Program Optimization

Peter Lammich

WS 2016/17

1/471

Overview b

e Oct 20: SI |0y
Oct 26: Slide 36
Oct 27: Slide 65
Nov 3: Slide 95
Nov 9: Slide 116
Nov 10: Slide 128
Nov 16: Slide 140
Nov 17: Slide 157
Nov 23: Slide 178
Nov 24: Slide 202
Nov 30: Slide 211
Dec 1: Slide 224
Dec 8: Slide 243
Dec 14: Slide 259
Dec 15: Slide 273
Dec 21: Slide 287
Dec 22: Slide 301

Lecture

Organizational Issues

Lectures Wed 10:15-11:45 and Thu 10:15-11:45 in M1 00.13.009A

3/471

Organizational Issues

Lectures Wed 10:15-11:45 and Thu 10:15-11:45 in MI 00.13.009A
Tutorial Fri 8:30-10:00 (Ralf Vogler <ralf.vogler@mytum.de>)
e Homework will be corrected

Organizational Issues

Lectures Wed 10:15-11:45 and Thu 10:15-11:45 in Ml 00.13.009A
Tutorial Fri 8:30-10:00 (Ralf Vogler <ralf.vogler@mytum.de>)
e Homework will be corrected
Exam Written (or Oral), Bonus for Homework!

e > 50% of homework — 0.3/0.4 better grade
On first exam attempt. Only if passed w/o bonus!

3/471

Organizational Issues

Lectures Wed 10:15-11:45 and Thu 10:15-11:45 in Ml 00.13.009A
Tutorial Fri 8:30-10:00 (Ralf Vogler <ralf.vogler@mytum.de>)
e Homework will be corrected
Exam Written (or Oral), Bonus for Homework!

e > 50% of homework — 0.3/0.4 better grade
On first exam attempt. Only if passed w/o bonus!

Material Seidl, Wilhelm, Hack: Compiler Design: Analysis and
Transformation, Springer 2012

Organizational Issues

Lectures Wed 10:15-11:45 and Thu 10:15-11:45 in Ml 00.13.009A
Tutorial Fri 8:30-10:00 (Ralf Vogler <ralf.vogler@mytum.de>)
e Homework will be corrected
Exam Written (or Oral), Bonus for Homework!

e > 50% of homework — 0.3/0.4 better grade
On first exam attempt. Only if passed w/o bonus!

Material Seidl, Wilhelm, Hack: Compiler Design: Analysis and
Transformation, Springer 2012

How many of you are attending “Semantics” lecture?

Info-2 Tutors

We need tutors for Info Il lecture. If
you are interested, please contact
Julian Kranz
Julian.kranz@in.tum.de.

julian.kranz@in.tum.de

Proposed Content

Avoiding redundant computations

e E.g. Available expressions, constant propagation, code motion
Replacing expensive with cheaper computations

e E.g. peep hole optimization, inlining, strength reduction
Exploiting Hardware

e E.g. instruction selection, register allocation, scheduling
Analysis of parallel programs

e E.g. threads, locks, data-races

5/471

Table of Contents

0 Introduction

6/471

Observation 1

Intuitive programs are often inefficient

void swap (int i, int j) {
int t;
if (alid

71471

Observation 1

Intuitive programs are often inefficient

void swap (int i, int j) {
int t;

¢ Inefficiencies

e Addresses computed 3 times
e Values loaded 2 times

71471

Observation 1

Intuitive programs are often inefficient

void swap (int i, int j) {
int t;
if (alid

¢ Inefficiencies

e Addresses computed 3 times
e Values loaded 2 times

e Improvements

o Use pointers for array indexing
e Store the valuesof a[i],al7]

71471

void swap
int t,
ai=x*p;
if (ai

t = a
*q=

*p

(int *p, int =*q) {
ai, aj;
aj=+q;
> aj) |
Ji
aij;
t; // t can also be eliminated

void swap
int ai,
ai=+p;

(int »*p,
aj;
aj=+*qg;

if (ai > aj) |
*xq = aij;
*p = ajj;

int *q)

{

void swap (int *p, int =xq)

int ai, aj;
ai=+p; aj=x*q;
if (ai > aj) |
*q = aij;
*p = aj;

}

Caveat: Program less intuitive

{

9/471

Observation 2

High-level languages (even C) abstract from hardware (and efficiency)
Compiler needs to transform intuitively written programs to hardware.
Examples

¢ Filling of delay slots

o Utilization of special instructions

e Re-organization of memory accesses for better cache behavior
e Removal of (useless) overflow/range checks

10/471

Observation 3

Program improvements need not always be correct
e E.g.transform £() + £() to2xf ()

11/471

Observation 3

Program improvements need not always be correct

e E.g.transform £() + £() to2xf ()
e |dea: Save second evaluation of £

11/471

Observation 3

Program improvements need not always be correct
e E.g.transform £() + £() to2xf ()
e |dea: Save second evaluation of £
e But what if £ has side-effects or reads input?

471

Insight

e Program optimizations have preconditions
e These must be

e Formalized
e Checked

¢ It must be proved that optimization is correct
e l.e., preserves semantics

12/471

Observation 4

Optimizations techniques depend on programming language

o What inefficiencies occur
e How analyzable is the language
o How difficult it is to prove correctness

13/471

Example: Java

¢ (Unavoidable) inefficiencies

e Array bound checks
¢ Dynamic method invocation
o Bombastic object organization

14/471

Example: Java

¢ (Unavoidable) inefficiencies
e Array bound checks
¢ Dynamic method invocation
o Bombastic object organization
o Analyzability
+ No pointer arithmetic, no pointers into stack
- Dynamic class loading
- Reflection, exceptions, threads

14/471

Example: Java

¢ (Unavoidable) inefficiencies
e Array bound checks
¢ Dynamic method invocation
o Bombastic object organization
o Analyzability
+ No pointer arithmetic, no pointers into stack
- Dynamic class loading
- Reflection, exceptions, threads
e Correctness proof
+ Well-defined semantics (more or less)
- Features, features, features
- Libraries with changing behavior

14/471

In this course

e Simple imperative programming language

R =-¢ Assignment

R = M[e] Load

M[e1] = ez Store

if (e) ... else ... | Conditional branching
goto label Unconditional branching

R Registers, assuming infinite supply
e Integer-valued expressions over constants, registers, operators
M Memory, addressed by integer > 0, assuming infinite memory

15/471

Note

e For the beginning, we omit procedures

e Focus on intra-procedural optimizations
o External procedures taken into account via statement £ ()

e unknown procedure
e may arbitrarily mess around with memory and registers

e Intermediate Language, in which (almost) everything can be translated

16/471

Example: Swap

void swap (int i, int 3J)
int t;

if (alil > aljl) |
t =aljl;
aljl alil;
ali] t;

1: Ay = Ag + 1xi //Ry = ali]
2: Ry = M[Aq]

3: Bp = Ay + 1x3 //Rp = alj]
4: Rg = MlBg]

5: if (Rq > Rg) |

6: Ag = Ag + lxj //t=a(j]

7: ot = Mlag]

8: Ag = Ay + 1xj //alj] = ali]
9: A = Bg + 1xi

0: Rg = M[A5)

1: M[Ag] = Rg

2: Ag =Rg + lxi //ali]=t

3: 0 mMagl =t

177471

Example: Swap

void swap (int i, int j)
int t;
if (ali] > alj])

}
}

t = aljl
aljl = alil;
afi] =t

W NP O WOow-Joy Ul b wdhR

i

Ay = Ag + 1+i
Ry = M[Aq]
Ao = Ag + 1x7
M[A2]

Ro =
if (R4

Ag = Ag + 1%

> Rp)

t = M[A3]

)
w
Il

M[Ag4]
Ag =
M[Ag]

M[As5]

Ag + 1xi

Rs3

t

{

= Ao + 1x7
= Ag + 1x1i

Assume Aq contains address of array a

//R1 = ali]
//Ro = alj]
//t=al7]

//aljl = ali]

//ali]=t

17/471

Optimizations

Q1 « R—R
® Re-use of sub-expressions

Ay == Ag== Rg, Ap == Ag== A4
M[A4] == M[As],M[Az2] == M[A3z]
R1 == R3

Ro=t

18/471

Now we have

Ag = Bg + 1xi //a[i]=t
M[Ag] = t

Original was:
1: Ay = Ag + 1xi //Ry = ali]
1: Ay = BAp + 1 2t Ry = M[Aq]
. ! _ ° 3: Ap = Ao + 1xj //Rp = alj]
2: Ry = M[A1]. 4: Rp = M[Ap]
3: Ap = Ap +] 5: if (Ry > Ra) {
4: Rp = M[A2] 6: Ag = Ag + 1xj //t=alj]
. 7: t = M[Ag]
: Ri > R
o AE (R 2) 8: A4 =R + 13 //aljl = ali]
6: MlA2] R4 9: As = Bg + 1+i
7: M[A1] = Ro2 0: Rz = M[As5]
} 1: M[A4] = R3
2
3:

19/471

Gain

before | after
+ 6 2
* 6 0
> 1 1
load 4 2
store 2 2
= 6 2

20/471

Table of Contents

9 Removing Superfluous Computations

21/471

Table of Contents

9 Removing Superfluous Computations
Repeated Computations
Background 1: Rice’s theorem
Background 2: Operational Semantics
Available Expressions
Background 3: Complete Lattices
Fixed-Point Algorithms
Monotonic Analysis Framework
Dead Assignment Elimination
Copy Propagation
Summary

22/471

Idea

If same value is computed repeatedly

o Store it after first computation
e Replace further computations by look-up

23/471

Idea

If same value is computed repeatedly

o Store it after first computation

e Replace further computations by look-up
Method

o Identify repeated computations

o Memorize results

e Replace re-computation by memorized value

23/471

Example

x =1
y = M[42]
A r{i = x +y

24/471

Example

e Repeated computation of x+y at B, if

e A is always executed before B
e x+y has the same value at A and B.

24/471

Example

x =1
y = M[42]
A r{i = x +y

e Repeated computation of x+y at B, if

e A is always executed before B
e x+y has the same value at A and B.

e We need

e Operational semantics
e Method to identify (at least some) repeated computations

24/471

Table of Contents

9 Removing Superfluous Computations
Repeated Computations
Background 1: Rice’s theorem
Background 2: Operational Semantics
Available Expressions
Background 3: Complete Lattices
Fixed-Point Algorithms
Monotonic Analysis Framework
Dead Assignment Elimination
Copy Propagation
Summary

25/471

Rice’s theorem (informal)

All non-trivial semantic properties of a Turing-complete programming
language are undecidable.

26/471

Rice’s theorem (informal)

All non-trivial semantic properties of a Turing-complete programming
language are undecidable.

Consequence We cannot write the ideal program optimizer :(

26/471

Rice’s theorem (informal)

All non-trivial semantic properties of a Turing-complete programming
language are undecidable.

Consequence We cannot write the ideal program optimizer :(
But Still can use approximate approaches

e Approximation of semantic property
e Show that transformation is still correct

26/471

Rice’s theorem (informal)

All non-trivial semantic properties of a Turing-complete programming
language are undecidable.

Consequence We cannot write the ideal program optimizer :(
But Still can use approximate approaches

e Approximation of semantic property
e Show that transformation is still correct

Example: Only identify subset of repeated computations.

26/471

Table of Contents

9 Removing Superfluous Computations
Repeated Computations
Background 1: Rice’s theorem
Background 2: Operational Semantics
Available Expressions
Background 3: Complete Lattices
Fixed-Point Algorithms
Monotonic Analysis Framework
Dead Assignment Elimination
Copy Propagation
Summary

27/471

Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

Neg(Ri>Ra) S Pos(r;>Rp)

Ag= Agt 1 % J

28/471

Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

Rp = Apt 1xJ

State:
Ro = M[Rp] Ao | M[O..4) | i |5]a1]| A]|Ri|Re
012345 2[4 -] -] -] -

Neg(Ri>Ra) S Pos(r;>Rp)

Ag= Agt 1 % J

28/471

Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

fa = Aot 1] State:

Ro = M[Rp] Ao | M[O..4) | i |5]a1]| A]|Ri|Re
0‘1,2,3,4,5‘2‘4‘2‘- ‘ - ‘ -

Neg(Ri>Ra) S Pos(r;>Rp)

Ag= Agt 1 % J

28/471

Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

Rp = Apt 1xJ

State:
Ro = M[Rp] Ao | M[O..4) | i |5]a1]| A]|Ri|Re
0 | 12345 2|42 -3 -

Neg(Ri>Ra) S Pos(r;>Rp)

Ag= Agt 1 % J

28/471

Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

fa = Aot 1] State:

Ro = M[Rp] Ao | M[O..4) | i |5]a1]| A]|Ri|Re
0 | 1,2345 2|42 | 43 -

Neg(Ri>Ra) S Pos(r;>Rp)

Ag= Agt 1 % J

28/471

Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

fa = Aot 1] State:

Ro = M[Rp] Ao | M[O..4) | i |5]a1]| A]|Ri|Re
0 | 1,2345 24|24 3|5

Neg(Ri>Ra) S Pos(r;>Rp)

Ag= Agt 1 % J

28/471

Small-step operational semantics

Intuition: Instructions modify state (registers, memory)
Represent program as control flow graph (CFG)

fa = Aot 1] State:

Ro = M[Rp] Ao | M[O..4) | i |5]a1]| A]|Ri|Re
0 | 1,2345 24|24 3|5

Neg(Ri>Ra) S Pos(r;>Rp)

Ag= Agt 1 % J

28/471

Formally (I)

Definition (Registers and Expressions)

Reg is an infinite set of register names. Expr is the set of expressions over
these registers, constants and a standard set of operations.

Note: We do not formally define the set of operations here

29/471

Formally (I)

Definition (Registers and Expressions)

Reg is an infinite set of register names. Expr is the set of expressions over
these registers, constants and a standard set of operations.

Note: We do not formally define the set of operations here
Definition (Action)

Act = Nop | Pos(e) | Neg(e) | R=e | R= M[e] | M[e1] = ez
where e, ey, & € Expr are expressions and R € Reg is a register.

29/471

Formally (I)

Definition (Registers and Expressions)

Reg is an infinite set of register names. Expr is the set of expressions over
these registers, constants and a standard set of operations.

Note: We do not formally define the set of operations here

Definition (Action)

Act = Nop | Pos(e) | Neg(e) | R=e | R= M[e] | M[e1] = ez
where e, ey, & € Expr are expressions and R € Reg is a register.
Definition (Control Flow Graph)

An edge-labeled graph G = (V, E, vo, Vena) Where E C V X Act x V, vy € V,
V.na € Vis called control flow graph (CFG).

29/471

Formally (I)

Definition (Registers and Expressions)

Reg is an infinite set of register names. Expr is the set of expressions over
these registers, constants and a standard set of operations.

Note: We do not formally define the set of operations here

Definition (Action)

Act = Nop | Pos(e) | Neg(e) | R=e | R= M[e] | M[e1] = ez
where e, ey, & € Expr are expressions and R € Reg is a register.
Definition (Control Flow Graph)

An edge-labeled graph G = (V, E, vo, Vena) Where E C V X Act x V, vy € V,
V.na € Vis called control flow graph (CFG).

Definition (State)

A state s € State is represented by a pair s = (p,), where
p : Reg — int is the content of registers
i : int — int is the content of memory

29/471

Formally (lI)

Definition (Value of expression)
[€]p : int is the value of expression e under register content p.

30/471

Formally (lI)

Definition (Value of expression)
[€]p : int is the value of expression e under register content p.

Definition (Effect of action)
The effect [a] of an action is a partial function on states:

30/471

Formally (lI)

Definition (Value of expression)
[€]p : int is the value of expression e under register content p.

Definition (Effect of action)
The effect [a] of an action is a partial function on states:

[Nopl(p, 1) := (p, 1)

30/471

Formally (lI)

Definition (Value of expression)
[€]p : int is the value of expression e under register content p.

Definition (Effect of action)
The effect [a] of an action is a partial function on states:

[Nopl(p, 1) := (p, 1)

[Pos(e)](p, 1) := {(p’ 2 if [e]p # O

undefined otherwise

30/471

Formally (lI)

Definition (Value of expression)
[€]p : int is the value of expression e under register content p.

Definition (Effect of action)
The effect [a] of an action is a partial function on states:

[Nopl(p, 1) := (p, 1)

[Pos(e)](p, 1) := {(p’ 2 if [e]p # O

undefined otherwise

[Neg(e)l(p, 1) := {(p’ ») if [e]lp =0

undefined otherwise

30/471

Formally (lI)

Definition (Value of expression)
[€]p : int is the value of expression e under register content p.

Definition (Effect of action)
The effect [a] of an action is a partial function on states:

[Nopl(p, 1) := (p, 1)

[Pos(e)](p, 1) := {(p’ 2 if [e]p # O

undefined otherwise

[Neg(e)l(p, 1) := {('0’ ») if [e]lp =0

undefined otherwise
[R = el(p, 1) == (p(R > [€lp), 1)

30/471

Formally (lI)

Definition (Value of expression)
[€]p : int is the value of expression e under register content p.

Definition (Effect of action)
The effect [a] of an action is a partial function on states:

[Nopl(p; 1) := (p, 1)

[Pos(e)](p, 1) := {(p’ 2 if [e]p # O

undefined otherwise

[Neg(e)l(p, 1) := {('0’ ») if [e]lp =0

undefined otherwise

[R = el(p, 1) == (p(R [e€lp), 1)
[R = M[ell(p, 1) == (p(R — u([e]p)) 1)

30/471

Formally (lI)

Definition (Value of expression)
[€]p : int is the value of expression e under register content p.

Definition (Effect of action)
The effect [a] of an action is a partial function on states:

[Nopl(p; 1) := (p, 1)

[Pos(e)](p, 1) := {(p’ 2 if [e]p # O

undefined otherwise

(p, 1) if [e]p =0
Neg(e S) = . .
[Nez(€)l(p. 1) {undeflned otherwise
[R=¢€l(p,n)

= (p(R — [e]p), 1)
[R = M[ell(p, 1) == (p(R — u([e]p)) 1)
M[es] = ex](p, 1) == (p, u([er]p — [e2]p))

30/471

Formally (llI)

Given a CFG G = (V, E, v, Vend)
Definition (Path)

A sequence of adjacent edges m = (v4, a1, v2)(V2, @, V3) ... (Vn, @n, Vni1) € E*
is called path from vq 10 Vvjp.1.

Notation vy 5 Vi1
Convention 7 is called path to v iff vy = v
Special case v S viorany v e V

31/471

Formally (I11)
Given a CFG G = (V, E, v, Vend)

Definition (Path)

A sequence of adjacent edges m = (v4, a1, v2)(V2, @, V3) ... (Vn, @n, Vni1) € E*
is called path from vq 10 Vvjp.1.

Notation vy 5 Vi1
Convention 7 is called path to v iff vy = v
Special case v S viorany v e V

Definition (Effect of edge and path)
The effect of an edge k = (u, a, v) is the effect of its action:

[(u,a,v)] = [4]

The effect of a path = = kq .. . k, is the composition of the edge effects:

IIk1kn]] = I[knllo...OIIk1]|

31/471

Formally (IV)

Definition (Computation)
A path = is called computation for state s, iff its effect is defined on s, i.e.,

s € dom([[7])

Then, the state s’ = [r]s is called result of the computation.

