Program Optimization

Peter Lammich

WS 2016/17

Overview by Lecture • Oct 20: Slide 3

- Oct 26: Slide 36
- Oct 27: Slide 65
- Nov 3: Slide 95
- Nov 9: Slide 116
- Nov 10: Slide 128
- Nov 16: Slide 140
- Nov 17: Slide 157
- Nov 23: Slide 178
- Nov 24: Slide 202
- Nov 30: Slide 211
- Dec 1: Slide 224
- Dec 8: Slide 243
- Dec 14: Slide 259
- Dec 15: Slide 273
- Dec 21: Slide 287
- Dec 22: Slide 301

Organizational Issues

Lectures Wed 10:15-11:45 and Thu 10:15-11:45 in MI 00.13.009A

Tutorial Fri 8:30-10:00 (Ralf Vogler <ralf.vogler@mytum.de>)

Homework will be corrected

Exam Written (or Oral), Bonus for Homework!

 ≥ 50% of homework ⇒ 0.3/0.4 better grade On first exam attempt. Only if passed w/o bonus!

Material Seidl, Wilhelm, Hack: Compiler Design: Analysis and Transformation, Springer 2012

How many of you are attending "Semantics" lecture?

We need tutors for Info II lecture. If you are interested, please contact Julian Kranz

julian.kranz@in.tum.de.

Proposed Content

- Avoiding redundant computations
 - E.g. Available expressions, constant propagation, code motion
- Replacing expensive with cheaper computations
 - E.g. peep hole optimization, inlining, strength reduction
- Exploiting Hardware
 - E.g. instruction selection, register allocation, scheduling
- Analysis of parallel programs
 - E.g. threads, locks, data-races

Table of Contents

Observation 1

Intuitive programs are often inefficient

```
void swap (int i, int j) {
    int t;
    if (a[i] > a[j]) {
        t = a[j];
        a[j] = a[i];
        a[i] = t;
    }
}
```

- Inefficiencies
 - Addresses computed 3 times
 - Values loaded 2 times
- Improvements
 - Use pointers for array indexing
 - Store the values of a[i], a[j]

```
void swap (int *p, int *q) {
    int t, ai, aj;
    ai=*p; aj=*q;
    if (ai > aj) {
        t = aj;
        *q = ai;
        *p = t; // t can also be eliminated
    }
```

```
void swap (int *p, int *q) {
    int ai, aj;
    ai=*p; aj=*q;
    if (ai > aj) {
        *q = ai;
        *p = aj;
     }
}
```

Caveat: Program less intuitive

High-level languages (even C) abstract from hardware (and efficiency) Compiler needs to transform intuitively written programs to hardware. Examples

- · Filling of delay slots
- Utilization of special instructions
- Re-organization of memory accesses for better cache behavior
- · Removal of (useless) overflow/range checks

Program improvements need not always be correct

- E.g. transform f() + f() to 2 * f()
- Idea: Save second evaluation of f
- But what if f has side-effects or reads input?

Insight

- Program optimizations have preconditions
- These must be
 - Formalized
 - Checked
- It must be proved that optimization is correct
 - I.e., preserves semantics

Observation 4

Optimizations techniques depend on programming language

- · What inefficiencies occur
- How analyzable is the language
- How difficult it is to prove correctness

Example: Java

- (Unavoidable) inefficiencies
 - Array bound checks
 - Dynamic method invocation
 - Bombastic object organization
- Analyzability
 - + No pointer arithmetic, no pointers into stack
 - Dynamic class loading
 - Reflection, exceptions, threads
- Correctness proof
 - + Well-defined semantics (more or less)
 - Features, features, features
 - Libraries with changing behavior

In this course

Simple imperative programming language

```
R = e
R = M[e]
M[e<sub>1</sub>] = e<sub>2</sub>
if (e) ... else ...
goto label
```

Assignment Load Store Conditional branching Unconditional branching

- R Registers, assuming infinite supply
- e Integer-valued expressions over constants, registers, operators
- M Memory, addressed by integer \geq 0, assuming infinite memory

Note

- For the beginning, we omit procedures
 - Focus on intra-procedural optimizations
 - External procedures taken into account via statement f()
 - unknown procedure
 - may arbitrarily mess around with memory and registers
- Intermediate Language, in which (almost) everything can be translated

Example: Swap

```
void swap (int i, int j) {
  int t;
  if (a[i] > a[j]) {
   t = a[j];
   a[j] = a[i];
    a[i] = t;
1: A_1 = A_0 + 1 \times i //R_1 = a[i]
2: R_1 = M[A_1]
3: A_2 = A_0 + 1 * j //R_2 = a[j]
4: R_2 = M[A_2]
5: if (R_1 > R_2) {
6: A3 = A0 + 1*j //t=a[j]
7: t = M[A<sub>2</sub>]
8: A<sub>4</sub> = A<sub>0</sub> + 1*j //a[j] = a[i]
9: A5 = A0 + 1*i
0: R_3 = M[A_5]
1: M[A<sub>4</sub>] = R<sub>3</sub>
2: A<sub>6</sub> = A<sub>0</sub> + 1*i //a[i]=t
3: M[A<sub>6</sub>] = t
   }
```

Assume ${\tt A}_0$ contains address of array ${\tt a}$

Optimizations

1
$$* R \mapsto R$$

2 Re-use of sub-expressions

$$A_1 == A_5 == A_6, A_2 == A_3 == A_4$$

 $M[A_1] == M[A_5], M[A_2] == M[A_3]$
 $R_1 == R_3$
 $R_2 = t$

Now we have

Original was:

1:	Aı	=	A ₀	+	i	
2:	R ₁	=	М[A1]		
3:	A ₂	=	A ₀	+	j	
4:	R ₂	=	М[A2]		
5:	if	(F	۲1	> F	⁽ 2)	{
6:	Μ	[[7	4 <u>2</u>]	=	R1	
7:	Μ	[[7	4 ₁]	=	R2	
	}					

1:
$$A_1 = A_0 + 1 * i$$
 // $R_1 = a[i]$
2: $R_1 = M[A_1]$
3: $A_2 = A_0 + 1 * j$ // $R_2 = a[j]$
4: $R_2 = M[A_2]$
5: **if** ($R_1 > R_2$) {
6: $A_3 = A_0 + 1 * j$ // $t = a[j]$
7: $t = M[A_3]$
8: $A_4 = A_0 + 1 * j$ // $a[j] = a[i]$
9: $A_5 = A_0 + 1 * i$
0: $R_3 = M[A_5]$
1: $M[A_4] = R_3$
2: $A_6 = A_0 + 1 * i$ // $a[i] = t$
3: $M[A_6] = t$

Gain

	before	after	
+	6	2	
*	6	0	
>	1	1	
load	4	2	
store	2	2	
R =	6	2	

Table of Contents

Table of Contents

2

Removing Superfluous Computations

Repeated Computations Background 1: Rice's theorem Background 2: Operational Semantics Available Expressions Background 3: Complete Lattices Fixed-Point Algorithms Monotonic Analysis Framework Dead Assignment Elimination Copy Propagation Summary

Idea

If same value is computed repeatedly

- Store it after first computation
- Replace further computations by look-up

Method

- Identify repeated computations
- Memorize results
- Replace re-computation by memorized value

Example

$$x = 1$$

 $y = M[42]$
A: $r_1 = x + y$
...
B: $r_2 = x + y$

- Repeated computation of x + y at ${\ensuremath{\mathsf{B}}},$ if
 - A is always executed before B
 - x+y has the same value at A and B.
- We need
 - Operational semantics
 - Method to identify (at least some) repeated computations

Table of Contents

2

Removing Superfluous Computations

Repeated Computations Background 1: Rice's theorem Background 2: Operational Semantics Available Expressions Background 3: Complete Lattices Fixed-Point Algorithms Monotonic Analysis Framework Dead Assignment Elimination Copy Propagation Summary

Rice's theorem (informal)

All non-trivial semantic properties of a Turing-complete programming language are undecidable.

Consequence We cannot write the ideal program optimizer :(

But Still can use approximate approaches

- Approximation of semantic property
- Show that transformation is still correct

Example: Only identify subset of repeated computations.

Table of Contents

2

Removing Superfluous Computations

Repeated Computations Background 1: Rice's theorem Background 2: Operational Semantics Available Expressions Background 3: Complete Lattices Fixed-Point Algorithms Monotonic Analysis Framework Dead Assignment Elimination Copy Propagation Summary

4

Alias Analys

Avoiding Redundancy (Par

Interprocedural Analys

Analysis of Parallel Program

Replacing Expensive by Cheaper Operations

Exploiting Hardware Features

ptimization of Functional Programs

Small-step operational semantics

Intuition: Instructions modify state (registers, memory) Represent program as control flow graph (CFG)

$$\begin{array}{c} \text{start} \\ A_1 = A_0 + 1 * i \\ R_1 = M[A_1] \\ A_2 = A_0 + 1 * j \\ R_2 = M[A_2] \\ \text{Pos}(R_1 > R_2) \\ \text{end} \end{array} \xrightarrow{A_0 \ M[0..4] \ i \ j \ A_1 \ A_2 \ R_1 \ R_2} \\ A_0 \ M[0..4] \ i \ j \ A_1 \ A_2 \ R_1 \ R_2 \\ 0 \ 1,2,3,4,5 \ 2 \ 4 \ 2 \ 4 \ 3 \ 5 \end{array}$$

Formally (I)

Definition (Registers and Expressions)

Reg is an infinite set of register names. Expr is the set of expressions over these registers, constants and a standard set of operations.

Note: We do not formally define the set of operations here

Definition (Action)

Act = Nop $| Pos(e) | Neg(e) | R = e | R = M[e] | M[e_1] = e_2$ where $e, e_1, e_2 \in Expr$ are expressions and $R \in Reg$ is a register.

Definition (Control Flow Graph)

An edge-labeled graph $G = (V, E, v_0, V_{end})$ where $E \subseteq V \times Act \times V$, $v_0 \in V$, $V_{end} \subseteq V$ is called control flow graph (CFG).

Definition (State)

A state $s \in$ State is represented by a pair $s = (\rho, \mu)$, where

- $ho~:\mathrm{Reg}
 ightarrow \mathrm{int}$ is the content of registers
- $\mu~:\mathrm{int}
 ightarrow\mathrm{int}$ is the content of memory

Formally (II)

Definition (Value of expression)

 $\llbracket e \rrbracket \rho$: int is the value of expression *e* under register content ρ .

Definition (Effect of action)

The effect [a] of an action is a partial function on states:

 $\llbracket \operatorname{Nop} \rrbracket(\rho,\mu) := (\rho,\mu)$ $\llbracket \operatorname{Pos}(e) \rrbracket(\rho,\mu) := \begin{cases} (\rho,\mu) & \text{if } \llbracket e \rrbracket \rho \neq 0 \\ \text{undefined} & \text{otherwise} \end{cases}$ $\llbracket \operatorname{Neg}(e) \rrbracket(\rho,\mu) := \begin{cases} (\rho,\mu) & \text{if } \llbracket e \rrbracket \rho = 0 \\ \text{undefined} & \text{otherwise} \end{cases}$ $\llbracket R = e \rrbracket(\rho,\mu) := (\rho(R \mapsto \llbracket e \rrbracket \rho),\mu)$ $\llbracket R = M[e] \rrbracket(\rho,\mu) := (\rho(R \mapsto \mu(\llbracket e \rrbracket \rho)),\mu)$ $\llbracket M[e_1] = e_2 \rrbracket(\rho,\mu) := (\rho,\mu(\llbracket e_1 \rrbracket \rho \mapsto \llbracket e_2 \rrbracket \rho))$

Formally (III)

Given a CFG $G = (V, E, v_0, V_{end})$

Definition (Path)

A sequence of adjacent edges $\pi = (v_1, a_1, v_2)(v_2, a_2, v_3) \dots (v_n, a_n, v_{n+1}) \in E^*$ is called path from v_1 to v_{n+1} .

Notation $v_1 \xrightarrow{\pi} v_{n+1}$ Convention π is called path to v iff $v_0 \xrightarrow{\pi} v$ Special case $v \xrightarrow{\varepsilon} v$ for any $v \in V$

Definition (Effect of edge and path)

The effect of an edge k = (u, a, v) is the effect of its action:

 $[\![(u, a, v)]\!] := [\![a]\!]$

The effect of a path $\pi = k_1 \dots k_n$ is the composition of the edge effects:

$$\llbracket k_1 \ldots k_n \rrbracket := \llbracket k_n \rrbracket \circ \ldots \circ \llbracket k_1 \rrbracket$$

Formally (IV)

Definition (Computation)

A path π is called computation for state *s*, iff its effect is defined on *s*, i.e.,

 $\boldsymbol{s} \in \operatorname{dom}(\llbracket \pi \rrbracket)$

Then, the state $s' = [\pi]s$ is called result of the computation.

Summary

- Action: Act = Nop | Pos(e) | Neg(e) | R = e | R = M[e] | $M[e_1] = e_2$
- CFG: $G = (V, E, v_0, V_{end}), E \subseteq V \times Act \times V$
- State: $s = (\rho, \mu), \rho : \text{Reg} \rightarrow \text{int}$ (registers), $\mu : \text{int} \rightarrow \text{int}$ (memory)
- Value of expression under ρ: [[e]] ρ : int
- Effect of action a: [[a]] : State → State (partial)
- Path π: Sequence of adjacent edges
- Effect of edge *k* = (*u*, *a*, *v*): [[*k*]] = [[*a*]]
- Effect of path $\pi = k_1 \dots k_n$: $[\![\pi]\!] = [\![k_n]\!] \circ \dots \circ [\![k_1]\!]$
- π is computation for $s: s \in \operatorname{dom}(\llbracket \pi \rrbracket)$
- Result of computation π for s: [[π]]s

Table of Contents

2

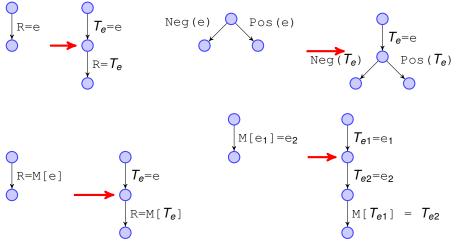
Removing Superfluous Computations

Repeated Computations Background 1: Rice's theorem Background 2: Operational Semantics Available Expressions Background 3: Complete Lattices Fixed-Point Algorithms Monotonic Analysis Framework Dead Assignment Elimination Copy Propagation Summary

Memorization

First, let's memorize every expression

- Register *T_e* memorizes value of expression *e*.
- Assumption: *T_e* not used in original program.



Transformation obviously correct

Last Lecture (Oct 20)

- Simple intermediate language (IL)
 - Registers, memory, cond/ucond branching
 - Compiler: Input \rightarrow Intermediate Language \rightarrow Machine Code
 - Suitable for analysis/optimization
- Control flow graphs, small-step operational semantics
 - Representation for programs in IL
 - Graphs labeled with actions
 - Nop,Pos/Neg,Assign,Load,Store
 - State = Register content, memory content
 - Actions are partial transformation on states
 - undefined Test failed
- Memorization Transformation
 - Memorize evaluation of e in register Te

Available Expressions (Semantically)

Definition (Available Expressions in state) The set of semantically available expressions in state (ρ , μ) is defined as

 $\operatorname{Aexp}(\rho,\mu) := \{ \boldsymbol{e} \mid \llbracket \boldsymbol{e} \rrbracket \rho = \rho(\boldsymbol{T}_{\boldsymbol{e}}) \}$

Intuition Register T_e contains correct value of e. Border case All expressions available in undefined state

Aexp(undefined) := Expr

(See next slide why this makes sense)

Available Expressions (Semantically)

Definition (Available Expression at program point)

The set Aexp(u) of semantically available expressions at program point u is the set of expressions that are available in all states that may occur when the program is at u.

$$\operatorname{Aexp}(\boldsymbol{u}) := \bigcap \{\operatorname{Aexp}(\llbracket \boldsymbol{\pi} \rrbracket \boldsymbol{s}) \mid \boldsymbol{\pi}, \boldsymbol{s}. \ \boldsymbol{v}_0 \xrightarrow{\boldsymbol{\pi}} \boldsymbol{u} \}$$

Note Actual start state unknown, so all start states *s* are considered. Note Above definition is smoother due to Aexp(undefined) := Expr

Simple Redundancy Elimination

Transformation Replace edge $(u, T_e = e, v)$ by (u, Nop, v) if *e* semantically available at *u*.

Correctness • Whenever program reaches u with state (ρ, μ) , we have $\llbracket e \rrbracket \rho = \rho(T_e)$ (That's exactly how semantically available is defined)

• Hence,
$$[\![T_e = e]\!](\rho, \mu) = (\rho, \mu) = [\![Nop]\!](\rho, \mu)$$

Remaining Problem How to compute available expressions Precisely No chance (Rice's Theorem)

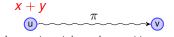
Observation Enough to compute subset of semantically available expressions

• Transformation still correct

Available Expressions (Syntactically)

Idea Expression *e* (syntactically) available after computation π

• if *e* has been evaluated, and no register of *e* has been assigned afterwards



 π does not contain assignment to x nor y

Purely syntactic criterion

Can be computed incrementally for every edge

Available Expressions (Computation)

Let *A* be a set of available expressions.

Recall: Available \leftarrow Already evaluated and no reg. assigned afterwards An action *a* transforms this into the set $[a]^{\#}A$ of expressions available after *a* has been executed

$$\llbracket \operatorname{Nop} \rrbracket^{\#} A := A$$

$$\llbracket \operatorname{Pos}(e) \rrbracket^{\#} A := A$$

$$\llbracket \operatorname{Neg}(e) \rrbracket^{\#} A := A$$

$$\llbracket T_e = e \rrbracket^{\#} A := A \cup \{e\}$$

$$\llbracket R = T_e \rrbracket^{\#} A := A \setminus \operatorname{Expr}_R \quad \operatorname{Expr}_R := \operatorname{expressions \ containing \ } R$$

$$\llbracket R = M[e] \rrbracket^{\#} A := A \setminus \operatorname{Expr}_R$$

$$\llbracket M[e_1] = e_2 \rrbracket^{\#} A := A$$

Available Expressions (Computation)

[a][#] is called abstract effect of action a
Again, the effect of an edge is the effect of its action

$$[[(u, a, v)]]^{\#} = [[a]]^{\#}$$

and the effect of a path $\pi = k_1 \dots k_n$ is

$$\llbracket \pi \rrbracket^{\#} := \llbracket k_n \rrbracket^{\#} \circ \ldots \circ \llbracket k_1 \rrbracket^{\#}$$

Definition (Available at v)

The set A[v] of (syntactically) available expressions at v is

$$\boldsymbol{A}[\boldsymbol{v}] := \bigcap \{ \llbracket \pi \rrbracket^{\#} \emptyset \mid \pi. \ \boldsymbol{v}_0 \xrightarrow{\pi} \boldsymbol{v} \}$$

Available Expressions (Correctness)

Idea Abstract effect corresponds to concrete effect Lemma $A \subseteq Aexp(s) \implies [\![a]\!]^{\#}A \subseteq Aexp([\![a]\!]s)$ Proof Check for every type of action.

This generalizes to paths

$$\boldsymbol{A} \subseteq \operatorname{Aexp}(\boldsymbol{s}) \implies \llbracket \boldsymbol{\pi} \rrbracket^{\#} \boldsymbol{A} \subseteq \operatorname{Aexp}(\llbracket \boldsymbol{\pi} \rrbracket \boldsymbol{s})$$

And to program points

$$A[u] \subseteq \operatorname{Aexp}(u)$$

Recall:

$$Aexp(u) = \bigcap \{Aexp(\llbracket \pi \rrbracket s) \mid \pi, s. \ v_0 \xrightarrow{\pi} u\}$$
$$A[u] = \bigcap \{\llbracket \pi \rrbracket^{\#} \emptyset \mid \pi. \ v_0 \xrightarrow{\pi} u\}$$

Summary

1 Transform program to memorize everything

- Introduce registers T_e
- 2 Compute A[u] for every program point u
 - $A[u] = \bigcap \{ \llbracket \pi \rrbracket^{\#} \emptyset \mid \pi. v_0 \xrightarrow{\pi} u \}$
- 8 Replace redundant computations by Nop
 - $(u, T_e = e, v) \mapsto (u, \operatorname{Nop}, v)$ if $e \in A[u]$

Warning Memorization transformation for R = e should only be applied if

- *R* ∉ Reg(*e*) (Otherwise, expression immediately unavailable)
- $e \notin \text{Reg}$ (Otherwise, only one more register introduced)
- Evaluation of *e* is nontrivial (Otherwise, re-evaluation cheaper than memorization)

Remaining Problem

How to compute $A[u] = \bigcap \{ \llbracket \pi \rrbracket^{\#} \emptyset \mid v_0 \xrightarrow{\pi} u \}$

• There may be infinitely many paths to u

Solution: Collect restrictions to A[u] into a constraint system

Intuition

Nothing available at start node

For edge (u, a, v): At v, at most those expressions are available that would be available if we come from u.

Example

Let's regard a slightly modified available expression analysis

- Available expressions before memorization transformation has been applied
- · Yields smaller examples, but more complicated proofs :)

$$[[Nop]]^{\#}A := A$$

$$[[Pos(e)]]^{\#}A := A \cup \{e\}$$

$$[[Neg(e)]]^{\#}A := A \cup \{e\}$$

$$[[R = e]]^{\#}A := (A \cup \{e\}) \setminus \text{Expr}_{R}$$

$$[[R = M[e]]]^{\#}A := (A \cup \{e\}) \setminus \text{Expr}_{R}$$

$$[[M[e_{1}] = e_{2}]]^{\#}A := A \cup \{e_{1}, e_{2}\}$$

Effect of transformation already included in constraint system

Example

$$A[1] \subseteq \emptyset$$

$$A[2] \subseteq A[1] \cup \{1\} \setminus \operatorname{Expr}_{y}$$

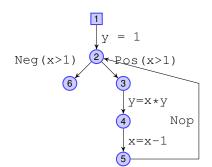
$$A[2] \subseteq A[5]$$

$$A[3] \subseteq A[2] \cup \{x > 1\}$$

$$A[4] \subseteq A[3] \cup \{x * y\} \setminus \operatorname{Expr}_{y}$$

$$A[5] \subseteq A[4] \cup \{x - 1\} \setminus \operatorname{Expr}_{x}$$

$$A[6] \subseteq A[2] \cup \{x > 1\}$$



Solution:

$$A[1] = \emptyset$$

$$A[2] = \{1\}$$

$$A[3] = \{1, x > 1\}$$

$$A[4] = \{1, x > 1\}$$

$$A[5] = \{1\}$$

$$A[6] = \{1, x > 1\}$$

Wanted

- Maximally large solution
 - Intuitively: Most precise information
- An algorithm to compute this solution

Naive Fixpoint Iteration (Sketch)

- 1 Initialize every A[u] = Expr
 - Expressions actually occurring in program!
- 2 Evaluate RHSs
- Opdate LHSs by intersecting with values of RHSs
- 4 Repeat (goto 2) until values of A[u] stabilize

Naive Fixpoint Iteration (Example)

On whiteboard!

Naive Fixpoint Iteration (Correctness)

Why does the algorithm terminate?

- In each step, sets get smaller
- This can happen at most |Expr| times.

Why does the algorithm compute a solution?

• If not arrived at solution yet, violated constraint will cause decrease of LHS

Why does it compute the maximal solution?

• Fixed-point theory. (Comes next)

Table of Contents

2

Removing Superfluous Computations

Repeated Computations Background 1: Rice's theorem Background 2: Operational Semantics Available Expressions Background 3: Complete Lattices Fixed-Point Algorithms Monotonic Analysis Framework Dead Assignment Elimination Copy Propagation Summary

Partial Orders

Definition (Partial Order)

A partial order $(\mathbb{D}, \sqsubseteq)$ is a relation \sqsubseteq on \mathbb{D} that is reflexive, antisymmetric, and transitive, i.e., for all $a, b, c \in \mathbb{D}$:

a	(reflexive)
$a \sqsubseteq b \land b \sqsubseteq a \implies a = b$	(antisymmetric)
$a \sqsubseteq b \sqsubseteq c \implies a \sqsubseteq c$	(transitive)

Examples \leq on \mathbb{N} , \subseteq . Also \geq , \supseteq

Lemma (Dual order)

We define $a \supseteq b := b \sqsubseteq a$. Let $\sqsubseteq be a partial order on <math>\mathbb{D}$. Then $\supseteq also is a partial order on <math>\mathbb{D}$.

 $\mathbb{D} = 2^{\{a,b,c\}}$ with \subseteq

$$\begin{array}{c|c} \{a, b, c\} \\ \swarrow & | \\ \{a, b\} \{a, c\} \{b, c\} \\ | \\ \{a, b\} \{c\} \\ \{a\} \\ \{b\} \\ \{c\} \\ \\ \emptyset \end{array}$$

 $\ensuremath{\mathbb{Z}}$ with relation =

 \cdots -2 -1 0 1 2 \cdots

 ${\mathbb Z}$ with relation \leq

 $\mathbb{Z}_{\perp} := \mathbb{Z} \cup \{\perp\}$ with relation $x \sqsubseteq y$ iff $x = \perp \lor x = y$

$\{a, b, c, d\}$ with $a \sqsubset c, a \sqsubset d, b \sqsubset c, b \sqsubset d$

Upper Bound

Definition (Upper bound) $d \in \mathbb{D}$ is called upper bound of $X \subseteq \mathbb{D}$, iff

 $\forall x \in X. \ x \sqsubseteq d$

Definition (Least Upper bound) $d \in \mathbb{D}$ is called least upper bound of $X \subseteq \mathbb{D}$, iff

d is upper bound of X, and $d \sqsubseteq y$ for every upper bound y of X

Observation

Upper bound not always exists, e.g. $\{0, 2, 4, ...\} \subseteq \mathbb{Z}$ Least upper bound not always exists, e.g. $\{a, b\} \subseteq \{a, b, c, d\}$ with $a \sqsubset c, a \sqsubset d, b \sqsubset c, b \sqsubset d$

Complete Lattice

Definition (Complete Lattice)

A complete lattice $(\mathbb{D}, \sqsubseteq)$ is a partial order where every subset $X \subseteq \mathbb{D}$ has a least upper bound $\bigsqcup X \in \mathbb{D}$.

Note Every complete lattice has

- A least element $\bot := \bigsqcup \emptyset \in \mathbb{D}$
- A greatest element $\top := \bigsqcup \mathbb{D} \in \mathbb{D}$

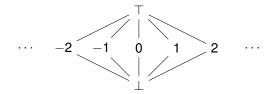
Moreover $a \sqcup b := \bigsqcup \{a, b\}$ and $a \sqcap b := \bigsqcup \{a, b\}$

Examples

- (2^{a,b,c}, ⊆) is complete lattice
- $(\mathbb{Z},=)$ is not. Nor is (\mathbb{Z},\leq)
- $(\mathbb{Z}_{\perp}, \sqsubseteq)$ is also no complete lattice
 - But we can define flat complete lattice

Flat complete lattice over \mathbb{Z}

 $\mathbb{Z}_{\perp}^{\top} := \mathbb{Z} \cup \{\perp, \top\}$ with relation $x \sqsubseteq y$ iff $x = \perp \lor y = \top \lor x = y$



Note This construction works for every set, not only for \mathbb{Z} .

Greatest Lower Bound

Theorem

Let \mathbb{D} be a complete lattice. Then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound $\prod X$.

Proof:

- Let $L = \{I \in \mathbb{D}. \forall x \in X. I \sqsubseteq x\}$
 - The set of all lower bounds of X
- Construct $\prod X := \bigsqcup L$
 - Show: $\bigsqcup L$ is lower bound
 - Assume $x \in X$.
 - Then $\forall l \in L$. $l \sqsubseteq x$ (i.e., x is upper bound of L)
 - Thus $\bigsqcup L \sqsubseteq x$ (b/c $\bigsqcup L$ is least upper bound)
 - Obvious: $\bigsqcup L$ is \sqsupseteq than all lower bounds

Examples

- In (2^{a,b,c},⊆)
 - Note, in lattices with \subseteq -ordering, we occasionally write \bigcup , \bigcap instead of \bigcup , \bigcap
 - \bigcup { $\{a, b\}, \{a, c\}$ } = {a, b, c}, \bigcap { $\{a, b\}, \{a, c\}$ } = {a}
- In $\mathbb{Z}_{-\infty}^{+\infty}$:
 - [1,2,3,4] = 4, [1,2,3,4] = 1
 - $[1,2,3,4,\ldots] = +\infty$, $[1,2,3,4,\ldots] = 1$

Last Lecture

- Syntactic criterion for available expressions
- Constraint system to express it
 - Yet to come: Link between CS and path-based criterion
- Naive fixpoint iteration to compute maximum solution of CS
- Partial orders, complete lattices

Monotonic function

Definition

Let $(\mathbb{D}_1, \subseteq_1)$ and $(\mathbb{D}_2, \subseteq_2)$ be partial orders. A function $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotonic, iff

 $\forall x, y \in \mathbb{D}_1. x \sqsubseteq_1 y \implies f(x) \sqsubseteq_2 f(y)$

Examples

- $f :: \mathbb{N} \to \mathbb{Z}$ with f(x) := x 10
- $f :: \mathbb{N} \to \mathbb{N}$ with f(x) := x + 10
- $f:: 2^{\{a,b,c\}} \rightarrow 2^{\{a,b,c\}}$ with $f(X):= (X \cup \{a,b\}) \setminus \{b,c\}$
 - In general, functions of this form are monotonic wrt. \subseteq .
- $f :: \mathbb{Z} \to \mathbb{Z}$ with f(x) := -x (Not monotonic)
- $f :: 2^{\{a,b,c\}} \to 2^{\{a,b,c\}}$ with $f(X) := \{x \mid x \notin X\}$ (Not monotonic)
 - Functions involving negation/complement usually not monotonic.

