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How many of you are attending “Semantics” lecture?



Info-2 Tutors

We need tutors for Info Il lecture. If
you are interested, please contact
Julian Kranz
Julian.kranz@in.tum.de.


julian.kranz@in.tum.de

Proposed Content

Avoiding redundant computations

e E.g. Available expressions, constant propagation, code motion
Replacing expensive with cheaper computations

e E.g. peep hole optimization, inlining, strength reduction
Exploiting Hardware

e E.g. instruction selection, register allocation, scheduling
Analysis of parallel programs

e E.g. threads, locks, data-races
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Observation 1
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void swap (int i, int j) {
int t;
if (alid
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Observation 1

Intuitive programs are often inefficient

void swap (int i, int j) {
int t;
if (alid

¢ Inefficiencies

e Addresses computed 3 times
e Values loaded 2 times

e Improvements

o Use pointers for array indexing
e Store the valuesof a[i],al7]

71471



void swap
int t,
ai=x*p;
if (ai

t = a
*q=

*p

(int *p, int =*q) {
ai, aj;
aj=+q;
> aj) |
Ji
aij;
t; // t can also be eliminated



void swap
int ai,
ai=+p;

(int »*p,
aj;
aj=+*qg;

if (ai > aj) |
*xq = aij;
*p = ajj;

int *q)

{



void swap (int *p, int =xq)

int ai, aj;
ai=+p; aj=x*q;
if (ai > aj) |
*q = aij;
*p = aj;

}

Caveat: Program less intuitive

{
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Observation 2

High-level languages (even C) abstract from hardware (and efficiency)
Compiler needs to transform intuitively written programs to hardware.
Examples

¢ Filling of delay slots

o Utilization of special instructions

e Re-organization of memory accesses for better cache behavior
e Removal of (useless) overflow/range checks
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Observation 3

Program improvements need not always be correct
e E.g.transform £() + £() to2xf ()
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Observation 3

Program improvements need not always be correct
e E.g.transform £() + £() to2xf ()
e |dea: Save second evaluation of £
e But what if £ has side-effects or reads input?
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Insight

e Program optimizations have preconditions
e These must be

e Formalized
e Checked

¢ It must be proved that optimization is correct
e l.e., preserves semantics
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Observation 4

Optimizations techniques depend on programming language

o What inefficiencies occur
e How analyzable is the language
o How difficult it is to prove correctness
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Example: Java

¢ (Unavoidable) inefficiencies

e Array bound checks
¢ Dynamic method invocation
o Bombastic object organization
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Example: Java

¢ (Unavoidable) inefficiencies
e Array bound checks
¢ Dynamic method invocation
o Bombastic object organization
o Analyzability
+ No pointer arithmetic, no pointers into stack
- Dynamic class loading
- Reflection, exceptions, threads
e Correctness proof
+ Well-defined semantics (more or less)
- Features, features, features
- Libraries with changing behavior
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In this course

e Simple imperative programming language

R =-¢ Assignment

R = M[e] Load

M[e1] = ez Store

if (e) ... else ... | Conditional branching
goto label Unconditional branching

R Registers, assuming infinite supply
e Integer-valued expressions over constants, registers, operators
M Memory, addressed by integer > 0, assuming infinite memory
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Note

e For the beginning, we omit procedures

e Focus on intra-procedural optimizations
o External procedures taken into account via statement £ ()

e unknown procedure
e may arbitrarily mess around with memory and registers

e Intermediate Language, in which (almost) everything can be translated
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Example: Swap

void swap (int i, int 3J)
int t;

if (alil > aljl) |
t =aljl;
aljl alil;
ali] t;

1: Ay = Ag + 1xi  //Ry = ali]
2: Ry = M[Aq]

3: Bp = Ay + 1x3  //Rp = alj]
4: Rg = MlBg]

5: if (Rq > Rg) |

6: Ag = Ag + lxj //t=a(j]

7: ot = Mlag]

8: Ag = Ay + 1xj //alj] = ali]
9: A = Bg + 1xi

0: Rg = M[A5)

1:  M[Ag] = Rg

2:  Ag =Rg + lxi //ali]=t

3: 0 mMagl =t
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Example: Swap

void swap (int i, int j)
int t;
if (ali] > alj])

}
}

t = aljl
aljl = alil;
afi] =t

W NP O WOow-Joy Ul b wdhR

i

Ay = Ag + 1+i
Ry = M[Aq]
Ao = Ag + 1x7
M[A2]

Ro =
if (R4

Ag = Ag + 1%

> Rp)

t = M[A3]

)
w
Il

M[Ag4]
Ag =
M[Ag]

M[As5]

Ag + 1xi

Rs3

t

{

= Ao + 1x7
= Ag + 1x1i

Assume Aq contains address of array a

//R1 = ali]
//Ro = alj]
//t=al7]

//aljl = ali]

//ali]=t
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Optimizations

Q1 « R—R
® Re-use of sub-expressions

Ay == Ag== Rg, Ap == Ag== A4
M[A4] == M[As],M[Az2] == M[A3z]
R1 == R3

Ro=t
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Now we have

Ag = Bg + 1xi //a[i]=t
M[Ag] = t

Original was:
1: Ay = Ag + 1xi //Ry = ali]
1: Ay = BAp + 1 2t Ry = M[Aq]
. ! _ ° 3: Ap = Ao + 1xj  //Rp = alj]
2: Ry = M[A1]. 4: Rp = M[Ap]
3: Ap = Ap + ] 5: if (Ry > Ra) {
4: Rp = M[A2] 6: Ag = Ag + 1xj //t=alj]
. 7:  t = M[Ag]
: Ri > R
o AE (R 2) 8: A4 =R + 13 //aljl = ali]
6: MlA2] R4 9:  As = Bg + 1+i
7: M[A1] = Ro2 0: Rz = M[As5]
} 1: M[A4] = R3
2
3:
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Gain

before | after
+ 6 2
* 6 0
> 1 1
load 4 2
store 2 2
= 6 2
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Idea

If same value is computed repeatedly

o Store it after first computation
e Replace further computations by look-up
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Idea

If same value is computed repeatedly

o Store it after first computation

e Replace further computations by look-up
Method

o Identify repeated computations

o Memorize results

e Replace re-computation by memorized value
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Example

x =1
y = M[42]
A r{i = x +y
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e Repeated computation of x+y at B, if

e A is always executed before B
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Example

x =1
y = M[42]
A r{i = x +y

e Repeated computation of x+y at B, if

e A is always executed before B
e x+y has the same value at A and B.

e We need

e Operational semantics
e Method to identify (at least some) repeated computations
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Rice’s theorem (informal)

All non-trivial semantic properties of a Turing-complete programming
language are undecidable.
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Rice’s theorem (informal)

All non-trivial semantic properties of a Turing-complete programming
language are undecidable.

Consequence We cannot write the ideal program optimizer :(
But Still can use approximate approaches

e Approximation of semantic property
e Show that transformation is still correct

Example: Only identify subset of repeated computations.
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Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

Neg(Ri>Ra) S Pos(r;>Rp)

Ag= Agt 1 % J
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Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

fa = Aot 1] State:

Ro = M[Rp] Ao | M[O..4) | i |5 ]a1 ]| A ]|Ri|Re
0‘1,2,3,4,5‘2‘4‘2‘- ‘ - ‘ -

Neg(Ri>Ra) S Pos(r;>Rp)
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Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

Rp = Apt 1xJ

State:
Ro = M[Rp] Ao | M[O..4) | i |5 ]a1 ]| A ]|Ri|Re
0 | 12345 2|42 -3 -

Neg(Ri>Ra) S Pos(r;>Rp)

Ag= Agt 1 % J
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Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

fa = Aot 1] State:

Ro = M[Rp] Ao | M[O..4) | i |5 ]a1 ]| A ]|Ri|Re
0 | 1,2345 2|42 | 43 -

Neg(Ri>Ra) S Pos(r;>Rp)

Ag= Agt 1 % J
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Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

fa = Aot 1] State:
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Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

fa = Aot 1] State:
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Formally (I)

Definition (Registers and Expressions)

Reg is an infinite set of register names. Expr is the set of expressions over
these registers, constants and a standard set of operations.

Note: We do not formally define the set of operations here
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Formally (I)

Definition (Registers and Expressions)

Reg is an infinite set of register names. Expr is the set of expressions over
these registers, constants and a standard set of operations.

Note: We do not formally define the set of operations here

Definition (Action)

Act = Nop | Pos(e) | Neg(e) | R=e | R= M[e] | M[e1] = ez
where e, ey, & € Expr are expressions and R € Reg is a register.
Definition (Control Flow Graph)

An edge-labeled graph G = (V, E, vo, Vena) Where E C V X Act x V, vy € V,
V.na € Vis called control flow graph (CFG).

Definition (State)

A state s € State is represented by a pair s = (p, ), where
p : Reg — int is the content of registers
i : int — int is the content of memory
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Formally (lI)

Definition (Value of expression)
[€]p : int is the value of expression e under register content p.
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Definition (Value of expression)
[€]p : int is the value of expression e under register content p.

Definition (Effect of action)
The effect [a] of an action is a partial function on states:

[Nopl(p, 1) := (p, 1)
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The effect [a] of an action is a partial function on states:
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Formally (lI)

Definition (Value of expression)
[€]p : int is the value of expression e under register content p.

Definition (Effect of action)
The effect [a] of an action is a partial function on states:

[Nopl(p, 1) := (p, 1)

[Pos(e)](p, 1) := {(p’ 2 if [e]p # O

undefined otherwise

[Neg(e)l(p, 1) := {('0’ ») if [e]lp =0

undefined otherwise
[R = el(p, 1) == (p(R > [€lp), 1)
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Formally (lI)

Definition (Value of expression)
[€]p : int is the value of expression e under register content p.

Definition (Effect of action)
The effect [a] of an action is a partial function on states:

[Nopl(p; 1) := (p, 1)

[Pos(e)](p, 1) := {(p’ 2 if [e]p # O

undefined otherwise

[Neg(e)l(p, 1) := {('0’ ») if [e]lp =0

undefined otherwise

[R = el(p, 1) == (p(R  [e€lp), 1)
[R = M[ell(p, 1) == (p(R — u([e]p)) 1)
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Formally (lI)

Definition (Value of expression)
[€]p : int is the value of expression e under register content p.

Definition (Effect of action)
The effect [a] of an action is a partial function on states:

[Nopl(p; 1) := (p, 1)

[Pos(e)](p, 1) := {(p’ 2 if [e]p # O

undefined otherwise

(p, 1) if [e]p =0
Neg(e S ) = . .
[Nez(€)l(p. 1) {undeflned otherwise
[R=¢€l(p,n)

= (p(R — [e]p), 1)
[R = M[ell(p, 1) == (p(R — u([e]p)) 1)
M[es] = ex](p, 1) == (p, u([er]p — [e2]p))
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Formally (llI)

Given a CFG G = (V, E, v, Vend)
Definition (Path)

A sequence of adjacent edges m = (v4, a1, v2)(V2, @, V3) ... (Vn, @n, Vni1) € E*
is called path from vq 10 Vvjp.1.

Notation vy 5 Vi1
Convention 7 is called path to v iff vy = v
Special case v S viorany v e V

31/471



Formally (I11)
Given a CFG G = (V, E, v, Vend)

Definition (Path)

A sequence of adjacent edges m = (v4, a1, v2)(V2, @, V3) ... (Vn, @n, Vni1) € E*
is called path from vq 10 Vvjp.1.

Notation vy 5 Vi1
Convention 7 is called path to v iff vy = v
Special case v S viorany v e V

Definition (Effect of edge and path)
The effect of an edge k = (u, a, v) is the effect of its action:

[(u,a,v)] = [4]

The effect of a path = = kq .. . k, is the composition of the edge effects:

IIk1kn]] = I[knllo...OIIk1]|
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Formally (IV)

Definition (Computation)
A path = is called computation for state s, iff its effect is defined on s, i.e.,

s € dom([[7])

Then, the state s’ = [r]s is called result of the computation.
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Summary

e Action: Act = Nop | Pos(e) | Neg(e) | R=¢e| R= M[e] | M[e1] = &
e CFG: G=(V,E, vy, Vena), EC V X Act x V

o State: s = (p, ), p : Reg — int (registers), u : int — int (Memory)

o Value of expression under p: [e]p : int

o Effect of action a: [&] : State — State (partial)

e Path 7: Sequence of adjacent edges

o Effect of edge k = (u, a,v): [K] = [a]

o Effectof path m = ky ... ky: [7] = [Kn] o ... o [ki]

e 7 is computation for s: s € dom([r])

o Result of computation = for s: [r]s
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Memorization

First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.
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Memorization

First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

(fR:e (fTee Neg (e) Pos (e)
O Te=e
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R=M[e] Te=e
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Memorization

First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

(fR:e (fTee Neg (e) Pos (e)
O Te=e
> —
(fRzTe Neg(Te) Pos (Te)
O
?M[e1 1=e2

@

R=M[e] Te=e

R=M[Te]
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Memorization
First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

R=e To=e Neg (eo)ﬁ\l?oos (e)
@) —>
R=T,
@)

CEM [e1]=e2
@)

R=M[e] Te=e

—_—

R=M[ Te]

Te=e
Neg(Te) Pos (Te)
7-e1:e1
—_
Te2=e2
M[Te1] = Te2
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Memorization

First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

(fR:e (fTee Neg (e) Pos (e)
O Te=e
3 —_—
(fRzTe Neg(Te) Pos (Te)
@)
CfM [eq]=e> TTe1=e1

@) —_
R=Mle] Te=e Teo=ep
_—
R=M[Te] M[Te1] = Te2

e Transformation obviously correct
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Last Lecture (Oct 20)

e Simple intermediate language (IL)

o Registers, memory, cond/ucond branching
e Compiler: Input — Intermediate Language — Machine Code
e Suitable for analysis/optimization
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e undefined - Test failed
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Last Lecture (Oct 20)

e Simple intermediate language (IL)
o Registers, memory, cond/ucond branching
e Compiler: Input — Intermediate Language — Machine Code
e Suitable for analysis/optimization

e Control flow graphs, small-step operational semantics

¢ Representation for programs in IL
e Graphs labeled with actions

o Nop,Pos/Neg,Assign,Load,Store

o State = Register content, memory content
o Actions are partial transformation on states

e undefined - Test failed
e Memorization Transformation
e Memorize evaluation of e in register T,
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Available Expressions (Semantically)

Definition (Available Expressions in state)
The set of semantically available expressions in state (p, 1) is defined as

Aexp(p, p) == {e | [e]p = p(Te)}

Intuition Register T, contains correct value of e.
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Available Expressions (Semantically)

Definition (Available Expressions in state)
The set of semantically available expressions in state (p, 1) is defined as

Aexp(p, p) = {e| [e]p = p(Te)}
Intuition Register T, contains correct value of e.
Border case All expressions available in undefined state
Aexp(undefined) := Expr

(See next slide why this makes sense)
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Available Expressions (Semantically)

Definition (Available Expression at program point)
The set Aexp(u) of semantically available expressions at program point u is
the set of expressions that are available in all states that may occur when the

program is at u.

Aexp(u) := ﬂ{Aexp(ﬂﬂ]]s) | 7,8 vo = u}
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Note Actual start state unknown, so all start states s are considered.
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Available Expressions (Semantically)

Definition (Available Expression at program point)
The set Aexp(u) of semantically available expressions at program point u is
the set of expressions that are available in all states that may occur when the

program is at u.

Aexp(u) := ﬂ{Aexp(ﬂﬁ]]s) | 7,8 vo = u}

Note Actual start state unknown, so all start states s are considered.
Note Above definition is smoother due to Aexp(undefined) := Expr
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Simple Redundancy Elimination

Transformation Replace edge (u, Te = e, v) by (u,Nop, v) if e semantically
available at u.
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Simple Redundancy Elimination
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Correctness ¢ Whenever program reaches u with state
(p, 1), we have [e]p = p(Te) (That's exactly
how semantically available is defined)
e Hence, [Te = e](p, 1) = (p. 1) = [Nop](p 1)
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Simple Redundancy Elimination

Transformation Replace edge (u, Te = e, v) by (u,Nop, v) if e semantically
available at u.

Correctness ¢ Whenever program reaches u with state
(p, 1), we have [e]p = p(Te) (That's exactly
how semantically available is defined)

e Hence, [Te = e](p, 1) = (p. 1) = [Nop](p 1)
Remaining Problem How to compute available expressions
Precisely No chance (Rice’s Theorem)
Observation Enough to compute subset of semantically available
expressions
e Transformation still correct
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Available Expressions (Syntactically)

Idea Expression e (syntactically) available after computation =

e if e has been evaluated, and no register of e has been
assigned afterwards

X+y
@@

7 does not contain assignment to x nor y
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Available Expressions (Syntactically)

Idea Expression e (syntactically) available after computation =

e if e has been evaluated, and no register of e has been
assigned afterwards

X+y
@@

7 does not contain assignment to x nor y

Purely syntactic criterion
Can be computed incrementally for every edge

40/471



Available Expressions (Computation)

Let A be a set of available expressions.
Recall: Available < Already evaluated and no reg. assigned afterwards
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Available Expressions (Computation)

Let A be a set of available expressions.
Recall: Available < Already evaluated and no reg. assigned afterwards

An action a transforms this into the set [a]” A of expressions available
after a has been executed
[Nop]*A = A
[Pos(e)]*A:= A
[Neg(e)]*A = A
[Te =e]"A:= AU {e}
[R=TJ#A:= A\Exprs Exprp := expressions containing R
[R = Me]]* A:= A\ Exprp
[M[ei] = ex]*A:= A
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Available Expressions (Computation)

[a]” is called abstract effect of action a
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Available Expressions (Computation)

[a]” is called abstract effect of action a
Again, the effect of an edge is the effect of its action

[(u, 2 V)" = [a]*
and the effect of apath # = ky ... Kk, is

[17 = [ka]” o...0[k]*
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Available Expressions (Computation)

[a]” is called abstract effect of action a
Again, the effect of an edge is the effect of its action

[(u. 2, V)" = [a]*
and the effect of apath # = ky ... Kk, is

[17 = [ka]” o...0[k]*

Definition (Available at v)
The set A[v] of (syntactically) available expressions at v is

AVl = (I=170 | 7. vo 5 v}
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Available Expressions (Correctness)

Idea Abstract effect corresponds to concrete effect

Lemma
AC Aexp(s) = [a]" A C Aexp([a]s)

Proof Check for every type of action.
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Available Expressions (Correctness)

Idea Abstract effect corresponds to concrete effect

Lemma
AC Aexp(s) = [a]" A C Aexp([a]s)

Proof Check for every type of action.
This generalizes to paths

A C Aexp(s) = []* A C Aexp([7]s)
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Available Expressions (Correctness)

Idea Abstract effect corresponds to concrete effect

Lemma
AC Aexp(s) = [a]" A C Aexp([a]s)

Proof Check for every type of action.

This generalizes to paths

A C Aexp(s) = [«]7 A C Aexp([]s)
And to program points

Alu] € Aexp(u)
Recall:

Aexp(u) = [{Aexp([7]s) | 7, s. vo = u}

Alul = (=170 | 7. vo = u}
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Summary

© Transform program to memorize everything
¢ Introduce registers T,

® Compute A[u] for every program point u
o Alu] = {170 | 7. vo & u}

® Replace redundant computations by Nop
e (u,Te=e,v) — (u,Nop, V) if e € Alu]

44/471



Summary

© Transform program to memorize everything
¢ Introduce registers T,
® Compute A[u] for every program point u
o Alul = {I=170 | 7. vo = u}
® Replace redundant computations by Nop
e (u,Te=e,v) — (u,Nop, V) if e € Alu]
Warning Memorization transformation for R = e should only be applied if
e R ¢ Reg(e) (Otherwise, expression immediately
unavailable)
e e ¢ Reg (Otherwise, only one more register introduced)
e Evaluation of e is nontrivial (Otherwise, re-evaluation
cheaper than memorization)

44/471



Remaining Problem

How to compute A[u] = N{[=]*0 | vo = u}
e There may be infinitely many paths to u
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Remaining Problem

How to compute A[u] = N{[~]*0 | vo = u}
e There may be infinitely many paths to u
Solution: Collect restrictions to A[u] into a constraint system

Alvol €0
Alv] € [a]* (Alu]) for edge (u, a, v)
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Remaining Problem

How to compute A[u] = N{[~]*0 | vo = u}
e There may be infinitely many paths to u
Solution: Collect restrictions to A[u] into a constraint system

Alvol €0
Alv] € [a]* (Alu]) for edge (u, a, v)

Intuition

Nothing available at start node
For edge (u, a, v): At v, at most those expressions are available that would
be available if we come from u.
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Example

Let's regard a slightly modified available expression analysis

e Available expressions before memorization transformation has been applied
o Yields smaller examples, but more complicated proofs :)
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Example

Let's regard a slightly modified available expression analysis

e Available expressions before memorization transformation has been applied
o Yields smaller examples, but more complicated proofs :)

[Nop]#A = A
[Pos(e)]*A:= AU {e}
[Neg(e)]*A:= AU {e}
[R=e]"A:= (AU{e}) \ Exprg
[R=Me]]*A:= (AU {e}) \ Exprg
[M[e:] = e]*A:= AU {61, &5}
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Example

Let's regard a slightly modified available expression analysis

e Available expressions before memorization transformation has been applied
o Yields smaller examples, but more complicated proofs :)

[Nop]*A:= A
[Pos(e)]*A:= AU {e}
[Neg(e)]*A:= AU {e}
[R=e]"A:= (AU{e}) \ Exprg
[R=Me]]*A:= (AU {e}) \ Exprg
[M[e:] = e]*A:= AU {61, &5}

Effect of transformation already included in constraint system
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Example

Neg (x>1)
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Example

tL =1 A1 C D

Neg (x>1)
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Example

TL =1 A1 C D
Al2] C A[1] U {1} \ Expr,

Al2] € Al9]

Neg (x>1)
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Example

[1]
TY =1 Al o

Al2] € A[1]U {1} \ Expr

Neg (x>1) y

Al2] C A
A3] C A2]U {x > 1}
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Example

Neg (x>1)

A1 C D

Al2] € A[1]U {1} \ Expr,
A[2] C A[5]

AR C A2lu{x > 1}

Al4] C A[BJ U {x =y} \ Expr,
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Example

Neg (x>1)

A1 C D

Al2] C A[1] U {1} \ Expr,
Al2] € A[5]

AR C A2lu{x > 1}

Al4] C A[BJ U {x =y} \ Expr,
A[5] C Al[4] U {x — 1} \ Expr,
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Example

Neg (x>1)

Al1] €0
Al2] C A[1] U {1} \ Expr,
Al2] C Al9]

AR C A2lu{x > 1}

Al4] C A[BJ U {x =y} \ Expr,
A[5] C Al[4] U {x — 1} \ Expr,
A6l CA2lU{x > 1}
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Example

Solution:

-1 Alt] =0

: A2l = {1}

ARl ={1,x>1}
Adl={1,x>1}
Al5] = {1}

A6l ={1,x>1}

Neg (x>1)
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Example

Also a solution:

=1 All] =0

Neg (x>1) A2l =10
ARl =0
A4l =0
A5l =0

A6l =10
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Wanted

e Maximally large solution
e Intuitively: Most precise information
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Wanted

e Maximally large solution
e Intuitively: Most precise information

e An algorithm to compute this solution
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Naive Fixpoint Iteration (Sketch)

@ Initialize every A[u] = Expr
o Expressions actually occurring in program!
® Evaluate RHSs
® Update LHSs by intersecting with values of RHSs
O Repeat (goto 2) until values of A[u] stabilize
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Naive Fixpoint lteration (Example)

e On whiteboard!
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Naive Fixpoint Iteration (Correctness)

Why does the algorithm terminate?
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e In each step, sets get smaller
e This can happen at most |Expr| times.
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Naive Fixpoint Iteration (Correctness)

Why does the algorithm terminate?

e In each step, sets get smaller
e This can happen at most |Expr| times.

Why does the algorithm compute a solution?
o If not arrived at solution yet, violated constraint will cause decrease of LHS
Why does it compute the maximal solution?



Naive Fixpoint Iteration (Correctness)

Why does the algorithm terminate?

e In each step, sets get smaller
e This can happen at most |Expr| times.

Why does the algorithm compute a solution?

o If not arrived at solution yet, violated constraint will cause decrease of LHS
Why does it compute the maximal solution?

e Fixed-point theory. (Comes next)
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Partial Orders

Definition (Partial Order)

A partial order (D, C) is a relation C on D that is reflexive, antisymmetric, and
transitive, i.e., for all a, b, ¢ € D:

ata (reflexive)
acCbAabCa= a=b (antisymmetric)
aCbCc = alCc (transitive)
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Partial Orders

Definition (Partial Order)

A partial order (D, C) is a relation C on D that is reflexive, antisymmetric, and
transitive, i.e., for all a, b, ¢ € D:

acta (reflexive)
acCbAabCa= a=b (antisymmetric)
aCbCc = alCc (transitive)

Examples <onN, C. Also >, D

Lemma (Dual order)

We define a3 b:= b C a. LetC be a partial order onD. Then 3 also is a
partial order on D.
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More examples
D = 2{ab.ct with C

{a, b, c}
IR
{a,b} {a,c} {b,c}
| X X
{at {b} A{c}
\@/
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More examples

Z with relation =
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More examples

Z with relation <
2
|
1
|
0
|

—1
|

-2
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More examples

Z, =7ZUJ{L}withrelationxC yiffx=1Lvx=y

_QK\E/QW
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More examples

{a,b,c,d} withaC c,ac d,bCc,bC d

Q—O0

58/471



Upper Bound

Definition (Upper bound)
d € D is called upper bound of X C D, iff

Vxe X.xCd
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Upper Bound

Definition (Upper bound)

d € D is called upper bound of X C D, iff
VxeX.xCd

Definition (Least Upper bound)

d € D is called least upper bound of X C D, iff

d is upper bound of X, and
d C y for every upper bound y of X
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Definition (Upper bound)

d € D is called upper bound of X C D, iff
VxeX.xCd

Definition (Least Upper bound)

d € D is called least upper bound of X C D, iff

d is upper bound of X, and
d C y for every upper bound y of X
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Upper bound not always exists, e.g. {0,2,4,...} CZ
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Upper Bound

Definition (Upper bound)
d € D is called upper bound of X C D, iff

Vxe X.xCd

Definition (Least Upper bound)
d € D is called least upper bound of X C D, iff

d is upper bound of X, and
d C y for every upper bound y of X

Observation

Upper bound not always exists, e.g. {0,2,4,...} CZ
Least upper bound not always exists, e.g. {a, b} C {a, b, ¢, d} with
acc,acd,bce b d
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Complete Lattice

Definition (Complete Lattice)

A complete lattice (D, C) is a partial order where every subset X C D has a
least upper bound | | X € D.
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Complete Lattice

Definition (Complete Lattice)
A complete lattice (D, C) is a partial order where every subset X C D has a
least upper bound | | X € D.

Note Every complete lattice has

o Aleastelement L:=| |0 eD
o Agreatestelement T :=| |[DeD
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Complete Lattice

Definition (Complete Lattice)
A complete lattice (D, C) is a partial order where every subset X C D has a
least upper bound | | X € D.

Note Every complete lattice has

o Aleastelement L:=| |0 eD
o Agreatestelement T :=| |[DeD

Moreover allb:=| |{a,b} and anb:=[1{a, b}
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Examples

o (2{abel ) is complete lattice
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e (Z,,C)is also no complete lattice
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Examples

o (2{abel ) is complete lattice
e (Z,=)is not. Noris (Z, <)
e (Z,,C)is also no complete lattice
e But we can define flat complete lattice

471



Flat complete lattice over Z

Z] :=ZU{L, T}withrelatonx Cyiffx=1Lvy=Tvx=y

//\\\
\\‘/
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Flat complete lattice over Z

Z] :=ZU{L, T}withrelatonx Cyiffx=1Lvy=Tvx=y

//\\\
\\‘/

Note This construction works for every set, not only for Z.
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Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [ X.
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LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [ X.
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o letL={/eD. VxeX. ICx}
e The set of all lower bounds of X
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LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [ X.
Proof:

eletL={/leD.¥xe X. ICx}
e The set of all lower bounds of X
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Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [ X.
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Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [ X.

Proof:
eletL={/leD.¥xe X. ICx}
e The set of all lower bounds of X
e Construct[]1X =L

e Show: | | L is lower bound
e Assume x € X.
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Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [ X.

Proof:
eletL={/leD.¥xe X. ICx}
e The set of all lower bounds of X
e Construct[]1X =L
e Show: | | L is lower bound

e Assume x € X.
e ThenV/e L./IC x (i.e., x is upper bound of L)
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Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [ X.

Proof:
eletL={/leD.¥xe X. ICx}
e The set of all lower bounds of X
e Construct[]1X =L
e Show: | | L is lower bound
e Assume x € X.

e ThenV/e L./IC x (i.e., x is upper bound of L)
e Thus | JLC x (b/c||Lis least upper bound)
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Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [ X.

Proof:

eletL={/leD.¥xe X. ICx}
e The set of all lower bounds of X
e Construct[]1X =L
e Show: | | L is lower bound
e Assume x € X.

e ThenV/e L./IC x (i.e., x is upper bound of L)
e Thus | JLC x (b/c||Lis least upper bound)

e Obvious: | | L is 1 than all lower bounds
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Examples

e In (g{ayb,c},g)
¢ Note, in lattices with C-ordering, we occasionally write | J, () instead of | |, ]

® U{{a7 b}7 {a7 C}} = {a7 b, C}! m{{av b}v {a7 C}} = {a}
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Examples

o In (2abe} C)
¢ Note, in lattices with C-ordering, we occasionally write | J, () instead of | |, ]
® U{{a7 b}7 {a7 C}} = {a7 b, C}! m{{av b}v {a7 C}} = {a}

e InZ*2:
e | 1{1,2,3,4} =4, [{1,2,3,4} =1
e [1{1,2,3,4,...} = 400, [1{1,2,3,4,...} =1
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Last Lecture

e Syntactic criterion for available expressions
Constraint system to express it
¢ Yet to come: Link between CS and path-based criterion
¢ Naive fixpoint iteration to compute maximum solution of CS
o Partial orders, complete lattices
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Monotonic function

Definition
Let (D¢,C4) and (Do, C,) be partial orders. A function f : Dy — D, is called
monotonic, iff

Vx,y eDy. x Ty y = f(x) T2 f(y)
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Examples

o f::N— Z with f(x) .= x—10
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Examples

o f::N— Z with f(x) .= x—10
o f:: N — Nwith f(x) :=x+10
o f:2fabct _ plabel with f(X) := (XU {a,b}) \ {b,c}
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Examples

o f::N— Z with f(x) .= x—10

o f:: N — Nwith f(x) :=x+10

o f::2fabc} _y p{abel with £(X) := (X U{a,b})\ {b,c}
¢ In general, functions of this form are monotonic wrt. C.
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Examples

f:N— Zwith f(x) :=x—-10
o f:: N — Nwith f(x) :=x+10
o f::2fabc} _y p{abel with £(X) := (X U{a,b})\ {b,c}
¢ In general, functions of this form are monotonic wrt. C.
f 1 Z — Z with f(x) := —x (Not monotonic)
o fu2{abect , pfabel with f(X) := {x | x ¢ X} (Not monotonic)
e Functions involving negation/complement usually not monotonic.