32/471

Summary

e Action: Act = Nop | Pos(e) | Neg(e) | R=¢e| R= M[e] | M[e1] = &
e CFG: G=(V,E, vy, Vena), EC V X Act x V

o State: s = (p,), p : Reg — int (registers), u : int — int (Memory)

o Value of expression under p: [e]p : int

o Effect of action a: [&] : State — State (partial)

e Path 7: Sequence of adjacent edges

o Effect of edge k = (u, a,v): [K] = [a]

o Effectof path m = ky ... ky: [7] = [Kn] o ... o [ki]

e 7 is computation for s: s € dom([r])

o Result of computation = for s: [r]s

33/471

Table of Contents

9 Removing Superfluous Computations
Repeated Computations
Background 1: Rice’s theorem
Background 2: Operational Semantics
Available Expressions
Background 3: Complete Lattices
Fixed-Point Algorithms
Monotonic Analysis Framework
Dead Assignment Elimination
Copy Propagation
Summary

34/471

Memorization

First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

35/471

Memorization

First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

°..
O

35/471

Memorization
First, let's memorize every expression

¢ Register Te memorizes value of expression e.

e Assumption: T not used in original program.

R=e Te=e

O —>
(fR= Te
O

35/471

Memorization

First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

(fR=e (fTee Neg (;)ﬁ\l?(;s (e)

O —>
(fR= Te
O

35/471

Memorization

First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

(fR:e (fTee Neg (e) Pos (e)
Te=e

O —_ >
R=T, Neg(Te) Pos (Te)
O

35/471

Memorization

First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

(fR:e (fTee Neg (e) Pos (e)
Te=e

O —_ >
R=T, Neg(Te) Pos (Te)
O

R=M[e]

35/471

Memorization

First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

(fR:e (fTee Neg (e) Pos (e)
O Te=e
3 —
(fRzTe Neg(Te) Pos (Te)
O

R=M[e] Te=e

R=M[Te]

35/471

Memorization

First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

(fR:e (fTee Neg (e) Pos (e)
O Te=e
> —
(fRzTe Neg(Te) Pos (Te)
O
?M[e1 1=e2

@

R=M[e] Te=e

R=M[Te]

35/471

Memorization
First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

R=e To=e Neg (eo)ﬁ\l?oos (e)
@) —>
R=T,
@)

CEM [e1]=e2
@)

R=M[e] Te=e

—_—

R=M[Te]

Te=e
Neg(Te) Pos (Te)
7-e1:e1
—_
Te2=e2
M[Te1] = Te2

35/471

Memorization

First, let's memorize every expression
¢ Register Te memorizes value of expression e.
e Assumption: T not used in original program.

(fR:e (fTee Neg (e) Pos (e)
O Te=e
3 —_—
(fRzTe Neg(Te) Pos (Te)
@)
CfM [eq]=e> TTe1=e1

@) —_
R=Mle] Te=e Teo=ep
_—
R=M[Te] M[Te1] = Te2

e Transformation obviously correct

35/471

Last Lecture (Oct 20)

e Simple intermediate language (IL)

o Registers, memory, cond/ucond branching
e Compiler: Input — Intermediate Language — Machine Code
e Suitable for analysis/optimization

36/471

Last Lecture (Oct 20)

e Simple intermediate language (IL)
o Registers, memory, cond/ucond branching
e Compiler: Input — Intermediate Language — Machine Code
e Suitable for analysis/optimization
e Control flow graphs, small-step operational semantics
¢ Representation for programs in IL
o Graphs labeled with actions
o Nop,Pos/Neg,Assign,Load,Store

o State = Register content, memory content
o Actions are partial transformation on states

e undefined - Test failed

36/471

Last Lecture (Oct 20)

e Simple intermediate language (IL)
o Registers, memory, cond/ucond branching
e Compiler: Input — Intermediate Language — Machine Code
e Suitable for analysis/optimization

e Control flow graphs, small-step operational semantics

¢ Representation for programs in IL
e Graphs labeled with actions

o Nop,Pos/Neg,Assign,Load,Store

o State = Register content, memory content
o Actions are partial transformation on states

e undefined - Test failed
e Memorization Transformation
e Memorize evaluation of e in register T,

36/471

Available Expressions (Semantically)

Definition (Available Expressions in state)
The set of semantically available expressions in state (p, 1) is defined as

Aexp(p, p) == {e | [e]p = p(Te)}

Intuition Register T, contains correct value of e.

37/471

Available Expressions (Semantically)

Definition (Available Expressions in state)
The set of semantically available expressions in state (p, 1) is defined as

Aexp(p, p) = {e| [e]p = p(Te)}
Intuition Register T, contains correct value of e.
Border case All expressions available in undefined state
Aexp(undefined) := Expr

(See next slide why this makes sense)

37/471

Available Expressions (Semantically)

Definition (Available Expression at program point)
The set Aexp(u) of semantically available expressions at program point u is
the set of expressions that are available in all states that may occur when the

program is at u.

Aexp(u) := ﬂ{Aexp(ﬂﬂ]]s) | 7,8 vo = u}

38/471

Available Expressions (Semantically)

Definition (Available Expression at program point)
The set Aexp(u) of semantically available expressions at program point u is
the set of expressions that are available in all states that may occur when the

program is at u.

Aexp(u) := ﬂ{Aexp(ﬂw]]s) | 7,8 vo = u}

Note Actual start state unknown, so all start states s are considered.

38/471

Available Expressions (Semantically)

Definition (Available Expression at program point)
The set Aexp(u) of semantically available expressions at program point u is
the set of expressions that are available in all states that may occur when the

program is at u.

Aexp(u) := ﬂ{Aexp(ﬂﬁ]]s) | 7,8 vo = u}

Note Actual start state unknown, so all start states s are considered.
Note Above definition is smoother due to Aexp(undefined) := Expr

38/471

Simple Redundancy Elimination

Transformation Replace edge (u, Te = e, v) by (u,Nop, v) if e semantically
available at u.

39/471

Simple Redundancy Elimination

Transformation Replace edge (u, Te = e, v) by (u,Nop, v) if e semantically
available at v.
Correctness ¢ Whenever program reaches u with state
(p, 1), we have [e]p = p(Te) (That's exactly
how semantically available is defined)
e Hence, [Te = e](p, 1) = (p. 1) = [Nop](p 1)

39/471

Simple Redundancy Elimination

Transformation Replace edge (u, Te = e, v) by (u,Nop, v) if e semantically
available at v.
Correctness ¢ Whenever program reaches u with state
(p, 1), we have [e]p = p(Te) (That's exactly
how semantically available is defined)
e Hence, [Te = e](p, 1) = (p. 1) = [Nop](p 1)
Remaining Problem How to compute available expressions

39/471

Simple Redundancy Elimination

Transformation Replace edge (u, Te = e, v) by (u,Nop, v) if e semantically
available at u.

Correctness ¢ Whenever program reaches u with state
(p, 1), we have [e]p = p(Te) (That's exactly
how semantically available is defined)

e Hence, [Te = e](p, 1) = (p. 1) = [Nop](p 1)
Remaining Problem How to compute available expressions
Precisely No chance (Rice’s Theorem)

39/471

Simple Redundancy Elimination

Transformation Replace edge (u, Te = e, v) by (u,Nop, v) if e semantically
available at u.

Correctness ¢ Whenever program reaches u with state
(p, 1), we have [e]p = p(Te) (That's exactly
how semantically available is defined)

e Hence, [Te = e](p, 1) = (p. 1) = [Nop](p 1)
Remaining Problem How to compute available expressions
Precisely No chance (Rice’s Theorem)
Observation Enough to compute subset of semantically available
expressions
e Transformation still correct

39/471

Available Expressions (Syntactically)

Idea Expression e (syntactically) available after computation =

e if e has been evaluated, and no register of e has been
assigned afterwards

X+y
@@

7 does not contain assignment to x nor y

40/471

Available Expressions (Syntactically)

Idea Expression e (syntactically) available after computation =

e if e has been evaluated, and no register of e has been
assigned afterwards

X+y
@@

7 does not contain assignment to x nor y

Purely syntactic criterion

40/471

Available Expressions (Syntactically)

Idea Expression e (syntactically) available after computation =

e if e has been evaluated, and no register of e has been
assigned afterwards

X+y
@@

7 does not contain assignment to x nor y

Purely syntactic criterion
Can be computed incrementally for every edge

40/471

Available Expressions (Computation)

Let A be a set of available expressions.
Recall: Available < Already evaluated and no reg. assigned afterwards

41/471

Available Expressions (Computation)

Let A be a set of available expressions.
Recall: Available < Already evaluated and no reg. assigned afterwards

An action a transforms this into the set [a]” A of expressions available
after a has been executed
[Nop]*A = A
[Pos(e)]*A:= A
[Neg(e)]*A = A
[Te =e]"A:= AU {e}
[R=TJ#A:= A\Exprs Exprp := expressions containing R
[R = Me]]* A:= A\ Exprp
[M[ei] = ex]*A:= A

41/471

Available Expressions (Computation)

[a]” is called abstract effect of action a

42/471

Available Expressions (Computation)

[a]” is called abstract effect of action a
Again, the effect of an edge is the effect of its action

[(u, 2 V)" = [a]*
and the effect of apath # = ky ... Kk, is

[17 = [ka]” o...0[k]*

42/471

Available Expressions (Computation)

[a]” is called abstract effect of action a
Again, the effect of an edge is the effect of its action

[(u. 2, V)" = [a]*
and the effect of apath # = ky ... Kk, is

[17 = [ka]” o...0[k]*

Definition (Available at v)
The set A[v] of (syntactically) available expressions at v is

AVl = (I=170 | 7. vo 5 v}

42/471

Available Expressions (Correctness)

Idea Abstract effect corresponds to concrete effect

Lemma
AC Aexp(s) = [a]" A C Aexp([a]s)

Proof Check for every type of action.

43/471

Available Expressions (Correctness)

Idea Abstract effect corresponds to concrete effect

Lemma
AC Aexp(s) = [a]" A C Aexp([a]s)

Proof Check for every type of action.
This generalizes to paths

A C Aexp(s) = []* A C Aexp([7]s)

43/471

Available Expressions (Correctness)

Idea Abstract effect corresponds to concrete effect

Lemma
AC Aexp(s) = [a]" A C Aexp([a]s)

Proof Check for every type of action.

This generalizes to paths

A C Aexp(s) = [«]7 A C Aexp([]s)
And to program points

Alu] € Aexp(u)
Recall:

Aexp(u) = [{Aexp([7]s) | 7, s. vo = u}

Alul = (=170 | 7. vo = u}

43/471

Summary

© Transform program to memorize everything
¢ Introduce registers T,

® Compute A[u] for every program point u
o Alu] = {170 | 7. vo & u}

® Replace redundant computations by Nop
e (u,Te=e,v) — (u,Nop, V) if e € Alu]

44/471

Summary

© Transform program to memorize everything
¢ Introduce registers T,
® Compute A[u] for every program point u
o Alul = {I=170 | 7. vo = u}
® Replace redundant computations by Nop
e (u,Te=e,v) — (u,Nop, V) if e € Alu]
Warning Memorization transformation for R = e should only be applied if
e R ¢ Reg(e) (Otherwise, expression immediately
unavailable)
e e ¢ Reg (Otherwise, only one more register introduced)
e Evaluation of e is nontrivial (Otherwise, re-evaluation
cheaper than memorization)

44/471

Remaining Problem

How to compute A[u] = N{[=]*0 | vo = u}
e There may be infinitely many paths to u

45/471

Remaining Problem

How to compute A[u] = N{[~]*0 | vo = u}
e There may be infinitely many paths to u
Solution: Collect restrictions to A[u] into a constraint system

Alvol €0
Alv] € [a]* (Alu]) for edge (u, a, v)

45/471

Remaining Problem

How to compute A[u] = N{[~]*0 | vo = u}
e There may be infinitely many paths to u
Solution: Collect restrictions to A[u] into a constraint system

Alvol €0
Alv] € [a]* (Alu]) for edge (u, a, v)

Intuition

Nothing available at start node
For edge (u, a, v): At v, at most those expressions are available that would
be available if we come from u.

45/471

Example

Let's regard a slightly modified available expression analysis

e Available expressions before memorization transformation has been applied
o Yields smaller examples, but more complicated proofs :)

46/471

Example

Let's regard a slightly modified available expression analysis

e Available expressions before memorization transformation has been applied
o Yields smaller examples, but more complicated proofs :)

[Nop]#A = A
[Pos(e)]*A:= AU {e}
[Neg(e)]*A:= AU {e}
[R=e]"A:= (AU{e}) \ Exprg
[R=Me]]*A:= (AU {e}) \ Exprg
[M[e:] = e]*A:= AU {61, &5}

46/471

Example

Let's regard a slightly modified available expression analysis

e Available expressions before memorization transformation has been applied
o Yields smaller examples, but more complicated proofs :)

[Nop]*A:= A
[Pos(e)]*A:= AU {e}
[Neg(e)]*A:= AU {e}
[R=e]"A:= (AU{e}) \ Exprg
[R=Me]]*A:= (AU {e}) \ Exprg
[M[e:] = e]*A:= AU {61, &5}

Effect of transformation already included in constraint system

46/471

Example

Neg (x>1)

47/471

Example

tL =1 A1 C D

Neg (x>1)

47/471

Example

TL =1 A1 C D
Al2] C A[1] U {1} \ Expr,

Al2] € Al9]

Neg (x>1)

47/471

Example

[1]
TY =1 Al o

Al2] € A[1]U {1} \ Expr

Neg (x>1) y

Al2] C A
A3] C A2]U {x > 1}

47/471

Example

Neg (x>1)

A1 C D

Al2] € A[1]U {1} \ Expr,
A[2] C A[5]

AR C A2lu{x > 1}

Al4] C A[BJ U {x =y} \ Expr,

47/471

Example

Neg (x>1)

A1 C D

Al2] C A[1] U {1} \ Expr,
Al2] € A[5]

AR C A2lu{x > 1}

Al4] C A[BJ U {x =y} \ Expr,
A[5] C Al[4] U {x — 1} \ Expr,

47/471

Example

Neg (x>1)

Al1] €0
Al2] C A[1] U {1} \ Expr,
Al2] C Al9]

AR C A2lu{x > 1}

Al4] C A[BJ U {x =y} \ Expr,
A[5] C Al[4] U {x — 1} \ Expr,
A6l CA2lU{x > 1}

47/471

Example

Solution:

-1 Alt] =0

: A2l = {1}

ARl ={1,x>1}
Adl={1,x>1}
Al5] = {1}

A6l ={1,x>1}

Neg (x>1)

47/471

Example

Also a solution:

=1 All] =0

Neg (x>1) A2l =10
ARl =0
A4l =0
A5l =0

A6l =10

47/471

Wanted

e Maximally large solution
e Intuitively: Most precise information

48/471

Wanted

e Maximally large solution
e Intuitively: Most precise information

e An algorithm to compute this solution

48/471

Naive Fixpoint Iteration (Sketch)

@ Initialize every A[u] = Expr
o Expressions actually occurring in program!
® Evaluate RHSs
® Update LHSs by intersecting with values of RHSs
O Repeat (goto 2) until values of A[u] stabilize

49/471

Naive Fixpoint lteration (Example)

e On whiteboard!

50/471

Naive Fixpoint Iteration (Correctness)

Why does the algorithm terminate?

51/471

Naive Fixpoint Iteration (Correctness)

Why does the algorithm terminate?

e In each step, sets get smaller
e This can happen at most |Expr| times.

51/471

Naive Fixpoint Iteration (Correctness)

Why does the algorithm terminate?

e In each step, sets get smaller
e This can happen at most |Expr| times.

Why does the algorithm compute a solution?

51/471

Naive Fixpoint Iteration (Correctness)

Why does the algorithm terminate?

e In each step, sets get smaller
e This can happen at most |Expr| times.

Why does the algorithm compute a solution?
o If not arrived at solution yet, violated constraint will cause decrease of LHS

51/471

Naive Fixpoint Iteration (Correctness)

Why does the algorithm terminate?

e In each step, sets get smaller
e This can happen at most |Expr| times.

Why does the algorithm compute a solution?
o If not arrived at solution yet, violated constraint will cause decrease of LHS
Why does it compute the maximal solution?

Naive Fixpoint Iteration (Correctness)

Why does the algorithm terminate?

e In each step, sets get smaller
e This can happen at most |Expr| times.

Why does the algorithm compute a solution?

o If not arrived at solution yet, violated constraint will cause decrease of LHS
Why does it compute the maximal solution?

e Fixed-point theory. (Comes next)

Table of Contents

9 Removing Superfluous Computations
Repeated Computations
Background 1: Rice’s theorem
Background 2: Operational Semantics
Available Expressions
Background 3: Complete Lattices
Fixed-Point Algorithms
Monotonic Analysis Framework
Dead Assignment Elimination
Copy Propagation
Summary

52/471

Partial Orders

Definition (Partial Order)

A partial order (D, C) is a relation C on D that is reflexive, antisymmetric, and
transitive, i.e., for all a, b, ¢ € D:

ata (reflexive)
acCbAabCa= a=b (antisymmetric)
aCbCc = alCc (transitive)

53/471

Partial Orders

Definition (Partial Order)

A partial order (D, C) is a relation C on D that is reflexive, antisymmetric, and
transitive, i.e., for all a, b, ¢ € D:

acta (reflexive)
acCbAabCa= a=b (antisymmetric)
aCbCc = alCc (transitive)

Examples <onN, C. Also >, D

53/471

Partial Orders

Definition (Partial Order)

A partial order (D, C) is a relation C on D that is reflexive, antisymmetric, and
transitive, i.e., for all a, b, ¢ € D:

acta (reflexive)
acCbAabCa= a=b (antisymmetric)
aCbCc = alCc (transitive)

Examples <onN, C. Also >, D

Lemma (Dual order)

We define a3 b:= b C a. LetC be a partial order onD. Then 3 also is a
partial order on D.

53/471

More examples
D = 2{ab.ct with C

{a, b, c}
IR
{a,b} {a,c} {b,c}
| X X
{at {b} A{c}
\@/

54/471

More examples

Z with relation =

55/471

More examples

Z with relation <
2
|
1
|
0
|

—1
|

-2

56/471

More examples

Z, =7ZUJ{L}withrelationxC yiffx=1Lvx=y

_QK\E/QW

57/471

More examples

{a,b,c,d} withaC c,ac d,bCc,bC d

Q—O0

58/471

Upper Bound

Definition (Upper bound)
d € D is called upper bound of X C D, iff

Vxe X.xCd

59/471

Upper Bound

Definition (Upper bound)

d € D is called upper bound of X C D, iff
VxeX.xCd

Definition (Least Upper bound)

d € D is called least upper bound of X C D, iff

d is upper bound of X, and
d C y for every upper bound y of X

59/471

Upper Bound

Definition (Upper bound)

d € D is called upper bound of X C D, iff
VxeX.xCd

Definition (Least Upper bound)

d € D is called least upper bound of X C D, iff

d is upper bound of X, and
d C y for every upper bound y of X

Observation
Upper bound not always exists, e.g. {0,2,4,...} CZ

59/471

Upper Bound

Definition (Upper bound)
d € D is called upper bound of X C D, iff

Vxe X.xCd

Definition (Least Upper bound)
d € D is called least upper bound of X C D, iff

d is upper bound of X, and
d C y for every upper bound y of X

Observation

Upper bound not always exists, e.g. {0,2,4,...} CZ
Least upper bound not always exists, e.g. {a, b} C {a, b, ¢, d} with
acc,acd,bce b d

59/471

Complete Lattice

Definition (Complete Lattice)

A complete lattice (D, C) is a partial order where every subset X C D has a
least upper bound | | X € D.

60/471

Complete Lattice

Definition (Complete Lattice)
A complete lattice (D, C) is a partial order where every subset X C D has a
least upper bound | | X € D.