Least fixed point

Definition Let $f : \mathbb{D} \to \mathbb{D}$ be a function. A value $d \in \mathbb{D}$ with f(d) = d is called fixed point of f.

If $\mathbb D$ is a partial ordering, a fixed point $\textit{d}_0 \in \textit{D}$ with

$$\forall d. f(d) = d \implies d_0 \sqsubseteq d$$

is called least fixed point. If such a d_0 exists, it is uniquely determined, and we define

 $lfp(f) := d_0$

Examples

- $f :: \mathbb{N} \to \mathbb{N}$ with f(x) = x + 1 No fixed points
- $f :: \mathbb{N} \to \mathbb{N}$ with f(x) = x. Every $x \in \mathbb{N}$ is fixed point.
- $f :: 2^{\{a,b,c\}} \to 2^{\{a,b,c\}}$ with $f(X) = X \cup \{a,b\}$. $lfp(f) = \{a,b\}$.

Function composition

Theorem

If $f_1 : \mathbb{D}_1 \to \mathbb{D}_2$ and $f_2 : \mathbb{D}_2 \to \mathbb{D}_3$ are monotonic, then also $f_2 \circ f_1$ is monotonic.

Proof: $a \sqsubseteq b \implies f_1(a) \sqsubseteq f_1(b) \implies f_2(f_1(a)) \sqsubseteq f_2(f_1(b))$.

Function lattice

Definition

Let $(\mathbb{D}, \sqsubseteq)$ be a partial ordering. We overload \sqsubseteq to functions from A to \mathbb{D} :

 $f \sqsubseteq g \text{ iff } \forall x. f(x) \sqsubseteq g(x)$

 $[A \to \mathbb{D}]$ is the set of functions from A to \mathbb{D} .

Theorem

If $(\mathbb{D}, \sqsubseteq)$ is a partial ordering/complete lattice, then also $([A \to \mathbb{D}], \sqsubseteq)$. In particular, we have:

 $(\bigsqcup F)(x) = \bigsqcup \{f(x) \mid f \in F\}$

Proof: On whiteboard.

Component-wise ordering on tuples

- Tuples $\vec{x} \in \mathbb{D}^n$ can be seen as functions $\vec{x} : \{1, \dots, n\} \to \mathbb{D}$
- Yields component-wise ordering:

 $\vec{x} \sqsubseteq \vec{y}$ iff $\forall i : \{1, \ldots, n\}$. $x_i \sqsubseteq y_i$

• $(\mathbb{D}^n, \sqsubseteq)$ is complete lattice if $(\mathbb{D}, \sqsubseteq)$ is complete lattice.

Application

- Idea: Encode constraint system as function. Solutions as fixed points.
- · Constraints have the form

$$x_i \supseteq f_i(x_1,\ldots,x_n)$$

where

Xi	variables	e.g., $A[u]$, for $u \in V$
$(\mathbb{D}, \sqsubseteq)$	complete lattice	e.g., (2 ^{Expr} ,⊇)
$f_i:\mathbb{D}^n\to\mathbb{D}$	RHS	e.g., $(A[u] \cup \{e\}) \setminus \operatorname{Expr}_R$

- Observation: One constraint per x_i is enough.
 - Assume we have $x_i \supseteq rhs_1(x_1, \ldots, x_n), \ldots, x_i \supseteq rhs_m(x_1, \ldots, x_n)$
 - Replace by $x_i \supseteq (\bigsqcup \{ \overline{rhs_j} \mid 1 \le j \le m \})(x_1, \ldots, x_n)$
 - Does not change solutions.
- Define $F : \mathbb{D}^n \to \mathbb{D}^n$, with

$$F(x_1,\ldots,x_n):=(f_1(x_1,\ldots,x_n),\ldots,f_n(x_1,\ldots,x_n))$$

Then, constraints expressed by $\vec{x} \supseteq F(\vec{x})$.

- Fixed-Points of F are solutions
- Least solution = least fixed point (next!)

Least fixed points of monotonic functions

- Moreover, F is monotonic if the f_i are.
- Question: Does lfp(F) exist? Does fp-iteration compute it?

Knaster-Tarski fixed-point Theorem

Knaster-Tarski

Let $(\mathbb{D}, \sqsubseteq)$ be a complete lattice, and $f : \mathbb{D} \to \mathbb{D}$ be a monotonic function. Then, f has a least and a greatest fixed point given by

 $lfp(f) = \bigcap \{ x \mid f(x) \sqsubseteq x \} \qquad gfp(f) = \bigsqcup \{ x \mid x \sqsubseteq f(x) \}$

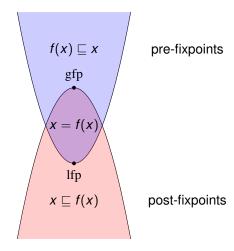
Proof Let $P = \{x \mid f(x) \sqsubseteq x\}$. (*P* is set of *pre-fixpoints*)

- Show (1): $\hat{f}(\square \overline{P}) \sqsubseteq \square P$.
 - Have $\forall x \in P$. $f(\Box P) \sqsubseteq f(x) \sqsubseteq x$ (lower bound, mono, def.P)
 - I.e., $f(\square P)$ is lower bound of P
 - Thus $\ddot{f}(\square P) \sqsubseteq \square P$ (greatest lower bound).
- Show (2): $\square P \sqsubseteq f(\square P)$
 - From (1) have $f(f(\square P)) \sqsubseteq f(\square P)$ (mono)
 - Hence $f(\square P) \in P$ (def.P)
 - Thus $\prod P \sqsubseteq f(\prod P)$ (lower bound).
- Show (3): Least fixed point
 - Assume *d* = *f*(*d*) is another fixed point
 - Hence $f(d) \sqsubseteq d$ (reflexive)
 - Hence $d \in P$ (def.P)
 - Thus $\prod P \sqsubseteq d$ (lower bound)
- Greatest fixed point: Dually.

Used Facts

lower bound $x \in X \implies \prod X \sqsubseteq x$ greatest lower bound $(\forall x \in X. d \sqsubseteq X) \implies d \sqsubseteq \prod X$ mono *f* monotonic: $x \sqsubseteq y \implies f(x) \sqsubseteq f(y)$ reflexive $x \sqsubseteq x$

Knaster-Tarski Fixed-Point Theorem (Intuition)



Least solution = lfp

Recall: Constraints where $\vec{x} \supseteq F(\vec{x})$ Knaster-Tarski: $lfp(F) = \prod {\vec{x} \mid \vec{x} \supseteq F(\vec{x})}$

· I.e.: Least fixed point is lower bound of solutions

Kleene fixed-point theorem

Kleene fixed-point

Let $(\mathbb{D}, \sqsubseteq)$ be a complete lattice, and $f : \mathbb{D} \to \mathbb{D}$ be a monotonic function. Then:

 $\bigsqcup\{f^i(\bot) \mid i \in \mathbb{N}\} \sqsubseteq lfp(f)$

If f is distributive, we even have:

 $\bigsqcup\{f^i(\bot) \mid i \in \mathbb{N}\} = lfp(f)$

Definition

Distributivity A function $f : \mathbb{D}_1 \to \mathbb{D}_2$ over complete lattices $(\mathbb{D}_1, \sqsubseteq_1)$ and $(\mathbb{D}_2, \sqsubseteq_2)$ is called distributive, iff

$$X \neq \emptyset \implies f(\bigsqcup_1 X) = \bigsqcup_2 \{f(x) \mid x \in X\}$$

Note: Distributivity implies monotonicity.

Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, lfp(f) exists.

Show that for all *i*: $f^i(\perp) \sqsubseteq \operatorname{lfp}(f)$

- Induction on i.
 - i = 0: $f^0(\bot) = \bot \sqsubseteq \operatorname{lfp}(f)$ (def. f^0 , bot least)
 - i + 1: IH: $f^{i}(\bot) \sqsubseteq \text{lfp}(f)$. To show: $f^{i+1}(\bot) \sqsubseteq \text{lfp}(f)$ Have $f^{i+1}(\bot) = f(f^{i}(\bot)) (\text{def}, f^{i+1})$

 - \Box f(lfp(f)) (IH, mono)
 - = lfp(f) (lfp(f) is fixed point)

I.e., lfp(*f*) is upper bound of $\{f^i(\bot) \mid i \in \mathbb{N}\}$ Thus, $||\{f^i(\perp) \mid i \in \mathbb{N}\} \subseteq lfp(f)$ (least upper bound)

Kleene fixed-point theorem: Proof (ctd)

Assume *f* is distributive.

Hence $f(\bigsqcup\{f^i(\bot) \mid i \in \mathbb{N}\}) = \bigsqcup\{f^{i+1}(\bot) \mid i \in \mathbb{N}\}$ (def.distributive) = $\bigsqcup\{f^i(\bot) \mid i \in \mathbb{N}\}$ ($\bigsqcup(X \cup \{\bot\}) = \bigsqcup X$) I.e., $\bigsqcup\{f^i(\bot) \mid i \in \mathbb{N}\}$ is fixed point Hence $\operatorname{lfp}(f) \sqsubseteq \bigsqcup\{f^i(\bot) \mid i \in \mathbb{N}\}$ (lfp is least fixed point) With distributive implies mono, antisymmetry and first part, we get:

 $\mathrm{lfp}(f) = \bigsqcup \{ f^i(\bot) \mid i \in \mathbb{N} \} \quad \Box$

Used Facts

bot least $\forall x. \perp \sqsubseteq x$ fixed point *d* is fixed point iff f(d) = dleast fixed point $f(d) = d \implies lfp(f) \sqsubseteq d$ least upper bound $(\forall x \in X. x \sqsubseteq d) \implies \bigsqcup X \sqsubseteq d$

Summary

- Does lfp(F) exist?
 - Yes (Knaster-Tarski)
- Does fp-iteration compute it?
 - Fp-iteration computes the $F^i(\perp)$ for increasing *i*
 - By Kleene FP-Theorem, these are below lfp(F)
 - It terminates only if a fixed-point has been reached
 - This fixed point is also below lfp(*F*) (and thus = lfp(*F*))

• For any monotonic function *f*, we have

 $f^i(\bot) \sqsubseteq f^{i+1}(\bot)$

• Straightforward induction on *i*

Table of Contents

2

Removing Superfluous Computations

Repeated Computations Background 1: Rice's theorem Background 2: Operational Semantics Available Expressions Background 3: Complete Lattices Fixed-Point Algorithms Monotonic Analysis Framework Dead Assignment Elimination Copy Propagation Summary

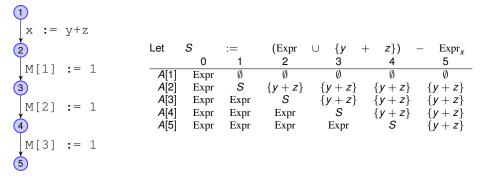
Naive FP-iteration, again

Input Constraint system $x_i \supseteq f_i(\vec{x})$

- $\vec{x} := (\bot, \ldots, \bot)$
- **2** $\vec{x} := F(\vec{x})$ (Recall $F(\vec{x}) = (f_1(\vec{x}), \dots, f_n(\vec{x}))$)
- **3** If $\neg(F(\vec{x}) \sqsubseteq \vec{x})$, goto 2
- 4 Return " \vec{x} is least solution"
 - Note Originally, we had $\vec{x} := \vec{x} \sqcup F(\vec{x})$ in Step 2 and $F(\vec{x}) \neq \vec{x}$ in Step 3
 - Also correct, as $F^i(\perp) \leq F^{i+1}(\perp)$, i.e., $\vec{x} \sqsubseteq F(\vec{x})$
 - Saves ⊔ operation.
 - \sqsubseteq may be more efficient than =.

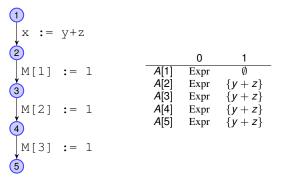
Caveat

Naive fp-iteration may be rather inefficient



Round-Robin iteration

Idea: Instead of values from last iteration, use current values while computing RHSs.



RR-Iteration: Pseudocode

```
\vec{x} := (\perp, \ldots, \perp)
do {
  finished := true
  for (i=1; i<=n; ++i) {
     new := f_i(\vec{x}) // Evaluate RHS
     if (X_i \neq \text{new}) { // If something changed
        finished = false // No fp reached yet
       X_i := X_i \sqcup new // Update variable
} while (!finished)
return \vec{x}
```

RR-Iteration: Correctness

Prove invariant: $\vec{x} \subseteq lfp(F)$

- Initially, $(\perp, \ldots, \perp) \sqsubseteq lfp(F)$ holds (bot-least)
- On update:
 - We have (1): $\vec{x}' = \vec{x}(i := x_i \sqcup f_i(\vec{x}))$. We assume (IH): $\vec{x} \sqsubseteq \operatorname{lfp}(F)$
 - From (1) we get $\vec{x}' \sqsubseteq \vec{x} \sqcup F(\vec{x})$ (def. \sqsubseteq on \mathbb{D}^n)
 - From (IH) we get $F(\vec{x}) \sqsubseteq lfp(F)$ (mono, fixed-point)
 - Hence $\vec{x} \sqcup F(\vec{x}) \sqsubseteq lfp(F)$ (least-upper-bound, IH)
 - Together: $\vec{x}' \sqsubseteq lfp(F)$ (trans)

Moreover, if algorithm terminates, we have $\vec{x} = F(\vec{x})$

- I.e., \vec{x} is a fixed-point.
- Invariant: $\vec{x} \sqsubseteq$ least fixed point
- Thus: $\vec{x} = \operatorname{lfp}(F)$

trans $x \sqsubseteq y \sqsubseteq z \implies x \sqsubseteq z$

RR-Iteration: Improved Algorithm

```
We can save some operations

    Use □ instead of = in test

    No ⊔ on update

\vec{x} := (\perp, \ldots, \perp)
do {
  finished := true
  for (i=1;i<=n;++i) {
     new := f_i(\vec{x}) // Evaluate RHS
     if (\neg(x_i \square \text{ new})) { // If something changed
        finished = false // No fp reached yet
       X_i := new // Update variable
} while (!finished)
return \vec{x}
```

RR-Iteration: Improved Algorithm: Correctness

Justification: Invariant $\vec{x} \sqsubseteq F(\vec{x})$

- · Holds initially: Obvious
- On update:
 - We have $\vec{x}' = \vec{x}(i := f_i(\vec{x}))$. We assume (IH): $\vec{x} \sqsubseteq F(\vec{x})$
 - Hence $\vec{x} \sqsubseteq \vec{x}' \sqsubseteq F(\vec{x})$ (Def. \sqsubseteq , IH)
 - Hence $F(\vec{x}) \sqsubseteq F(\vec{x}')$ (mono)
 - Together $\vec{x}' \sqsubseteq F(\vec{x}')$ (trans)

With this invariant, we have

- $x_i = f_i(\vec{x})$ iff $x_i \supseteq f_i(\vec{x})$ (antisym)
- $x_i \sqcup f_i(\vec{x}) = f_i(\vec{x})$ (sup-absorb)
 - sup-absorb: $x \sqsubseteq y \implies x \sqcup y = y$

RR-Iteration: Termination

Definition (Chain)

A set $C \subseteq \mathbb{D}$ is called chain, iff all elements are mutually comparable:

 $\forall c_1, c_2 \in C. \ c_1 \sqsubseteq c_2 \lor c_2 \sqsubseteq c_1$

A partial order has finite height, iff every chain is finite. Then, the height $h \in \mathbb{N}$ is the maximum cardinality of any chain.

For a domain with finite chain height *h*, RR-iteration terminates within $O(n^2h)$ RHS-evaluations.

 In each iteration of the outer loop, at least one variable increases, or the algorithm terminates. A variable may only increase h – 1 times.

Last Lecture

- Monotonic functions
 - · Constraint system modeled as function
 - Least solution is least fixed point
- Knaster-Tarski fp-thm:
 - Ifp of monotonic function exists
- Kleene fp theorem:
 - · Iterative characterization of Ifp for distributive functions
 - Justifies naive fp-iteration
- Round-Robin iteration
 - · Improves on naive iteration by using values of current round
 - · Still depends on variable ordering

Problem:

The enciency of the depends on variable ordering									
5									
x := y+z									
(4)	Let S :=	= (Expr	$\cup \{y + z\}$	z) – Expr _x					
		0	1	2	3	4	5		
$\downarrow M[1] := 1$	A[1]	Expr	Expr	Expr	Expr	S	$\{y + z\}$		
3	A[2]	Expr	Expr	Expr	S	$\{y + z\}$	$\{y+z\}$		
	A[3]	Expr	Expr	S	$\{y + z\}$	$\{y+z\}$	$\{y+z\}$		
↓M[2] := 1	A[4]	Expr	Ŝ	$\{y + z\}$	$\{y+z\}$	$\{y+z\}$	$\{y + z\}$		
2	A[5]	Expr	Ø	Ø	Ø	Ø	Ø		
M[3] := 1									
1									

The efficiency of RR depends on variable ordering

Rule of thumb

u before v, if $u \rightarrow^* v$ Entry condition before loop body Problems of RR (remaining)

Complete round required to detect termination If only one variable changes, everything is re-computed Depends on variable ordering.

Idea of worklist algorithm

· Store constraints whose RHS may have changed in a list

Worklist Algorithm: Pseudocode

 $W = \{1...n\}$ $\vec{x} = (\perp, \ldots, \perp)$ while $(W != \varepsilon)$ { get an $i \in W$, $W = W - \{i\}$ $t = f_i(\vec{x})$ if $(\neg(t \sqsubseteq x_i)) \in \{$ $X_i = t$ $W = W \cup \{j \mid f_i \text{ depends on variable } i\}$ } }

Worklist Algorithm: Example

• On whiteboard

Worklist Algorithm: Correctness

Invariants

1 $\vec{x} \subseteq F(\vec{x})$ and $\vec{x} \subseteq \text{lfp}F$

• Same argument as for RR-iteration

$$2 \neg (x_i \sqsupseteq f_i(\vec{x})) \implies i \in W$$

- Intuitively: Constraints that are not satisfied are on worklist
- Initially, all i in W
- On update: Only RHS that depend on updated variable may change. Exactly these are added to *W*.
 If *f_i* does not depend on variable *i*, the constraint *i* holds for the new *x*, so its removal from *W* is OK.
- If loop terminates: Due to Inv. 2, we have solution. Due to Inv. 1, it is least solution.

Worklist Algorithm: Termination

Theorem

For a monotonic CS and a domain with finite height h, the worklist algorithm returns the least solution and terminates within O(hN) iterations, where N is the size of the constraint system:

$$N := \sum_{i=1}^{n} 1 + |f_i| \text{ where } |f_i| := |\{i \mid f_i \text{ depends on variable } i\}$$

Proof (Sketch):

- Number of iterations = Number of elements added to W.
- Initially: n elements
- Constraint i added if variable its RHS depends on is changed
 - Variable may not change more than *h* times. Constraint depends on $|f_i|$ variables.
- Thus, no more than

$$n+\sum_{i=1}^n h|f_i|=hN$$

elements added to worklist.

Worklist Algorithm: Problems

- Dependencies of RHS need to be known.
 - No problem for our application
- Which constraint to select next from worklist?
 - Requires strategy.
- Various more advanced algorithms exists
 - Determine dependencies dynamically (Generic solvers)
 - Only compute solution for subset of the variables (Local solvers)
 - · Even: Local generic solvers

Summary:

- Constraint systems (over complete lattice, monotonic RHSs)
 - Encode as monotonic function $F : \mathbb{D}^n \to \mathbb{D}^n$
 - (Least) Solution = (least) fixed point
- Knaster-Tarski theorem: A least solution always exists
- Solve by fixpoint-iteration (naive, RR, WL)
 - Kleene-Theorem justifies naive fixpoint iteration
 - Similar ideas to justify RR, WL
- Still Missing:
 - Link between least solution of constraint system, and Available at *u*: *A*[*u*] = ∩{[[π]][#]Ø | π. v₀ → *u*}

Table of Contents

2

Removing Superfluous Computations

Repeated Computations Background 1: Rice's theorem Background 2: Operational Semantics Available Expressions Background 3: Complete Lattices Fixed-Point Algorithms Monotonic Analysis Framework Dead Assignment Elimination Copy Propagation Summary

/ about dot into

Alias Analy

Interprocedural Analys

Analysis of Parallel Program

Replacing Expensive by Cheaper Operations

ptimization of Functional Programs

Monotonic Analysis Framework

Given Flowgraph A complete lattice $(\mathbb{D}, \sqsubseteq)$. An initialization value $d_0 \in \mathbb{D}$ An abstract effect $\llbracket k \rrbracket^{\#} : \mathbb{D} \to \mathbb{D}$ for edges k• Such that $\llbracket k \rrbracket^{\#}$ is monotonic. Wanted MOP[u] := $\bigsqcup \{ \llbracket \pi \rrbracket^{\#}(d_0) \mid \pi. v_0 \xrightarrow{\pi} u \}$ MOP = Merge over all paths

Method Compute least solution MFP of constraint system

$$\begin{split} \text{MFP}[v_0] &\supseteq d_0 & \text{(init)} \\ \text{MFP}[v] &\supseteq \llbracket k \rrbracket^\# (\text{MFP}[u]) & \text{for edges } k = (u, a, v) & \text{(edge)} \end{split}$$

MFP = Minimal fixed point

Kam, Ullmann

Kam, Ullman, 1975

In a monotonic analysis framework, we have

 $MOP \sqsubseteq MFP$

- Intuitively: The constraint system's least solution (MFP) is a correct approximation to the value defined over all paths reaching the program point (MOP).
- In particular: $\llbracket \pi \rrbracket^{\#}(d_0) \sqsubseteq \mathrm{MFP}[u]$ for $v_0 \xrightarrow{\pi} u$

Kam, Ullman: Proof

To show MOP \sqsubseteq MFP, i.e. (def.MOP, def. \sqsubseteq on \mathbb{D}^n)

$$\forall u. \bigsqcup \{ \llbracket \pi \rrbracket^{\#} d_0 \mid \pi. \ v_0 \xrightarrow{\pi} u \} \sqsubseteq \mathrm{MFP}[u]$$

It suffices to show that MFP[u] is an upper bound. (least-upper-bound)

$$\forall \pi, u. v_0 \xrightarrow{\pi} u \implies \llbracket \pi \rrbracket^{\#} d_0 \sqsubseteq \mathrm{MFP}[u]$$

Induction on π .

- Base case: *π* = *ε*.
 - We have $u = v_0$ (empty-path) and $\llbracket \varepsilon \rrbracket^{\#} d_0 = d_0$ (empty-eff)
 - As MFP is solution, the (init)-constraint yields $d_0 \sqsubseteq \text{MFP}[v_0]$.
- Step case: $\pi = \pi' k$ for edge k = (u, a, v)
 - Assume $v_0 \xrightarrow{\pi'} u \xrightarrow{a} v$ and (IH): $\llbracket \pi' \rrbracket^{\#} d_0 \sqsubseteq MFP[u]$. To show: $\llbracket \pi' k \rrbracket^{\#} d_0 \sqsubseteq MFP[v]$
 - Have $[\![\pi'k]\!]^{\#} = [\![k]\!]^{\#} ([\![\pi']\!]^{\#} d_0)$ (eff-comp)
 - $\sqsubseteq \llbracket k \rrbracket^{\#}(\text{MFP}[u])$ (IH,mono)
 - \Box MFP[v] ((edge)-constraint, MFP is solution)

Facts

empty-path
$$u \stackrel{\varepsilon}{\to} v \iff u = v$$

empty-eff $[\![\varepsilon]\!]^{\#} d = d$
eff-comp $[\![\pi_1 \pi_2]\!]^{\#} = [\![\pi_2]\!]^{\#} \circ [\![\pi_1]\!]^{\#}$

Problem

- Yet another approximation :(
 - Recall: Abstract effect was already approximation
- Good news:
 - · If the right-hand sides are distributive, we can compute MOP exactly

Theorem of Kildal

Kildal, 1972

In a distributive analysis framework (i.e., a monotonic analysis framework where the $[k]^{\#}$ are distributive), where all nodes are reachable, we have

MOP = MFP

Proof

We already know MOP \sqsubseteq MFP. To show that also MFP \sqsubseteq MOP, it suffices to show that MOP is a solution of the constraint system.

• As MFP is least solution, the proposition follows.

Recall:

$$\mathrm{MOP}[u] := \bigsqcup P[u], \text{ where } P[u] := \{ \llbracket \pi \rrbracket^{\#}(d_0) \mid \pi. \ v_0 \xrightarrow{\pi} u \}$$

(init) To show: $MOP[v_0] \sqsupseteq d_0$

• Straightforward (upper-bound, empty-path, empty-eff)

(edge) To show: MOP[v] \supseteq [[k]][#]MOP[u] for edge k = (u, a, v)

- Note (*): *P*[*u*] not empty, as all nodes reachable
- $\llbracket k \rrbracket^{\#} \operatorname{MOP}[u] = \bigsqcup \{ \llbracket k \rrbracket^{\#} (\llbracket \pi \rrbracket^{\#} d_0) \mid \pi. v_0 \xrightarrow{\pi} u \} (def. MOP, distrib,^*)$

• =
$$\bigsqcup[\llbracket \pi k \rrbracket^{\#} d_0 \mid \pi. v_0 \xrightarrow{\pi k} v]$$
 (def. $\llbracket \cdot \rrbracket^{\#}$ on paths. k is edge, path-append)

- $\sqsubseteq \bigsqcup \{ \llbracket \pi \rrbracket^{\#} d_0 \mid \pi. v_0 \xrightarrow{\pi} v \}$ (sup-subset)
- = MOP[v] (def.MOP)

Facts

path-append
$$k = (u, a, v) \in E \land v_0 \xrightarrow{\pi} u \iff v_0 \xrightarrow{\pi k} v$$

• Append edge to path
sup-subset $X \subseteq Y \implies \bigsqcup X \sqsubseteq \bigsqcup Y$

Note

Reachability of all nodes is essential

- No paths to unreachable node u, i.e., $MOP[u] = \bot$
- But edges from other unreachable nodes possible

 \implies Constraint of form MFP[u] \supseteq ...

Eliminate unreachable nodes before creating CS

• E.g. by DFS from start node.

Depth first search (pseudocode)

```
void dfs (node u) {
  if u ∉ R {
    R := R \cup \{u\}
    for all v with (u, a, v) \in E {dfs v}
  }
}
void find reachable () {
  R = \{\}
  dfs(V_0)
  // R contains reachable nodes now
}
```

Summary

Input CFG, distributive/(monotonic) analysis framework

- Framework defines domain (D, ⊑), initial value d₀ ∈ D and abstract effects [[·]][#] : E → D → D
- For each edge k, $[\![k]\!]^{\#}$ is distributive/(monotonic)
- Eliminate unreachable nodes
- 2 Put up constraint system
- 3 Solve by worklist-algo, RR-iteration, ...

