external parallel
function, which we implement using the Threading Building Blocks [21] library:

7

void parallel(void (*f1)(void*), void (*f2)(void*), void *x1, void *x2) {
tbb::parallel_invoke([=]{f1(x1);}, [=]{f2(x2);}); }

I.e., the two functions f1(x1) and f2(x2) are called in parallel. The generated boilerplate
code sets up x1 and x2 to point to both, the actual arguments and space for the results.

3 Parallel Separation Logic
In the previous section, we have defined a shallow embedding of LLVM programs into
Isabelle/HOL. We now reason about these programs, using separation logic.

3.1 Separation Algebra
In order to reason about memory with separation logic, we define an abstraction
function from the memory into a separation algebra [22]. Separation algebras formalize
the intuition of combining disjoint parts of memory. They come with a zero (0) that
describes the empty part, a disjointness predicate a#b describing that the parts a and
b do not overlap, and a disjoint union a+ b that combines two disjoint parts. For the
exact definition of a separation algebra, we refer to [22, 23]. We note that separation
algebras naturally extend over functions and pairs in a pointwise manner.
Example 2. (Trivial Separation Algebra) The type ′a option = None | Some ′a forms
a separation algebra with:

0 ≡ None a # b ≡ a=0 ∨ b=0 a + 0 ≡ a 0 + b ≡ b

Intuitively, this separation algebra does not allow for combination of contents, except
if one side is zero. While it is not very useful on its own, the trivial separation algebra
is a useful building block for more complex separation algebras.

For our memory model, we define the following abstraction function:

α :: memory ⇒ (addr ⇒ val option) × (bidx ⇒ nat option)
α µ ≡ (αm µ, αb µ)

αm µ addr ≡ if valid µ addr then Some (get µ addr) else 0
αb µ b ≡ if is alloc (µ b) then Some (|vals (µ b)|) else 0

An abstract memory α µ consists of two parts: αm µ is a map from addresses to the
values stored there. It is used to reason about load and store operations. αb µ is a
map from block indexes to the sizes of the corresponding blocks. It is used to ensure
that one owns all addresses of a block when freeing it.

We continue to define a separation logic: assertions are predicates over separation
algebra elements. The basic connectives are defined as follows:

false a ≡ False true a ≡ True □ a ≡ a=0
(P∗Q) a ≡ ∃a1 a2. a1 # a2 ∧ a = a1 + a2 ∧ P a1 ∧ Q a2

That is, the assertion false never holds and the assertion true holds for all abstract
memories. The empty assertion □ holds for the zero memory, and the separating
conjunction P∗Q holds if the memory can be split into two disjoint parts, such that

8

P holds for one, and Q holds for the other part. The lifting assertion ↑ϕ holds iff the
Boolean value ϕ is true:

↑ϕ ≡ if ϕ then □ else false

It is used to lift plain logical statements into separation logic assertions owning no
memory. When clear from the context, we omit the ↑-symbol, and just mix plain
statements with separation logic assertions.

3.2 Weakest Preconditions and Hoare Triples
We define a weakest precondition predicate directly via the semantics:

wp m Q µ ≡ case m µ of spec Q′⇒ ∀x ρ µ′. Q′ (x,ρ,µ′) =⇒ Q x ρ µ′

| fail ⇒ False

That is, wp m Q µ holds, iff program m run on memory µ does not fail, and all possible
results (return value x, access report ρ, new memory µ′) satisfy the postcondition Q.

To set up a verification condition generator based on separation logic, we stan-
dardize the postcondition: the reported memory accesses must be disjoint from some
abstract memory amf, called the frame. We define the weakest precondition with frame:

wpf amf c Q µ ≡ wp c (λx ρ µ′. Q x µ′ ∧ disjoint ρ amf) µ

disjoint (r,w,a,f) (m,b) ≡ (∀addr. m addr ̸= 0 =⇒ addr /∈ r ∪ w ∧ addr.bidx /∈ f)
∧ (∀i. b i ̸= 0 =⇒ i /∈ f)

that is, when executed on memory µ, the program c does not fail, every return value x
and new memory µ′ satisfies Q, and no memory described by the frame amf is accessed.

Equipped with wpf, we define a Hoare-triple:

ABS amf P µ ≡ ∃am. am # amf ∧ α µ = am+amf ∧ P am

ht P c Q ≡ ∀µ amf. ABS amf P µ =⇒ wpf amf c (λx µ′. ABS amf (Q x) µ′) µ

The predicate ABS amf P µ specifies that the abstract memory α µ can be split into
a part am and the given frame amf, such that am satisfies the precondition P . A
Hoare-triple ht P c Q specifies that for all memories and frames for which the pre-
condition holds (ABS amf P µ), the program will succeed, not using any memory
of the frame, and every result will satisfy the postcondition wrt. the original frame
(ABS amf (Q x) µ′).

3.3 Verification Condition Generator
The verification condition generator is implemented as a proof tactic that works on
subgoals of the form:

ABS amf P µ ∧ . . . =⇒ wpf amf c Q µ

The tactic is guided by the syntax of the command c. Basic monad combinators are
broken down using the following rules:

9

Q r µ =⇒ wpf amf (return r) Q µ
wpf amf m (λx. wpf amf (f x) Q) µ =⇒ wpf amf ({x ← m; f x}) Q µ

For other instructions and user defined functions, the VCG expects a Hoare-triple to
be already proved. It then uses the following rule:

ht P c Q ∧ ABS amf P′ µ — match Hoare triple and current state
∧ P′ ⊢ P∗F — infer frame
∧ (

∧
r µ. ABS amf (Q r ∗ F) µ =⇒ Q′ r µ) — continue with postcondition

=⇒ wpf amf c Q′ µ

To process a command c, the first assumption is instantiated with the Hoare-triple
for c, and the second assumption with the assertion P′ for the current state. Then,
a simple syntactic heuristics infers a frame F and proves that the current assertion
P′ entails the required precondition P and the frame. Finally, verification condition
generation continues with the postcondition Q and the frame as current assertion.

3.4 Hoare-Triples for Instructions
To use the VCG to verify LLVM programs, we have to prove Hoare triples for the
LLVM instructions. For parallel calls, we prove the well-known disjoint concurrency
rule [19]:

ht P1 c1 Q1 ∧ ht P2 c2 Q2 =⇒ ht (P1 ∗ P2) (par c1 c2) (λ(r1,r2). Q1 r1 ∗ Q2 r2)

That is, commands with disjoint preconditions can be executed in parallel.
For memory operations, we prove:

|= {n ̸=0} ll malloc TYPE(′a) n {λp. range {0..<n} p (λ . init) ∗ b tag p n}
|= {range {0..<n} p f ∗ b tag p n} ll free p {λ . □}
|= {pto p x} ll load p {λr. r=x ∗ pto p x}
|= {pto p y} ll store x p {λ . pto p x}

Here b tag p n asserts that p points to the beginning of a block of size n, and range I p f
describes that for all i ∈ I, p + i points to value f i. Intuitively, ll malloc creates a
block of size n, initialized with the default init value, and a tag. If one possesses both,
the whole block and the tag, it can be deallocated by free. The rules for load and store
are straightforward, where pto p x describes that p points to value x.

4 Refinement for (Parallel) Programs
At this point, we have described a separation logic framework for parallel programs in
LLVM. It is largely backwards compatible with the framework for sequential programs
described in [1], such that we could easily port the algorithms formalized there to our
new framework. The next step towards verifying complex programs is to set up a step-
wise refinement framework. In this section we describe the refinement infrastructure
of the Isabelle Refinement Framework.

10

4.1 Abstract Programs
Abstract programs are shallowly embedded into the nondeterminism error monad
′a neM (cf. Section 2.1). They are purely functional and have no notion of parallel
execution. We define a refinement ordering on neM:

spec P ≤ spec Q ≡ ∀x. P x =⇒ Q x fail ̸≤ spec Q m ≤ fail

Intuitively, m1 ≤ m2 means that m1 returns fewer possible results than m2, and may
only fail if m2 may fail. Note that ≤ is a complete lattice, with top element fail.