Note Every complete lattice has

o Aleastelement L:=| |0 eD
o Agreatestelement T :=| |[DeD

60/471

Complete Lattice

Definition (Complete Lattice)
A complete lattice (D, C) is a partial order where every subset X C D has a
least upper bound | | X € D.

Note Every complete lattice has

o Aleastelement L:=| |0 eD
o Agreatestelement T :=| |[DeD

Moreover allb:=| |{a,b} and anb:=[1{a, b}

60/471

Examples

o (2{abel) is complete lattice

61/471

Examples

o (2{abel) is complete lattice
e (Z,=)is not. Noris (Z, <)

61/471

Examples

o (2{abel) is complete lattice
e (Z,=)is not. Noris (Z, <)
e (Z,,C)is also no complete lattice

61/471

Examples

o (2{abel) is complete lattice
e (Z,=)is not. Noris (Z, <)
e (Z,,C)is also no complete lattice
e But we can define flat complete lattice

471

Flat complete lattice over Z

Z] :=ZU{L, T}withrelatonx Cyiffx=1Lvy=Tvx=y

//\\\
\\‘/

62/471

Flat complete lattice over Z

Z] :=ZU{L, T}withrelatonx Cyiffx=1Lvy=Tvx=y

//\\\
\\‘/

Note This construction works for every set, not only for Z.

62/471

Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [X.

63/471

Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [X.

Proof:

63/471

Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [X.

Proof:

o letL={/eD. VxeX. ICx}
e The set of all lower bounds of X

63/471

Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [X.
Proof:

eletL={/leD.¥xe X. ICx}
e The set of all lower bounds of X
e Construct[]1X =L

63/471

Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [X.

Proof:
eletL={/leD.¥xe X. ICx}
e The set of all lower bounds of X
e Construct[]1X =L
e Show: | | L is lower bound

63/471

Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [X.

Proof:
eletL={/leD.¥xe X. ICx}
e The set of all lower bounds of X
e Construct[]1X =L

e Show: | | L is lower bound
e Assume x € X.

63/471

Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [X.

Proof:
eletL={/leD.¥xe X. ICx}
e The set of all lower bounds of X
e Construct[]1X =L
e Show: | | L is lower bound

e Assume x € X.
e ThenV/e L./IC x (i.e., x is upper bound of L)

63/471

Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [X.

Proof:
eletL={/leD.¥xe X. ICx}
e The set of all lower bounds of X
e Construct[]1X =L
e Show: | | L is lower bound
e Assume x € X.

e ThenV/e L./IC x (i.e., x is upper bound of L)
e Thus | JLC x (b/c||Lis least upper bound)

63/471

Greatest Lower Bound

Theorem

LetD be a complete lattice. Then every subset X C D has a greatest lower
bound [X.

Proof:

eletL={/leD.¥xe X. ICx}
e The set of all lower bounds of X
e Construct[]1X =L
e Show: | | L is lower bound
e Assume x € X.

e ThenV/e L./IC x (i.e., x is upper bound of L)
e Thus | JLC x (b/c||Lis least upper bound)

e Obvious: | | L is 1 than all lower bounds

63/471

Examples

e In (g{ayb,c},g)
¢ Note, in lattices with C-ordering, we occasionally write | J, () instead of | |,]

® U{{a7 b}7 {a7 C}} = {a7 b, C}! m{{av b}v {a7 C}} = {a}

64/471

Examples

o In (2abe} C)
¢ Note, in lattices with C-ordering, we occasionally write | J, () instead of | |,]
® U{{a7 b}7 {a7 C}} = {a7 b, C}! m{{av b}v {a7 C}} = {a}

e InZ*2:
e | 1{1,2,3,4} =4, [{1,2,3,4} =1
e [1{1,2,3,4,...} = 400, [1{1,2,3,4,...} =1

64/471

Last Lecture

e Syntactic criterion for available expressions
Constraint system to express it
¢ Yet to come: Link between CS and path-based criterion
¢ Naive fixpoint iteration to compute maximum solution of CS
o Partial orders, complete lattices

65/471

Monotonic function

Definition
Let (D¢,C4) and (Do, C,) be partial orders. A function f : Dy — D, is called
monotonic, iff

Vx,y eDy. x Ty y = f(x) T2 f(y)

66/471

Examples

o f::N— Z with f(x) .= x—10

67/471

Examples

o f::N— Z with f(x) .= x—10
o f:: N — Nwith f(x) :=x+10

67/471

Examples

o f::N— Z with f(x) .= x—10
o f:: N — Nwith f(x) :=x+10
o f:2fabct _ plabel with f(X) := (XU {a,b}) \ {b,c}

67/471

Examples

o f::N— Z with f(x) .= x—10

o f:: N — Nwith f(x) :=x+10

o f::2fabc} _y p{abel with £(X) := (X U{a,b})\ {b,c}
¢ In general, functions of this form are monotonic wrt. C.

67/471

Examples

f:N— Zwith f(x) :=x—-10

o f:: N — Nwith f(x) :=x+10

o f::2fabc} _y p{abel with £(X) := (X U{a,b})\ {b,c}
¢ In general, functions of this form are monotonic wrt. C.

f 1 Z — Z with f(x) := —x (Not monotonic)

67/471

Examples

f:N— Zwith f(x) :=x—-10
o f:: N — Nwith f(x) :=x+10
o f::2fabc} _y p{abel with £(X) := (X U{a,b})\ {b,c}
¢ In general, functions of this form are monotonic wrt. C.
f 1 Z — Z with f(x) := —x (Not monotonic)
o fu2{abect , pfabel with f(X) := {x | x ¢ X} (Not monotonic)

67/471

Examples

f:N— Zwith f(x) :=x—-10
o f:: N — Nwith f(x) :=x+10
o f::2fabc} _y p{abel with £(X) := (X U{a,b})\ {b,c}
¢ In general, functions of this form are monotonic wrt. C.
f 1 Z — Z with f(x) := —x (Not monotonic)
o fu2{abect , pfabel with f(X) := {x | x ¢ X} (Not monotonic)
e Functions involving negation/complement usually not monotonic.

67/471

Least fixed point

Definition

Let f: D — D be a function.

A value d € D with f(d) = d is called fixed point of f.
If D is a partial ordering, a fixed point dy € D with

Vd. f(d)=d = dyC d

is called least fixed point. If such a dj exists, it is uniquely determined, and we
define

Ifp(f) := do

68/471

Examples

o f:: N — Nwith f(x) = x + 1 No fixed points

69/471

Examples

o f:: N — Nwith f(x) = x + 1 No fixed points
e f:: N — Nwith f(x) = x. Every x € N s fixed point.

69/471

Examples

o f:: N — Nwith f(x) = x + 1 No fixed points
e f:: N — Nwith f(x) = x. Every x € N s fixed point.
o fu2{abch , pfabel with f(X) = X U {a, b}. Ifp(f) = {a, b}.

69/471

Function composition

Iffy : Dy — Dy and > : Do — D3 are monotonic, then also f, o f; is monotonic.

70/471

Function composition

Theorem

Iffy : Dy — Dy and > : Do — D3 are monotonic, then also f, o f; is monotonic.

Proof: aC b = f£(a) C fi(b) = h(£(a)) C f(fi(b)).

70/471

Function lattice

Definition
Let (D, C) be a partial ordering. We overload L to functions from A to D:

f C giff Vx. f(x) C g(x)

[A — D] is the set of functions from A to D.

71/471

Function lattice

Definition
Let (D, C) be a partial ordering. We overload L to functions from A to D:

f C giff vx. f(x) C g(x)
[A — D] is the set of functions from A to D.

Theorem

If (D, C) is a partial ordering/complete lattice, then also ([A — D], C).
In particular, we have:

P =J{fex) [feF}

71/471

Function lattice

Definition
Let (D, C) be a partial ordering. We overload L to functions from A to D:

f C giff vx. f(x) C g(x)
[A — D] is the set of functions from A to D.

Theorem

If (D, C) is a partial ordering/complete lattice, then also ([A — D], C).
In particular, we have:

P =J{fex) [feF}

Proof: On whiteboard.

71/471

Component-wise ordering on tuples

e Tuples X € D" can be seen as functions X : {1,...,n} — D

72/471

Component-wise ordering on tuples

e Tuples X € D" can be seen as functions X : {1,...,n} — D
¢ Yields component-wise ordering:

}EYiffVi:{1,...,n}.X/Ey/

72/471

Component-wise ordering on tuples

e Tuples X € D" can be seen as functions X : {1,...,n} — D
¢ Yields component-wise ordering:

)?’E?iffVi:{L...,n}.x,-gy,-

e (D" C) is complete lattice if (D, C) is complete lattice.

72/471

Application

¢ Idea: Encode constraint system as function. Solutions as fixed points.

73/471

Application
¢ Idea: Encode constraint system as function. Solutions as fixed points.
e Constraints have the form

Xi 3 fi(x1, ..., Xn)

where

Xi variables e.g., Alu],forue VvV
(D,C) complete lattice | e.g., (25*, D)
fi:D"—D RHS e.g., (Alulu{e}) \ Exprg

73/471

Application
¢ Idea: Encode constraint system as function. Solutions as fixed points.
e Constraints have the form

Xi 3 fi(x1, ..., Xn)
where
Xi variables e.g., Alu],forue VvV
(D,C) complete lattice | e.g., (25*, D)
fi:D"—D RHS e.g., (Alulu{e}) \ Exprg

e Observation: One constraint per x; is enough.

73/471

Application
¢ Idea: Encode constraint system as function. Solutions as fixed points.
e Constraints have the form

Xi 3 fi(x1, ..., Xn)
where
Xi variables e.g., Alu],forue VvV
(D,C) complete lattice | e.g., (25*, D)
fi:D"—D RHS e.g., (Alulu{e}) \ Exprg

e Observation: One constraint per x; is enough.
e Assume we have x; J rhsi(X1,...,Xn), -, Xi 3 rhSm(X1, ..., Xn)

73/471

Application
¢ Idea: Encode constraint system as function. Solutions as fixed points.
e Constraints have the form

Xi 3 fi(x1, ..., Xn)
where
Xi variables e.g., Alu],forue VvV
(D,C) complete lattice | e.g., (25*, D)
fi:D"—D RHS e.g., (Alulu{e}) \ Exprg
e Observation: One constraint per x; is enough.
e Assume we have x; J rhsi(X1,...,Xn), -, Xi 3 rhSm(X1, ..., Xn)

e Replace by x; I (LI{rhs; | 1 <j < m})(x1,...,Xn)

73/471

Application

¢ Idea: Encode constraint system as function. Solutions as fixed points.

e Constraints have the form

Xi 3 fi(x1, ..., Xn)
where
Xi variables e.g., Alu],forue VvV
(D,C) complete lattice | e.g., (25*, D)
fi:D"—D RHS e.g., (Alulu{e}) \ Exprg

e Observation: One constraint per x; is enough.

e Assume we have x; 3 rhsi(xq, . .

<3 Xn)s -y Xi D rhSm(X1, ..., Xn)

e Replace by x; I (LI{rhs; | 1 <j < m})(x1,...,Xn)
e Does not change solutions.

73/471

Application
¢ Idea: Encode constraint system as function. Solutions as fixed points.
e Constraints have the form

Xi 3 fi(x1, ..., Xn)
where
Xi variables e.g., Alu],forue VvV
(D,C) complete lattice | e.g., (25*, D)
fi:D"—D RHS e.g., (Alulu{e}) \ Exprg
e Observation: One constraint per x; is enough.
e Assume we have x; J rhsi(X1,...,Xn), -, Xi 3 rhSm(X1, ..., Xn)

e Replace by x; I (LI{rhs; | 1 <j < m})(x1,...,Xn)
e Does not change solutions.

e Define F : D" — D", with

F(xi, .o xn) = ((X1,..., Xn)y -« o, Ta(X1, .., Xn))

Then, constraints expressed by X J F(X).

73/471

Application

¢ Idea: Encode constraint system as function. Solutions as fixed points.
e Constraints have the form

Xi 3 fi(x1, ..., Xn)
where
Xi variables e.g., Alu],forue VvV
(D,C) complete lattice | e.g., (25*, D)
fi:D"—D RHS e.g., (Alulu{e}) \ Exprg
e Observation: One constraint per x; is enough.
e Assume we have x; J rhsi(X1,...,Xn), -, Xi 3 rhSm(X1, ..., Xn)

e Replace by x; I (LI{rhs; | 1 <j < m})(x1,...,Xn)
e Does not change solutions.

e Define F : D" — D", with

F(xi, .o xn) = ((X1,..., Xn)y -« o, Ta(X1, .., Xn))

Then, constraints expressed by X J F(X).
o Fixed-Points of F are solutions

73/471

Application

¢ Idea: Encode constraint system as function. Solutions as fixed points.
e Constraints have the form

Xi 3 fi(x1, ..., Xn)
where
Xi variables e.g., Alu],forue VvV
(D,C) complete lattice | e.g., (25*, D)
fi:D"—D RHS e.g., (Alulu{e}) \ Exprg
e Observation: One constraint per x; is enough.
e Assume we have x; J rhsi(X1,...,Xn), -, Xi 3 rhSm(X1, ..., Xn)

e Replace by x; I (LI{rhs; | 1 <j < m})(x1,...,Xn)
e Does not change solutions.

e Define F : D" — D", with

F(xi, .o xn) = ((X1,..., Xn)y -« o, Ta(X1, .., Xn))

Then, constraints expressed by X J F(X).
o Fixed-Points of F are solutions
o Least solution = least fixed point (next!)

73/471

Least fixed points of monotonic functions

e Moreover, F is monotonic if the f; are.
e Question: Does Ifp(F) exist? Does fp-iteration compute it?

74/471

Knaster-Tarski fixed-point Theorem
Knaster-Tarski

Let (D, C) be a complete lattice, and f : D — D be a monotonic function.
Then, f has a least and a greatest fixed point given by

Up(f) =[{x | f(x) € x} gho(f) = J{x | x C f(x)}

75/471

Knaster-Tarski fixed-point Theorem

Knaster-Tarski

Let (D, C) be a complete lattice, and f : D — D be a monotonic function.
Then, f has a least and a greatest fixed point given by

Up(f) =[{x | f(x) € x} gho(f) = J{x | x C f(x)}

Proof Let P = {x | f(x) C x}. (P is set of pre-fixpoints)

75/471

Knaster-Tarski fixed-point Theorem

Knaster-Tarski

Let (D, C) be a complete lattice, and f : D — D be a monotonic function.
Then, f has a least and a greatest fixed point given by

Up(f) =[{x | f(x) € x} gho(f) = J{x | x C f(x)}

Proof Let P = {x | f(x) C x}. (P is set of pre-fixpoints)
e Show (1): f([1P)C[]P.
e Have Vx € P. f([]P) C f(x) C x (lower bound, mono, def.P)
e le., f(["] P) is lower bound of P
e Thus f([7]P) C [] P (greatest lower bound).

75/471

Knaster-Tarski fixed-point Theorem

Knaster-Tarski

Let (D, C) be a complete lattice, and f : D — D be a monotonic function.
Then, f has a least and a greatest fixed point given by

Up(f) =[{x | f(x) € x} gho(f) = J{x | x C f(x)}

Proof Let P = {x | f(x) C x}. (P is set of pre-fixpoints)

e Show (1): f([1P)C[]P.
e Have Vx € P. f([]P) C f(x) C x (lower bound, mono, def.P)
e le., f(["] P) is lower bound of P
e Thus f([7] P) C [1] P (greatest lower bound).

e Show (2):[1PC f([]P)
e From (1) have f(f([]1P)) C f([] P) (mono)
e Hence f([7] P) € P (def.P)
e Thus[]P C (][] P) (lower bound).

75/471

Knaster-Tarski fixed-point Theorem

Let (D, C) be a complete lattice, and f : D — D be a monotonic function.
Then, f has a least and a greatest fixed point given by

Up(f) =[{x | f(x) € x} gho(f) = J{x | x C f(x)}

Proof Let P = {x | f(x) C } (P is set of pre-fixpoints)
e Show (1): f([1P)C [P
e HaveVx € P. f([]P) I: f(x) C x (lower bound, mono, def.P)
e |e, f([]P)is lower bound of P
e Thus f([7] P) C [1] P (greatest lower bound).
e Show (2):[1PC f([]P)
e From (1) have f(f([]1P)) C f([] P) (mono)
e Hence f([7] P) € P (def.P)
e Thus[]P C (][] P) (lower bound).
e Show (3): Least fixed point
Assume d = f(d) is another fixed point
Hence f(d) C d (reflexive)
Hence d € P (def.P)
Thus []P C d (lower bound)

75/471

Knaster-Tarski fixed-point Theorem

Knaster-Tarski

Let (D, C) be a complete lattice, and f : D — D be a monotonic function.
Then, f has a least and a greatest fixed point given by

Up(f) =[{x | f(x) € x} = J{x I x (0}

Proof Let P = {x | f(x) C } (P is set of pre-fixpoints)
e Show (1): f([1P)C [P
e HaveVx € P. f([]P) I: f(x) C x (lower bound, mono, def.P)
e |e, f([]P)is lower bound of P
e Thus f([7] P) C [1] P (greatest lower bound).
e Show (2):[1PC f([]P)
e From (1) have f(f([]1P)) C f([] P) (mono)
e Hence f([7] P) € P (def.P)
e Thus[]P C (][] P) (lower bound).
e Show (3): Least fixed point
e Assume d = f(d) is another fixed point
e Hence f(d) C d (reflexive)
e Hence d € P (def.P)
e Thus[]P C d (lower bound)
o Greatest fixed point: Dually. O

75/471

Used Facts

lower bound x € X = [|XC x
greatest lower bound (Vx € X.dC X) = dLC[]X

mono f monotonic: x C y = f(x) C f(y)
reflexive x C x

76/471

Knaster-Tarski Fixed-Point Theorem (Intuition)

pre-fixpoints

post-fixpoints

771471

Least solution = 1fp

Recall: Constraints where X J F(X)
Knaster-Tarski: Ifp(F) = [1{X | X 3 F(X)}
e |.e.: Least fixed point is lower bound of solutions

78/471

Kleene fixed-point theorem

Kleene fixed-point

Let (D, C) be a complete lattice, and f : D — D be a monotonic function. Then:
| J{f/(L) |7 e N} C iio(f)
If f is distributive, we even have:

L[{F (L) |7 e N} = ifn(f)

79/471

Kleene fixed-point theorem

Kleene fixed-point

Let (D, C) be a complete lattice, and f : D — D be a monotonic function. Then:

| J{f (1) |7 e N}y Cifp(f)
If f is distributive, we even have:

| J{Fi(L) 7 e N} = o)

Definition
Distributivity A function f : Dy — D, over complete lattices (D4, C4) and
(Do, C») is called distributive, iff

X#0 = f(,X) =1, {f00) | x e X}

Note: Distributivity implies monotonicity.

79/471

Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, 1fp(f) exists.

80/471

Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, 1fp(f) exists.
Show that for all i: /(L) C 1fp(f)

80/471

Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, 1fp(f) exists.

Show that for all i: /(L) C 1fp(f)
e Induction oni.

80/471

Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, 1fp(f) exists.

Show that for all i: /(L) C 1fp(f)
¢ Induction oni.
o i =0:19(L1)= 1 C lfp(f) (def.f%, bot least)

80/471

Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, 1fp(f) exists.