Output (Safe approximation of) MOP - solution

Note Abstract effects of available expressions are distributive

• As all functions of the form: $x \mapsto (a \cup x) \setminus b$

Last lecture

- Worklist algorithm: Find least solution with O(hN) RHS-evaluations
 - h height of domain, N size of constraint system
- Monotonic analysis framework: (\mathbb{D},\subseteq), $d_0\in D$, $\llbracket\cdot\rrbracket^\#$ (monotonic)
 - Yields MOP[u] = $\bigsqcup \{ \llbracket \pi \rrbracket^{\#} d_0 \mid \pi. v_0 \xrightarrow{\pi} u \}$
- Theorems of Kam/Ullman and Kildal
 - MOP \sqsubseteq MFP,
 - Distributive framework and all nodes reachable: MOP = MFP
- Started with dead-assignment elimination

Summary (II) – How to develop a program optimization

- Optimization = Analysis + Transformation
- Create semantic description of analysis result
 - Result for each program point
 - · Depends on states reachable at this program point
 - In general, not computable
 - Prove transformation correct for (approximations of) this result
- · Create syntactic approximation of analysis result
 - Abstract effect of edges
 - Yields monotonic/distributive analysis framework
- Compute MFP.
 - Approximation of semantic result
- Perform transformation based on MFP

Table of Contents

2

Removing Superfluous Computations

Repeated Computations Background 1: Rice's theorem Background 2: Operational Semantics Available Expressions Background 3: Complete Lattices Fixed-Point Algorithms Monotonic Analysis Framework Dead Assignment Elimination Copy Propagation Summary

Now: Dead-Assignment Elimination

Example

1: x = y + 2; 2: y = 4; 3: x = y + 3

Value of *x* computed in line 1 never used Equivalent program:

- 1: nop; 2: y = 4; 3: x = y + 3
- x is called dead at 1.

Live registers (semantically)

Register x is semantically live at program point u, iff there is an execution to an end node, that depends on the value of x at u:

$$x \in \text{Live}[\boldsymbol{u}] \iff \exists \pi, \boldsymbol{v}, \rho, \mu, \boldsymbol{a}.$$
$$\boldsymbol{u} \xrightarrow{\pi} \boldsymbol{v} \land \boldsymbol{v} \in \boldsymbol{V}_{\text{end}}$$
$$\land (\rho, \mu) \in \llbracket \boldsymbol{u} \rrbracket$$
$$\land \llbracket \pi \rrbracket (\rho(\boldsymbol{x} := \boldsymbol{a}), \mu) \neq_{\boldsymbol{X}} \llbracket \pi \rrbracket (\rho, \mu)$$

Where $\llbracket u \rrbracket := \{(\rho, \mu) \mid \exists \rho_0, \mu_0, \pi. v_0 \xrightarrow{\pi} u \land \llbracket \pi \rrbracket (\rho_0, \mu_0) = (\rho, \mu) \}$

- Intuition: All states reachable at u
- Collecting semantics
- $(\rho, \mu) =_X (\rho', \mu')$ iff $\mu = \mu'$ and $\forall x \in X$. $\rho(x) = \rho'(x)$
 - Equal on memory and "interesting" registers X
- *x* is semantically dead at *u*, iff it is not live.
 - No execution depends on the value of x at u.

Transformation: Dead-Assignment Elimination

- Replace assignments/loads to dead registers by Nop
- $(u, x := *, v) \mapsto (u, \operatorname{Nop}, v)$ if x dead at v
- Obviously correct
 - States reachable at end nodes are preserved
- Correct approximation: Less dead variables (= More live variables)

Live registers (syntactic approximation)

Register *x* is live at $u \ (x \in L[u])$, iff there is a path $u \xrightarrow{\pi} v$, $v \in V_{end}$, such that

- π does not contain writes to x, and $x \in X$
- or π contains a read of x before the first write to x

Abstract effects, propagating live variables backwards over edge

$$\llbracket \operatorname{Nop} \rrbracket^{\#} L = L$$

$$\llbracket \operatorname{Pos}(e) \rrbracket^{\#} L = L \cup \operatorname{regs}(e)$$

$$\llbracket \operatorname{Neg}(e) \rrbracket^{\#} L = L \cup \operatorname{regs}(e)$$

$$\llbracket x := e \rrbracket^{\#} L = L \setminus \{x\} \cup \operatorname{regs}(e)$$

$$\llbracket x := M(e) \rrbracket^{\#} L = L \setminus \{x\} \cup \operatorname{regs}(e)$$

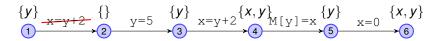
$$\llbracket M(e_1) := M(e_2) \rrbracket^{\#} L = L \cup \operatorname{regs}(e_1) \cup \operatorname{regs}(e_2)$$

Note: distributive.

ſ

Lift to path (backwards!): $\llbracket k_1 \dots k_n \rrbracket^\# := \llbracket k_1 \rrbracket^\# \circ \dots \circ \llbracket k_n \rrbracket^\#$ Live at u (MOP): $L[u] = \bigcup \{ \llbracket \pi \rrbracket^\# X \mid \exists v \in V_{\text{end}}. u \xrightarrow{\pi} v \}$

Example



Liveness: Correct approximation

Theorem

(Syntactic) liveness is a correct approximation of semantic liveness $\mathit{Live}[u] \subseteq \mathit{L}[u]$

• Proof: On whiteboard.

Computing L

Use constraint system

$$egin{aligned} & L[u] \supseteq X & ext{for } u \in V_{ ext{end}} \ & L[u] \supseteq \llbracket k \rrbracket^\# L[v] & ext{for edges } k = (u, a, v) \end{aligned}$$

Information propagated backwards

Domain: (Reg, \subseteq)

- Reg: The finitely many registers occurring in program.
 - ⇒ Finite height
- Moreover, the $\llbracket k \rrbracket^{\#}$ are distributive

Can compute least solution (MFP)

• Worklist algo, RR-iteration, naive fp-iteration

Backwards Analysis Framework

Given CFG, Domain: $(\mathbb{D}, \sqsubseteq)$, init. value: $d_0 \in \mathbb{D}$, abstract effects: $\llbracket \cdot \rrbracket^{\#} : \mathbb{D} \to \mathbb{D}$, monotonic $\text{MOP}[u] := \bigsqcup \{ \llbracket \pi \rrbracket^{\#} d_0 \mid \exists v \in V_{\text{end}}. u \xrightarrow{\pi} v \}$ MFP is least solution of $\text{MFP}[u] \supseteq d_0$ for $u \in V_{\text{end}}$ $\text{MFP}[u] \supseteq \llbracket k \rrbracket^{\#} \text{MFP}[v]$ for edges k = (u, a, v)

• We have:

 $MOP \sqsubseteq MFP$

 If the [[k]][#] are distributive, and from every node an end node can be reached:

MOP = MFP

- Proofs:
 - Analogously to forward case :)

Example: Dead Assignment elimination

```
while (x>0) {
    y = y + 1
    x = x + y
    x = 1
}
```

On whiteboard.

Last Lecture

- Monotonic forward/backward framework
- · Live variables, dead assignment elimination
 - x live at u
 - Semantically: *x* ∈ Live[*u*]: Exists execution that depends on value of *x* at *u*
 - Syntactic approximation: *x* ∈ *L*[*u*]: *x* read before it is overwritten
 - Correctness proof
 - Induction on path, case distinction over edges

Analysis: Classifications

Forward vs. backward

Forward Considers executions reaching a program point Backwards Considers executions from program point to end

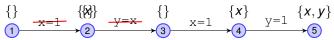
Must vs. May

Must Something is guaranteed to hold, and thus allows optimization

- On set domain: $\sqsubseteq = \supseteq$, i.e. $\sqcup = \cap$
- May Something may hold, and thus prevents (correct) optimization
 - On set domain: $\sqsubseteq = \subseteq$, i.e. $\sqcup = \cup$
- Kill/Gen analysis
 - Effects have form $\llbracket k \rrbracket^{\#} X = X \sqcap \operatorname{kill}_k \sqcup \operatorname{gen}_k$
 - Particular simple class. Distributive by construction.
 - Bitvector analysis: Kill/Gen on finite set domain.
- Examples:
 - Available expressions: forward,must,kill-gen
 - Live variables: backward, may, kill-gen

Dead Assignment Elimination: Problems

Eliminating dead assignments may lead to new dead assignments



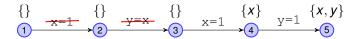
In a loop, a variable may keep itself alive

$$\{x\} \bigcirc x=x+1$$

Idea: Consider assignment edge (u, x = e, v).

- If x is not semantically live at v, the registers in e need not become live at u
- There values influence a register that is dead anyway.

Example



True Liveness vs. repeated liveness

• True liveness detects more dead variables than repeated liveness

Repeated livenessTrue liveness:

$$\{x\}\{\} \bigcirc x=x+1$$

$$x=0$$

$$\{x\} \bigcirc 2$$

LiveTruly live registers: Abstract effects

$$\llbracket \operatorname{Nop} \rrbracket^{\#} TL = TL$$

$$\llbracket \operatorname{Pos}(e) \rrbracket^{\#} TL = TL \cup \operatorname{regs}(e)$$

$$\llbracket \operatorname{Neg}(e) \rrbracket^{\#} TL = TL \cup \operatorname{regs}(e)$$

$$\llbracket x := e \rrbracket^{\#} TL = TL \setminus \{x\} \cup (x \in TL?\operatorname{regs}(e): \emptyset)$$

$$\llbracket x := M(e) \rrbracket^{\#} TL = TL \setminus \{x\} \cup (x \in TL?\operatorname{regs}(e): \emptyset)$$

$$\llbracket M(e_1) := e_2 \rrbracket^{\#} TL = TL \cup \operatorname{regs}(e_1) \cup \operatorname{regs}(e_2)$$

Effects are more complicated. No kill/gen, but still distributive. We have MFP = MOP :)

True Liveness: Correct approximation

Theorem

True liveness is a correct approximation of semantic liveness $Live[u] \subseteq TL[u]$

• Proof: On whiteboard.

Table of Contents

2

Removing Superfluous Computations

Repeated Computations Background 1: Rice's theorem Background 2: Operational Semantics Available Expressions Background 3: Complete Lattices Fixed-Point Algorithms Monotonic Analysis Framework Dead Assignment Elimination Copy Propagation Summary

/ about dot into

Alias Analy

Interprocedural Analys

Analysis of Parallel Program

Replacing Expensive by Cheaper Operations

ptimization of Functional Programs

Copy propagation

Idea: Often have assignments of form $r_1 = r_2$.

- E.g., $R = T_e$ after redundancy elimination
- In many cases, we can, instead, replace r_1 by r_2 in subsequent code
- $\implies r_1 \text{ becomes dead, and assignment can be eliminated}$ r_1= T_e ; M[0] = r_1 + 3 r_1= T_e ; M[0] = T_e + 3 Nop; M[0] = T_e + 3

Analysis: Maintain an acyclic graph between registers

- Edge x → y implies ρ(x) = ρ(y) for every state reachable at u
- Assignment x = y creates edge $x \rightarrow y$.

Transformation: Replace variables in expressions according to graph

On Whiteboard

Abstract Effects

 $\llbracket \operatorname{Nep} \rrbracket^{\#} C = C$ $\llbracket \operatorname{Pos}(e) \rrbracket^{\#} C = C$ $\llbracket \operatorname{Neg}(e) \rrbracket^{\#} C = C$ $\llbracket x = y \rrbracket^{\#} C = C \setminus \{x \to *, * \to x\} \cup \{x \to y\}$ for $y \in \operatorname{Reg}, y \neq x$ $\llbracket x = e \rrbracket^{\#} C = C \setminus \{x \to *, * \to x\}$ for $e \in \operatorname{Expr} \setminus \operatorname{Reg}$ or e = x $\llbracket x = M[e] \rrbracket^{\#} C = C \setminus \{x \to *, * \to x\}$ $\llbracket M[e_1] = e_2 \rrbracket^{\#} C = C$

where $\{x \to *, * \to x\}$ is the set of edges from/to xObviously, abstract effects preserve acyclicity of CMoreover, out-degree of nodes is ≤ 1 Abstract effects are distributive

Last Lecture

- Classification of analysis
 - · Forward vs. backward, must vs. may, kill/gen, bitvector
- Truly live variables
 - · Better approximation of "semantically life"
 - Idea: Don't care about values of variables that only affect dead variables anyway.
- Copy propagation
 - Replace registers by registers with equal value, to create dead assignments
- Whole procedure: Simple redundancy elimination, then CP and DAE to clean up

Analysis Framework

- Domain: ($\mathbb{D} = 2^{\text{Reg} \times \text{Reg}}, \supseteq$)
 - I.e.: More precise means more edges (Safe approximation: less edges)
 - Join: ∩ (Must analysis)
 - Forward analysis, initial value $d_0 = \emptyset$
- $\implies \operatorname{MOP}[u] = \bigcap \{ \llbracket \pi \rrbracket^{\#} \emptyset \mid v_0 \xrightarrow{\pi} u \}$
 - Correctness: $x \to y \in \text{MOP}[u] \implies \forall (\rho, \mu) \in \llbracket u \rrbracket$. $\rho(x) = \rho(y)$
 - · Justifies correctness of transformation wrt. MOP
 - Proof: Later!
 - Note: Formally, domain contains all graphs.
 - Required for complete lattice property!
 - But not suited for implementation (Set of all pairs of registers)
 - Add \perp -element to domain. $\llbracket k \rrbracket^{\#} \perp := \perp$.
 - Intuition: \perp means unreachable.

Table of Contents

2

Removing Superfluous Computations

Repeated Computations Background 1: Rice's theorem Background 2: Operational Semantics Available Expressions Background 3: Complete Lattices Fixed-Point Algorithms Monotonic Analysis Framework Dead Assignment Elimination Copy Propagation Summary

4

Allas Al

Avoiding Redundancy (Part

Interprocedural Analys

Analysis of Parallel Program

Replacing Expensive by Cheaper Operations

Exploiting Hardware Features

Optimization of Functional Programs

Procedure as a whole

Simple redundancy elimination

- Replaces re-computation by memorization
- Inserts superfluous moves
- 2 Copy propagation
 - Removes superfluous moves
 - Creates dead assignments
- 3 Dead assignment elimination

```
Example: a[7] - -
 r1=M[a+7]
 r_2 = r_1 - 1
 M[a+7] = r2
Introduced memorization registers
T_1 = a+7
```

$$| r_1 = M[T_1]
| T_2 = r_1 - 1
| r_2 = T_2
| T_1 = a+7$$

Table of Contents

Background: Simulation

- Given:
 - Concrete values C, abstract values D, actions A
 - Initial values $c_0 \in \mathbb{C}, d_0 \in \mathbb{D}$
 - Concrete effects $\llbracket a \rrbracket : \mathbb{C} \to \mathbb{C}$, abstract effects $\llbracket a \rrbracket^{\#} : \mathbb{D} \to \mathbb{D}$
 - With forward-generalization to paths: $\llbracket k_1 \dots k_n \rrbracket = \llbracket k_n \rrbracket \circ \dots \circ \llbracket k_1 \rrbracket$ and $\llbracket k_1 \dots k_n \rrbracket^\# = \llbracket k_n \rrbracket^\# \circ \dots \circ \llbracket k_1 \rrbracket^\#$
 - Relation $\Delta \subseteq \mathbb{C} \times \mathbb{D}$
- Assume:
 - Initial values in relation: $c_0 \Delta d_0$
 - Relation preserved by effects: c ∆ d ⇒ [[k]]c ∆ [[k]][#]d
- Get: Relation preserved by paths from initial values: [[π]]c₀ Δ [[π]][#]d₀
- Proof: Straightforward induction on paths. On whiteboard!

Background: Description relation

- Now: $c \Delta d$ Concrete value c described by abstract value d
- Moreover, assume complete lattices on $\mathbb C$ and $\mathbb D.$
 - Intuition: $x \sqsubseteq x' x$ is more precise than x'
- Assume ∆ to be monotonic on abstract values:

$$c \Delta d \wedge d \sqsubseteq d' \implies c \Delta d'$$

- · Intuition: Less precise abstract value still describes concrete value
- Assume ∆ to be distributive on concrete values:

$$(\forall c \in C. \ c \ \Delta \ d) \iff (\bigsqcup C) \ \Delta \ d$$

- Note: Implies anti-monotonicity: $c' \sqsubseteq c \land c \Delta d \implies c' \Delta d$
- Intuition: More precise concrete values still described by abstract value
- We get for all sets of paths P:

$$(\forall \pi \in \boldsymbol{P}. \llbracket \pi \rrbracket \boldsymbol{c}_0 \Delta \llbracket \pi \rrbracket^{\#} \boldsymbol{d}_0) \implies (\bigsqcup_{\pi \in \boldsymbol{P}} \llbracket \pi \rrbracket \boldsymbol{c}_0) \Delta (\bigsqcup_{\pi \in \boldsymbol{P}} \llbracket \pi \rrbracket^{\#} \boldsymbol{d}_0)$$

Intuition: Concrete values due to paths P described by abstract values

Application to Program Analysis

- Concrete values: Sets of states with ⊆
 - Intuition: Less states = more precise information
- Concrete effects: Effects of edges (generalized to sets of states)
 - $\llbracket k \rrbracket C := \bigcup_{(\rho,\mu) \in C \cap \operatorname{dom}\llbracket k \rrbracket} \llbracket k \rrbracket (\rho,\mu)$, i.e., don't include undefined effects
- Concrete initial values: All states: *c*₀ = State
- Abstract values: Domain of analysis, abstract effects: [k][#], d₀
- · Description relation: States described by abstract value
 - Usually: Define Δ on single states, and lift to set of states:

 $S \Delta A$ iff $\forall (\rho, \mu) \in S$. $(\rho, \mu) \Delta A$

- · This guarantees distributivity in concrete states
- We get: [[u]] △ MOP[u]
 - All states reachable at *u* described by analysis result at *u*.

Example: Available expressions

- Recall: $\mathbb{D} = (2^{\text{Expr}}, \supset)$
- Define: $(\rho, \mu) \Delta A$ iff $\forall e \in A$. $[e] \rho = \rho(T_e)$
- Prove: $A \supset A' \land (\rho, \mu) \Delta A \implies (\rho, \mu) \Delta A'$
- Prove: $(\rho, \mu) \Delta A \implies \llbracket a \rrbracket (\rho, \mu) = \llbracket tr(a, A) \rrbracket (\rho, \mu)$
 - where $\begin{array}{ll} \operatorname{tr}(T_e=e,A) &= \operatorname{if} e \in A ext{ then Nop else } T_e=e \mid \\ \operatorname{tr}(a,A) &= a \end{array}$
 - Transformation in CFG: $(u, a, v) \mapsto (u, tr(a, A[u]), v)$
- Prove: $\forall \rho_0, \mu_0. (\rho_0, \mu_0) \Delta d_0$
 - For AE, we have $d_0 = \emptyset$, which implies the above.
- Prove: $(\rho, \mu) \in \operatorname{dom}[\![k]\!] \land (\rho, \mu) \Delta D \implies [\![k]\!] (\rho, \mu) \Delta [\![k]\!]^{\#} D$
- Get: $\llbracket u \rrbracket \Delta$ MOP $\llbracket u \rrbracket$, thus $\llbracket u \rrbracket \Delta$ MFP $\llbracket u \rrbracket$
 - Which justifies correctness of transformation wrt. MFP

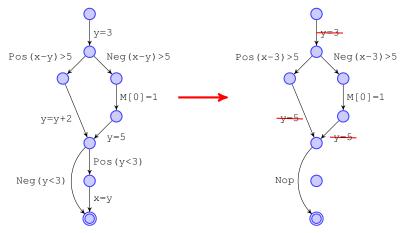
Example: Copy propagation

- $(\mathbb{D}, \sqsubseteq) = (2^{\operatorname{Reg} \times \operatorname{Reg}}, \supseteq)$
- $(\rho, \mu) \Delta C \text{ iff } \forall (x \rightarrow y) \in C. \ \rho(x) = \rho(y)$
 - Monotonic for abstract values.
 - tr(a, C): Replace variables in expressions due to edges in C
 - $(\rho, \mu) \Delta C \implies \llbracket a \rrbracket (\rho, \mu) = \llbracket tr(a, C) \rrbracket (\rho, \mu)$
 - Replace variables by equal variables
- *d*₀ = Ø. Obviously (ρ₀, μ₀) Δ Ø for all ρ₀, μ₀.
- Show $(\rho, \mu) \in \operatorname{dom}\llbracket k \rrbracket \land (\rho, \mu) \Delta C \implies \llbracket k \rrbracket (\rho, \mu) \Delta \llbracket k \rrbracket^{\#} C$
 - Assume (IH) $\forall (x \rightarrow y) \in C. \ \rho(x) = \rho(y)$
 - Assume (1) $(\rho', \mu') = \llbracket k \rrbracket (\rho, \mu)$ and (2) $x \to y \in \llbracket k \rrbracket^{\#} C$
 - Show $\rho'(x) = \rho'(y)$
 - By case distinction on k. On whiteboard.

Table of Contents

Constant Propagation: Idea

- Compute constant values at compile time
- Eliminate unreachable code



Dead-code elimination afterwards to clean up (assume y not interesting)

Approach

- Idea: Store, for each register, whether it is definitely constant at u
 - Assign each register a value from \mathbb{Z}^{\top}

- Intuition: ⊤ don't know value of register
- $\mathbb{D} = (\operatorname{Reg} \to \mathbb{Z}^{\top}) \cup \{\bot\}$
- Add à bottom-elément
 - Intuition: \bot program point not reachable
- Ordering: Pointwise ordering on functions, \perp being the least element.
- $(\mathbb{D}, \sqsubseteq)$ is complete lattice
- Examples
 - $D[u] = \bot$: *u* not reachable
 - $D[u] = \{x \mapsto \top, y \mapsto 5\}$: *y* is always 5 at *u*, nothing known about *x*

Abstract evaluation of expressions

• For concrete operator $\Box : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$, we define abstract operator $\Box^{\#} : \mathbb{Z}^{\top} \times \mathbb{Z}^{\top} \to \mathbb{Z}^{\top}$:

 $\top \Box^{\#} x := \top$ $x \Box^{\#} \top := \top$ $x \Box^{\#} y := x \Box y$

Evaluate expression wrt. abstract values and operators:
 [[e]][#]: (Reg → Z^T) → Z^T

$$\llbracket c \rrbracket^{\#} D := c \qquad \text{for constant } c$$
$$\llbracket r \rrbracket^{\#} D := D(r) \qquad \text{for register } r$$
$$\llbracket e_1 \Box e_2 \rrbracket^{\#} D := \llbracket e_1 \rrbracket^{\#} D \Box^{\#} \llbracket e_2 \rrbracket^{\#} D \qquad \text{for operator } \Box$$

Analogously for unary, ternary, etc. operators

Example

• Example:
$$D = \{x \mapsto \top, y \mapsto 5\}$$

$$[[y - 3]]^{\#} D = [[y]]^{\#} D -^{\#} [[3]]^{\#} D$$

= 5 -[#] 3
= 2

$$[[x + y]]^{\#}D = [[x]]^{\#}D + [[y]]^{\#}D$$

= $\top + 5^{\#}5$
= \top

Abstract effects (forward)

$$\llbracket k \rrbracket^{\#} \bot := \bot$$

$$\llbracket \text{Nop} \rrbracket^{\#} D := D$$

$$\llbracket \text{Pos}(e) \rrbracket^{\#} := \begin{cases} \bot & \text{if } \llbracket e \rrbracket^{\#} D = 0 \\ D & \text{otherwise} \end{cases}$$

$$\llbracket \text{Neg}(e) \rrbracket^{\#} := \begin{cases} \bot & \text{if } \llbracket e \rrbracket^{\#} D = v, v \in \mathbb{Z} \setminus \{0\} \\ D & \text{otherwise} \end{cases}$$

$$\llbracket r = e \rrbracket^{\#} D := D(r \mapsto \llbracket e \rrbracket^{\#} D)$$

$$\llbracket r = M[e] \rrbracket^{\#} D := D(r \mapsto \top)$$

$$\llbracket M[e_{1}] = e_{2} \rrbracket^{\#} D := D$$

for any edge k

For $D \neq \bot$.

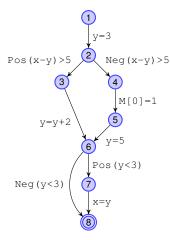
Initial value at start: $d_0 := \lambda x$. \top .

(Reachable, all variables have unknown value)

Last lecture

- · Simulation based framework for program analysis
- Abstract setting:
 - Actions preserve relation Δ between concrete and abstract state.
 - \implies States after executing path are related
 - Approximation: Complete lattice structure
 - Δ monotonic
 - Distributive \implies generalization to sets of path
- For program analysis:
 - Concrete state: Sets of program states
 - All states reachable via path.
- Constant propagation

Example



D[1]	=	$x \mapsto \top, y \mapsto \top$
D[2]	=	$x \mapsto \top, y \mapsto 3$
D[3]	=	$x \mapsto \top, y \mapsto 3$
D[4]	=	$x \mapsto \top, y \mapsto 3$
D[5]	=	$x \mapsto \top, y \mapsto 3$
D[6]	=	$x \mapsto \top, y \mapsto 5$
D[7]	=	\perp
D[8]	=	$x \mapsto \top, y \mapsto 5$

Transformations:

Remove (u, a, v) if $D[u] = \bot$ or $D[v] = \bot$ $(u, r = e, v) \mapsto (u, r = c, v)$ if $\llbracket e \rrbracket^{\#}(D[u]) = c \in \mathbb{Z}$ Analogously for test, load, store $(u, \operatorname{Pos}(c), v) \mapsto \operatorname{Nop}$ if $c \in \mathbb{Z} \setminus \{0\}$ $(u, \operatorname{Neg}(0), v) \mapsto \operatorname{Nop}$

Correctness (Description Relation)

- Establish description relation
 - Between values, valuations, states
- Values: for $v \in \mathbb{Z}$: $v \Delta v$ and $v \Delta \top$
 - Value described by same value, all values described by \top
 - Note: Monotonic, i.e. $v \Delta d \wedge d \sqsubseteq d' \implies v \Delta d'$
 - Only cases: d = d' or $d' = \top$ (flat ordering).
- Valuations: For $\rho : \operatorname{Reg} \to \mathbb{Z}, \rho^{\#} : \operatorname{Reg} \to \mathbb{Z}^{\top} : \rho \mathrel{\Delta} \rho^{\#} \text{ iff } \forall x. \ \rho(x) \mathrel{\Delta} \rho^{\#}(x)$
 - · Value of each variable must be described.
 - Note: Monotonic. (Same point-wise definition as for □)
- States: $(\rho, \mu) \Delta \rho^{\#}$ if $\rho \Delta \rho^{\#}$ and $\forall s. \neg (s \Delta \bot)$
 - · Bottom describes no states (i.e., empty set of states)
 - Note: Monotonic. (Only new case: s ∆ ⊥ ∧ ⊥ ⊑ d ⇒ s ∆ d)

Correctness (Abstract values)

Show: For every constant *c* and operator □, we have

$$c \ \Delta \ c^{\#}$$

 $v_1 \ \Delta \ d_1 \land v_2 \ \Delta \ d_2 \implies (v_1 \Box v_2) \ \Delta \ (d_1 \Box^{\#} \ d_2)$

• We get (by induction on expression)

$$\rho \Delta \rho^{\#} \implies \llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\#} \rho^{\#}$$

- Moreover, show $\forall \rho_0, \mu_0. (\rho_0, \mu_0) \Delta d_0$
 - Here: $\forall \rho_0, \mu_0$. (ρ_0, μ_0) $\Delta \lambda x$. \top
 - $\iff \rho_0 \Delta \lambda x. \top$
 - $\iff \forall x. \rho_0(x) \Delta \top$. Holds by definition.

Correctness (Of Transformations)

- Assume $(\rho, \mu) \Delta \rho^{\#}$. Show $\llbracket a \rrbracket (\rho, \mu) = \llbracket tr(a, \rho^{\#}) \rrbracket (\rho, \mu)$
 - Remove edge if $\rho^{\#} = \bot$. Trivial.
 - Replace r = e by $r = \llbracket e \rrbracket^{\#} \rho^{\#}$ if $\llbracket e \rrbracket^{\#} \rho^{\#} \neq \top$
 - From $\rho \ \Delta \ \rho^{\#} \implies \llbracket e \rrbracket \rho \ \Delta \ \llbracket e \rrbracket^{\#} \rho^{\#} \implies \llbracket e \rrbracket \rho = \llbracket e \rrbracket^{\#} \rho^{\#}$
 - Analogously for expressions in load, store, Neg, Pos.
 - Replace tests on constants by Nop: Obviously correct.
 - Does not depend on analysis result.