We use refinement and assertions to specify that a program m satisfies a
specification with precondition P and postcondition Q:

m ≤ assert P; spec x. Q x

If the precondition is false, the right hand side is fail, and the statement trivially
holds. Otherwise, m cannot fail, and every possible result x of m must satisfy Q.

For a detailed description on using the ne-monad for stepwise refinement based
program verification, we refer the reader to [15].
Example 3 (Swapping multiple elements). We specify an operation to perform mul-
tiple swaps. It takes two disjoint sets of indexes s1 and s2, and a list xs. It then swaps
each index in s1 with some index in s2. The precondition of this operation assumes
that the index sets are in range, disjoint, and have the same cardinality:

swap spec pre s1 s2 xs ≡ s1 ∩ s2 = {} ∧ s1 ∪ s2 ⊆ {0..<|xs|} ∧ |s1| = |s2|

The postcondition ensures that the resulting list is a permutation of the original list,
the elements at indexes outside s1 ∪ s2 are unchanged, and that each element in s1 is
swapped with one in s2:

swap spec post s1 s2 xs xs′ ≡
mset xs′ = mset xs ∧ (∀i/∈s1 ∪ s2. i < |xs| =⇒ xs′!i = xs!i)
∧ (∀i∈s1. ∃j∈s2. xs′!i = xs!j) ∧ (∀j∈s2. ∃i∈s1. xs′!j = xs!i)

Here, mset xs is the multiset of elements of the list xs, and mset xs = mset xs′ is the
standard way to express permutation in Isabelle.

As a sanity check, we prove that our specification is not vacuous, i.e., that for
every input that satisfies the precondition, there exists an output that satisfies the
postcondition:

swap spec pre s1 s2 xs =⇒ ∃xs′. swap spec post s1 s2 xs xs′

Note that this is only a sanity check lemma to detect problems early. Should we
accidentally insert a vacuous specification here, we won’t be able to prove refinement
to an M-monad program later, which cannot be vacuous due to invarM .

In the ne monad, we then specify:

swap spec s1 s2 xs ≡
assert (swap spec pre s1 s2 xs); spec xs′. swap spec post s1 s2 xs xs′

In Section 5.3 we will refine this specification to a parallel implementation in LLVM.

11

4.2 The Sepref Tool
The Sepref tool [1, 17] symbolically executes an abstract program in the ne-monad,
keeping track of refinements for every abstract variable to a concrete representation,
which may use pointers to dynamically allocated memory. During the symbolic exe-
cution, the tool synthesizes an Isabelle-LLVM program, together with a refinement
proof. The synthesis is automatic, but requires annotations to the abstract program.

The main concept of the Sepref tool is refinement between an abstract program
c in the ne-monad, and a concrete program c† in the M monad, as expressed by the
hnr-predicate:

hnr Γ c† Γ′ R CP c ≡
c ̸= fail =⇒ ht Γ c† (λr†. ∃r. Γ′ ∗ R r† r ∗ ↑(return r ≤ c ∧ CP r†))

That is, either the abstract program c fails, or for a memory described by asser-
tion Γ, the LLVM program c† succeeds with result r†, such that the new memory is
described by Γ′ ∗ R r† r, for a possible result r of the abstract program c. Moreover,
the predicate CP holds for the concrete result. Note that hnr trivially holds for a fail-
ing abstract program. This makes sense, as we prove that the abstract program does
not fail anyway. It allows us to assume abstract assertions during the refinement proof:

(ϕ =⇒ hnr Γ c† Γ′ R CP c) =⇒ hnr Γ c† Γ′ R CP (assert ϕ; c)

Example 4. (Refinement of lists to arrays) We define abstract programs for indexing
and updating a list:

lget xs i ≡ assert (i < |xs|); return xs!i
lset xs i x ≡ assert (i < |xs|); return xs[i:=x]

These programs assert that the index is in bounds, and then return the accessed
element (xs!i) or the updated list (xs[i:=x]) respectively. The following assertion links
a pointer to a list of elements stored at the pointed-to location:

arrA p xs = range {0..<|xs|} p (λi. xs!i)

That is, for every i < |xs|, p+ i points to the ith element of xs. Assertions like arrA,
that relate concrete to abstract values, are called refinement relations. If we want to
emphasize that they depend on the heap, we also call them refinement assertions.

Indexing and updating of arrays is implemented by:

aget p i ≡ ll ofs ptr p i; ll load p
aset p i x ≡ ll ofs ptr p i; ll store x p; return p

where ll ofs ptr is the Isabelle-LLVM instruction for offsetting a pointer by an index.
The abstract and concrete programs are linked by the following refinement theorems:

hnr (arrA xs† xs ∗ idxA i† i) (aget xs† i†) (arrA xs† xs∗idxA i† i) idA ⊤ (lget xs i)
hnr (arrA xs† xs ∗ idxA i† i) (aset xs† i† x) (idxA i† i) arrA (λr. r = xs†) (lset xs i x)

That is, if the list xs is refined by array xs†, and the natural number i is refined by
the fixed-width2 word i† (idxA i† i), the aget operation will return the same result as

2We use Isabelle’s word library here, which encodes the actual width as a type variable, such that our
functions work with any bit width. For code generation, we will fix the width to 64 bit.

12

the lget operation (idA). The resulting memory will still contain the original array.
Note that there is no explicit precondition that the array access is in bounds, as this
follows already from the assertion in the abstract lget operation. The aset operation
will return a pointer to an array that refines the updated list returned by lset. As
the array is updated in place, the original refinement of the array is no longer valid.
Moreover, the returned pointer r will be the same as the argument pointer xs†. This
information is important for refining to parallel programs on disjoint parts of an array
(cf. Section 4.4).

To increase readability, we introduce an (almost) point-free notation for refinement
theorems. The theorems for the array operations above can also be written as:

aget, lget : arrA → idxA → idA
aset, lset : arrAd:xs† → idxA → idA → arrA:r [r = xs†]

The first theorem simply states that the first argument is refined by arrA, the second
argument by idxA, and the result by idA. The second theorem adds the annotation
·d to the refinement for the array argument, indicating that this argument will be
destroyed, i.e., the refinement is no longer valid when the function returns. Moreover,
it binds the array argument to the name xs† and the result to r. These names are used
in the pointer equality predicate [r = xs†] at the end, indicating that the result will be
the same pointer as the array argument.

Given refinement relations for the parameters, and refinement theorems for all oper-
ations in a program, the Sepref tool automatically synthesizes an LLVM program from
an abstract neM program. The tool tries to automatically discharge additional proof
obligations, typically arising from translating arithmetic operations from unbounded
numbers to fixed width numbers. Where automatic proof fails, the user has to add
assertions to the abstract program to help the proof. The main difference of our tool
wrt. the existing Sepref tool [1] is the additional condition (CP) on the concrete result,
which is used to track pointer equalities. We have added a heuristics to automatically
synthesize and discharge these equalities.

4.3 Modular Data Structure Development
The Refinement Framework allows us to build more complex data structures, using
already existing ones as building blocks, and chaining together several refinements.
We describe the development of an interval list data structure, which we need for our
parallel partitioning algorithm (cf. 5.3).