Show that for all i: /(L) C 1fp(f)
e Induction oni.
e j=0:f0(L) =L C Ifp(f) (def.f%, bot least)
e i+ 1:IH: fi(L) C 1fp(f). To show: fi+1(L) C 1fp(f)

80/471

Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, 1fp(f) exists.
Show that for all i: f/(_L) C 1fp(f)
¢ Induction oni.
e j=0:f0(L) =L C Ifp(f) (def.f%, bot least)
e i+ 1:IH: fi(L) C 1fp(f). To show: fi+1(L) C 1fp(f)
o Have fi*1(1) = f(f/(L)) (def.f*1)

80/471

Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, 1fp(f) exists.

Show that for all i: f/(_L) C 1fp(f)
¢ Induction oni.
i=0:f0(L) = L C Ifp(f) (def.f%, bot least)
i+ 1:1H: fi(L) C 1fp(f). To show: fi+1(L) C 1fp(f)
Have fit1(1) = f(f/(1)) (def.f*1)
C f(Ifp(f)) (IH, mono)

80/471

Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, 1fp(f) exists.

Show that for all i: f/(_L) C 1fp(f)
¢ Induction oni.
e j=0:f0(L) =L C Ifp(f) (def.f%, bot least)
e i+ 1:IH: fi(L) C 1fp(f). To show: fi+1(L) C 1fp(f)
e Have fit1(1) = f(f(L)) (def.fit1)
e L f(Ifp(f)) (IH, mono)
o = Ifp(f) (Ifp(f) is fixed point)

80/471

Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, 1fp(f) exists.

Show that for all i: f/(_L) C 1fp(f)
¢ Induction oni.
e j=0:f0(L) =L C Ifp(f) (def.f%, bot least)
e i+ 1:IH: fi(L) C 1fp(f). To show: fi+1(L) C 1fp(f)
e Have fit1(1) = f(f(L)) (def.fit1)
e L f(Ifp(f)) (IH, mono)
o = Ifp(f) (Ifp(f) is fixed point)

l.e., Ifp(f) is upper bound of {f/(1) | i N}

80/471

Kleene fixed-point theorem: Proof

By Knaster-Tarski theorem, 1fp(f) exists.

Show that for all i: f/(_L) C 1fp(f)
¢ Induction oni.
e j=0:f0(L) =L C Ifp(f) (def.f%, bot least)
e i+ 1:IH: fi(L) C 1fp(f). To show: fi+1(L) C 1fp(f)
e Have fit1(1) = f(f(L)) (def.fit1)
e L f(Ifp(f)) (IH, mono)
o = Ifp(f) (Ifp(f) is fixed point)

l.e., Ifp(f) is upper bound of {f/(1) | i N}
Thus, | J{f(1) | i € N} C Ifp(f) (least upper bound)

80/471

Kleene fixed-point theorem: Proof (ctd)

Assume f is distributive.

81/471

Kleene fixed-point theorem: Proof (ctd)

Assume f is distributive.
Hence f(LI{f /(L) | i€ N}) = |[{f*'(L) | i € N} (def.distributive)

81/471

Kleene fixed-point theorem: Proof (ctd)

Assume f is distributive.
Hence f(LI{f /(L) | i€ N}) = |[{f*'(L) | i € N} (def.distributive)
= LH{FA(L) i e N} (X U{L}) =1X)

81/471

Kleene fixed-point theorem: Proof (ctd)

Assume f is distributive.

Hence f(LI{f /(L) | i€ N}) = |[{f*'(L) | i € N} (def.distributive)
=LH{F(L) [ie N} (XU {L})=1IX)

le., | {f/(L) | i € N} is fixed point

81/471

Kleene fixed-point theorem: Proof (ctd)

Assume f is distributive.

Hence f(| J{f/(L) | i € N}) = | [{f*"(L) | i € N} (def.distributive)
= H{A(L) i e N} (U(XU{L}) =1X)

le., L{f'(L) | i € N} is fixed point

Hence Ifp(f) C | [{f'(L) | i € N} (Ifp is least fixed point)

81/471

Kleene fixed-point theorem: Proof (ctd)

Assume f is distributive.

Hence f(LI{f /(L) | i€ N}) = |[{f*'(L) | i € N} (def.distributive)
= {F(L) [ie N} (UXU{L}) =LUX)

lLe., [[{f'(1) | i € N} is fixed point

Hence Ifp(f) C | [{f'(L) | i € N} (Ifp is least fixed point)

With distributive implies mono, antisymmetry and first part, we get:

Ifp(f) =| [{f(L)|ieN} O

81/471

Used Facts

bot least Vx. L C x
fixed point d is fixed point iff f(d) = d
least fixed point f(d) =d = lfp(f)C d
least upper bound (¥x € X.xCd) = | /X Cd

82/471

Summary

o Does Ifp(F) exist?
e Yes (Knaster-Tarski)

83/471

Summary

o Does Ifp(F) exist?
e Yes (Knaster-Tarski)
e Does fp-iteration compute it?
o Fp-iteration computes the F(_L) for increasing i
e By Kleene FP-Theorem, these are below Ifp(F)
o |t terminates only if a fixed-point has been reached
e This fixed point is also below Ifp(F) (and thus = Ifp(F))

83/471

Note

e For any monotonic function f, we have

f’(L) C fi+1(L)

e Straightforward induction on i

84/471

Table of Contents

9 Removing Superfluous Computations
Repeated Computations
Background 1: Rice’s theorem
Background 2: Operational Semantics
Available Expressions
Background 3: Complete Lattices
Fixed-Point Algorithms
Monotonic Analysis Framework
Dead Assignment Elimination
Copy Propagation
Summary

85/471

Naive FP-iteration, again

Input Constraint system x; 2 fi(X)
O x:=(L...,1)
@ % := F(X) (Recall F(X) = (£(X), ..., (X))
® If =(F(X) C X), goto 2
® Return “X is least solution”

86/471

Naive FP-iteration, again

Input Constraint system x; 2 fi(X)

=(L..., 1)
— F(%) (Recall F(3) = (A(3)...... (D))
~(F(X) C X), goto 2
Return “X is least solution”
Note Originally, we had X := X LI F(X) in Step 2 and F(X) # X in
Step 3
e Also correct, as F/(L) < F*1(1), i.e., X C F(X)
e Saves Ll operation.
e C may be more efficient than =.

><1 ><1

1]
2]
O If
o

86

471

Caveat

Naive fp-iteration may be rather inefficient

(

Let (Expr U {y + 2z}) Expry
0
A[1] Expr
Expr
Expr
Expr
A[5] Expr

M
Al2]
?M [2] :=1 2{2{
@
M
®

87/471

Caveat

Naive fp-iteration may be rather inefficient

let S = (Expr U {y + 2z})

C?x 1= y+z
C? A[1] Expr 1]

M
? Al2] Expr S
L A[3] Expr Expr
M[2] :=1 A[4] Expr Expr
@
M
®

A[5] Expr Expr

87/471

Caveat

Naive fp-iteration may be rather inefficient

C?x 1= y+z

Let = (Expr U {y + 2z}) Expry
0 1 2

A[1] Expr 0 0

A[2] Expr S {y+z}

A[3] Expr Expr S

A[4] Expr Expr Expr

A[5] Expr Expr Expr

87/471

Caveat

Naive fp-iteration may be rather inefficient

C?x 1= y+z

Let = (Expr {y + Expry
0 1 2 3
A[1] Expr 0 0 0
A[2] Expr S {v+z} {y+z}
A[3] Expr Expr S {y+z}
A[4] Expr Expr Expr S
A[5] Expr Expr Expr Expr

87/471

Caveat

Naive fp-iteration may be rather inefficient

(

Let = (Expr U {y + z}) — Expry
0 1 2 3 4
A[1] Expr 0 0 0 0
Expr S v+z} {y+z} {y+2z}
Expr Expr S {y+z} {y+2z}
Expr Expr Expr S {y + z}
A[5] Expr Expr Expr Expr S

M
Al2]
CT:)M [2] :=1 2{2{
@
M
®

87/471

Caveat

Naive fp-iteration may be rather inefficient

C?x 1= y+z

Let = (Expr {y + z}) Expry
0 1 2 3 4 5
A[1] Expr 0 0 0 0 0
ARl Bxpr S {y+z} {y+zr vtz {y+z)
AR B B S {y+z) {y+zp {y+z)
A[4] Expr Expr Expr S {y+z} {y+2z}
A[5] Expr Expr Expr Expr S {y+z}

87/471

Round-Robin iteration

Idea: Instead of values from last iteration, use current values while

computing RHSs.

0
A[1] Expr
A[2] Expr
A[3] Expr
A[4] Expr
A[5] Expr

88/471

Round-Robin iteration

Idea: Instead of values from last iteration, use current values while

computing RHSs.

?x 1= y+z
?M[l] =1
®

M[2] =1

0 1
A[1] Expr [
A2l Expr {y+2z}
A B {y+2)
Al4] Expr {y+2z}
A5] Expr {y+2z}

88/471

RR-lteration: Pseudocode

X:=(L,...,1)
do {
finished := true
for (i=1;i<=n;++1i) {
new := f(X) // Evaluate RHS

if (X;# new) { // If something changed
finished = false // No fp reached yet
Xj:=X;U new // Update variable
}
}
} while (!finished)
return X

89/471

RR-lteration: Correctness

Prove invariant: X C Ifp(F)
e Initially, (L,..., L) C lfp(F) holds (bot-least)

90/471

RR-lteration: Correctness

Prove invariant: X C Ifp(F)

e Initially, (L,..., L) C lfp(F) holds (bot-least)
e On update:

90/471

RR-lteration: Correctness

Prove invariant: X C Ifp(F)

e Initially, (L,..., L) C lfp(F) holds (bot-least)
e On update:
e We have (1): X’ = X(i := x; U fi(X)). We assume (IH): X C 1fp(F)

90/471

RR-lteration: Correctness

Prove invariant: X C Ifp(F)
e Initially, (L,..., L) C lfp(F) holds (bot-least)
e On update:
e We have (1): X’ = X(i := x; U fi(X)). We assume (IH): X C 1fp(F)
e From (1) we get X' C X U F(X) (def.C on D")

90/471

RR-lteration: Correctness

Prove invariant: X C Ifp(F)
e Initially, (L,..., L) C lfp(F) holds (bot-least)
e On update:
e We have (1): X’ = X(i := x; U fi(X)). We assume (IH): X C 1fp(F)
e From (1) we get X' C X U F(X) (def.C on D")
o From (IH) we get F(X) C 1fp(F) (mono, fixed-point)

90/471

RR-lteration: Correctness

Prove invariant: X C Ifp(F)
e Initially, (L,..., L) C lfp(F) holds (bot-least)
e On update:
e We have (1): X’ = X(i := x; U fi(X)). We assume (IH): X C 1fp(F)
e From (1) we get X' C X U F(X) (def.C on D")
e From (IH) we get F(X) C 1fp(F) (mono, fixed-point)
e Hence X U F(X) C Ifp(F) (least-upper-bound, IH)

90/471

RR-lteration: Correctness

Prove invariant: X C Ifp(F)

e Initially, (L,..., L) C lfp(F) holds (bot-least)
e On update:
e We have (1): X’ = X(i := x; U fi(X)). We assume (IH): X C 1fp(F)
From (1) we get X’ C X Ll F(X) (def.C on D")
From (IH) we get F(X) C 1fp(F) (mono, fixed-point)
Hence X U F(X) C 1fp(F) (least-upper-bound, IH)
Together: X’ C 1fp(F) (trans)

90/471

RR-lteration: Correctness

Prove invariant: X C Ifp(F)

e Initially, (L,..., L) C lfp(F) holds (bot-least)
e On update:
e We have (1): X’ = X(i := x; U fi(X)). We assume (IH): X C 1fp(F)
From (1) we get X’ C X Ll F(X) (def.C on D")
From (IH) we get F(X) C 1fp(F) (mono, fixed-point)
Hence X U F(X) C 1fp(F) (least-upper-bound, IH)
Together: X’ C 1fp(F) (trans)

Moreover, if algorithm terminates, we have X = F(X)

90/471

RR-lteration: Correctness

Prove invariant: X C Ifp(F)

e Initially, (L,..., L) C lfp(F) holds (bot-least)

e On update:

e We have (1): X’ = X(i := x; U fi(X)). We assume (IH): X C 1fp(F)

From (1) we get X’ C X Ll F(X) (def.C on D")
From (IH) we get F(X) C 1fp(F) (mono, fixed-point)
Hence X U F(X) C 1fp(F) (least-upper-bound, IH)
Together: X’ C 1fp(F) (trans)
Moreover, if algorithm terminates, we have X = F(X)

e le., X is a fixed-point.

90/471

RR-lteration: Correctness

Prove invariant: X C 1fp(F)
e Initially, (L,..., L) C lfp(F) holds (bot-least)
e On update:
We have (1): X' = X(i := x; U fi(X)). We assume (IH): X C 1fp(F)
From (1) we get X’ C X Ll F(X) (def.C on D")
From (IH) we get F(X) C 1fp(F) (mono, fixed-point)
Hence X U F(X) C 1fp(F) (least-upper-bound, IH)
Together: X’ C 1fp(F) (trans)
Moreover, if algorithm terminates, we have X = F(X)
e le., X is a fixed-point.
e Invariant: X C least fixed point

90/471

RR-lteration: Correctness

Prove invariant: X C Ifp(F)
e Initially, (L,..., L) C lfp(F) holds (bot-least)
e On update:
We have (1): X' = X(i := x; U fi(X)). We assume (IH): X C 1fp(F)
From (1) we get X’ C X Ll F(X) (def.C on D")
From (IH) we get F(X) C 1fp(F) (mono, fixed-point)
Hence X U F(X) C 1fp(F) (least-upper-bound, IH)
Together: X’ C 1fp(F) (trans)
Moreover, if algorithm terminates, we have X = F(X)
e le., X is a fixed-point.
e Invariant: X C least fixed point
e Thus: X = Ifp(F)

90/471

Used Facts

frans xCyCz — xCz

91/471

RR-lteration: Improved Algorithm

We can save some operations

e Use L instead of = in test
e No LI on update

X:=(L,...,1)
do {
finished := true
for (i=1;i<=n;++1i) {
new := fi(X) // Evaluate RHS

if (=(x;d new)) { // If something changed
finished = false // No fp reached yet
Xj == new // Update variable

}
} while (!finished)
return X

92/471

RR-lteration: Improved Algorithm: Correctness

Justification: Invariant X C F(X)

93/471

RR-lteration: Improved Algorithm: Correctness

Justification: Invariant X C F(X)
e Holds initially: Obvious

93/471

RR-lteration: Improved Algorithm: Correctness

Justification: Invariant X C F(X)

e Holds initially: Obvious
e On update:

93/471

RR-lteration: Improved Algorithm: Correctness

Justification: Invariant X C F(X)

e Holds initially: Obvious
e On update:

e We have X' = X(i := fj(X)). We assume (IH): X C F(X)

93/471

RR-lteration: Improved Algorithm: Correctness

Justification: Invariant X C F(X)

e Holds initially: Obvious

e On update:
e We have X' = X(i := fj(X)). We assume (IH): X C F(X)
e Hence X C X' C F(X) (Def.C, IH)

93/471

RR-lteration: Improved Algorithm: Correctness

Justification: Invariant X C F(X)
e Holds initially: Obvious
e On update:
e We have X' = X(i := fj(X)). We assume (IH): X C F(X)
e Hence X C X' C F(X) (Def.C, IH)
e Hence F(X) C F(X') (mono)

93/471

RR-lteration: Improved Algorithm: Correctness

Justification: Invariant X C F(X)

e Holds initially: Obvious

e On update:

We have X' = X(i := fi(X)). We assume (IH): X C F(X)
Hence X C X’ C F(X) (Def.C, IH)

Hence F(X) C F(X’) (mono)

Together X' C F(X') (trans)

93/471

RR-lteration: Improved Algorithm: Correctness

Justification: Invariant X C F(X)

e Holds initially: Obvious
e On update:
e We have X' = X(i := fj(X)). We assume (IH): X C F(X)
e Hence X C X' C F(X) (Def.C, IH)
e Hence F(X) C F(X') (mono)
e Together X' C F(X') (trans)

With this invariant, we have

93/471

RR-lteration: Improved Algorithm: Correctness

Justification: Invariant X C F(X)
e Holds initially: Obvious
e On update:
e We have X' = X(i := fj(X)). We assume (IH): X C F(X)
e Hence X C X' C F(X) (Def.C, IH)
e Hence F(X) C F(X') (mono)
o Together X' C F(X') (trans)
With this invariant, we have
o x; = fi(X) iff x; 3 £i(X) (antisym)

93/471

RR-lteration: Improved Algorithm: Correctness

Justification: Invariant X C F(X)
e Holds initially: Obvious
e On update:
e We have X' = X(i := fj(X)). We assume (IH): X C F(X)
e Hence X C X' C F(X) (Def.C, IH)
e Hence F(X) C F(X') (mono)
e Together X' C F(X') (trans)
With this invariant, we have
o x; = fi(X) iff x; 3 fi(X) (antisym)
o x; U fi(X) = fi(X) (sup-absorb)
e sup-absorb: xCy = xUy=y

93/471

RR-Iteration: Termination

Definition (Chain)
A set C C D is called chain, iff all elements are mutually comparable:

Ve, C.citCE Ve C e

A partial order has finite height, iff every chain is finite. Then, the height h € N
is the maximum cardinality of any chain.

94/471

RR-Iteration: Termination

Definition (Chain)
A set C C D is called chain, iff all elements are mutually comparable:

Ve, C.citCE Ve C e

A partial order has finite height, iff every chain is finite. Then, the height h € N
is the maximum cardinality of any chain.

For a domain with finite chain height h, RR-iteration terminates within
O(n?h) RHS-evaluations.

¢ In each iteration of the outer loop, at least one variable increases, or the
algorithm terminates. A variable may only increase h — 1 times.

94/471

Last Lecture

Monotonic functions

e Constraint system modeled as function
o Least solution is least fixed point

o Knaster-Tarski fp-thm:
o Ifp of monotonic function exists
Kleene fp theorem:

e lterative characterization of Ifp for distributive functions
o Justifies naive fp-iteration

¢ Round-Robin iteration

e Improves on naive iteration by using values of current round
o Still depends on variable ordering

95/471

Problem:

The efficiency of RR depends on variable ordering

96/471

Problem:

The efficiency of RR depends on variable ordering

C?x 1= y+z

(? Let S:= (ExprU {y + z}) — Expr,
0 1
ML) =1 A[1] Expr Expr
A[2] Expr Expr
L A[3] Expr Expr
M[2] =1 Al4] Expr S
A[5] Expr 0

96/471

Problem:

The efficiency of RR depends on variable ordering

C?x 1= y+z

(? Let S:= (ExprU {y + z}) — Expr,
0 1 2
MIL] ==1 A[1] Expr Expr Expr
A[2] Expr Expr Expr
L A[3] Expr Expr S
M[2] =1 A[4] Expr S {y+z}
A[5] Expr 0 0

96/471

Problem:

The efficiency of RR depends on variable ordering

C?x 1= y+z

(? Let S:= (ExprU {y + z}) — Expr,
0 1 2 3
MIL] ==1 A[1] Expr Expr Expr Expr
A[2] Expr Expr Expr S
M[2] := 1 A[3] Expr Expr S {y +z}
: A[4] Expr S {v+z} {y+z}
A[5] Expr 0 0 0

96/471

Problem:

The efficiency of RR depends on variable ordering

C?x 1= y+z

(? Let S:= (ExprU {y + z}) — Expr,
0 1 2 3 4
MIL] ==1 A[1] Expr Expr Expr Expr S
A[2] Expr Expr Expr S {y+z}
M[2] := 1 A[3] Expr Expr S {y+z} A{y+z}
: A4l Bxpr S {y+zr {y+zb {y+z
A[5] Expr 0 0 0 0

96/471

Problem:

The efficiency of RR depends on variable ordering

%

Let S:= (ExprU {y + z}) — Expr,

0 1 2 3 4 5
A[1] Expr Expr Expr Expr S {v+2z}
A[2] Expr Expr Expr S {y+z} {y+z}
AB] Expr Expr S y+zy {y+z2y {y+z}
A4] Expr S {y+z} {y+z} {y+z} {y+z}
A[5] Expr 0 0 0 0 0

96/471

Problem:

The efficiency of RR depends on variable ordering

Rule of thumb

u before v, ifu —* v
Entry condition before loop body

96/471

Worklist algorithm

Problems of RR (remaining)
Complete round required to detect termination
If only one variable changes, everything is re-computed
Depends on variable ordering.