Correctness (Steps)

- Assume $(\rho', \mu') = \llbracket k \rrbracket (\rho, \mu)$ and $(\rho, \mu) \Delta C$. Show $(\rho', \mu') \Delta \llbracket k \rrbracket^{\#} C$.
 - By case distinction on *k*. Assume $\rho^{\#} := C \neq \bot$.
 - Note: We have $\rho \mathrel{\Delta} \rho^{\#}$
 - Case k = (u, x = e, v): To show $\rho(x := \llbracket e \rrbracket \rho) \Delta \rho^{\#}(x := \llbracket e \rrbracket^{\#} \rho^{\#})$ $\Leftarrow \llbracket e \rrbracket^{\#} \rho^{\#}$. Already proved.
 - Case k = (u, Pos(e), v) and $[e]^{\#} \rho^{\#} = 0$:
 - From $\llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\#} \rho^{\#}$, we have $\llbracket e \rrbracket \rho = 0$
 - Hence, $\llbracket Pos(e) \rrbracket(\rho, \mu) =$ undefined. Contradiction to assumption.
 - Other cases: Analogously.
- Our general theory gives us: [[u]] △ MFP[u]
 - Thus, transformation wrt. MFP is correct.

Constant propagation: Caveat

- Abstract effects are monotonic
- Unfortunately: Not distributive
 - Consider $\rho_1^{\#} = \{x \mapsto 3, y \mapsto 2\}$ and $\rho_2^{\#} = \{x \mapsto 2, y \mapsto 3\}$
 - Have: $\rho_1^{\#} \sqcup \rho_2^{\#} = \{ x \mapsto \top, y \mapsto \top \}$
 - I.e.: $[x = x + y]^{\#}(\rho_1^{\#} \sqcup \rho_2^{\#}) = \{x \mapsto \top, y \mapsto \top\}$
 - However: $[x = x + y]^{\#}(\rho_1^{\#}) = \{x \mapsto 5, y \mapsto 2\}$ and $[x = x + y]^{\#}(\rho_2^{\#}) = \{x \mapsto 5, y \mapsto 3\}$
 - I.e.: $[x = x + y]^{\#}(\rho_1^{\#}) \sqcup [x = x + y]^{\#}(\rho_2^{\#}) = \{x \mapsto 5, y \mapsto \top\}$
- Thus, MFP only approximation of MOP in general.

Undecidability of MOP

- MFP only approximation of MOP
- And there is nothing we can do about :(

Theorem

For constant propagation, it is undecidable whether $MOP[u](x) = \top$.

Proof: By undecidability of Hilbert's 10th problem

Hilbert's 10th problem (1900)

Find an integer solution of a Diophantine equation

 $p(x_1,\ldots,x_n)=0$

- Where *p* is a polynomial with integer coefficients.
 - E.g. $p(x_1, x_2) = x_1^2 + 2x_1 x_2^2 + 2$
 - Solution: (-1,1)
- Hard problem. E.g. $x^n + y^n = z^n$ for n > 2. (Fermat's last Theorem)
 - Wiles, Taylor: No solutions.

Theorem (Matiyasevich, 1970)

(Based on work of David, Putnam, Robinson) It is undecidable whether a Diophantine equation has an integer solution.

Regard the following program

```
x_1 = x_2 = \dots X_n = 0

while (*) { x_1 = x_1 + 1 }

...

while (*) { X_n = X_n + 1 }

r = 0

if (p(x_1, \dots, X_n) == 0) then r = 1

u: Nop
```

- · For any valuation of the variables, there is a path through the program
- For every path, constant propagation computes the values of the x_i
- And gets a precise value for $p(x_1, \ldots, x_n)$
- *r* is only found to be non-constant, if $p(x_1, \ldots, x_n) = 0$
- Thus, $MOP[u](r) = \top$ if, and only if $p(x_1, ..., x_n) = 0$ has a solution

Extensions

- Also simplify subexpressions:
 - For $\{x \mapsto \top, y \mapsto 3\}$, replace x + 2 * y by x + 6.
- Apply further arithmetic simplifications
 - E.g. $x * 0 \rightarrow 0, x * 1 \rightarrow x, \ldots$
- Exploit equalities in conditions
 - if (x==4) M[0]=x+1 else $M[0]=x \rightarrow$ if (x==4) M[0]=5 else M[0]=x

Use

$$\llbracket \text{Pos}(x == e) \rrbracket^{\#} = \begin{cases} D & \text{if } \llbracket x == e \rrbracket^{\#} D = 1 \\ \bot & \text{if } \llbracket x == e \rrbracket^{\#} D = 0 \\ D_1 & \text{otherwise} \end{cases}$$

where $D_1 := D(x := D(x) \sqcap \llbracket e \rrbracket^{\#} D)$

• Analogously for $Neg(x \neq e)$

Table of Contents

Interval Analysis

- Constant propagation finds constants
- But sometimes, we can restrict the value of a variable to an interval, e.g., [0..42].

Example

```
int a[42];
for (i=0;i<42;++i) {
    if (0<=i && i<42)
        a[i] = i*2;
    else
        fail();
```

- Array access with bounds check
- From the for-loop, we know $i \in [0..41]$
- Thus, bounds check not necessary

Intervals

Interval $\mathbb{I} := \{[l, u] \mid l \in \mathbb{Z}^{-\infty} \land u \in \mathbb{Z}^{+\infty} \land l \leq u\}$ Ordering \subseteq , i.e. $[l_1, u_1] \sqsubseteq [l_2, u_2]$ iff $l_1 \geq l_2 \land u_1 \leq u_2$

- Smaller interval contained in larger one
- Hence:

$$[l_1, u_1] \sqcup [l_2, u_2] = [\min(l_1, l_2), \max(u_1, u_2)]$$
$$\top = [-\infty, +\infty]$$

Problems

- Not a complete lattice. (Will add ⊥ element later)
- Infinite ascending chains: $[0,0] \sqsubset [0,1] \sqsubset [0,2] \sqsubset \dots$

Building the Domain

- Analogously to CP:
 - $\mathbb{D} := (\operatorname{Reg} \to \mathbb{I}) \cup \{\bot\}$
 - Intuition: Map variables to intervals their value must be contained in.
 - \perp unreachable
- Description relation:
 - On values: $z \Delta [I, u]$ iff $I \le z \le u$
 - On register valuations: $\rho \Delta \rho^{\#}$ iff $\forall x.\rho(x) \Delta \rho^{\#}(x)$
 - On configurations: $(\rho, \mu) \Delta I$ iff $\rho \Delta I$ and $I \neq \bot$
 - Obviously monotonic. (Larger interval admits more values)

Abstract operators

Constants
$$c^{\#} := [c, c]$$

Addition $[l_1, u_1] + [l_2, u_2] := [l_1 + l_2, u_1 + u_2]$
• Where $-\infty + _ := _ + -\infty := -\infty, \infty + _ := _ + \infty := \infty$
Negation $-\#[l, u] := [-u, -l]$
Multiplication $[l_1, u_1] * [l_2, u_2] :=$
 $[\min\{l_1 l_2, l_1 u_2, u_1 l_2, u_1 u_2\}, \max\{l_1 l_2, l_1 u_2, u_1 l_2, u_1 u_2\}]$
Division $[l_1, u_1] / \#[l_2, u_2] :=$
 $[\min\{l_1 l_2, l_1 u_2, u_1 l_2, u_1 u_2\}, \max\{l_1 l_2, l_1 u_2, u_1 l_2, u_1 u_2\}]$
• If $0 \notin [l_2, u_2]$, otherwise $[l_1, u_1] / \#[l_2, u_2] := \top$

Examples

- $5^{\#} = [5, 5]$
- $[3,\infty] + [-1,2] = [2,\infty]$
- $[-1,3] *^{\#} [-5,-1] = [-15,5]$
- $-^{\#}[1,5] = [-5,-1]$
- $[3,5]/^{\#}[2,5] = [0,2]$ (round towards zero)
- $[1,4]/{\#}[-1,1] = \top$

Abstract operators

Equality

$$[l_1, u_1] == {}^{\#} [l_2, u_2] := \begin{cases} [1, 1] & \text{if } l_1 = u_1 = l_2 = u_2 \\ [0, 0] & \text{if } u_1 < l_2 \text{ or } l_1 > u_2 \\ [0, 1] & \text{otherwise} \end{cases}$$

Less-or-equal

$$[l_1, u_1] \leq^{\#} [l_2, u_2] := \begin{cases} [1, 1] & \text{if } u_1 \leq l_2 \\ [0, 0] & \text{if } l_1 > u_2 \\ [0, 1] & \text{otherwise} \end{cases}$$

Examples

•
$$[1,2] == \# [4,5] = [0,0]$$

• $[1,2] == \# [-1,1] = [0,1]$
• $[1,2] \leq \# [4,5] = [1,1]$
• $[1,2] \leq \# [-1,1] = [0,1]$

Proof obligations

 $c \Delta c^{\#}$

 $v_1 \mathrel{\Delta} d_1 \land v_2 \mathrel{\Delta} d_2 \implies v_1 \mathbin{\square} v_2 \mathrel{\Delta} d_1 \mathbin{\square^{\#}} d_2$

Analogously for unary, ternary, etc. operators Then, we get $\rho \Delta \rho^{\#} \implies [\![e]\!] \rho \Delta [\![e]\!]^{\#} \rho^{\#}$

As for constant propagation

Effects of edges

For $\rho^{\#} \neq \bot$ $\llbracket \cdot \rrbracket^{\#} \bot = \bot$ $[Nop]^{\#} \rho^{\#} = \rho^{\#}$ $[x = e]^{\#} \rho^{\#} = \rho^{\#} (x \mapsto [e]^{\#} \rho^{\#})$ $[x = M[e]]^{\#} \rho^{\#} = \rho^{\#} (x \mapsto \top)$ $[M[e_1] = e_2]^{\#} \rho^{\#} = \rho^{\#}$ $\llbracket \text{Pos}(\boldsymbol{e}) \rrbracket^{\#} \rho^{\#} = \begin{cases} \bot & \text{if } \llbracket \boldsymbol{e} \rrbracket^{\#} \rho^{\#} = [0, 0] \\ \rho^{\#} & \text{otherwise} \end{cases}$ $\llbracket \operatorname{Neg}(\boldsymbol{e}) \rrbracket^{\#} \rho^{\#} = \begin{cases} \rho^{\#} & \text{if } \llbracket \boldsymbol{e} \rrbracket^{\#} \rho^{\#} \sqsupseteq [0, 0] \\ \bot & \text{otherwise} \end{cases}$

Last lecture

- Constant propagation
 - · Idea: Abstract description of values, lift to valuations, states
- Monotonic, but not distributive
 - MOP solution undecidable (Reduction to Hilbert's 10th problem)
- Interval analysis
 - · Associate variables with intervals of possible values

Better exploitation of conditions

$$\llbracket \operatorname{Pos}(e) \rrbracket^{\#} \rho^{\#} = \begin{cases} \bot & \text{if } \llbracket e \rrbracket^{\#} \rho^{\#} = [0, 0] \\ \rho^{\#}(x \mapsto \rho^{\#}(x) \sqcap \llbracket e_{1} \rrbracket^{\#} \rho^{\#}) & \text{if } e = x == e_{1} \\ \rho^{\#}(x \mapsto \rho^{\#}(x) \sqcap [-\infty, u]) & \text{if } e = x \le e_{1} \text{ and } \llbracket e_{1} \rrbracket^{\#} \rho^{\#} = [_, u] \\ \rho^{\#}(x \mapsto \rho^{\#}(x) \sqcap [l, \infty]) & \text{if } e = x \ge e_{1} \text{ and } \llbracket e_{1} \rrbracket^{\#} \rho^{\#} = [l, _] \\ \cdots \\ \rho^{\#} & \text{otherwise} \end{cases}$$

$$\llbracket \operatorname{Neg}(e) \rrbracket^{\#} \rho^{\#} = \begin{cases} \bot & \text{if } \llbracket e \rrbracket^{\#} \rho^{\#} \not\supseteq [0, 0] \\ \rho^{\#}(x \mapsto \rho^{\#}(x) \sqcap \llbracket e_{1} \rrbracket^{\#} \rho^{\#}) & \text{if } e = x \neq e_{1} \\ \rho^{\#}(x \mapsto \rho^{\#}(x) \sqcap [-\infty, u]) & \text{if } e = x > e_{1} \text{ and } \llbracket e_{1} \rrbracket^{\#} \rho^{\#} = [_, u] \\ \rho^{\#}(x \mapsto \rho^{\#}(x) \sqcap [l, \infty]) & \text{if } e = x < e_{1} \text{ and } \llbracket e_{1} \rrbracket^{\#} \rho^{\#} = [l, _] \\ \dots \\ \rho^{\#} & \text{otherwise} \end{cases}$$

• where $[l_1, u_1] \sqcap [l_2, u_2] = [\max(l_1, l_2), \min(u_1, u_2)]$

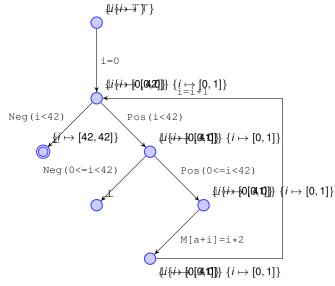
- · only exists if intervals overlap
- this is guaranteed by conditions

Transformations

- Erase nodes u with $MOP[u] = \bot$ (unreachable)
- Replace subexpressions *e* with [[*e*]][#]ρ[#] = [*v*, *v*] by *v* (constant propagation)
- Replace Pos(e) by Nop if $[0,0] \not\sqsubseteq \llbracket e \rrbracket^{\#} \rho^{\#}$ (0 cannot occur)
- Replace Neg(*e*) by Nop if $\llbracket e \rrbracket^{\#} \rho^{\#} = [0, 0]$ (Only 0 can occur)
- Yields function tr(k, ρ[#])
- Transformation: $(u, k, v) \mapsto (u, tr(k, MFP[u]), v)$
- Proof obligation:

•
$$(\rho, \mu) \Delta \rho^{\#} \implies \llbracket k \rrbracket (\rho, \mu) = \llbracket \operatorname{tr}(k, \rho^{\#}) \rrbracket (\rho, \mu)$$

Example



About 40 iterations later ...

Problem

- Interval analysis takes many iterations
- May not terminate at all for (i=0; x>0; x--) i=i+1

Widening

- Idea: Accelerate the iteration at the price of imprecision
- Here: Disallow updates of interval bounds in \mathbb{Z} .
 - A maximal chain: [3,8] \sqsubseteq $[-\infty,8] \sqsubseteq$ $[-\infty,\infty]$

Widening (Formally)

- Given: Constraint system (1) $x_i \supseteq f_i(\vec{x})$
 - f_i not necessarily monotonic
- Regard the system (2) $x_i = x_i \sqcup f_i(\vec{x})$
- Obviously: \vec{x} solution of (1) iff \vec{x} solution of (2)
 - Note: $x \sqsubseteq y \iff x \sqcup y = y$
- (2) induces a function $G: \mathbb{D}^n \to \mathbb{D}^n$

 $G(\vec{x}) = \vec{x} \sqcup (f_1(\vec{x}), \ldots, f_n(\vec{x}))$

• G is not necessarily monotonic, but increasing:

 $\forall \vec{x}. \ \vec{x} \sqsubseteq G(\vec{x})$

Widening (Formally)

- G is increasing $\implies \bot \sqsubseteq G(\bot) \sqsubseteq G^2(\bot) \sqsubseteq \dots$
 - i.e., $\langle G^i(\perp) \rangle_{i \in \mathbb{N}}$ is ascending chain
- If it stabilizes, i.e., $\vec{x} = G^k(\bot) = G^{k+1}(\bot)$, then \vec{x} is solution of (1)
- If $\mathbb D$ has infinite ascending chains, still no termination guaranteed
- Replace ⊔ by widening operator ⊔
 - Get (3) $x_i = x_i \sqcup f_i(\vec{x})$
- Widening: Any operation $\mathbb{D}\times\mathbb{D}\to\mathbb{D}$
 - **1** with $x \sqcup y \sqsubseteq x \sqcup y$
 - 2 and for every sequence a_0, a_1, \ldots , the chain $b_0 = a_0, b_{i+1} = b_i \sqcup a_{i+1}$ eventually stabilizes
- Using FP-iteration (naive, RR, worklist) on (3) will
 - compute a solution of (1)
 - terminate

To show

- Solutions of (3) are solutions of (1)
 - $x_i = x_i \sqcup f_i(\vec{x}) \supseteq x_i \sqcup f_i(\vec{x}) \supseteq f_i(\vec{x})$
- FP-iteration computes a solution of (3).
- FP-iteration terminates
 - FP-iteration step: Replace (some) x_i by $x_i \sqcup f_i(\vec{x})$
 - This only happens finitely many times (Widening operator, Criterion 2)

For interval analysis

• Widening defined as $[I_1, u_1] \sqcup [I_2, u_2] := [I, u]$ with

$$I := \begin{cases} l_1 & \text{if } l_1 \le l_2 \\ -\infty & \text{otherwise} \end{cases}$$
$$u := \begin{cases} u_1 & \text{if } u_1 \ge u_2 \\ +\infty & \text{otherwise} \end{cases}$$

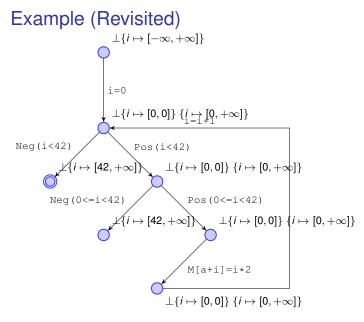
- Lift to valuations: $(\rho_1^{\#} \sqcup \rho_2^{\#})(x) := \rho_1^{\#}(x) \sqcup \rho_2^{\#}(x)$
- and to $\mathbb{D} = (\operatorname{Reg} \to \mathbb{I}) \cup \{\bot\} \colon \bot \sqcup x = x \sqcup \bot = x$
- Lis widening operator
 - **1** $x \sqcup y \sqsubseteq x \sqcup y$. Obvious
 - 2 Lower and upper bound updated at most once.
- Note: ⊔ is not commutative.

Examples

- $[-2,2] \sqcup [1,2] = [-2,2]$
- $[1,2] \sqcup [-2,2] = [-\infty,2]$
- $[1,2] \sqcup [1,3] = [1,+\infty]$
- Widening returns larger values more quickly

Widening (Intermediate Result)

- Define suitable widening
- Solve constraint system (3)
- · Guaranteed to terminate and return over-approximation of MOP
- But: Construction of good widening is black magic
 - Even may choose \sqcup dynamically during iteration, such that
 - Values do not get too complicated
 - Iteration is guaranteed to terminate

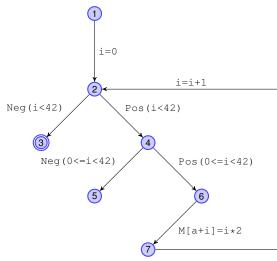


Not exactly what we expected :(

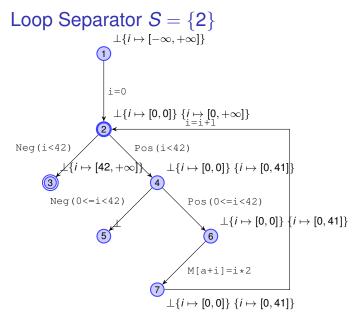
- Only apply widening at loop separators
- A set S ⊆ V is called loop separator, iff each cycle in the CFG contains a node from S.
- Intuition: Only loops can cause infinite chains of updates.
- Thus, FP-iteration still terminates

Problem

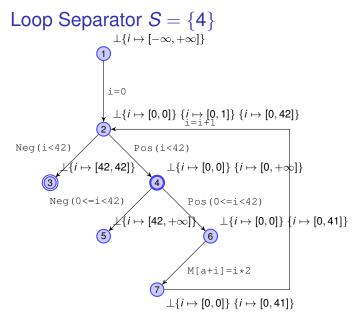
• How to find suitable loop separator



- We could take $S = \{2\}, S = \{4\}, \dots$
- Results of FP-iteration are different!



Fixed point



Fixed point

Result

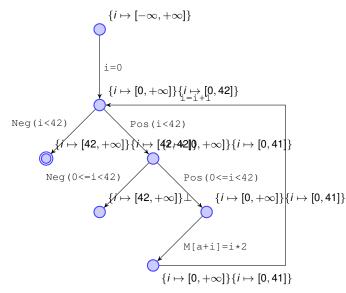
- Only $S = \{2\}$ identifies bounds check as superfluous
- Only $S = \{4\}$ identifies x = 42 at end of program
- We could combine the information
 - But would be costly in general

Narrowing

- Let \vec{x} be a solution of (1)
- I.e., $x_i \supseteq f_i(\vec{x})$
- Then, for monotonic *f_i*:
 - $\vec{x} \supseteq F(\vec{x}) \supseteq F^2(\vec{x}) \supseteq \dots$
 - By straightforward induction
 - \implies Every $F^k(\vec{x})$ is a solution of (1)!
- Narrowing iteration: Iterate until stabilization
 - Or some maximum number of iterations reached
 - Note: Need not stabilize within finite number of iterations
- Solutions get smaller (more precise) with each iteration
- Round robin/Worklist iteration also works!
 - Important to have only one constraint per x_i!

Example

Start with over-approximation. Stabilized



Discussion

- Not necessary to find good loop separator
- In our example, it even stabilizes
 - Otherwise: Limit number of iterations
- Narrowing makes solution more precise in each step
- Question: Do we have to accept possible nontermination/large number of iterations?

Accelerated narrowing

- Let $\vec{x} \supseteq F(\vec{x})$ be solution of (1)
- Consider function $H: \vec{x} \mapsto \vec{x} \sqcap F(\vec{x})$
- For monotonic *F*, we have $\vec{x} \supseteq F(\vec{x}) \supseteq F^2(\vec{x}) \supseteq \dots$
 - and thus $H^k(\vec{x}) = F^k(\vec{x})$
- Now regard $I: (\vec{x}) \mapsto \vec{x} \sqcap F(\vec{x})$, where
- □: Narrowing operator, whith
 - $1 x \sqcap y \sqsubseteq x \sqcap y \sqsubseteq x$
 - 2 For every sequence a_0, a_1, \ldots , the (down)chain $b_0 = a_0, b_{i+1} = b_i \sqcap a_{i+1}$ eventually stabilizes
- We have: $I^k(\vec{x}) \supseteq H^k(\vec{x}) = F^k(\vec{x}) \supseteq F^{k+1}(\vec{x})$.
 - I.e., $I^k(\vec{x})$ greater (valid approx.) than a solution.

For interval analysis

• Preserve (finite) interval bounds: $[l_1, u_1] \sqcap [l_2, u_2] := [l, u]$, where

$$I := \begin{cases} l_2 & \text{if } l_1 = -\infty \\ l_1 & \text{otherwise} \end{cases}$$
$$u := \begin{cases} u_2 & \text{if } u_1 = \infty \\ u_1 & \text{otherwise} \end{cases}$$

- Check:
 - $[I_1, u_1] \sqcap [I_2, u_2] \sqsubseteq [I_1, u_1] \sqcap [I_2, u_2] \sqsubseteq [I_1, u_1]$
 - Stabilizes after at most two narrowing steps
- □ is not commutative
- For our example: Same result as non-accelerated narrowing!

Discussion

- Narrowing only works for monotonic functions
 - Widening worked for all functions
- Accelerated narrowing can be iterated until stabilization
- However: Design of good widening/narrowing remains black magic

Last Lecture

- Interval analysis (ctd)
 - Abstract values: Intervals [I, u] with $I \le u, I \in \mathbb{Z}_{-\infty}, u \in \mathbb{Z}^{+\infty}$
 - Abstract operators: Interval arithmetic
- Main problem: Infinite ascending chains
 - Analysis not guaranteed to terminate
- Widening: Accelerate convergence by over-approximating join
 - Here: Update interval bounds to $-\infty/+\infty$
- Problem: makes analysis imprecise
 - Idea 1: Widening only at loop separators
 - Idea 2: Narrowing
 - FP-Iteration on solution preserves solution
 - But may make it smaller
 - Accelerated narrowing:
 - Use narrowing operator for update, that lies "in between"
 □ and original value
 - ... and converges within finite time
 - Here: Keep finite interval bounds

Recipe: Abstract Interpretation (I)

- Define abstract value domain A, with partial order ⊑
 - ⊔ must be totally defined (□ need not always exists)
- Define description relation between values: $\Delta \subseteq \mathbb{Z} \times \mathbb{A}$
 - Show: Monotonicity: $\forall a_1 \sqsubseteq a_2, v. v \Delta a_1 \implies v \Delta a_2$
 - Standard: Lift to valuations (Reg $\rightarrow A$), domain ($\mathbb{D} := (\text{Reg} \rightarrow A) \cup \{\bot\}$)
 - Define abstract operators $v^{\#} : \mathbb{A}, \Box^{\#} : \mathbb{A} \times \mathbb{A} \to \mathbb{A}$, etc.
 - Show soundness wrt. concrete ones:

 $\forall c \in \mathbb{Z}. \ v \ \Delta \ v^{\#}$

 $\forall v_1, v_2 \in \mathbb{Z}, \ d_1, d_2 \in \mathbb{A}. \ v_1 \ \Delta \ d_1 \land v_2 \ \Delta \ d_2 \implies v_1 \square \ v_2 \ \Delta \ d_1 \square^{\#} \ d_2$

- For free: $\rho \Delta \rho^{\#} \implies \llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\#} \rho^{\#}$
- Define transformation tr :: Act $\times \mathbb{D} \to Act$
 - Show correctness: $(\rho, \mu) \Delta d \implies \llbracket a \rrbracket (\rho, \mu) = \llbracket tr(a, d) \rrbracket (\rho, \mu)$
- Define abstract effects $\llbracket \cdot \rrbracket^{\#} : Act \to \mathbb{D} \to \mathbb{D}$, initial value $d_0 \in \mathbb{D}$
 - Usually: Creativity only required on Pos,Neg
 - Show: Monotonicity: $\forall d_1 \sqsubseteq d_2, a$. $\llbracket a \rrbracket^{\#} d_1 \sqsubseteq \llbracket a \rrbracket^{\#} d_2$ and simulation:

 $\forall \rho, \mu. \ (\rho, \mu) \Delta d_0$ $\forall (\rho, \mu) \in \operatorname{dom}(\llbracket a \rrbracket), d. \ (\rho, \mu) \Delta d \implies \llbracket a \rrbracket (\rho, \mu) \Delta \llbracket a \rrbracket^{\#} d$

Recipe: Abstract Interpretation (II)

- Check finite chain height of domain
 - Finite: Done
 - Infinite (or too high)
 - Define widening, narrowing operator

Short recapture of methods so far

- Operational semantics on flowgraphs
 - Edges have effect on states. Extend to paths.
 - Collecting semantics: $\llbracket u \rrbracket$ States reachable at u.
- Program analysis
 - Abstract description of
 - Forward: States reachable at u
 - Backward: Executions leaving u
 - Abstract effects of edges:
 - · Must be compatible with concrete effects
 - · Forward: Simulation; Backward: Also (kind of) simulation
 - MOP[*u*] Abstract effects reachable at *u*
 - Special case: abstract interpretation domain describes abstract values
- Transformation: Must be compatible with states/leaving paths described by abstract effects
- Computing analysis result
 - Constraint system. For monotonic abstract effects. Precise if distributive.
 - Solving algorithms: Naive iteration, RR-iteration, worklist algorithm
- Forcing convergence: Widening, Narrowing

Remark: Simulation (Backwards)

- Describe execution to end node (state, path)
- Dead variables: Execution does not depend on dead variables
 - $(\rho, \mu), \pi \Delta D$ iff $\forall x \in D, v. [[\pi]](\rho(x := v), \mu) = [[\pi]](\rho, \mu)$
- Proof obligations
 - **1** $(\rho, \mu), \varepsilon \Delta D_0$ **2** $[\![a]\!](\rho, \mu), \pi \Delta D \implies (\rho, \mu), a\pi \Delta [\![a]\!]^{\#}D$
- Yields: $\forall \rho, \mu$. $(\rho, \mu), \pi \Delta \llbracket \pi \rrbracket^{\#} D_0$
 - Note: Could even restrict to reachable states ρ, μ.

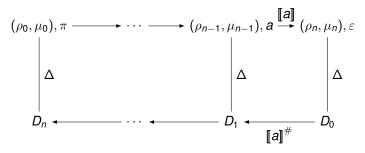
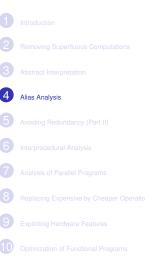


Table of Contents



Motivation

- Want to consider memory
- E.g. M[y] = 5; $x = M[y] + 1 \mapsto M[y] = 5$; x=6
- Here: Assume analyzed program is the only one who accesses memory
 - In reality: Shared variables (interrupts, threads), DMA, memory-mapped hardware, ...
 - · Compilers provide, e.g., volatile annotation

First Attempt

- Available expressions:
 - Memorize loads: Load: $x = M[e] \mapsto \{T_{M[e]} = M[e]; x = T_{M[e]}\}$
 - Effects

$$\llbracket T_e = e \rrbracket^{\#} A = \llbracket A \rrbracket^{\#} \cup \{ e \} \qquad \llbracket T_{M[e]} = M[e] \rrbracket^{\#} A = \llbracket A \rrbracket^{\#} \cup \{ M[e] \}$$
$$\llbracket x = e \rrbracket^{\#} A = \llbracket A \rrbracket^{\#} \setminus \operatorname{Expr}_{x} \qquad \llbracket M[e_1] = e_2 \rrbracket^{\#} A = \llbracket A \rrbracket^{\#} \setminus \operatorname{loads}$$

• Problem: Need to be conservative on store

. . .