A pair of natural numbers (l,h) can be used to represent the set {l..<h}. We define
ivR to be the refinement relation between intervals (pairs) and sets. Moreover, we define
operations for constructing an interval, testing if an interval is empty, intersection, and
cardinality. We show that these operations refine the corresponding operations on sets:

ivR :: (nat × nat) ⇒ nat set ⇒ bool ivR (l,h) s ≡ s = {l..<h}

iv l h ≡ (l,h) iv, { ..< } : idR → idR → ivR
iv is empty (l,h) ≡ h≤ l iv is empty, (={}) : ivR → idR
iv inter (l1,h1) (l2,h2) ≡ (max l1 l2, min h1 h2) iv inter, (∩) : ivR → ivR → ivR
iv card (l,h) ≡ if h < l then 0 else h−l iv card, | | : ivR → idR

13

Note that h<l =⇒ {l..<h} = {}, and we do not enforce l ≤ h for our representation.
Thus, no checks are needed for construction and intersection. However, we use a check
to avoid underflow when computing the cardinality.

Analogously, we implement open intervals with a single number, and define
operations to construct an open interval, and to intersect a closed and an open interval:

ivoR :: nat ⇒ nat set ⇒ bool ivoR l s ≡ s = {l..}

ivo l ≡ l ivo, { ..} : idR → ivR
iv inter ivo (l1,h1) l2 ≡ (max l1 l2) h1 iv inter ivo, (∩) : ivR → ivoR → ivR

Next, we use Sepref to implement the natural numbers by fixed-sized words (idxA).
For example, given the definition of iv inter, and an annotation to implement natural
numbers by 64 bit words, Sepref synthesizes the Isabelle LLVM program iv inter† and
proves the refinement theorem:

iv inter†, iv inter : idxA × idxA → idxA × idxA → idxA × idxA

We then define ivA ≡ (idxA × idxA) O ivR as the composition of the two refinements
(word to nat to set). With the help of Sepref’s FCOMP tool, we can automatically
compose the refinement lemmas. For example, composing the refinement lemmas for
iv inter†, iv inter and iv inter, (∩) yields:

iv inter†, (∩) : ivA → ivA → ivA

Thus, we obtain imperative implementations of the set operations. We proceed
analogously for open intervals.

Next, we implement a set as the union of a list of non-empty, pairwise disjoint,
and finite sets. While that seems to make little sense at first glance, we will later
implement the sets in the list by intervals, and the list itself by dynamic arrays, to
obtain an imperative interval list data structure. We define operations for constructing
an empty set, emptiness test, disjoint union with a single set, cardinality, and a more
specialized operation split, which splits off a non-empty set from the list:

ivlR :: nat set list ⇒ nat set ⇒ bool
ivlR ls s ≡ s =

⋃
set s ∧ pw disjoint ls ∧ (∀x:set ls. finite x ∧ x ̸= {})

ivl empty ≡ [] ivl empty, {} : ivlR
ivl is empty ls ≡ ls = [] ivl is empty, (={}) : ivlR → idR
ivl dj un s ls ≡ s#ls ivl dj un, (∪̇) : idR → ivlR → ivlR
ivl card ls ≡ fold (λs c. c=c+|s|) ls 0 ivl card, card : ivlR → idR
ivl split (s#ls) ≡ (s,ls) ivl split, split : ivlR → idR × ivlR

split s ≡ assert (s ̸= {}); spec (s1,s2). s = s1 ∪̇ s2 ∧ s1 ̸= {}

We then refine the lists of sets to array lists (dynamic arrays) of intervals: alA ivA.
Here, alA is the refinement assertion from lists to the array list data structure from
the IRF collections library. As argument, it takes the refinement relation for the list
elements. Again, Sepref automatically generates imperative implementations of the ivl
functions and proves the corresponding refinement lemmas. Combining them with the
refinements to sets yields the desired imperative interval list data structure, with the

14

refinement relation ivlA ≡ alA ivA O ivlR. For example, for joining a single interval to
the list, and for splitting off an interval, we get:

ivl dj un†, (∪̇) : ivA → ivlAd → ivlA
ivl split†, split : ivlAd → ivA × ivlA

Note that we update the underlying dynamic array destructively, hence the ·d
annotation to the argument refinements.

In a last step, we define some operations on (finite) sets, and use Sepref to
directly refine them to arrays, without any explicit intermediate steps. For example,
intersecting two finite sets can be expressed as:

set inter it s1 s2 ≡
assert(finite s2);
r={}; while (s2 ̸= {}) ((ss,s2) ← split s2; r = (s1 ∩ ss) ∪̇ r);
return r

It is straightforward to prove that this algorithm returns s1 ∩ s2. Also, Sepref can
implement s1 with a closed or open interval, and s2 with an interval array, yielding:

iv inter ivl†, (∩) : ivA → ivlAd → ivlA
ivo inter ivl†, (∩) : ivoA → ivlAd → ivlA

We have demonstrated one way of modularly developing an interval list data struc-
ture based on a dynamic array. By separating the actual intervals from the list data
structure, the proofs about the interval list where independent of the interval imple-
mentation. This is a design choice, and a more direct design, e.g., using (nat × nat) list
as intermediate data structure, is certainly possible.

4.4 Array Splitting
An important concept for parallel programs is to concurrently operate on disjoint parts
of the memory, e.g., different slices of the same array. However, abstractly, arrays are
just lists. They are updated by returning a new list, and there is no way to express
that the new list is stored at the same address as the old list. Nevertheless, in order
to refine a program that updates two disjoint slices of a list to one that updates
disjoint parts of the array in place, we need to know that the result is stored in the
same array as the input. This is handled by the CP argument to hnr. To indicate
that operations shall be refined to disjoint parts of the same array, we introduce the
combinator with_split for abstract programs:

with_split i xs f ≡
assert (i < |xs|);
(xs1,xs2) ← f (take i xs) (drop i xs);
assert (|xs1| = i ∧ |xs2| = |xs| − i);
return (xs1@ xs2)

Abstractly, this is an annotation that is inlined when proving the abstract program
correct. However, Sepref will translate it to the concrete combinator awith split:

awith split i p f† ≡ p2 ← ll ofs ptr p i; f† p p2; return p

15

The corresponding refinement theorem is:

awith split, with_split :
arrAd:p → idxA → (arrAd:p1 → arrAd:p2 → arrA:r1 × arrA:r2 [r1= p1 ∧ r2= p2])
→ arrA:r [r=p]

or, equivalently, in pointwise notation:

hnr (arrA p1 xs1 ∗ arrA p2 xs2) (f† p1 p2) □
(arrA × arrA) (λ(r1,r2). r1 = p1 ∧ r2 = p2)
(f xs1 xs2)

=⇒
hnr (arrA p xs ∗ idxA i† i) (awith split i† p f†)

(idxA i† i) arrA (λr. r = p)
(with_split i xs f)

The refinement of the function argument (f to f†) requires an additional proof that
the returned pointers are equal to the argument pointers (r1 = p1 ∧ r2 = p2). Sepref
tries to prove that automatically, using its pointer equality heuristics.

Splitting an array into two parts allows us to abstractly treat the array and its
two parts just as lists, which simplifies the abstract proofs: the fact that the two
parts come from the same array is only visible at a later refinement stage. However,
while splitting an array in parts is adequate for many operations, it is not a workable
abstraction for swapping multiple elements in parallel (cf. Sec. 3): while, in theory, we
could split the array element-wise, this would incur a considerable proof burden.

A more elegant solution is to keep track of which elements of a list can be accessed
already on the abstract level. To this end, we model a list of option values, None mean-
ing that we cannot access this element. We start by defining functions to abstractly
handle lists of option values. These functions work on the actual list, and the structure
of the list, which is a list of Booleans indicating which elements we do not own. Using
the structure of the list as an explicit concept simplifies abstract proofs, as, typically,
the values in the list will change, while the structure is preserved. The following func-
tions obtain the structure of a list, and determine if two structures are compatible,
i.e., have the same lengths and own disjoint indexes:

sl struct :: ′a option list ⇒ bool list sl struct xs ≡ map (=None) xs
sl compat :: bool list ⇒ bool list ⇒ bool sl compat s1 s2 ≡ list all2 (∨) s1 s2

Here, list all2 is the natural relator for lists, i.e., list all2 (∨) s1 s2 means that the
lists s1 and s2 have the same length, and for each index, the element in at least one
of the lists is true.