97/471

Worklist algorithm

Problems of RR (remaining)
Complete round required to detect termination
If only one variable changes, everything is re-computed
Depends on variable ordering.
Idea of worklist algorithm
e Store constraints whose RHS may have changed in a list

97/471

Worklist Algorithm: Pseudocode

W= {1l...n}
X=(L,...,1)
while (W != ¢) {

get an 1 € W, W =W - {i}

x
I

98/471

Worklist Algorithm: Example

e On whiteboard

99/471

Worklist Algorithm: Correctness

Invariants 1 X C F(X) and X C IfpF
e Same argument as for RR-iteration
2 2(x2f(X)) = ieW
e Intuitively: Constraints that are not satisfied are on worklist
e Initially, all i in W
e On update: Only RHS that depend on updated variable may
change. Exactly these are added to W.
If f; does not depend on variable i, the constraint i holds for
the new X, so its removal from W is OK.
e If loop terminates: Due to Inv. 2, we have solution. Due to

Inv. 1, it is least solution.

100/471

Worklist Algorithm: Termination
Theorem

For a monotonic CS and a domain with finite height h, the worklist algorithm

returns the least solution and terminates within O(hN) iterations, where N is
the size of the constraint system:

n
N = 21 + |fi| where |f;| := |{i | f; depends on variable i}|

i=1

101/471

Worklist Algorithm: Termination
Theorem

For a monotonic CS and a domain with finite height h, the worklist algorithm

returns the least solution and terminates within O(hN) iterations, where N is
the size of the constraint system:

n
N = 21 + |fi| where |f;| := |{i | f; depends on variable i}|

i=1

Proof (Sketch):

101/471

Worklist Algorithm: Termination
Theorem

For a monotonic CS and a domain with finite height h, the worklist algorithm

returns the least solution and terminates within O(hN) iterations, where N is
the size of the constraint system:

n
N = 21 + |fi| where |f;| := |{i | f; depends on variable i}|

i=1

Proof (Sketch):
e Number of iterations = Number of elements added to W.

101/471

Worklist Algorithm: Termination
Theorem

For a monotonic CS and a domain with finite height h, the worklist algorithm

returns the least solution and terminates within O(hN) iterations, where N is
the size of the constraint system:

n
N = 21 + |fi| where |f;| := |{i | f; depends on variable i}|

i=1

Proof (Sketch):

e Number of iterations = Number of elements added to W.
o Initially: n elements

101/471

Worklist Algorithm: Termination
Theorem

For a monotonic CS and a domain with finite height h, the worklist algorithm

returns the least solution and terminates within O(hN) iterations, where N is
the size of the constraint system:

n
N = 21 + |fi| where |f;| := |{i | f; depends on variable i}|

i=1

Proof (Sketch):

e Number of iterations = Number of elements added to W.
o Initially: n elements
e Constraint j added if variable its RHS depends on is changed
e Variable may not change more than h times. Constraint depends on |f;| variables.

101/471

Worklist Algorithm: Termination

Theorem

For a monotonic CS and a domain with finite height h, the worklist algorithm
returns the least solution and terminates within O(hN) iterations, where N is
the size of the constraint system:

n
N = 21 + |fi| where |f;| := |{i | f; depends on variable i}|

i=1

Proof (Sketch):

e Number of iterations = Number of elements added to W.
o Initially: n elements
e Constraint j added if variable its RHS depends on is changed
e Variable may not change more than h times. Constraint depends on |f;| variables.
e Thus, no more than

n+Y_ hlf| = hN

i=1
elements added to worklist. O

101/471

Worklist Algorithm: Problems

e Dependencies of RHS need to be known.
e No problem for our application

102/471

Worklist Algorithm: Problems

e Dependencies of RHS need to be known.
e No problem for our application

e Which constraint to select next from worklist?
o Requires strategy.

102/471

Worklist Algorithm: Problems

e Dependencies of RHS need to be known.
e No problem for our application

e Which constraint to select next from worklist?
o Requires strategy.

e Various more advanced algorithms exists

e Determine dependencies dynamically (Generic solvers)
e Only compute solution for subset of the variables (Local solvers)
e Even: Local generic solvers

102/471

Summary:

e Constraint systems (over complete lattice, monotonic RHSSs)
e Encode as monotonic function F : D" — D"
o (Least) Solution = (least) fixed point
e Knaster-Tarski theorem: A least solution always exists
e Solve by fixpoint-iteration (naive, RR, WL)
¢ Kleene-Theorem justifies naive fixpoint iteration
e Similar ideas to justify RR, WL

103/471

Summary:

e Constraint systems (over complete lattice, monotonic RHSSs)
e Encode as monotonic function F : D" — D"
o (Least) Solution = (least) fixed point
e Knaster-Tarski theorem: A least solution always exists
Solve by fixpoint-iteration (naive, RR, WL)
¢ Kleene-Theorem justifies naive fixpoint iteration
e Similar ideas to justify RR, WL
o Still Missing:
o Link between least solution of constraint system, and
Available at u: Alu] = {[#]70 | 7. vo = u}

103/471

Table of Contents

9 Removing Superfluous Computations
Repeated Computations
Background 1: Rice’s theorem
Background 2: Operational Semantics
Available Expressions
Background 3: Complete Lattices
Fixed-Point Algorithms
Monotonic Analysis Framework
Dead Assignment Elimination
Copy Propagation
Summary

104/471

Monotonic Analysis Framework

Given

Flowgraph

A complete lattice (D, C).

An initialization value dy € D

An abstract effect [k]* : D — D for edges k
e Such that [k]* is monotonic.

105/471

Monotonic Analysis Framework

Given Flowgraph
A complete lattice (D, C).
An initialization value dy € D
An abstract effect [k]* : D — D for edges k
e Such that [k]* is monotonic.

Wanted MOP[u] := | |[{[#]" (db) | 7. vo = u}
MOP = Merge over all paths

105/471

Monotonic Analysis Framework

Given Flowgraph
A complete lattice (D, C).
An initialization value dy € D
An abstract effect [k]* : D — D for edges k
e Such that [k]* is monotonic.

Wanted MOP[u] := | [{[#]"(cb) | 7. vo = u}
MOP = Merge over all paths
Method Compute least solution MFP of constraint system

MFP[vo] 3 do (init)
MFP[v] 3 [k]” (MFP[u]) for edges k = (u,a,v) (edge)

MFP = Minimal fixed point

105/471

Kam, Ullmann

Kam, Ullman, 1975

In a monotonic analysis framework, we have

MOP C MFP

106/471

Kam, Ullmann

Kam, Ullman, 1975

In a monotonic analysis framework, we have

MOP C MFP

e Intuitively: The constraint system’s least solution (MFP) is a correct
approximation to the value defined over all paths reaching the program
point (MOP).

106/471

Kam, Ullmann

Kam, Ullman, 1975

In a monotonic analysis framework, we have

MOP C MFP

e Intuitively: The constraint system’s least solution (MFP) is a correct
approximation to the value defined over all paths reaching the program
point (MOP).

o In particular: [7]* (db) T MFP[u] for vo = u

106/471

Kam, Ullman: Proof

To show MOP C MFP, i.e. (def. MOP, def.C on D")

vu. | [{[]"do | 7. vo = u} C MFP[u]

107/471

Kam, Ullman: Proof
To show MOP C MFP, i.e. (def.MOP, def.C on D")
vu. | [{[]"do | 7. vo = u} C MFP[u]
It suffices to show that MFP[u] is an upper bound. (least-upper-bound)

VU vo 5 u = [#]%do C MFP[u]

107/471

Kam, Ullman: Proof

To show MOP C MFP, i.e. (def.MOP, def.C on D")
vu. | [{[]"do | 7. vo = u} C MFP[u]

It suffices to show that MFP[u] is an upper bound. (least-upper-bound)
v U vo o u = [#]%dy T MFP[u]

Induction on .

107/471

Kam, Ullman: Proof

To show MOP C MFP, i.e. (def.MOP, def.C on D")
vu. | [{[]"do | 7. vo = u} C MFP[u]

It suffices to show that MFP[u] is an upper bound. (least-upper-bound)
v U vo o u = [#]%dy T MFP[u]

Induction on .
e Basecase:m =¢.

107/471

Kam, Ullman: Proof

To show MOP C MFP, i.e. (def.MOP, def.C on D")
vu. | [{[]"do | 7. vo = u} C MFP[u]

It suffices to show that MFP[u] is an upper bound. (least-upper-bound)
v U vo o u = [#]%dy T MFP[u]

Induction on .

e Base case: ™ =¢.
e We have u = vy (empty-path) and [[e]l#do = dp (empty-eff)

107/471

Kam, Ullman: Proof

To show MOP C MFP, i.e. (def.MOP, def.C on D")
vu. | [{[]"do | 7. vo = u} C MFP[u]
It suffices to show that MFP[u] is an upper bound. (least-upper-bound)
v U vo o u = [#]%dy T MFP[u]
Induction on .
e Basecase:m =c¢.

e We have u = vy (empty-path) and [[e]l#do = dp (empty-eff)
e As MFP is solution, the (init)-constraint yields dy = MFP[vy].

107/471

Kam, Ullman: Proof

To show MOP C MFP, i.e. (def. MOP, def.C on D")
vu. | [{[]"do | 7. vo = u} C MFP[u]
It suffices to show that MFP[u] is an upper bound. (least-upper-bound)
VU vo 5 u = [#]%do C MFP[u]
Induction on 7.
e Basecase:m =c¢.
e We have u = v, (empty-path) and [¢]* dy = dy (empty-eff)

e As MFP is solution, the (init)-constraint yields dy = MFP[vy].
e Step case: m = 7'k for edge k = (u, a, v)

107/471

Kam, Ullman: Proof

To show MOP C MFP, i.e. (def.MOP, def.C on D")
vu. | [{[]"do | 7. vo = u} C MFP[u]

It suffices to show that MFP[u] is an upper bound. (least-upper-bound)
v U vo o u = [#]%dy T MFP[u]

Induction on 7.
e Basecase:m =¢.
e We have u = vy (empty-path) and [[a]l#do = dp (empty-eff)
e As MFP is solution, the (init)-constraint yields dy = MFP[vy].
e Step case: m = 7'k for edge k = (u, a, v)

e Assume vy = u 3 vand (IH): [=']* do © MFP[u].
To show: [«k]* dy T MFP[v]

107/471

Kam, Ullman: Proof

To show MOP C MFP, i.e. (def.MOP, def.C on D")
vu. | [{[]"do | 7. vo = u} C MFP[u]

It suffices to show that MFP[u] is an upper bound. (least-upper-bound)
v U vo o u = [#]%dy T MFP[u]

Induction on 7.
e Basecase:m =¢.
e We have u = vy (empty-path) and [[a]l#do = dp (empty-eff)
e As MFP is solution, the (init)-constraint yields dy = MFP[vy].
e Step case: m = 7'k for edge k = (u, a, v)

e Assume vy = u 3 vand (IH): [=']* do © MFP[u].
To show: [«k]* dy T MFP[v]
e Have [«'k]* = [K]* ([~']" db) (eff-comp)

107/471

Kam, Ullman: Proof

To show MOP C MFP, i.e. (def.MOP, def.C on D")
vu. | [{[]"do | 7. vo = u} C MFP[u]

It suffices to show that MFP[u] is an upper bound. (least-upper-bound)
v U vo o u = [#]%dy T MFP[u]

Induction on .
e Basecase:m =c¢.
e We have u = vy (empty-path) and [[a]l#do = dp (empty-eff)
e As MFP is solution, the (init)-constraint yields dy = MFP[vy].
e Step case: m = 7'k for edge k = (u, a, v)
e Assume vy = u 3 vand (IH): [=']* do © MFP[u].
To show: [«k]* dy T MFP[v]
e Have [«'k]* = [K]* ([~']" db) (eff-comp)
e T [K]*(MFP[u]) (IH,mono)

107/471

Kam, Ullman: Proof

To show MOP C MFP, i.e. (def.MOP, def.C on D")
vu. | [{[]"do | 7. vo = u} C MFP[u]

It suffices to show that MFP[u] is an upper bound. (least-upper-bound)
v U vo o u = [#]%dy T MFP[u]

Induction on 7.
e Basecase:m =¢.
e We have u = vy (empty-path) and [[a]l#do = dp (empty-eff)
e As MFP is solution, the (init)-constraint yields dy = MFP[vy].
e Step case: m = 7'k for edge k = (u, a, v)

e Assume vy = u 3 vand (IH): [=']* do © MFP[u].
To show: [«k]* dy T MFP[v]
e Have [«'k]* = [K]* ([~']" db) (eff-comp)
e T [K]*(MFP[u]) (IH,mono)
e [MFP[v] ((edge)-constraint, MFP is solution) O

107/471

Facts

empty-path u S v <= u=v
empty-eff [e]*d =d
eff-comp [mim]® = [m2]® o [m]*

108/471

Problem

¢ Yet another approximation :(
o Recall: Abstract effect was already approximation

109/471

Problem

¢ Yet another approximation :(
o Recall: Abstract effect was already approximation
e Good news:
e If the right-hand sides are distributive, we can compute MOP exactly

109/471

Theorem of Kildal

Kildal, 1972

In a distributive analysis framework (i.e., a monotonic analysis framework
where the [k]" are distributive), where all nodes are reachable, we have

MOP = MFP

110/471

Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices
to show that MOP is a solution of the constraint system.

e As MFP is least solution, the proposition follows.

Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices
to show that MOP is a solution of the constraint system.

e As MFP is least solution, the proposition follows.
e Recall:

MOP[u] := | | P[u], where P[u] := {[x]"(cb) | 7. vo = u}

Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices

to show that MOP is a solution of the constraint system.
e As MFP is least solution, the proposition follows.

e Recall:
MOP[u] := | | P[u], where P[u] := {[x]"(cb) | 7. vo = u}

(init) To show: MOP[wy] 2 a
o Straightforward (upper-bound, empty-path, empty-eff)

471

Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices

to show that MOP is a solution of the constraint system.
e As MFP is least solution, the proposition follows.

e Recall:
MOP[u] := | | P[u], where P[u] := {[x]"(cb) | 7. vo = u}

(init) To show: MOP[wy] 2 a
o Straightforward (upper-bound, empty-path, empty-eff)
(edge) To show: MOP[v] 3 [k]*MOP][u] for edge k = (u, a, v)

Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices

to show that MOP is a solution of the constraint system.
e As MFP is least solution, the proposition follows.

e Recall:
MOP[u] := | | P[u], where P[u] := {[x]"(cb) | 7. vo = u}

(init) To show: MOP[wy] 2 a
o Straightforward (upper-bound, empty-path, empty-eff)

(edge) To show: MOP[v] 3 [k]*MOP][u] for edge k = (u, a, v)
e Note (*): P[u] not empty, as all nodes reachable

Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices

to show that MOP is a solution of the constraint system.
e As MFP is least solution, the proposition follows.

e Recall:
MOP[u] := | | P[u], where P[u] := {[x]"(cb) | 7. vo = u}

(init) To show: MOP[wy] 2 a
o Straightforward (upper-bound, empty-path, empty-eff)
(edge) To show: MOP[v] 3 [k]*MOP][u] for edge k = (u, a, v)

e Note (*): P[u] not empty, as all nodes reachable
o [K]*MOP[u] = | {IK]* ([7]7 cb) | 7. vo = u} (def.MOP, distrib,*)

471

Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices

to show that MOP is a solution of the constraint system.
e As MFP is least solution, the proposition follows.

e Recall:
MOP[u] := | | P[u], where P[u] := {[x]"(cb) | 7. vo = u}

(init) To show: MOP[vp] O do
o Straightforward (upper-bound, empty-path, empty-eff)
(edge) To show: MOP[v] 3 [k]*MOP][u] for edge k = (u, a, v)
e Note (*): P[u] not empty, as all nodes reachable
o [K]*MOP[u] = | {IK]* ([7]7 cb) | 7. vo = u} (def.MOP, distrib,*)
o = | {[rk]*dbo | 7 vo KL v} (def.[-]* on paths. k is edge, path-append)

471

Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices

to show that MOP is a solution of the constraint system.
e As MFP is least solution, the proposition follows.

e Recall:
MOP[u] := | | P[u], where P[u] := {[x]"(cb) | 7. vo = u}

(init) To show: MOP[vp] O do
o Straightforward (upper-bound, empty-path, empty-eff)
(edge) To show: MOP[v] 3 [k]*MOP][u] for edge k = (u, a, v)
e Note (*): P[u] not empty, as all nodes reachable
o [K]*MOP[u] = | {IK]* ([7]7 cb) | 7. vo = u} (def.MOP, distrib,*)
o = {Irk]*cb | 7. vo LLN v} (def.[-]* on paths. k is edge, path-append)
o C|[{[r]"ab |~ vo = v} (sup-subset)

471

Proof

We already know MOP C MFP. To show that also MFP C MOP, it suffices

to show that MOP is a solution of the constraint system.
e As MFP is least solution, the proposition follows.

e Recall:
MOP[u] := | | P[u], where P[u] := {[x]"(cb) | 7. vo = u}

(init) To show: MOP[wy] 2 a
o Straightforward (upper-bound, empty-path, empty-eff)
(edge) To show: MOP[v] 3 [k]*MOP][u] for edge k = (u, a, v)
e Note (*): P[u] not empty, as all nodes reachable
o [K]*MOP[u] = | {IK]* ([7]7 cb) | 7. vo = u} (def.MOP, distrib,*)
= | {I=k]*ab | 7. vo LLN v} (def.[-]* on paths. k is edge, path-append)
C L{[#]7db | 7. vo =5 v} (sup-subset)
= MOP[v] (def.MOP)

Facts

path-append k = (u,a,v) € EA Vg = U <= v KLY
e Append edge to path
sup-subset XCY = | |XC||Y

112/471

Note

Reachability of all nodes is essential

¢ No paths to unreachable node v, i.e., MOP[u] = L
o But edges from other unreachable nodes possible

— Constraint of form MFP[u] O ...

Note

Reachability of all nodes is essential

¢ No paths to unreachable node v, i.e., MOP[u] = L
o But edges from other unreachable nodes possible

— Constraint of form MFP[u] O ...
Eliminate unreachable nodes before creating CS
e E.g. by DFS from start node.

113/471

Depth first search (pseudocode)

void dfs (node u) {
if u ¢ R {
R := R U {u}
for all v with (u,a,v) € E {dfs v}
}
}

void find_reachable () {
R = {}
dfs (V)
// R contains reachable nodes now

114/471

Summary

Input CFG, distributive/(monotonic) analysis framework
e Framework defines domain (D, C), initial value dp € D and
abstract effects []* : E > D > D
e For each edge k, [[k]]# is distributive/(monotonic)

© Eliminate unreachable nodes
® Put up constraint system
® Solve by worklist-algo, RR-iteration, ...