• Store destroys all information about memory

Constant propagation

- Apply constant propagation to addresses?
- Exact addresses not known at compile time
- Usually, different addresses accessed at same program point
 - E.g., iterate over array
- Storing at unknown address destroys all information

Last Lecture

- Motivation to consider memory
 - Alias analysis required!
- · Changing the semantics of memory
 - · Pointers to start of blocks, indexing within blocks
 - No pointer arithmetic
 - · Some assumptions about program correctness: Semantics undefined if
 - Program accesses address that has not been allocated
 - Indexes block out of bounds
 - Computes with addresses

Extending semantics by blocked memory

- Organize memory into blocks
 - p = new(e) allocates new block of size e
 - x = p[e] loads cell e from block p
 - p[e₁] = e₂ writes cell e₁ from block p
- Semantics
 - Value: Val = $\mathbb{Z} \dot{\cup} Addr$
 - Integer values and block addresses
 - Memory described by μ : Addr $\rightharpoonup \mathbb{Z} \rightharpoonup$ Val
 - · Maps addresses of blocks to arrays of values
 - → partial function (Not all addresses/indexes are valid)
 - Assumption: Type correct
 - In reality: Type system
 - We write null and 0 synonymously

Semantics

$$\llbracket \operatorname{Nop} \rrbracket(\rho, \mu) = (\rho, \mu)$$

$$\llbracket x = e \rrbracket(\rho, \mu) = (\rho(x \mapsto \llbracket e \rrbracket \rho), \mu)$$

$$\llbracket \operatorname{Pos}(e) \rrbracket(\rho, \mu) = \llbracket e \rrbracket \rho \neq 0?(\rho, \mu) : \text{undefined}$$

$$\llbracket \operatorname{Neg}(e) \rrbracket(\rho, \mu) = \llbracket e \rrbracket \rho = 0?(\rho, \mu) : \text{undefined}$$

$$\llbracket x = p[e] \rrbracket(\rho, \mu) = (\rho(x \mapsto \mu(\llbracket p \rrbracket \rho, \llbracket e \rrbracket \rho)), \mu)$$

$$\llbracket p[e_1] = e_2 \rrbracket(\rho, \mu) = (\rho, \mu(\llbracket p \rrbracket \rho, \llbracket e_1 \rrbracket \rho) \mapsto \llbracket e_2 \rrbracket \rho)$$

$$\llbracket x = \operatorname{new}(e) \rrbracket(\rho, \mu) = (\rho(x \mapsto a), \mu(a \mapsto (i \mapsto 0 \mid 0 \le i < \llbracket e \rrbracket \rho))) \quad a \notin \operatorname{dom}(\mu)$$

- New initializes the block
 - Java: OK, C/C++: ???
- Assume that only valid addresses are used
 - Otherwise, we formally get undefined
- Assume that no arithmetic on addresses is done
- Assume infinite supply of addresses

Equivalence

- Note: Semantics does not clearly specify how addresses are allocated
- This is irrelevant, consider e.g.

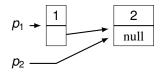
x=new(4); y=new(4) and y=new(4); x=new(4)

- Programs should be equivalent
- Although memory manager would probably assign different physical addresses
- Two states (ρ, μ) and (ρ', μ') are considered equivalent, iff they are equivalent up to permutation of addresses
 - We write $(\rho,\mu)\equiv(\rho',\mu')$
- Note: To avoid this nondeterminism in semantics:
 - Choose Addr to be totally ordered
 - Always take the smallest free address

Examples

• Building the linked list [1,2]

```
p1 = new (2)
p2 = new (2)
p1[0] = 1
p1[1] = p2
p2[0] = 2
p2[1] = null
```



Examples

List reversal

```
R = null
while (T != null) {
    H = T
    T = T[0]
    H[0] = R
    R = H
}
```

· Sketch algorithm on whiteboard

Alias analysis

- May alias: May two pointers point to the same address
 - On store: Only destroy information for addresses that may alias with stored address
- Must alias: Must two pointers point to the same address
 - If so, store to one can update information for the other
- Here: Focus on may-alias
 - · Important to limit the destructive effect of memory updates
 - Must alias: Usually only done in local scope, by, e.g., copy propagation

First Idea

- Summarize (arbitrarily many) blocks of memory by (fixed number of) allocation sites
 - Use start node of edge in CFG to identify allocation site
 - Abstract values $\mathrm{Addr}^{\#} = V$, $\mathrm{Val}^{\#} = 2^{\mathrm{Addr}^{\#}}$ (Possible targets for pointer)
 - Domain: $(\text{Reg} \rightarrow \text{Val}^{\#}) \times (\text{Addr}^{\#} \rightarrow \text{Val}^{\#})$

. . .

Effects

$$\llbracket _, \mathbf{x} = \mathbf{y}, _ \rrbracket^{\#}(\mathbf{R}, \mathbf{M}) = (R(x \mapsto R(y)), M) \qquad \text{for } y \in \text{Reg}$$
$$\llbracket _, \mathbf{x} = \mathbf{e}, _ \rrbracket^{\#}(\mathbf{R}, \mathbf{M}) = (R(x \mapsto \emptyset), M) \qquad \text{for } e \notin \text{Reg}$$
$$\llbracket \mathbf{u}, \mathbf{x} = \text{new}(\mathbf{e}), \mathbf{v} \rrbracket^{\#}(\mathbf{R}, \mathbf{M}) = (R(x \mapsto \{u\}), M)$$
$$\llbracket _, \mathbf{x} = \mathbf{p}[\mathbf{e}], _ \rrbracket^{\#}(\mathbf{R}, \mathbf{M}) = (R(x \mapsto \bigcup \{M[a] \mid a \in R[p]\}), M)$$
$$\llbracket _, \mathbf{p}[\mathbf{e}_1] = \mathbf{y}, _ \rrbracket^{\#}(\mathbf{R}, \mathbf{M}) = (R, M(a \mapsto M(a) \cup R(y) \mid a \in R(p))) \qquad \text{for } y \in \text{Reg}$$
$$\llbracket _, \mathbf{p}[\mathbf{e}_1] = \mathbf{e}, _ \rrbracket^{\#}(\mathbf{R}, \mathbf{M}) = (R, M) \qquad \text{for } e \notin \text{Reg}$$

x may point to addresses where *y* may point to. Expressions are never pointers. *x* points to this allocation site. *x* may point to everything that *a* may point to, for *p* pointing to *a* Add addresses from *y* to each possible address of *p* Expressions are never pointers.

Example

```
u: p<sub>1</sub> = new (2)
v: p<sub>2</sub> = new (2)
p<sub>1</sub>[0] = 1
p<sub>1</sub>[1] = p<sub>2</sub>
p<sub>2</sub>[0] = 2
p<sub>2</sub>[1] = null
```

• At end of program, we have

 $R = p_1 \mapsto \{u\}, p_2 \mapsto \{v\}$ $M = u \mapsto \{v\}, v \mapsto \{\}$

Description Relation

$$(\rho, \mu) \Delta (R, M) \text{ iff } \exists s : \text{Addr} \to V. \forall a, a' \in \text{Addr. } \forall x, i.$$

$$\rho(x) = a \implies s(a) \in R(x) \qquad (1)$$

$$\wedge \mu(a, i) = a' \implies s(a') \in M(s(a)) \qquad (2)$$

Intuitively: There is a mapping *s* from addresses to allocation sites, with:

- (1) If a register contains an address, its abstract value contains the corresponding allocation site
- (2) If a memory block contains an address (at any index), its abstract value contains the corresponding allocation site

From this, we can extract may-alias information: Pointers p_1, p_2 may only alias (i.e., $\rho(p_1) = \rho(p_2) \in \text{Addr}$), if $R(p_1) \cap R(p_2) \neq \emptyset$.

• B/c if $\rho(p_1) = \rho(p_2) = a \in \text{Addr}$, we have $s(a) \in R(p_1) \cap R(p_2)$

Correctness of abstract effects (sketch)

On whiteboard

Discussion

- May-point-to information accumulates for store.
 - If store is not initialized, we find out nothing
- Analysis can be quite expensive
 - · Abstract representation of memory at each program point
 - Does not scale to large programs

Flow insensitive analysis

- Idea: Do not consider ordering of statements
- Compute information that holds for any program point
 - Only one instance of abstract registers/memory needed
- For our simple example: No loss in precision

First attempt

• Each edge (u, a, v) gives rise to constraints

а	constraints
x = y	$R(x) \supseteq R(y)$
x = new(e)	$R(x) \supseteq \{u\}$
x = p[e]	$R(x) \supseteq \bigcup \{M(a) \mid a \in R(p)\}$
$p[e_1] = x$	$M(a) \supseteq (a \in R(p)?R(x) : \emptyset)$ for all $a \in V$

- Other edges have no effect
- Problem: Too many constraints
 - O(kn) for k allocation sites and n edges.
- Does not scale to big programs

Last Lecture

- Flow sensitive points-to analysis
 - · Identify blocks in memory with allocation sites
 - Does not scale. One abstract memory per program point.
- Flow-insensitive points-to analysis
 - Compute one abstract memory that approximates all program points.
 - Does not scale. Too many constraints
- Flow-insensitive alias analysis
 - Compute equivalence classes of p and p[]

Alias analysis

- Idea: Maintain equivalence relation between variables p and memory accesses p[]
 - *x* ~ *y* whenever *x* and *y* may contain the same address (at any two program points)

```
u: p<sub>1</sub> = new (2)
v: p<sub>2</sub> = new (2)
p<sub>1</sub>[0] = 1
p<sub>1</sub>[1] = p<sub>2</sub>
p<sub>2</sub>[0] = 2
p<sub>2</sub>[1] = null
```

```
• ~= { {p_1[], p_2}, {p_1}, {p_2[]}
```

Equivalence relations

- Relation $\sim \subseteq R \times R$ that is reflexive, transitive, symmetric
- Equivalence class $[p] := \{ p' \in R \mid p \sim p' \}$
- The equivalence classes partition *R*. Conversely, any partition of *R* defines an equivalence relation.
- $\sim \subseteq \sim'$ (\sim finer than \sim')
 - The set of all equivalence relations on R with \subseteq forms a complete lattice
 - ~⊥:= (=)
 - $\sim_{\top} := \mathbf{R} \times \mathbf{R}$
 - $\bigsqcup S := (\bigcup S)^*$

Operations on ERs

- find (~,p): Return equivalence class of p
- union (~, p, p'): Return finest ER \sim' with $p \sim' p'$ and $\sim \subseteq \sim'$
- On partitions of finite sets: Let $R = [p_1]_{\sim} \dot{\cup} \dots \dot{\cup} [p_n]_{\sim}$
 - union (~, p, p'): Let $p \in [p_i]_{\sim}, p' \in [p_j]_{\sim}$ Result: { $[p_i]_{\sim} \cup [p_j]_{\sim}$ } \cup { $[p_k] \mid 1 \le k \le n \land k \notin \{i, j\}$ }

Recursive Union

- If *x* ∼ *y*, then also *x*[] ∼ *y*[] (rec)
- After union, we have to add those equivalences!
- **union***(~,p,p'):
 - The finest ER that is coarser than union(~,p,p') and satisfies (rec)

Alias analysis

```
π = { {x}, {x[]} | x ∈ Vars } // Finest ER
for (_,a,_) in E do {
   case a of
    x=y: π = union*(π,x,y)
   | x=y[e]: π = union*(π,x,y[]) // y variable
   | y[e]=x: π = union*(π,x,y[]) // y variable
}
```

- Start with finest ER (=)
- Iterate over edges, and union equivalence classes

Example

```
1: p<sub>1</sub> = new (2)

2: p<sub>2</sub> = new (2)

3: p<sub>1</sub>[0] = 1

4: p<sub>1</sub>[1] = p<sub>2</sub>

5: p<sub>2</sub>[0] = 2

6: p<sub>2</sub>[1] = null
```

Example

```
1: R = null
2: if Neg (T != null) goto 8
3: H = T
4: T = T[0]
5: H[0] = R
6: R = H
7: goto 2
8:
  init \{\{H\}, \{R\}, \{T\}, \{H[]\}, \{T[]\}\}
 3 \rightarrow 4  {{H, T}, {R}, {H[], T[]}}
 4 \rightarrow 5 \qquad \{\{H, T, H[], T[]\}, \{R\}\}\}
 5 \rightarrow 6 {{H, T, H[], T[], R}}
 6 \rightarrow 7 {{H, T, H[], T[], R}}
```

Discussion

- All memory content must have been constructed by analyzed program
 - p=p[]; p=p[]; q=q[]
 - What if q points to third element of linked list at p.
- \implies Only works for whole programs, no input via memory

Correctness

- Intuition: Each address ever created represented by register
- Invariant:
 - 1 If register holds address, it is in the same class as address' representative
 - If memory holds address, it is in the same class as address of address dereferenced
- Formally: For all reachable states (ρ, μ) , there exists a map $m : \text{Addr} \to \text{Reg}$, such that

$$1 \rho(x) \in \text{Addr} \implies x \sim m(\rho(x))$$

2
$$\mu(a,i) \in \text{Addr} \implies m(a)[] \sim m(\mu(a,i))$$

• Extracting alias information: x, y may alias, if $x \sim y$.

•
$$\rho(x) = \rho(y) = a \in \text{Addr} \implies x \sim m(a) \sim y$$

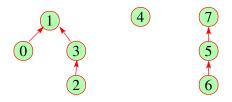
- To show: Invariant holds initially, and preserved by steps
 - Initially: By assumption, neither registers nor memory hold addresses!
 - Preservation: On whiteboard

Implementation

- Need to implement union * operation efficiently
- Use Union-Find data structure
- Equivalence classes identified by unique representative
- Operations:
 - find(x): Return representative of [x]
 - union (x, y): Join equivalence classes represented by x and y
 - Destructive update!

Union-Find: Idea

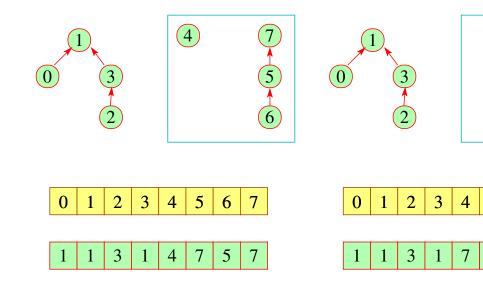
- ER represented as forest.
- Each node contains element and parent pointer.
- Elements of trees are equivalence classes
- Representatives are roots of trees
- Find: Follow tree upwards
- Union: Link root node of one tree to other tree



Union-Find: Optimizations

- Complexity: Union: *O*(1), find: *O*(*n*) :(
- Union by size: Connect root of smaller tree to root of bigger one
 - Store size of tree in root node
 - C implementation hack: Re/ab-use parent-pointer field for that
 - Complexity: Union: O(1), find: O(log n) :|

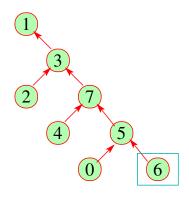
Union by size: Example



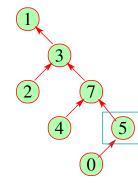
Path compression

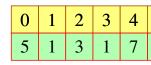
- After find, redirect pointers on path to root node
- Requires second pass for find
 - · Alternative: Connect each node on find-path to its grandfather
- Complexity, amortized for *m* find and *n* 1 union operations
 - $O(n + m\alpha(n))$
 - Where α is the inverse Ackerman-function
 - Note $n < 10^{80} \implies \alpha(n) < 5$
 - Note: This complexity is optimal :)

Path compression: Example



0	1	2	3	4	5	6	7
5	1	3	1	7	7	5	3





Placing registers on top

- Try to preserve invariant:
 - If equivalence class contains register, its representative (root node) is register
 - On union, if linking register class to non-register class:
 - Swap stored values in roots
- Then, register equivalence class can be identified by its representative

Implementing union*

```
union*(x,y):
  x = find(x); y=find(y)
  if x != y then
    union(x,y)
    if x ∈ Regs & y ∈ Regs then
    union*(x[],y[])
```

Summary

- Complexity:
 - O(|E| + |Reg|) calls to union*, find. O(|Reg|) calls to union.
- Analysis is fast. But may be imprecise.
- More precise analysis too expensive for compilers.

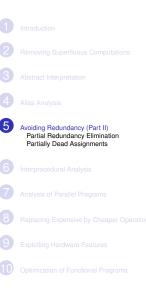
Last Lecture

- · Alias analysis by merging equivalence classes
- Implementation by union-find structure
 - Optimizations: Union-by-size, path-compression
 - Implementing union*

Please fill out evaluation forms online.

Table of Contents

Table of Contents



Idea

```
if * {
    x = M[5]
} else {
    y1 = x + 1
}
y2 = x + 1
M[1]=y1 + y2
```

- x+1 is evaluated on every path
- On else-path even two times

Goal

if * {
 x = M[5]
} else {
 y1 = x + 1
}
y2 = x + 1
M[1]=y1 + y2

 \vdash

- Insert assignments $T_e = e$, such that e is available at all program points where it is required.
- Insert assignments as early as possible.
- Do not add evaluations of e that would not have been executed at all.
 - if x!=0 then y=6 div x $\not\mapsto$ T=6 div x; if x!=0 then y=T

Very busy expressions

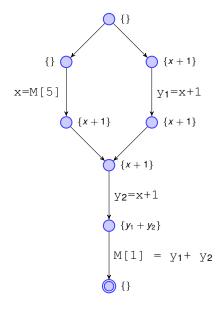
- An expression *e* is busy on path π, if it is evaluated on π before a variable of *e* is changed.
- *e* is very busy at *u*, if it is busy for all path from *u* to an end node.
- Backwards must analysis, i.e., $\sqsubseteq = \supseteq$, $\sqcup = \cap$
- Semantic intuition:
 - *e* busy on π evaluation of *e* can be placed at start of path
 - e very busy at u evaluation can be placed at u
 - Without inserting unwanted additional evaluations

Abstract effects

$$\llbracket \operatorname{Nop} \rrbracket^{\#} B = B$$
$$\llbracket \operatorname{Pos}(e) \rrbracket^{\#} B = B \cup \{e\}$$
$$\llbracket \operatorname{Neg}(e) \rrbracket^{\#} B = B \cup \{e\}$$
$$\llbracket x := e \rrbracket^{\#} B = (B \setminus \operatorname{Expr}_{x}) \cup \{e\}$$
$$\llbracket x := M[e] \rrbracket^{\#} B = (B \setminus \operatorname{Expr}_{x}) \cup \{e\}$$
$$\llbracket M[e_{1}] = e_{2} \rrbracket^{\#} B = B \cup \{e_{1}, e_{2}\}$$

- Initial value: ∅
 - · No very busy expressions at end nodes
- Kill/Gen analysis, i.e., distributive
 - MOP = MFP, if end node reachable from every node

Example (Very Busy Expressions)



Available expressions

• Recall: Available expressions before memo-transformation

$$\llbracket \operatorname{Nop} \rrbracket_{\mathcal{A}}^{\#} A := A$$
$$\llbracket \operatorname{Pos}(e) \rrbracket_{\mathcal{A}}^{\#} A := A \cup \{e\}$$
$$\llbracket \operatorname{Neg}(e) \rrbracket_{\mathcal{A}}^{\#} A := A \cup \{e\}$$
$$\llbracket R = e \rrbracket_{\mathcal{A}}^{\#} A := (A \cup \{e\}) \setminus \operatorname{Expr}_{R}$$
$$\llbracket R = M[e] \rrbracket_{\mathcal{A}}^{\#} A := (A \cup \{e\}) \setminus \operatorname{Expr}_{R}$$
$$\llbracket M[e_{1}] = e_{2} \rrbracket_{\mathcal{A}}^{\#} A := A \cup \{e_{1}, e_{2}\}$$

Transformation

- Insert $T_e = e$ after edge (u, a, v), if
 - e is very busy at v
 - · Evaluation could not have been inserted before, b/c
 - e destroyed by a, or
 - e neither available, nor very busy at u
 - Formally: $e \in B[v] \setminus \llbracket a \rrbracket_{\mathcal{A}}^{\#}(A[u] \cup B[u])$
- At program start, insert evaluations of B[v₀]
 - Note: Order does not matter

Transformation

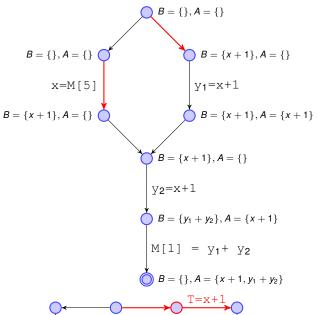
- Place evaluations of expressions
 - $(u, a, v) \mapsto \{(u, a, w), (w, T_e = e, v)\}$ for $e \in B[v] \setminus \llbracket a \rrbracket^{\#}_{\mathcal{A}}(A[u] \cup B[u])$
 - For fresh node w
- $v_0\mapsto {v_0}'$ with $(v_0', {\mathcal T}_e=e, v_0)$ for $e\in B[v_0]$
- Note: Multiple memo-assignments on one edge
 - · Can just be expanded in any order
- Replace usages of expressions

•
$$(u, x = e, v) \mapsto (u, x = T_e, v)$$

• analogously for other uses of e

Example

• For expression *x* + 1 only



Correctness (Sketch)

- Assumption: Same set of expressions occur at all outgoing edges of a node
 - True for our translation scheme
 - Be careful in general!
- \implies Required expressions are very busy at start node of edge
 - Regard path from start node over edge to end node: $\pi_1(u, a, v)\pi_2$
 - Assume expression e required by a
 - *e* ∈ *B*[*u*]
 - Show: On any path π from v₀ to v with e ∈ B[v], evaluation of e is placed such that it is available at v
 - Induction on π .
 - · Empty path: Evaluation placed before start node
 - $\pi = \pi'(u, a, v)$:
 - Case *a* modifies $e \implies e \notin \llbracket a \rrbracket_{\mathcal{A}}^{\#}(\ldots) \implies$ Evaluation placed here.
 - Case $e \notin A[u] \cup B[u] \implies \text{Evaluation placed here.}$
 - Assume: a does not modify e
 - Case $e \in B[u]$. Induction hypothesis.
 - Case $e \in A[u] \implies \pi' = \pi'_1(u', a', v')\pi'_2$, such that π'_2 does not modify e, and e required by $a' \implies e \in B[u']$. Induction hypothesis.

Non-degradation of performance

- On any path: Placement of $T_e = e$ corresponds to replacing an e by T_e
 - e not evaluated more often than in original program
- Proof sketch: Placement only done where e is very busy
 - I.e., every path from placement contains evaluation of *e*, which will be replaced
 - Moreover, no path contains two evaluations of *e*, without usage of *e* in between
 - By contradiction. Sketch on board.

Last Lecture

- Partial Redundancy Elimination
 - · Place evaluations such that
 - They are evaluated as early as possible, such that:
 - Expressions are only evaluated if also evaluated in original program
- Analysis: Very Busy Expressions
- Transformation: Placement on edges
 - · where expression stops to be very busy
 - or is destroyed (and very busy at target)
- Placement only if expression is not avalable

Application: Moving loop-invariant code

```
for (i=0;i<N; ++i)
a[i] = b + 3</pre>
```

- b+3 evaluated in every iteration.
- To the same value
- Should be avoided!

Example (CFG)

CFG of previous example Analysis results for expression b + 3 Placement happens inside loop, on edge (2, Pos(i < N), 3) :(There is no node outside loop for placing e!

```
1: i=0;
2: if (i<N) {
3: a[i] = b + 3
4: i=i+1
5: goto 2
6: }
1: i=0;
2: if (i<N) {
3: a[i] = b + 3 / / B
4: i=i+1 // A
5: goto 2 // A
6: }
1: i=0;
2: if (i<N) {
x: T=b+3
3: a[i] = T
```

Solution: Loop inversion

Idea: Convert while-loop to do-while loop

while (b) do c \longrightarrow if (b) {do c while (b)}

- Does not change semantics
- But creates node for placing loop invariant code

Example

CFG after loop inversion Analysis results for expression b + 3 Placement happens outside loop, on edge (2, Pos(i < N), 3):)

```
1: i=0;
2: if (i<N) {
3: a[i] = b + 3
4: i=i+1
5: if (i<N) goto 3
6: }
1: i=0;
2: if (i<N) {
3: a[i] = b + 3 // B
4: i=i+1 // A
5: if (i<N) goto 3 // A
6: }
1: i=0;
2: if (i<N) {
x: T=b+3;
3: a[i] = T
4: i=i+1
```

Conclusion

- PRE may move loop-invariant code out of the loop
- Only for do-while loops
- To also cover while-loops: Apply loop-inversion first
- Loop inversion: No additional statements executed.
 - But slight increase in code size.
 - Side note: Better pipelining behavior (Less jumps executed)

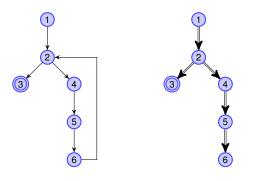
Detecting loops in CFG

- Loop inversion can be done in AST
 - · But only if AST is available
 - What if some other CFG-based transformations have already been run?
- Need CFG-based detection of loop headers
- Idea: Predominators

Predominators

- A node *u* pre-dominates *v* ($u \Rightarrow v$), iff every path $v_0 \rightarrow^* v$ contains *u*.
- \Rightarrow is a partial order.
 - reflexive, transitive, anti-symmetric

Predominator example



Remark: Immediate Predominator

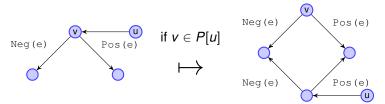
- The ⇒-relation, with reflexivity and transitivity removed, is a tree
 - Clearly, v₀ dominates every node (root of tree)
 - Every node has at most one immediate predecessor:
 - Assume $u_1 \Rightarrow v$, $u_2 \Rightarrow v$, and neither $u_1 \Rightarrow u_2$ nor $u_2 \Rightarrow u_1$
 - Regard path π to ν . Assume, wlog, $\pi = \pi_1 u_1 \pi_2 \nu$, such that $u_1, u_2 \notin \pi_2$
 - Then, every path π' to u_1 gives rise to path $\pi'\pi_2$ to v.
 - Thus, $u_2 \in \pi' \pi_2$. By asm, not in π_2 . I.e. $u_2 \in \pi'$.
 - Thus, $u_2 \Rightarrow u_1$, contradiction.

Computing predominators

- Use a (degenerate) dataflow analysis. Forward, Must. Domain 2^V.
- $[(_,_,v)]^{\#}P = P \cup \{v\}, d_0 = \{v_0\}$
 - Collects nodes on paths
 - Distributive, i.e. MOP can be precisely computed
- MOP[u] = $\bigcap \{ \llbracket \pi \rrbracket^{\#} \{ v_0 \} \mid v_0 \to^* u \}$
 - Which is precisely the set of nodes occurring on all paths to u
 - I.e. the predominators of u

Detecting loops using predominators

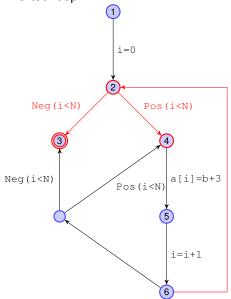
- Observation: Entry node of loop predominates all nodes in loop body.
 - In particular the start node of the back edge
- Loop inversion transformation



Obviously correct

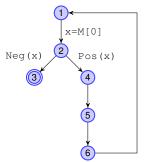
Example

CFG of running example $2 \in P[6]$, identified pattern for transformation Inverted loop



Warning

- Transformation fails to invert all loops
- E.g., if evaluation of condition is more complex
 - · E.g., condition contains loads
 - while (M[0]) ...