67/471



Least fixed point

Definition

Let f: D — D be a function.

A value d € D with f(d) = d is called fixed point of f.
If D is a partial ordering, a fixed point dy € D with

Vd. f(d)=d = dyC d

is called least fixed point. If such a dj exists, it is uniquely determined, and we
define

Ifp(f) := do
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Examples

o f:: N — Nwith f(x) = x + 1 No fixed points
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Examples

o f:: N — Nwith f(x) = x + 1 No fixed points
e f:: N — Nwith f(x) = x. Every x € N s fixed point.
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Examples

o f:: N — Nwith f(x) = x + 1 No fixed points
e f:: N — Nwith f(x) = x. Every x € N s fixed point.
o fu2{abch , pfabel with f(X) = X U {a, b}. Ifp(f) = {a, b}.
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Function composition

Iffy : Dy — Dy and > : Do — D3 are monotonic, then also f, o f; is monotonic.
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Function composition

Theorem

Iffy : Dy — Dy and > : Do — D3 are monotonic, then also f, o f; is monotonic.

Proof: aC b = f£(a) C fi(b) = h(£(a)) C f(fi(b)).
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Function lattice

Definition
Let (D, C) be a partial ordering. We overload L to functions from A to D:

f C giff Vx. f(x) C g(x)

[A — D] is the set of functions from A to D.
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Function lattice

Definition
Let (D, C) be a partial ordering. We overload L to functions from A to D:

f C giff vx. f(x) C g(x)
[A — D] is the set of functions from A to D.

Theorem

If (D, C) is a partial ordering/complete lattice, then also ([A — D], C).
In particular, we have:

P =J{fex) [ feF}
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Function lattice

Definition
Let (D, C) be a partial ordering. We overload L to functions from A to D:

f C giff vx. f(x) C g(x)
[A — D] is the set of functions from A to D.

Theorem

If (D, C) is a partial ordering/complete lattice, then also ([A — D], C).
In particular, we have:

P =J{fex) [ feF}

Proof: On whiteboard.

71/471



Component-wise ordering on tuples

e Tuples X € D" can be seen as functions X : {1,...,n} — D
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Component-wise ordering on tuples

e Tuples X € D" can be seen as functions X : {1,...,n} — D
¢ Yields component-wise ordering:

}EYiffVi:{1,...,n}.X/Ey/
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Component-wise ordering on tuples

e Tuples X € D" can be seen as functions X : {1,...,n} — D
¢ Yields component-wise ordering:

)?’E?iffVi:{L...,n}.x,-gy,-

e (D" C) is complete lattice if (D, C) is complete lattice.
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Application

¢ Idea: Encode constraint system as function. Solutions as fixed points.
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Application

¢ Idea: Encode constraint system as function. Solutions as fixed points.
e Constraints have the form

Xi 3 fi(x1, ..., Xn)
where
Xi variables e.g., Alu],forue VvV
(D,C) complete lattice | e.g., (25*, D)
fi:D"—D RHS e.g., (Alulu{e}) \ Exprg
e Observation: One constraint per x; is enough.
e Assume we have x; J rhsi(X1,...,Xn), -, Xi 3 rhSm(X1, ..., Xn)

e Replace by x; I (LI{rhs; | 1 <j < m})(x1,...,Xn)
e Does not change solutions.

e Define F : D" — D", with

F(xi, .o xn) = ((X1,..., Xn)y -« o, Ta(X1, .., Xn))

Then, constraints expressed by X J F(X).
o Fixed-Points of F are solutions
o Least solution = least fixed point (next!)
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Least fixed points of monotonic functions

e Moreover, F is monotonic if the f; are.
e Question: Does Ifp(F) exist? Does fp-iteration compute it?
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Knaster-Tarski fixed-point Theorem
Knaster-Tarski

Let (D, C) be a complete lattice, and f : D — D be a monotonic function.
Then, f has a least and a greatest fixed point given by

Up(f) =[ {x | f(x) € x} gho(f) = J{x | x C f(x)}
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Knaster-Tarski fixed-point Theorem

Knaster-Tarski

Let (D, C) be a complete lattice, and f : D — D be a monotonic function.
Then, f has a least and a greatest fixed point given by

Up(f) =[ {x | f(x) € x} = J{x I x (0}

Proof Let P = {x | f(x) C } (P is set of pre-fixpoints)
e Show (1): f([1P)C [P
e HaveVx € P. f([]P) I: f(x) C x (lower bound, mono, def.P)
e |e, f([]P)is lower bound of P
e Thus f([7] P) C [1] P (greatest lower bound).
e Show (2):[1PC f([]P)
e From (1) have f(f([]1P)) C f([] P) (mono)
e Hence f([7] P) € P (def.P)
e Thus[]P C (][] P) (lower bound).
e Show (3): Least fixed point
e Assume d = f(d) is another fixed point
e Hence f(d) C d (reflexive)
e Hence d € P (def.P)
e Thus[]P C d (lower bound)
o Greatest fixed point: Dually. O
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Used Facts

lower bound x € X = [|XC x
greatest lower bound (Vx € X.dC X) = dLC[]X

mono f monotonic: x C y = f(x) C f(y)
reflexive x C x
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Knaster-Tarski Fixed-Point Theorem (Intuition)

pre-fixpoints

post-fixpoints
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Least solution = 1fp

Recall: Constraints where X J F(X)
Knaster-Tarski: Ifp(F) = [1{X | X 3 F(X)}
e |.e.: Least fixed point is lower bound of solutions
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Kleene fixed-point theorem

Kleene fixed-point

Let (D, C) be a complete lattice, and f : D — D be a monotonic function. Then:
| J{f/(L) |7 e N} C iio(f)
If f is distributive, we even have:

L[{F (L) |7 e N} = ifn(f)
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Kleene fixed-point theorem

Kleene fixed-point

Let (D, C) be a complete lattice, and f : D — D be a monotonic function. Then:

| J{f (1) |7 e N}y Cifp(f)
If f is distributive, we even have:

| J{Fi(L) 7 e N} = o)

Definition
Distributivity A function f : Dy — D, over complete lattices (D4, C4) and
(Do, C») is called distributive, iff

X#0 = f(,X) =1, {f00) | x e X}

Note: Distributivity implies monotonicity.
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Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, 1fp(f) exists.
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Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, 1fp(f) exists.

Show that for all i: f/(_L) C 1fp(f)
¢ Induction oni.
e j=0:f0(L) =L C Ifp(f) (def.f%, bot least)
e i+ 1:IH: fi(L) C 1fp(f). To show: fi+1(L) C 1fp(f)
e Have fit1(1) = f(f(L)) (def.fit1)
e L f(Ifp(f)) (IH, mono)
o = Ifp(f) (Ifp(f) is fixed point)

l.e., Ifp(f) is upper bound of {f/(1) | i N}
Thus, | J{f(1) | i € N} C Ifp(f) (least upper bound)
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Kleene fixed-point theorem: Proof (ctd)

Assume f is distributive.
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Assume f is distributive.

Hence f(| J{f/(L) | i € N}) = | [{f*"(L) | i € N} (def.distributive)
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Kleene fixed-point theorem: Proof (ctd)

Assume f is distributive.

Hence f(LI{f /(L) | i€ N}) = |[{f*'(L) | i € N} (def.distributive)
= {F(L) [ie N} (UXU{L}) =LUX)

lLe., [ [{f'(1) | i € N} is fixed point

Hence Ifp(f) C | [{f'(L) | i € N} (Ifp is least fixed point)

With distributive implies mono, antisymmetry and first part, we get:

Ifp(f) =| [{f(L)|ieN} O
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Used Facts

bot least Vx. L C x
fixed point d is fixed point iff f(d) = d
least fixed point f(d) =d = lfp(f)C d
least upper bound (¥x € X.xCd) = | /X Cd

82/471



Summary

o Does Ifp(F) exist?
e Yes (Knaster-Tarski)
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Summary

o Does Ifp(F) exist?
e Yes (Knaster-Tarski)
e Does fp-iteration compute it?
o Fp-iteration computes the F(_L) for increasing i
e By Kleene FP-Theorem, these are below Ifp(F)
o |t terminates only if a fixed-point has been reached
e This fixed point is also below Ifp(F) (and thus = Ifp(F))
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Note

e For any monotonic function f, we have

f’(L) C fi+1(L)

e Straightforward induction on i
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Naive FP-iteration, again

Input Constraint system x; 2 fi(X)
O x:=(L...,1)
@ % := F(X) (Recall F(X) = (£(X), ..., (X))
® If =(F(X) C X), goto 2
® Return “X is least solution”
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Naive FP-iteration, again

Input Constraint system x; 2 fi(X)

=(L..., 1)
— F(%) (Recall F(3) = (A(3)...... (D))
~(F(X) C X), goto 2
Return “X is least solution”
Note Originally, we had X := X LI F(X) in Step 2 and F(X) # X in
Step 3
e Also correct, as F/(L) < F*1(1), i.e., X C F(X)
e Saves Ll operation.
e C may be more efficient than =.

><1 ><1

1]
2]
O If
o
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Caveat

Naive fp-iteration may be rather inefficient

(

Let (Expr U {y + 2z}) Expry
0
A[1] Expr
Expr
Expr
Expr
A[5] Expr

M
Al2]
?M [2] :=1 2{2{
@
M
®
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Caveat

Naive fp-iteration may be rather inefficient

let S = (Expr U {y + 2z})

C?x 1= y+z
C? A[1]  Expr 1]

M
? Al2]  Expr S
L A[3] Expr Expr
M[2] :=1 A[4] Expr Expr
@
M
®

A[5] Expr Expr
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Caveat

Naive fp-iteration may be rather inefficient

C?x 1= y+z

Let = (Expr U {y + 2z}) Expry
0 1 2

A[1]  Expr 0 0

A[2] Expr S {y+z}

A[3] Expr Expr S

A[4] Expr Expr Expr

A[5] Expr Expr Expr
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Caveat

Naive fp-iteration may be rather inefficient

C?x 1= y+z

Let = (Expr {y + Expry
0 1 2 3
A[1]  Expr 0 0 0
A[2] Expr S {v+z} {y+z}
A[3] Expr Expr S {y+z}
A[4] Expr Expr Expr S
A[5] Expr Expr Expr Expr

87/471



Caveat

Naive fp-iteration may be rather inefficient

(

Let = (Expr U {y + z}) — Expry
0 1 2 3 4
A[1]  Expr 0 0 0 0
Expr S v+z} {y+z} {y+2z}
Expr  Expr S {y+z} {y+2z}
Expr  Expr Expr S {y + z}
A[5] Expr Expr Expr Expr S

M
Al2]
CT:)M [2] :=1 2{2{
@
M
®
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Caveat

Naive fp-iteration may be rather inefficient

C?x 1= y+z

Let = (Expr {y + z}) Expry
0 1 2 3 4 5
A[1]  Expr 0 0 0 0 0
ARl Bxpr S {y+z} {y+zr vtz {y+z)
AR B B S {y+z) {y+zp {y+z)
A[4] Expr Expr Expr S {y+z} {y+2z}
A[5] Expr Expr Expr Expr S {y+z}
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Round-Robin iteration

Idea: Instead of values from last iteration, use current values while

computing RHSs.

0
A[1]  Expr
A[2] Expr
A[3] Expr
A[4]  Expr
A[5] Expr
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Round-Robin iteration

Idea: Instead of values from last iteration, use current values while

computing RHSs.

?x 1= y+z
?M[l] =1
®

M[2] =1

0 1
A[1]  Expr [
A2l Expr {y+2z}
A B {y+2)
Al4] Expr {y+2z}
A5] Expr {y+2z}
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RR-lteration: Pseudocode

X:=(L,...,1)
do {
finished := true
for (i=1;i<=n;++1i) {
new := f(X) // Evaluate RHS

if (X;# new) { // If something changed
finished = false // No fp reached yet
Xj:=X;U new // Update variable
}
}
} while (!finished)
return X
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RR-lteration: Correctness

Prove invariant: X C Ifp(F)
e Initially, (L,..., L) C lfp(F) holds (bot-least)
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RR-lteration: Correctness

Prove invariant: X C Ifp(F)

e Initially, (L,..., L) C lfp(F) holds (bot-least)

e On update:

e We have (1): X’ = X(i := x; U fi(X)). We assume (IH): X C 1fp(F)

From (1) we get X’ C X Ll F(X) (def.C on D")
From (IH) we get F(X) C 1fp(F) (mono, fixed-point)
Hence X U F(X) C 1fp(F) (least-upper-bound, IH)
Together: X’ C 1fp(F) (trans)
Moreover, if algorithm terminates, we have X = F(X)

e le., X is a fixed-point.
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RR-lteration: Correctness

Prove invariant: X C Ifp(F)
e Initially, (L,..., L) C lfp(F) holds (bot-least)
e On update:
We have (1): X' = X(i := x; U fi(X)). We assume (IH): X C 1fp(F)
From (1) we get X’ C X Ll F(X) (def.C on D")
From (IH) we get F(X) C 1fp(F) (mono, fixed-point)
Hence X U F(X) C 1fp(F) (least-upper-bound, IH)
Together: X’ C 1fp(F) (trans)
Moreover, if algorithm terminates, we have X = F(X)
e le., X is a fixed-point.
e Invariant: X C least fixed point
e Thus: X = Ifp(F)
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Used Facts

frans xCyCz — xCz
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RR-lteration: Improved Algorithm

We can save some operations

e Use L instead of = in test
e No LI on update

X:=(L,...,1)
do {
finished := true
for (i=1;i<=n;++1i) {
new := fi(X) // Evaluate RHS

if (=(x;d new)) { // If something changed
finished = false // No fp reached yet
Xj == new // Update variable

}
} while (!finished)
return X
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RR-lteration: Improved Algorithm: Correctness

Justification: Invariant X C F(X)
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RR-lteration: Improved Algorithm: Correctness

Justification: Invariant X C F(X)
e Holds initially: Obvious
e On update:
e We have X' = X(i := fj(X)). We assume (IH): X C F(X)
e Hence X C X' C F(X) (Def.C, IH)
e Hence F(X) C F(X') (mono)
e Together X' C F(X') (trans)
With this invariant, we have
o x; = fi(X) iff x; 3 fi(X) (antisym)
o x; U fi(X) = fi(X) (sup-absorb)
e sup-absorb: xCy = xUy=y
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RR-Iteration: Termination

Definition (Chain)
A set C C D is called chain, iff all elements are mutually comparable:

Ve, C.citCE Ve C e

A partial order has finite height, iff every chain is finite. Then, the height h € N
is the maximum cardinality of any chain.
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RR-Iteration: Termination

Definition (Chain)
A set C C D is called chain, iff all elements are mutually comparable:

Ve, C.citCE Ve C e

A partial order has finite height, iff every chain is finite. Then, the height h € N
is the maximum cardinality of any chain.

For a domain with finite chain height h, RR-iteration terminates within
O(n?h) RHS-evaluations.

¢ In each iteration of the outer loop, at least one variable increases, or the
algorithm terminates. A variable may only increase h — 1 times.
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Last Lecture

Monotonic functions

e Constraint system modeled as function
o Least solution is least fixed point

o Knaster-Tarski fp-thm:
o Ifp of monotonic function exists
Kleene fp theorem:

e lterative characterization of Ifp for distributive functions
o Justifies naive fp-iteration

¢ Round-Robin iteration

e Improves on naive iteration by using values of current round
o Still depends on variable ordering
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Problem:

The efficiency of RR depends on variable ordering
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C?x 1= y+z

(? Let S:= (ExprU {y + z}) — Expr,
0 1
ML) =1 A[1] Expr Expr
A[2] Expr Expr
L A[3] Expr Expr
M[2] =1 Al4]  Expr S
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C?x 1= y+z

(? Let S:= (ExprU {y + z}) — Expr,
0 1 2
MIL] ==1 A[1] Expr Expr Expr
A[2] Expr Expr Expr
L A[3] Expr Expr S
M[2] =1 A[4] Expr S {y+z}
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Problem:

The efficiency of RR depends on variable ordering

C?x 1= y+z

(? Let S:= (ExprU {y + z}) — Expr,
0 1 2 3
MIL] ==1 A[1] Expr Expr Expr Expr
A[2] Expr Expr Expr S
M[2] := 1 A[3] Expr Expr S {y +z}
: A[4] Expr S {v+z} {y+z}
A[5] Expr 0 0 0
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Problem:

The efficiency of RR depends on variable ordering

C?x 1= y+z

(? Let S:= (ExprU {y + z}) — Expr,
0 1 2 3 4
MIL] ==1 A[1] Expr Expr Expr Expr S
A[2] Expr Expr Expr S {y+z}
M[2] := 1 A[3] Expr Expr S {y+z} A{y+z}
: A4l Bxpr S {y+zr {y+zb {y+z
A[5] Expr 0 0 0 0
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Problem:

The efficiency of RR depends on variable ordering

%

Let S:= (ExprU {y + z}) — Expr,

0 1 2 3 4 5
A[1] Expr Expr Expr Expr S {v+2z}
A[2] Expr Expr Expr S {y+z} {y+z}
AB] Expr Expr S y+zy {y+z2y {y+z}
A4] Expr S {y+z} {y+z} {y+z} {y+z}
A[5] Expr 0 0 0 0 0
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Problem:

The efficiency of RR depends on variable ordering

Rule of thumb

u before v, ifu —* v
Entry condition before loop body
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Worklist algorithm

Problems of RR (remaining)
Complete round required to detect termination
If only one variable changes, everything is re-computed
Depends on variable ordering.
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Worklist algorithm

Problems of RR (remaining)
Complete round required to detect termination
If only one variable changes, everything is re-computed
Depends on variable ordering.
Idea of worklist algorithm
e Store constraints whose RHS may have changed in a list
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Worklist Algorithm: Pseudocode

W= {1l...n}
X=(L,...,1)
while (W != ¢) {

get an 1 € W, W =W - {i}

x
I
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Worklist Algorithm: Example

e On whiteboard
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Worklist Algorithm: Correctness

Invariants 1 X C F(X) and X C IfpF
e Same argument as for RR-iteration
2 2(x2f(X)) = ieW
e Intuitively: Constraints that are not satisfied are on worklist
e Initially, all i in W
e On update: Only RHS that depend on updated variable may
change. Exactly these are added to W.
If f; does not depend on variable i, the constraint i holds for
the new X, so its removal from W is OK.
e If loop terminates: Due to Inv. 2, we have solution. Due to

Inv. 1, it is least solution.
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Worklist Algorithm: Termination
Theorem

For a monotonic CS and a domain with finite height h, the worklist algorithm

returns the least solution and terminates within O(hN) iterations, where N is
the size of the constraint system:

n
N = 21 + |fi| where |f;| := |{i | f; depends on variable i}|

i=1
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Worklist Algorithm: Termination

Theorem

For a monotonic CS and a domain with finite height h, the worklist algorithm
returns the least solution and terminates within O(hN) iterations, where N is
the size of the constraint system:

n
N = 21 + |fi| where |f;| := |{i | f; depends on variable i}|

i=1

Proof (Sketch):

e Number of iterations = Number of elements added to W.
o Initially: n elements
e Constraint j added if variable its RHS depends on is changed
e Variable may not change more than h times. Constraint depends on |f;| variables.
e Thus, no more than

n+Y_ hlf| = hN

i=1
elements added to worklist. O
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Worklist Algorithm: Problems

e Dependencies of RHS need to be known.
e No problem for our application
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Worklist Algorithm: Problems

e Dependencies of RHS need to be known.
e No problem for our application

e Which constraint to select next from worklist?
o Requires strategy.

e Various more advanced algorithms exists

e Determine dependencies dynamically (Generic solvers)
e Only compute solution for subset of the variables (Local solvers)
e Even: Local generic solvers
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Summary:

e Constraint systems (over complete lattice, monotonic RHSSs)
e Encode as monotonic function F : D" — D"
o (Least) Solution = (least) fixed point
e Knaster-Tarski theorem: A least solution always exists
e Solve by fixpoint-iteration (naive, RR, WL)
¢ Kleene-Theorem justifies naive fixpoint iteration
e Similar ideas to justify RR, WL
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Summary:

e Constraint systems (over complete lattice, monotonic RHSSs)
e Encode as monotonic function F : D" — D"
o (Least) Solution = (least) fixed point
e Knaster-Tarski theorem: A least solution always exists
Solve by fixpoint-iteration (naive, RR, WL)
¢ Kleene-Theorem justifies naive fixpoint iteration
e Similar ideas to justify RR, WL
o Still Missing:
o Link between least solution of constraint system, and
Available at u: Alu] = {[#]70 | 7. vo = u}

103/471



Table of Contents

9 Removing Superfluous Computations
Repeated Computations
Background 1: Rice’s theorem
Background 2: Operational Semantics
Available Expressions
Background 3: Complete Lattices
Fixed-Point Algorithms
Monotonic Analysis Framework
Dead Assignment Elimination
Copy Propagation
Summary

104/471



Monotonic Analysis Framework

Given

Flowgraph

A complete lattice (D, C).

An initialization value dy € D

An abstract effect [k]* : D — D for edges k
e Such that [k]* is monotonic.
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Monotonic Analysis Framework

Given Flowgraph
A complete lattice (D, C).
An initialization value dy € D
An abstract effect [k]* : D — D for edges k
e Such that [k]* is monotonic.

Wanted MOP[u] := | [{[#]"(cb) | 7. vo = u}
MOP = Merge over all paths
Method Compute least solution MFP of constraint system

MFP[vo] 3 do (init)
MFP[v] 3 [k]” (MFP[u]) for edges k = (u,a,v) (edge)

MFP = Minimal fixed point
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Kam, Ullmann

Kam, Ullman, 1975

In a monotonic analysis framework, we have

MOP C MFP
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Kam, Ullmann

Kam, Ullman, 1975

In a monotonic analysis framework, we have

MOP C MFP

e Intuitively: The constraint system’s least solution (MFP) is a correct
approximation to the value defined over all paths reaching the program
point (MOP).

o In particular: [7]* (db) T MFP[u] for vo = u
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Kam, Ullman: Proof

To show MOP C MFP, i.e. (def. MOP, def.C on D")

vu. | [{[]"do | 7. vo = u} C MFP[u]
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Induction on .
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To show MOP C MFP, i.e. (def. MOP, def.C on D")
vu. | [{[]"do | 7. vo = u} C MFP[u]
It suffices to show that MFP[u] is an upper bound. (least-upper-bound)
VU vo 5 u = [#]%do C MFP[u]
Induction on 7.
e Basecase:m =c¢.
e We have u = v, (empty-path) and [¢]* dy = dy (empty-eff)

e As MFP is solution, the (init)-constraint yields dy = MFP[vy].
e Step case: m = 7'k for edge k = (u, a, v)
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Kam, Ullman: Proof

To show MOP C MFP, i.e. (def.MOP, def.C on D")
vu. | [{[]"do | 7. vo = u} C MFP[u]

It suffices to show that MFP[u] is an upper bound. (least-upper-bound)
v U vo o u = [#]%dy T MFP[u]

Induction on 7.
e Basecase:m =¢.
e We have u = vy (empty-path) and [[a]l#do = dp (empty-eff)
e As MFP is solution, the (init)-constraint yields dy = MFP[vy].
e Step case: m = 7'k for edge k = (u, a, v)

e Assume vy = u 3 vand (IH): [=']* do © MFP[u].
To show: [«k]* dy T MFP[v]
e Have [«'k]* = [K]* ([~']" db) (eff-comp)
e T [K]*(MFP[u]) (IH,mono)
e [ MFP[v] ((edge)-constraint, MFP is solution) O
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Facts

empty-path u S v <= u=v
empty-eff [e]*d =d
eff-comp [mim]® = [m2]® o [m]*
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Problem

¢ Yet another approximation :(
o Recall: Abstract effect was already approximation

109/471



Problem

¢ Yet another approximation :(
o Recall: Abstract effect was already approximation
e Good news:
e If the right-hand sides are distributive, we can compute MOP exactly
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Theorem of Kildal

Kildal, 1972

In a distributive analysis framework (i.e., a monotonic analysis framework
where the [k]" are distributive), where all nodes are reachable, we have

MOP = MFP
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Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices
to show that MOP is a solution of the constraint system.

e As MFP is least solution, the proposition follows.
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Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices

to show that MOP is a solution of the constraint system.
e As MFP is least solution, the proposition follows.

e Recall:
MOP[u] := | | P[u], where P[u] := {[x]"(cb) | 7. vo = u}

(init) To show: MOP[wy] 2 a
o Straightforward (upper-bound, empty-path, empty-eff)
(edge) To show: MOP[v] 3 [k]*MOP][u] for edge k = (u, a, v)

e Note (*): P[u] not empty, as all nodes reachable
o [K]*MOP[u] = | {IK]* ([7]7 cb) | 7. vo = u} (def.MOP, distrib,*)
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Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices

to show that MOP is a solution of the constraint system.
e As MFP is least solution, the proposition follows.

e Recall:
MOP[u] := | | P[u], where P[u] := {[x]"(cb) | 7. vo = u}

(init) To show: MOP[vp] O do
o Straightforward (upper-bound, empty-path, empty-eff)
(edge) To show: MOP[v] 3 [k]*MOP][u] for edge k = (u, a, v)
e Note (*): P[u] not empty, as all nodes reachable
o [K]*MOP[u] = | {IK]* ([7]7 cb) | 7. vo = u} (def.MOP, distrib,*)
o = | {[rk]*dbo | 7 vo KL v} (def.[-]* on paths. k is edge, path-append)
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Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices

to show that MOP is a solution of the constraint system.
e As MFP is least solution, the proposition follows.
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Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices

to show that MOP is a solution of the constraint system.
e As MFP is least solution, the proposition follows.

e Recall:
MOP[u] := | | P[u], where P[u] := {[x]"(cb) | 7. vo = u}

(init) To show: MOP[wy] 2 a
o Straightforward (upper-bound, empty-path, empty-eff)
(edge) To show: MOP[v] 3 [k]*MOP][u] for edge k = (u, a, v)
e Note (*): P[u] not empty, as all nodes reachable
o [K]*MOP[u] = | {IK]* ([7]7 cb) | 7. vo = u} (def.MOP, distrib,*)
= | {I=k]*ab | 7. vo LLN v} (def.[-]* on paths. k is edge, path-append)
C L{[#]7db | 7. vo =5 v} (sup-subset)
= MOP[v] (def.MOP)



Facts

path-append k = (u,a,v) € EA Vg = U <= v KLY
e Append edge to path
sup-subset XCY = | |XC||Y
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Note

Reachability of all nodes is essential

¢ No paths to unreachable node v, i.e., MOP[u] = L
o But edges from other unreachable nodes possible

— Constraint of form MFP[u] O ...



Note

Reachability of all nodes is essential

¢ No paths to unreachable node v, i.e., MOP[u] = L
o But edges from other unreachable nodes possible

— Constraint of form MFP[u] O ...
Eliminate unreachable nodes before creating CS
e E.g. by DFS from start node.
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Depth first search (pseudocode)

void dfs (node u) {
if u ¢ R {
R := R U {u}
for all v with (u,a,v) € E {dfs v}
}
}

void find_reachable () {
R = {}
dfs (V)
// R contains reachable nodes now
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Summary

Input CFG, distributive/(monotonic) analysis framework
e Framework defines domain (D, C), initial value dp € D and
abstract effects []* : E > D > D
e For each edge k, [[k]]# is distributive/(monotonic)

© Eliminate unreachable nodes
® Put up constraint system
® Solve by worklist-algo, RR-iteration, ...

Output (Safe approximation of) MOP - solution
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Summary

Input CFG, distributive/(monotonic) analysis framework
e Framework defines domain (D, C), initial value dp € D and
abstract effects []* : E > D > D
e For each edge k, [[k]]# is distributive/(monotonic)

© Eliminate unreachable nodes
® Put up constraint system
® Solve by worklist-algo, RR-iteration, ...