Output (Safe approximation of) MOP - solution

115/471

Summary

Input CFG, distributive/(monotonic) analysis framework
e Framework defines domain (D, C), initial value dp € D and
abstract effects []* : E > D > D
e For each edge k, [[k]]# is distributive/(monotonic)

© Eliminate unreachable nodes
® Put up constraint system
® Solve by worklist-algo, RR-iteration, ...

Output (Safe approximation of) MOP - solution

Note Abstract effects of available expressions are distributive
¢ As all functions of the form: x — (aU x) \ b

115/471

Last lecture

Worklist algorithm: Find least solution with O(hN) RHS-evaluations
e h height of domain, N size of constraint system
Monotonic analysis framework: (D, C), dy € D, [-]* (monotonic)
o Yields MOP[u] = | {[=]"db | 7. vo = u}
e Theorems of Kam/Uliman and Kildal
e MOP C MFP,
o Distributive framework and all nodes reachable: MOP = MFP
Started with dead-assignment elimination

116/471

Summary (Il) — How to develop a program optimization

e Optimization = Analysis + Transformation

117/471

Summary (Il) — How to develop a program optimization

e Optimization = Analysis + Transformation
o Create semantic description of analysis result

e Result for each program point

e Depends on states reachable at this program point

¢ In general, not computable

e Prove transformation correct for (approximations of) this result

117/471

Summary (Il) — How to develop a program optimization

e Optimization = Analysis + Transformation
o Create semantic description of analysis result

e Result for each program point

e Depends on states reachable at this program point

¢ In general, not computable

e Prove transformation correct for (approximations of) this result
¢ Create syntactic approximation of analysis result

e Abstract effect of edges
¢ Yields monotonic/distributive analysis framework

117/471

Summary (Il) — How to develop a program optimization

Optimization = Analysis + Transformation
Create semantic description of analysis result
e Result for each program point
e Depends on states reachable at this program point
¢ In general, not computable
e Prove transformation correct for (approximations of) this result
Create syntactic approximation of analysis result
e Abstract effect of edges
¢ Yields monotonic/distributive analysis framework
Compute MFP.
o Approximation of semantic result

117/471

Summary (Il) — How to develop a program optimization

Optimization = Analysis + Transformation
Create semantic description of analysis result

e Result for each program point

e Depends on states reachable at this program point

¢ In general, not computable

e Prove transformation correct for (approximations of) this result
Create syntactic approximation of analysis result

e Abstract effect of edges
¢ Yields monotonic/distributive analysis framework

Compute MFP.
o Approximation of semantic result
Perform transformation based on MFP

117/471

Table of Contents

9 Removing Superfluous Computations
Repeated Computations
Background 1: Rice’s theorem
Background 2: Operational Semantics
Available Expressions
Background 3: Complete Lattices
Fixed-Point Algorithms
Monotonic Analysis Framework
Dead Assignment Elimination
Copy Propagation
Summary

118/471

Now: Dead-Assignment Elimination

Example

1: x =y + 2;
2: y = 4;

3: x =y + 3

119/471

Now: Dead-Assignment Elimination

Example

l: x =y + 2;
2: y = 4;

3: x =y + 3

Value of x computed in line 1 never used

119/471

Now: Dead-Assignment Elimination

Example

l: x =y + 2;
2: y = 4;

3: x =y + 3

Value of x computed in line 1 never used
Equivalent program:

1: nop;
2:y = 4;
3: x y + 3

119/471

Now: Dead-Assignment Elimination

Example

l: x =y + 2;
2: y = 4;

3: x =y + 3

Value of x computed in line 1 never used
Equivalent program:

1: nop;
2: y = 4;
3: x =y + 3

e x is called dead at 1.

119/471

Live registers (semantically)

Register x is semantically live at program point u, iff there is an execution
to an end node, that depends on the value of x at u:

x € Live[u] < 3m,v,p,u,a
U vAvE Vg
A(p, 1) € [U]
Am](p(x = a), 1) #x [=](p, 1)

Where [u] := {(p, 1) | Fpo, o, 7. Vo = U A [w](po, o) = (p, 1)}
o Intuition: All states reachable at u
e Collecting semantics

120/471

Live registers (semantically)

Register x is semantically live at program point u, iff there is an execution
to an end node, that depends on the value of x at u:

x € Live[u] < 3m,v,p,u,a
U vAvE Vg
A(p, 1) € [U]
Am](p(x = a), 1) #x [=](p, 1)

Where [u] := {(p, 1) | Fpo, o, 7. Vo = U A [w](po, o) = (p, 1)}
o Intuition: All states reachable at u
e Collecting semantics
o (pp) =x (¢, 1) iff p =y’ and Vx € X. p(x) = p'(X)
e Equal on memory and “interesting” registers X

120/471

Live registers (semantically)

Register x is semantically live at program point u, iff there is an execution
to an end node, that depends on the value of x at u:

x € Live[u] < 3m,v,p,u,a
U vAvE Vg
A(p, 1) € [U]
Am](p(x = a), 1) #x [=](p, 1)

Where [u] := {(p, 1) | Fpo, o, 7. Vo = U A [w](po, o) = (p, 1)}
o Intuition: All states reachable at u
e Collecting semantics

o (p,) =x (p', 1) iff p =/ and Vx € X. p(x) = p'(x)
e Equal on memory and “interesting” registers X

e x is semantically dead at v, iff it is not live.
¢ No execution depends on the value of x at u.

120/471

Transformation: Dead-Assignment Elimination

Replace assignments/loads to dead registers by Nop
(u, x := %, v) — (u,Nop, v) if x dead at v
Obviously correct
o States reachable at end nodes are preserved
Correct approximation: Less dead variables (= More live variables)

121/471

Live registers (syntactic approximation)

Register x is live at u (x € L[u]), iff there is a path u = v, v € V,yq, such
that

e 7 does not contain writes to x, and x € X
e or 7 contains a read of x before the first write to x

122/471

Live registers (syntactic approximation)

Register x is live at u (x € L[u]), iff there is a path u = v, v € V,yq, such
that

e 7 does not contain writes to x, and x € X
e or 7 contains a read of x before the first write to x

Abstract effects, propagating live variables backwards over edge

[Nop]#L =L
[Pos(e)]* L = L Uregs(e)
[Neg(e)]*L = L Uregs(e)
[x :=e]*L =L\ {x} Uregs(e)
[x == M(e)]*L = L\ {x} Uregs(e)
[M(e1) := M(e2)]* L = L Uregs(er) U regs(ez)

Note: distributive.

122/471

Live registers (syntactic approximation)

Register x is live at u (x € L[u]), iff there is a path u = v, v € V,yq, such
that

e 7 does not contain writes to x, and x € X
e or 7 contains a read of x before the first write to x

Abstract effects, propagating live variables backwards over edge

[Nop]#L =L
[Pos(e)]* L = L Uregs(e)
[Neg(e)]*L = L Uregs(e)
[x :=e]*L =L\ {x} Uregs(e)
[x == M(e)]*L = L\ {x} Uregs(e)
[M(e1) := M(e2)]* L = L Uregs(er) U regs(ez)

Note: distributive.
Lift to path (backwards!): [k ... k.]* = [ki]" o. ..o [ki]"

122/471

Live registers (syntactic approximation)

Register x is live at u (x € L[u]), iff there is a path u = v, v € V,yq, such
that

e 7 does not contain writes to x, and x € X
e or 7 contains a read of x before the first write to x

Abstract effects, propagating live variables backwards over edge

[Nop]#L =L

[Pos(e)]* L = L Uregs(e)

[Neg(e)]*L = L Uregs(e)

[x :=e]*L =L\ {x} Uregs(e)

[x == M(e)]*L = L\ {x} Uregs(e)
[M(e1) := M(e2)]* L = L Uregs(er) U regs(ez)

Note: distributive.
Lift to path (backwards!): [k ... k.]* = [ki]" o. ..o [ki]"
Live at u (MOP): L[u] = U{[x]* X | 3V € Vipa. u = v}

122/471

Example

123/471

Example

xS

X=y+2 y=5 X=y+2 M[y]l=x

®
©)
®
©
®

123/471

Example

X=y+2 y=5

®

123/471

Example

_ - IS C50 7 VNSRS 00 N O 2
@ X=y+2 @ y=5 @ X=y+2 @ [v] x@ x=0 @

123/471

Example

v} x. 3, i} {x.y}
=y+2 =5 =y+2 = -
@xy+@y Oxy+@[y]x@xo@

123/471

Example

{} v} x. 3, i} {x.y}
=y+2 =5 =y+2 = -
@xy+@y Oxy+@[y]x@xo@

123/471

Example

s W ey P gy W), O

(2)

©)
®
©<
€

@
®

123/471

Example

123/471

Liveness: Correct approximation

Theorem

(Syntactic) liveness is a correct approximation of semantic liveness
Live[u] C L[u]

124/471

Liveness: Correct approximation

Theorem

(Syntactic) liveness is a correct approximation of semantic liveness
Live[u] C L[u]

e Proof: On whiteboard.

124/471

Computing L

Use constraint system

Llul 2 X for u € Venq
L[u] D [K]* L[v] for edges k = (u, a, v)

125/471

Computing L

Use constraint system

Llul 2 X for u € Venq
L[u] D [K]* L[v] for edges k = (u, a, v)

Information propagated backwards

125/471

Computing L

Use constraint system

Llul 2 X for u € Venq
L[u] D [K]* L[v] for edges k = (u, a, v)

Information propagated backwards
Domain: (Reg, C)
e Reg: The finitely many registers occurring in program.
= Finite height
 Moreover, the [k]* are distributive

125/471

Computing L

Use constraint system

Llul 2 X for u € Venq
L[u] D [K]* L[v] for edges k = (u, a, v)

Information propagated backwards
Domain: (Reg, C)
e Reg: The finitely many registers occurring in program.
= Finite height
 Moreover, the [k]* are distributive
Can compute least solution (MFP)
o Worklist algo, RR-iteration, naive fp-iteration

125/471

Backwards Analysis Framework

Given CFG, Domain: (D, C), init. value: dy € D, abstract effects:
[17 : D — D, monotonic
MOP[u] := | {[#]¥db | 3V € Vens. u 5 v}
MFP is least solution of
MFP[u] O dy foru € Ve
MFP[u] 3 [k]*MFP[v] for edges k = (u, a, v)

126/471

Backwards Analysis Framework

Given CFG, Domain: (D, C), init. value: dy € D, abstract effects:
[17 : D — D, monotonic

MOP[u] := | {[#]¥db | 3V € Vens. u 5 v}
MFP is least solution of

MFP[u] O dy foru € Ve
MFP[u] 3 [k]*MFP[v] for edges k = (u, a, v)

e We have:

MOP C MFP

126/471

Backwards Analysis Framework

Given CFG, Domain: (D, C), init. value: dp € D, abstract effects:
[17 : D — D, monotonic

MOP[u] := | {[#]¥db | 3V € Vens. u 5 v}

MFP is least solution of

MFP[u] O dy foru € Ve
MFP[u] 3 [kK]*MFP[v] for edges k = (u, a, v)
¢ We have:
MOP C MFP

« Ifthe [k]* are distributive, and from every node an end node can be
reached:

MOP = MFP

126/471

Backwards Analysis Framework

Given CFG, Domain: (D, C), init. value: dp € D, abstract effects:
[17 : D — D, monotonic

MOP[u] := | {[#]¥db | 3V € Vens. u 5 v}
MFP is least solution of

MFP[u] O dy foru € Ve
MFP[u] 3 [kK]*MFP[v] for edges k = (u, a, v)
e We have:
MOP C MFP
« Ifthe [k]* are distributive, and from every node an end node can be
reached:
MOP = MFP

e Proofs:

126/471

Backwards Analysis Framework

Given CFG, Domain: (D, C), init. value: dp € D, abstract effects:
[17 : D — D, monotonic

MOP[u] := | {[#]¥db | 3V € Vens. u 5 v}
MFP is least solution of

MFP[u] O dy foru € Ve
MFP[u] 3 [kK]*MFP[v] for edges k = (u, a, v)
e We have:
MOP C MFP
« Ifthe [k]* are distributive, and from every node an end node can be
reached:
MOP = MFP
e Proofs:

e Analogously to forward case :) O

126/471

Example: Dead Assignment elimination

P OX O~
+ +
Ko —

On whiteboard.

127/471

Last Lecture

e Monotonic forward/backward framework
e Live variables, dead assignment elimination
x live at u

Semantically: x € Live[u]: Exists execution that depends on value of x at u

Syntactic approximation: x € L[u]: x read before it is overwritten
Correctness proof

e Induction on path, case distinction over edges

128/471

Analysis: Classifications
e Forward vs. backward

Forward Considers executions reaching a program point
Backwards Considers executions from program point to end

129/471

Analysis: Classifications

e Forward vs. backward
Forward Considers executions reaching a program point
Backwards Considers executions from program point to end
e Must vs. May
Must Something is guaranteed to hold, and thus allows
optimization
e Onsetdomain:C=D,ie.LU=nN
May Something may hold, and thus prevents (correct)
optimization
e Onsetdomain: C=C,ie.U=U

129/471

Analysis: Classifications

e Forward vs. backward
Forward Considers executions reaching a program point
Backwards Considers executions from program point to end
e Must vs. May
Must Something is guaranteed to hold, and thus allows
optimization
e Onsetdomain:C=D,ie.LU=nN
May Something may hold, and thus prevents (correct)
optimization
e On setdomain: C=C,i.e. U =U
e Kill/Gen analysis

o Effects have form [k]* X = X mkillx U gen,
e Particular simple class. Distributive by construction.

129/471

Analysis: Classifications

e Forward vs. backward
Forward Considers executions reaching a program point
Backwards Considers executions from program point to end
e Must vs. May
Must Something is guaranteed to hold, and thus allows
optimization
e Onsetdomain:C=D,ie.LU=nN
May Something may hold, and thus prevents (correct)
optimization
e On setdomain: C=C,i.e. U =U
e Kill/Gen analysis

o Effects have form [k]* X = X mkillx U gen,
e Particular simple class. Distributive by construction.
o Bitvector analysis: Kill/Gen on finite set domain.

129/471

Analysis: Classifications

e Forward vs. backward
Forward Considers executions reaching a program point
Backwards Considers executions from program point to end
e Must vs. May
Must Something is guaranteed to hold, and thus allows
optimization
e Onsetdomain:C=D,ie.LU=nN
May Something may hold, and thus prevents (correct)
optimization
e On setdomain: C=C,i.e. U =U
e Kill/Gen analysis

o Effects have form [k]* X = X mkillx U gen,
e Particular simple class. Distributive by construction.
o Bitvector analysis: Kill/Gen on finite set domain.

e Examples:

129/471

Analysis: Classifications

e Forward vs. backward
Forward Considers executions reaching a program point
Backwards Considers executions from program point to end
e Must vs. May
Must Something is guaranteed to hold, and thus allows
optimization
e Onsetdomain:C=D,ie.LU=nN
May Something may hold, and thus prevents (correct)
optimization
e On setdomain: C=C,i.e. U =U
e Kill/Gen analysis

o Effects have form [k]* X = X mkillx U gen,
e Particular simple class. Distributive by construction.
o Bitvector analysis: Kill/Gen on finite set domain.

e Examples:
o Available expressions:

129/471

Analysis: Classifications

e Forward vs. backward
Forward Considers executions reaching a program point
Backwards Considers executions from program point to end
e Must vs. May
Must Something is guaranteed to hold, and thus allows
optimization
e Onsetdomain:C=D,ie.LU=nN
May Something may hold, and thus prevents (correct)
optimization
e On setdomain: C=C,i.e. U =U
e Kill/Gen analysis

o Effects have form [k]* X = X mkillx U gen,
e Particular simple class. Distributive by construction.
o Bitvector analysis: Kill/Gen on finite set domain.

e Examples:
o Available expressions: forward,must,kill-gen

129/471

Analysis: Classifications

e Forward vs. backward
Forward Considers executions reaching a program point
Backwards Considers executions from program point to end
e Must vs. May
Must Something is guaranteed to hold, and thus allows
optimization
e Onsetdomain:C=D,ie.LU=nN
May Something may hold, and thus prevents (correct)
optimization
e On setdomain: C=C,i.e. U =U
e Kill/Gen analysis
o Effects have form [k]* X = X mkillx U gen,
e Particular simple class. Distributive by construction.
o Bitvector analysis: Kill/Gen on finite set domain.
e Examples:

o Available expressions: forward,must,kill-gen
e Live variables:

129/471

Analysis: Classifications

e Forward vs. backward
Forward Considers executions reaching a program point
Backwards Considers executions from program point to end
e Must vs. May
Must Something is guaranteed to hold, and thus allows
optimization
e Onsetdomain:C=D,ie.LU=nN
May Something may hold, and thus prevents (correct)
optimization
e On setdomain: C=C,i.e. U =U
e Kill/Gen analysis
o Effects have form [k]* X = X mkillx U gen,
e Particular simple class. Distributive by construction.
o Bitvector analysis: Kill/Gen on finite set domain.
e Examples:

o Available expressions: forward,must,kill-gen
e Live variables: backward,may,kill-gen

129/471

Dead Assignment Elimination: Problems

Eliminating dead assignments may lead to new dead assignments

SRS € S | S ¢ SN 37
O———@® (D@ ®

130/471

Dead Assignment Elimination: Problems

Eliminating dead assignments may lead to new dead assignments

SRS O S | SRS ¢ SN 37
O———@® (D@ ®

130/471

Dead Assignment Elimination: Problems

Eliminating dead assignments may lead to new dead assignments

{ g . {xr . {xy}
® x=1 ®—}L-*’@x:1) y=1 ®

130/471

Dead Assignment Elimination: Problems

Eliminating dead assignments may lead to new dead assignments

{ g . {xr . {xy}
®—;<91—@+*@x:1) y=1 ®

130/471

Dead Assignment Elimination: Problems

Eliminating dead assignments may lead to new dead assignments

{ g . {xr . {xy}
®—;<91—@+*@x:1) y=1 ®

In a loop, a variable may keep itself alive
{x} x=x+1
x=0

{x}

130/471

Truly live registers

Idea: Consider assignment edge (u, x = e, v).

¢ [f x is not semantically live at v, the registers in e need not become live at u
e There values influence a register that is dead anyway.

131

471

Example

132/471

Example

132/471

Example

W)

— "0 ®

132/471

Example

0 o)

——0—" -0 ®

132/471

Example

132/471

Example

132/471

Example

132/471

True Liveness vs. repeated liveness

e True liveness detects more dead variables than repeated liveness

Repeated liveness:

{x} x=x+1

{x}

133/471

True Liveness vs. repeated liveness

e True liveness detects more dead variables than repeated liveness

True liveness:

{} x=x+1
x=0

{x} @

133/471

True Liveness vs. repeated liveness

e True liveness detects more dead variables than repeated liveness

True liveness:
{ =

x=0

{x} @

133/471

Live registers: Abstract effects

[[Nop]]# L= L

[Pos(e)]*
[Neg(e)]”

[x = e]”

[x := M(e)]*
[M(e1) := e2]*

L Uregs(e)

= LUregs(e)

— LU rees(e)
L\ {x}u(regs(e)

= LUregs(er)Uregs(ez)

)
)

134/471

Truly live registers: Abstract effects

[Nop]#TL=TL
[Pos(e)]* TL = TLUregs(e)
[Neg(e)]* TL = TLUregs(e)
[x =] TL=TL\ {x}U(x € TL?regs(e): 0)
[x == M(e)]* TL=TL\ {x} U (x € TL?regs(e): 0
M(ey) := 62]]# TL= TLUregs(ey) Uregs(e2)

134/471

Truly live registers: Abstract effects

[Nop]#TL=TL
[Pos(e)]* TL = TLUregs(e)
[Neg(e)]* TL = TLUregs(e)
[x =] TL=TL\ {x}U(x € TL?regs(e): 0)
[x == M(e)]* TL=TL\ {x} U (x € TL?regs(e): 0
M(ey) := 62]]# TL= TLUregs(ey) Uregs(e2)

Effects are more complicated. No kill/gen, but still distributive.