We also define functions to split and join lists:

sl split s xs ≡ map (λi. if i∈s ∧ i < |xs| then xs!i else None) [0..<|xs|]
join option None y ≡ y join option x None ≡ x join option ≡ None
sl join xs1 xs2 ≡ map2 join option xs1 xs2

Here, sl split s xs returns a list that owns the indexes that are in s and owned by
xs, and sl join xs1 xs2 joins the elements of two (compatible) lists. The function

16

map2 f xs ys ≡ map (λ(x,y). f x y) (zip xs ys) combines two lists element-wise, using
the binary function f.

Analogously to with_split, we define a combinator with_idxs s xs f, that splits
the list xs into the lists with the indexes s, and without the indexes s, executes f on
these lists, and joins the resulting lists:

with_idxs s xs f ≡
assert (∀i∈s. i < |xs| ∧ xs!i ̸= None);
let (xs1, xs2) = (sl split s xs, sl split (−s) xs);
(xs′1,xs′2) ← f xs1 xs2;
assert (sl struct xs′1 = sl struct xs1 ∧ sl struct xs′2 = sl struct xs2);
return (sl join xs′1 xs′2)

On the concrete side, we define the refinement assertion oarrA between arrays and
lists of options. It only owns the indexes of the array that are not None:

oarrA p xs ≡ range {i | i. i < length xs ∧ xs!i ̸=None}) p (λi. the (xs!i))

We implement abstract operations for accessing the list, and show the correspond-
ing refinement lemmas:

olget xs i ≡ assert (i < |xs| ∧ xs!i ̸= None); return the (xs!i)
olset xs i x ≡ assert (i < |xs| ∧ xs!i ̸= None); return the (xs[i:=x])

aget, olget : oarrA → idxA → idA
aset, olset : oarrAd:p → idxA → idA → oarrA:r [r=p]

We also define conversion operations between plain lists and lists of option values:

l2o xs = map Some xs return, l2o : arrA → oarrA
o2l xs = assert (None /∈ set xs); map the xs return, o2l : oarrA → arrA

These conversion operations are important to limit the proof overhead when using lists
of option values: only where fine-grained ownership control is needed, we use option
values. When we are done, and have reassembled all parts of the list, we convert it
back to a plain list.

Finally, we define awith idxs and prove its refinement theorem:

awith idxs p f ≡ f p p; return p

awith idxs, with_idxs s :
oarrAd:p → (oarrAd:p1 → oarrAd:p2 → oarrA:r1 × oarrA:r2 [r1=p1 ∧ r2=p2])
→ oarrA:r [r=p]

Note that the set s of indexes does not have a concrete counterpart. It is a ghost
variable that controls the split on the abstract level.

4.5 Refinement to Parallel Execution
Our abstract programs have no notion of parallel execution. To indicate that
refinement to parallel execution is desired, we define an abstract annotation npar:

17

1 psort xs n ≡
2 assert n = |xs|; if n≤ 1 then return xs else psort aux xs n (log2 n ∗ 2)
3
4 psort aux xs n d ≡
5 assert n = |xs|
6 if d = 0 ∨ n < 100000 then sort spec xs
7 else
8 (xs,m) ← partition spec xs;
9 let bad = m < n div 8 ∨ (n−m < n div 8)

10 (,xs) ← with_split m xs (λxs1 xs2.
11 if bad then nseq psort aux psort aux (xs1,m,d−1) (xs2,n−m,d−1)
12 else npar psort aux psort aux (xs1,m,d−1) (xs2,n−m,d−1)
13);
14 return xs

Fig. 2: Abstract version of our parallel quicksort algorithm.

npar f g a b ≡ x ← f a; y ← g b; return (x,y)

Its refinement rule is:

hnr Ax (f† x†) Ax′ Rx CP1 (f x) ∧ hnr Ay (g† y†) Ay′ Ry CP2 (g y)
=⇒
hnr (Ax ∗ Ay) (llc par f† g† x† y†) (Ax′ ∗ Ay′) (Rx × Ry)
(λ(x′†,y†

′). CP1 x′† ∧ CP2 y′†) (npar f g x y)

This rule can be used to automatically parallelize any (independent) abstract compu-
tations. For convenience, we also define nseq. Abstractly, it’s the same as npar, but
Sepref translates it to sequential execution.

5 A Parallel Sorting Algorithm
To test the usability of our framework, we verify a parallel sorting algorithm. We start
with the abstract specification of an algorithm that sorts a list:

sort spec xs ≡ spec xs′. mset xs′ = mset xs ∧ sorted xs

I.e., we return a sorted permutation of the original list. This is a standard specification
of sorting in Isabelle, and easily proved equivalent to other, more explicit specifications:

sort spec xs = spec xs′.
(∀x. count list xs′ x = count list xs x) ∧ (∀i j. i<j ∧ j<length xs′ =⇒ xs′!j ̸< xs′!i)

Figure 2 shows our abstract parallel sorting algorithm psort. This algorithm is
derived from the well-known quicksort and introsort algorithms [24]: like quicksort, it
partitions the list (line 8), and then recursively sorts the partitions in parallel (l. 12).
Like introsort, when the recursion gets too deep, or the list too short, we fall back
to some (not yet specified) sequential sorting algorithm (l. 6). Similarly, when the

18

partitioning is very unbalanced (l. 9), we sort the partitions sequentially (l. 11). These
optimizations aim at not spawning threads for small sorting tasks, where the overhead
of thread creation outweighs the advantages of parallel execution. A more technical
aspect is the extra parameter n that we introduced for the list length. Thus, we can
refine the list to just a pointer to an array, and still access its length3.

Reusing our existing development of an abstract introsort algorithm [11], we prove
with a few refinement steps that psort implements sort spec:

psort xs |xs| ≤ sort spec xs

5.1 Implementation and Correctness Theorem
Next, we have to provide implementations for the fallback sort spec, and for
partition spec. These implementations must be proved to be in-place, i.e., return a
pointer to the same array. It was straightforward to amend our existing formalization of
pdqsort [11] with the in-place proofs: once we had amended the refinement statements
and bug-fixed the pointer equality proving heuristics, the proofs were automatic.

Given implementations of sort spec and partition spec, Sepref generates an LLVM
program psort† from the abstract psort, and proves a corresponding refinement lemma:

psort†, psort : arrAd:xs† → idxA → arrA:r [r = xs†]

Combining this with the correctness lemma of the abstract psort algorithm, and
unfolding the definition of hnr, we prove the following Hoare-triple for our final
implementation:

ht (arrA xs† xs ∗ idxA n† n ∗ n = |xs|)
(psort† xs† n†)
(λr. r = xs† ∗ ∃ xs′. arrA xs† xs′ ∗ sorted xs′ ∗ mset xs′ = mset xs)

That is, for a pointer xs† to an array, whose content is described by list xs (arrA),
and a fixed-size word n† representing the natural number n (idxA), which must be the
number of elements in the list xs, our sorting algorithm returns the original pointer
xs†, and the array content now is xs′, which is sorted and a permutation of xs. Note
that this statement uses our semantically defined Hoare triples (cf. Section 3.2). In
particular, it does not depend on the refinement steps, the Sepref tool, or the VCG.

5.2 Sampling Pivot Selection
While we could simply re-use the existing partitioning algorithm from the pdqsort
formalization, which uses a pseudomedian of nine pivot selection, we observe that the
quality of the pivot is particularly important for a balanced parallelization. Moreover,
the partitioning in the psort aux procedure is only done for arrays above a quite big
size threshold. Thus, we can invest a little more work to find a good pivot, which is
still negligible compared to the cost of sorting the resulting partitions. We choose a
sampling approach, using the median of 64 equidistant samples as pivot. We simply
use quicksort to find the index of the pivot4:

3Alternatively, we could refine a list to a pair of array pointer and length.
4We leave verification of efficient median algorithms, e.g., quickselect, to future work. Note that the

overhead of sorting 64 elements is negligible compared to the large partition that has to be sorted.