Output (Safe approximation of) MOP - solution

Note Abstract effects of available expressions are distributive
¢ As all functions of the form: x — (aU x) \ b
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Last lecture

Worklist algorithm: Find least solution with O(hN) RHS-evaluations
e h height of domain, N size of constraint system
Monotonic analysis framework: (D, C), dy € D, [-]* (monotonic)
o Yields MOP[u] = | {[=]"db | 7. vo = u}
e Theorems of Kam/Uliman and Kildal
e MOP C MFP,
o Distributive framework and all nodes reachable: MOP = MFP
Started with dead-assignment elimination
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Summary (Il) — How to develop a program optimization

e Optimization = Analysis + Transformation
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e Prove transformation correct for (approximations of) this result
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e Result for each program point
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Summary (Il) — How to develop a program optimization

Optimization = Analysis + Transformation
Create semantic description of analysis result

e Result for each program point

e Depends on states reachable at this program point

¢ In general, not computable

e Prove transformation correct for (approximations of) this result
Create syntactic approximation of analysis result

e Abstract effect of edges
¢ Yields monotonic/distributive analysis framework

Compute MFP.
o Approximation of semantic result
Perform transformation based on MFP
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9 Removing Superfluous Computations
Repeated Computations
Background 1: Rice’s theorem
Background 2: Operational Semantics
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Now: Dead-Assignment Elimination

Example

1: x =y + 2;
2: y = 4;

3: x =y + 3
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Example
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2: y = 4;

3: x =y + 3

Value of x computed in line 1 never used
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1: nop;
2:y = 4;
3: x y + 3
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Now: Dead-Assignment Elimination

Example

l: x =y + 2;
2: y = 4;

3: x =y + 3

Value of x computed in line 1 never used
Equivalent program:

1: nop;
2: y = 4;
3: x =y + 3

e x is called dead at 1.
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Live registers (semantically)

Register x is semantically live at program point u, iff there is an execution
to an end node, that depends on the value of x at u:

x € Live[u] < 3m,v,p,u,a
U vAvE Vg
A(p, 1) € [U]
Am](p(x = a), 1) #x [=](p, 1)

Where [u] := {(p, 1) | Fpo, o, 7. Vo = U A [w](po, o) = (p, 1)}
o Intuition: All states reachable at u
e Collecting semantics
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Live registers (semantically)

Register x is semantically live at program point u, iff there is an execution
to an end node, that depends on the value of x at u:

x € Live[u] < 3m,v,p,u,a
U vAvE Vg
A(p, 1) € [U]
Am](p(x = a), 1) #x [=](p, 1)

Where [u] := {(p, 1) | Fpo, o, 7. Vo = U A [w](po, o) = (p, 1)}
o Intuition: All states reachable at u
e Collecting semantics

o (p, ) =x (p', 1) iff p =/ and Vx € X. p(x) = p'(x)
e Equal on memory and “interesting” registers X

e x is semantically dead at v, iff it is not live.
¢ No execution depends on the value of x at u.
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Transformation: Dead-Assignment Elimination

Replace assignments/loads to dead registers by Nop
(u, x := %, v) — (u,Nop, v) if x dead at v
Obviously correct
o States reachable at end nodes are preserved
Correct approximation: Less dead variables (= More live variables)
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Live registers (syntactic approximation)

Register x is live at u (x € L[u]), iff there is a path u = v, v € V,yq, such
that

e 7 does not contain writes to x, and x € X
e or 7 contains a read of x before the first write to x
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Live registers (syntactic approximation)

Register x is live at u (x € L[u]), iff there is a path u = v, v € V,yq, such
that

e 7 does not contain writes to x, and x € X
e or 7 contains a read of x before the first write to x

Abstract effects, propagating live variables backwards over edge

[Nop]#L =L
[Pos(e)]* L = L Uregs(e)
[Neg(e)]*L = L Uregs(e)
[x :=e]*L =L\ {x} Uregs(e)
[x == M(e)]*L = L\ {x} Uregs(e)
[M(e1) := M(e2)]* L = L Uregs(er) U regs(ez)

Note: distributive.
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Live registers (syntactic approximation)

Register x is live at u (x € L[u]), iff there is a path u = v, v € V,yq, such
that

e 7 does not contain writes to x, and x € X
e or 7 contains a read of x before the first write to x

Abstract effects, propagating live variables backwards over edge

[Nop]#L =L

[Pos(e)]* L = L Uregs(e)

[Neg(e)]*L = L Uregs(e)

[x :=e]*L =L\ {x} Uregs(e)

[x == M(e)]*L = L\ {x} Uregs(e)
[M(e1) := M(e2)]* L = L Uregs(er) U regs(ez)

Note: distributive.
Lift to path (backwards!): [k ... k.]* = [ki]" o. ..o [ki]"
Live at u (MOP): L[u] = U{[x]* X | 3V € Vipa. u = v}
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Example
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Example
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Liveness: Correct approximation

Theorem

(Syntactic) liveness is a correct approximation of semantic liveness
Live[u] C L[u]
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Liveness: Correct approximation

Theorem

(Syntactic) liveness is a correct approximation of semantic liveness
Live[u] C L[u]

e Proof: On whiteboard.
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Computing L

Use constraint system

Llul 2 X for u € Venq
L[u] D [K]* L[v] for edges k = (u, a, v)
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Computing L

Use constraint system

Llul 2 X for u € Venq
L[u] D [K]* L[v] for edges k = (u, a, v)

Information propagated backwards
Domain: (Reg, C)
e Reg: The finitely many registers occurring in program.
= Finite height
 Moreover, the [k]* are distributive
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Computing L

Use constraint system

Llul 2 X for u € Venq
L[u] D [K]* L[v] for edges k = (u, a, v)

Information propagated backwards
Domain: (Reg, C)
e Reg: The finitely many registers occurring in program.
= Finite height
 Moreover, the [k]* are distributive
Can compute least solution (MFP)
o Worklist algo, RR-iteration, naive fp-iteration
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Backwards Analysis Framework

Given CFG, Domain: (D, C), init. value: dy € D, abstract effects:
[17 : D — D, monotonic
MOP[u] := | {[#]¥db | 3V € Vens. u 5 v}
MFP is least solution of
MFP[u] O dy foru € Ve
MFP[u] 3 [k]*MFP[v] for edges k = (u, a, v)
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Backwards Analysis Framework

Given CFG, Domain: (D, C), init. value: dp € D, abstract effects:
[17 : D — D, monotonic

MOP[u] := | {[#]¥db | 3V € Vens. u 5 v}
MFP is least solution of

MFP[u] O dy foru € Ve
MFP[u] 3 [kK]*MFP[v] for edges k = (u, a, v)
e We have:
MOP C MFP
« Ifthe [k]* are distributive, and from every node an end node can be
reached:
MOP = MFP
e Proofs:

e Analogously to forward case :) O
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Example: Dead Assignment elimination

P OX O~
+ +
Ko —

On whiteboard.
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Last Lecture

e Monotonic forward/backward framework
e Live variables, dead assignment elimination
x live at u

Semantically: x € Live[u]: Exists execution that depends on value of x at u

Syntactic approximation: x € L[u]: x read before it is overwritten
Correctness proof

e Induction on path, case distinction over edges
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Analysis: Classifications
e Forward vs. backward

Forward Considers executions reaching a program point
Backwards Considers executions from program point to end
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Analysis: Classifications

e Forward vs. backward
Forward Considers executions reaching a program point
Backwards Considers executions from program point to end
e Must vs. May
Must Something is guaranteed to hold, and thus allows
optimization
e Onsetdomain:C=D,ie.LU=nN
May Something may hold, and thus prevents (correct)
optimization
e Onsetdomain: C=C,ie.U=U
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Analysis: Classifications

e Forward vs. backward
Forward Considers executions reaching a program point
Backwards Considers executions from program point to end
e Must vs. May
Must Something is guaranteed to hold, and thus allows
optimization
e Onsetdomain:C=D,ie.LU=nN
May Something may hold, and thus prevents (correct)
optimization
e On setdomain: C=C,i.e. U =U
e Kill/Gen analysis
o Effects have form [k]* X = X mkillx U gen,
e Particular simple class. Distributive by construction.
o Bitvector analysis: Kill/Gen on finite set domain.
e Examples:

o Available expressions: forward,must,kill-gen
e Live variables: backward,may,kill-gen
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Dead Assignment Elimination: Problems

Eliminating dead assignments may lead to new dead assignments

SRS € S | S ¢ SN 37
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Dead Assignment Elimination: Problems

Eliminating dead assignments may lead to new dead assignments

{ g . {xr . {xy}
®—;<91—@+*@x:1 ) y=1 ®

In a loop, a variable may keep itself alive
{x} x=x+1
x=0

{x}
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Truly live registers

Idea: Consider assignment edge (u, x = e, v).

¢ [f x is not semantically live at v, the registers in e need not become live at u
e There values influence a register that is dead anyway.
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True Liveness vs. repeated liveness

e True liveness detects more dead variables than repeated liveness

Repeated liveness:

{x} x=x+1

{x}
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True Liveness vs. repeated liveness

e True liveness detects more dead variables than repeated liveness

True liveness:
{ =

x=0

{x} @
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Live registers: Abstract effects

[[Nop]]# L= L

[Pos(e)]*
[Neg(e)]”

[x = e]”

[x := M(e)]*
[M(e1) := e2]*

L Uregs(e)

= LUregs(e)

— LU rees(e)
L\ {x}u( regs(e)

= LUregs(er)Uregs(ez)

)
)
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Truly live registers: Abstract effects

[Nop]#TL=TL
[Pos(e)]* TL = TLUregs(e)
[Neg(e)]* TL = TLUregs(e)
[x =] TL=TL\ {x}U(x € TL?regs(e): 0)
[x == M(e)]* TL=TL\ {x} U (x € TL?regs(e): 0
M(ey) := 62]]# TL= TLUregs(ey) Uregs(e2)
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Truly live registers: Abstract effects

[Nop]#TL=TL
[Pos(e)]* TL = TLUregs(e)
[Neg(e)]* TL = TLUregs(e)
[x =] TL=TL\ {x}U(x € TL?regs(e): 0)
[x == M(e)]* TL=TL\ {x} U (x € TL?regs(e): 0
M(ey) := 62]]# TL= TLUregs(ey) Uregs(e2)

Effects are more complicated. No kill/gen, but still distributive.
We have MFP = MOP :)
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True Liveness: Correct approximation

True liveness is a correct approximation of semantic liveness Live[u] C TL[u]
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True Liveness: Correct approximation

True liveness is a correct approximation of semantic liveness Live[u] C TL[u]

e Proof: On whiteboard.
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Copy propagation

Idea: Often have assignments of form r; = r».
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Copy propagation
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e E.g., R = T, after redundancy elimination
e In many cases, we can, instead, replace ry by r» in subsequent code
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Analysis: Maintain an acyclic graph between registers

e Edge x — y implies p(x) = p(y) for every state reachable at u
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Copy propagation

Idea: Often have assignments of form r; = r».

e E.g., R = T, after redundancy elimination
e In many cases, we can, instead, replace ry by r» in subsequent code
— r becomes dead, and assignment can be eliminated

Analysis: Maintain an acyclic graph between registers

e Edge x — y implies p(x) = p(y) for every state reachable at u
e Assignment x = y creates edge x — y.

Transformation: Replace variables in expressions according to graph

137/471



Example

On Whiteboard
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Abstract Effects

[Nop]*C = C
[Pos(e)]*C = C
[Neg(e)]*C=C
[x=y]"C=C\{x = % x = x}U{x =y} fory € Reg,y # x
[x=el*C=C\{x — %+ — x} for e € Expr \ Reg or e = x
[x = M[e]]"C = C\ {x = *,x — x}
[Mles] = e]*C=C

where {x — *,* — x} is the set of edges from/to x
Obviously, abstract effects preserve acyclicity of C
Moreover, out-degree of nodes is < 1

Abstract effects are distributive
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Last Lecture

Classification of analysis

e Forward vs. backward, must vs. may, kill/gen, bitvector
e Truly live variables

o Better approximation of ,semantically life”

o |dea: Don’t care about values of variables that only affect dead variables

anyway.

Copy propagation

o Replace registers by registers with equal value, to create dead assignments
e Whole procedure: Simple redundancy elimination, then CP and DAE to
clean up
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Analysis Framework

e Domain: (D = 2ReexRez 3)
e l.e.: More precise means more edges (Safe approximation: less edges)
e Join: N (Must analysis)
e Forward analysis, initial value dy = 0

— MOP[u] = "{[#]*0 | vo = u}
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Analysis Framework

e Domain: (D = 2ReexRez 3)
e l.e.: More precise means more edges (Safe approximation: less edges)
e Join: N (Must analysis)
e Forward analysis, initial value dy = 0

— MOP[u] = N{[x1*0 | vo & u}

e Correctness: x — y € MOP[u] = Y(p, i) € [u]. p(x) = p(y)
o Justifies correctness of transformation wrt. MOP
e Proof: Later!

¢ Note: Formally, domain contains all graphs.

o Required for complete lattice property!

e But not suited for implementation (Set of all pairs of registers)
e Add L-element to domain. [k]* L := L.

e Intuition: L means unreachable.
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Procedure as a whole

@ Simple redundancy elimination
o Replaces re-computation by memorization
¢ Inserts superfluous moves
® Copy propagation
e Removes superfluous moves
e Creates dead assignments

® Dead assignment elimination
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Example: a[7] — —

——0O

ri=M[a+7]

ro=rq— 1

M[a+7] = r2
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Example: a[7] — —

Introduced memorization registers

(f'IH = a+t7

(flﬁ = M[T4]
(fT2= ri— 1
(frg = To
T1 = at7
M[T1]=r2
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Example: a[7] — —

Eliminated redundant computations

T = a+7

ri= M[Tq]

Tp= ri- 1
%
(fNop
(fM[T1]=r2
O
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Example: a[7] — —
Copy propagation done
1= a+7
= M[T4]
ri- 1

= T2

T1]1=T2

O<—O<—O<—O<—O<—O<?O
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Example: a[7] — —
Eliminated dead assignments
Ty = a+7
r1= M[T¢]

To=r1— 1
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Background: Simulation

Given:
e Concrete values C, abstract values D, actions A
e [nitial values ¢p € C, dp € D
e Concrete effects [a] : C — C, abstract effects [a]* : D — D
o With forward-generalization to paths: [ki ... kn] = [kn] o ... o [k1] and
ki ... k] = [kl * o ... 0 [K]"
e Relation ACC x D
Assume:
e Initial values in relation: ¢y A dy
« Relation preserved by effects: ¢ A d = [k]c A [k]"d

Get: Relation preserved by paths from initial values: [x]co A [7]* db
Proof: Straightforward induction on paths. On whiteboard!
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Background: Description relation

e Now: ¢ A d — Concrete value ¢ described by abstract value d
e Moreover, assume complete lattices on C and D.
e Intuition: x C x’ — x is more precise than x’

e Assume A to be monotonic on abstract values:

cAdANdCd = cAd

e Intuition: Less precise abstract value still describes concrete value
e Assume A to be distributive on concrete values:

(veeC.cAd) « (| |C)Ad

¢ Note: Implies anti-monotonicity: ¢ CcAcAd — ¢ Ad
¢ Intuition: More precise concrete values still described by abstract value

o We get for all sets of paths P:

(¥r € P. [xloo &[] do) = (| ] [x]co) & (| ] [x]" o)

weP neP
¢ Intuition: Concrete values due to paths P described by abstract values
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Application to Program Analysis

Concrete values: Sets of states with C
o Intuition: Less states = more precise information
e Concrete effects: Effects of edges (generalized to sets of states)
* [KIC := U, ,yecnaompq [KI(p, 1), i.e., don't include undefined effects
Concrete initial values: All states: ¢; = State
Abstract values: Domain of analysis, abstract effects: [k]*, do
e Description relation: States described by abstract value
e Usually: Define A on single states, and lift to set of states:

SAAiffVY(p,u) € S. (p,u) AA

o This guarantees distributivity in concrete states
We get: [u] A MOP[y]
o All states reachable at u described by analysis result at u.
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Example: Available expressions

e Recall: D = (25, D)
o Define: (p,u) A Aiff Ve € A. [€]p = p(Te)
o Prove: ADA A(p,pu) AA = (p,u) A A
e Prove: (p,u) A A = [al(p, 1) = [tr(a, A)(p, 1)
tr(Te=e,A) =ifec AthenNopelse Te = e |
tr(a,A) =a
e Transformation in CFG: (u, a, v) — (u,tr(a, A[u]), v)
e Prove: Vpo, p10. (po, t0) A do
e For AE, we have dy = J, which implies the above.
« Prove: (p, 1) € dom[K] A (p, 1)) A D = [K](p, ) A [K]*D
Get: [u] A MOP[u], thus [u] A MFP[u]
e Which justifies correctness of transformation wrt. MFP

e where
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Example: Copy propagation

° (]D), E) — (2Reg><Reg’ 2)

° (p,‘u) A Ciff V(X — y) e C. p(X) = p(y)

e Monotonic for abstract values.
e tr(a, C): Replace variables in expressions due to edges in C
* (p,n) A C = [al(p, p) = [tr(a. C)](p; 1)

o Replace variables by equal variables

e dy = (). Obviously (po, 10) A 0 for all pg, 0.

« Show (p, 1) € dom[K] A (p, 1) A C = [K](p, ) & [K]*C
e Assume (IH) V(x — y) € C. p(x) = p(¥)
o Assume (1) (o', 1) = [K](p, ) and (2) x — y € [k]*C

e Show p'(x) = p'(y)
e By case distinction on k. On whiteboard.
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Constant Propagation: Idea

o Compute constant values at compile time
e Eliminate unreachable code

e Dead-code elimination afterwards to clean up (assume y not interesting)
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e (D,C) is complete lattice
e Examples
e D[u] = L: unot reachable
e Dlul={x— T,y 5}

153/471



Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

e |Intuition: T — don’t know value of register
e D= (Reg—Z")U{Ll}
e Add a bottom-element
e Intuition: 1. — program point not reachable
e Ordering: Pointwise ordering on functions, | being the least element.
e (D,C) is complete lattice
e Examples

e D[u] = L: unot reachable
e Dlu] ={x— T,y 5}: yisalways 5 at u, nothing known about x
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Abstract evaluation of expressions

e For concrete operator O : Z x Z — 7Z, we define abstract operator
O#:.2" x72" - 7Z7:

TO#x:=T
xOFT:=T
xO%y :=x0Oy
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Abstract evaluation of expressions

e For concrete operator O : Z x Z — 7Z, we define abstract operator
O#:.2" x72" - 7Z7:

TO#x:=T
xOFT:=T
xO%y :=x0Oy

o Evaluate expression wrt. abstract values and operators:
[e]” : (Reg — ZT) — 27

[c]*D:=¢c for constant ¢
[r]7 D := D(r) for register r
[e: O ex]” D := [e:]* DO# [e2]* D for operator OJ

Analogously for unary, ternary, etc. operators
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Example

e Example: D = {x — T,y — 5}
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Example

e Example: D = {x — T,y — 5}

Iy - 81D = [yl*D —* [3]*D
=5_-#3
—2
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Example

e Example: D = {x — T,y — 5}

Iy - 81D = [yl*D —* [3]*D
=5_-#3
—2

[x+y]"D = [xX]"D+* [y]"D
=T+#5
=T
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Abstract effects (forward)

[k]*L =1 for any edge k
[Nop]*D:= D
_JL ifle*D=0
[Pos(e)]” := {D otherwise
L iflel*D=v,vez\{0}
INeg(e)]” := {D otherwise
[r = e]* D := D(r — [e]” D)
[r = M[e]]* D := D(r — T)

[M[e] = e;]*D:=D

For D # 1.
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Abstract effects (forward)

[k]*L =1 for any edge k
[Nop]*D:= D
Pos(e)]* — 1L if[e]*D=0
"~ | D otherwise

Neg(e)]* = {L it [e]*D=v,vez\{0}

D otherwise
[r = e]* D := D(r s [e]* D)
[r = M[e]]* D := D(r — T)
[Mei] = e2]*D:= D
For D # 1.

Initial value at start: dy := Ax. T.
(Reachable, all variables have unknown value)
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Last lecture

Simulation based framework for program analysis
Abstract setting:
o Actions preserve relation A between concrete and abstract state.
— States after executing path are related
o Approximation: Complete lattice structure
e A monotonic
e Distributive = generalization to sets of path
For program analysis:
o Concrete state: Sets of program states
o All states reachable via path.

e Constant propagation
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Example

D[1]
D[2]
D[3]
D[4]
D[5]
D[6]
D[7]

X—T,y—T

X— T,y—3

X—T,y—3

X— T,y—3

X—T,y—3

X—T,y—5
€
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Example

D[1]
D[2]
D[3]
D[4]
D[5]
D[6]
D[7]
D[g] =

X—T,y—T
X— T,y—3
X—T,y—3
X— T,y—3
X—T,y—3
X—T,y—5

X—T,y—5
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Example

D] = x—T,y—T
D2] = x— T,y—3
D8] = x— T,y—3
D4] = x—T,y—3
D[] = x— T,y—3
D[6] = x— T,y—5
D[7] = €

D8] = x— T,y—5

Transformations:

Remove (u, a, v) if D[u] = L or D[v] = L

(u,r=e,v)— (u,r=c,v)if [e]*(D[u]) = c e Z
Analogously for test, load, store

(u,Pos(c),v) — Nopifc e Z\ {0}

(u,Neg(0), v) — Nop
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Correctness (Description Relation)

o Establish description relation
e Between values, valuations, states
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Correctness (Description Relation)

o Establish description relation
e Between values, valuations, states
Values:forveZ:vAvandv AT

e Value described by same value, all values described by T
¢ Note: Monotonic,i.e. vVAdAJCd = vAd

e Onlycases: d = d’ or d’ = T (flat ordering).
e Valuations: For p : Reg — Z, p7 : Reg — Z": p A p* iff Vx. p(x) A p7(x)
o Value of each variable must be described.
¢ Note: Monotonic. (Same point-wise definition as for C)
States: (p, 1) A p¥ if p A p?* and Vs. ~(s A 1)

o Bottom describes no states (i.e., empty set of states)
e Note: Monotonic. (Only newcase:s A LA L Cd = sAd)
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Correctness (Abstract values)

 Show: For every constant ¢ and operator [J, we have

cAc*
viAdiAve Adr — (V1|:|V2)A(d1|:|#d2)

160/471



Correctness (Abstract values)

 Show: For every constant ¢ and operator [J, we have

cAc*
viAdiAve Adr — (V1|:|V2)A(d1|:|#d2)

e We get (by induction on expression)

p D p* = [elp A [e]”p*

160/471



Correctness (Abstract values)

e Show: For every constant ¢ and operator [J, we have

cAc*
viAdiAve Adr — (V1|:|V2)A(d1|:|#d2)

e We get (by induction on expression)
p D p* = [elp A [e]”p*

e Moreover, show Vpo, 10. (po, to) A do
* Here: Vpo, po. (po, o) A Ax. T

160/471



Correctness (Abstract values)

e Show: For every constant ¢ and operator [J, we have

cAc*
viAdiAve Adr — (V1|:|V2)A(d1|:|#d2)

e We get (by induction on expression)
p D p* = [elp A [e]”p*
e Moreover, show Vpo, 10. (po, to) A do

* Here: Vpo, po. (po, o) A Ax. T
— o AMX. T

160/471



Correctness (Abstract values)

e Show: For every constant ¢ and operator [J, we have

cAc*
viAdiAve Adr — (V1|:|V2)A(d1|:|#d2)

e We get (by induction on expression)
p D p* = [elp A [e]”p*

e Moreover, show Vpo, 10. (po, to) A do

e Here: Vpo, po. (po, o) A Ax. T
— po AXX. T
<= Vx. po(x) A T. Holds by definition.
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Correctness (Of Transformations)

o Assume (p, 1) A p*. Show [a](p, 1) = [tr(a, p*)1(p, 1)
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Correctness (Of Transformations)

o Assume (p, u) A& p*. Show [a](p, 1) = [tr(a. p*)](p, 11)
¢ Remove edge if p* = L. Trivial.
o Replace r = eby r = [e]*p” if [e]*p" # T
o Fromp A p# — [e]p A [e]*p# = [e]p = [e]* p*
e Analogously for expressions in load, store, Neg, Pos.
e Replace tests on constants by Nop: Obviously correct.
e Does not depend on analysis result.
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Correctness (Steps)

e Assume (o', ') = [K](p, 12) and (p, 1) A C. Show (o', ') A [K]*C.
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Correctness (Steps)

o Assume (o', ') = [K](p, 12) and (p, 1) A C. Show (o', ') A [K]*C.
By case distinction on k. Assume p* := C # L.
e Note: We have p A p#

e Case k = (u,x = e, v): To show p(x := [€]p) A p” (x := [e]" p¥)
<~ [elp A [e]” p#. Already proved.
e Case k = (u,Pos(e), v) and [e]” p* = 0:

e From [e]p A [e]*p#, we have [e]p = 0
e Hence, [Pos(e)](p, #) = undefined. Contradiction to assumption.

o Other cases: Analogously.
o Our general theory gives us: [u] A MFP[u]
e Thus, transformation wrt. MFP is correct.
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e Abstract effects are monotonic
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Constant propagation: Caveat

o Abstract effects are monotonic
o Unfortunately: Not distributive
o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}
o Have: pff Upf = {x— T,y T}
e le:x=x+y[*(Tup)={x— T,y =T}
o However: [x = x + y]*(p¥) = {x = 5,y ~— 2} and
[x = x + yI*(p5) = {x = 5,y — 3}
o Lea[x = x+ Y (o) Ulx = x + I (o) = {x = 5.y = T}
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Constant propagation: Caveat

e Abstract effects are monotonic
o Unfortunately: Not distributive

o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}

o Have: pff Upf = {x— T,y T}

e le:x=x+yl*(pfupf)={x— T,y T}

o However: [x = x + y]*(p¥) = {x = 5,y ~— 2} and

[x = x + yI*(p5) = {x = 5,y — 3}

o lei[x=x+yI" () Ulx =x+y1"(p}) = {x = 5,y — T}

e Thus, MFP only approximation of MOP in general.
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Undecidability of MOP

e MFP only approximation of MOP
e And there is nothing we can do about :(

Theorem
For constant propagation, it is undecidable whether MOP[u](x) = T.

e Proof: By undecidability of Hilbert’s 10th problem
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Hilbert’s 10th problem (1900)

e Find an integer solution of a Diophantine equation

p(x1,...,xp) =0
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e Find an integer solution of a Diophantine equation
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Hilbert’s 10th problem (1900)

e Find an integer solution of a Diophantine equation

p(x17"'7xn):0

e Where p is a polynomial with integer coefficients.
e E.g.p(x1,x2) = X2 4+2x1 — x5 42
e Solution: (-1,1)

e Hard problem. E.g. x" + y" = z" for n > 2. (Fermat’s last Theorem)
o Wiles, Taylor: No solutions.

Theorem (Matiyasevich, 1970)

(Based on work of David, Putnam, Robinson)
It is undecidable whether a Diophantine equation has an integer solution.
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Regard the following program

X{1=xX2=...Xp=0

while (%) { xq x1 + 1 }

while (*) { X5 = X5, + 1 }

r=0
if (p(x41,...,X%X) == 0) then r=1
u: Nop

e For any valuation of the variables, there is a path through the program
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Regard the following program

X{1=xX2=...Xp=0

while (%) { x1 = x1 + 1 }
while (*) { X5 = X5, + 1 }

r=0

if (p(xX1,...,Xp) == 0) then r=1
u: Nop

For any valuation of the variables, there is a path through the program
For every path, constant propagation computes the values of the x;

And gets a precise value for p(x1, ..., Xp)

ris only found to be non-constant, if p(xi,...,x,) =0

Thus, MOP[u](r) = T if, and only if p(x1, ..., x,) = 0 has a solution O
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Extensions

¢ Also simplify subexpressions:
e For {x+— T,y 3}, replace x + 2 y by x + 6.
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e Eg. xx0—=0,x+x1—x,...
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167/471



Extensions

¢ Also simplify subexpressions:

e For {x+— T,y 3}, replace x + 2 y by x + 6.
e Apply further arithmetic simplifications

e Eg. xx0—=0,x+x1—x,...
o Exploit equalities in conditions

o if (x==4) M[0]=x+1 else M[0]=x —
if (x==4) M[0]=5 else M[0]=x
o Use

D if[x==e]*D=1
[Pos(x==e)]" ={ L if[x==¢e]*D=0
D; otherwise

where Dy := D(x := D(x) N [e]* D)
e Analogously for Neg(x # e)
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Interval Analysis

e Constant propagation finds constants

e But sometimes, we can restrict the value of a variable to an interval, e.g.,
[0..42].
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Example

int a[42];
for (i=0;i<42;++1i) {
if (0<=1 && 1i<42)
ali] = ix2;
else
fail();

e Array access with bounds check
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Example

int a[42];
for (i=0;i<42;++1i) {
if (0<=1 && 1i<42)
ali] = ix2;
else
fail();

e Array access with bounds check
e From the for-loop, we know i € [0..41]
e Thus, bounds check not necessary
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Intervals

Interval T:={[L,u]|l€Z > ANueZ™> ANl<u}
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Intervals

Interval I:.={[L,u]|l€Z > AueZt> NI<u}
Ordering C,i.e. [h, ] C[b, ] iff h > bAu < up
e Smaller interval contained in larger one
e Hence:

[/1 R U1] L [/27 U2] = [min(/1 R /2)7 max(u1, Ug)]
T= [700, +OO]
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Intervals

Interval I:.={[L,u]|l€Z > AueZt> NI<u}
Ordering C,i.e. [h, ] C[b, ] iff h > bAu < up
e Smaller interval contained in larger one
e Hence:

[/1 R U1] L [/27 U2] = [min(/1 R /2)7 max(u1, Ug)]
T= [700, +OO]

Problems

¢ Not a complete lattice. (Will add L - element later)
« Infinite ascending chains: [0,0] C [0,1] C [0,2] C ...



Building the Domain

e Analogously to CP:
e D:=(Reg—»I)U{L}
e Intuition: Map variables to intervals their value must be contained in.
e | —unreachable
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Building the Domain

e Analogously to CP:
e D:=(Reg—»I)U{L}
e Intuition: Map variables to intervals their value must be contained in.
e | —unreachable
e Description relation:
e Onvalues: z A [, u]iffI<z<u
e On register valuations: p A p# iff Vx.p(x) A p#(x)
e On configurations: (p, u) A liff p A land | # L
e Obviously monotonic. (Larger interval admits more values)
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Abstract operators

Constants ¢ := [c, ¢]
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Abstract operators

Constants ¢ := [c, ¢]
Addition [/1, U1] +7 [/27 Ug] = [/1 + b, uy + Uz]
e Where —oco+_ 1= + —00:= —00,00+ = +00:=00
Negation —#[/,u] := [-u, —I]
Multiplication [k, u1] 7 [k, Uz] :=
[min{hk, huo, uth, uyuo}, max{h bk, hus, uih, uyus}]
Division [h, u1]/#[k, uz] :=
[min{hk, hug, urh, tyup}, max{hk, huz, uth, uyus}]
o If O ¢ [k, W], otherwise [h, u1]/# [k, u] := T
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Examples

o 5% —[5,5]
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o [-1,3]+# [-5,—1] =
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e 57 =[5,5]

e [3,00] +7 [-1,2] = [2, ]

e [-1,3] %% [-5,-1] = [-15,5]
. _#[175] =
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e —#[1,5] = [-5, 1]
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Examples

o 5% = [5,5]

e [3,00] +7 [-1,2] = [2, ]

e [-1,3] %% [-5,-1] = [-15,5]

o —#[1,5] =[5, 1]

e [3,5]/#[2,5] = [0, 2] (round towards zero)
o [1,4]/#[-1,1]=T
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[1,1] if/1=U1=Ig=U2
[h,u] ==% [, o] := { [0,0] ifuy <horh > up
[0,1] otherwise
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Abstract operators
Equality

[1,1] if/1:U1212=U2
[h,us] ==% [h, o] := { [0,0] ifuy <hbork >u,
[0,1] otherwise

Less-or-equal

[1 s 1] if up < /2
[/1, U1] S# [/27 U2] =<¢[0,0] ifh > uw
[0,1] otherwise

Examples
e [1,2] ==% [4,5] =[0,0]
d [172] ==t [713 1] = [031]
e [1,2] <# [4,5] =[1,1]
e [1,2] <#[-1,1] =[0,1]
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Proof obligations

cAc”

viAdiAve Adr — V1|]V2Ad1|:|#d2

Analogously for unary, ternary, etc. operators
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Proof obligations

cAc”

viAdiAve Adr — V1DV2Ad1|:’#d2

Analogously for unary, ternary, etc. operators

Then, we get p A p#* = [e]p A [e]” p*
o As for constant propagation
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Effects of edges

For p# # L
[17L=1
[Nop]” p* = p*
[x = ] p* = p*(x — [e]" p%)
[x = Mlell " = p#(x = T)

[Mle:] = el p* = p*

¢ w1 it[el*p* =[0,0]

[Pos(e)]” p* = { p*  otherwise

# ifMel®o#* 310 0]
# )P el 20
[Neg(e)]" p {L otherwise
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Last lecture

o Constant propagation

o |dea: Abstract description of values, lift to valuations, states
¢ Monotonic, but not distributive

e MOP solution undecidable (Reduction to Hilbert’s 10th problem)
e Interval analysis

e Associate variables with intervals of possible values
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Better exploitation of conditions

1 if [e]*p* = [0,0]
ot (x = pF(x)M[ed]"p”) ife = x==e
[Pos(e)]”p* = p#(x = p*(x)M[-o0,u]) ife = x< e and[e]”p* =11
o7 ot (x s o) N [hod])  ife = x> e and [e]fp* =1, ]
ot otherwise
- if [e]*»* 2 [0,0]

pt(x e pf () N e]?p?) ife = x#e
4 4 )pt(x— pt(X) N[00, u]) ife = x> e and[e]”p* = [, u]
INeg(o)"™ = p*(x = p#(x) NI, 00]) ife = x<e and[es]*p* =[,_]

o’ otherwise

e where [/, u1] M [k, U] = [max(h, k), min(uy, )]
e only exists if intervals overlap
e this is guaranteed by conditions
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Transformations

e Erase nodes u with MOP[u] = L (unreachable)
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Transformations

e Erase nodes u with MOP[u] = L (unreachable)
¢ Replace subexpressions e with [[e]]#p# = [v, v] by v (constant
propagation)
« Replace Pos(e) by Nop if [0,0] Z [e]* p* (0 cannot occur)
« Replace Neg(e) by Nop if [e]” p# = [0, 0] (Only 0 can occur)
e Yields function tr(k, p#)
o Transformation: (u, k, v) — (u, tr(k, MFP[u]), V)
¢ Proof obligation:
o (o) A p" = [Kl(p, 1) = Ttr(k, ™)1 (p, 1)
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Example

i=i+1

Neg (i<42) Pos (i<42)

M[a+i]=1i*2
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Example
{i—T}

i=0

i~} .