134/471

Truly live registers: Abstract effects

[Nop]#TL=TL
[Pos(e)]* TL = TLUregs(e)
[Neg(e)]* TL = TLUregs(e)
[x =] TL=TL\ {x}U(x € TL?regs(e): 0)
[x == M(e)]* TL=TL\ {x} U (x € TL?regs(e): 0
M(ey) := 62]]# TL= TLUregs(ey) Uregs(e2)

Effects are more complicated. No kill/gen, but still distributive.
We have MFP = MOP :)

134/471

True Liveness: Correct approximation

True liveness is a correct approximation of semantic liveness Live[u] C TL[u]

135/471

True Liveness: Correct approximation

True liveness is a correct approximation of semantic liveness Live[u] C TL[u]

e Proof: On whiteboard.

135/471

Table of Contents

9 Removing Superfluous Computations
Repeated Computations
Background 1: Rice’s theorem
Background 2: Operational Semantics
Available Expressions
Background 3: Complete Lattices
Fixed-Point Algorithms
Monotonic Analysis Framework
Dead Assignment Elimination
Copy Propagation
Summary

136/471

Copy propagation

Idea: Often have assignments of form r; = r».
e E.g., R = T, after redundancy elimination

137/471

Copy propagation

Idea: Often have assignments of form r; = r».

e E.g., R = T, after redundancy elimination
e In many cases, we can, instead, replace ry by r» in subsequent code

137/471

Copy propagation

Idea: Often have assignments of form r; = r».

e E.g., R = T, after redundancy elimination
e In many cases, we can, instead, replace ry by r» in subsequent code
— r becomes dead, and assignment can be eliminated

137/471

Copy propagation

Idea: Often have assignments of form r; = r».
e E.g., R = T, after redundancy elimination
e In many cases, we can, instead, replace ry by r» in subsequent code
— r becomes dead, and assignment can be eliminated
ri=Te; M[0] = r{ + 3

137/471

Copy propagation

Idea: Often have assignments of form r; = r».
e E.g., R = T, after redundancy elimination
e In many cases, we can, instead, replace ry by r» in subsequent code
— r becomes dead, and assignment can be eliminated
ri=Te; M[0] = Te + 3

137/471

Copy propagation

Idea: Often have assignments of form r; = r».
e E.g., R = T, after redundancy elimination
e In many cases, we can, instead, replace ry by r» in subsequent code
— r becomes dead, and assignment can be eliminated
Nop; M[0] = Te + 3

137/471

Copy propagation

Idea: Often have assignments of form r; = r».

e E.g., R = T, after redundancy elimination
e In many cases, we can, instead, replace ry by r» in subsequent code
— r becomes dead, and assignment can be eliminated

Analysis: Maintain an acyclic graph between registers

e Edge x — y implies p(x) = p(y) for every state reachable at u
e Assignment x = y creates edge x — y.

137/471

Copy propagation

Idea: Often have assignments of form r; = r».

e E.g., R = T, after redundancy elimination
e In many cases, we can, instead, replace ry by r» in subsequent code
— r becomes dead, and assignment can be eliminated

Analysis: Maintain an acyclic graph between registers

e Edge x — y implies p(x) = p(y) for every state reachable at u
e Assignment x = y creates edge x — y.

Transformation: Replace variables in expressions according to graph

137/471

Example

On Whiteboard

138/471

Abstract Effects

[Nop]*C = C
[Pos(e)]*C = C
[Neg(e)]*C=C
[x=y]"C=C\{x = % x = x}U{x =y} fory € Reg,y # x
[x=el*C=C\{x — %+ — x} for e € Expr \ Reg or e = x
[x = M[e]]"C = C\ {x = *,x — x}
[Mles] = e]*C=C

where {x — *,* — x} is the set of edges from/to x
Obviously, abstract effects preserve acyclicity of C
Moreover, out-degree of nodes is < 1

Abstract effects are distributive

139/471

Last Lecture

Classification of analysis

e Forward vs. backward, must vs. may, kill/gen, bitvector
e Truly live variables

o Better approximation of ,semantically life”

o |dea: Don’t care about values of variables that only affect dead variables

anyway.

Copy propagation

o Replace registers by registers with equal value, to create dead assignments
e Whole procedure: Simple redundancy elimination, then CP and DAE to
clean up

140/471

Analysis Framework

e Domain: (D = 2ReexRez 3)
e l.e.: More precise means more edges (Safe approximation: less edges)
e Join: N (Must analysis)
e Forward analysis, initial value dy = 0

— MOP[u] = "{[#]*0 | vo = u}

141

471

Analysis Framework

e Domain: (D = 2ReexRez 3)
e l.e.: More precise means more edges (Safe approximation: less edges)
e Join: N (Must analysis)
e Forward analysis, initial value dy = 0
— MOP[u] = {[~]*0 | vo & u}
e Correctness: x — y € MOP[u] = Y(p, i) € [u]. p(x) = p(y)

e Justifies correctness of transformation wrt. MOP
e Proof: Later!

141

471

Analysis Framework

e Domain: (D = 2ReexRez 3)
e l.e.: More precise means more edges (Safe approximation: less edges)
e Join: N (Must analysis)
e Forward analysis, initial value dy = 0
— MOP[u] = N{[x1*0 | vo & u}
e Correctness: x — y € MOP[u] = Y(p, i) € [u]. p(x) = p(y)

e Justifies correctness of transformation wrt. MOP
e Proof: Later!

¢ Note: Formally, domain contains all graphs.

471

Analysis Framework

e Domain: (D = 2ReexRez 3)
e l.e.: More precise means more edges (Safe approximation: less edges)
e Join: N (Must analysis)
e Forward analysis, initial value dy = 0
— MOP[u] = N{[x1*0 | vo & u}
e Correctness: x — y € MOP[u] = Y(p, i) € [u]. p(x) = p(y)

e Justifies correctness of transformation wrt. MOP
e Proof: Later!

¢ Note: Formally, domain contains all graphs.
¢ Required for complete lattice property!

471

Analysis Framework

e Domain: (D = 2ReexRez 3)
e l.e.: More precise means more edges (Safe approximation: less edges)
e Join: N (Must analysis)
e Forward analysis, initial value dy = 0
— MOP[u] = N{[x1*0 | vo & u}
e Correctness: x — y € MOP[u] = Y(p, i) € [u]. p(x) = p(y)

e Justifies correctness of transformation wrt. MOP
e Proof: Later!

¢ Note: Formally, domain contains all graphs.

o Required for complete lattice property!
e But not suited for implementation (Set of all pairs of registers)

471

Analysis Framework

e Domain: (D = 2RegxRez)
e l.e.: More precise means more edges (Safe approximation: less edges)
e Join: N (Must analysis)
e Forward analysis, initial value dy = 0

— MOP[u] = {[~]*0 | vo & u}

e Correctness: x — y € MOP[u] = Y(p,) € [u]. p(x) = p(¥)
o Justifies correctness of transformation wrt. MOP
e Proof: Later!

¢ Note: Formally, domain contains all graphs.
o Required for complete lattice property!
e But not suited for implementation (Set of all pairs of registers)
e Add L-element to domain. [k]* L := L.

471

Analysis Framework

e Domain: (D = 2ReexRez 3)
e l.e.: More precise means more edges (Safe approximation: less edges)
e Join: N (Must analysis)
e Forward analysis, initial value dy = 0

— MOP[u] = N{[x1*0 | vo & u}

e Correctness: x — y € MOP[u] = Y(p, i) € [u]. p(x) = p(y)
o Justifies correctness of transformation wrt. MOP
e Proof: Later!

¢ Note: Formally, domain contains all graphs.

o Required for complete lattice property!

e But not suited for implementation (Set of all pairs of registers)
e Add L-element to domain. [k]* L := L.

e Intuition: L means unreachable.

471

Table of Contents

9 Removing Superfluous Computations
Repeated Computations
Background 1: Rice’s theorem
Background 2: Operational Semantics
Available Expressions
Background 3: Complete Lattices
Fixed-Point Algorithms
Monotonic Analysis Framework
Dead Assignment Elimination
Copy Propagation
Summary

142/471

Procedure as a whole

@ Simple redundancy elimination
o Replaces re-computation by memorization
¢ Inserts superfluous moves
® Copy propagation
e Removes superfluous moves
e Creates dead assignments

® Dead assignment elimination

143/471

Example: a[7] — —

——0O

ri=M[a+7]

ro=rq— 1

M[a+7] = r2

144/471

Example: a[7] — —

Introduced memorization registers

(f'IH = a+t7

(flﬁ = M[T4]
(fT2= ri— 1
(frg = To
T1 = at7
M[T1]=r2

144/471

Example: a[7] — —

Eliminated redundant computations

T = a+7

ri= M[Tq]

Tp= ri- 1
%
(fNop
(fM[T1]=r2
O

144/471

Example: a[7] — —
Copy propagation done
1= a+7
= M[T4]
ri- 1

= T2

T1]1=T2

O<—O<—O<—O<—O<—O<?O

144/471

Example: a[7] — —
Eliminated dead assignments
Ty = a+7
r1= M[T¢]

To=r1— 1

144/471

Table of Contents

g Abstract Interpretation

145/471

Background: Simulation

e Given:

146/471

Background: Simulation

e Given:
e Concrete values C, abstract values D, actions A

146/471

Background: Simulation

e Given:

e Concrete values C, abstract values D, actions A
e |Initial values cg € C, dy € D

146/471

Background: Simulation

e Given:
e Concrete values C, abstract values D, actions A
e Initial values ¢ € C, dp € D
e Concrete effects [a] : C — C, abstract effects [a]* : D — D
e With forward-generalization to paths: [k1 ... ka] = [kn] o ... o [k¢] and
ki ... k] = [kl * o ... 0 [K]"

146/471

Background: Simulation

e Given:
Concrete values C, abstract values D, actions A
e [nitial values ¢y € C, dp € D
e Concrete effects [a] : C — C, abstract effects [a]* : D — D
o With forward-generalization to paths: [ki ... kn] = [kn] o ... o [k1] and
ki ... k] = [kl * o ... 0 [K]"
Relation ACC x D

146/471

Background: Simulation

e Given:
e Concrete values C, abstract values D, actions A
e [nitial values ¢y € C, dp € D
e Concrete effects [a] : C — C, abstract effects [a]* : D — D
o With forward-generalization to paths: [ki ... kn] = [kn] o ... o [k1] and
ki ... k] = [kl * o ... 0 [K]"
e Relation ACC x D

e Assume:

146/471

Background: Simulation

e Given:
e Concrete values C, abstract values D, actions A
e Initial values cp € C, dy € D
e Concrete effects [a] : C — C, abstract effects [a]* : D — D
o With forward-generalization to paths: [ki ... kn] = [kn] o ... o [k1] and
ki ... k] = [kl * o ... 0 [K]"
e Relation ACC x D
e Assume:
e Initial values in relation: ¢y A dp

146/471

Background: Simulation

e Given:
e Concrete values C, abstract values D, actions A
e [nitial values ¢p € C, dp € D
e Concrete effects [a] : C — C, abstract effects [a]* : D — D
o With forward-generalization to paths: [ki ... kn] = [kn] o ... o [k1] and
ki ... k] = [kl * o ... 0 [K]"
e Relation ACC x D
e Assume:
e Initial values in relation: ¢y A dy
« Relation preserved by effects: ¢ A d = [k]c A [k]"d

146/471

Background: Simulation

e Given:
e Concrete values C, abstract values D, actions A
e [nitial values ¢p € C, dp € D
e Concrete effects [a] : C — C, abstract effects [a]* : D — D
o With forward-generalization to paths: [ki ... kn] = [kn] o ... o [k1] and
ki ... k] = [kl * o ... 0 [K]"
e Relation ACC x D
e Assume:
e Initial values in relation: ¢y A dy
« Relation preserved by effects: ¢ A d = [k]c A [k]"d

« Get: Relation preserved by paths from initial values: [x]co A [«]* db

146/471

Background: Simulation

Given:
e Concrete values C, abstract values D, actions A
e [nitial values ¢p € C, dp € D
e Concrete effects [a] : C — C, abstract effects [a]* : D — D
o With forward-generalization to paths: [ki ... kn] = [kn] o ... o [k1] and
ki ... k] = [kl * o ... 0 [K]"
e Relation ACC x D
Assume:
e Initial values in relation: ¢y A dy
« Relation preserved by effects: ¢ A d = [k]c A [k]"d

Get: Relation preserved by paths from initial values: [x]co A [7]* db
Proof: Straightforward induction on paths. On whiteboard!

146/471

Background: Description relation
e Now: ¢ A d — Concrete value ¢ described by abstract value d

147/471

Background: Description relation

e Now: ¢ A d — Concrete value ¢ described by abstract value d
e Moreover, assume complete lattices on C and D.
e Intuition: x C x’ — x is more precise than x’

147/471

Background: Description relation

e Now: ¢ A d — Concrete value ¢ described by abstract value d
e Moreover, assume complete lattices on C and D.
e Intuition: x C x’ — x is more precise than x’

e Assume A to be monotonic on abstract values:

cAdANdCd = cAd

e Intuition: Less precise abstract value still describes concrete value

147/471

Background: Description relation

e Now: ¢ A d — Concrete value ¢ described by abstract value d
e Moreover, assume complete lattices on C and D.
e Intuition: x C x’ — x is more precise than x’

e Assume A to be monotonic on abstract values:

cAdANdCd = cAd

e Intuition: Less precise abstract value still describes concrete value
e Assume A to be distributive on concrete values:

(veeC.cAd) « (| |C)Ad

¢ Note: Implies anti-monotonicity: ¢ CcAcAd — ¢ Ad
¢ Intuition: More precise concrete values still described by abstract value

147/471

Background: Description relation

e Now: ¢ A d — Concrete value ¢ described by abstract value d
e Moreover, assume complete lattices on C and D.
e Intuition: x C x’ — x is more precise than x’

e Assume A to be monotonic on abstract values:

cAdANdCd = cAd

e Intuition: Less precise abstract value still describes concrete value
e Assume A to be distributive on concrete values:

(veeC.cAd) « (| |C)Ad

¢ Note: Implies anti-monotonicity: ¢ CcAcAd — ¢ Ad
¢ Intuition: More precise concrete values still described by abstract value

o We get for all sets of paths P:

(¥r € P. [xloo &[] do) = (|] [x]co) & (|] [x]" o)

weP neP
¢ Intuition: Concrete values due to paths P described by abstract values

147 /471

Application to Program Analysis

e Concrete values: Sets of states with C
o Intuition: Less states = more precise information

148/471

Application to Program Analysis

e Concrete values: Sets of states with C
o Intuition: Less states = more precise information
e Concrete effects: Effects of edges (generalized to sets of states)
* [KIC := U, ,yecnaompq [KI(p, 1), i.e., don't include undefined effects

148/471

Application to Program Analysis

e Concrete values: Sets of states with C

o Intuition: Less states = more precise information
e Concrete effects: Effects of edges (generalized to sets of states)

* [KIC := U, ,yecnaompq [KI(p, 1), i.e., don't include undefined effects
e Concrete initial values: All states: ¢; = State

148/471

Application to Program Analysis

Concrete values: Sets of states with C
o Intuition: Less states = more precise information
e Concrete effects: Effects of edges (generalized to sets of states)
* [KIC := U, ,yecnaompq [KI(p, 1), i.e., don't include undefined effects
Concrete initial values: All states: ¢; = State
Abstract values: Domain of analysis, abstract effects: [k]*, do

148/471

Application to Program Analysis

Concrete values: Sets of states with C
o Intuition: Less states = more precise information
e Concrete effects: Effects of edges (generalized to sets of states)
* [KIC := U, ,yecnaompq [KI(p, 1), i.e., don't include undefined effects
Concrete initial values: All states: ¢; = State
Abstract values: Domain of analysis, abstract effects: [k]*, do
e Description relation: States described by abstract value
e Usually: Define A on single states, and lift to set of states:

SAAiffVY(p,u) € S. (p,u) AA

o This guarantees distributivity in concrete states

148/471

Application to Program Analysis

Concrete values: Sets of states with C
o Intuition: Less states = more precise information
e Concrete effects: Effects of edges (generalized to sets of states)
* [KIC := U, ,yecnaompq [KI(p, 1), i.e., don't include undefined effects
Concrete initial values: All states: ¢; = State
Abstract values: Domain of analysis, abstract effects: [k]*, do
e Description relation: States described by abstract value
e Usually: Define A on single states, and lift to set of states:

SAAiffVY(p,u) € S. (p,u) AA

o This guarantees distributivity in concrete states
We get: [u] A MOP[y]
o All states reachable at u described by analysis result at u.

148/471

Example: Available expressions

e Recall: D = (25, D)

149/471

Example: Available expressions

e Recall: D = (25, D)
o Define: (p,u) A Aiff Ve € A. [€]p = p(Te)

149/471

Example: Available expressions

e Recall: D = (25, D)
o Define: (p,u) A Aiff Ve € A. [€]p = p(Te)
o Prove: ADA A(p,pu) AA = (p,u) A A

149/471

Example: Available expressions

Recall: D = (25, D)
Define: (p,) A Aiff Ve € A. [€e]lp = p(Te)
Prove: AD A A (p,u) AA = (p,pu) A A

Prove: (p,) A A = [al(p, 1) = [tr(a, A)(p, 1)
tr(Te=e,A) =ifec AthenNopelse Te = e |
tr(a,A) =a

e where

149/471

Example: Available expressions

Recall: D = (25, D)

Define: (p,) A Aiff Ve € A. [€e]lp = p(Te)

Prove: AD A A (p,u) AA = (p,pu) A A

Prove: (p,) A A = [al(p, 1) = [tr(a, A)(p, 1)

tr(Te=e,A) =ifec AthenNopelse Te = e |
tr(a,A) =a

e Transformation in CFG: (u, a, v) — (u,tr(a, A[u]), v)

e where

149/471

Example: Available expressions

Recall: D = (25, D)
Define: (p,) A Aiff Ve € A. [€e]lp = p(Te)
Prove: AD A A (p,u) AA = (p,pu) A A
Prove: (p,) A A = [al(p, 1) = [tr(a, A)(p, 1)
tr(Te=e,A) =ifec AthenNopelse Te = e |
tr(a,A) =a

e Transformation in CFG: (u, a, v) — (u,tr(a, A[u]), v)
Prove: Vpo, 0. (po, t10) A do

e For AE, we have dy = @, which implies the above.

e where

149/471

Example: Available expressions

e Recall: D = (25, D)
o Define: (p,u) A Aiff Ve € A. [€]p = p(Te)
o Prove: ADA A(p,pu) AA = (p,u) A A
e Prove: (p,u) A A = [al(p, 1) = [tr(a, A)(p, 1)
tr(Te=e,A) =ifec AthenNopelse Te = e |
tr(a,A) =a
e Transformation in CFG: (u, a, v) — (u,tr(a, A[u]), v)
e Prove: Vpo, p10. (po, t0) A do
e For AE, we have dy = @, which implies the above.

e Prove: (p, 1) € dom[K] A (p, 1) A D = [K](p, 1) A [K]*D

e where

149/471

Example: Available expressions

e Recall: D = (25, D)
o Define: (p,u) A Aiff Ve € A. [€]p = p(Te)
o Prove: ADA A(p,pu) AA = (p,u) A A
e Prove: (p,u) A A = [al(p, 1) = [tr(a, A)(p, 1)
tr(Te=e,A) =ifec AthenNopelse Te = e |
tr(a,A) =a
e Transformation in CFG: (u, a, v) — (u,tr(a, A[u]), v)
e Prove: Vpo, p10. (po, t0) A do
e For AE, we have dy = J, which implies the above.
« Prove: (p, 1) € dom[K] A (p, 1)) A D = [K](p,) A [K]*D
Get: [u] A MOP[u], thus [u] A MFP[u]
e Which justifies correctness of transformation wrt. MFP

e where

149/471

Example: Copy propagation

° (D, E) — (2Reg><Reg’ 2)

150/471

Example: Copy propagation

(D.C) = (2he<Res,)

(p.1) A Cift ¥(x = y) € C. p(x) = p(y)

150/471

Example: Copy propagation

° (]D), E) — (2Reg><Reg’ 2)

o (p.u) A Cift¥(x — y) € C. p(x) = p(y)
e Monotonic for abstract values.