19

sample xs ≡ is ← equidist |xs| 64; is ← sort wrt (λi j. xs!i < xs!j) is; return (is!32)

Proving that this algorithm finds a valid pivot index is straightforward. More challeng-
ing is to refine it to purely imperative LLVM code, which does not support closures
like λi j. xs!i < xs!j.

We resolve such closures over the comparison function manually: using Isabelle’s
locale mechanism [25], we parametrize over the comparison function. Moreover, we
thread through an extra parameter for the data captured by the closure:

locale pcmp =
fixes lt :: ′p ⇒ ′e ⇒ ′e ⇒ bool and lt† :: ′p† ⇒ ′e† ⇒ ′e† ⇒ bool
and parA :: ′p† ⇒ ′p ⇒ assn and elemA :: ′e† ⇒ ′e ⇒ assn

assumes ∀p. weak ordering (lt p)
assumes lt†, lt : parA → elemA → elemA → boolA

This defines a context in which we have an abstract compare function lt for the abstract
elements of type ′e. It takes an extra parameter of type ′p (e.g. the list xs), and forms
a weak ordering5. Note that the strict compare function lt also induces a non-strict
version le p a b ≡ ¬lt p b a. Moreover, we have a concrete implementation lt† of the
compare function, wrt. the refinement assertions parA for the parameter and elemA

for the elements.
Our sorting algorithms are developed and verified in the context of this locale (to

avoid confusion, our presentation has, up to now, just used <, ≤, and sorted instead
of lt p, le p, and sorted wrt (le p)). To get an actual sorting algorithm, we instantiate
the locale with an abstract and concrete compare function, proving that the abstract
function is a weak ordering, and that the concrete function refines the abstract one.
For our example of sorting indexes into an array, where the array elements themselves
are compared by a function lt, we get:

lt idx xs i j ≡ lt (xs!i) (xs!j)
lt idx† xs† i† j† ≡ x†←aget xs† i†; y†←aget xs† j†; lt† x† y†

interpretation idx: pcmp lt idx lt idx† arrA idxA ⟨proof⟩
This instantiates the generic sorting algorithms defined in the pcmp locale to use
lt idx xs as comparison function, taking xs as an extra parameter. To sort our list
is of sample indexes into xs, we use the instantiation of the introsort algorithm:
idx.introsort xs is.

5.3 Parallel Partitioning
While our parallel quicksort scheme parallelizes the sorting, partitioning is still a
bottleneck: before the first thread is even spawned, the whole array needs to be parti-
tioned. On the next recursion level, only two partitionings can run in parallel, and so
on. That is, initially, most processors will be idle. To this end, the partitioning itself
can be parallelized. The parallel partitioning algorithms used in the latest research
on practically efficient sorting algorithms [27] are branchless k-way algorithms, which

5A weak ordering is induced by a mapping of the elements into a total ordering. It is the standard
prerequisite for sorting algorithms in C++ [26].

20

1)

2) ≤ p ≥ p ≤ p ≥ p ≤ p ≥ p

3) bs ss ss

m

4)

Fig. 3: Illustration of the phases of our parallel partitioning algorithm, after a pivot
p has been picked. Step 1 splits the array into slices. Step 2 partitions the slices in
parallel. Step 3 computes the start index m of the right partition as the sum of the
sizes of all left partitions. It then determines the indexes of misplaced elements: the
set bs contains right-partition elements that are left of m, and the set ss contains left
partition elements that are right of m. Step 4 then swaps the misplaced elements in
parallel. While Steps 1 and 3 are computationally cheap, Steps 2 and 4 do the main
part of the work in parallel.

use atomic operations to orchestrate the parallel threads. In contrast, we only ver-
ify a 2-way partitioning algorithm that uses parallel calls as its only synchronization
mechanism. This is a compromise between verification effort and efficiency, taking into
account the features currently supported by Isabelle-LLVM. The idea of our parallel
partitioning algorithm is sketched in Figure 3.

We specify our algorithm on sets of indexes, and then refine it to intervals and
interval arrays (cf. Section 4.3). First, we specify Steps 1 and 2, i.e., returning a
permutation of the list, along with the sets ls of indexes that belong to a left partition,
and rs of indexes that belong to a right partition. In Figure 3, ls corresponds to the
set of blue (≤ p) intervals, and rs to the set of red (≥ p) intervals:

ppart spec p xs ≡ spec (xs′,ls,rs).
mset xs′ = mset xs
∧ ls ∪ rs = {0..<|xs′|} ∧ ls ∩ rs = {}
∧ (∀i∈ls. xs′!i ≤ p) ∧ (∀i∈rs. xs′!i ≤ p)

The whole partitioning algorithm is specified as follows:

ppart1 p xs ≡
(xs,ls,rs) ← ppart spec p xs; — Step 1 and 2
let m = |ls|; ss = {i∈ls. m≤ i}; bs = {i∈rs. i < m}; — Step 3
xs ← swap spec ss bs xs; — Step 4
return (m,xs)

21

A straightforward proof, only using arguments on lists and sets of indexes, shows that
this algorithm partitions the list:

ppart1 p xs ≤ spec (m, xs′).
mset xs′ = mset xs ∧ m ≤ |xs′| ∧ (∀i<m. xs′!i ≤ p) ∧ (∀i∈{m..<|xs′|}. p ≤ xs′!i)

The set operations in Step 3 are implemented by the operations ivo inter ivl†
and iv inter ivl† of our interval arrays (cf. Section 4.3), using the equalities:
{i∈ls. m≤i} = {m..} ∩ ls and {i∈rs. i<m} = {0..<m} ∩ rs. Thus, we are only miss-

ing implementations for ppart spec and swap spec.
The refinement of the parallel partitioning ppart spec is similar to that of the

parallel sorting algorithm psort: using with_split and npar, we split the list into
slices that we then partition with a sequential algorithm.

The parallel swapping algorithm is refined as follows:

par swap ss bs xs ≡
if (ss={}) then return xs
else xs ← l2o xs; xs ← par swap aux ss bs xs; xs ← o2l xs; return xs

par swap aux ss bs xs ≡
((ss1,ss2),(bs1,bs2))
← spec ((ss1,ss2),(bs1,bs2)). ss = ss1∪̇ss2 ∧ bs = bs1∪̇bs2 ∧ |ss1|= |bs1| ∧ ss1 ̸={}

if (ss2 = {}) then swap opt spec ss1 bs1 xs
else
with_idxs (ss1 ∪ bs1) xs (λxs1 xs2.
(xs1,xs2) ← npar swap opt spec par swap aux (ss1,bs1,xs1) (ss2,bs2,xs2);
return (xs1,xs2)

The main procedure par swap first checks if there are any indexes to swap. Then,
it converts the plain list to a list of option values (l2o), invokes the actual parallel
swapping procedure par swap aux, and converts the result back to a plain list (o2l).

The par swap aux procedure first splits off equally sized, non-empty sets ss1
and bs1 from the index sets, and then swaps these in parallel with the rest. Here,
swap opt spec is the lifting of swap spec to lists of option values, and with_idxs
ensures that the swap operation will own the necessary elements.

We prove that our algorithm is correct (par swap ss bs xs ≤ swap spec ss bs xs),
and use Sepref, a straightforward implementation of sequential swapping, and our
interval array implementation to refine it to efficient imperative Isabelle-LLVM code.

Combining all refinements in this section gives us a parallel partitioning algorithm.
When we wanted to show that it satisfies the specification partition spec as required
by our parallel sorting algorithm, we discovered that we also need to prove that neither
partition can be empty. While this is certainly possible along the same lines as it is
proved for sequential partitioning, we chose a pragmatic solution here: we dynamically
check for the extreme case of one partition being empty, and fix that with an additional
swap. The runtime impact of this check is negligible, but it greatly simplifies the
correctness proof.