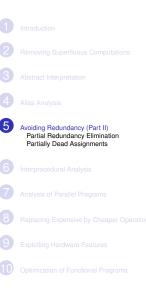


· We would have to duplicate the load-edge, too

Last Lecture

- Partial redundancy elimination
 - Very busy expressions
 - Place evaluations as early as possible
- Loop inversion
 - while \rightarrow do-while
 - · Enables moving loop-invariant code out of loops
 - · Computation on CFG: Use pre-dominators

Table of Contents



Motivation

Consider program

T = x+1 if (*) then M[0]=T

- Assume (*) does not use T, and T dead at end
- Assignment T = x + 1 only required on one path
- Would like to move assignment into this path

if (*) then $\{T = x+1; M[0]=T\}$

Idea

- Delay assignments as long as possible
- Can delay assignment x := e over edge k, if
 - x is not used, nor defined by k
 - No variable of *e* is defined by *k*

Delayable Assignments Analysis

- Domain: $\{x = e \mid x \in \text{Reg} \land e \in \text{Expr}\}$, Ordering: $\sqsubseteq = \supseteq$, forward
 - I.e. forward must analysis
- $d_0 = \emptyset$, no delayable assignments at program start

$$\llbracket \operatorname{Nop} \rrbracket^{\#} D = D$$

$$\llbracket x = e \rrbracket^{\#} D = D \setminus (\operatorname{Ass}(e) \cup \operatorname{Occ}(x)) \cup \{x = e\}$$

$$\llbracket \operatorname{Pos}(e) \rrbracket^{\#} D = D \setminus \operatorname{Ass}(e)$$

$$\llbracket \operatorname{Neg}(e) \rrbracket^{\#} D = D \setminus \operatorname{Ass}(e)$$

$$\llbracket x = M[e] \rrbracket^{\#} D = D \setminus (\operatorname{Ass}(e) \cup \operatorname{Occ}(x))$$

$$M[e_1] = e_2 \rrbracket^{\#} D = D \setminus (\operatorname{Ass}(e_1) \cup \operatorname{Ass}(e_2))$$

where

ſ

$$\begin{aligned} &\operatorname{Ass}(e) := \{x = e' \mid x \in \operatorname{Reg}(e)\} & \text{Assignments to variable in } e \\ &\operatorname{Occ}(x) := \{x' = e \mid x = x' \lor x \in \operatorname{Reg}(e)\} & \text{Assignments in which } x \text{ occurs} \end{aligned}$$

Intuition

- *x* = *e* ∈ *D*[*u*]: On every path reaching *u*, the assignment *x* = *e* is executed, and no edge afterwards:
 - Depends on x
 - Changes x or a variable of e
- Thus, this assignment can be safely moved to u

Transformation

- Delay assignments as far as possible
- · Do not place assignments to dead variables
- $(u, x = e, v) \mapsto (u, ss_1, w), (w, ss_2, v)$ where
 - ss_1 Assignments to live variables that cannot be delayed over action x = e
 - *ss*₂ Assignments to live variables delayable due to edge, but not at *v* (Other paths over *v*)
 - w is fresh node
 - Formally

$$ss_1 := \{x' = e' \in D[u] \setminus \llbracket x = e \rrbracket^{\#} D[u] \mid x' \in L[u]\}$$

$$ss_2 = \{x' = e' \in \llbracket x = e \rrbracket^{\#} D[u] \setminus D[v] \mid x' \in L[v]\}$$

• $(u, a, v) \mapsto (u, ss_1, w_1), (w_1, a, w_2), (w_2, ss_2, v)$ for a not assignment

$$ss_1 := \{x' = e' \in D[u] \setminus \llbracket a \rrbracket^{\#} D[u] \mid x' \in L[u]\}$$

$$ss_2 = \{x' = e' \in \llbracket a \rrbracket^{\#} D[u] \setminus D[v] \mid x' \in L[v]\}$$

v_e ∈ *V_{end}* → (*v_e*, *D*[*v_e*], *v'_e*)
where *v'_e* is fresh end node, and *v_e* no end node any more.

Dependent actions

- Two actions a_1, a_2 are independent, iff $\llbracket a_1 a_2 \rrbracket = \llbracket a_2 a_1 \rrbracket$
 - Actions may be swapped
- Assignments only delayed over independent actions

Correctness (Rough Sketch)

- First: *D*[*u*] does never contain dependent assignments
 - Placement order is irrelevant
 - Proof sketch: x = e only inserted by [[·]][#], after all dependent assignments removed
- Regard path with assignment (u, x = e, v).
- We have x = e ∈ [[x = e]][#]D[u]. (1) Either placed here, (2) x dead, (3) or delayable at v
 - (1) No change of path
 - (2), not (3): Assignment dropped, but was dead anyway
 - (3). Three subcases: Sketch on whiteboard!
 - (3.1) x = e stops being delayable due to dependent action
 - ⇒ Assignment placed before this action, if live
 - (3.2) *x* = *e* stops being delayable at node
 - ⇒ Assignment placed after edge to this node, if live
 - (3.3) x = e delayable until end
 - ⇒ Assignment placed at end node, if live

Example

1:	T = x+1	D:	{ }	L:	{ x }
2:	if (*) then {	D:	${T=x+1}$	L:	{ T }
3:	M[0]=T	D:	${T=x+1}$	L:	{ T }
4:	Nop	D:	{ }	L:	{ }
5:	}	D:	{ }	L:	{ }

- Placement of T = x + 1 before edge (3, 4)
 - We have $T = x + 1 \in D[3] \setminus \llbracket M[0] = T \rrbracket^{\#} D[4]$, and $T \in L[3]$

```
1:
2: if (*) then {
3: T = x+1
x: M[0]=T
4: Nop
5: }
```

Summary

- PDE is generalization of DAE
 - · Assignment to dead variable will not be placed
 - · As variable is dead on all paths leaving that assignment
- May also use true liveness.
- Non degradation of performance
 - Number of assignments on each path does not increase (without proof)
 - In particular: Assignments not moved into loops (Whiteboard)
- Profits from loop inversion (Whiteboard)

Conclusion

- Design of meaningful optimization is nontrivial
- Optimizations may only be useful in connection with others
- Order of optimization matters
- Some optimizations can be iterated

A meaningful ordering

LINV	Loop inversion
ALIAS	Alias analysis
AI	Constant propagation
	Intervals
RE	(Simple) redundancy elimination
CP	Copy propagation
DAE	Dead assignment elimination
PRE	Partial redundancy elimination
PDE	Partially dead assignment elimination

Table of Contents

Last Lecture

- Partially dead assignments
- Started semantics with procedures

Motivation

So far:

- Only regarded single procedure
- · But program typically has many procedures
- · Need to be pessimistic about their effect
- Now:
 - Analyze effects of procedures
 - · Restrict to procedures without parameters/return values
 - But with local and global variables!
 - Can emulate parameters/return values!

Extending the semantics

- Each procedure *f* represented by control flow graph *G*^{*f*}. Assume these are distinct!
- Add edge label f() for call of procedure f
- Procedure main must exist

Conf = Stack × Globals × Store Globals = Glob \rightarrow Val Store = Addr \rightarrow Val Stack = Frame⁺ Frame = V × Locals Locals = Loc \rightarrow Val

where Glob are global variable names, and Loc are local variable names

Execution, small-step semantics

- $[e](\rho_I, \rho_g)$: Val. Value of expression.
- $[a](\rho_l, \rho_g, \mu)$: Locals × Globals × Store. Effect of (non-call) action.
- Initial configuration: ([($v_0^{main}, \lambda x. 0$)], ρ_g, μ)
- $\rightarrow \subseteq \operatorname{Conf} \times \operatorname{Conf}$

$$\begin{split} &((u,\rho_l)\sigma,\rho_g,\mu) \to ((v,\rho_l')\sigma,\rho_g',\mu') \qquad \text{(basic)} \\ &\text{if } (u,a,v) \in E \land \llbracket a \rrbracket(\rho_l,\rho_g,\mu) = (\rho_l',\rho_g',\mu') \\ &((u,\rho_l)\sigma,\rho_g,\mu) \to ((v_0{}^f,\lambda x.\ 0)(v,\rho_l)\sigma,\rho_g,\mu) \qquad \text{(call)} \\ &\text{if } (u,f(),v) \in E \\ &((u,_)\sigma,\rho_g,\mu) \to (\sigma,\rho_g,\mu) \qquad \text{(return)} \\ &\text{if } u \in V_{\text{end}} \land \sigma \neq \varepsilon \end{split}$$

Example (factorial)

main():
 M[0] = fac(3)
fac(x):
 if (x <= 1) return 1
 else return x * fac(x-1)</pre>

Translation to no arguments and return values

```
main():
ml: Gx = 3;
m2: fac()
m3: M[0] = Gret
m4:
fac():
 fl: x = Gx
f2: if (x \le 1) {
 f3: Gret = 1
     } else {
f4: Gx = x-1
f5: fac()
f6: Gret = x*Gret
 f7: }
```

(10, 7.2) (f6, x : 3)(m3, -)Gx:1, Gret:1, M[0]:-(f6, x : 2)(f6, x : 3)(m3, -)*Gx* : 1, *Gret* : 1, *M*[0] : - $(f7, x : \overline{2})$ (f6, x : 3)(m3, -)<u>A run: 1, Gret : 2, M[0] : -</u> (f6, x : 3)(m3, -)*Gx* : 1, *Gret* : 2, *M*[0] : -(f7, x:3)(m3, -)*Gx* : 1, *Gret* : 6, *M*[0] : – (m3, -)*Gx* : 1, *Gret* : 6, *M*[0] : -(*m*4, –) *Gx* : 1, *Gret* : 6, *M*[0] : 6

Realistic Call Semantic

- On real machine, procedure call involves
 - · Save registers
 - Create stack frame
 - Push parameters, return address
 - Allocate stack space for local variables
 - Jump to procedure body
- Procedure return
 - Free stack frame
 - Jump to return address
 - Remove parameters from stack
 - · Restore registers
 - Handle result
- Short demo: cdecl calling convention on x86

Inlining

- Procedure call is quite expensive
- Idea: Copy procedure body to call-site

```
int f(int a, int b) {
  int l = a + b
  return l + l
}
int g (int a) {
  return f(a,a)
}
int f(int a, int b) {
  int l = a + b
  return l + l
}
int q (int a) {
  int l = a + a
  return l + l
}
```

Problems

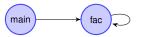
- Have to keep distinct local variables
 - Our simple language has no parameters/ returns
- Be careful with recursion
 - Inlining optimization might not terminate
- Too much inlining of (non-recursive procedures) may blow up the code
 - Exponentially!

```
void m0() {x=x+1}
void m1() {m0();m0()}
void m2() {m1();m1()}
...
void mN() {mN-1(); mN-1()}
```

• Inlining everything, program gets size $O(2^N)$

Call Graph

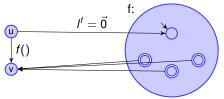
- Graph over procedures
- Edge from f to g, if body of f contains call to g
- In our examples



- Inline strategies
 - · Leaf: Only leaf procedures
 - Everything: Every non-recursive procedure
 - Real compilers use complex heuristics
 - Based on code size, register pressure, ...

Inlining transformation

- For edge (*u*, *f*(), *v*)
- Make a copy of G^f, rename locals to fresh names I^f₁,..., I^f_n
- Replace by edges:
 - $(u, I^f = \vec{0}, v_0^f)$ (Initialize locals, goto start node of copy)
 - (v_e^f, Nop, v) , for all $v_e^f \in V_{\text{end}}^f$ (Link end nodes of copy with v)



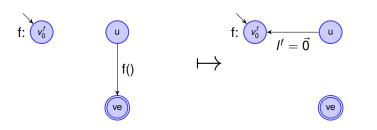
Tail call optimization

- Idea: If after recursive call, the procedure returns
- Re-use the procedure's stack frame, instead of allocating a new one

```
void f() {
    if (Gi < Gn-1) {
        t = a[Gi]
        Gi = Gi+1
        a[Gi]=a[Gi]+t
        f()
    }
}
</pre>
void f() {
    if (Gi < Gn-1) {
        if (Gi < Gn-1) {
            t = a[Gi]
            Gi = Gi+1
            a[Gi]=a[Gi]+t
            t =0; goto f
    }
}
```

- Requires no code duplication
- Have to re-initialize local variables, according to semantics
 - Target for DAE ;)

Tail-Call Transformation



Discussion

- Crucial optimization for languages without loop construct
 - E.g., functional languages
- No duplication of code or additional local variables
- The optimization may also be profitable for non-recursive calls
 - Re-use stack-space of current frame for new stack frame
 - But not expressable in our semantics (Too high-level view on locals)

Interprocedural Analysis

}

- · Want to extend our program analysis to procedures
- For example, constant propagation

```
main() { int t;
main() { int t;
  t = 0;
                              t = 0;
  if (t) M[17] = 3;
                              //if (t) M[17] = 3;
  a1 = t;
                              a1 = 0;
  work ();
                              worko ();
  ret = 1 - ret;
                             ret = 1;
}
work() {
                             worko() {
  if (a1) work();
                             //if (a1) work();
 ret = a1 ;
                              ret = 0;
```

}

Last Lecture

- Stack-based semantics with procedures
- Inlining optimization
- Tail-call optimization
- Path-based semantics

Generalization of Paths

· Recall: Paths were sequences of actions

path = $\varepsilon \mid \text{Act} \cdot \text{path}$

- Now: We can call procedures. A procedure call may
 - Return on path
 - · Not return on path
 - · Advantageous to make this visible in path structure

 $slpath = \varepsilon | Act \cdot slpath | f(slpath) \cdot slpath$

path = ε | Act · path | $f(\text{slpath}) \cdot \text{path} | f_{<} \cdot \text{path}$

- Intuitively:
 - $f(\pi)$: Call to procedure f, which executes π and returns
 - *f*<: Call to procedure *f*, which does not return
 - slpath: Same level paths, which end on same stack-level as they begin
 - Note: Inside returning call, all calls must return.

Generalization of Paths

• Recall: Paths between nodes

$$[empty] \frac{-}{u \xrightarrow{\varepsilon} u} \qquad [app] \frac{k = (u, a, v) \in E \quad v \xrightarrow{\pi} w}{u \xrightarrow{k\pi} w}$$

Now

$$[empty] \frac{-}{u \xrightarrow{\varepsilon}_{sl} u} \quad [app] \frac{k = (u, a, v) \in E \quad v \xrightarrow{\pi}_{sl} w}{u \xrightarrow{k\pi}_{sl} w}$$

$$[call] \frac{(u, f(), v) \in E \quad v_0^f \xrightarrow{\pi_1}_{\text{sl}} v_e^f \in V_{end} \quad v \xrightarrow{\pi_2}_{\text{sl}} w}{u \xrightarrow{f(\pi_1)\pi_2}_{\text{sl}} w}$$

And

$$[emp]\frac{-}{u \xrightarrow{\varepsilon} u} \quad [app]\frac{k = (u, a, v) \in E \quad v \xrightarrow{\pi} w}{u \xrightarrow{k\pi} w}$$

$$[call] \frac{(u, f(), v) \in E \quad v_0^f \xrightarrow{\pi_1} v_{\theta}^f \in V_{end} \quad v \xrightarrow{\pi_2} w}{u \xrightarrow{f(\pi_1)\pi_2} w}$$

$$[ncall] \frac{(u, f(), v) \in E \quad v_0^{f} \xrightarrow{\pi} w}{u \xrightarrow{f_{<} \pi} w}$$

Executions of paths

Recall

$$\llbracket \varepsilon \rrbracket s = s \quad \llbracket k\pi \rrbracket s = \llbracket \pi \rrbracket (\llbracket k \rrbracket s)$$

Now

$$\llbracket \varepsilon \rrbracket s = s \quad \llbracket k\pi \rrbracket s = \llbracket \pi \rrbracket (\llbracket k \rrbracket s)$$
$$\llbracket f(\pi) \rrbracket s = H \llbracket \pi \rrbracket s \quad \llbracket f_{<} \rrbracket s = \text{enter } s$$

where

enter
$$(\rho_l, \rho_g, \mu) := (\vec{0}, \rho_g, \mu)$$

combine $((\rho_l, \rho_g, \mu), (\rho'_l, \rho'_g, \mu')) := (\rho_l, \rho'_g, \mu')$
 $H \ e \ s := \text{combine}(s, (e(\text{enter } s)))$

Intuition:

enter Set up stack frame combine Combine procedure result with old frame

Example

f () { SL-path through main if x>0 then { x = x - 1x=1 f () f(Path from main to u x = x + 1Pos(x>0)x=1 } else { x=x-1 f< u: Nop f (Pos(x>0)} Neg(x>0)x=x-1} Nop f<) main () { Neg(x>0)x = x + 1x = 1;) f () x = 0x = 0}

Equivalence of semantics

Theorem

The stack-based and path-based semantics are equivalent:

$$(\exists \sigma. ([\boldsymbol{u}, \rho_l], \rho_g, \mu) \to^* ([\boldsymbol{v}, \rho_l']\sigma, \rho_g', \mu')) \\ \iff (\exists \pi. \boldsymbol{u} \xrightarrow{\pi} \boldsymbol{v} \land [\![\pi]\!] (\rho_l, \rho_g, \mu) = (\rho_l', \rho_g', \mu'))$$

Proof sketch (Whiteboard)

Auxiliary lemma: Same-level paths

$$\begin{array}{l} (([\boldsymbol{u},\rho_l],\rho_{\boldsymbol{g}},\mu)) \to^* ([\boldsymbol{v},\rho_l'],\rho_{\boldsymbol{g}}',\mu') \\ \iff (\exists \pi. \ \boldsymbol{u} \xrightarrow{\pi}_{\mathrm{sl}} \boldsymbol{v} \wedge [\![\pi]\!](\rho_l,\rho_{\boldsymbol{g}},\mu) = (\rho_l',\rho_{\boldsymbol{g}}',\mu')) \end{array}$$

- Main ideas (\Longrightarrow)
 - Induction on length of execution
 - Identify non-returning calls:
 - Execution in between yields same-level paths (aux-lemma)
- Main ideas (<==)
 - Induction on path structure
 - · Executions can be repeated with stack extended at the bottom

$$(\sigma, \rho_g, \mu) \rightarrow^* (\sigma', \rho'_g, \mu') \implies (\sigma \hat{\sigma}, \rho_g, \mu) \rightarrow^* (\sigma' \hat{\sigma}, \rho'_g, \mu')$$

Abstraction of paths

- Recall: Abstract effects of actions: [[a]][#] : D → D
 - Actions: Nop, Test, Assign, Load, Store
- Now: Additional actions: Returning/non-returning procedure call
- Require: Abstract effects for f(π) and f_<
 - Define abstract enter[#]_f, combine[#]_f
 - $H_f^{\#} e d = \operatorname{combine}_f^{\#}(d, e(\operatorname{enter}_f^{\#}(d)))$
 - $[\![f(\pi)]\!]^{\#} d = H_{f}^{\#} [\![\pi]\!]^{\#} d$
 - $[\![f_{<}]\!]^{\#}d = \operatorname{enter}_{f}^{\#}(d)$

Example: Copy constants

- Simplified constant propagation
 - · Conditions not exploited
 - Only assignments of form x = y and $x = c, c \in \mathbb{Z}$
- Domain: $\mathbb{D} := \text{Reg} \to \mathbb{Z}^{\top}$
- Initially: $d_0 \ l := 0, l \in \text{Loc}, \ d_0 \ g := \top, g \in \text{Glob}$
- Abstract effects

$$[\![x := c]\!]^{\#} d = d(x := c) \text{ for } c \in \mathbb{Z}$$

$$[\![x := y]\!]^{\#} d = d(x := d(y)) \text{ for } y \in \text{Reg}$$

$$[\![x := e]\!]^{\#} d = d(x := \top) \text{ for } e \in \text{Expr} \setminus (\mathbb{Z} \cup \text{Reg})$$

$$[\![x := M(e)]\!]^{\#} d = d(x := \top)$$

$$[\![\text{Pos}(e)]\!]^{\#} d = [\![\text{Neg}(e)]\!]^{\#} d = [\![\text{Nop}]\!]^{\#} d = [\![M(e_{1}) = e_{2}]\!]^{\#} d = d$$

$$\text{enter}_{f}^{\#} d = d(l := 0 \mid l \in \text{Loc})$$

$$\text{combine}_{f}^{\#} d d' = \lambda x. \ x \in \text{Loc}?d(x) : d'(x)$$

Correctness

- Description relation (ρ_l, ρ_g, μ) Δ d
 - iff $\rho_l \Delta d|_{\text{Loc}}$ and $\rho_g \Delta d|_{\text{Glob}}$
- Show: $\forall \rho_g, \mu$. $\llbracket \pi \rrbracket (\vec{0}, \rho_g, \mu) \Delta \llbracket \pi \rrbracket^{\#} d_0$
 - · By induction on path
 - Then, case distinction on edges
 - · Generalization of simulation proofs for intraprocedural case

Computing Solutions

- Interested in $MOP[u] := \bigsqcup \{ \llbracket \pi \rrbracket^{\#} d_0 \mid v_0^{\text{main}} \xrightarrow{\pi} u \}$
- Idea: Constraint system for same-level effects of functions

$$\begin{split} S[v_0^{f}] &\supseteq \text{ id} & (\text{start}) \\ S[v] &\supseteq \llbracket k \rrbracket^{\#} \circ S[u] & k = (u, a, v) \in E & (\text{edge}) \\ S[v] &\supseteq H^{\#}(S[f]) \circ S[u] & k = (u, f(), v) \in E & (\text{call}) \\ S[f] &\supseteq S[v_e^{f}] & v_e^{f} \in V_{\text{end}}^{f} & (\text{end}) \end{split}$$

And for effects of paths reaching u

$$\begin{array}{ll} R[v_0^{\mathrm{main}}] \supseteq \mathrm{enter}^{\#} d_0 & (\mathrm{start}) \\ R[v] \supseteq \llbracket k \rrbracket^{\#} R[u] & k = (u, a, v) \in E & (\mathrm{edge}) \\ R[v] \supseteq H^{\#} S[f] R[u] & k = (u, f(), v) \in E & (\mathrm{call}) \\ R[v_0^{f}] \supseteq \mathrm{enter}^{\#} R[u] & (u, f(), v) \in E & (\mathrm{calln}) \end{array}$$

Coincidence Theorems

• Let MFP be the least solution of R, then we have

 $\mathsf{MOP} \sqsubseteq \mathsf{MFP}$

- · For monotonic effects
- If each program point is reachable, and all effects as well as *H*[#] are distributive:

MOP = MFP

- Generalization of corresponding intra-procedural theorems
- Intuition: Constraint system joins early
 - Information from multiple incoming edges
 - All paths through procedure on returning call

Remaining problem

- How to compute effects of call efficiently?
 - How to represent functions $\mathbb{D} \to \mathbb{D}$
 - efficiently?
- · For copy constants:
 - Domain is actually finite: Only need to consider constants that actually occur in the program
 - But this would yield huge tables for functions
- Possible solutions:
 - · Find efficient representation for functions
 - Function actually not applied to all values $d \in \mathbb{D}$. \implies compute on demand.

Efficient representation of same-level effects

• Observation: Functions $S[u] \neq \bot$ are of form $\langle m \rangle$ where

$$\langle m \rangle := \lambda D x. m_1 x \sqcup \bigsqcup_{y \in m_2} D y$$

- $m_1 x : \mathbb{Z}_{\perp}^{\top}$ Join of constants that may be assigned to x
- $m_2 x : 2^{\overline{\text{Reg}}}$ set of variables that may be assigned to x (non-empty)
- Let $F := \{ \langle m \rangle | m : \text{Reg} \to \mathbb{Z}_{\perp}^{\top} \times 2^{\text{Reg}} \}$ be the set of those functions
- To show: id, [[a]][#] ∈ F, and F closed under ∘, ⊔, enter[#], and H[#]

Identity and effects representable

$$\begin{split} \mathsf{id} &= \langle \lambda x. \ (\bot, \{x\}) \rangle \\ \llbracket x := e \rrbracket^{\#} &= \begin{cases} \langle \mathrm{id}(x \mapsto (c, \emptyset)) \rangle & \text{ for } e = c \in \mathbb{Z} \\ \langle \mathrm{id}(x \mapsto (\bot, \{y\})) \rangle & \text{ for } e = y \in \mathrm{Reg} \\ \langle \mathrm{id}(x \mapsto (\top, \emptyset)) \rangle & \text{ otherwise} \end{cases} \end{split}$$

· Effects of other actions similarly

Closed under function composition and join

$$\langle m \rangle \circ \langle m' \rangle = \langle \lambda x. \ (m_1 \ x \sqcup \bigsqcup_{y \in m_2} m'_1 \ y, \bigcup_{y \in m_2} m'_2 \ y) \rangle$$

$$\langle m \rangle \sqcup \langle m' \rangle = \langle m \sqcup m' \rangle$$

• Intuition: Assigned constants by m_1 , or by m'_1 , and variable goes through m_2

•
$$[x := c; foo]^{#}$$
, or $[x := y; y := c]^{#}$

- Note: If x not touched, we have $m_2 x = \{x\}$
- Note: \Box defined pointwise: $(m \sqcup m') x = (m_1 x \sqcup m'_1 x, m_2 x \cup m'_2 x)$

Closed under enter[#] and $H^{\#}$

$$\begin{aligned} \text{enter}^{\#} &= \langle (\lambda x. \ (0, \emptyset)) |_{\text{Loc}} \rangle \oplus \text{id} |_{\text{Glob}} \\ \mathcal{H}^{\#}(\langle m \rangle) &= \text{id} |_{\text{Loc}} \oplus (\langle m \rangle \circ \text{enter}^{\#}) |_{\text{Glob}} \\ \langle m \rangle |_{\text{Loc}} \oplus \langle m' \rangle |_{\text{Glob}} &:= \langle \lambda x. \ x \in \text{Loc}?m \ x : m' \ x \rangle \end{aligned}$$

- Intuition
 - Function call only affects globals
 - enter[#] is effect of entering function (set locals to 0)
 - $f_{\text{Loc}} \oplus f'_{\text{Glob}}$ Use *f* for local variables, *f'* for global variables

Recall initial example

```
main() { int t;
 t = 0;
              // t=0, a1=T, ret=T
 if (t)
              // t=0, a1=T, ret=T
  M[17] = 3; // t=0, a1=T, ret=T
 a1 = t; // t=0, a1=T, ret=T
 work (); // t=0, a1=0, ret=T
 ret = 1 - ret; // t=0, a1=0, ret=0
}
               // t=0, a1=0, ret=T
work() {
 if (a1) { // id
                                        al=0, ret=T
                                        al=0, ret=T
   work() // id
  Nop } // id[ ret->(1, {a1}) ] a1=0, ret=0
 ret = a1 ; // id[ ret->(1, {ret, a1}) ] a1=0, ret=T
             // id[ ret->(1, {a1}) ] a1=0, ret=0
```

Discussion

- At least copy-constants can be determined interprocedurally
- For that, we had to ignore conditions and complex assignments
- However, for the reaching paths, we could have been more precise
- Extra abstractions were required as
 - 1 Set of abstract same-level effects must be finite
 - 2 and efficiently implementable

Last Lecture

- Copy-Constant propagation
- Functional approach to interprocedural analysis
 - Compute same-level effects by constraint system
 - · Find efficient representation for same-level effects

Idea: Evaluation on demand

- Procedures often called only for few distinct abstract arguments
 - Observed early (Sharir/Pneuli'81, Cousot'77)
- Only analyze procedures for these
- Intuition: [f, a][#] effect of f if called in abstract state a
- Put up constraint system

$$\begin{split} \llbracket v_0^f, a \rrbracket^{\#} &\supseteq a \\ \llbracket v, a \rrbracket^{\#} \supseteq \llbracket k \rrbracket^{\#} (\llbracket u, a \rrbracket^{\#}) & \text{for basic edge } k = (u, -, v) \\ \llbracket v, a \rrbracket^{\#} \supseteq \operatorname{combine}^{\#} (\llbracket u, a \rrbracket^{\#}, \llbracket g, \operatorname{enter}^{\#} (\llbracket u, a \rrbracket^{\#}) \rrbracket^{\#}) & \text{for call edge } k = (u, g(), v) \\ \llbracket f, a \rrbracket^{\#} \supseteq \llbracket v_{e}^f, a \rrbracket^{\#} & \text{for } v_{e}^f \in V_{end}^f \end{split}$$

· Idea: Keep track of effect for any node of procedure

Evaluation on demand

- This constraint system may be huge
- Idea: Only evaluate $[\![f, a]\!]^{\#}$ for values *a* that actually occur
 - Local fixed-point algorithms (not covered)
- But, we can do an example nevertheless :)

Example: Full constant propagation

```
// a1, ret | locals
main() { int t;
 t = 0; \qquad T, T \mid 0
 if (t) \top, \top \mid 0
  M[17] = 3; \perp
 al = t; T, T = 0
 work (); 0, \top | 0
 ret = 1 - ret; 0,0 | 0
}
                  0, 1 \mid 0
                  [work, (0, ⊤)]<sup>#</sup>
work() {
 if (al)
                  Ο,Τ
  work()
                Ο,Τ
 ret = a1;
}
                  0,0
```

Only need to keep track of a1 for calling context of work

Discussion

- This analysis terminates, if
 - D has finite height,
 - · and every procedure only analyzed for finitely many arguments
- Analogous algorithms have proved efficient for analysis of PROLOG
- Together with points-to analysis, algorithms of this kind used in the Goblint-Tool
 - Data-race detection for C with POSIX-Threads

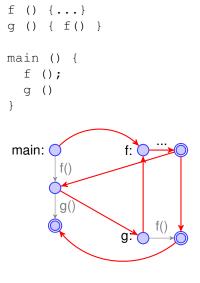
Crude approximation

- Start with very crude approximation:
 - Just insert edges from function-call to procedure start
 - And from return of procedure to target-node of function call
- I.e, for (u, f(), v), generate constraints

$$\begin{array}{l} D[v_0^f] \supseteq \operatorname{enter}_f^{\#} D[u] \\ D[v] \supseteq \operatorname{combine}_f^{\#} (D[u], D[v_e^f]) & v_e^f \in V_{\operatorname{end}}^f \end{array}$$

- Clearly covers all possible paths
- But also infeasible ones

Crude approximation, example



Infeasible paths

Call strings

- Idea: Call string contains sequence of up to k program points
- These are the topmost *k* return addresses on the stack
- Analyze procedures for every (feasible) call-string
- Only create edges that match call-string

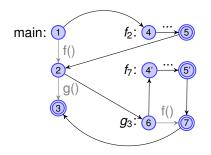
Call strings

$$\begin{split} D[v_0^f, (v\omega)|_k] &\supseteq \text{enter}^{\#}(D[u, \omega]) & (u, f(), v) \in E \\ D[v, \omega] &\supseteq \text{combine}^{\#}(D[u, \omega], D[f, (v\omega)|_k]) & (u, f(), v) \in E \\ D[f, \omega] &\supseteq D[v_e, \omega] & v_e \in V_{\text{end}}^f \end{split}$$

• where $((\cdot)|_k)$ limits string size to k, cutting off nodes from the end

Example

f () {...}
g () { f() }
main () {
 f();
 g()
}



Discussion

- Analysis terminates if D has finite height
- Call strings with k = 0 matches crude approximation
- Can increase precision by eliminating (some) infeasible paths
- Cost increases exponentially with size of k
- In practice k = 0 or k = 1
- Correctness proof: Simulation wrt. stack-based semantics

Summary: Interprocedural Analysis

- Semantics: Stack-based, path-based
- Analysis:
 - Functional: Compute same-level effects
 - Requires efficient representation of effects
 - · Evaluation on demand: Same-level effects for finite number of arguments
 - Requires finite/small number of abstract arguments for each function
 - Call-Strings: Limit stack-depth, add extra (stack-insensitive) paths above depth limit
 - · Adds extra imprecision, exponentially cost in depth-limit

Table of Contents

Analysis of Parallel Programs

- Concurrency gets more important nowadays
- Admits new classes of bugs
 - E.g, data races
- These are hard to find/ hard to reproduce
- Can program analysis help?