Neg (i<42) Pos (i<42)

{i—[0,41]}

Neg (0<=1i<42) Pos (0<=1i<42)

{i—[0,41]}

M[a+i]=1i*2

{i—[0,41]}

About 40 iterations later ...
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Problem

e Interval analysis takes many iterations
e May not terminate at all for (i=0;x>0;x——) i=i+1

182/471



Widening

e |Idea: Accelerate the iteration
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Widening

¢ Idea: Accelerate the iteration — at the price of imprecision
e Here: Disallow updates of interval bounds in Z.
e A maximal chain: [3, 8] C [—o0, 8] C [—o0, 0]
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Widening (Formally)

Given: Constraint system (1) x; 3 fi(X)
e fi not necessarily monotonic
Regard the system (2) x; = x; LI fi(X)
Obviously: X solution of (1) iff X solution of (2)
e Note:xCy <— xUy=y
(2) induces a function G : D" — D"

G(X) = XU (1 (%), ..., (X))

G is not necessarily monotonic, but increasing:

VX % C G(X)

184/471



Widening (Formally)

e Gisincreasing = | C G(L)C G¥(L)C...
e i.e., (G'(L1))jen is ascending chain
If it stabilizes, i.e., X = G*(L) = GK*'(L), then X is solution of (1)
If D has infinite ascending chains, still no termination guaranteed
e Replace U by widening operator U
e Get (3) Xi = X; l:lf,()_(‘)
e Widening: Any operationD x D — D
@ withxuyC xuy
® and for every sequence ay, a, . . ., the chain by = ag, b1 = bjU a1
eventually stabilizes
e Using FP-iteration (naive, RR, worklist) on (3) will
e compute a solution of (1)
e terminate
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To show

e Solutions of (3) are solutions of (1)
e Xj = X;U f,()_(’)
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To show

e Solutions of (3) are solutions of (1)

o X =xuh(¥) IxiUAF) D6 =
o FP-iteration computes a solution of (3).

e Valuation increases until it stabilizes (latestat X = (T,...,T))
o FP-iteration terminates

o FP-iteration step: Replace (some) x; by x; Ufi(X)

e This only happens finitely many times (Widening operator, Criterion 2)

186/471



For interval analysis

e Widening defined as [, u1] Y[k, uz] := [/, u] with

L h i<k
" ] - otherwise

U U4 if uy > Uo
" ]+cc otherwise
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For interval analysis

e Widening defined as [, u1] Y[k, uz] := [/, u] with

L [h k<
" ] - otherwise

U U4 if uy > Uo
" ]+cc otherwise

Lift to valuations: (p#7£ I:lpf)(x) = pf(x) l:lpf(x)
andtoD = (Reg - U{L}: Lux=x4dLl=x
U is widening operator

@ xUyC xuy. Obvious
@® Lower and upper bound updated at most once.

e Note: Lis not commutative.
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Examples

o [-2,2]L01,2] =
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Examples

o [-2,2]4]1,2] = [-2,2]
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o [1,2]4[-2,2] = [~, 2]

188/471



Examples

e [-2,2]41,2] =[-2,2]
o [1,2]U[-2,2] = [-00,2]
e [1,2]U[1,3] =

188/471



Examples

e [-2,2]41,2] =[-2,2]
o [1,2]U[-2,2] = [-00,2]
o [1,2]U[1,3] =1, +o9]
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Examples

o [-2,2][1,2] =[-2,2]

e [1,2]4[-2,2] = [-,2]

e [1,2]U[1,3] = [1, +oq]

e Widening returns larger values more quickly
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Widening (Intermediate Result)

Define suitable widening
Solve constraint system (3)
Guaranteed to terminate and return over-approximation of MOP

But: Construction of good widening is black magic
e Even may choose U dynamically during iteration, such that

e Values do not get too complicated
e lteration is guaranteed to terminate
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Example (Revisited)

i=i+1

Neg (i<42) Pos (1<42)
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Example (Revisited)
{i— [—o0, +o0]}

i=0

{i —[0,0]}

i=i+1

Neg (i<42) Pos (1<42)

{i—[0,0]}

Pos (0<=1<42)

{i—[0,0]}

M[a+ti]=1ix2

190/471



Example (Revisited)

{i — [—o0, +00]}

i=0

{i —[0,0]}

i=i+1

Neg (i<42) Pos (1<42)
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Neg (0<=1<42) Pos (0<=1<42)

{i—[0,0]}

M[a+ti]=1i*2
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190/471



Example (Revisited)

{i — [—o0, +00]}

i=0

{i— [0, 4o0]},

i=i+1

Neg (i<42) Pos (1<42)
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Neg (0<=1<42) Pos (0<=1<42)
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Example (Revisited)

{i — [—o0, +00]}

i=0

{i— [0, 4o0]},

i=i+1

Neg (i<42) Pos (1<42)

{i = [0, +o0]}
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Example (Revisited)

{i — [—o0, +00]}

i=0

{i— [0, 4o0]},

i=i+1

Neg (i<42) Pos (1<42)

{i = [0, +o0]}

Pos (0<=1<42)

{i— [0, +o0]

M[a+ti]=1i*2

{i— [0, +o0]}

¢ Not exactly what we expected :(
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|dea

Only apply widening at loop separators

A set S C Vis called loop separator, iff each cycle in the CFG contains a
node from S.

Intuition: Only loops can cause infinite chains of updates.
Thus, FP-iteration still terminates



Problem
e How to find suitable loop separator

i=i+1

Neg (i<42) Pos (1<42)

Neg (0<=1<42) Pos (0<=1<42)

M[ati]=1ix2

o We could take S = {2}, S = {4},...
e Results of FP-iteration are different!
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Loop Separator S = {2}
€

i=i+1

Neg (i<42) Pos (1<42)

Pos (0<=1<42)

Mla+i]=i%2
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Loop Separator S = {2}

{fF+[—00r+0°H

i=i+1

Neg (i<42) Pos (1<42)

Pos (0<=1<42)

Mla+i]=i*2
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Loop Separator S = {2}
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Loop Separator S = {2}

{i > [o0, +ool}

i=0

o0y
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Loop Separator S = {2}

{i — [—o0, +00]}

i=0

(i [0, 4ool},

Neg (i<42) Pos (i<42)
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Loop Separator S = {2}
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Loop Separator S = {2}

{i > [o0, +ool}

i=0

(i (0,00}

Neg (i<42) Pos (1<42)

{i—[0,41]}

Neg (0<=1<42) Pos (0<=1i<42)

{i—[0,41]}

Mla+i]=i*2

{i—[0,41]}

e Fixed point
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Loop Separator S = {4}
1

i=i+1

Neg (i<42) Pos (1<42)

Pos (0<=1i<42)

M[a+i]=1%2
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Loop Separator S = {4}

{i— [—o0, +o0]}

i=i+1

Neg (i<42) Pos (1<42)

Pos (0<=1i<42)

M[a+1i]=1%2
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Loop Separator S = {4}

{i — [—o0, +00]}

i=0

ooy

Neg (i<42) Pos (1<42)

{i—[0,0]}

Pos (0<=1i<42)

{i —[0,0]}
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Loop Separator S = {4}
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i=0
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Loop Separator S = {4}

{i — [—o0, +00]}

i=0

{im D42} _

Neg (i<42) Pos (1<42)

M[a+i]=1%2

{i—[0,41]}

e Fixed point
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Result

e Only S = {2} identifies bounds check as superfluous
e Only S = {4} identifies x = 42 at end of program
e We could combine the information

¢ But would be costly in general
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Narrowing

e Let X be a solution of (1)
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Narrowing

Let X be a solution of (1)
l.e., x; O f,()?)
Then, for monotonic f;:
e XIJFX)DF*(X) ...
e By straightforward induction
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Narrowing iteration: lterate until stabilization
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Narrowing

Let X be a solution of (1)
l.e., x; O f,()?)
Then, for monotonic f;:
e XIJFX)DF*(X) ...
e By straightforward induction
— Every F¥(X) is a solution of (1)!
Narrowing iteration: lterate until stabilization
e Or some maximum number of iterations reached
o Note: Need not stabilize within finite number of iterations
Solutions get smaller (more precise) with each iteration
Round robin/Worklist iteration also works!
e Important to have only one constraint per x;!
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Example

o Start with over-approximation.

{i — [—o0, +00]}

i=0

{i= Otecl},

Neg (i<42) Pos (1<42)

M[a+i]=1*2

{i— [0, +o0]}
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o Start with over-approximation.
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o Start with over-approximation.

{i — [—o0, +00]}

i=0
{i—[0,42]} i
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Example

o Start with over-approximation. Stabilized

{i — [—o0, +00]}

i=0
{i—[0,42]} i
Neg (i<42) Pos (1<42)
{i—[0,41]}

Pos (0<=1<42)

{i—[0,41]}

M[a+i]=1*2

{i—[0,41]}
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Discussion

Not necessary to find good loop separator
In our example, it even stabilizes
o Otherwise: Limit number of iterations
¢ Narrowing makes solution more precise in each step

¢ Question: Do we have to accept possible nontermination/large number of
iterations?
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Accelerated narrowing

e Let X O F(X) be solution of (1)
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Let X J F(X) be solution of (1)

Consider function H : X — X 1 F(X)
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Accelerated narrowing

e Let X O F(X) be solution of (1)
e Consider function H : X — X 1 F(X)
 For monotonic F, we have X J F(X) J F?(X) 2
e and thus H¥(X) = F¥(X)

Now regard / : (X) — XF1F(X), where
¢ 1 Narrowing operator, whith

@ xnyCxAyCx

® For every sequence o, a1, . . ., the (down)chain by = ao, bix1 = biF a4

eventually stabilizes

e We have: [X(X) 3 HX(X) = FK(X) 2 FF1(X).

e le., IX(X) greater (valid approx.) than a solution.
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For interval analysis

e Preserve (finite) interval bounds: [/, u1] Ak, 2] := [/, u], where
| — 12 if /1 = —0
" 14 otherwise

U= U if uy = oo
" | u otherwise
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" 14 otherwise
U= U if uy = oo
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e Check:
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For interval analysis

Preserve (finite) interval bounds: [/, u1] Ak, us] := [/, u], where
| — 12 if /1 = —0
" 14 otherwise

U= U if Uy = o0
" | u otherwise

e Check:

o [h,n] N[k, u] E[h, ] Alk, te] T [h, ]
o Stabilizes after at most two narrowing steps

e Fis not commutative
e For our example: Same result as non-accelerated narrowing!
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Discussion

e Narrowing only works for monotonic functions
e Widening worked for all functions
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Discussion

e Narrowing only works for monotonic functions
e Widening worked for all functions

e Accelerated narrowing can be iterated until stabilization
e However: Design of good widening/narrowing remains black magic
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Last Lecture
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Last Lecture

e Interval analysis (ctd)
o Abstract values: Intervals [/, ul with | < u, | € Z— o, U € ZT
e Abstract operators: Interval arithmetic
e Main problem: Infinite ascending chains
e Analysis not guaranteed to terminate
e Widening: Accelerate convergence by over-approximating join
o Here: Update interval bounds to —oo/4-o00
e Problem: makes analysis imprecise

e Idea 1: Widening only at loop separators
¢ |dea 2: Narrowing
e FP-lteration on solution preserves solution
e But may make it smaller
e Accelerated narrowing:
e Use narrowing operator for update, that lies “in between” M and original
value
e ... and converges within finite time
o Here: Keep finite interval bounds
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Recipe: Abstract Interpretation (I)
e Define abstract value domain A, with partial order C
e LI must be totally defined (M need not always exists)
¢ Define description relation between values: AC Z x A

e Show: Monotonicity: Va; C a,v.vAa = vAa
o Standard: Lift to valuations (Reg — A), domain (D := (Reg — A) U {L})

o Define abstract operators v : A, O#% . A x A — A, etc.
e Show soundness wrt. concrete ones:
veeZ. v Avt

Yvi,Vo €Z, di,db €A vi Adi Ao A O — V1\:|V2Ad1|:|#d2

o Forfree:p A p#* = [e]p A [e]” p#
e Define transformation tr :: Act x D — Act
e Show correctness: (p,u) A d = [a](p, p) = [tr(a, d)](p, 1)
« Define abstract effects []* : Act — D — D, initial value dy € D

o Usually: Creativity only required on Pos,Neg
e Show: Monotonicity: Vdy C db, a. [a]” di T [a]* o and simulation:

Vo, p. (p, 1) A do
V(p, 1) € dom([a]), d. (p, ) A d = [al(p, ) A [a]"d
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Recipe: Abstract Interpretation (ll)

e Check finite chain height of domain

¢ Finite: Done
e Infinite (or too high)

o Define widening, narrowing operator
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Short recapture of methods so far

e Operational semantics on flowgraphs
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Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.

o Collecting semantics: [u] — States reachable at u.
e Program analysis

o Abstract description of

e Forward: States reachable at u
e Backward: Executions leaving u

o Abstract effects of edges:

e Must be compatible with concrete effects
e Forward: Simulation; Backward: Also (kind of) simulation

e MOP[u] — Abstract effects reachable at u
e Special case: abstract interpretation — domain describes abstract values

e Transformation: Must be compatible with states/leaving paths described
by abstract effects

e Computing analysis result

e Constraint system. For monotonic abstract effects. Precise if distributive.
e Solving algorithms: Naive iteration, RR-iteration, worklist algorithm

e Forcing convergence: Widening, Narrowing
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e Yields: Vp, u. (p,p), m A |[7T]]#D0
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e Dead variables: Execution does not depend on dead variables

e (p.p),m A Diffvx € D, v. [x](p(x := ), ) = [x](p. 1)
¢ Proof obligations
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e Want to consider memory
e Eg.M[y] = 5; x = M[y] + 1—=M[y] = 5; x=6
e Here: Assume analyzed program is the only one who accesses memory

e In reality: Shared variables (interrupts, threads), DMA, memory-mapped
hardware, ...
o Compilers provide, e.g., volatile annotation
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First Attempt

e Available expressions:
o Memorize loads: Load: x = M[e] — { Ty = Mlel; x=Tuq}
o Effects
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First Attempt

e Available expressions:
o Memorize loads: Load: x = M[e] — { Ty = Mlel; x=Tuq}
o Effects

[Te = e]"A=[A]" U {e} [Twe = Mel]” A = [A]" u {M[e]}
[x = e]* A = [A]" \ Expr, [M[e] = e2]* A = [A]* \ loads

¢ Problem: Need to be conservative on store
o Store destroys all information about memory
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Constant propagation

Apply constant propagation to addresses?

Exact addresses not known at compile time

Usually, different addresses accessed at same program point
o E.g., iterate over array

Storing at unknown address destroys all information



Last Lecture

e Motivation to consider memory
o Alias analysis required!
e Changing the semantics of memory

o Pointers to start of blocks, indexing within blocks

¢ No pointer arithmetic

e Some assumptions about program correctness: Semantics undefined if
e Program accesses address that has not been allocated
e Indexes block out of bounds
e Computes with addresses



Extending semantics by blocked memory

e Organize memory into blocks

e p = new (e) allocates new block of size e
e x = ple] loads cell e from block p
e pler] = ey writes cell e; from block p
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Extending semantics by blocked memory

e Organize memory into blocks
e p = new (e) allocates new block of size e
e x = ple] loads cell e from block p
e pler] = ey writes cell e; from block p
e Semantics
e Value: Val = Z U Addr
e Integer values and block addresses
e Memory described by p : Addr — Z — Val

e Maps addresses of blocks to arrays of values
e — - partial function (Not all addresses/indexes are valid)

e Assumption: Type correct
e In reality: Type system
e We write null and 0 synonymously
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Semantics

[Nopl(p; 1) = (ps 1)
[x = €l(p, 1) = (p(x — [€lp), 1)
[Pos(e)](p; 1) = [€elp # 07(p, 1) : undefined
[Neg(e)l(p, 1) = [€lp = 07(p, i) : undefined
[x = plell(p; 1) = (p(x = p(lPlp, [€]p)) 1)
[ples] = exl(p, 1) = (p, u(lplp, [e1]p) — [e2lp)
[x = new(&)](p, u) = (p(x — &), (@~ (i~ 0[]0 <i<[e]p)))

e New initializes the block

a ¢ dom(y;
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[Nop](p, 1) = (ps 1)
[x = el(p, 1) = (p(x = [€]p), 1)
[Pos(e)](p; 1) = [€elp # 07(p, 1) : undefined
[Neg(e)](p, 1) = [€e]p = 0?(p, p) : undefined
[x = plell(p. 1) = (p(x = u(lplp, [€]p)), 1)
[oled] = e2](p. 1) = (p, u(lplp, [e1]p) — [e2]p)
(psp) =

[x = new(€)](p. 1) = (p(x = &) (@~ (i 0| 0 < i< [ep)) a¢ dom(u
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Semantics

[Nop](p, ) =

[x = el(p,n) =
[Pos(e)l(p, n) =
[Neg(e)l(p, 1) =

[x = plell(p. 1) =
[olei] = ex](p, 1) =
[x = new(e)l(p, n) =

(1)

(p(x — [elp), 1)

[elp # 0?(p, 1) : undefined
[elp = 0?(p, ) : undefined
(p(x = u([Plp, [€lp)), 1)

(0, 1([P]p: [e1]lp) = [e2lp)
(p(x = a),u(ar (i 0]0<i<[e]p))

¢ New initializes the block
e Java: OK, C/C++: 2?7

e Assume that only valid addresses are used
e Otherwise, we formally get undefined

Assume that no arithmetic on addresses is done
Assume infinite supply of addresses

a ¢ dom(y;
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¢ Note: Semantics does not clearly specify how addresses are allocated
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Equivalence

¢ Note: Semantics does not clearly specify how addresses are allocated
e This is irrelevant, consider e.g.
x=new (4); y=new(4) and y=new (4); x=new (4)

e Programs should be equivalent
o Although memory manager would probably assign different physical
addresses

o Two states (p, 1) and (o, i) are considered equivalent, iff they are
equivalent up to permutation of addresses
o We write (p, u) = (o', 1t')
¢ Note: To avoid this nondeterminism in semantics:

e Choose Addr to be totally ordered
o Always take the smallest free address
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Examples

e Building the linked list [1, 2]

p1 = new (2)

p2 = new (2)
p1[0] =1
p1ll] = p2
p2[0] = 2
p2[l] = null

"1
P2

null
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Examples

e List reversal

d
Il

£

—

)
=2

Wom oA T b
—
o

=

!'= null) {

o 1
I“'—]i—]/\i—‘
(@]

oo
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Examples

e List reversal

W oHm e
oo
N el
oo

e Sketch algorithm on whiteboard
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Alias analysis

e May alias: May two pointers point to the same address

¢ On store: Only destroy information for addresses that may alias with stored
address
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Alias analysis

e May alias: May two pointers point to the same address

¢ On store: Only destroy information for addresses that may alias with stored
address

e Must alias: Must two pointers point to the same address
e If so, store to one can update information for the other
e Here: Focus on may-alias

e Important to limit the destructive effect of memory updates
e Must alias: Usually only done in local scope, by, e.g., copy propagation



First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)

allocation sites
e Use start node of edge in CFG to identify allocation site

o Abstract values Addr* = V , Val* = 244" (Possible targets for pointer)

e Domain: (Reg — Val?) x (Addr — Val?)
o Effects

L. x =y, _1#(R. M) = (R(x — R(y)), M)
L,x=e _]*(R,M) = (R(x — 0), M)
[u, x = new(e), v]* (R, M) = (F{(x — {u}), M)
L. x = plel,_1#(R,M) = (R(x — |_J{Ml[a] | a € R[p]}), M)
L. ples] =y, _1#(R,M) = (R, M(a — M(a) U R(y) | a € R(p)))
L. ples] = e, _1*(R,M) = (R, M)

for y € Reg
for e ¢ Reg

for y € Reg
for e ¢ Reg
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First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)

allocation sites
e Use start node of edge in CFG to identify allocation site

o Abstract values Addr* = V , Val* = 284 (Possible targets for pointer)

o Domain: (Reg — Val*) x (Addr* — Val?)
o Effects

[.x =y, I"(R,M) = (R(x = R(y)), M)
L,x =e _]7(R,M) = (R(x — 0), M)
[u, x = new(e), v]*(R, M) = (Ff(x = {u}), M)
L. x = ple], _I#*(R, M) = (R(x — |_J{Mla] | a € R[p]}), M)
[ ples] =y, 17 (R,M) = (R, M(a— M(a) UR(y) | a € R(p)))
L. ples] = e, _1#(R,M) = (R, M)

X may point to addresses where y may point to.

for y € Reg
for e ¢ Reg

for y € Reg
for e ¢ Reg



First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)
allocation sites

e Use start node of edge in CFG to identify allocation site

o Abstract values Addr* = V , Val* = 284 (Possible targets for pointer)
e Domain: (Reg — Val#) x (Addr* — Val¥)

o Effects
Lx=y, ]]#(R M) = (R(x = R(y)), M) for y € Reg
L.x=e, J*(R,M)=(R(x — 0), M) for e ¢ Reg
[u, x = new(e), v]* (R, M) = (R(x — {u}), M)
(R(x — [ J{MId] | a € Rlp]}), M)

L. ples] =y, _I*(R.M) = (R,M(a~ M(a) UR(y) | a€ R(p))) fory € Reg

(

va = p[e]vfll#('qv M)
(

L, pled] = e, 17 (R, M) = (R, M) for e ¢ Reg

Expressions are never pointers.



First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)

allocation sites

e Use start node of edge in CFG to identify allocation site

e Abstract values Addr* = V , Val* =

e Domain: (Reg — Val#) x (Addr* — Val¥)

o Effects

Lx=vy JI#(R M) =
L.x=e 1*(RM) =

[u, x = new(e), v]* (R, M) =
L. x = plel, 1" (R.M) =
L.pled =y, 1#(R.M) =
L. ples] = e J#(R.M) =

X points to this allocation site.

(
(
(
(A(
(R
(R

R(x — R(y)), M)

R(x — 0), M)

R(x — {u}),M)

R(x — | J{M(a] | a € Rp]}), M)

)

)

M(a— M(a) U R(y) | a € R(p)))
M)

Addr? (Possible targets for pointer)

for y € Reg
for e ¢ Reg

for y € Reg
for e ¢ Reg



First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)

allocation sites
e Use start node of edge in CFG to identify allocation site

o Abstract values Addr* = V , Val* = 284" (Possible targets for pointer)

e Domain: (Reg — Val?) x (Addr — Val?)
o Effects

L. x =y, 1%(R.M) = (R(x = R(y)), M)

L,x=e _]%(R,M) = (R(x — 0), M)
[u, x = new(e), v]* (R, M) = (R(x — {u}), M)
[, x = plel,_I"(R,M) = (R(x — | J{Mld] | a € Rlp]}), M)
L. ples] =y, _1#(R, M) = (R, M(a — M(a) UR(y) | a € R(p)))
L. ples] = e, 1#(R,M) = (R, M)

X may point to everything that a may point to, for p pointing to a

for y € Reg
for e ¢ Reg

for y € Reg
for e ¢ Reg



First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)
allocation sites

e Use start node of edge in CFG to identify allocation site

o Abstract values Addr* = V , Val* = 284 (Possible targets for pointer)
e Domain: (Reg — Val#) x (Addr* — Val¥)

o Effects
Lx=y, ]]#(R M) = (R(x = R(y)), M) for y € Reg
L,x =e _]7(R,M) = (R(x — 0), M) for e ¢ Reg
[u, x = new(e), v][#(R, M) = (R(x — {u}), M)
(R(x — [ J{MId] | a € Rlp]}), M)

[ pled] =y._J*(R.M) = (R,M(a~ M(a)UR(y) | a€ R(p))) fory € Reg

(

va = p[e]vfll#('qv M)
(

L, pled] = e, 17 (R, M) = (R, M) for e ¢ Reg

Add addresses from y to each possible address of p



First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)
allocation sites

e Use start node of edge in CFG to identify allocation site

o Abstract values Addr* = V , Val* = 284 (Possible targets for pointer)
e Domain: (Reg — Val#) x (Addr* — Val¥)

o Effects
Lx=y, ]]#(R M) = (R(x — R(y)), M) for y € Reg
L. x =e,_1*(R, M) = (R(x — 0), M) for e ¢ Reg
[u, x = new(e), v][#(R, M) = (R(x — {u}), M)
L. x = plel, _I*(R. M) = (R(x — | J{Mla] | a € Rlp]}), M)

L plei] = y,_1#(R.M) = (R.M(a~ M(a) UR(y) | a€ R(p))) fory & Reg
[ ples] =e, _J*(R,M) = (R,M) for e ¢ Reg

Expressions are never pointers.



Example

u: py = new (2)
v: pp = new (2)
p1[0] =1
p1[1l] = p2
p2[0] = 2
p2[l] = null

e At end of program, we have

R=pi— {u},po = {v}
M=u—{v}v—{}
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Description Relation

(p, 1) A (R, M) iff 3s : Addr — V. Va,a € Addr. Vx, i.
p(x) =a = s(a) € R(x) (1)
Au(ai)=a = s(a) e M(s(a)) (2)

Intuitively: There is a mapping s from addresses to allocation sites, with:
(1) If a register contains an address, its abstract value contains the
corresponding allocation site
(2) If a memory block contains an address (at any index), its abstract value
contains the corresponding allocation site
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Description Relation

(p, 1) A (R, M) iff 3s : Addr — V. Va,a € Addr. Vx, i.
p(x) =a = s(a) € R(x) (1)
Au(ai)=a = s(a) e M(s(a)) (2)

Intuitively: There is a mapping s from addresses to allocation sites, with:
(1) If a register contains an address, its abstract value contains the
corresponding allocation site
(2) If a memory block contains an address (at any index), its abstract value
contains the corresponding allocation site
From this, we can extract may-alias information: Pointers py, p» may only
alias (i.e., p(p1) = p(p2) € Addr), if R(p1) N R(p2) # 0.
e B/cif p(p1) = p(p2) = a € Addr, we have s(a) € R(p1) N R(p2)
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Description Relation

(p, 1) A (R, M) iff 3s : Addr — V. Va,a € Addr. Vx, i.
p(x) =a = s(a) € R(x) (1)
Au(ai)=a = s(a) e M(s(a)) (2)

Intuitively: There is a mapping s from addresses to allocation sites, with:
(1) If a register contains an address, its abstract value contains the
corresponding allocation site
(2) If a memory block contains an address (at any index), its abstract value
contains the corresponding allocation site
From this, we can extract may-alias information: Pointers py, p» may only
alias (i.e., p(p1) = p(p2) € Addr), if R(p1) N R(p2) # 0.
e B/cif p(p1) = p(p2) = a € Addr, we have s(a) € R(p1) N R(p2)
Correctness of abstract effects (sketch)
e On whiteboard

220/471



Discussion

e May-point-to information accumulates for store.
o If store is not initialized, we find out nothing
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Discussion

e May-point-to information accumulates for store.
o If store is not initialized, we find out nothing
e Analysis can be quite expensive

o Abstract representation of memory at each program point
e Does not scale to large programs
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Flow insensitive analysis

e |dea: Do not consider ordering of statements
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e Only one instance of abstract registers/memory needed
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Flow insensitive analysis

e |dea: Do not consider ordering of statements
e Compute information that holds for any program point
e Only one instance of abstract registers/memory needed

e For our simple example: No loss in precision
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First attempt

e Each edge (u, a, v) gives rise to constraints

a | constraints

xX=y R(x) 2 R(y)

X = new(e) R(x) 2 {u}
x = ple] R(x) 2 U{M(a) | a< R(p)}

plei]=x | M(a) 2 (a€ R(p)?R(x):0) forallaeV
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e Other edges have no effect
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e Problem: Too many constraints
e O(kn) for k allocation sites and n edges.
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First attempt

Each edge (u, a, v) gives rise to constraints

a | constraints

xX=y R(x) 2 R(y)

X = new(e) R(x) 2 {u}
x = ple] R(x) 2 U{M(a) | a< R(p)}

plei]=x | M(a) 2 (a€ R(p)?R(x):0) forallaeV
Other edges have no effect

e Problem: Too many constraints
e O(kn) for k allocation sites and n edges.

¢ Does not scale to big programs
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Last Lecture

¢ Flow sensitive points-to analysis

o |dentify blocks in memory with allocation sites
e Does not scale. One abstract memory per program point.