22

5.4 Code Generation
Finally, we instantiate the sorting algorithms to sort unsigned integers and strings:

interpretation unat: cmp (λ . <) (λ . ll icmp ult) unat64A ⟨proof⟩
interpretation str: cmp (λ . <) (λ . strcmp) str64A ⟨proof⟩

Here, the locale cmp is the version of pcmp without an extra parameter to the compare
function6. This yields implementations unat.psort† and str.psort†, and instantiated
versions of the correctness theorem.

We then use our code generator to generate actual LLVM text, as well as a C
header file with the signatures of the generated functions7:

export llvm
unat.psort† is uint64 t∗ psort(uint64 t∗, int64 t)
str.psort† is llstring∗ str psort(llstring∗, int64 t)
defines
typedef struct {int64 t size; struct {int64 t capacity; char ∗data;};} llstring;

file psort.ll

This checks that the specified C signatures are compatible with the actual types, and
then generates psort.ll and psort.h, which can be used in a standard C/C++ toolchain.

5.5 Benchmarks
We have benchmarked our verified sorting algorithm against a direct implementation of
the same algorithm in C++. The result was that both implementations have the same
runtime, up to some minor noise. This indicates that there is no systemic slowdown:
algorithms verified with our framework run as fast as their unverified counterparts
implemented in C++.

We also benchmarked against the old verified algorithm with sequential par-
titioning from our ITP 2022 paper [12], as well as against the state-of-the-art
implementations std::sort with execution policy par unseq from the GNU C++ stan-
dard library [28], and sample sort from the Boost C++ libraries [29, 30]. We have
benchmarked the algorithm on two different machines, and various input distributions.
The results are shown in Figure 4: our verified algorithm is clearly competitive with
the unverified state-of-the-art implementations. Only for a few string-sorting bench-
marks, it is slightly slower. We leave improving on this for future work. Compared to
the old verified algorithm, the parallel partitioning algorithm is more efficient in many
cases, and there are only a few cases where it is slightly less efficient.

We also measured the speedup that the implementations achieve for a certain num-
ber of cores. The results are displayed in Figure 5: again, our verified implementation
is clearly competitive, and it scales better than the old verified algorithm.

6Parameters to the compare function are currently not supported for parallel sorting algorithms, as we
cannot efficiently share the parameter between multiple threads. Integrating fractional separation logic into
Sepref, which would enable such a sharing, is left to future work.

7For technical reasons, we represent the array size as non-negative signed integer, thus the C signature
uses int64 t. Moreover, we use a string implementation based on dynamic arrays, rather than C’s zero
terminated strings.

23

0
200
400
600
800

1,000
1,200
1,400 Laptop, uint64

0

200

400

600

800

1,000 Server, uint64

0

200

400

600

800

1,000 Laptop, string

re
v-
so
rt
ed

-e
nd

-1
0

re
v-
so
rt
ed

-e
nd

-1

so
rt
ed

-e
nd

-.1

al
m
os
t-
so
rt
ed

-5
0

ra
nd

om
-b
oo

le
an

or
ga

n-
pi
pe

so
rt
ed

-e
nd

-1
0

eq
ua

l

re
v-
so
rt
ed

-m
id
dl
e-
.1

re
v-
so
rt
ed

so
rt
ed

-m
id
dl
e-
1

re
v-
so
rt
ed

-m
id
dl
e-
10

ra
nd

om

al
m
os
t-
so
rt
ed

-.1

so
rt
ed

re
v-
so
rt
ed

-m
id
dl
e-
1

so
rt
ed

-m
id
dl
e-
.1

al
m
os
t-
so
rt
ed

-1
0

al
m
os
t-
so
rt
ed

-1

so
rt
ed

-m
id
dl
e-
10

re
v-
so
rt
ed

-e
nd

-.1

so
rt
ed

-e
nd

-1

ra
nd

om
-d
up

-1
0

200

400

600

800

1,000
Server, string verified

verified-old

std::sort

sample sort

Fig. 4: Runtimes in milliseconds for sorting various distributions of 108 unsigned
64 bit integers and 107 strings with our verified parallel sorting algorithm, C++’s
standard parallel sorting algorithm, and Boost’s parallel sample sort algorithm. The
experiments were performed on a server machine with 22 AMD Opteron 6176 cores
and 128GiB of RAM, and a laptop with a 6 core (12 threads) i7-10750H CPU and
32GiB of RAM.

24

2 4 6 8 10 12

2

4

6

8

Laptop (u64)

verified

verified-old

sample sort

std::sort

2 4 6 8 10 12

2

4

6

8

Laptop (str)

5 10 15 20

5

10

15

Server (u64)

5 10 15 20

5

10

15

Server (str)

Fig. 5: Speedup of the various implementations for sorting 108 integers and 107 strings
with a random distribution. The x axis ranges over the number of cores, and the y-
axis gives the speedup wrt. the same implementation run on only one core. The thin
black lines indicate linear speedup.

104 105 106 107 108
10−1

100

101

102

103 Server (u64)

verified
sample sort
std::sort

103 104 105 106 107
10−1

100

101

102

103

Server (str)

Fig. 6: Runtimes for sorting small arrays of randomly distributed integers and strings.
The y-axis shows the runtime in milliseconds, and the x-axis the array size. Note that
both axis are logarithmic.

25

The previous two benchmarks used relatively large input sizes. Figure 6 displays
a benchmark for smaller input sizes. While we are still competitive with sample sort,
std::sort is clearly faster for small arrays. This result is expected: our parallelization
uses hard-coded thresholds to switch to sequential algorithms, which are independent
of the number of available processors or the input size. We leave fine-tuning of the
parallelization scheme to future work.

6 Conclusions
We have presented a stepwise refinement approach to verify total correctness of efficient
parallel algorithms. Our approach targets LLVM as back end, and there is no systemic
efficiency loss in our approach when compared to unverified algorithms implemented
in C++.

The trusted code base of our approach is relatively small: apart from Isabelle’s
inference kernel, it contains our shallow embedding of a small fragment of the LLVM
semantics, and the code generator. All other tools that we used, e.g., our Hoare logic,
the Sepref tool, and the Refinement Framework for abstract programs, ultimately
prove a correctness theorem that only depends on our shallowly embedded semantics.

As a case study, we have implemented a parallel sorting algorithm. It uses an
existing verified sequential pdqsort algorithm as a building block, and is competitive
with state-of-the-art parallel sorting algorithms.

The main idea of our parallel extension is to shallowly embed the semantics of
a parallel combinator into a sequential semantics, by making the semantics report
the accessed memory locations, and fail if there is a potential data race. We only
needed to change the lower levels of our existing framework for sequential LLVM [1].
Higher-level tools like the VCG and Sepref remained largely unchanged and backwards
compatible. This greatly simplified reusing of existing verification projects, like the
sequential pdqsort algorithm [11].

While the verification of our sorting algorithms uses a top-down approach, we
actually started with implementing, benchmarking, and fine-tuning the algorithms in
C++. This gave us a quick way to find an algorithm that is efficient, and, at the same
time not too complex for verification, without having to verify each intermediate step
towards this algorithm. Only then did we use our top-down approach to first formalize
the abstract ideas behind the algorithm, and then refine it to an efficient implemen-
tation close to what we had written in C++. At this point, one may ask why not
directly verify the C++ implementation: while this might be possible, the required
work and steps would be similar: to manage the complexity of such a verification, sev-
eral bottom-up refinement steps would be necessary, ultimately arriving at something
similarly abstract as our initial abstract algorithm.

6.1 Development Effort
The Isabelle Refinement Framework for LLVM consists of roughly 45k lines of theory
text and Isabelle-ML code (referred to as kLOC from now on). The sorting algorithms
comprise another 14kLOC.