Data races

· Concurrent accesses to global data, one is a write

```
int g = 0;
t1 () {
  g = g + 1
}
main () {
  fork t1;
  g = g + 1
  join;
  print g
}
```

- What will the program print?
 - Assuming sequential consistency?
- Answer: In most cases: 2
- But in very rare cases: 1
- Depends on machine, other programs, OS, start time, ...

Locks

- Threads can acquire/release locks
- Each lock can only be acquired by one thread at the same time
- Other threads that want to acquire the lock have to wait
- Used to prevent data races

```
int g = 0; lock lg;
t1 () {
    acquire(lg); g = g + 1; release(lg);
}
main () {
    fork t1;
    acquire(lg); g = g + 1; release(lg);
    join;
    print g
}
```

Demo: Goblint data race analyzer

- Program with data race
- Try to show bad reproducibility + dependence on machine load, etc.
- Show goblint-analyzer to find the race

```
http://goblint.in.tum.de
```

Abstract semantics with locks

- We will regard an abstract semantics with locks
- I.e., it contains no state beyond the current program points and status of locks
- Concrete program mapped to this semantics
 - E.g., pointer analysis to identify locks
- Has more possible executions than concrete program
- Analysis results are safe
 - If we find no datarace, there is none
 - But there may be false positives

Parallel flowgraphs with fork

- Add fork(v) edge label, that forks new thread starting at v
 - For now, we ignore joins!
- Abstract semantics: State is multiset of nodes.
 - Initial state: {*v*₀}

$$\begin{array}{ll} (\{u\} \dot{\cup} s) \rightarrow (\{v\} \dot{\cup} s) & (u, a, v) \in E \\ (\{u\} \dot{\cup} s) \rightarrow (\{v, w\} \dot{\cup} s) & (u, \operatorname{fork}(w), v) \in E \end{array}$$

Parallel flowgraphs with fork and locks

- Additionally: Finite set of locks L, actions acq(I) and rel(I)
- State: Each thread together with its acquired locks
- Initial state: {(*v*₀, ∅)}

$$\begin{array}{c} (\{(u,L)\} \stackrel{.}{\cup} s) \rightarrow (\{(v,L)\} \stackrel{.}{\cup} s) \\ (\{(u,L)\} \stackrel{.}{\cup} s) \rightarrow (\{(v,L),(w,\emptyset)\} \stackrel{.}{\cup} s) \\ (\{(u,L)\} \stackrel{.}{\cup} s) \rightarrow (\{(v,L \cup \{l\})\} \stackrel{.}{\cup} s) \\ (\{(u,L)\} \stackrel{.}{\cup} s) \rightarrow (\{(v,L \setminus \{l\}\} \stackrel{.}{\cup} s) \\ (\{(v,L)\} \stackrel{.}{\cup} s) \rightarrow (\{(v,L \setminus \{l\}\} \stackrel{.}{\cup} s) \\ (u,\operatorname{rel}(l),v) \in E \end{array}$$

- Note: We assume that a thread only releases locks that it possesses.
- We assume that a thread does not acquire a lock it already possesses.
- Invariant: For each reachable state, the thread's lock-sets are disjoint

$$\{(v_0,\emptyset)\} \to^* \{(u_1,L_1),(u_2,L_2)\} \stackrel{.}{\cup} s \implies L_1 \cap L_2 = \emptyset$$

Analysis Plan

- Lock-insensitive may-happen in parallel (MHP)
 - · Sets of program points that may be executed in parallel
- Lock-sets
 - · Sets of locks that must be allocated at program point
 - Used to make MHP more precise
 - MHP(u, v) only if u and v have disjoint lock sets
- Data-Races
 - Identify conflicting program points, with outgoing actions that read/write the same global variable
 - Check whether they may happen in parallel

Lock-insensitive MHP

- Put up constraint system, R[u]: Set of (interesting) nodes reachable from u
 - Reachable also over forks

$R[u] \supseteq \{u\}$	if <i>u</i> interesting	(R.node)
$R[u] \supseteq R[v]$	$if\;(u,_,v)\in {\pmb{E}}$	(R.edge)
$R[u] \supseteq R[w]$	$if\;(u,fork(w),_)\in \textit{E}$	(R.trans)

$\mathrm{MHP}[v] \supseteq \mathrm{MHP}[u]$	$if\;(u,_,v)\in {\pmb{E}}$	(MHP.edge)
$\mathrm{MHP}[w] \supseteq \mathrm{MHP}[u]$	$if \ (u, fork(w), v) \in E$	(MHP.trans)
$\mathrm{MHP}[v] \supseteq R[w]$	$if \ (u, fork(w), v) \in E$	(MHP.fork1)
$\mathrm{MHP}[w] \supseteq R[v]$	$if \ (u, fork(w), v) \in E$	(MHP.fork2)

(*R.node*) Interesting node reachable from itself (*R.edge*) Propagate reachability over edge (*R.trans*) Propagate reachability over fork (*MHP.edge*) If this edge executed, other threads still at same positions (*MHP.trans*) Start node of forked thread parallel to other threads (*MHP.fork*1) Forking thread parallel to everything that may be reached from forked thread (*MHP.fork*2) Forked thread parallel to everything that may be reached from forking thread

Correctness

• For interesting nodes *u* and *v* (also *u*=*v*), we have:

$$\exists s. \{v_0\} \rightarrow^* \{u, v\} \, \dot{\cup} \, s \implies u \in \mathrm{MHP}[v]$$

- Proof sketch
 - Auxiliary: $\{u\} \rightarrow^* \{v\} \cup s \implies v \in R[u]$
 - Find the crucial fork, where *u* is reached from, wlog, the forked thread, and *v* is reached from the forking thread
 - $\{v_0\} \to^* \{a\} \cup ..., \text{ and } (a, \text{fork}(c), b) \in E, \text{ and } \{b\} \to^* \{u\} \cup ..., \text{ and } \{c\} \to^* \{v\} \cup ...$

Lock-set analysis

Forward, must analysis (standard)

$$LS[v_0] \subseteq \emptyset$$

$$LS[w] \subseteq \emptyset$$

$$LS[v] \subseteq LS[u]$$

$$LS[v] \subseteq LS[u] \cup \{I\}$$

$$LS[v] \subseteq LS[u] \setminus \{I\}$$

$$(u)$$

 $(u, \operatorname{fork}(w), v) \in E$ $(u, a, v) \in E, a \text{ no lock-action}$ $(u, \operatorname{acq}(l), v) \in E$ $(u, \operatorname{rel}(l), v) \in E$

• Correctness:

$$I \in LS[u] \implies (\forall s. \{(v_0, \emptyset)\} \rightarrow^* \{(u, L)\} \dot{\cup} s \implies I \in L)$$

Data-Race analysis

- Interesting nodes:
 - Nodes with actions that read or write global variables
- For each pair (u, v) of conflicting nodes, check $u \in MHP[v] \implies LS[u] \cap LS[v] \neq \emptyset$
- If satisfied, report "definitely no data race"
- Otherwise, report possible data race

Example

```
int q = 0; lock lq;
   t1 () {
1:
     acquire(lg);
                        R: 2
                                  MHP: {7,11} L: {}
2: q = q + 1;
                        R: 2
                                  MHP: {7,11} L: {lg}
3: release(lg);
                        R: {}
                                  MHP: {7,11} L: {lg}
4:
                                  MHP: {7,11} L: {}
  }
   main () {
5:
     fork t1;
                        R: 2,7,11 MHP: {}
                                             L: {}
6:
     acquire(lg);
                        R: 7,11
                                  MHP: {2}
                                              L: {}
7:
     q = q + 1;
                        R: 7,11 MHP: {2}
                                              L: {lg}
8:
     release(lg);
                                  MHP: {2}
                        R: 11
                                              L: {lq}
9:
     join;
                        R: 11
                                  MHP: {2}
                                              L: {}
10:
                        R: 11
                                  MHP: {2}
   acquire(lq);
                                              L: {}
11: print q
                        R: 11
                                  MHP: {2}
                                              L: {lg}
12:
     release(lg);
                        R: {}
                                  MHP: {2}
                                             L: {lg}
13: }
                        R: {}
                                  MHP: {2}
                                              L: {}
```

- Check lock-sets for 2/7 and 2/11
- Lock *lg* contained in all of them
- Program is safe!

Discussion

- Simple (and relatively cheap) analysis
- Can prove programs data-race free
- But may return false positives, due to:
 - Not handling joins
 - · Ignoring data completely
 - Not handling interaction of locks and control flow
 - Fork inside lock
 - Deadlocks
- Goblint:
 - Interprocedural
 - Pointer-analysis
 - Constant propagation
 - · Equality/inequality of indexes
 - ...

Discussion

· Freedom of data races often not enough

```
int x[N];
void norm() {
    lock l; n = length(x); unlock l;
    lock l; x = 1/n * x; unlock l;
}
```

- Thread-safe? No!
- \implies Transactionality
- Advanced locking patterns
 - E.g., lock chains:

```
lock 1; lock 2; unlock 1; lock 3; unlock 2 ...
```

• Two lock-chains executed simultaneously will never overtake

Last Lecture

- Analysis of parallel programs
 - Intraprocedural with thread creation
 - May-happen in parallel + lockset analysis = datarace analysis
- Caveats
 - · Need to abstract program into model with fixed locks
 - Problematic if locks are addressed via pointers/arrays
 - Datarace freedom may no be enough
 - Transactions
 - Advanced locking patterns like lockchains

Table of Contents

Table of Contents

Optimization of Functional Programs

Motivating Example

```
for (i=l;i<r;i=i+h) {
    a=a_0 + b*i
    M[a] = ...
}</pre>
```

- Initialize array in range: [1, r[, every hth element
- Element size of array: b
- Loop requires r I multiplications
- Multiplications are expensive, addition much cheaper
- Observation: From one iteration of the loop to the next:
 - Difference between *a*s is constant: $(a_0 + b(i + h)) (a_0 + bi) = bh$

Optimization

- First, loop inversion
- Second, pre-compute difference and replace computation of a
 - No multiplication left in loop
- If
- i not used elsewhere in the loop, and
- i dead after loop
- b not zero
- Get rid of *i* altogether

```
i=1;
if (i<r) {
  do {
    a=a0 + b*i
    M[a] = ...
    i=i+h
  } while (i<r)</pre>
}
i=1;
if (i<r) {
  delta = b \star h
  a=a0 + b*i
```

In general

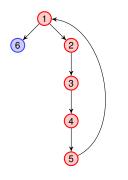
- Identify
 - loops
 - iteration variables
 - constants
 - Matching use structures

Loops

- Identify loop by node v where back-edge leads to, i.e., (u, a, v) ∈ E with v ⇒ u
- Nodes of loop:

$$\operatorname{loop}[v] = \{ w \mid w \to^* v \land v \Rightarrow w \}$$

• I.e., nodes which can only be reached via *v*, and from which *v* can be reached again



Iteration variable

- Variable i, such that
 - All assignments to *i* in loop have form i := i + h
 - where *h* is loop constant
- Loop constant: Plain constant, or, more sophisticated:
 - · Expression that does not depend on variables modified in loop
- Heuristics for application:
 - There is an assignment to *i* in loop
 - Assignment to i executed in every iteration

Strength reduction

- Strength reduction possible for expressions of the form *a*₀ + *b* * *i*, such that
 - *a*₀, *b* are loop constants
 - *i* is iteration variable with increment *h*
- Introduce temporary variables a and Δ
- Initialize $a = a_0 + b * i$ and $\Delta = b * h$ right before loop
 - Note: Loop must be inverted, to avoid extra evaluations!
- Add $a = a + \Delta$ after assignments to *i*
- Replace expression $a_0 + b * i$ by a

Excursus: Floyd-Style verification

- Establish invariants for CFG-nodes: I_u for all $u \in V$
- Invariant is set of states
 - Equivalent notation: Characteristic formula over variables/memory
 - E.g., a = a₀ + b * i describes {(ρ, μ) | ρ(a) = ρ(a₀) + b * ρ(i)}
- Show:
 - $(\rho_0, \mu_0) \in I_{\nu_0}$
 - for states (ρ_0, μ_0) that satisfy precondition (Here: all states)
 - For all edges (*u*, *a*, *v*), we have

$$(\rho,\mu) \in I_{u} \cap \operatorname{dom}(\llbracket a \rrbracket) \implies \llbracket a \rrbracket (\rho,\mu) \in I_{v}$$

- Then, we have, for all nodes u: $\llbracket u \rrbracket \subseteq I_u$
 - Proof: Induction on paths.
 - Recall $\llbracket u \rrbracket := \{(\rho, \mu) \mid \exists \rho_0, \mu_0, \pi. v_0 \xrightarrow{\pi} u \land \llbracket \pi \rrbracket (\rho_0, \mu_0) = (\rho, \mu) \}$
 - Intuition: All states reachable at u
 - Collecting semantics
- And can use this fact to
 - Show correctness of program
 - Justify transformations
 - ...

Correctness

- Prove that $a = a_0 + b * i \land \Delta = b * h$ is invariant for all nodes in loop
 - Except the target nodes of assignments to i
 - There, we have $a = a_0 + b * (i h) \land \Delta = b * h$
- Proof:
 - Entering loop: Have put initialization right before loop!
 - Edge inside loop:
 - No assignments to Δ , *b*, and *h*
 - Assignment i := i + h: Check $a = a_0 + b * i \implies a = a_0 + b * (i + h h)$.
 - Assignment a := a + Δ. Only occurs directly after assignment to *i*. Check a = a₀ + b * (*i* − h) ∧ Δ = b * h ⇒ a + Δ = a₀ + b * i
 - Other edges: Do not modify variables in invariant

Table of Contents

Optimization of Functional Programs

Peephole Optimization

- Idea: Slide a small window over the code
- · Optimize aggressively inside this window
- Examples:

$$x = x * 2 \rightarrow x = x + x$$

$$x = x + 1 \rightarrow x + +$$

$$x = 5 + a - a \rightarrow x = 5$$

$$x = x \rightarrow \text{Nop}$$

$$x = 0 \rightarrow x = x \oplus x$$

Sub-Problem: Elimination of Nop

- For edge (*u*, Nop, *v*), such that *u* has no further outgoing edges
 - Identify *u* and *v*
 - Attention: Do not collapse Nop-loops
- Implementation
 - 1 For each node:
 - Follow chain of Nop-edges. (Check for loop)
 - Then redirect all edges on this chain to its end
 - Por each edge (u, a, v) with (v, Nop, w) and v no other outgoing nodes: Replace by (u, a, w)
 - Complexity: Linear, O(|E|)
 - 1 No edge redirected twice.
 - (For each newly discovered edge, at most one more edge followed)
 - Por each edge, only one more edge followed

Table of Contents

Optimization of Functional Programs

Motivation

- Translate CFG to instruction list
- Need to insert jumps. No unique translation.
- Crucial for performance

```
. . .
                                                              jneg bl 6
                                                              с1
while (b) {
                                 ¬b
                                           h
                                                         5:
                                                              halt
   . . .
                                 75
                                                         6:
                                           22
                                                              . . .
   if (b1) {
                                                              jmp 1
     C1;
                                 C_1
                                    64
     break;
                                           33
                                        b1
                                                         1:
                                                              jneg b 7
   }
                                             \neg b_1
                                                               . . .
                                           46
                                                              jpos b1 6
                                             . . .
                                                              jmp 1
                                           5
                                                         6:
                                                              с1
                                                         7:
                                                              halt
```

1:

jneg b 5

Bad linearization, jump in loop Good linearization, jump out of loop

Heuristics

- Avoid jumps inside loops
- Assign each node its loop nesting depth (temperature)
 - Hotter nodes are in inner loops
- If jump needs to be inserted: Jump to colder node (out of loop)

Implementation

Compute temperatures

- Compute predominators
- · Identify back edges
- For each loop head v (i.e., (u, _, v) is back edge)
 - Increase temperature of nodes in loop[v]
 - Recall:

 $loop[v] = \{w \mid w \to^* v \land v \Rightarrow w\}$

2 Linearize

- Pre-order DFS to number nodes
- Visit hotter successors first

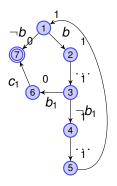
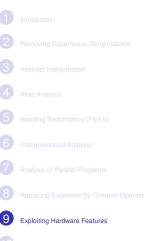


Table of Contents

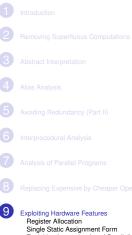


Optimization of Functional Programs

Motivation

- · Program needs to be compiled to specific hardware
- Which has some features that can be exploited for optimization, e.g.
 - Registers
 - Pipelines
 - Caches
 - Multiple Processors

Table of Contents



Single Static Assignment Form Exploiting Instruction Level Parallelism Improving Memory/Cache Behaviour

Nomenclature

- Variables Var, e.g. *x*, *y*, *z*, ...: Variables in source program (formerly also called registers)
- Registers Reg, e.g. R_1, R_2, \ldots : Registers after register allocation

Motivation

- Processor only has limited number of registers
- Variables need to be mapped to those registers
- If no more registers free: Spill to memory
 - Expensive!
- Want to map as much variables as possible to registers

Example

- 1: x=M[a]
- 2: y=x+1
- 3: if (y=0) {
- 4: z=x*x
- 5: M[a]=z
 - } else {
- 7: t=-y*y
- 8: M[a]=t
- 9: }

```
1: R_1 = M[R_3]
```

```
2: R<sub>2</sub>=R<sub>1</sub>+1
```

```
3: if (R<sub>2</sub>=0) {
```

```
4: R_1 = R_1 * R_1
```

```
5: M[R_3] = R_1
```

7:
$$R_1 = -R_2 * R_2$$

8:
$$M[R_3] = R_1$$

```
9: }
```

- How many registers are needed? Assuming all variables dead at 9
- Variables: *a*, *x*, *y*, *z*, *t*.
- Three registers suffice: $x, z, t \mapsto R_1, y \mapsto R_2, a \mapsto R_3$

Live Ranges

- Live range of variable x: $L[x] := \{u \mid x \in L[u]\}$
 - Set of nodes where x is alive:
 - Analogously: True live range
- Observation: Two variables can be mapped to same register, if their live ranges do not overlap

Example

Interference graph

- $I = (\text{Var}, E_I)$, with $(x, y) \in E_i$ iff $x \neq y$ and $L[x] \cap L[y] \neq \emptyset$
 - Graph over variables. Edge iff live ranges overlap.
 - I is called interference graph
- In our example:

Last lecture

- · Peephole optimization, removal of NOP-edges
- Linearization
 - Temperature of nodes = loop nesting depth
 - Preferably jump to colder nodes
- Register allocation
 - Minimal coloring of interference graph
 - NP-hard

Background: Minimal graph coloring

- Given: Graph (V, E)
- Find coloring of nodes $c: V \to \mathbb{N}$, such that
 - $(u, v) \in E \implies c(u) \neq c(v)$
 - I.e., adjacent nodes have different colors
 - $\max\{c(v) \mid v \in V\}$ is minimal
- Example:

Complexity

- Finding a minimum graph coloring is hard
 - Precisely: NP-complete to determine whether there is a coloring with at most *k* colors, for *k* > 2.
- Need heuristics

Greedy Heuristics

- Iterate over nodes, and assign minimum color different from already colored neighbors
- Can be implemented using DFS
- In theory, result may be arbitrarily far from optimum
 - Regard crown graph *C_n*, which is a complete bipartite graph over 2*n* nodes, with a perfect matching removed.
 - $C_n = (a_i, b_i \mid i \in 1 ... n, (a_i, b_j) \mid i \neq j)$
 - Minimal coloring uses two colors: One for the as, and one for the bs
 - Greedy coloring with order $a_1, b_1, a_2, b_2, \dots$ uses *n* colors
- Node ordering heuristics
 - Nodes of high degree first
 - Here: Pre-order DFS

Greedy heuristics, pseudocode

```
color(u):
    n = { v | (u,v) in E }
    c(u) = min i. i>=0 and forall v in n. i != c(v)
    for v in n
        if (c(v)==-1) color(v)
main:
    for u in V do c(u) = -1;
```

for u in V do
 if c(u) ==-1 then color(u)

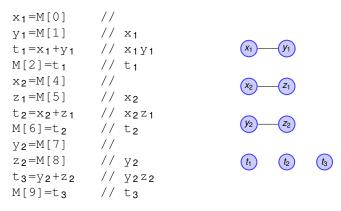
Live Range Splitting

- Consider basic block,
 - i.e., sequence of statements, no jumps in/from in between
 - $(u, a_1, v_1), (v_1, a_2, v_2), \dots, (v_{n-1}, a_n, v)$, with no other edges touching the v_i .
- Example:

```
x=M[0] //
v=M[1] // x
t=x+y // xy
M[2]=t // t
x=M[4] //
z=M[5] // x
t=x+z // x z
M[6]=t // t
v=M[7] //
z=M[8] // y
t=y+z // yz
M[9]=t // t
```


- Requires 3 registers
- But can do same program with two registers!

Live range splitting



- In general: Rename variable if it is redefined
- The interference graph forms an interval graph.

Interval Graphs

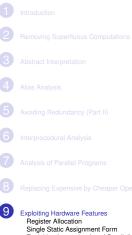
- Nodes are intervals over the real numbers (here: natural numbers).
- Edge between [i, j] and [k, l], iff $[i, j] \cap [k, l] \neq \emptyset$
 - I.e., edges between overlapping intervals
- On interval graphs, coloring can be determined efficiently
 - · Use greedy algorithm, order intervals by left endpoints
 - Proof idea:
 - After coloring all nodes with left endpoint *i*, there are exactly *o*(*i*) colors allocated.
 - Where $o(i) := |\{v \in V \mid i \in v\}|$ number of nodes containing *i*.
 - Obviously, there is no coloring with less than $\max\{o(i) \mid i \in \mathbb{N}\}$ colors

Wrap-up

- · Heuristics required for register allocation
- If number of available registers not sufficient
 - · Spill registers into memory (usually into stack)
 - Preferably, hold variables from inner loops in registers
- For basic blocks:
 - Efficient optimal register allocation
 - Only if live ranges are split
- Splitting live ranges for complete program

 \implies Single static assignment form (SSA)

Table of Contents



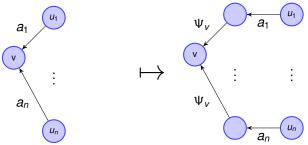
Single Static Assignment Form Exploiting Instruction Level Parallelism Improving Memory/Cache Behaviour

Idea

- Generalize live-range splitting to programs
- Proceed in two steps
 - Transform program such that every program point v is reached by at most one definition of variable x which is live at v.
 - Introduce a separate variant x_i for each definition of x, and replace occurrences of x by the reaching variants

SSA, first transformation

- Assume that start node has no incoming edges.
 - Otherwise, add new start node before transformation
- At incoming edges to join points v, i.e., nodes with > 1 incoming edges:
 - Introduce new edges, labeled with Ψ_{ν}
 - For now: $\Psi_{\nu} := Nop$



Reaching definitions

- Compute reaching definitions for each variable x and program point v.
 - Intuitively: The definitions that determined the value of *x*
- Analyzed by forward may analysis, over domain 2^{Defs}
 - where $Defs = Var \times V$

$$\llbracket (u, x := e, v) \rrbracket^{\#} R = R \setminus \text{Defs}(x) \cup \{(x, v)\}$$
$$\llbracket (u, x := M[e], v) \rrbracket^{\#} R = R \setminus \text{Defs}(x) \cup \{(x, v)\}$$
$$\llbracket (u, a, v) \rrbracket^{\#} R = R \qquad \text{for other edges}$$

- Initial value: $R_0 := \{(x, v_0) \mid x \in Var\}$
 - Intuitively: Interpret program start as end-point of definition for every variable

Simultaneous assignments

- At incoming edges to join points v:
- Set $\Psi_{v} := \{x = x \mid x \in L[v] \land |R[v] \cap \text{Defs}(x)| > 1\}$
 - Assignment x = x for each live variable that has more than one reaching definition
 - Simultaneous assignment

Example

```
1: x:=M[I]
2: y:=1
3: while (x>0) {
4: y=x*y
5: x=x-1
}
6: M[R] = y
7:
1: x:=M[I]
2: y:=1
3: if not (x>0) goto 6;
4: y=x*y
5: x=x-1;
   goto 3
6: M[R]=y
7:
1: x:=M[I]
2: y:=1
A: Nop // Psi3
3: if not (x>0) goto 6
4: y=x*y
5: x=x-1
B: Nop // Psi3
  goto 3
```

Discussion

- This ensures that only one definition of a variable reaches each program point
 - Identifying the definitions by simultaneous assignments on edges to same join points
- · However, we may introduce superfluous simultaneous definitions
- Consider, e.g.

```
1: if (*) goto 3
2: x=1
 goto 4
3: x=2
4: if (*) goto 6
5: M[0]=x
6: M[1]=x
7: HALT
1: if (*) goto 3
2: x=1
A: x=x
 goto 4
3: x=2
B: x=x
```

Improved Algorithm

- Introduce assignment x = x before node v only if reaching definitions of x at incoming edges to v differ
- Repeat until each node v is reached by exactly one definition for each variable live at v
 - Extend analysis for reaching definitions by
 [(u, {x = x | x ∈ X}, v)][#]R := R \ Defs(X) ∪ X × {v}

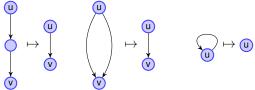
Theorem

For a CFG with n variables, and m nodes with in-degree greater one, the above algorithm terminates after at most n(m + 1) rounds.