¢ Flow-insensitive points-to analysis

e Compute one abstract memory that approximates all program points.
e Does not scale. Too many constraints

e Flow-insensitive alias analysis
e Compute equivalence classes of p and p|]
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Alias analysis

¢ Idea: Maintain equivalence relation between variables p and memory

accesses p[]
e x ~ y whenever x and y may contain the same address (at any two program
points)

u: p1 = new (2)
v: p2 = new (2)
py1[0] =1
p1ll] = p2
p2[0] = 2
p2[l] = null

o ~={pill, P2}, {p1}: {p2[l}}
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Equivalence relations

e Relation ~C R x R that is reflexive, transitive, symmetric
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Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}
The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.
~C~' (~ finer than ~')
e The set of all equivalence relations on R with C forms a complete lattice
o ~ii= (=)
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Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}
The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.
~C~' (~ finer than ~')

e The set of all equivalence relations on R with C forms a complete lattice

s = ()
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Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}
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Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}
The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.
~C~' (~ finer than ~')

e The set of all equivalence relations on R with C forms a complete lattice

e ~ )= (:)
e ~T:=RxR

° |_|S:
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Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}
The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.
~C~' (~ finer than ~')

e The set of all equivalence relations on R with C forms a complete lattice

e ~ )= (:)
e ~T:=RxR

e Us=WUS)"
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Operations on ERs

e find (~,p): Return equivalence class of p
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Operations on ERs

e find (~,p): Return equivalence class of p
e union (~,p,p’): Return finest ER ~' with p ~' p’ and ~C~/
e On partitions of finite sets: Let R = [p1]~ U... U [pn]~

o union(~,p,p’):Let;_)€[pf]N,,D'G[,Dj]N N
Result: {[pi]~ U [pj]~} U{lpx] | 1 < k < nAk & {ij}t}
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Recursive Union

e If x ~ y, then also x[] ~ y][] (rec)
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¢ After union, we have to add those equivalences!
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Recursive Union

o If x ~ y, then also x[] ~ y[] (rec)
¢ After union, we have to add those equivalences!
e unionx* (~,p,p’):
e The finest ER that is coarser than union (~, p, p’ ) and satisfies (rec)
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Alias analysis

T = { {x}, {x[]1} | x € Vars } // Finest ER

for (_,a,_) in E do {
case a of
x=y: 7 = unionx (m,x,Vy)
| x=y[e]l: m = union= (m,x,y[]) // y variable
| ylel=x: ™ = union= (m,x,y[]) // y variable

o Start with finest ER (=)
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Alias analysis

T = { {x}, {x[]1} | x € Vars } // Finest ER

for (_,a,_) in E do {
case a of
x=y: 7 = unionx (m,x,Vy)
| x=y[e]l: m = union= (m,x,y[]) // y variable
| ylel=x: ™ = union= (m,x,y[]) // y variable

o Start with finest ER (=)

e lterate over edges, and union equivalence classes
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Example

1l: p1 = new (2)
2: p2 = new (2)
3: p1[0] =1
4: p1[1] = po
5: po[0] = 2
6: p2[l] = null

it {{p1},{p=}, {P1[l}, {p2[l}}
122 {{pi}{p} {pill}: {p2[l}}
23 {{pi},{p2}, {p: (I}, {P2ll}}
3—4  {pi} {p2} {p1ll}, {P2ll}}
4—=5  {{p1},{p2,; (I}, {Pell}}
5—=6  {{p1},{p2, (I}, {Pell}}
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Example

: R = null
: if Neg (T != null) goto 8

T
T

oo oI

o

s

I —
(@]
oo

: goto 2

O J o U b w N

init — {{H}, {R}, {T}, {H[]}, {TT}}
3—4  {H T} {R}{HI], TII}}
4=95 {H, T, H, TN} {R}}
556 {{H,T,H[], T[], R}}
6—7 {{H, T,H[, T[], R}}
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Discussion

¢ All memory content must have been constructed by analyzed program
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* p=pll; p=pll; g=ql]
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Discussion

¢ All memory content must have been constructed by analyzed program

e p=pll; p=pll; g=qll
o What if g points to third element of linked list at p.
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Discussion

¢ All memory content must have been constructed by analyzed program

e p=pll; p=pll; g=qll
o What if g points to third element of linked list at p.

= Only works for whole programs, no input via memory
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Correctness

e Intuition: Each address ever created represented by register
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m : Addr — Reg, such that
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Correctness

Intuition: Each address ever created represented by register
Invariant:

@ If register holds address, it is in the same class as address’ representative
® If memory holds address, it is in the same class as address of address
dereferenced

Formally: For all reachable states (p, 1), there exists a map
m : Addr — Reg, such that

@ o(x) € Addr = x ~ m(p(x))
O u(a, i) € Addr = m(a)[] ~ m(n(a,i))
e Extracting alias information: x, y may alias, if x ~ y.
e p(X)=p(y)=ac Addr = x~m(a)~y
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Correctness

Intuition: Each address ever created represented by register
Invariant:

@ If register holds address, it is in the same class as address’ representative
® If memory holds address, it is in the same class as address of address
dereferenced

Formally: For all reachable states (p, 1), there exists a map
m : Addr — Reg, such that

@ o(x) € Addr = x ~ m(p(x))
@ u(a i) € Addr = m(a)[] ~ m(u(a,i))
e Extracting alias information: x, y may alias, if x ~ y.
e p(X)=p(y)=ac Addr = x~m(a)~y
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o Initially: By assumption, neither registers nor memory hold addresses!
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Correctness

Intuition: Each address ever created represented by register
Invariant:

@ If register holds address, it is in the same class as address’ representative
® If memory holds address, it is in the same class as address of address
dereferenced

Formally: For all reachable states (p, 1), there exists a map
m : Addr — Reg, such that

@ o(x) € Addr = x ~ m(p(x))
® u(a i) e Addr = m(a)[] ~ m(u(a,i))
e Extracting alias information: x, y may alias, if x ~ y.
e p(X)=p(y)=ac Addr = x~m(a)~y
To show: Invariant holds initially, and preserved by steps

o Initially: By assumption, neither registers nor memory hold addresses!
e Preservation: On whiteboard
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Implementation

¢ Need to implement union»* operation efficiently
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Implementation

Need to implement union« operation efficiently
Use Union-Find data structure
Equivalence classes identified by unique representative

Operations:

e find(x): Return representative of [x]
e union (x,y):Join equivalence classes represented by x and y

e Destructive update!
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Union-Find: Idea
e ER represented as forest.
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Union-Find: Idea

e ER represented as forest.

e Each node contains element and parent pointer.
Elements of trees are equivalence classes
Representatives are roots of trees

Find: Follow tree upwards

Union: Link root node of one tree to other tree

@}D\g .

Lof1]2]3[4]s5]6]7]

[efsfi]4a]7]s]7]
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Union-Find: Optimizations

o Complexity: Union: O(1), find: O(n) :(
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Union-Find: Optimizations

o Complexity: Union: O(1), find: O(n) :(
¢ Union by size: Connect root of smaller tree to root of bigger one

o Store size of tree in root node
e C - implementation hack: Re/ab-use parent-pointer field for that
e Complexity: Union: O(1), find: O(log n) ;|
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Union by size: Example

@ %
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Union by size: Example

@}D\g @
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Path compression

o After find, redirect pointers on path to root node
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Path compression

o After find, redirect pointers on path to root node
¢ Requires second pass for find
o Alternative: Connect each node on find-path to its grandfather
e Complexity, amortized for m find and n — 1 union operations
o O(n+ ma(n))
e Where « is the inverse Ackerman-function

e Note n < 10® — a(n) <5
o Note: This complexity is optimal :)

238/471



Path compression: Example

@ @}@ﬁ
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Placing registers on top

e Try to preserve invariant:
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Placing registers on top

e Try to preserve invariant:

o If equivalence class contains register, its representative (root node) is
register
e On union, if linking register class to non-register class:
e Swap stored values in roots

e Then, register equivalence class can be identified by its representative
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Implementing union*

unionx* (x,vy) :
x = find(x); y=find(y)
if x !'= y then
union (x,Vy)
if x € Regs & y € Regs then
unionx (x[]1,y[])
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Summary

e Complexity:
e O(|E| + |Reg]) calls to union*, find. O(|Reg|) calls to union.
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Summary

e Complexity:

e O(|E| + |Reg]) calls to union*, find. O(|Reg|) calls to union.
e Analysis is fast. But may be imprecise.
¢ More precise analysis too expensive for compilers.
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Last Lecture

o Alias analysis by merging equivalence classes
¢ Implementation by union-find structure
e Optimizations: Union-by-size, path-compression
e Implementing union*
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Evaluation

Please fill out evaluation forms online.



Table of Contents

6 Avoiding Redundancy (Part Il)
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Table of Contents

e Avoiding Redundancy (Part Il)
Partial Redundancy Elimination
Partially Dead Assignments
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Idea

if x {
x = M[5]
} else {
vy = x + 1

yo = x + 1
M[1]=y1 + yeo

e x+1 is evaluated on every path
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Idea

if x {

x = M[5]
} else {

vy = x + 1
}

yo = x + 1
M[1]=y1 + yeo

e x+1 is evaluated on every path
¢ On else-path even two times
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|dea

e Insert assignments T, = e, such that e is available at all program points
where it is required.
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|dea

e Insert assignments T, = e, such that e is available at all program points
where it is required.

¢ Insert assignments as early as possible.
¢ Do not add evaluations of e that would not have been executed at all.
e if x!=0 then y=6 div x v/ T=6 div x; if x!=0 then y=T
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Very busy expressions

e An expression e is busy on path m, if it is evaluated on 7 before a variable
of e is changed.
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Very busy expressions

An expression e is busy on path =, if it is evaluated on = before a variable
of e is changed.

eis very busy at u, if it is busy for all path from u to an end node.
Backwards must analysis, i.e., E=D, L1 =N

Semantic intuition:

e e busy on m — evaluation of e can be placed at start of path
e e very busy at u — evaluation can be placed at u

e Without inserting unwanted additional evaluations
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Abstract effects

[Nop]*B =B
[Pos(e)]*B = BU {e}
[Neg(e)]” B = BU {e}
[x := e]*B = (B\ Expr,) U{e}
[x := M[e]]” B = (B Expr,) U {€}
[M[es] = e:]*B = BU {e, e}

e Initial value: 0
e No very busy expressions at end nodes
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Abstract effects

[Nop]*B =B
[Pos(e)]*B = BU {e}
[Neg(e)]” B = BU {e}
[x := e]*B = (B\ Expr,) U{e}
[x := M[e]]” B = (B Expr,) U {€}
[M[es] = e:]*B = BU {e, e}

e Initial value: 0
e No very busy expressions at end nodes
e Kill/Gen analysis, i.e., distributive
e MOP = MFP, if end node reachable from every node
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Example (Very Busy Expressions)

x=M[5] y1=x+1
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Example (Very Busy Expressions)

{3 x+1}

x=M[5] yi1=x+1

{x+1}

{x+1}
yo=x+1
n + ye}
M[1] = yit y2

{3
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Available expressions

¢ Recall: Available expressions before memo-transformation

[[Nop]]jA =A
[Pos(e)]%A = AU {e}
[Neg(e)]4A = AU {e}
[R = el A:= (AU {e}) \ Exprq
[R = Mle]]4A = (AU {e}) \ Exprp
[Mle] = e]%A = AU {er, e}
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Transformation

e Insert T, = e after edge (u, a, v), if
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Transformation

e Insert T, = e after edge (u, a, v), if

e eisverybusy at v
e Evaluation could not have been inserted before, b/c

e edestroyed by a, or
e e neither available, nor very busy at u

o Formally: e € B[v] \ [a]% (Alu] U B[u])
o At program start, insert evaluations of B[]
¢ Note: Order does not matter
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Transformation

¢ Place evaluations of expressions
e (u,a,v) > {(u,a,w),(w, Te = e,v)} for e € B[] \ [a]% (A[u] U B[u])
e For fresh node w
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Transformation

¢ Place evaluations of expressions
o (u,a,v)— {(u,a,w),(w, Te =e,v)} fore € B[v]\ [[a]]j(A[u] U B[u])
e For fresh node w

o vy — Vo' with (W', Te = €, vp) for e € B|v]

¢ Note: Multiple memo-assignments on one edge
e Can just be expanded in any order
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Transformation

Place evaluations of expressions
o (u,a,v)— {(u,a,w),(w, Te =e,v)} fore € B[v]\ [[a]]j(A[u] U B[u])
e For fresh node w

o vy — Vo' with (W', Te = €, vp) for e € B|v]

Note: Multiple memo-assignments on one edge
e Can just be expanded in any order

e Replace usages of expressions

o (Uyx=2eV)— (Ux=TeV)

¢ analogously for other uses of e
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Example

e For expression x + 1 only

x=M[5] y1=x+1
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Example
e For expression x + 1 only
B={},A={}

B={}A={} B={x+1},A={}

x=M[5] yi1=x+1

B={x+1},A={} B={x+1},A={x+1}

B={x+1},A={}
yo=x+1
B={n+yh,A={x+1}
MI1] = yi+ y2

B={}LA={x+1y+y}
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Example
e For expression x + 1 only

x=M[5] y1=x+t1

yo=x+1
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Example
e For expression x + 1 only
T=x+1

yi=x+1
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Example
e For expression x + 1 only
T=x+1

y1=T
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Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

e True for our translation scheme
e Be careful in general!

257/471



Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

e True for our translation scheme
e Be careful in general!

—> Required expressions are very busy at start node of edge

257/471



Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

e True for our translation scheme
e Be careful in general!

—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms

e Assume expression e required by a
e ec Blu]

257/471



Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node
o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge
¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]
e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed
such that it is available at v

257/471



Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v
e Induction on 7.

257/471



Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v

¢ Induction on 7.

e Empty path: Evaluation placed before start node

257/471



Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v
e Induction on 7.

o Empty path: Evaluation placed before start node
o m=n'(U,a,V):

257/471



Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v
e Induction on 7.

o Empty path: Evaluation placed before start node
o m=n'(U,a,V):

e Case amodifiese =— e ¢ [a]]j(. ..) = Evaluation placed here.

257/471



Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v
e Induction on 7.

o Empty path: Evaluation placed before start node
o m=n'(U,a,V):

e Case amodifiese =— e ¢ [a]]j(. ..) = Evaluation placed here.
e Case e ¢ Alu] U Blu] = Evaluation placed here.

257/471



Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v
e Induction on 7.

o Empty path: Evaluation placed before start node
o m=n'(U,a,V):

e Case amodifiese =— e ¢ [a]]j(. ..) = Evaluation placed here.
e Case e ¢ Alu] U Blu] = Evaluation placed here.
e Assume: a does not modify e

257/471



Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed
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o m=n'(U,a,V):

e Case amodifiese =— e ¢ [a]]j(. ..) = Evaluation placed here.
e Case e ¢ Alu] U Blu] = Evaluation placed here.

e Assume: a does not modify e

e Case e € B[u]. Induction hypothesis.
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Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v

¢ Induction on 7.
o Empty path: Evaluation placed before start node
o m=n'(U,a,V):

e Case amodifiese =— e ¢ [a]]j(. ..) = Evaluation placed here.

e Case e ¢ Alu] U Blu] = Evaluation placed here.

e Assume: a does not modify e

e Case e € B[u]. Induction hypothesis.

e Caseec Alu] = =’ =nj(U,a,v')r), such that ) does not modify e, and e
required by 8@ = e € B[u’]. Induction hypothesis.

257/471



Non-degradation of performance

e On any path: Placement of T, = e corresponds to replacing an e by T,
¢ e not evaluated more often than in original program
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Non-degradation of performance

¢ On any path: Placement of T, = e corresponds to replacing an e by T,
¢ e not evaluated more often than in original program
e Proof sketch: Placement only done where e is very busy

e |.e., every path from placement contains evaluation of e, which will be

replaced
o Moreover, no path contains two evaluations of e, without usage of e in
between

e By contradiction. Sketch on board.
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Last Lecture

o Partial Redundancy Elimination
e Place evaluations such that

e They are evaluated as early as possible, such that:
e Expressions are only evaluated if also evaluated in original program

e Analysis: Very Busy Expressions
e Transformation: Placement on edges

o where expression stops to be very busy
e oris destroyed (and very busy at target)

e Placement only if expression is not avalable
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Application: Moving loop-invariant code

for (i=0;i<N; ++1i)
ali] = b + 3

e b+3 evaluated in every iteration.
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Application: Moving loop-invariant code

for (i=0;i<N; ++1i)
ali] = b + 3

e b+3 evaluated in every iteration.
e To the same value
e Should be avoided!
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Example (CFG)

CFG of previous example
: 1=0;
: if (i<N) |
alfi] = b + 3
i=i+l
goto 2
}

o U W N
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Example (CFG)

Analysis results for expression b + 3

1: i=0;

2: 1f (i<N) {

3: al[il] =b + 3 // B
4: i=i+1 // A
5: goto 2 // A
6: }
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Example (CFG)

Placement happens inside loop, on edge (2, Pos(i < N),3) :(

1: i=0;

2: 1if (i<N) {
X: T=b+3

3: ali] =T
4: i=i+1

5: goto 2
6: }
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Example (CFG)

There is no node outside loop for placing e!

1: i=0;

2: 1if (i<N) {
X: T=b+3

3: ali]l] =T
4: i=i+1

5: goto 2
6: }

261/471



Solution: Loop inversion

¢ |dea: Convert while-loop to do-while loop

while (b) do c F>f (b) {do c while (b)}
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¢ Does not change semantics
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Solution: Loop inversion

¢ |dea: Convert while-loop to do-while loop
while (b) do c |—>if (b) {do c while (b)}

¢ Does not change semantics
e But creates node for placing loop invariant code
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Example

CFG after loop inversion

1: 1i=0;

2: 1if (i<N) {

3: alfi] = b + 3

4: i=i+1

5: if (i<N) goto 3
6: }
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Example

Analysis results for expression b + 3

1: i=0;

2: 1f (i<N) {

3: ali] = b + 3 // B
4: i=i+1 // A
5: if (i<N) goto 3 // A
6: }
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Example

Placement happens outside loop, on edge (2, Pos(i < N),3) :)

1: i=0;

2: 1if (i<N) {

X T=b+3;

3: ali] =T

4: i=i+1

5: if (i<N) goto 3
6: }
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Conclusion

e PRE may move loop-invariant code out of the loop
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Conclusion

e PRE may move loop-invariant code out of the loop
Only for do-while loops

e To also cover while-loops: Apply loop-inversion first
e Loop inversion: No additional statements executed.

e But slight increase in code size.
o Side note: Better pipelining behavior (Less jumps executed)
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Detecting loops in CFG

e Loop inversion can be done in AST
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Detecting loops in CFG

e Loop inversion can be done in AST

e Butonly if AST is available
e What if some other CFG-based transformations have already been run?

e Need CFG-based detection of loop headers
e |dea: Predominators
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Predominators

¢ A node u pre-dominates v (u = v), iff every path vy —* v contains v.
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Predominators

¢ A node u pre-dominates v (u = v), iff every path vy —* v contains v.
e = is a partial order.
o reflexive, transitive, anti-symmetric
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Predominator example
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Remark: Immediate Predominator

e The =-relation, with reflexivity and transitivity removed, is a tree
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Remark: Immediate Predominator

e The =-relation, with reflexivity and transitivity removed, is a tree

e Clearly, vo dominates every node (root of tree)
e Every node has at most one immediate predecessor:
e Assume uy = Vv, U = V, and neither uy = U nor u» = Uy
Regard path = to v. Assume, wlog, © = 7 uymaV, such that uq, us & mo
Then, every path =’ to uy gives rise to path 7’7 to v.
Thus, up € 7’mp. By asm, notin mo. l.e. u, € '.

[ ]
[ ]
[ ]
e Thus, u» = uy, contradiction.
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Computing predominators

 Use a (degenerate) dataflow analysis. Forward, Must. Domain 2V.
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 Use a (degenerate) dataflow analysis. Forward, Must. Domain 2V.

e [ VI"P=PU{v}, do = {w}
e Collects nodes on paths
o Distributive, i.e. MOP can be precisely computed

e MOP[u] = N{[x]"{vo} | vo =~ u}
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Computing predominators

 Use a (degenerate) dataflow analysis. Forward, Must. Domain 2V.

e [ VI"P=PU{v}, do = {w}
e Collects nodes on paths
o Distributive, i.e. MOP can be precisely computed

e MOP[U] = N{[]"{vo} | vo " u}

e Which is precisely the set of nodes occurring on all paths to u
e |.e. the predominators of u
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Detecting loops using predominators

e Observation: Entry node of loop predominates all nodes in loop body.

if v e Plu]

Neg (e) Pos (e)
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Detecting loops using predominators

e Observation: Entry node of loop predominates all nodes in loop body.
¢ In particular the start node of the back edge

e Loop inversion transformation

Neg (e) Pos (e)

if v e Plu]
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Detecting loops using predominators

e Observation: Entry node of loop predominates all nodes in loop body.
¢ In particular the start node of the back edge

e Loop inversion transformation

Neg (e) Pos (e)

if v e Plu]

—

Neg (e) Pos (e)

Neg (e) Pos (e)

e Obviously correct
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Example
CFG of running example

Neg (i<N) Pos (1i<N)

ali]=b+3
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Example
2 € P[6], identified pattern for transformation

Neg (1<N) Pos (i<N)

i=i+1
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Example
Inverted loop

Neg (i<N) Pos (1<N)

Neg (1<N) Pos (1<N)

®

i=i+1
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Warning

e Transformation fails to invert all loops
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Warning

e Transformation fails to invert all loops
e E.g., if evaluation of condition is more complex

¢ E.g., condition contains loads
e while (M[O0])

e We would have to duplicate the load-edge, too

272/471



Last Lecture

e Partial redundancy elimination
e Very busy expressions
e Place evaluations as early as possible
e Loop inversion
e while — do-while
o Enables moving loop-invariant code out of loops
e Computation on CFG: Use pre-dominators



Table of Contents

e Avoiding Redundancy (Part Il)
Partial Redundancy Elimination
Partially Dead Assignments
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Motivation

e Consider program

T = x+1
if (%) then M[0]=T

e Assume (*) does notuse T, and T dead at end
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Motivation

e Consider program
T = x+1
if (%) then M[0]=T

e Assume (*) does notuse T, and T dead at end
e Assignment T = x 4+ 1 only required on one path
e Would like to move assignment into this path

if (x) then {T = x+1; M[0]=T}

275/471



Idea

e Delay assignments as long as possible
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|dea

e Delay assignments as long as possible
e Can delay assignment x : =e over edge Kk, if

e X is not used, nor defined by k
¢ No variable of e is defined by k
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Delayable Assignments Analysis

e Domain: {x = e| x € Reg A e € Expr}, Ordering: C=D2, forward
e |.e. forward must analysis
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Delayable Assignments Analysis

e Domain: {x = e| x € Reg A e € Expr}, Ordering: C=D2, forward
e |.e. forward must analysis
e dy = (), no delayable assignments at program start

[Nop]*D =D
[x = e]*D =D\ (Ass(e) UOcc(x)) U {x = e}
[Pos(e)]* D = D\ Ass(e)
[Neg(e)]*D = D\ Ass(e)
[x = M[e]]* D = D\ (Ass(e) U Oce(x))
[M[e:] = e:]*D = D\ (Ass(e1) U Ass(62))
where

Ass(e) := {x = €& | x € Reg(e)} Assignments to variable in e
Occ(x) := {x' = e| x = x' v x € Reg(e)} Assignments in which x occurs
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Intuition

e x = e € D[u]: On every path reaching u, the assignment x = e is
executed, and no edge afterwards:

e Depends on x
e Changes x or a variable of e
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Intuition

e x = e € D[u]: On every path reaching u, the assignment x = e is
executed, and no edge afterwards:

e Depends on x
e Changes x or a variable of e

e Thus, this assignment can be safely moved to u
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Transformation
e Delay assignments as far as possible
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Transformation

e Delay assignments as far as possible
e Do not place assignments to dead variables
o (U,x=e,Vv)— (u,ssy,w),(w,sss, V) where
e ss; Assignments to live variables that cannot be delayed over action x = e
e ss, Assignments to live variables delayable due to edge, but not at v (Other
paths over v)
e w is fresh node
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Transformation

e Delay assignments as far as possible
e Do not place assignments to dead variables
o (U x=-e,v)— (u,ss1,w),(w,ssy, v)where
e ss; Assignments to live variables that cannot be delayed over action x = e
e ss, Assignments to live variables delayable due to edge, but not at v (Other
paths over v)
o w is fresh node
e Formally
ssy = {x'=¢& e D[u]\ [x = e]*D[u] | x' € L[u]}
ss, = {x' =€ e [x=e]"Dlu]\ D|v] | X' € L[v]}

e (u,a,v)— (u,ss1,wy),(wy,a, wa),(we, ssy, v) for a not assignment

ss; = {x' =€ e D[u]\ [a]* D[u] | X' € L[u]}
ss; = {x' = € e [a]*D[u]\ D[v] | X' € L[v]}
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Transformation

e Delay assignments as far as possible
e Do not place assignments to dead variables
o (U x=-e,v)— (u,ss1,w),(w,ssy, v)where
e ss; Assignments to live variables that cannot be delayed over action x = e
e ss, Assignments to live variables delayable due to edge, but not at v (Other
paths over v)
o w is fresh node
e Formally

ssy = {x'=¢& e D[u]\ [x = e]*D[u] | x' € L[u]}
ss, = {x' =€ e [x=e]"Dlu]\ D|v] | X' € L[v]}

e (u,a,v)— (u,ss1,wy),(wy,a, wa),(we, ssy, v) for a not assignment
ssy = {x' = € e D[u]\ [a]* D[u] | X' € L[u]}
ss, = {x' = € € [a]” D[u] \ D[v] | X' € L[v]}

® Vo € Vend = (Vea D[Ve]’ Vé)
e where v, is fresh end node, and ve no end node any more.

279/471



Dependent actions

e Two actions ay, a; are independent, iff [a1a2] = [a2ai]
e Actions may be swapped
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Dependent actions

e Two actions ay, a; are independent, iff [a1a2] = [a2ai]
e Actions may be swapped
o Assignments only delayed over independent actions
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Correctness (Rough Sketch)

e First: D[u] does never contain dependent assignments
e Placement order is irrelevant
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Correctness (Rough Sketch)

e First: D[u] does never contain dependent assignments
e Placement order is irrelevant
e Proof sketch: x = e only inserted by [-]#, after all dependent assignments
removed

o Regard path with assignment (u, x = e, v).

e Wehave x=e€ [x = e]]#D[u]. (1) Either placed here, (2) x dead, (3) or
delayable at v

e (1) No change of path
e (2), not (3): Assignment dropped, but was dead anyway
e (3). Three subcases: Sketch on whiteboard!
e (3.1) x = e stops being delayable due to dependent action
— Assignment placed before this action, if live
e (3.2) x = e stops being delayable at node
— Assignment placed after edge to this node, if live
e (3.3) x = e delayable until end
— Assignment placed at end node, if live
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Example

1: T = x+1 D: {} L: {x}
2: 1if (*) then { D: {T=x+1} L: {T}
3: M[0]=T D: {T=x+1} L: {T}
4: Nop D: {} L: {}
5: } D: {} L: {}
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1: T = x+1 D: {} L: {x}
2: 1if (*) then { D: {T=x+1} L: {T}
3: M[0]=T D: {T=x+1} L: {T}
4: Nop D: {} L: {}
5: } D: {} L: {}

e Placement of T = x + 1 before edge (3, 4)
e Wehave T = x + 1€ D[3]\ [M[0] = T]*D[4], and T € L[3]
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Example

1: T = x+1 D: {} L: {x}
2: 1if (*) then { D: {T=x+1} L: {T}
3: M[0]=T D: {T=x+1} L: {T}
4: Nop D: {} L: {}
5: } D: {} L: {}

e Placement of T = x + 1 before edge (3, 4)
e Wehave T = x + 1€ D[3]\ [M[0] = T]*D[4], and T € L[3]

: if (%) then {

T = x+1
M[O]=T
Nop

a b X W N
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Summary

e PDE is generalization of DAE

o Assignment to dead variable will not be placed
e As variable is dead on all paths leaving that assignment
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e Non degradation of performance

e Number of assignments on each path does not increase (without proof)
e In particular: Assignments not moved into loops (Whiteboard)
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Summary

e PDE is generalization of DAE

o Assignment to dead variable will not be placed
e As variable is dead on all paths leaving that assignment

May also use true liveness.

Non degradation of performance

e Number of assignments on each path does not increase (without proof)
e In particular: Assignments not moved into loops (Whiteboard)

e Profits from loop inversion (Whiteboard)
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Conclusion

e Design of meaningful optimization is nontrivial

e Optimizations may only be useful in connection with others
Order of optimization matters

e Some optimizations can be iterated
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A meaningful ordering

LINV Loop inversion
ALIAS Alias analysis
Al Constant propagation
Intervals
RE (Simple) redundancy elimination
CP Copy propagation
DAE Dead assignment elimination
PRE Partial redundancy elimination
PDE | Partially dead assignment elimination




Table of Contents

6 Interprocedural Analysis
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Last Lecture

o Partially dead assignments
e Started semantics with procedures
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Motivation

e So far:

e Only regarded single procedure
o But program typically has many procedures
¢ Need to be pessimistic about their effect

288/471



Motivation

e So far:
e Only regarded single procedure
o But program typically has many procedures
¢ Need to be pessimistic about their effect
e Now:
Analyze effects of procedures
Restrict to procedures without parameters/return values
But with local and global variables!
Can emulate parameters/return values!
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Extending the semantics

« Each procedure f represented by control flow graph G'. Assume these
are distinct!
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Extending the semantics

« Each procedure f represented by control flow graph G'. Assume these
are distinct!

e Add edge label f() for call of procedure f

e Procedure main must exist

Conf = Stack x Globals x Store
Globals = Glob — Val

Store = Addr — Val

Stack = Frame™
Frame = V x Locals

Locals = Loc — Val

o where Glob are global variable names, and Loc are local variable names
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Execution, small-step semantics

e [el(pi, pg) : Val. Value of expression.
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Execution, small-step semantics

e [€el(ps, pg) : Val. Value of expression.

e [a](pr1, pg, 1) : Locals x Globals x Store. Effect of (non-call) action.
o Initial configuration: ([(vo™@", Ax. 0)], pg, 1)

e —C Conf x Conf

((u, pr)a, pgs 1) — ((v, p)o, pg, 1') (basic)
if (u,a,v) € EALal(pr; pg: 1) = (p1 Py 1)

((u, pr)o, pg. 1) = (o, Ax. 0)(v, p1)o, pg. 1) (call)
if (u, f(),v) € E

((u, ), pg, 1) — (0, pg: 1) (return)

ifue Vend/\0'7£€
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Example (factorial)

main () :
M[0] = fac(3)

fac(x) :

if (x <= 1) return 1
else return x * fac(x-1)
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Example (factorial)

main () :
M[0] = fac(3)

fac(x) :

if (x <= 1) return 1
else return x * fac(x-1)

Translation to no arguments and return values

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = x*Gret
£f7: }
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Example (factorial)

main () :
ml: Gx = 3;
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m4:
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m4:
fac():
fl: x = Gx A run:
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Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f1,x:0)

Unsa_)

Gx : 3,Gret: —,M[0] : —

291/471



Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }
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Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f4,x:3)

Unsa_)

Gx : 3,Gret: —,M[0] : —
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Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f5,x:3)

Unsa_)

Gx :2,Gret: —,M[0] : —
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fl: x = Gx A run:
f2: if (x <= 1) {
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} else {
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£f7: }
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Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f4,x - 2)

(f6,x:3)

Uﬂ3,—)

Gx : 2,Gret: —,M[0] : —
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Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(75, x - 2)

(f6,x:3)
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Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f1,x:0)

(f6,x : 2)
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main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f2,x:1)

(f6,x : 2)

(f6,x :3)

Uﬂ3,—)

Gx :1,Gret: — ,M|[0] : —

291/471



Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }
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(f6,x : 2)
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Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f7,x:1)

(f6,x:2)

(f6,x :3)
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Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }
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(n037——)

Gx :1,Gret : 1,M[0] : —

291/471



Example (factorial)

main () :
ml: Gx = 3;
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m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f7,x :2)
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Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f6,x:3)
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Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f7,x:3)

(nqsv__)

Gx :1,Gret : 6, M[0] : —
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Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

UﬂS,—)

Gx :1,Gret : 6, M[0] : —
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Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

0”4’_)
Gx :1,Gret: 6,M[0] : 6
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Realistic Call Semantic

e On real machine, procedure call involves

e Save registers
e Create stack frame

o Push parameters, return address
o Allocate stack space for local variables

e Jump to procedure body
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Realistic Call Semantic

e On real machine, procedure call involves

e Save registers
e Create stack frame

o Push parameters, return address
o Allocate stack space for local variables

e Jump to procedure body
e Procedure return
e Free stack frame

e Jump to return address
o Remove parameters from stack

o Restore registers
e Handle result

e Short demo: cdecl calling convention on x86
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Inlining

e Procedure call is quite expensive

int f(int a, int b) {
int 1 = a + b
return 1 + 1

int g (int a) {
return f (a,a)
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Inlining

e Procedure call is quite expensive
e Idea: Copy procedure body to call-site

int f(int a, int b) {
int 1 = a + b
return 1 + 1

int g (int a) {
int 1 = a + a
return 1 + 1
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Problems

e Have to keep distinct local variables
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Problems

e Have to keep distinct local variables
e Our simple language has no parameters/ returns

e Be careful with recursion
¢ Inlining optimization might not terminate

e Too much inlining of (non-recursive procedures) may blow up the code
o Exponentially!