26

Integrating the initial version of the parallel semantics into the framework, and
verifying the parallel sorting algorithm with sequential partitioning, as reported in
our ITP 2022 paper [12], took us roughly 6 months8. During this time, we abandoned
an initial formalization for the Imperative/HOL back end, as the achievable perfor-
mance was unsatisfactory. We also abandoned a naive formalization of the parallel
operator for the LLVM back end, to finally arrive at what is described in our ITP
2022 paper. Effectively, we added about 6kLOC to the framework and adapted most
of the remaining code. The parallel sorting algorithm adds another kLOC. The par-
allel partitioning algorithm and its support data structures add 4kLOC, and took us
one month to develop.

6.2 Related Work
While there is extensive work on parallel sorting algorithms (e.g. [27, 31, 32]), there
seems to be almost no work on their formal verification. The only work we are aware of
is a distributed merge sort algorithm [33], for which ”no effort has been made to make
it efficient” [33, Sec. 2], nor any executable code has been generated or benchmarked.
Another verification [34] uses the VerCors deductive verifier to prove the permuta-
tion property (mset xs′ = mset xs) of odd-even transposition sort [35], but neither the
sortedness property nor termination.

Concurrent separation logic is used by many verification tools such as VerCors [36],
and also formalized in proof assistants, for example in the VST [37] and IRIS [38]
projects for Coq [39]. These formalizations contain elaborate concepts to reason about
communication between threads via shared memory, and are typically used to ver-
ify partial correctness of subtle concurrent algorithms (e.g. [40]). Reasoning about
total correctness is more complicated in the step-indexed separation logic provided by
IRIS, and currently only supported for sequential programs [41]. Our approach is less
expressive, but naturally supports total correctness, and is already sufficient for many
practically relevant parallel algorithms like sorting, matrix-multiplication, or parallel
algorithms from the C++ STL.

6.3 Future Work
An obvious next step is to implement a fractional separation logic [42], to reason about
parallel threads that share read-only memory. While our semantics already supports
shared read-only memory, our separation logic does not. We believe that implementing
a fractional separation logic will be straightforward, and mainly pose technical issues
for automatic frame inference.

Extending our approach towards more advanced synchronization like locks or
atomic operations may be possible: instead of accessed memory addresses, a thread
could report a set of possible traces, which are checked for race-freedom and then com-
bined. Moreover, our framework currently targets multicore CPUs. Another important
architecture are general purpose GPUs. As LLVM is also available for GPUs, porting

8As we do not have precise work time logs, we report calendar months during which we worked almost
full-time on the project.

27

our framework to this architecture should be possible. We even expect that we can
model barrier synchronization, which is important in the GPU context.

Finally, the Sepref framework has recently been extended to reason about complex-
ity of (sequential) LLVM programs [18, 43]. This could be combined with our parallel
extension, to verify the complexity (e.g. work and span) of parallel algorithms.

An important aspect is the scalability of our tools. The current implementation
scales to small software systems, like the verified IsaSAT-solver [44], which actually
uses our sequential sorting algorithms. However, for projects of this size, the times
needed by Sepref and the LLVM code exporter easily get into the order of dozens of
minutes, and some manual performance tweaks are required (cf. [44][Sec. 5]). Further
improvement of the scalability is left to future work.

Another direction for future work is to further optimize our verified sorting algo-
rithm. We expect that tuning our parallelization scheme will improve the speedup for
smaller input sizes. Also, while we are competitive with standard library implemen-
tations, recent research indicates that there is still some room for improvement, for
example with the IPS4o algorithm [27]. While this algorithm uses atomic operations
in one place, many other of its optimizations, for example branchless decision trees for
multi-way partitioning, only require features already supported by our framework.

References
[1] Lammich, P.: Generating Verified LLVM from Isabelle/HOL. In: Harrison, J.,

O’Leary, J., Tolmach, A. (eds.) ITP, vol. 141, pp. 22–12219. Dagstuhl Publish-
ing, Portland (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.22 . http://drops.
dagstuhl.de/opus/volltexte/2019/11077

[2] Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: CAV. LNCS, vol. 8044, pp.
463–478. Springer, Saint Petersburg (2013)

[3] Brunner, J., Lammich, P.: Formal verification of an executable LTL model checker
with partial order reduction. J. Autom. Reasoning 60(1), 3–21 (2018) https://
doi.org/10.1007/s10817-017-9418-4

[4] Wimmer, S., Lammich, P.: Verified model checking of timed automata. In: TACAS
2018, Thessaloniki, pp. 61–78 (2018)

[5] Lammich, P.: Efficient verified (UN)SAT certificate checking. In: Proc. of CADE.
Springer, Gothenburg (2017)

[6] Lammich, P.: The GRAT tool chain - efficient (UN)SAT certificate checking with
formal correctness guarantees. In: SAT, pp. 457–463 (2017)

[7] Fleury, M., Blanchette, J.C., Lammich, P.: A verified SAT solver with watched
literals using Imperative HOL. In: Proc. of CPP, pp. 158–171 (2018)

[8] Lammich, P.: Verified efficient implementation of Gabow’s strongly connected

28

https://doi.org/10.4230/LIPIcs.ITP.2019.22
http://drops.dagstuhl.de/opus/volltexte/2019/11077
http://drops.dagstuhl.de/opus/volltexte/2019/11077
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/s10817-017-9418-4

component algorithm. In: International Conference on Interactive Theorem
Proving, pp. 325–340 (2014). Springer

[9] Lammich, P., Sefidgar, S.R.: Formalizing the Edmonds-Karp algorithm. In: Proc.
of ITP, pp. 219–234 (2016)

[10] Lammich, P., Sefidgar, S.R.: Formalizing network flow algorithms: A refinement
approach in Isabelle/HOL. J. Autom. Reasoning 62(2), 261–280 (2019) https:
//doi.org/10.1007/s10817-017-9442-4

[11] Lammich, P.: Efficient verified implementation of introsort and pdqsort. In:
Peltier, N., Sofronie-Stokkermans, V. (eds.) Proc. of IJCAR (II). LNCS,
vol. 12167, pp. 307–323. Springer, Paris (2020). https://doi.org/10.1007/
978-3-030-51054-1_18 . https://doi.org/10.1007/978-3-030-51054-1_18

[12] Lammich, P.: Refinement of parallel algorithms down to LLVM. In: Andronick,
J., Moura, L. (eds.) ITP. LIPIcs, vol. 237, pp. 24–12418. Dagstuhl Publishing,
Haifa (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.24 . https://doi.org/10.
4230/LIPIcs.ITP.2022.24

[13] Lammich, P., Fleury, M.: lammich/isabelle llvm: Parallel Sorting: Artefact
Release. https://doi.org/10.5281/zenodo.10869631 . https://doi.org/10.5281/
zenodo.10869631

[14] Lammich, P., Lochbihler, A.: The Isabelle Collections Framework. In: ITP 2010.
LNCS, vol. 6172, pp. 339–354. Springer, Edinburgh (2010)

[15] Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A.P. (eds.) ITP 2012. LNCS, vol.
7406, pp. 166–182. Springer, Princeton (2012)

[16] Lammich, P.: Automatic data refinement. In: ITP. LNCS, vol. 7998, pp. 84–99.
Springer, Rennes (2013)

[17] Lammich, P.: Refinement to Imperative/HOL. In: ITP. LNCS, vol. 9236, pp.
253–269. Springer, Nanjing (2015)

[18] Haslbeck, M.P.L., Lammich, P.: For a few dollars more - verified fine-grained
algorithm analysis down to LLVM. In: Yoshida, N. (ed.) Proc. of ESOP. LNCS,
vol. 12648, pp. 292–319. Springer, Luxemburg (2021). https://doi.org/10.1007/
978-3-030-72019-3_11 . https://doi.org/10.1007/978-3-030-72019-3_11