- The efficiency depends on the number of rounds
 - For well-structured CFGs, we only need one round
 - Example where 2 rounds are required on board.
 - We always may terminate after k rounds by using naive algorithm

Well-structured CFGs

• A CFG is well-structured, if it can be reduced to a single edge or vertex by the following transformations



Examples

- Flowgraphs produced by only using the following control-flow commands are well-structured
 - if, while, do-while, for
- Break/Continue may break well-structuredness
- Some examples on board

Second phase

- Assume, each program point *u* is reached by exactly one definition (*x*, *w*) ∈ *R*[*u*] for each variable *x* live at *u*
- Define $\Phi_u(x) := x_w$ for the *w* with $(x, w) \in R[u]$
- Transform edge (u, a, v) to $(u, T_{u,v}(a), v)$, where

$$T_{u,v}(\operatorname{Nop}) = \operatorname{Nop}$$

$$T_{u,v}(\operatorname{Neg}(e)) = \operatorname{Neg}(\Phi_u(e))$$

$$T_{u,v}(\operatorname{Pos}(e)) = \operatorname{Pos}(\Phi_u(e))$$

$$T_{u,v}(x = e) = x_v = \Phi_u(e)$$

$$T_{u,v}(x = M[e]) = x_v = M[\Phi_u(e)]$$

$$T_{u,v}(M[e_1] = e_2) = M[\Phi_u(e_1)] = \Phi_u(e_2)$$

$$T_{u,v}(\{x = x \mid x \in X\}) = \{x_v = \Phi_u(x) \mid x \in X\}$$

and $\Phi_u(e)$ applies Φ_u to every variable in e

Example

```
1: x:=M[0]
2: y:=1
A: x=x | y=y
3: if not (x>0) goto 6;
4: y=x*y
5: x=x-1
B: x=x | y=y
    goto 3
6: M[1] = y
7:
1: x_2 := M[0]
2: y<sub>A</sub>:=1
A: x_3 = x_2 | y_3 = y_A
3: if not (x_3>0) goto 6;
4: y5=x3*y3
5: x<sub>B</sub>=x<sub>3</sub>-1
B: x_3 = x_B | y_3 = y_5
    goto 3
6: M[1]=y<sub>3</sub>
7:
```

Register Allocation for SSA form

Theorem

Assume that every program point is reachable from start and the program is in SSA form without assignments to dead variables.

Let λ denote the maximal number of simultaneously live variables and G the interference graph of the program variables. Then:

 $\lambda = \omega(\mathbf{G}) = \chi(\mathbf{G})$

where $\omega(G), \chi(G)$ are the maximal size of a clique in G and the minimal number of colors for G, respectively.

A minimal coloring of G, i.e., an optimal register allocation can be found in polynomial time.

Background: Register allocation for SSA

- Interference graphs of program in SSA-form are chordal
 - I.e., every cycle of length > 3 has a chord
 - i.e., an edge between two nodes of the cycle that is, itself, not part of the cycle
- A graph is chordal, iff it has a perfect elimination order
 - I.e., an ordering of the nodes, such that each node *u* and all adjacent nodes *v* > *u* form a clique.
- Using a reverse perfect elimination ordering as node ordering for the greedy algorithm yields a minimal coloring
- For graphs in SSA form, the dominance relation induces a perfect elimination ordering on the interference graph
 - Thus, we do not even need to construct the interference graph:
 - Just traverse CFG with pre-order DFS, and assign registers first-come first serve.

Background: Adjusting register pressure

- Via λ, we can simply estimate the amount of required registers (register pressure)
- And only perform optimizations that increase register pressure if still enough registers available

Discussion

- With SSA form, we get a cheap, optimal register allocation
- But: We still have the simultaneous assignments
 - · Which are meant to be executed simultaneously
 - Note: Original variables may be mapped to arbitrary registers
 - I.e., $R_1 = R_2 | R_2 = R_1$ swaps registers R_1 and R_2
- · We need to translate these to machine instructions
 - Use auxiliary register: $R_3 = R_1$; $R_1 = R_2$; $R_2 = R_3$
 - Use XOR-swap: $R_1 = R_1 \oplus R_2$; $R_2 = R_1 \oplus R_2$; $R_1 = R_1 \oplus R_2$
- But what about more than two registers?

Discussion (ctd)

• Cyclic shifts: $R_1 = R_2 | R_2 = R_3 | ... | R_n = R_1$

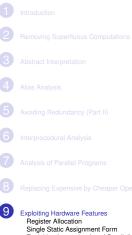
• Require n-1 swaps: $R_1 \leftrightarrow R_2$; $R_2 \leftrightarrow R_3$; ...; $R_{n-1} \leftrightarrow R_n$

- Permutations: Consider permutation π , i.e., bijection $\{0, \ldots n\} \rightarrow \{0, \ldots n\}$
 - Cycle in a permutation: Sequence p_1, \ldots, p_k such that
 - $\pi(p_1) = p_2, \ldots, \pi(p_k) = p_1, \text{ and } i \neq j \implies p_i \neq p_j$
 - Cayley distance: $\ddot{n} \#$ cycles. Equals number of required swaps
 - Process each cycle separately
- General case: Each register occurs on LHS at most once
 - · Decompose into sequence of linear assignments and cyclic shifts

Interprocedural Register Allocation

- For every local variable, there is an entry in the stack frame
- · Save locals to stack before call, restore after call
- Sometimes, there is hardware support for this
- Otherwise, we have to insert load and stores. We may ...
 - Save only registers which may actually be overwritten
 - · Save only registers which are live after the call
 - May restore into different registers \implies reduction of live ranges

Table of Contents



Single Static Assignment Form Exploiting Instruction Level Parallelism Improving Memory/Cache Behaviour

Motivation

- Modern processors do not execute instructions one after the other
- Each instruction passes multiple phases
 - which are independent, and thus can be done in parallel for multiple instructions
 - Pipelining
- Hardware for executing instructions is duplicated (superscalar processors)
 - Independent instructions can be executed simultaneously
 - Usually combined with pipelining
- · Who decides what instructions to parallelize
 - The compiler. \implies VLIW architectures
 - E.g., IA64, on Itanium processors
 - The processor (e.g. x86)
 - · Compiler should arrange instructions accordingly

Pipelining

- Execute instruction in multiple phases
 - e.g., fetch, decode, execute, write
 - · Which are handled by different parts of the processor
- Idea: Keep all parts busy by having multiple instructions in the pipeline
- · Problem: Instructions may depend on each other
 - e.g., R₂ = 0; R = R+1; R = R+R
 - execute phase of second instruction cannot start, until write-phase of first instruction completed
 - Pipeline stall.
 - But compiler could have re-arranged instructions
 - R = R+1; R₂= 0; R = R+R

Superscalar architectures

- Fetch > 1 instruction per cycle.
- Execute them in parallel if independent
- Processor checks independence
 - Out-of-order execution: Processor may re-order instructions
- Or compiler checks independence (VLIW)

- You may bring in two handwritten A4 sheets
- · We will not ask you to write OCaml programs

Last Lecture

- Register allocation
 - by coloring interference graph
 - by going to SSA-form
- Instruction level parallelism
 - Pipelining, superscalar architectures

Observation

- These architectures are profitable if there are enough independent instructions available
- Here:
 - **1** Re-arrange independent instructions (in basic blocks)
 - 2 Increase size of basic blocks, to increase potential for parallelizing

Data dependence graph

- Consider basic block *a*₁;...; *a*_n
- Instructions a_i and a_j, i < j, are dependent, iff read-write a_i reads register written by a_j write-read a_i writes register read by a_j write-write a_i and a_j both write same register
- Dependence graph: Directed graph with
 - $V := \{a_1, ..., a_n\}$
 - $(a_i, a_j) \in E$ iff a_i and a_j are dependent
- Instructions in basic block can be reordered
 - As long as ordering respects dependence graph

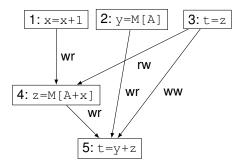
Example

- 1: x=x+1
- 2: y=M[A]
- 3: t=z
- 4: z=M[A+x]
- 5: t=y+z

Possible re-ordering:

- 2: y=M[A]
- 1: x=x+1

- 4: z=M[A+x]
- 5: t=y+z



Instruction Scheduling

- Goal: Find topological ordering that stalls pipeline as few as possible
 - Problems: Data dependencies, limited processor resources (e.g., only single floating-point unit)
 - In general: NP-hard problem
- Common heuristics: List scheduling
- While scheduling, keep track of used processor resources
 - Requires (more or less precise) model of processor architecture
- Assign priorities to source nodes in graph
- Schedule node with highest priority first
- Heuristics for priorities
 - · If required resources are blocked: Lower priority
 - If dependencies not yet available: Lower priority
 - If node creates many new sources: Rise priority
 - If node lies on critical path: Rise priority

Example: Live-range splitting

- Live-range splitting helps to decrease dependencies
- No re-ordering possible
- 1: x=r
- 2: y=x+1
- 3: x=s
- 4: z=x+1
 - Can be re-ordered
- 1: $x_1 = r$
- 2: $y=x_1+1$
- 3: x₂=s
- 4: z=x₂+1
 - Some processors do that dynamically
 - → Register renaming

• Re-ordering

Loop unrolling

Consider the example

```
short M [...];
for (i=0;i<n;++i) {
    M[i] = 0
}</pre>
```

- On 32 bit architecture: Writing 16 bit words
 - Expensive!
- Consider unrolled loop (unroll factor 2)

```
short M [...];
for (i=0;i+1<n;) {</pre>
 M[i] = 0
 i=i+1
 M[i] = 0
 i=i+1
}
if (i<n) {M[i]=0; i=i+1} // For odd n
short M [...];
for (i=0;i+1<n;i=i+2) {</pre>
  (int)M[i] = 0
```

Discussion

- · Loop unrolling creates bigger basic blocks
- Which open more opportunities for parallelization
- Quick demo with gcc -O2 -funroll-loops

Loop fusion

- Fuse together two successive loops
 - With the same iteration scheme
 - That are not data-dependent
- for (...) {c₁}; for (...) {c₂} \mapsto for (...) {c₁; c₂}
- In general:
 - *i*th iteration of c_1 must not read data, that is written in < ith iteration of c_2
 - *i*th iteration of c_2 must not read data, that is written in > ith iteration of c_1
- Heuristics
 - Data written to disjoint places
 - E.g., different, statically allocated arrays
 - More sophisticated analyses, e.g., based on integer linear programming

Example

• Consider the following loop, assume *A*, *B*, *C*, *D* are guaranteed to be different

```
for (i=0;i<n;++i) C[i] = A[i] + B[i];
for (i=0;i<n;++i) D[i] = A[i] - B[i];
```

Loop fusion yields

for (i=0;i<n;++i) {
 C[i] = A[i] + B[i];
 D[i] = A[i] - B[i]}</pre>

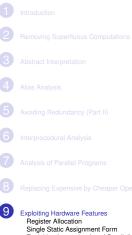
· Which may be further optimized to

```
for (i=0;i<n;++i) {
  R<sub>1</sub> = A[i]; R<sub>2</sub> = B[i];
  C[i] = R<sub>1</sub> + R<sub>2</sub>;
  D[i] = R<sub>1</sub> - R<sub>2</sub>}
```

Warning

- The opposite direction, loop fission, splits one loop into two
- May be profitable for large loops
 - Smaller loops may fit into cache entirely
 - Accessed memory more local, better cache behavior

Table of Contents



Single Static Assignment Form Exploiting Instruction Level Parallelism Improving Memory/Cache Behaviour

Motivation

- Aligning of data
- Cache-aware data access
- Reduction of allocation/deallocation cost

Alignment of data

- Processor usually loads 32/64 bit words from memory
 - But only from address which is multiple of 4/8
 - · Read from odd addresses needs to be split
 - Expensive
- · So compilers can align data in memory accordingly
 - Data on stack (parameters, local variables)
 - Code (labels, functions, loop-heads)
 - Layout of structures
- At the cost of wasting more memory

Cache-aware data access

- Load instruction loads whole cache-line
- Subsequent loads within the same cache-line much faster
- Re-arrange memory accesses accordingly
- Important case: Multi-dimensional arrays
 - · Iteration should iterate according to memory layout

Example

- Array A[N] [M]
- Assume layout: & (A[i,j]) = i + j*N
- for (i=0;i<N;++i) for (j=0;j<M;++j) x=x+A[i,j]
 - · Memory accesses:
 - A + 0 + 0N, A + 0 + 1N, A + 0 + 2N, ..., A + 1 + 0N, A + 1 + 1N, ...
 - Bad locality, when arriving at A + 1 + 0N, cache-line loaded on A + 0 + 0N probably already overwritten
- Better: for (j=0; j<M; ++j) for (i=0; i<N; ++i) x=x+A[i, j]
 - Memory accesses: A + 0 + 0N, A + 1 + 0N, ..., A + 0 + 1N, A + 1 + 1N, ...
 - Good locality, A + 1 + 0N probably already in cache

Loop interchange

- Swap inner and outer loop
 - If they iterate over multi-dimensional array ...
 - ... in wrong order
 - And loop iterations are sufficiently independent
 - Iteration for index *i*, *j*, must only depend on iterations $\leq i, \leq j$
 - Illustration on board!
- The required dependency analysis is automatable
 - To some extend for arrays
 - · Not so much for more complex structures

Organizing data-structures block-wise

- Warning: No automation in general
- Example: Stack-data structure with push, pop
 - · Possible implementation: Linked list
 - · Disadvantage: Data items distributed over memory
 - Bad cache behavior
 - And extra memory for link-pointers
- Alternative: Array-List
 - · Keep list in array, store index of last element
 - If array overflows: Double the size of the array
 - If array less than quarter-full: Halve the size of the array
 - This adds amortized constant extra cost
 - · But makes cache-locality much better

Moving heap-allocated blocks to the stack

- Idea: Allocate block of memory on stack, instead of heap
 - If pointers to this block cannot escape the current stack frame
 - Important for languages like Java, where almost everything is allocated on heap

Abstract example

```
int do_computation(...) {
  AuxData aux = new AuxData ()
   ...
  return ...
}
```

- If no pointer to aux is returned or stored in global memory ...
- ... aux can be allocated on method's stack-frame

• Recall our simple pointer-language. Ret is global variable.

```
1: x=new()
2: y=new()
x[A] = y
z=x[A]
Ret = z
```

- Allocation at 1 may not escape
- Thus we may do the allocation on the stack

In general

- Memory block may escape, which is
 - Assigned to global variable
 - Reachable from global variable
- · Forward may analysis. Same as pointer-analysis
 - · Identify memory blocks with allocation sites
 - Analyze where variables/blocks may point to
 - If global variable/unknown memory block may point to block: Possible escape

Applying the optimization, heuristics

- Only makes sense for small blocks
- That are allocated only once
 - e.g., not inside loop

Handling procedures more precisely

- Require interprocedural points-to analysis
 - Expensive
 - We do not always know whole program
 - E.g. Java loads classes at runtime
- In worst case: Assume everything visible to called procedure may escape
 - Which is consistent with parameter passing by global variables and previous analysis

Wrap-Up

- Several optimizations that exploit hardware utilization
- A meaningful ordering
 - 1 Restructuring of procedures/loops for better cache-behaviour
 - Loop interchange, fission
 - Tail-recursion/inlining, stack-allocation
 - 2 Basic-block optimizations, to exploit instruction-level parallelism
 - Live-range splitting
 - Instruction scheduling
 - Loop unrolling, fusion
 - 3 Then register allocation
 - 4 And finally peephole optimization + instruction selection

Table of Contents

Last Lecture

- Optimizations to re-arrange memory access wrt. cache
 - Loop interchange
 - Lists vs. array-list
- Wrap-Up: Optimizations targeted towards features of hardware
- Started with functional languages

Functional language

We consider simple functional language

- where
 - b is primitive constant
 - c is constructor
 - x is variable
 - f_i is recursive function
 - op is primitive operation

Table of Contents

Semantics Simple Optimizations Specialization Deforestation

Semantics

- Values *b*, *c v*₁...*v*_n, *fn x*. *e* (Convention: *v* denotes values)
- · Goal of semantics: Evaluate main expression to value
- Done by the following rules

$$[rec] \frac{|\text{tet rec } \underline{f_i} - \underline{e_i}|}{f_i \to e_i}$$

$$[op] \frac{-}{op \ b_1 \dots b_n \to [op]](b_1, \dots, b_n)}$$

$$[app1] \frac{e_1 \to e'_1}{e_1 \ e_2 \to e'_1 \ e_2} \quad [app2] \frac{e_2 \to e'_2}{v_1 \ e_2 \to v_1 \ e'_2}$$

$$[\beta - red] \frac{-}{(fn \ x. \ e) \ v \to e[x \mapsto v]}$$

$$[match1] \frac{e \to e'}{match \ e \ with \ \dots \to match \ e' \ with \ \dots}$$

$$[match2] \frac{-}{match \ v \ with \ \dots \to e_i \sigma} \quad (*)$$

$$[app-op] \frac{e_k \to e'_k}{op \ v_1 \ \dots \ v_{k-1} \ e_k \ \dots \ e_n \to op \ v_1 \ \dots \ v_{k-1} \ e'_k \ \dots \ e_n}$$

- where let $x = e_1$ in e_2 is syntax for $(fn x. e_2) e_1$
- (*): $p_i => e_i$ is the first pattern with $p_i \sigma = v$

Semantics

- Eager evaluation
 - · Arguments are evaluated before function is called
- No types: Evaluation of badly-typed program just gets stuck
 - Example: match 5 with True => ... | False => ...

Example

let rec fac = fn x. match x with 0 => 1| x = x * fac (x-1)in fac 2 fac 2 (fn x. ...) 2 match 2 with ... (*) 2 (fac (2-1)) (*) 2 ((fn x. ...) (2-1)) (*) 2 ((fn x. ...) 1) (*) 2 (match 1 with ...) (*) 2 ((*) 1 (fac (1-1))(*) 2 ((*) 1 ((fn x. ...) (1-1)))

Lazy evaluation

- · Evaluate arguments only when needed, as far as needed
 - I.e., on match or built-in function call

$$[rec] \frac{\text{let rec } f_{-i} = e_{-i}}{f_{i} \to e_{i}} \quad [op] \frac{-}{op \ b_{1} \dots b_{n} \to [op]](b_{1}, \dots, b_{n})}$$

$$[app1] \frac{e_{1} \to e_{1}'}{e_{1} \ e_{2} \to e_{1}' \ e_{2}} \quad [\beta - rec] \frac{-}{(fn \ x. \ e_{1}) \ e_{2} \to e_{1}[x \mapsto e_{2}]}$$

$$[match1] \frac{e \to e'}{match \ e \ with \ \dots \to match \ e' \ with \ \dots}$$

$$[match2] \frac{-}{match \ c \ \hat{e}_{1} \dots \hat{e}_{k} \ with \ \dots \to e_{i}\sigma} \quad (*)$$

$$[match3] \frac{-}{match \ b \ with \ \dots \to e_{i}\sigma} \quad (*)$$

$$[app-op] \frac{e_{k} \to e_{k}'}{op \ v_{1} \ \dots \ v_{k-1} \ e_{k} \ \dots \ e_{n} \to op \ v_{1} \ \dots \ v_{k-1} \ e_{k}' \ \dots \ e_{n}}$$

Note: Only simple patterns allowed in match

Example (lazy)

```
let.
  rec fac = fn x. match x with
    0 => 1
 | x => x * fac (x-1)
in (fac 2)
(fac 2)
((fn x. ...) 2)
(match 2 with ...)
((*) 2 (fac (2-1)))
((*) 2 ((fn x. ...) (2-1)))
((*) 2 (match (2-1) with ...))
((*) 2 (match 1 with ...))
and so on ...
```

Eager vs. Lazy

- Eager: Argument evaluated before function call
- Lazy: Function call before argument
 - Argument of match only until constructor is at top
 - Weak head normal form
 - Arguments of primitive operator: Completely

Optimization Plan

- Optimize on functional level
- Translate to imperative language/IR
- Use optimizations for imperative code
- Now: Optimizations on functional level

Table of Contents

Semantics Simple Optimizations Specialization Deforestation

Simple optimizations

- · Idea: Move some evaluation from run-time to compile-time
- Function-application to let

(fn x. e_1) $e_2 \longrightarrow let x=e_2$ in e_1

Matches, where part of the pattern is already known

match c e_1 ... e_n with ... c x_1 ... $X_n \Rightarrow e$ > let $x_1 = e_1$; ...; $X_n = e_n$ in e

Let-reduction

let $x=e_1$ in $e \longrightarrow e[x \mapsto e_1]$

Substitution

Beware of name-capture

```
let x = 1 in
let f = fn y. x+y in
let x = 4 in
f x
```

- Consider reduction of *f* =
- α -conversion: (Consistent) renaming of (bound) variables does not change meaning of program
- Convention: Substitution uses α -conversion to avoid name-capture
 - Here: Convert let x=4 in f x to let x1=4 in f x1

Termination issues

Let-reduction may change semantics

- This program does not terminate
- But, applying let-reduction, we get

```
let rec f = fn x. 1 + f x in 42
```

- which returns 42
- For eager evaluation, non-terminating programs may be transformed to terminating ones
- For lazy evaluation, semantics is preserved

Side-effects

- Languages like SML/OCaml/F# have side-effects
- Side-effecting expressions must not be let-reduced

```
let _ = print "Hello"
in ()
```

Application of let-reduction

- May make program less efficient
 - Re-computing values instead of storing them in variable let x=expensive-op in x+x
- May blow up program code exponentially

let x = x+x in let x = x+x in ... in x

- Heuristics for application: reduce let x1=e1in e
 - if *e*₁ is a variable (or constant)
 - if x₁ does not occur in e
 - if x₁ occurs exactly once in e

More transformations

· Valid for programs (fragments) with no side-effects

```
(let x=e in e1) e2 --> let x=e in e1 e2
  // Renaming x to avoid name capture
let x1=e1 in let x2=e2 in e
--> let x2=e2 in let x1=e1 in e
  // If x1 not free in e2
  // Renaming x2 to avoid name capture
let x1 = (let x2=e2 in e1) in e
--> let x2=e2 in let x1=e1 in e
  // Renaming x2 to avoid name capture
```

May open potential for other optimizations

Inlining

- Consider program let f=fn x. e1in e
- Inside e, replace f e₂ by let x=e₂in e₁
 - · Goal: Save overhead for function call
 - Warning: May blow up the code

Example

```
let fmax = fn f. fn x. fn y.
  if x>y then f x else f y in
let max = fmax (fn x. x) in
  . . .
let fmax = fn f. fn x. fn y.
  if x>y then f x else f y in
let max = (let f = (fn x. x) in
  fn x. fn y. if x>y then f x else f y) in
  . . .
(inlined fmax)
let fmax = fn f. fn x. fn y.
  if x>y then f x else f y in
let max = (let f = (fn x. x) in
  fn x. fn y. if x>y then let x=x in x else let x=y in x) i
  . . .
(inlined f)
let fmax = fn f. fn x. fn y.
  if x>y then f x else f y in
                                                           453/471
1 - L ... - /
```

Note

- Inlining can be seen as special case of let-reduction
- However: Does not change termination behavior or side-effects
 - Only inlining terms of form fn $\,\,{\tt x.}\,$ e, which are not evaluated, unless applied to an argument
- In untyped languages (e.g., LISP), the inlining optimization may not terminate

```
let w = fn f. fn y. f(y f y) in
 let fix = fn f. w f w
 let w = fn f. fn y. f (y f y) in
 let fix = fn f. let f=f in let y=w in f (y f y)
 (Inlined w)
 let w = fn f. fn y. f(y f y) in
 let fix = fn f. f (w f w)
 ((Safe) let-reduction (copy variables))
 let w = fn f. fn y. f (y f y) in
 let fix = fn f. f (f (f (... f (w f w))))
 (...)

    In typed languages like OCaml or Haskell, however, we have
```

Inlining always terminates

Table of Contents

Semantics Simple Optimizations Specialization Deforestation

Specialization of recursive functions

- Function to square all elements of a list
 - Note: Dropping the restriction that let-rec occurs outermost
- Requires many function calls to f
- Idea: Replace map f by new function mapf
- Specialization of map for argument f

```
let rec map = fn f. fn l.
  match 1 with
    [] => []
  | x # l => f x # map f l
in
let f = fn x \cdot x \cdot x in
let sqrl = map f in ...
let rec map = fn f. fn l.
  match 1 with
    [] => []
  | x#l => f x # map f l
in
let f = fn x \cdot x \cdot x in
let rec mapf = fn l.
 match 1 with
```

Function folding

- When specializing function f a to fa,
 - we may replace f a by fa in definition of fa
 - Beware of name-captures!
- If recursive function calls alter the specialized argument:
 - · Potential for new specializations may be created
 - Infinitely often ...
 - let rec f = fn g. fn l. ... f (fn x. g (g x)) ...
- Safe and simple heuristics:
 - · Only specialize functions of the form

let rec f = fn x. e

such that recursive occurrences of f in e have the form f x

Table of Contents

Semantics Simple Optimizations Specialization Deforestation

Deforestation

Deforestation

- · Idea: Often, lists are used as intermediate data structures
- Standard list functions

```
let rec map = fn f. fn l. match l with
[] => []
| x#xs => f x # map f xs
let rec filter = fn P. fn l. match l with
[] => []
| x#xs => if P x then x#filter P xs else filter P xs
let rec foldl = fn f. fn a. fn l. match l with
[] => []
| x#xs => foldl f (f a x) xs
```

Deforestation

```
    Examples of derived functions

let sum = foldl (+) 0
let length = sum o map (fn x. 1)
let der = fn l.
  let n = length l in
  let mean = sum l / n in
  let s_2 = (
      sum
    o map (fn x. x \star x)
    o map (fn x. x-mean)) l
  in
    s2 / n
```

Idea

- Avoid intermediate list structures
- E.g., we could define

length = foldl (fn a. fn $_$. a+1) 0

 In general, we can define rules for combinations of the basic list functions like fold, map, filter, ...

```
map f o map g = map (f o g)
foldl f a o map g = foldl (fn a. f a o g) a
filter P o filter Q = filter (fn x. P x & Q x)
...
```

• We may also need versions of these rules in first-order form, e.g. map f (map g l) = ...

Example

```
let der = fn l.
  let n = length l in
  let mean = sum l / n in
  let s_2 = (
      sum
    o map (fn x. x*x)
    o map (fn x. x-mean)) l
  in
    s2 / n
let der = fn l.
  let n = length l in
  let mean = sum l / length l in
  let s_2 = (
      foldl (+) 0
    o map (fn x. x \star x)
    o map (fn x. x-mean)) 1
  in
    s2 / n
```

Let-optimization/ inlining

Discussion

- Beware of side-effects!
- Need rules for many combinations of functions.
 - Does not scale
- Only works for built-in functions
 - · Could try to automatically recognize user-defined functions
- Can be extended to algebraic datatypes in general
 - They all have standard map and fold functions

Reducing the number of required rules

- Try to find standard representation
- foldr seems to be a good candidate:

```
foldr f a [] = a
foldr f a (x#xs) = f x (foldr f a xs)
```

- We can represent map, filter, sum, ...
 - But no list-reversal, as foldl can
- Problem: How to compose two foldr-calls?
 - foldr f1 a1 (foldr f2 a2 l) = ???

Composition of foldr

```
    Idea: Abstract over constructors
```

map f l = foldr (fn l. fn x. f x#l) [] l

```
map' f l = fn c. fn n.
   foldr (fn l. fn x. c (f x) l) n l
build g = g (#) []
map f l = build (map' f l)
```

Have

foldr f a (build g) = g f a

- If abstraction over list inside g done properly
- I.e., g actually produces list using its arguments

Example

- map f (map g l)
- = build (map' f (build (map' g l)))
- = build (fn c. fn n.
 foldr (fn l. fn x. c (f x) l) n (build (map' g l)))
- = build (fn c. fn n. map' g l (fn l. fn x. c (f x) l) n)

Intuition

- Functions may consume lists (foldr), produce lists (build), or both
- Applying a chain of functions: (build foldr) (build foldr) ... (build foldr)
- Can be re-bracketed to build (foldr build) ... (foldr build) foldr
- And the inner pairs cancel out, leaving a single build foldr

Discussion

- Single rule for deforestation: foldr f a (build g) = g f a
 - Only correct if g is abstracted over list correctly
 - Consider, e.g., foldr f a (build (fn _. fn _. [True]))
 - Which is, in general, not the same as (fn $_.$ fn $_.$ [True]) f a
- If language is parametric, can be enforced via type:
 - If g has type $\forall \beta. (A \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow \beta$
 - It can only produce its result of type β by using its arguments
 - · Which is exactly the required abstraction over the list constructors

Wrap-up

- Transformations for functional programs
 - · Let-optimization
 - Inlining
 - Specialization
 - Deforestation
 - ...
- · Aim at reducing complexity before translation to IR
- On (imperative) IR, all former optimizations of this lecture can be done
 - Important one: Tail-call optimization
 - There are no loops in functional languages

That's it! Questions?