void mO ()
void ml ()
void m2 ()

void mN ()

{x=x+1}
{mO () ;m0 () }
{ml();ml()}

{mN-1(); mN-1()}
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Problems

e Have to keep distinct local variables
e Our simple language has no parameters/ returns
e Be careful with recursion
¢ Inlining optimization might not terminate
e Too much inlining of (non-recursive procedures) may blow up the code
o Exponentially!
void mO () {x=x+1}

void ml () {mO(),;mO0 ()}
void m2 () {ml(),;ml()}

void mN () {mN-1(); mN-1()}

« Inlining everything, program gets size O(2")
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Call Graph

e Graph over procedures
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Call Graph

e Graph over procedures
e Edge from f to g, if body of f contains call to g
e In our examples

©O—0O

¢ Inline strategies

o Leaf: Only leaf procedures
o Everything: Every non-recursive procedure
¢ Real compilers use complex heuristics

e Based on code size, register pressure, ...
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Inlining transformation

e For edge (u, f(), v)
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 Make a copy of G, rename locals to fresh names /f, ... If
e Replace by edges:

e (u,I" =0, ) (Initialize locals, goto start node of copy)
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Inlining transformation

e For edge (u, (), v)
« Make a copy of G', rename locals to fresh names /f, ..., I
¢ Replace by edges:

o (u, /" =0, V) (Initialize locals, goto start node of copy)
e (v}, Nop, v),forall v} € V! (Link end nodes of copy with v)
f:

O
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Inlining transformation

e For edge (u, f(), v)
 Make a copy of G, rename locals to fresh names /f, ... If
e Replace by edges:

e (u,I" =0, ) (Initialize locals, goto start node of copy)
e (vL,Nop, v),forall vi € VI, (Link end nodes of copy with v)
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Tail call optimization

e |dea: If after recursive call, the procedure returns
¢ Re-use the procedure’s stack frame, instead of allocating a new one

void f() {
if (Gi < Gn-1) {
t = al[Gi]
Gi = Gi+1

al[Gi]=a[Gi]+t
£()
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Tail call optimization

e |dea: If after recursive call, the procedure returns
¢ Re-use the procedure’s stack frame, instead of allocating a new one

void f£() { void £ () {
if (Gi < Gn-1) { if (Gi < Gn-1) {
t = al[Gi] t = a[Gi]
Gi = Gi+l | ) Gi = Gi+1l
al[Gi]=a[Gi]+t al[Gi]=a[Gi]+t

£() t=0; goto f
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Tail call optimization

e |dea: If after recursive call, the procedure returns
¢ Re-use the procedure’s stack frame, instead of allocating a new one

void f£() { void f£() {
if (Gi < Gn-1) { if (Gi < Gn-1) {
t = al[Gi] t = a[Gi]
Gi = Gi+l | ) Gi = Gi+1l
al[Gi]=a[Gi]+t al[Gi]=a[Gi]+t
£() t=0; goto f

e Requires no code duplication
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Tail call optimization

e |dea: If after recursive call, the procedure returns
¢ Re-use the procedure’s stack frame, instead of allocating a new one

void f£() { void f£() {
if (Gi < Gn-1) { if (Gi < Gn-1) {
t = a[Gi] t = a[Gi]
Gi = Gi+l | ) Gi = Gi+1l
al[Gi]=a[Gi]+t al[Gi]=a[Gi]+t
£() t=0; goto f

e Requires no code duplication
e Have to re-initialize local variables, according to semantics

o Target for DAE ;)
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Tail-Call Transformation
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Discussion

e Crucial optimization for languages without loop construct
e E.g., functional languages
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Discussion

e Crucial optimization for languages without loop construct
e E.g., functional languages
¢ No duplication of code or additional local variables
e The optimization may also be profitable for non-recursive calls

o Re-use stack-space of current frame for new stack frame
o But not expressable in our semantics (Too high-level view on locals)
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Interprocedural Analysis

e Want to extend our program analysis to procedures
e For example, constant propagation
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Interprocedural Analysis

e Want to extend our program analysis to procedures
e For example, constant propagation

main () { int t;
t =0
if (t
al = t;

work ()

ret = 1 - ret;

M[17] = 35

4

)
t
(

work () {
if (al) work();
ret = al ;
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Interprocedural Analysis

e Want to extend our program analysis to procedures
e For example, constant propagation

main () { int t; main () { int t;
t = 0; t = 0;
if (t) M[17] = 3; //if (t) M[17] = 3;
al = t; al = 0;
work (); workg ();
ret = 1 - ret; F—} ret = 1;
} }
work () { workg () |
if (al) work(); //if (al) work();

ret = al ; ret = 0
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Last Lecture

Stack-based semantics with procedures
Inlining optimization

Tail-call optimization

Path-based semantics
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Generalization of Paths
¢ Recall: Paths were sequences of actions

path = ¢ | Act - path
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Generalization of Paths
¢ Recall: Paths were sequences of actions
path = ¢ | Act - path

e Now: We can call procedures. A procedure call may

e Return on path
e Not return on path
e Advantageous to make this visible in path structure

slpath = ¢ | Act - slpath | f(slpath) - slpath
path = € | Act - path | f(slpath) - path | f< - path
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Generalization of Paths
¢ Recall: Paths were sequences of actions
path = ¢ | Act - path

e Now: We can call procedures. A procedure call may

e Return on path
e Not return on path
e Advantageous to make this visible in path structure

slpath = ¢ | Act - slpath | f(slpath) - slpath
path = € | Act - path | f(slpath) - path | f< - path

e Intuitively:
o f(m): Call to procedure f, which executes = and returns
o f.: Call to procedure f, which does not return
e slpath: Same level paths, which end on same stack-level as they begin
o Note: Inside returning call, all calls must return.
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Generalization of Paths
¢ Recall: Paths between nodes
- k=(uav)eE vow

[app] =
u—u u—w

[empty]
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Generalization of Paths
¢ Recall: Paths between nodes
- k=(uav)eE vow

[empty] [app] =

u—u u—w

e Now
- k=(uav)eE vSogw

[empty] — (app) <= )kﬂ '

u—su u—g w

M f T2

[Ca”](u, fO,v)€EE v —gVi€ Ve VvV—"aw

f(mq )
U (1)2le
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Generalization of Paths
¢ Recall: Paths between nodes
- k=(uav)eE vow

[empty] [app) <
u—u u=—"w
e Now
— k=(uav)cE vIogw
[empty] — (app) <= )kﬂ '
Uu—qgu U—rq w

(U, f()’ V) €E VOf ‘11—>sl Vé € Vcnd v ‘12’)5] w

[call] =
U w
e And
— k=(uav)cE vow
lempl———  [app = {42 €
u—u u—w

[cal/](u’ fO,V)EE vl Zogvie Ve v w

f
U (m1)m2 w

(u,f),V)€E v SHw

fem
u—mw

[ncall]
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Executions of paths
e Recall

[els = s [knls = [7](I]s)
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Executions of paths
e Recall

[els = s [knls = [7](I]s)

e Now
[els =s [knls = [r]([k]s)

[f(m)]s=H[r] s [f<]s=enters

where

enter(py, pg, 1) := (0, pg, 1)
combine((py, pg, 1), (Pl g 1)) == (p1, g 1)
H e s := combine(s, (e(enter S)))
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Executions of paths
e Recall
[els =s [knls = [~]1([k]s)
e Now
[els =s [knls = [~]1([k]s)

[f(m)]s=H[r] s [f<]s=enters

where

enter(py, pg, 1) := (0, pg, 1)
combine((py, pg, 1), (Pl g 1)) == (p1, g 1)
H e s := combine(s, (e(enter S)))

e Intuition:
enter Set up stack frame
combine Combine procedure result with old frame
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Example

£ 0 |
if x>0 then {
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Example

£ 0 |
if x>0 then { SL-path through main
x =x = 1 <=1
£ 0 o
x =x+1 Pos (x>0)
} else { x=x—1
u: Nop £(
: Neg (x>0)
J Nop
. )
main O A x =x + 1
x = 1; )
£ 0 x =0
x =0
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Example

£ 0 |
if x>0 then { SL-path through main
x =x -1 <=1
E _() £y Path from main to u
x =x+1 Pos (x>0)
} else { x=x—1 x=1
u: Nop £ f<
} Neg (x>0) Pos (x>0)
} N g x=x-1
) op f<
main () | = x + 1 Neg (x>0)
x = 1; )
£ 0 x =0
x =0
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Equivalence of semantics

Theorem
The stack-based and path-based semantics are equivalent:

(30' ([U, P/]apgaﬂ) —" ([Va p;]g, pfqnu',))
= (3r.u > vAL(enpg, 1) = (Pl Pgs 1))
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Proof sketch (Whiteboard)

e Auxiliary lemma: Same-level paths

(([u, pi); pgs 1)) =" (v, pils pgs 11")
= (3. u S vA I pr pg: 1) = (01, Pgs 1))
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e Main ideas (=)

¢ Induction on length of execution
¢ |dentify non-returning calls:

e Execution in between yields same-level paths (aux-lemma)

307/471



Proof sketch (Whiteboard)

e Auxiliary lemma: Same-level paths

((Lu, pil, pgs 1)) =~ (v, pil, pg, 1)
= (3. u S vA I pr pg: 1) = (01, Pgs 1))

e Main ideas (=)

¢ Induction on length of execution
¢ |dentify non-returning calls:

e Execution in between yields same-level paths (aux-lemma)
e Main ideas («=)
e Induction on path structure
o Executions can be repeated with stack extended at the bottom

(0,09, 1) =" (0", pg, 1) = (06, pg, ) =" ('8, pg, 1")
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Abstraction of paths

« Recall: Abstract effects of actions: [a]” : D — D
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¢ Require: Abstract effects for f(7) and f<
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e Actions: Nop, Test, Assign, Load, Store
e Now: Additional actions: Returning/non-returning procedure call
¢ Require: Abstract effects for f(7) and f<

e Define abstract enterf, combinef’é
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Abstraction of paths

« Recall: Abstract effects of actions: [a]” : D — D

e Actions: Nop, Test, Assign, Load, Store
e Now: Additional actions: Returning/non-returning procedure call
¢ Require: Abstract effects for f(7) and f<

e Define abstract enterf, combinef’é

° Hf ed= combinef’£(d7 e(enterf(d)))

o [f(m]"d = Hf [x]” d

o [f]"d= enterf&(d)
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Example: Copy constants

e Simplified constant propagation
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Example: Copy constants

e Simplified constant propagation
e Conditions not exploited
e Only assignments of formx = yandx=c,c€Z

e Domain: D := Reg — Z '
e Initially: dy / := 0,/ € Loc, dy g := T, g € Glob
e Abstract effects
[x :=c]*d = d(x:
[x = y]*d =d(x :=d(y)) fory e Reg
[x :=e]*d=d(x:=T) foreecExpr\ (ZUReg)
[x := M(e)]*d = d(x := T)
[Pos(e)]*d = [[Neg( )n#d = [Nop]*d = [M(e1) = e2]"d = d
enterf d=d(/:=0]|1¢€Loc)
combine? d d’' = Ax. x € Loc?d(x) : d'(x)

c) forceZ
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Correctness

e Description relation (p;, pg, 1) A d
o iff p A d‘Lgc and Pg A d|G]gb

310/471



Correctness

e Description relation (p;, pg, 1) A d
o iff py A d‘Lgc and pg A d|G]gb

e Show: Ypg, u. [x](0, pg, 1) A [7]" o

310/471



Correctness

e Description relation (p;, pg, 1) A d
o iff py A d‘Lgc and pg A d|G]gb

e Show: Ypg, u. [x](0, pg, 1) A [7]" o
e By induction on path

310/471



Correctness

e Description relation (p;, pg, 1) A d
o iff py A d|Loc @and pg A d|Gio

e Show: Ypg, u. [x](0, pg, 1) A [7]" o
e By induction on path
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Correctness

e Description relation (p;, pg, 1) A d
° |ff Pl A d‘an and pg A d|Glnb

e Show: Ypg, u. [x](0, pg, 1) A [7]" o
e By induction on path

e Then, case distinction on edges
e Generalization of simulation proofs for intraprocedural case
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Computing Solutions

s

e Interested in MOP[u] := | [{[x]" db | vo™@" =5 u}
¢ Idea: Constraint system for same-level effects of functions

Sw']Zid
S[v] 2 [k]* o S[u] k=(uav)eE
S[v] 3 H*(S[f]) o S[u] k= (uf(),v)eE

S[f] 2 S[v{] Vi € Vi
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Computing Solutions

o Interested in MOP[u] := | [{[«]" db | vo™@"

s

— u}

¢ Idea: Constraint system for same-level effects of functions

Sw']Zid
S[v] 2 [K]” o S[u]
S[v] 3 H#(8[f]) o S[u]
Sif] 2 S[v]
e And for effects of paths reaching u
R[vo™"] O enter” dy
RV 2 [K1* Rlu]
R[v] 3 H# S[f] R[u]
R[vo'] 3 enter” R[u]

k=(uav)eE
k=(u,f(),v)eE

f f
Ve € Vend
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Coincidence Theorems

Let MFP be the least solution of R, then we have

MOP C MFP

e For monotonic effects

If each program point is reachable, and all effects as well as H# are
distributive:

MOP = MFP

e Generalization of corresponding intra-procedural theorems
e Intuition: Constraint system joins early

e Information from multiple incoming edges
o All paths through procedure on returning call

312/471
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Remaining problem

e How to compute effects of call efficiently?
e How to represent functions D — D
o efficiently?
e For copy constants:
e Domain is actually finite: Only need to consider constants that actually occur
in the program
e But this would yield huge tables for functions
e Possible solutions:

o Find efficient representation for functions
e Function actually not applied to all values d € D. — compute on demand.

313/471



Efficient representation of same-level effects

o Observation: Functions S[u] # L are of form (m) where

(my:=ADx.myxu || Dy

yemo x

e my x: Z] - Join of constants that may be assigned to x
e mp x : 2% - get of variables that may be assigned to x (non-empty)
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Efficient representation of same-level effects

o Observation: Functions S[u] # L are of form (m) where

(my:=ADx.myxu || Dy

yemo x

e my x: Z] - Join of constants that may be assigned to x
e mp x : 2% - get of variables that may be assigned to x (non-empty)

e Let F:= {(m)|m:Reg — Z] x 2R} pe the set of those functions
« To show: id, [a]* € F, and F closed under o, LI, enter#, and H#
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Identity and effects representable

id = (. (L, {x}))

(
(id(x — (c,0))) fore=ceZ
[x := el® = { (id(x — (L, {y}))) fore=y cReg
{d(x — (T,0)) otherwise
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Identity and effects representable

id = (Ax. (L, {x}))
(id(x — (c,0))) fore=ceZ
[x := el® = { (id(x — (L, {y}))) fore=y cReg
{d(x — (T,0)) otherwise

o Effects of other actions similarly
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Closed under function composition and join

{myo(m') = (x. (mxu || my, J my)

yemz x yemy x

(m)yu(m') =(mun)
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Closed under function composition and join

{myo(m') = (x. (mxu || my, J my)

yemz x yemy x

(m)yu(m') =(mun)

e Intuition: Assigned constants by my, or by m, and variable goes through
ma
o [x:=c;foo]”, or [x :=y;y = c]*
o Note: If x not touched, we have m, x = {x}
o Note: U defined pointwise: (mu m’) x = (my x U m} x, me X U m, X)
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Closed under enter” and H#

enter” = ((AX. (0,0))|Loc) @ id|Giob
H#(<m>) = id|Loc (&) (<m> o enter#)|G10b
{(M)|Loc ® (M)|Giob := (AX. X € Loc?m x : m’" x)
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Closed under enter” and H*

enter” = ((AX. (0,0))|Loc) @ id|Giob
H#(<m>) = id|Loc (&) (<m> o enter#)|G10b
{(M)|Loc ® (M)|Giob := (AX. X € Loc?m x : m’" x)

e Intuition

e Function call only affects globals
o enter” is effect of entering function (set locals to 0)
o fioc ® flyop - Use f for local variables, f’ for global variables
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Recall initial example

main() { int t;
t = 0; // t=0, al=T, ret=T
if (t) // t=0, al=T, ret=T
M[17] = 3; // t=0, al=T, ret=T
al = t; // t=0, al=T, ret=T
work (); // t=0, al=0, ret=T
ret = 1 - ret; // t=0, al=0, ret=0
} // t=0, al=0, ret=T
work () {
if (al) { // id al=0, ret=T
work () // id al=0, ret=T
Nop } // 1id[ ret-> (L, {al}) 1 al=0, ret=0
ret = al ; // id[ ret-> (L, {ret,al}) ] al=0, ret=T
} // id[ ret->(Ll,{al}) ] al=0, ret=0
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Discussion

¢ At least copy-constants can be determined interprocedurally

e For that, we had to ignore conditions and complex assignments

e However, for the reaching paths, we could have been more precise
e Extra abstractions were required as

@ Set of abstract same-level effects must be finite
® and efficiently implementable
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Last Lecture

e Copy-Constant propagation
e Functional approach to interprocedural analysis

e Compute same-level effects by constraint system
o Find efficient representation for same-level effects

320/471



Idea: Evaluation on demand

Procedures often called only for few distinct abstract arguments
e Observed early (Sharir/Pneuli’81, Cousot’77)

Only analyze procedures for these

Intuition: [f, a]” - effect of f if called in abstract state a
Put up constraint system

v a” Ja
v, al* 2 k17 ([u, a]*) for basic edge k = (u, —, v)
[v, al* 2 combine® ([u, a]*, [g, enter® ([u, a]#)]*)  for call edge k = (u, (), v)
If,al* 2 v, a1” forvie VI,

Idea: Keep track of effect for any node of procedure
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Evaluation on demand

e This constraint system may be huge

« Idea: Only evaluate [f, a]” for values a that actually occur
o Local fixed-point algorithms (not covered)

e But, we can do an example nevertheless :)
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Example: Full constant propagation

// al,ret | locals
main() { int t;

t = 0; T,T |1 0
if (t) T, T 1 0
M[17] = 3; 1
al = t; T, T 10
work (); 0, T 10
ret = 1 - ret; 0,0 | O
} 0,1 | O
work () { [work, (0, T)]*
if (al) 0,T
work () 1
ret = al ; 0, T
0,0

e Only need to keep track of a; for calling context of work

323/471



Discussion

e This analysis terminates, if

324/471



Discussion

e This analysis terminates, if
¢ D has finite height,

324/471



Discussion

e This analysis terminates, if

¢ D has finite height,
¢ and every procedure only analyzed for finitely many arguments

324/471



Discussion

e This analysis terminates, if

¢ D has finite height,
¢ and every procedure only analyzed for finitely many arguments

e Analogous algorithms have proved efficient for analysis of PROLOG

324/471



Discussion

e This analysis terminates, if

¢ D has finite height,
¢ and every procedure only analyzed for finitely many arguments

e Analogous algorithms have proved efficient for analysis of PROLOG

e Together with points-to analysis, algorithms of this kind used in the
Goblint-Tool

324/471



Discussion

e This analysis terminates, if

¢ D has finite height,
¢ and every procedure only analyzed for finitely many arguments

e Analogous algorithms have proved efficient for analysis of PROLOG

e Together with points-to analysis, algorithms of this kind used in the
Goblint-Tool

e Data-race detection for C with POSIX-Threads

324/471
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o Start with very crude approximation:
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Crude approximation

o Start with very crude approximation:

¢ Just insert edges from function-call to procedure start
e And from return of procedure to target-node of function call

le, for (u, f(), v), generate constraints

D[v'] 2 enterfD[u]
D[v] 3 combine} (D[u], D[v{]) vie V!

end

Clearly covers all possible paths
But also infeasible ones

325/471



Crude approximation, example

main: (f f: 0—0O
f
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£ ..
g O { £0 3}

main () |
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Crude approximation, example

£ ..
g OO { £0 1}

main () {

Infeasible paths
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Call strings

e Idea: Call string contains sequence of up to k program points
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Call strings

Idea: Call string contains sequence of up to k program points
These are the topmost k return addresses on the stack

e Analyze procedures for every (feasible) call-string

e Only create edges that match call-string
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Call strings

D[, (vw)|x] 2 enter” (D[u, w]) (u,f(),v) e E
D[v,w] 3 combine™(D[u,w], D[f, (vw)|k])  (u,f(),v) € E
D[f,w] 2 D[ve,w] Ve € Vi

D[VOmain7€] g dO
D[v,w] 3 [k]” D[u,w] k=(uav)eE

o where (()|«) limits string size to k, cutting off nodes from the end
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Example

g ()
main: f
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Discussion

e Analysis terminates if D has finite height

o Call strings with kK = 0 matches crude approximation

e Can increase precision by eliminating (some) infeasible paths
e Cost increases exponentially with size of k

e Inpractice k=00ork =1

e Correctness proof: Simulation wrt. stack-based semantics
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Summary: Interprocedural Analysis

e Semantics: Stack-based, path-based
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Summary: Interprocedural Analysis

e Semantics: Stack-based, path-based

e Analysis:

e Functional: Compute same-level effects
o Requires efficient representation of effects

o Evaluation on demand: Same-level effects for finite number of arguments
e Requires finite/small number of abstract arguments for each function

e Call-Strings: Limit stack-depth, add extra (stack-insensitive) paths above

depth limit

e Adds extra imprecision, exponentially cost in depth-limit

331
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Analysis of Parallel Programs

Concurrency gets more important nowadays
Admits new classes of bugs
e E.g, dataraces

These are hard to find/ hard to reproduce
Can program analysis help?
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Data races

e Concurrent accesses to global data, one is a write

join;
print g
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Data races

e Concurrent accesses to global data, one is a write

join;
print g

What will the program print?
e Assuming sequential consistency?

e Answer: In most cases: 2
e Butin very rare cases: 1

Depends on machine, other programs, OS, start time, ...
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Locks

e Threads can acquire/release locks

int g = 0; lock 1lg;
tl (O |
acquire(lg); g = g + 1; release(lq);
}
main () {
fork t1;
acquire(lg); g = g + 1; release(lqg);
join;
print g
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e Threads can acquire/release locks
e Each lock can only be acquired by one thread at the same time
e Other threads that want to acquire the lock have to wait

int g = 0; lock 1lg;
tl (O |
acquire(lg); g = g + 1; release(lq);
}
main () {
fork t1;
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join;
print g

335/471



Locks

e Threads can acquire/release locks

Each lock can only be acquired by one thread at the same time
Other threads that want to acquire the lock have to wait

e Used to prevent data races

int g = 0; lock 1lg;
tl O |

acquire(lg); g = g + 1; release(lqg);
}
main () {
fork t1;
acquire(lg); g = g + 1; release(lqg);
join;

print g
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Demo: Goblint data race analyzer

e Program with data race
¢ Try to show bad reproducibility + dependence on machine load, etc.
e Show goblint-analyzer to find the race

http://goblint.in.tum.de
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Abstract semantics with locks

We will regard an abstract semantics with locks

l.e., it contains no state beyond the current program points and status of
locks
Concrete program mapped to this semantics
e E.g., pointer analysis to identify locks
Has more possible executions than concrete program
Analysis results are safe

o |f we find no datarace, there is none
e But there may be false positives

337/471
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Parallel flowgraphs with fork

o Add fork(v) edge label, that forks new thread starting at v
e For now, we ignore joins!

¢ Abstract semantics: State is multiset of nodes.
o Initial state: {w}

{urUs) = ({vius) (u,a,v) e E
{urUs) = ({v,wtUs) (u, fork(w),v) € E
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Parallel flowgraphs with fork and locks

o Additionally: Finite set of locks L, actions acq(/) and rel(/)
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o Additionally: Finite set of locks L, actions acq(/) and rel(/)
e State: Each thread together with its acquired locks
e Initial state: {(vo,0)}

{(u, L)} Us) = ({(v,L)} Us) (u,a,v) e E

{(u, L)} Us) = ({(v,L),(w,0)} Us) (u,fork(w),v) € E
{(u, L)Y Uus) — ({(v,Lu{l})}Us) (u,acq(/),v) e Eand/ ¢ s|5
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Additionally: Finite set of locks L, actions acq(/) and rel(/)
State: Each thread together with its acquired locks
Initial state: {(vo,0)}

{(u, L)} Us) = ({(v,L)} Us) (u,a,v) e E

{(u, L)} Us) = ({(v,L),(w,0)} Us) (u,fork(w),v) € E
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o We assume that a thread does not acquire a lock it already possesses.
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Parallel flowgraphs with fork and locks

Additionally: Finite set of locks L, actions acq(/) and rel(/)
State: Each thread together with its acquired locks
Initial state: {(vo,0)}

{(u, L)} Us) — ({(v,L)} Us) (u,a,v) e E
({(u, L)} Us) = ({(v,L),(w,0)}Us) (u, fork(w),v) € E
{(u, L)Y Uus) — ({(v,Lu{l})}Us) (u,acq(/),v) e Eand/ ¢ s|5
{(u, )Y Us) — ({(v,L\{I}}Us) (u,rel(l),v) e E
Note: We assume that a thread only releases locks that it possesses.

We assume that a thread does not acquire a lock it already possesses.
Invariant: For each reachable state, the thread’s lock-sets are disjoint

{(vo,0)} =" {(ur, L), (U2, L2)} Us = LiNLa =0
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Analysis Plan

¢ Lock-insensitive may-happen in parallel (MHP)
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Analysis Plan

¢ Lock-insensitive may-happen in parallel (MHP)
e Sets of program points that may be executed in parallel
e Lock-sets

e Sets of locks that must be allocated at program point
e Used to make MHP more precise

e MHP(u, v) only if u and v have disjoint lock sets
e Data-Races

¢ |dentify conflicting program points, with outgoing actions that read/write the
same global variable
e Check whether they may happen in parallel
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Lock-insensitive MHP

o Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u
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Rlu] 2 {u}
R[u] 2 R[v]
Rlu] 2 Rw]

if u interesting (R.node)
if (u,_,v)eE (R.edge)
if (u,fork(w),_) € E (R.trans)
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Lock-insensitive MHP

o Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u
e Reachable also over forks

Rlu] 2 {u} if u interesting (R.node)
R[u] 2 R[v] if(u,_,v)e E (R.edge)
R[u] 2 R[w] if (u,fork(w),_) € E (R.trans)
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Lock-insensitive MHP

e Put up constraint system, R[u]: Set of (interesting) nodes reachable from

u
e Reachable also over forks

Rlu] 2 {u} if u interesting
R[u] > R[v] if (u,_,v)e E
Rlu] 2 R[w] if (u, fork(w),_) € E

E

m

MHP[v] 2 MHP|[u] if (u,_,v)

MHP[w] > MHP|[u] if (u, fork(w),v) € E

MHP[v] 2 R[w] if (u, fork(w),v) € E
if ( (

MHP[w] 2 RJ[v] u,fork(w),v) € E

(R.node) Interesting node reachable from itself

(R.node)
(R.edge)
(R.trans)

MHP.edge
MHP.trans
MHP.fork1
MHP.fork2

o~ o~~~
—_ — — —
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u
e Reachable also over forks

Rlu] 2 {u} if u interesting
R[u] > R[v] if (u,_,v)e E
Rlu] 2 R[w] if (u, fork(w),_) € E

E

m

MHP[v] > MHP[u] if (u,_,v)
MHP[w] > MHP|[u] if (u, fork(w),v) € E
MHP[v] 2 R[w] if (u, fork(w),v) € E
MHP[w] 2 RJ[v] if (u,fork(w),v) € E
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(R.edge)
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u
e Reachable also over forks

Rlu] 2 {u} if u interesting
R[u] > R[v] if (u,_,v)e E
Rlu] 2 R[w] if (u, fork(w),_) € E

E

m

MHP[v] > MHP[u] if (u,_,v)
MHP[w] > MHP|[u] if (u, fork(w),v) € E
MHP[v] 2 R[w] if (u, fork(w),v) € E
MHP[w] 2 RJ[v] if (u,fork(w),v) € E

(R.trans) Propagate reachability over fork

(R.node)
(R.edge)
(R.trans)

MHP.edge
MHP.trans
MHP.fork1
MHP.fork2

o~ o~~~
—_ — — —
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Lock-insensitive MHP

e Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u
e Reachable also over forks

Rlu] 2 {u} if u interesting (R.node)
R[u] > R[v] if (u,_,v)e E (R.edge)
Rlu] 2 R[w] if (u, fork(w),_) € E (R.trans)

MHP[v] © MHP[u] if(u,_,v)eE (MHP.edge)
MHP[w] > MHP|[u] if (u, fork(w),v) € E (MHPtrans)
MHP[v] 2 R[w] if (u, fork(w),v) € E (MHP.fork1)
MHP[w] 2 R[v] if (u,fork(w),v) € E (MHP.fork2)

(MHP.edge) If this edge executed, other threads still at same positions
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Lock-insensitive MHP

e Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u
e Reachable also over forks

R[u] 2 {u} if u interesting (R.node)
Rlu] 2 R[v] if(u,_,v)e E (R.edge)
Rlu] > R[w] if (u,fork(w),_) € E (R.trans)

MHP[v] > MHP|[u] if (u,_,v)e E (MHP.edge)
MHP[w]| O MHP[u] if (u, fork(w), v) € (MHP.trans)
MHP[v] 2 R[w] if (u,fork(w),v) € E (MHP-fork1)
MHP[w] D RJv] if (u,fork(w),v) € E (MHP.fork2)

(MHP.trans) Start node of forked thread parallel to other threads
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Lock-insensitive MHP

o Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u
o Reachable also over forks

R[u] > {u} if u interesting (R.node)
Rlu] 2 R[v] if(u,_,v)e E (R.edge)
R[u] 2 R[w] if (u,fork(w),_) € E (R.trans)
MHP[v] > MHP[u] if(u,_,v)eE (MHP.edge)
MHP[w]| O MHP[u] if (u, fork(w), v) € E (MHP.trans)
MHP[v] 2 R[w] if (u, fork(w), v) € (MHP.fork1)
MHP[w] 2 RJ[v] if (u, fork(w), v) € (MHP.fork2)

(MHP.fork1) Forking thread parallel to everything that may be reached
from forked thread
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Lock-insensitive MHP

e Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u
¢ Reachable also over forks

Rlu] 2 {u} if u interesting (R.node)
R[u] 2> R[v] if (u,_,v)eE (R.edge)
Rlu] 2 R[w] if (u, fork(w),_) € E (R.trans)
MHP[v] 2 MHP[u] if (u,_,v)e E (MHP.edge)
MHP[w] > MHP[u] if (u, fork(w), v) € (MHP.rans)
MHP[v] 2 R[w] if (u, fork(w), v) € (MHP.fork1)
MHP[w] D RJv] if (u,fork(w),v) € E (MHP.fork2)

(MHP.fork2) Forked thread parallel to everything that may be reached
from forking thread
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Correctness

e For interesting nodes u and v (also u=v), we have:

Js. {w} =" {u,v}Us = u e MHP[v]
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Correctness

e For interesting nodes u and v (also u=v), we have:
Js. {w} =" {u,v}Us = u e MHP[v]

e Proof sketch
o Auxiliary: {u} »* {v}Us = v € R[]
e Find the crucial fork, where u is reached from, wlog, the forked thread, and v
is reached from the forking thread
o {y}—=*{a}U..., and (a,fork(c),b) € E, and {b} —* {u} U...,and
{c} =" {v}IU...
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Lock-set analysis

e Forward, must analysis (standard)

LS[vo] €0

LS[w] C 0 (u,fork(w),v) € E

LS[v] C LS[u] (u,a,v) € E, ano lock-action
LS[v] C LS[u] U{l} (u,acq(l),v) € E

LS[v] C LS[u] \ {/} (u,rel(l),v) € E
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Lock-set analysis

e Forward, must analysis (standard)

LS[vo] €0

LS[w] C 0 (u,fork(w),v) € E

LS[v] C LS[u] (u,a,v) € E, ano lock-action
LS[v] C LS[u] U{l} (u,acq(l),v) € E

LS[v] C LS[u] \ {/} (u,rel(l),v) € E

e Correctness:

leLS[u] = (Vs. {(v0.0)} =" {(u, L)} Us = leL)
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Data-Race analysis

e Interesting nodes:
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Data-Race analysis

e Interesting nodes:
o Nodes with actions that read or write global variables

For each pair (u, v) of conflicting nodes, check
u € MHP[v] = LS[u]NLS[v] # 0

o If satisfied, report ,definitely no data race”

e Otherwise, report possible data race
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Example
int g = 0; lock lg;

SN

O ~J o U

9:

10:
11:
12:
13:

e Check lock-sets for 2/7 and 2/11

tl

}

0 A
acquire (1lqg);
g=g9+1;
release (1qg);

main () {

}

fork tl;
acquire (lg);
g =9+ 1;
release (1lqg);
join;
acquire (1qg);
print g
release (1lqg);

o n

o

U o R v I V> VR S Y

2,7,11
7,11
7,11
11

11

11

11

{1}

{1}

MHP :
MHP :
MHP :
MHP :

MHP :
MHP :
MHP :
MHP :
MHP :
MHP :
MHP :
MHP :
MHP :

{7,11}
{7,11}
{7,11}
{7,11}

{}

{2}
{2}
{2}
{2}
{2}
{2}
{2}
{2}

o o e

o o e e o o e e

{}
{1g}
{1lg}
{1

{}
{}
{1lg}
{1lg}
{}
{}
{1g}
{1lg}
{}
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}
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}
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Example
int g = 0; lock lg;

SN

O ~J o U

9:

10:
11:
12:
13:

e Check lock-sets for 2/7 and 2/11
e Lock /g contained in all of them

tl

}

0O A
acquire (1lqg);
g=g9+1;
release (1qg);

main () {

}

fork tl;
acquire (lg);
g =9+ 1;
release (1lqg);
join;
acquire (1qg);
print g
release (1lqg);

e Program is safe!

o n

o

U o R v I V> VR S Y

2,7,11
7,11
7,11
11

11

11

11
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{2}
{2}
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Discussion
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e Can prove programs data-race free
e But may return false positives, due to:
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e Ignoring data completely

e Not handling interaction of locks and control flow
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Discussion

e Freedom of data races often not enough

int x[N];

void norm()
lock 1; n length(x); unlock 1;
lock 1; x = 1/n * x; unlock 1;

—_

e Thread-safe? No!
= Transactionality

e Advanced locking patterns
e E.g., lock chains:

lock 1; lock 2; unlock 1; lock 3;
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Discussion

e Freedom of data races often not enough

int x[N];

void norm() {
lock 1; n = length(x); unlock 1;
lock 1; x = 1/n * x; unlock 1;

e Thread-safe? No!
= Transactionality

e Advanced locking patterns
e E.g., lock chains:

lock 1; lock 2; unlock 1; lock 3; unlock 2

e Two lock-chains executed simultaneously will never overtake
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Last Lecture

e Analysis of parallel programs
e Intraprocedural with thread creation
o May-happen in parallel + lockset analysis = datarace analysis
e Caveats
e Need to abstract program into model with fixed locks
e Problematic if locks are addressed via pointers/arrays
o Datarace freedom may no be enough

e Transactions
e Advanced locking patterns like lockchains
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Motivating Example

for (i=1;i<r;i=i+h) {
a=ag + bxi
M[a] = ...