[19] O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004 - Concurrency Theory, pp. 49–67. Springer,
Berlin, Heidelberg (2004)

29

https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.4230/LIPIcs.ITP.2022.24
https://doi.org/10.5281/zenodo.10869631
https://doi.org/10.5281/zenodo.10869631
https://doi.org/10.5281/zenodo.10869631
https://doi.org/10.1007/978-3-030-72019-3_11
https://doi.org/10.1007/978-3-030-72019-3_11
https://doi.org/10.1007/978-3-030-72019-3_11

[20] Huffman, B., Kuncar, O.: Lifting and transfer: A modular design for quo-
tients in isabelle/hol. In: Gonthier, G., Norrish, M. (eds.) Proc. of CPP. LNCS,
vol. 8307, pp. 131–146. Springer, Melbourne (2013). https://doi.org/10.1007/
978-3-319-03545-1_9 . https://doi.org/10.1007/978-3-319-03545-1_9

[21] Intel oneAPI Threading Building Blocks. https://software.intel.com/en-us/
intel-tbb

[22] Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation
logic. In: LICS 2007, pp. 366–378 (2007)

[23] Klein, G., Kolanski, R., Boyton, A.: Mechanised separation algebra. In: ITP, pp.
332–337. Springer, Princeton (2012)

[24] MUSSER, D.R.: Introspective sorting and selection algorithms. Software: Prac-
tice and Experience 27(8), 983–993 (1997) https://doi.org/10.1002/(SICI)
1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-#

[25] Kammüller, F., Wenzel, M., Paulson, L.C.: Locales a sectioning concept for
isabelle. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.)
TPHOLs, pp. 149–165. Springer, Nice (1999)

[26] Josuttis, N.M.: The C++ Standard Library: A Tutorial and Reference, 2nd edn.
Addison-Wesley Professional, (2012)

[27] Axtmann, M., Witt, S., Ferizovic, D., Sanders, P.: Engineering in-place (shared-
memory) sorting algorithms. ACM Trans. Parallel Comput. 9(1), 2–1262 (2022)
https://doi.org/10.1145/3505286

[28] The GNU C++ Library 3.4.28. https://gcc.gnu.org/onlinedocs/libstdc++/

[29] Boost C++ Libraries. https://www.boost.org/

[30] Boost C++ Libraries Sorting Algorithms. https://www.boost.org/doc/libs/1_
77_0/libs/sort/doc/html/index.html

[31] Chhugani, J., Nguyen, A.D., Lee, V.W., Macy, W., Hagog, M., Chen, Y.-K.,
Baransi, A., Kumar, S., Dubey, P.: Efficient implementation of sorting on multi-
core simd cpu architecture. Proceedings of the VLDB Endowment 1(2), 1313–
1324 (2008)

[32] Asiatici, M., Maiorano, D., Ienne, P.: How many cpu cores is an fpga worth?
lessons learned from accelerating string sorting on a cpu-fpga system. Journal of
Signal Processing Systems, 1–13 (2021)

[33] Hinrichsen, J.K., Bengtson, J., Krebbers, R.: Actris: Session-type based reasoning
in separation logic. Proc. ACM Program. Lang. 4(POPL) (2019) https://doi.org/
10.1145/3371074

30

https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1007/978-3-319-03545-1_9
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-tbb
https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-#
https://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-#
https://doi.org/10.1145/3505286
https://gcc.gnu.org/onlinedocs/libstdc++/
https://www.boost.org/
https://www.boost.org/doc/libs/1_77_0/libs/sort/doc/html/index.html
https://www.boost.org/doc/libs/1_77_0/libs/sort/doc/html/index.html
https://doi.org/10.1145/3371074
https://doi.org/10.1145/3371074

[34] Safari, M., Huisman, M.: A generic approach to the verification of the permu-
tation property of sequential and parallel swap-based sorting algorithms. In:
International Conference on Integrated Formal Methods, pp. 257–275 (2020).
Springer

[35] Habermann, A.N.: Parallel neighbor-sort. Carnegie Mellon University
(1972). https://doi.org/10.1184/R1/6608258.v1 . https://kilthub.cmu.edu/
articles/journal_contribution/Parallel_neighbor-sort_or_the_glory_of_the_
induction_principle_/6608258/1

[36] Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The vercors tool set: Verifica-
tion of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.)
Integrated Formal Methods, pp. 102–110. Springer, Cham (2017)

[37] Verified Software Toolchain Project Web Page. https://vst.cs.princeton.edu/

[38] Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: A modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, 20 (2018) https://doi.org/10.1017/S0956796818000151

[39] Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer, Heidelberg
(2010)

[40] Mével, G., Jourdan, J.-H.: Formal verification of a concurrent bounded queue
in a weak memory model. Proc. ACM Program. Lang. 5(ICFP) (2021) https:
//doi.org/10.1145/3473571

[41] Spies, S., Gäher, L., Gratzer, D., Tassarotti, J., Krebbers, R., Dreyer, D., Birkedal,
L.: Transfinite iris: Resolving an existential dilemma of step-indexed separation
logic. In: Proc. of PLDI, pp. 80–95 (2021)

[42] Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: Proc. of POPL, pp. 259–270. ACM, New York, NY, USA
(2005). https://doi.org/10.1145/1040305.1040327 . http://doi.acm.org/10.1145/
1040305.1040327

[43] Haslbeck, M.P.L., Lammich, P.: For a few dollars more - verified fine-grained
algorithm analysis down to LLVM. TOPLAS, S.I. ESOP’21

[44] Fleury, M., Lammich, P.: A more pragmatic CDCL for isasat and targetting
LLVM (short paper). In: Pientka, B., Tinelli, C. (eds.) Automated Deduc-
tion - CADE 29 - 29th International Conference on Automated Deduction,
Rome, Italy, July 1-4, 2023, Proceedings. Lecture Notes in Computer Science,
vol. 14132, pp. 207–219. Springer, Rome, Italy (2023). https://doi.org/10.1007/
978-3-031-38499-8_12 . https://doi.org/10.1007/978-3-031-38499-8_12

31

https://doi.org/10.1184/R1/6608258.v1
https://kilthub.cmu.edu/articles/journal_contribution/Parallel_neighbor-sort_or_the_glory_of_the_induction_principle_/6608258/1
https://kilthub.cmu.edu/articles/journal_contribution/Parallel_neighbor-sort_or_the_glory_of_the_induction_principle_/6608258/1
https://kilthub.cmu.edu/articles/journal_contribution/Parallel_neighbor-sort_or_the_glory_of_the_induction_principle_/6608258/1
https://vst.cs.princeton.edu/
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3473571
https://doi.org/10.1145/3473571
https://doi.org/10.1145/1040305.1040327
http://doi.acm.org/10.1145/1040305.1040327
http://doi.acm.org/10.1145/1040305.1040327
https://doi.org/10.1007/978-3-031-38499-8_12
https://doi.org/10.1007/978-3-031-38499-8_12
https://doi.org/10.1007/978-3-031-38499-8_12

	Introduction
	Overview
	Notation

	A Back End for LLVM with Parallel Execution
	State-Nondeterminism-Error Monad with Access Reports
	Memory Model
	Access Reports
	The Interface of the M-Monad
	LLVM Instructions

	Parallel Separation Logic
	Separation Algebra
	Weakest Preconditions and Hoare Triples
	Verification Condition Generator
	Hoare-Triples for Instructions

	Refinement for (Parallel) Programs
	Abstract Programs
	The Sepref Tool
	Modular Data Structure Development
	Array Splitting
	Refinement to Parallel Execution

	A Parallel Sorting Algorithm
	Implementation and Correctness Theorem
	Sampling Pivot Selection
	Parallel Partitioning
	Code Generation
	Benchmarks

	Conclusions
	Development Effort
	Related Work
	Future Work