}

e Initialize array in range: [/, r[, every hth element
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Motivating Example

for (i=1;i<r;i=i+h) {
a=ag + bxi
M[a] = ...

e Initialize array in range: [/, r[, every hth element

e Element size of array: b

e Loop requires r — | multiplications

e Multiplications are expensive, addition much cheaper

e Observation: From one iteration of the loop to the next:
o Difference between as is constant: (ap + b(i + h)) — (a0 + bi) = bh
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Optimization

e First, loop inversion

i=1;
if (i<r) {
do {
a=ag + bxi
M[a]
i=i+h
} while (i<r)
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Optimization
e First, loop inversion

e Second, pre-compute difference and replace computation of a
o No multiplication left in loop

i=1;
if (i<r) {
delta = bxh
a=ag + bxi
do {
Ml[a] =
i=i+h
a=atdelta
} while (i<r)
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Optimization
e First, loop inversion

e Second, pre-compute difference and replace computation of a
o No multiplication left in loop

o If
e j not used elsewhere in the loop, and
e j dead after loop
e bnot zero
i=1;

if (i<r) {
delta = bxh
a=apg + bxi
do {
M[a] =
i=i+h
a=atdelta
} while (i<r)

352/471



Optimization

e First, loop inversion
e Second, pre-compute difference and replace computation of a
o No multiplication left in loop

o [f
e jnot used elsewhere in the loop, and
e j dead after loop
e b not zero
e Get rid of j altogether
if (l<r) {

delta = bxh
a=ag + bxl
N = ag + bx*r
do {
M[a] =
a=atdelta
} while (a<N)
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In general

e |dentify
e loops
o jteration variables
e constants
e Matching use structures
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Loops

e Identify loop by node v where back-edge leads to, i.e., (u, a, v) € E with
vV=u

e Nodes of loop:

looplv]={w |w—=>"vAVv=w}

¢ |.e., nodes which can only be reached via v, and from which v can be
reached again

354/471



Example
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lteration variable

e Variable /, such that
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o Expression that does not depend on variables modified in loop
e Heuristics for application:

e There is an assignment to i in loop
e Assignment to i/ executed in every iteration

356/471



Strength reduction

¢ Strength reduction possible for expressions of the form ag + b * i, such
that

357/471



Strength reduction

¢ Strength reduction possible for expressions of the form ag + b * i, such
that

e ap, b are loop constants

357/471



Strength reduction

¢ Strength reduction possible for expressions of the form ag + b * i, such
that

e ap, b are loop constants
e | is iteration variable with increment h

357/471



Strength reduction

¢ Strength reduction possible for expressions of the form ag + b * i, such
that

e ap, b are loop constants
e | is iteration variable with increment h

e Introduce temporary variables a and A

357/471



Strength reduction

¢ Strength reduction possible for expressions of the form ag + b * i, such
that

e ap, b are loop constants
e | is iteration variable with increment h

e Introduce temporary variables a and A
e Initialize a= ay + b * i and A = b x h right before loop
¢ Note: Loop must be inverted, to avoid extra evaluations!

357/471



Strength reduction

Strength reduction possible for expressions of the form ag + b * i, such
that

e ap, b are loop constants
e | is iteration variable with increment h

Introduce temporary variables a and A

Initialize a = ap + b i and A = b « h right before loop
¢ Note: Loop must be inverted, to avoid extra evaluations!

e Add a = a+ A after assignments to i

357/471



Strength reduction

Strength reduction possible for expressions of the form ag + b * i, such
that

e ap, b are loop constants
e | is iteration variable with increment h

Introduce temporary variables a and A

e Initialize a= ay + b * i and A = b x h right before loop
¢ Note: Loop must be inverted, to avoid extra evaluations!

e Add a = a+ A after assignments to i

Replace expression ay + bx i by a
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Correctness

e Provethata= ay+ bxiNA = bx hisinvariant for all nodes in loop
o Except the target nodes of assignments to i
e There,wehavea=ay+bx(i—h)AA=bxh
e Proof:
e Entering loop: Have put initialization right before loop!
o Edge inside loop:
e No assignments to A, b, and h
e Assignmenti:=i+ h:Checka=ay+bxi = a=ay+bx*(i+h—h).
e Assignment a := a+ A. Only occurs directly after assignment to .
Checka=ay+bx(i—-h)AA=bxh = a+A=ay+bx*i
e Other edges: Do not modify variables in invariant
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Peephole Optimization

e |dea: Slide a small window over the code
e Optimize aggressively inside this window

e Examples:
X=X%2
X=x+1
x=5+a—-a

X=X

Ll

X=X+X
X+ +
x=5
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Peephole Optimization

e |dea: Slide a small window over the code
e Optimize aggressively inside this window

e Examples:
X=X%x2 — X=X+X
X=x+1 — Xx++
x=54+a-a — x=5
X=x — Nop
x=0 — Xx=x&x
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Sub-Problem: Elimination of Nop

e For edge (u,Nop, v), such that u has no further outgoing edges
e Identify uand v
o Attention: Do not collapse Nop-loops
e Implementation
@ For each node:

e Follow chain of Nop-edges. (Check for loop)
e Then redirect all edges on this chain to its end

@® For each edge (u, a, v) with (v, Nop, w) and v no other outgoing nodes:
Replace by (u, a, w)
e Complexity: Linear, O(|E|)

@ No edge redirected twice.
(For each newly discovered edge, at most one more edge followed)
@® For each edge, only one more edge followed
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Motivation

e Translate CFG to instruction list
¢ Need to insert jumps. No unique translation.
e Crucial for performance

while (b) {

if (b1) |
C1y
break;

}
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e Translate CFG to instruction list
e Need to insert jumps. No unique translation.
e Crucial for performance

while (b) { l: dneg b 5

£ (b)) o jneg bl 6

c1; o
break; 5: halt
} 6:
Jmp 1

Bad linearization, jump in loop
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Motivation

e Translate CFG to instruction list
e Need to insert jumps. No unique translation.
e Crucial for performance

while (b) f 1+ ineg b 7
if (by) | S
bl 6
C1y Jpes
break; jmp 1
J 6: cl
7: halt

Good linearization, jump out of loop
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Heuristics

¢ Avoid jumps inside loops
e Assign each node its loop nesting depth (temperature)
e Hotter nodes are in inner loops

e If jump needs to be inserted: Jump to colder node (out of loop)
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Implementation

© Compute temperatures

e Compute predominators
o |dentify back edges
e For each loop head v (i.e., (u,_, v) is back edge)

e Increase temperature of nodes in loop[v]
e Recall:

loop[v] ={w |w—="vAV=w}

® Linearize

e Pre-order DFS to number nodes
e Visit hotter successors first
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Motivation

e Program needs to be compiled to specific hardware

¢ Which has some features that can be exploited for optimization, e.g.
Registers

Pipelines

Caches

Multiple Processors
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Nomenclature

e Variables Var, e.g. x,y,z,...: Variables in source program (formerly also
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Nomenclature

e Variables Var, e.g. x,y, 2,
called registers)

e Registers Reg, e.g. Ry, Ro, ..

.... Variables in source program (formerly also

.. Registers after register allocation
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Motivation

e Processor only has limited number of registers
Variables need to be mapped to those registers
¢ If no more registers free: Spill to memory
o Expensive!
e Want to map as much variables as possible to registers
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Example

1: x=M[a]
2: y=x+1
3: if (y=0) { e How many registers are needed?
4: Z=X*X
5: Mla]==z
} else {
7 t=—y*y
8: M[a]l=t
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Example

1: x=M[a]
2: y=x+1
3: if (y=0) { e How many registers are needed?
4: s xx Assuming all variables dead at 9
5: Ml[al=z e Variables: a, x, y, z, t.
} else {
7z t=-y*y
8: M[a]l=t
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Example

1: Ry=M[R3]

2: Ro=Rq1+1

3: if (R2=0) {

4: Rq1=R1*R4

5: M[R3]=R1
} else {

7z Ry1=—-R2*Rp

8: M[R3]=Rq

e How many registers are needed?
Assuming all variables dead at 9

e Variables: a, x, y, z, t.

e Three registers sulffice:
x,z,t— Ry, y— Ro, a— Rs
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Live Ranges

e Live range of variable x: L[x] := {u | x € L[u]}
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Live Ranges

e Live range of variable x: L[x] := {u | x € L[u]}
¢ Set of nodes where x is alive:
¢ Analogously: True live range

¢ Observation: Two variables can be mapped to same register, if their live
ranges do not overlap

374/471



Example

o J

g w N

T X=
: y=
: if

M[a]
x+1
(y=0)
Z=X*X
Mlal=z
else {
t=-y*y
M[al=t

{

//
//
//
//
//
//

//
//
//

{a}
{a,x}
{a,x,v}
{a, x}
{a,z}

{a,y}
{a,t}
{}

= T = S =)

[uy
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o I = (Var, E)), with (x, y) € E; iff x # y and L[x] N L[y] # 0
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Interference graph

o | = (Var, E)), with (x,y) € E;iff x £ y and L[x] N L[y] # 0
o Graph over variables. Edge iff live ranges overlap.
e |is called interference graph

e In our example:

©O—
@\ ®
/
Q
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Last lecture

¢ Peephole optimization, removal of NOP-edges
e Linearization
e Temperature of nodes = loop nesting depth
e Preferably jump to colder nodes
¢ Register allocation
¢ Minimal coloring of interference graph
e NP-hard
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Background: Minimal graph coloring

e Given: Graph (V. E)
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Background: Minimal graph coloring

e Given: Graph (V. E)
e Find coloring of nodes ¢ : V — N, such that
o (u,v) e E = c(u) #c(v)
e |.e., adjacent nodes have different colors
e max{c(v) | v e V}is minimal

e Example:
O—
@\ M
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Complexity

e Finding a minimum graph coloring is hard
o Precisely: NP-complete to determine whether there is a coloring with at most
k colors, for k > 2.

379/471



Complexity

e Finding a minimum graph coloring is hard
o Precisely: NP-complete to determine whether there is a coloring with at most
k colors, for k > 2.

¢ Need heuristics
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Greedy Heuristics

Iterate over nodes, and assign minimum color different from already
colored neighbors
Can be implemented using DFS
In theory, result may be arbitrarily far from optimum
e Regard crown graph C,, which is a complete bipartite graph over 2n nodes,
with a perfect matching removed.
° Cn: (afabi | iei "'na(aivbj) | I#])
e Minimal coloring uses two colors: One for the as, and one for the bs
e Greedy coloring with order ay, by, az, bo, ... uses n colors

Node ordering heuristics

380/471



Greedy Heuristics

Iterate over nodes, and assign minimum color different from already
colored neighbors
Can be implemented using DFS
In theory, result may be arbitrarily far from optimum
e Regard crown graph C,, which is a complete bipartite graph over 2n nodes,
with a perfect matching removed.
o Ch=(anbi|iel...n(a,b)]|i#]))
e Minimal coloring uses two colors: One for the as, and one for the bs
e Greedy coloring with order a1, by, az, b2, . .. uses n colors
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Greedy Heuristics

Iterate over nodes, and assign minimum color different from already
colored neighbors
Can be implemented using DFS
In theory, result may be arbitrarily far from optimum
e Regard crown graph C,, which is a complete bipartite graph over 2n nodes,
with a perfect matching removed.
e Ch=(apbi|iel...n(ai,b)|i#])
e Minimal coloring uses two colors: One for the as, and one for the bs
e Greedy coloring with order ay, by, az, bo, ... uses n colors
Node ordering heuristics

¢ Nodes of high degree first
e Here: Pre-order DFS
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Greedy heuristics, pseudocode

color (u) :
n=4{v | (uv) in E }
c(u) = min i. i>=0 and forall v in n. i != c(v)
for v in n
if (c(v)==-1) color (v)
main:
for u in V do c(u) = -1;

for u in V do
if c(u)==-1 then color (u)
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Live Range Splitting
e Consider basic block,

e i.e., sequence of statements, no jumps in/from in between
o (u,ar,wv1),(v1, @, ¥),...,(Va_1, an, v), with no other edges touching the v;.

382/471



Live Range Splitting
e Consider basic block,
e i.e., sequence of statements, no jumps in/from in between

o (u,ar,wv1),(v1, @, ¥),...,(Va_1, an, v), with no other edges touching the v;.

e Example:

x=M[0]
y=M[1]
t=x+y

M[2]=t
x=M[4]
z=M[5]
t=x+z

M[6]=t
y=M[7]
z=M[8]
t=y+z

M[9]=t

//
//
//
//
//
//
//
//
//
//
//
//
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Live Range Splitting
e Consider basic block,
e i.e., sequence of statements, no jumps in/from in between
o (u,ar,wv1),(v1, @, ¥),...,(Va_1, an, v), with no other edges touching the v;.
e Example:

x=M[0] //

y=M[1] // x

t=x+y // xy

M[2]=t // t

x=M[4] //

z=M[5] // x

t=x+z // x z

Mi6l=t // t ®
y=M[7] //
z=M[8] // vy
t=y+z // vz
M[9]=t // t

e Requires 3 registers
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Live Range Splitting
e Consider basic block,
e i.e., sequence of statements, no jumps in/from in between
o (u,ar,wv1),(v1, @, ¥),...,(Va_1, an, v), with no other edges touching the v;.
e Example:

x=M[0] //

y=M[1] // x

t=x+y // xy

M[2]=t // t

x=M[4] //

z=M[5] // x

t=x+z // x z

Mi6l=t // t ®
y=M[7] //
z=M[8] // vy
t=y+z // vz
M[9]=t // t

e Requires 3 registers
e But can do same program with two registers!
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Live range splitting

x1=M[0] //

y1=MI[1] /] X4

t1=xq1+y1 /7 x1y1
M[2]=tq /7t

x2=M[4] // . .
z1=M[5] // X2 @ e
to=xo0+24 // X0z

M6)=t,  // to
yo=M[7] //

Zzo=M[8] // yo @ @ @

ta=ya2+z2 // yaz2
M[9]=tg3 // ts
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Live range splitting

x1=M[0]
y1=M[1]
t1=x1+y1
M[2]=t1
xp=M[4]
z1=MI[5]
to=xo0+24
M[6]=t2
yo=M[7]
zo=M[8]
ta=ya+tz2
M[9]=tg3

¢ In general: Rename variable if it is redefined

//
//
//
//
//
//
//
//
//
//
//
//

X1

X1Y1
T4

X2
X927
to

Y2
y2z2
ts

®
®
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Live range splitting

x1=M[0]
y1=MI[1]
Lt1=x1+y1
M[2]=t1
Xo=M[4]
z1=M[5]
to=xo+2z1
M[6]=to
yo=MI[7]
z2=M[8]
ta=yatz2
M[9]=t3

¢ In general: Rename variable if it is redefined
e The interference graph forms an interval graph.

//
//
//
//
//
//
//
//
//
//
//
//

X1

X1Y1
T4

X2
X927
to

Y2
y2z2
ts

®
®
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Interval Graphs

o Nodes are intervals over the real numbers (here: natural numbers).
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e |.e., edges between overlapping intervals
¢ On interval graphs, coloring can be determined efficiently

o Use greedy algorithm, order intervals by left endpoints
e Proof idea:
e After coloring all nodes with left endpoint i, there are exactly o(/i) colors
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e Where o(i) := |{v € V | i € v}| - number of nodes containing i.
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Interval Graphs

o Nodes are intervals over the real numbers (here: natural numbers).
o Edge between [i,j] and [k, /], iff [i, /N [k, ] # 0

e |.e., edges between overlapping intervals
¢ On interval graphs, coloring can be determined efficiently

o Use greedy algorithm, order intervals by left endpoints
e Proof idea:
e After coloring all nodes with left endpoint i, there are exactly o(/i) colors
allocated.
e Where o(i) := |{v € V | i € v}| - number of nodes containing i.
e Obviously, there is no coloring with less than max{o(/) | i € N} colors
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e Heuristics required for register allocation
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Wrap-up

e Heuristics required for register allocation
o If number of available registers not sufficient

e Spill registers into memory (usually into stack)
o Preferably, hold variables from inner loops in registers

For basic blocks:

o Efficient optimal register allocation
e Only if live ranges are split

Splitting live ranges for complete program
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Wrap-up

e Heuristics required for register allocation
o If number of available registers not sufficient

e Spill registers into memory (usually into stack)
o Preferably, hold variables from inner loops in registers

e For basic blocks:

o Efficient optimal register allocation
e Only if live ranges are split

o Splitting live ranges for complete program
— Single static assignment form (SSA)
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Idea

e Generalize live-range splitting to programs
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|dea

e Generalize live-range splitting to programs
e Proceed in two steps

@ Transform program such that every program point v is reached by at most
one definition of variable x which is live at v.

® Introduce a separate variant x; for each definition of x, and replace
occurrences of x by the reaching variants
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SSA, first transformation

¢ Assume that start node has no incoming edges.
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Reaching definitions

e Compute reaching definitions for each variable x and program point v.
o Intuitively: The definitions that determined the value of x

e Analyzed by forward may analysis, over domain 2P
e where Defs = Var x V

[(u, x := e, v)]*R = R\ Defs(x) U {(x, v)}
[(u, x := M[e], V)]* R = R\ Defs(x) U {(x, v)}
[(u,a,V)]*R=R for other edges
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Reaching definitions

e Compute reaching definitions for each variable x and program point v.
o Intuitively: The definitions that determined the value of x
« Analyzed by forward may analysis, over domain 2P<f
e where Defs = Var x V
[(u, x := e, v)]*R = R\ Defs(x) U {(x, v)}
[(u, x == M[e],v)]* R = R\ Defs(x) U{(x, )}
[(u,a,V)]*R=R for other edges

e Initial value: Ry := {(x, w) | x € Var}
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Reaching definitions

e Compute reaching definitions for each variable x and program point v.
o Intuitively: The definitions that determined the value of x
« Analyzed by forward may analysis, over domain 2P<f
e where Defs = Var x V
[(u, x := e, v)]*R = R\ Defs(x) U {(x, v)}
[(u, x == M[e],v)]* R = R\ Defs(x) U{(x, )}
[(u,a,V)]*R=R for other edges

e Initial value: Ry := {(x, w) | x € Var}
e Intuitively: Interpret program start as end-point of definition for every variable
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Simultaneous assignments

e Atincoming edges to join points v:
e SetV, :={x=x|xeL[v]A|R[v]NDefs(x)| > 1}
e Assignment x = x for each live variable that has more than one reaching
definition
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Simultaneous assignments

e Atincoming edges to join points v:
e SetV, :={x=x|xeL[v]A|R[v]NDefs(x)| > 1}
e Assignment x = x for each live variable that has more than one reaching
definition
e Simultaneous assignment
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Example

1l: x:=M[I]
2: y:=1
3: while (x>0) {
4 Y=X*Yy
5 x=x-1
}
6: M[R]=y
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Example

1l: x:=M[I]
2: y:=1
3: if not (x>0) goto 6;
4 Y=X*Yy
5 x=x-1;
goto 3
6: M[R]=y
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Example

1: x:=M[I]
2: y:=1
A: Nop // Psi3
3: if not (x>0) goto 6
4: Y=X*y
5: x=x-1
B: Nop // Psi3
goto 3
6: M[R]=y
7
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Example

~J o

: x:=M[I]

y:=1

Nop

if not
Y=X*Y
x=x-1

: Nop

goto 3
M[R]=y

// Psi3
(x>0) goto 6;

// Psi3

{}
{x}
{x,v}
{x,v}
{x,y}
{x,v}
{x,y}

{y}

{(x, 1), (y, 1)}
{((x,2), (y, 1)}
{((x,2), (y,7)}
{((%,2),(x,B), (y,A), (y,5)}
{(x,2),(x,B), (y,A), (y,5)}
{(x,2),(x,B), (y,5)}
{(x,B), (y,5)}

(%,2), (x,B), (y,A), (y,5)}
(%,2), (%,B), (y,A), (y,5)}
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Example

~J o

: x:=M[I]

y:=1

x=x|y=y

if not
Y=X*Y
x=x-1

1 X=x|y=y

goto 3
M[R]=y

(x>0)

goto 6;

{}
{x}
{x,v}
{x,v}
{x,y}
{x,v}
{x,y}

{y}

{(x, 1), (y, 1)}
{((x,2), (y, 1)}
{((x,2), (y,7)}
{((%,2),(x,B), (y,A), (y,5)}
{(x,2),(x,B), (y,A), (y,5)}
{(x,2),(x,B), (y,5)}
{(x,B), (y,5)}

(%,2), (x,B), (y,A), (y,5)}
(%,2), (%,B), (y,A), (y,5)}
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Discussion

e This ensures that only one definition of a variable reaches each program
point
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Discussion

e This ensures that only one definition of a variable reaches each program
point
o |dentifying the definitions by simultaneous assignments on edges to same
join points
e However, we may introduce superfluous simultaneous definitions
e Consider, e.g.

1: if (%) goto 3
2: x=1
goto 4
3: X=2
4: if (%) goto 6
5: M[0]=x
6: M[1l]l=x
7: HALT
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Discussion
e This ensures that only one definition of a variable reaches each program
oint
P o |dentifying the definitions by simultaneous assignments on edges to same
join points
e However, we may introduce superfluous simultaneous definitions
e Consider, e.g.

1: 1if (%) goto 3
2: x=1
A: X=X
goto 4
xX=2
X=X
if (%) goto C
M[0]=x
X=X
M[1]=x
HALT

<~ o U oW w

Q

X=X
goto 6
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Improved Algorithm

¢ Introduce assignment x = x before node v only if reaching definitions of
x at incoming edges to v differ
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e Introduce assignment x = x before node v only if reaching definitions of
x at incoming edges to v differ

¢ Repeat until each node v is reached by exactly one definition for each
variable live at v

o Extend analysis for reaching definitions by
[(u, {x =x| x € X},v)][*R:= R\ Defs(X) U X x {v}

Theorem

For a CFG with n variables, and m nodes with in-degree greater one, the above
algorithm terminates after at most n(m + 1) rounds.
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Improved Algorithm

e Introduce assignment x = x before node v only if reaching definitions of
x at incoming edges to v differ

¢ Repeat until each node v is reached by exactly one definition for each
variable live at v

o Extend analysis for reaching definitions by
[(u, {x =x| x € X},v)][*R:= R\ Defs(X) U X x {v}

For a CFG with n variables, and m nodes with in-degree greater one, the above
algorithm terminates after at most n(m+ 1) rounds.

e The efficiency depends on the number of rounds
e For well-structured CFGs, we only need one round
e Example where 2 rounds are required on board.
o We always may terminate after k rounds by using naive algorithm
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Well-structured CFGs

e A CFG is well-structured, if it can be reduced to a single edge or vertex
by the following transformations

1T e
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Examples

e Flowgraphs produced by only using the following control-flow commands
are well-structured

o if, while, do-while, for
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Examples

e Flowgraphs produced by only using the following control-flow commands
are well-structured

o if, while, do-while, for
e Break/Continue may break well-structuredness
e Some examples on board
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Second phase

e Assume, each program point u is reached by exactly one definition
(x, w) € RJu] for each variable x live at u

396/471



Second phase

e Assume, each program point u is reached by exactly one definition
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e Define ¢,(x) := x, for the w with (x, w) € R[u]
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Second phase

e Assume, each program point u is reached by exactly one definition
(x, w) € RJu] for each variable x live at u

e Define ¢,(x) := x, for the w with (x, w) € R[u]
o Transform edge (u, a, v) to (u, T, v(a), v), where

u,v(Nop) = Nop
T, v(Neg(e)) Neg(®u(e))
Tuv(Pos(e)) = Pos(d,(e))
Tuv(x =€) =x, = dy(e)
Tuv(x = Mle]) = Mo, (e)]
Tyv(Mlel] = &) = M[ u(€1)] = du(e2)
Tuv({x=x|xe X})={x, =dy(x) | x € X}

and ¢,(e) applies ¢, to every variable in e
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Example

1: x:=M[0]
2: y:=1
A: x=x|y=y
3: if not (x>0) goto 6;
4: Y=X*y
5: x=x—-1
B: x=x|y=y
goto 3
6: M[1]=y

~J
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Example

X0 :=M[0]

vA:=1

X3=X2 | Y3=YA

if not (x3>0) goto 6;
Y5=X3*Y3
xg=x3—1
x3=xB|Y3=Y5

goto 3

M[1]l=ys

W oS W N

~ O
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Register Allocation for SSA form

Theorem

Assume that every program point is reachable from start and the program is in
SSA form without assignments to dead variables.

Let X denote the maximal number of simultaneously live variables and G the
interference graph of the program variables. Then:

A =w(G) =x(G)

where w(G), x(G) are the maximal size of a clique in G and the minimal
number of colors for G, respectively.

A minimal coloring of G, i.e., an optimal register allocation can be found in
polynomial time.
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Background: Register allocation for SSA

Interference graphs of program in SSA-form are chordal
e |.e., every cycle of length > 3 has a chord
e i.e., an edge between two nodes of the cycle that is, itself, not part of the
cycle
A graph is chordal, iff it has a perfect elimination order

¢ l.e., an ordering of the nodes, such that each node v and all adjacent nodes
v > u form a clique.

Using a reverse perfect elimination ordering as node ordering for the
greedy algorithm yields a minimal coloring
For graphs in SSA form, the dominance relation induces a perfect
elimination ordering on the interference graph

e Thus, we do not even need to construct the interference graph:

o Just traverse CFG with pre-order DFS, and assign registers first-come first
serve.
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Background: Adjusting register pressure

e Via )\, we can simply estimate the amount of required registers (register
pressure)

e And only perform optimizations that increase register pressure if still
enough registers available
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Discussion

With SSA form, we get a cheap, optimal register allocation
But: We still have the simultaneous assignments
e Which are meant to be executed simultaneously
e Note: Original variables may be mapped to arbitrary registers
e le, R = R | R = Ry swaps registers Ry and R»
We need to translate these to machine instructions
o Use auxiliary register: Rs = R, Ri = R; R = Rs
e Use XOR-swap: Ri = Ri ® R;; R = Ri ® Ro; Ri = Ri @ R
e But what about more than two registers?

401
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Discussion (ctd)

° CYC“C shifts: R = R» | R, = Rg | | R, = Ry

e Permutations: Consider permutation =, i.e., bijection
{0,...n} - {0,...n}
e Cycle in a permutation: Sequence ps, . .., px such that

m(p1) =p2,....7(px) =pr,and i#j = pi#p
o Cayley distance: n — #cycles. Equals number of required swaps

e Process each cycle separately
e General case: Each register occurs on LHS at most once
e Decompose into sequence of linear assignments and cyclic shifts
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Interprocedural Register Allocation

e For every local variable, there is an entry in the stack frame
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Interprocedural Register Allocation

e For every local variable, there is an entry in the stack frame
e Save locals to stack before call, restore after call
e Sometimes, there is hardware support for this

e Otherwise, we have to insert load and stores. We may ...

e Save only registers which may actually be overwritten
e Save only registers which are live after the call
e May restore into different registers —- reduction of live ranges
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Motivation

Modern processors do not execute instructions one after the other
Each instruction passes multiple phases
e which are independent, and thus can be done in parallel for multiple
instructions
e Pipelining
Hardware for executing instructions is duplicated (superscalar
processors)
¢ Independent instructions can be executed simultaneously
e Usually combined with pipelining
Who decides what instructions to parallelize
e The compiler. = VLIW - architectures
e E.g., IA64, on Itanium processors
e The processor (e.g. x86)
e Compiler should arrange instructions accordingly

405/471
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Pipelining

e Execute instruction in multiple phases

e e.g., fetch, decode, execute, write
e Which are handled by different parts of the processor

¢ |dea: Keep all parts busy by having multiple instructions in the pipeline
e Problem: Instructions may depend on each other
e 0., Ro= 0; R = R+1l; R = R+R

e execute phase of second instruction cannot start, until write-phase of first
instruction completed

e Pipeline stall.
e But compiler could have re-arranged instructions

e R = R+l; Ro= 0; R = R+R
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Superscalar architectures

Fetch > 1 instruction per cycle.
Execute them in parallel if independent

Processor checks independence
o Out-of-order execution: Processor may re-order instructions

Or compiler checks independence (VLIW)
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Exam

e You may bring in two handwritten A4 sheets
e We will not ask you to write OCaml programs
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Last Lecture

¢ Register allocation

e by coloring interference graph
e by going to SSA-form

e Instruction level parallelism
¢ Pipelining, superscalar architectures
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Observation

e These architectures are profitable if there are enough independent
instructions available
e Here:

© Re-arrange independent instructions (in basic blocks)
® Increase size of basic blocks, to increase potential for parallelizing
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Instructions a; and a;, i < j, are dependent, iff
read-write &; reads register written by g;
write-read a; writes register read by ag;
write-write a; and g; both write same register

Dependence graph: Directed graph with
o V:={ai,...,an}

e (a;, g) € Eiff a; and g; are dependent

Instructions in basic block can be reordered
e As long as ordering respects dependence graph
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Example

1: x=x+1

2: y=M[A]
3: t=z

4: z=M[A+x]
5: t=y+z
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Example

1: x=x+1
2: y=M[A]
3: t=z
4: z=M[A+x]
5: t=y+z
1: x=xt1] |2:y=M[a]| [3it=z]
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Example

Possible re-ordering:
x=x+1

1:
2: y=M[A]
2: y=M[A] 1: x=x+1
3: t=z 3: -
4: z=M[A+x] 4: =M [A+x]
5: t=y+z 5: teyiz
1: x= x+1"2 y=M[ ‘ ’3 t= z‘
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Instruction Scheduling

Goal: Find topological ordering that stalls pipeline as few as possible
e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)
¢ In general: NP-hard problem
e Common heuristics: List scheduling
e While scheduling, keep track of used processor resources
o Requires (more or less precise) model of processor architecture
Assign priorities to source nodes in graph
Schedule node with highest priority first
e Heuristics for priorities

If required resources are blocked: Lower priority
If dependencies not yet available: Lower priority
If node creates many new sources: Rise priority
If node lies on critical path: Rise priority
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Example: Live-range splitting
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Example: Live-range splitting

e Live-range splitting helps to decrease dependencies
¢ No re-ordering possible

1l: x=r
2 y=x+1
3: x=s
4: z=x+1
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Example: Live-range splitting

e Live-range splitting helps to decrease dependencies

e Can be re-ordered

: Xq=r
o y=xq+1
. Xp=S

DS N

1 z=xo+1
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Example: Live-range splitting

e Live-range splitting helps to decrease dependencies

« Can be re-ordered ¢ Re-ordering

1: xq1=r 1: xq4=r
2: y=xq1+1 3: x2=s
3: xp=s 2: y=xq1+1
4: z=xp+1 4: z=xp+l
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Example: Live-range splitting

e Live-range splitting helps to decrease dependencies

« Can be re-ordered ¢ Re-ordering

1: xq1=r 1: xq=rx
2: y=xq1+1 3t X2=s
3: Xo=8 2: y=xq1+1
4: z=x5+1 4: z=xo+1

e Some processors do that dynamically
—> Register renaming
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Loop unrolling

e Consider the example

short M [...];

for (i=0;i<n;++1i) {
M[i] = 0

}
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Loop unrolling

e Consider the example

short M [...];

for (i=0;i<n;++1i) {
M[i] = 0

}

e On 32 bit architecture: Writing 16 bit words
o Expensive!
e Consider unrolled loop (unroll factor 2)
short M [...];
for (i=0;i+1<n;i=i+2) {
(int)M[i] = O
}
if (i<n) {M[i]=0; i=i+1} // For odd n

e Loop body can now easily be optimized, e.g., by peephole optimization
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Discussion

e Loop unrolling creates bigger basic blocks
¢ Which open more opportunities for parallelization
e Quick demo with gcc -O2 -funroll-loops
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Loop fusion

Fuse together two successive loops
e With the same iteration scheme
e That are not data-dependent
o for (...) {cq}; for (...) {co} +—=for (...) {cq;co}
e In general:
o jth iteration of ¢; must not read data, that is written in < ith iteration of ¢,
o jth iteration of ¢, must not read data, that is written in > Jith iteration of ¢4
e Heuristics
e Data written to disjoint places
e E.g., different, statically allocated arrays
o More sophisticated analyses, e.g., based on integer linear programming



Example

e Consider the following loop, assume A, B, C, D are guaranteed to be
different

for (i=0;i<n;++i) C[i] = A[i] + B[i];
for (i=0;i<n;++i) D[i] = A[i] - B[i];
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Example

e Consider the following loop, assume A, B, C, D are guaranteed to be
different

for
for

e Loop fusion yields

for

D[

(1i=0;1i<n; ++1)
(1=0; i<n; ++1)

(i=0; i<n;++1i)
Cli]

1

]

Ali]
Ali]

+ B[
B

Cli
D[1

{
i
i

1i
]

}

]
]
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Example

e Consider the following loop, assume A, B, C, D are guaranteed to be

different

for (i=0;i<n;++i) C[i] = A[i] + B[i];
for (i=0;i<n;++i) D[i] = A[i] - B[i];

e Loop fusion yields

for (i=0;i<n;++1i) {
Cli] = A[i] + B[l],
D[i] = A[1] B[i]}

e Which may be further optimized to

for (i=0;i<n;++1) {
A[i]; Rz = B[il];
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Warning

e The opposite direction, loop fission, splits one loop into two
e May be profitable for large loops

e Smaller loops may fit into cache entirely
e Accessed memory more local, better cache behavior
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Motivation

¢ Aligning of data
e Cache-aware data access
e Reduction of allocation/deallocation cost
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Alignment of data

e Processor usually loads 32/64 bit words from memory
e But only from address which is multiple of 4/8
¢ Read from odd addresses needs to be split
e Expensive

e So compilers can align data in memory accordingly

e Data on stack (parameters, local variables)
e Code (labels, functions, loop-heads)
e Layout of structures

o At the cost of wasting more memory
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Cache-aware data access

Load instruction loads whole cache-line
Subsequent loads within the same cache-line much faster
Re-arrange memory accesses accordingly

Important case: Multi-dimensional arrays
o lteration should iterate according to memory layout
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Example

e Array A[N] [M]
e Assume layout: & (A[i, §j1) = 1 + J*N
e for (i=0;i<N;++i) for (j=0; j<M;++7j) x=x+A[1i, j]
° Memory accesses:
A+0+O0ON,A+O0+1N,A+0+2N,...,A+1+0N,A+1+1N,...

e Bad locality, when arriving at A+ 1 + ON, cache-line loaded on A+ 0 + ON
probably already overwritten

Better: for (j=0; j<M;++7j) for (i=0;i<N;++i) x=x+A[i, j]
e Memory accesses: A+0+O0ON,A+1+0N,....,A+0+1N;A+1+1N,...
e Good locality, A+ 1 + ON probably already in cache
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Loop interchange

e Swap inner and outer loop

o [f they iterate over multi-dimensional array ...

e ... in wrong order
e And loop iterations are sufficiently independent

e lteration for index i, j, must only depend on iterations < i, < j
o |llustration on board!

e The required dependency analysis is automatable

o To some extend for arrays
e Not so much for more complex structures
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e Alternative: Array-List
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e Alternative: Array-List
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o Possible implementation: Linked list
e Disadvantage: Data items distributed over memory
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o Keep list in array, store index of last element
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Organizing data-structures block-wise

e Warning: No automation in general
e Example: Stack-data structure with push, pop
o Possible implementation: Linked list
e Disadvantage: Data items distributed over memory
e Bad cache behavior
e And extra memory for link-pointers
e Alternative: Array-List
Keep list in array, store index of last element
If array overflows: Double the size of the array
If array less than quarter-full: Halve the size of the array
This adds amortized constant extra cost
But makes cache-locality much better
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Moving heap-allocated blocks to the stack

¢ Idea: Allocate block of memory on stack, instead of heap

o [f pointers to this block cannot escape the current stack frame
¢ Important for languages like Java, where almost everything is allocated on
heap
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Abstract example

int do_computation(...) {
AuxData aux = new AuxData ()

return ...
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Abstract example

int do_computation(...) {
AuxData aux = new AuxData ()
return

e If no pointer to aux is returned or stored in global memory ...

e ... aux can be allocated on method’s stack-frame
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Example

¢ Recall our simple pointer-language. Ret is global variable.

1: x=new/()

2: y=new()
x[A] =y
z=x[A]
Ret = z

429/471



Example

¢ Recall our simple pointer-language. Ret is global variable.
1: x=new()
2: y=new()
x[A] =y
z=x[A]
Ret = z

¢ Allocation at 1 may not escape

429/471



Example

¢ Recall our simple pointer-language. Ret is global variable.

1: x=new()

2: y=new()
x[A] =y
z=x[A]
Ret = z

¢ Allocation at 1 may not escape
e Thus we may do the allocation on the stack
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In general

e Memory block may escape, which is
e Assigned to global variable
e Reachable from global variable
e Forward may analysis. Same as pointer-analysis
o |dentify memory blocks with allocation sites
e Analyze where variables/blocks may point to
e [f global variable/unknown memory block may point to block: Possible
escape
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e Only makes sense for small blocks
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Applying the optimization, heuristics

e Only makes sense for small blocks
e That are allocated only once
e e.g., not inside loop
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Handling procedures more precisely

¢ Require interprocedural points-to analysis

e Expensive
e We do not always know whole program

e E.g. Java loads classes at runtime
¢ In worst case: Assume everything visible to called procedure may escape

e Which is consistent with parameter passing by global variables and previous
analysis
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Wrap-Up

o Several optimizations that exploit hardware utilization
e A meaningful ordering

@ Restructuring of procedures/loops for better cache-behaviour

e Loop interchange, fission
e Tail-recursion/inlining, stack-allocation

® Basic-block optimizations, to exploit instruction-level parallelism
e Live-range splitting
e |Instruction scheduling
e Loop unrolling, fusion

® Then register allocation

@ And finally peephole optimization + instruction selection
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Last Lecture

e Optimizations to re-arrange memory access wrt. cache

e Loop interchange
o Lists vs. array-list

e Wrap-Up: Optimizations targeted towards features of hardware
o Started with functional languages
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Functional language

o We consider simple functional language

prg ::= let rec f1 = ey | ... | f_n = e_n in e
e ::=b | c | x| f_i | op | e e | fn x. e

| let x=e in e

| match e with py => ey | ... | p_n => e_n

b | ¢ xq1 ... Xp
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Functional language

o We consider simple functional language

prg ::= let rec f1 = ey | ... | f_n = e_n in e
e ::=b | c | x| f_i | op | e e | fn x. e
| let x=e in e
| match e with py => ey | ... | p_n => e_n
p =b | ¢ x1 ... Xp
e where
e b is primitive constant
e Cis constructor
e Xx is variable
e f;is recursive function
e op is primitive operation
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Semantics
e Values b,c vy ... vy, fn x. e (Convention: v denotes values)
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Semantics

e Values b,c vy ... vy, fn x. e (Convention: v denotes values)
¢ Goal of semantics: Evaluate main expression to value

e Done by the following rules

let rec f_i = e_1i

rec
[ ] f, — €

op by...bp— [op](by,-..,bn)
24)6%

[op]

e [app2]

appl] ———— O
[pp]ee—>e’e Vi €2 — vy €

[B—red]

(fnx.e)v— e[x— V]
e— ¢
match e with ... — match e’ with ...

k
match v with ... — ejo ()
/
€k — €
OpVi ... Vk_1€ ...€n = 0PV| ... Vk_1 € ...€n

[matchi]

[match2]

[app—op]

e where let x = ey in ey is syntax for (fn x. e2) e
o (*): pi=>e¢; is the first pattern with pjc = v
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Semantics

e Eager evaluation
e Arguments are evaluated before function is called
e No types: Evaluation of badly-typed program just gets stuck
e Example: match 5 with True => ... | False => ...
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Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

fac 2
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let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2
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(x) 2 ((x) 1 1)
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Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2
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e Evaluate arguments only when needed, as far as needed
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Lazy evaluation

e Evaluate arguments only when needed, as far as needed
e |.e., on match or built-in function call

e T

fi— e Pl op by -~ by — [0p1(br, - -, br)

e -
[app1]e1 & — €] e 5 red](fn X. 1) €& = ei[x — e

e— ¢
[match] match e with ... — match e with ...
ho Y

[matc ]match ce...e with ... = gjo (*)
[matchd] match b with ... — ejo )
[app—op] F—

OpVi ... Vku1 € ...80 — 0P Vi ... Vk_1 € ...€n
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Lazy evaluation

e Evaluate arguments only when needed, as far as needed
e |.e., on match or built-in function call

[rec] let rec £ i = e_i [op] _
f— e op by ... ba — [op] (b1, . .., bn)
/
[appﬂenz%:ez 5=red) s er) 92; eilx — e
[matcht] match e with . .ej‘ : i:latch e with ...
[match2]—— —— 5 ”,é: with ... — ec (*)
[match3] maich b wit_h T Seo (%)
/
[app—op]opv1 Ve H,Z:f;,ﬁw e Vk—1 €} ... €n

o Note: Only simple patterns allowed in match
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Example (lazy)

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in (fac 2)

(fac 2)
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Example (lazy)

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in (fac 2)

((*) 2 (match (2-1) with ...))
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Example (lazy)

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in (fac 2)

((*) 2 (match 1 with ...))
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Example (lazy)

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in (fac 2)

and so on
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Eager vs. Lazy

e Eager: Argument evaluated before function call

e Lazy: Function call before argument
o Argument of match only until constructor is at top
e Weak head normal form

e Arguments of primitive operator: Completely
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Optimization Plan

e Optimize on functional level
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Optimization Plan

Optimize on functional level

Translate to imperative language/IR
Use optimizations for imperative code
Now: Optimizations on functional level
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Simple optimizations

¢ Idea: Move some evaluation from run-time to compile-time
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Simple optimizations

Idea: Move some evaluation from run-time to compile-time
Function-application to let

(fn x. eq1) e ——> let x=ep in ej

Matches, where part of the pattern is already known

match ¢ e1 ... e_n with ... ¢ x1 ... X5 => e
> let x1=eq1; ...; Xp=e_n 1in e

Let-reduction

let x=eq in e ——> e[x+—e1]
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Substitution

e Beware of name-capture

let x = 1 in
let £ = fn y. x+y in
let x = 4 in

f x
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let x = 1 in
let £ = fn y. x+y in
let x = 4 in

f x

e Consider reductionof f = .. ..
e «-conversion: (Consistent) renaming of (bound) variables does not
change meaning of program
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Substitution

e Beware of name-capture

let x = 1 in
let £ = fn y. x+y in
let x = 4 in

f x

e Consider reductionof f = .. ..
e «-conversion: (Consistent) renaming of (bound) variables does not
change meaning of program
e Convention: Substitution uses «-conversion to avoid name-capture
e Here: Convert let x=4 in f xt0let x1=4 in f xq
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Termination issues

e Let-reduction may change semantics
let rec £ = fn x. 1 + £ x in
let _ = £ 0 in

42

448/471



Termination issues

e Let-reduction may change semantics

let rec £f = fn x. 1 + £ x in
let _ = £ 0 in
42

e This program does not terminate

448/471



Termination issues

e Let-reduction may change semantics

let rec £f = fn x. 1 + £ x in
let _ = £ 0 in
42

e This program does not terminate
o But, applying let-reduction, we get

let rec £ = fn x. 1 + £ x in
42

448/471



Termination issues

e Let-reduction may change semantics

let rec £f = fn x. 1 + £ x in
let _ = £ 0 in
42

e This program does not terminate
o But, applying let-reduction, we get

let rec £ = fn x. 1 + £ x in
42

e which returns 42

448/471



Termination issues

e Let-reduction may change semantics

let rec £f = fn x. 1 + £ x in
let _ = £ 0 in
42

e This program does not terminate
o But, applying let-reduction, we get

let rec £ = fn x. 1 + £ x in
42

e which returns 42

e For eager evaluation, non-terminating programs may be transformed to
terminating ones

448/471



Termination issues

e Let-reduction may change semantics

let rec £f = fn x. 1 + £ x in
let _ = £ 0 in
42

e This program does not terminate
o But, applying let-reduction, we get

let rec £ = fn x. 1 + £ x in
42

e which returns 42

e For eager evaluation, non-terminating programs may be transformed to
terminating ones

e For lazy evaluation, semantics is preserved

448/471



Side-effects

e Languages like SML/OCaml/F# have side-effects
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Side-effects

e Languages like SML/OCaml/F# have side-effects
o Side-effecting expressions must not be let-reduced

let _ = print "Hello"
in ()
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e May make program less efficient
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e May make program less efficient
e Re-computing values instead of storing them in variable
let x=expensive-op in x+x
e May blow up program code exponentially
let x = x+x in let x = x+x in ... 1in X
e Heuristics for application: reduce let xi=e{in e

e if ey is a variable (or constant)
o if x; does not occur in e

450/471



Application of let-reduction

e May make program less efficient
e Re-computing values instead of storing them in variable
let x=expensive-op in x+x
e May blow up program code exponentially
let x = x+x in let x = x+x in ... 1in X
e Heuristics for application: reduce let xi=e{in e

e if ey is a variable (or constant)
o if x; does not occur in e
e if x; occurs exactly once in e
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More transformations

e Valid for programs (fragments) with no side-effects

(let x=e in eq) eos ——> let x=e in eq e»
// Renaming x to avoid name capture

let x1=eq 1in let xpo=ep in e
—-—> let xp=es in let x1=eq 1in e
// If x1 not free in e»
// Renaming x» to avoid name capture

let x1 = (let xo=e» in eq) 1in e
-—> let xp=es in let xi=eq 1in e
// Renaming x» to avoid name capture
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More transformations

e Valid for programs (fragments) with no side-effects

(let x=e in eq) eos ——> let x=e in eq e»
// Renaming x to avoid name capture

let x1=eq 1in let xpo=ep in e
—-—> let xp=es in let x1=eq 1in e
// If x1 not free in e»
// Renaming x» to avoid name capture

let x1 = (let xo=e» in eq) 1in e
-—> let xp=es in let xi=eq 1in e
// Renaming x» to avoid name capture

e May open potential for other optimizations
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Inlining

e Consider program let f=fn x. eqin e
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e Goal: Save overhead for function call
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Inlining

e Consider program let f=fn x. eqin e
e Inside e, replace £ eo by let x=eoin ey
e Goal: Save overhead for function call

e Warning: May blow up the code
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Example

let fmax = fn f. fn x. fn y.
if x>y then f x else f y in
let max = fmax (fn x. x) in
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Example

let fmax = fn f£. fn x. fn y.
if x>y then f x else f y in
let max = (let £ = (fn x. xX) in
fn x. fn y. if x>y then f x else f y) in

(inlined fmax)
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Example

let fmax = fn f£. fn x. fn y.
if x>y then f x else f y in
let max = (let £ = (fn x. xX) in

fn x. fn y. if x>y then let x=x in x else let x=y in x)

(inlined f)

453/471
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Example

let fmax = fn f£. fn x. fn y.
if x>y then £ x else £ y in
let max = (

fn x. fn y. if x>y then x else y) in

(Let-reduction for single-var expressions and unused variables)
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Note

e Inlining can be seen as special case of let-reduction
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Note

e Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects

e Only inlining terms of form £n x. e, which are not evaluated, unless
applied to an argument

¢ In untyped languages (e.g., LISP), the inlining optimization may not
terminate

let w=fn £f. fny. £ (y £ y) in
let fix = fn f. w £ w
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Note

e Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects

e Only inlining terms of form £n x. e, which are not evaluated, unless
applied to an argument

¢ In untyped languages (e.g., LISP), the inlining optimization may not
terminate

let w=fn £f. fny. £ (v £ y) in
let fix = fn f. let f=f in let y=w in f (v f y)

(Inlined w)
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Note

e Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects

e Only inlining terms of form £n x. e, which are not evaluated, unless
applied to an argument

¢ In untyped languages (e.g., LISP), the inlining optimization may not
terminate

let w=fn £f. fny. £ (v £ y) in
let fix = fn £. £ (w £ w)

((Safe) let-reduction (copy variables))

454/471



Note

e Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects

e Only inlining terms of form £n x. e, which are not evaluated, unless
applied to an argument

¢ In untyped languages (e.g., LISP), the inlining optimization may not
terminate

let w=fn £f. fny. £ (v £ y) in
let fix = fn £. £ (£ (£ (... £ (w £ w))))

()
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Note

Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects

e Only inlining terms of form £n x. e, which are not evaluated, unless
applied to an argument

¢ In untyped languages (e.g., LISP), the inlining optimization may not
terminate
e In typed languages like OCaml or Haskell, however, we have
¢ Inlining always terminates
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Specialization of recursive functions

e Function to square all elements of a list
¢ Note: Dropping the restriction that let-rec occurs outermost

let rec map = fn f. fn 1.
match 1 with
[1 => 1[1
| x#1 => f x # map £ 1
in
let £ = fn x. x*x in
let sgrl = map f in
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e Function to square all elements of a list
¢ Note: Dropping the restriction that let-rec occurs outermost
¢ Requires many function calls to f

¢ Idea: Replace map f by new function mapf

let rec map = fn f. fn 1.
match 1 with
[1 => 11
| x#1 => f x # map £ 1
in
let £ = fn x. x*x in
let sgrl = map f in
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Specialization of recursive functions

Function to square all elements of a list
¢ Note: Dropping the restriction that let-rec occurs outermost

Requires many function calls to f
Idea: Replace map f by new function mapf
Specialization of map for argument f

let rec map = fn f. fn 1.
match 1 with
[1 => 11
| x#1 => f x # map £ 1
in
let £ = fn x. x*x in
let sgrl = map f in
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Specialization of recursive functions

e Function to square all elements of a list
o Note: Dropping the restriction that let-rec occurs outermost

¢ Requires many function calls to f
¢ Idea: Replace map f by new function mapf
e Specialization of map for argument f

fn £. fn 1.

let rec map
match 1 with
[1 => 1[I
| x#1 => f x # map £ 1
in
let £ = fn x. x*x in
let rec mapf = fn 1.
match 1 with
(1 => 1[I
| x#1 => f x # mapf 1
in
let sgrl = mapf in
(Specialization)
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Specialization of recursive functions

e Function to square all elements of a list
* Note: Dropping the restriction that let-rec occurs outermost
e Requires many function calls to f
e |dea: Replace map f by new function mapf
e Specialization of map for argument f

let rec map = fn £. fn 1.
match 1 with
(1 => [
| x#1 => f x # map £ 1
in
let £ = fn x. x*x in
let rec mapf = fn 1.
match 1 with
[1 => 11
| x#1 => x*x # mapf 1
in
let sgrl = mapf in
(Inlining)
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Function folding

e When specializing function £ ato fa,

e we may replace £ a by fa in definition of fa
e Beware of name-captures!

e If recursive function calls alter the specialized argument:

o Potential for new specializations may be created
e Infinitely often ...
e let rec £f = fng. fn 1. ... £ (fn x. g (g x))

e Safe and simple heuristics:
e Only specialize functions of the form

let rec £ = fn x. e

such that recursive occurrences of f in e have the form f x
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Deforestation

e |dea: Often, lists are used as intermediate data structures
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Deforestation

e |dea: Often, lists are used as intermediate data structures
e Standard list functions

let rec map = fn f. fn 1. match 1 with
(1 => 11
| x#xs => f x # map f xs

let rec filter = fn P. fn 1. match 1 with
[1 => 1[]

| x#xs => 1if P x then x#filter P xs else filter P xs

let rec foldl = fn f. fn a. fn 1.
(1 => [1
| x#xs => foldl £ (f a x) xs

match 1 with
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Deforestation

e Examples of derived functions

let sum = foldl (+) O

let length = sum o map (fn x. 1)

let der = fn 1.
let n = length 1 in
let mean = sum 1 / n in
let s2 = (
sum

o map (fn x. x*x)

o map (fn x. x-mean)) 1
in

s2 / n

461/471



Idea

e Avoid intermediate list structures

462/471



Idea

¢ Avoid intermediate list structures
e E.g., we could define

length = foldl (fn a. fn _. a+l) O

462/471



|dea

¢ Avoid intermediate list structures
e E.g., we could define

length = foldl (fn a. fn _. a+l) O

¢ In general, we can define rules for combinations of the basic list functions
like fold, map, filter, ...

map £f o map g = map (f o qg)
foldl £ a o map g = foldl (fn a. £ a o g) a
filter P o filter Q = filter (fn x. P x & Q X)
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|dea

¢ Avoid intermediate list structures
e E.g., we could define

length = foldl (fn a. fn _. a+l) O

¢ In general, we can define rules for combinations of the basic list functions
like fold, map, filter, ...

map £f o map g = map (f o qg)
foldl £ a o map g = foldl (fn a. £ a o g) a
filter P o filter Q = filter (fn x. P x & Q X)

e We may also need versions of these rules in first-order form, e.g.
map £ (map g 1) =
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Example

let der = fn 1.
let n = length 1 in

let mean = sum 1 / n in
let s2 = (
sum
o map (fn x. x*x)
o map (fn x. x-mean)) 1
in

s2 / n
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Example

let der = fn 1.

let n = length 1 in
let mean = sum 1 / length 1 in
let s2 = (

foldl (+) O
o map (fn x. x*x)
o map (fn x. x-mean)) 1
in
s2 / n

Let-optimization/ inlining
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Example

let der = fn 1.
let n = length 1 in

let mean = sum 1 / length 1 in
let s2 = (
foldl (+) 0
o map ((fn x. x*x) o (fn x. x-mean))) 1
in
s2 / n

map-map rule
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Example

let der = fn 1.
let n = length 1 in

let mean = sum 1 / length 1 in
let s2 = foldl (
fn a. (+) a o (fn x. x*x) o (fn xX. xX—-mean)
) 0 1
in
s2 / n

fold-map rule
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Example

let der = fn 1.
let n = length 1 in
let mean = sum 1 / length 1 in
let s2 = foldl (
fn a. fn x. let x=x-mean in let x=x*x in a+x
) 0 1
in
s2 / n

function-application, unfolding of o, let-optimization.

463/471



Discussion

e Beware of side-effects!
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Discussion

e Beware of side-effects!
Need rules for many combinations of functions.
e Does not scale
Only works for built-in functions
e Could try to automatically recognize user-defined functions
e Can be extended to algebraic datatypes in general
e They all have standard map and fold functions

464 /471



Reducing the number of required rules

¢ Try to find standard representation
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Try to find standard representation
foldr seems to be a good candidate:

foldr £ a [] = a
)

]
foldr £ a (x#xs f x (foldr £ a xs)
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Reducing the number of required rules

Try to find standard representation
foldr seems to be a good candidate:

foldr £ a [] = a
foldr £ a (x#xs)

f x (foldr £ a xs)

We can represent map, filter, sum, ...
e But no list-reversal, as foldl can
Problem: How to compose two foldr-calls?
e foldr fl al (foldr f2 a2 1) = 222
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Composition of foldr

e |dea: Abstract over constructors
map f 1 = foldr (fn 1. fn x. £ x#1) [] 1

map’ £ 1 = fn c. fn n.
foldr (fn 1. fn x. ¢ (f x) 1) n 1
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Composition of foldr

e |dea: Abstract over constructors
map f 1 = foldr (fn 1. fn x. £ x#1) [] 1

map’ £ 1 = fn c. fn n.

foldr (fn 1. fn x. ¢ (f x) 1) n 1
build g = g (#) []
map f 1 build (map’ f 1)

e Have
foldr £ a (build g) = g f a
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Composition of foldr

e |dea: Abstract over constructors
map f 1 = foldr (fn 1. fn x. £ x#1) [] 1

map’ £ 1 = fn c. fn n.
foldr (fn 1. fn x. ¢ (f x) 1) n 1

e Have
foldr £ a (build g) = g f a

o If abstraction over list inside g done properly
e l.e., g actually produces list using its arguments
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Example

map £ (map g 1)
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Example

map £ (map g 1)

= build (map’ f (build (map’ g 1)))
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Example

map £ (map g 1)
= build (map’ f (build (map’ g 1)))

= build (fn c. fn n.
foldr (fn 1. fn x. ¢ (£ x) 1) n (build (map’ g 1)))
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Example

map £ (map g 1)
= build (map’ f (build (map’ g 1)))

= build (fn c. fn n.
foldr (fn 1. fn x. ¢ (£ x) 1) n (build (map’ g 1)))

= build (fn c. fn n. map’ g 1 (fn 1. fn x. c (f x) 1) n)
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Intuition

e Functions may consume lists (foldr), produce lists (build), or both
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Intuition

Functions may consume lists (foldr), produce lists (build), or both

o Applying a chain of functions: (build foldr) (build foldr) ... (build foldr)
o Can be re-bracketed to build (foldr build) ... (foldr build) foldr

e And the inner pairs cancel out, leaving a single build foldr
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Discussion

e Single rule for deforestation: foldr f a (build g) = g f a
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Discussion

e Single rule for deforestation: foldr f a (build g) = g f a

e Only correct if g is abstracted over list correctly
e Consider, e.g., foldr f a (build (fn _. fn _. [Truel))

e Which is, in general, notthe sameas (fn _. fn _. [True]) f a
e If language is parametric, can be enforced via type:
o lfghastypeV8.(A—- B8 —58)—=8—p
e It can only produce its result of type 3 by using its arguments
e Which is exactly the required abstraction over the list constructors
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Wrap-up

e Transformations for functional programs
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Wrap-up

e Transformations for functional programs
o Let-optimization

Inlining

Specialization

Deforestation

e Aim at reducing complexity before translation to IR

e On (imperative) IR, all former optimizations of this lecture can be done
¢ Important one: Tail-call optimization
e There are no loops in functional languages

470/471



That's it!
Questions?
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