150/471

Example: Copy propagation

° (]D), E) — (2Reg><Reg’ 2)

° (p"u) A Ciff V(X — y) e C. p(X) = p(y)

¢ Monotonic for abstract values.
e tr(a, C): Replace variables in expressions due to edges in C

150/471

Example: Copy propagation

° (]D), E) — (2Reg><Reg’ 2)
o (p.u) A Cift¥(x — y) € C. p(x) = p(y)
e Monotonic for abstract values.
e tr(a, C): Replace variables in expressions due to edges in C

* (p,n) A C = [al(p, p) = [tr(a. C)](p; 1)
o Replace variables by equal variables

150/471

Example: Copy propagation

° (]D), E) — (2Reg><Reg’ 2)

° (p"u) A Ciff V(X — y) e C. p(X) = p(y)

e Monotonic for abstract values.
e tr(a, C): Replace variables in expressions due to edges in C
* (p,n) A C = [al(p, p) = [tr(a. C)](p; 1)

o Replace variables by equal variables

e dy = (). Obviously (po, 10) A 0 for all pg, 0.

150/471

Example: Copy propagation

° (]D), E) — (2Reg><Reg’ 2)

° (p,‘u) A Ciff V(X — y) e C. p(X) = p(y)

e Monotonic for abstract values.
e tr(a, C): Replace variables in expressions due to edges in C
* (p,n) A C = [al(p, p) = [tr(a. C)](p; 1)

o Replace variables by equal variables

e dy = (). Obviously (po, 10) A 0 for all pg, 0.
« Show (p, 1) € dom[K] A (p, 1) A C = [K](p,) & [K]*C

150/471

Example: Copy propagation

° (]D), E) — (2Reg><Reg’ 2)

° (p,‘u) A Ciff V(X — y) e C. p(X) = p(y)

e Monotonic for abstract values.
e tr(a, C): Replace variables in expressions due to edges in C
* (p,n) A C = [al(p, p) = [tr(a. C)](p; 1)

o Replace variables by equal variables

e dy = (). Obviously (po, 10) A 0 for all pg, 0.

o Show (p,) € dom[[K] A (p, 1) A C = [K](p,) A [K]*C
e Assume (IH) V(x — y) € C. p(x) = p(¥)

150/471

Example: Copy propagation

° (]D), E) — (2Reg><Reg’ 2)

° (p,‘u) A Ciff V(X — y) e C. p(X) = p(y)

e Monotonic for abstract values.
e tr(a, C): Replace variables in expressions due to edges in C
* (p,n) A C = [al(p, p) = [tr(a. C)](p; 1)

o Replace variables by equal variables

e dy = (). Obviously (po, 10) A 0 for all pg, 0.
« Show (p, 1) € dom[K] A (p, 1) A C = [K](p,) & [K]*C

e Assume (IH) V(x — y) € C. p(x) = p(¥)
o Assume (1) (o', 1) = [KI(p,) and (2) x — y € [K]*C

150/471

Example: Copy propagation

° (]D), E) — (2Reg><Reg’ 2)

° (p,‘u) A Ciff V(X — y) e C. p(X) = p(y)

e Monotonic for abstract values.
e tr(a, C): Replace variables in expressions due to edges in C
* (p,n) A C = [al(p, p) = [tr(a. C)](p; 1)

o Replace variables by equal variables

e dy = (). Obviously (po, 10) A 0 for all pg, 0.

« Show (p, 1) € dom[K] A (p, 1) A C = [K](p,) & [K]*C
e Assume (IH) V(x — y) € C. p(x) = p(¥)
o Assume (1) (o', i) = [KI(p,) and (2) x — y € [K]*C
e Show p'(x) = p'(y)

150/471

Example: Copy propagation

° (]D), E) — (2Reg><Reg’ 2)

° (p,‘u) A Ciff V(X — y) e C. p(X) = p(y)

e Monotonic for abstract values.
e tr(a, C): Replace variables in expressions due to edges in C
* (p,n) A C = [al(p, p) = [tr(a. C)](p; 1)

o Replace variables by equal variables

e dy = (). Obviously (po, 10) A 0 for all pg, 0.

« Show (p, 1) € dom[K] A (p, 1) A C = [K](p,) & [K]*C
e Assume (IH) V(x — y) € C. p(x) = p(¥)
o Assume (1) (o', 1) = [K](p,) and (2) x — y € [k]*C

e Show p'(x) = p'(y)
e By case distinction on k. On whiteboard.

150/471

Table of Contents

9 Abstract Interpretation
Constant Propagation
Interval Analysis

151/471

Constant Propagation: Idea

o Compute constant values at compile time
e Eliminate unreachable code

152/471

Constant Propagation: Idea

o Compute constant values at compile time
e Eliminate unreachable code

152/471

Constant Propagation: Idea

o Compute constant values at compile time
e Eliminate unreachable code

152/471

Constant Propagation: Idea

o Compute constant values at compile time
e Eliminate unreachable code

e Dead-code elimination afterwards to clean up (assume y not interesting)

152/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u

153/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

153/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

e |Intuition: T — don’t know value of register

153/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

e |Intuition: T — don’t know value of register
e D= (Reg—~Z")

153/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

e |Intuition: T — don’t know value of register

e D= (Reg—Z")U{Ll}
e Add a bottom-element

153/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

e |Intuition: T — don’t know value of register
e D= (Reg—Z")U{Ll}
e Add a bottom-element

e Intuition: 1. — program point not reachable

153/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

e |Intuition: T — don’t know value of register
e D= (Reg—Z")U{Ll}
e Add a bottom-element

e Intuition: 1. — program point not reachable

e Ordering: Pointwise ordering on functions, | being the least element.

153/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

e |Intuition: T — don’t know value of register
D= (Reg —Z")U{L}
e Add a bottom-element
e Intuition: 1. — program point not reachable
Ordering: Pointwise ordering on functions, | being the least element.
(D, C) is complete lattice

153/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

e |Intuition: T — don’t know value of register
e D= (Reg—Z")U{Ll}
e Add a bottom-element
e Intuition: 1. — program point not reachable
e Ordering: Pointwise ordering on functions, | being the least element.
e (D,C) is complete lattice

e Examples

153/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

e |Intuition: T — don’t know value of register
e D= (Reg—Z")U{Ll}
e Add a bottom-element
e Intuition: 1. — program point not reachable
e Ordering: Pointwise ordering on functions, | being the least element.
e (D,C) is complete lattice
e Examples
e Dlu] = L:

153/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

e |Intuition: T — don’t know value of register
e D= (Reg—Z")U{Ll}
e Add a bottom-element
e Intuition: 1. — program point not reachable
e Ordering: Pointwise ordering on functions, | being the least element.
e (D,C) is complete lattice
e Examples
e D[u] = L: unot reachable

153/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

e |Intuition: T — don’t know value of register
e D= (Reg—Z")U{Ll}
e Add a bottom-element
e Intuition: 1. — program point not reachable
e Ordering: Pointwise ordering on functions, | being the least element.
e (D,C) is complete lattice
e Examples
e D[u] = L: unot reachable
e Dlul={x— T,y 5}

153/471

Approach

e Idea: Store, for each register, whether it is definitely constant at u
e Assign each register a value from z"

e |Intuition: T — don’t know value of register
e D= (Reg—Z")U{Ll}
e Add a bottom-element
e Intuition: 1. — program point not reachable
e Ordering: Pointwise ordering on functions, | being the least element.
e (D,C) is complete lattice
e Examples

e D[u] = L: unot reachable
e Dlu] ={x— T,y 5}: yisalways 5 at u, nothing known about x

153/471

Abstract evaluation of expressions

e For concrete operator O : Z x Z — 7Z, we define abstract operator
O#:.2" x72" - 7Z7:

TO#x:=T
xOFT:=T
xO%y :=x0Oy

154/471

Abstract evaluation of expressions

e For concrete operator O : Z x Z — 7Z, we define abstract operator
O#:.2" x72" - 7Z7:

TO#x:=T
xOFT:=T
xO%y :=x0Oy

o Evaluate expression wrt. abstract values and operators:
[e]” : (Reg — ZT) — 27

[c]*D:=¢c for constant ¢
[r]7 D := D(r) for register r
[e: O ex]” D := [e:]* DO# [e2]* D for operator OJ

154/471

Abstract evaluation of expressions

e For concrete operator O : Z x Z — 7Z, we define abstract operator
O#:.2" x72" - 7Z7:

TO#x:=T
xOFT:=T
xO%y :=x0Oy

o Evaluate expression wrt. abstract values and operators:
[e]” : (Reg — ZT) — 27

[c]*D:=¢c for constant ¢
[r]7 D := D(r) for register r
[e: O ex]” D := [e:]* DO# [e2]* D for operator OJ

Analogously for unary, ternary, etc. operators

154/471

Example

e Example: D = {x — T,y — 5}

155/471

Example

e Example: D = {x — T,y — 5}

Iy - 81D = [yl*D —* [3]*D
=5_-#3
—2

155/471

Example

e Example: D = {x — T,y — 5}

Iy - 81D = [yl*D —* [3]*D
=5_-#3
—2

[x+y]"D = [xX]"D+* [y]"D
=T+#5
=T

155/471

Abstract effects (forward)

[k]*L =1 for any edge k
[Nop]*D:= D
_JL ifle*D=0
[Pos(e)]” := {D otherwise
L iflel*D=v,vez\{0}
INeg(e)]” := {D otherwise
[r = e]* D := D(r — [e]” D)
[r = M[e]]* D := D(r — T)

[M[e] = e;]*D:=D

For D # 1.

156/471

Abstract effects (forward)

[k]*L =1 for any edge k
[Nop]*D:= D
_JL ifle*D=0
[Pos(e)]” := {D otherwise
4 |L ifle]l*D=v,vez\{0}
[Neg(e)]™ = {D otherwise
[r = e]* D := D(r — [e]” D)
[r = M[e]]* D := D(r — T)
[M[es] = e2]*D:= D
For D # 1.

Initial value at start: dy := Ax. T.

156/471

Abstract effects (forward)

[k]*L =1 for any edge k
[Nop]*D:= D
Pos(e)]* — 1L if[e]*D=0
"~ | D otherwise

Neg(e)]* = {L it [e]*D=v,vez\{0}

D otherwise
[r = e]* D := D(r s [e]* D)
[r = M[e]]* D := D(r — T)
[Mei] = e2]*D:= D
For D # 1.

Initial value at start: dy := Ax. T.
(Reachable, all variables have unknown value)

156/471

Last lecture

Simulation based framework for program analysis
Abstract setting:
o Actions preserve relation A between concrete and abstract state.
— States after executing path are related
o Approximation: Complete lattice structure
e A monotonic
e Distributive = generalization to sets of path
For program analysis:
o Concrete state: Sets of program states
o All states reachable via path.

e Constant propagation

157/471

Example

158/471

Example

D] = x—T,y—T

158/471

Example

D[1]
D[2]

X—T,y—T
X— T,y—3

158/471

Example

D] = x—T,y—T
D2] = x— T,y—3
D8] = x— T,y—3

158/471

Example

D[1]
D[2]
D[3]
D[4]

X—=T,y—=T
X— T,y—3
X—T,y—3
X— T,y—3

158/471

Example

D[1]
D[2]
D[3]
D[4]
D[5]

X—T,y—T
X— T,y—3
X—T,y—3
X— T,y—3
X—T,y—3

158/471

Example

D[1]
D[2]
D[3]
D[4]
D[5]
D[6]

X—T,y—T
X— T,y—3
X—T,y—3
X— T,y—3
X—T,y—3
X—T,y—5

158/471

Example

D[1]
D[2]
D[3]
D[4]
D[5]
D[6]
D[7]

X—T,y—T

X— T,y—3

X—T,y—3

X— T,y—3

X—T,y—3

X—T,y—5
€

158/471

Example

D[1]
D[2]
D[3]
D[4]
D[5]
D[6]
D[7]
D[g] =

X—T,y—T
X— T,y—3
X—T,y—3
X— T,y—3
X—T,y—3
X—T,y—5

X—T,y—5

158/471

Example

D] = x—T,y—T
D2] = x— T,y—3
D8] = x— T,y—3
D4] = x—T,y—3
D[] = x— T,y—3
D[6] = x— T,y—5
D[7] = €

D8] = x— T,y—5

Transformations:

Remove (u, a, v) if D[u] = L or D[v] = L

158/471

Example

D] = x—T,y—T
D2] = x— T,y—3
D8] = x— T,y—3
D4] = x—T,y—3
D[] = x— T,y—3
D[6] = x— T,y—5
D[7] = €

D8] = x— T,y—5

Transformations:

Remove (u, a, v) if D[u] = L or D[v] = L
(u,r=e,v)— (u,r=c,v)if [e]*(D[u]) = c e Z

158/471

Example

D] = x—T,y—T
D2] = x— T,y—3
D8] = x— T,y—3
D4] = x—T,y—3
D[] = x— T,y—3
D[6] = x— T,y—5
D[7] = €

D8] = x— T,y—5

Transformations:

Remove (u, a, v) if D[u] = L or D[v] = L
(u,r=e,v)— (u,r=c,v)if [e]*(D[u]) = c e Z
Analogously for test, load, store

158/471

Example

D] = x—T,y—T
D2] = x— T,y—3
D8] = x— T,y—3
D4] = x—T,y—3
D[] = x— T,y—3
D[6] = x— T,y—5
D[7] = €

D8] = x— T,y—5

Transformations:

Remove (u, a, v) if D[u] = L or D[v] = L

(u,r=e,v)— (u,r=c,v)if [e]*(D[u]) = c e Z
Analogously for test, load, store

(u,Pos(c),v) — Nopifc e Z\ {0}

158/471

Example

D] = x—T,y—T
D2] = x— T,y—3
D8] = x— T,y—3
D4] = x—T,y—3
D[] = x— T,y—3
D[6] = x— T,y—5
D[7] = €

D8] = x— T,y—5

Transformations:

Remove (u, a, v) if D[u] = L or D[v] = L

(u,r=e,v)— (u,r=c,v)if [e]*(D[u]) = c e Z
Analogously for test, load, store

(u,Pos(c),v) — Nopifc e Z\ {0}

(u,Neg(0), v) — Nop

158/471

Correctness (Description Relation)

o Establish description relation
e Between values, valuations, states

159/471

Correctness (Description Relation)

o Establish description relation
e Between values, valuations, states
e Values:forveZ:vAvandv AT
e Value described by same value, all values described by T

159/471

Correctness (Description Relation)

o Establish description relation
e Between values, valuations, states
e Values:forveZ:vAvandv AT

e Value described by same value, all values described by T
¢ Note: Monotonic,i.e. vVAdAJCd = vAd

e Onlycases: d = d’ or d’ = T (flat ordering).

159/471

Correctness (Description Relation)

o Establish description relation
e Between values, valuations, states
e Values:forveZ:vAvandv AT

e Value described by same value, all values described by T
¢ Note: Monotonic,i.e. vVAdAJCd = vAd

e Onlycases: d = d’ or d’ = T (flat ordering).
e Valuations: For p : Reg — Z, p7 : Reg — Z": p A p* iff Vx. p(x) A p7(x)
o Value of each variable must be described.
e Note: Monotonic. (Same point-wise definition as for C)

159/471

Correctness (Description Relation)

o Establish description relation
e Between values, valuations, states
Values:forveZ:vAvandv AT

e Value described by same value, all values described by T
¢ Note: Monotonic,i.e. vVAdAJCd = vAd

e Onlycases: d = d’ or d’ = T (flat ordering).
e Valuations: For p : Reg — Z, p7 : Reg — Z": p A p* iff Vx. p(x) A p7(x)
o Value of each variable must be described.
¢ Note: Monotonic. (Same point-wise definition as for C)
States: (p, 1) A p¥ if p A p?* and Vs. ~(s A 1)

o Bottom describes no states (i.e., empty set of states)
e Note: Monotonic. (Only newcase:s A LA L Cd = sAd)

159/471

Correctness (Abstract values)

 Show: For every constant ¢ and operator [J, we have

cAc*
viAdiAve Adr — (V1|:|V2)A(d1|:|#d2)

160/471

Correctness (Abstract values)

 Show: For every constant ¢ and operator [J, we have

cAc*
viAdiAve Adr — (V1|:|V2)A(d1|:|#d2)

e We get (by induction on expression)

p D p* = [elp A [e]”p*

160/471

Correctness (Abstract values)

e Show: For every constant ¢ and operator [J, we have

cAc*
viAdiAve Adr — (V1|:|V2)A(d1|:|#d2)

e We get (by induction on expression)
p D p* = [elp A [e]”p*

e Moreover, show Vpo, 10. (po, to) A do
* Here: Vpo, po. (po, o) A Ax. T

160/471

Correctness (Abstract values)

e Show: For every constant ¢ and operator [J, we have

cAc*
viAdiAve Adr — (V1|:|V2)A(d1|:|#d2)

e We get (by induction on expression)
p D p* = [elp A [e]”p*
e Moreover, show Vpo, 10. (po, to) A do

* Here: Vpo, po. (po, o) A Ax. T
— o AMX. T

160/471

Correctness (Abstract values)

e Show: For every constant ¢ and operator [J, we have

cAc*
viAdiAve Adr — (V1|:|V2)A(d1|:|#d2)

e We get (by induction on expression)
p D p* = [elp A [e]”p*

e Moreover, show Vpo, 10. (po, to) A do

e Here: Vpo, po. (po, o) A Ax. T
— po AXX. T
<= Vx. po(x) A T. Holds by definition.

160/471

Correctness (Of Transformations)

o Assume (p, 1) A p*. Show [a](p, 1) = [tr(a, p*)1(p, 1)

161/471

Correctness (Of Transformations)

o Assume (p, 1) A p*. Show [a](p, 1) = [tr(a, p*)1(p, 1)
e Remove edge if p* = L. Trivial.

161/471

Correctness (Of Transformations)

o Assume (p, 1) A p*. Show [a](p, 1) = [tr(a, p*)1(p, 1)
¢ Remove edge if p* = L. Trivial.

o Replace r = eby r = [e]*p” if [e]*p" # T
o Fromp A p# — [e]p A [e]*p* —> [elp = [e]” p*

161/471

Correctness (Of Transformations)

o Assume (p, 1) A p*. Show [a](p, 1) = [tr(a, p*)1(p, 1)
¢ Remove edge if p* = L. Trivial.

o Replace r = eby r = [e]*p” if [e]*p" # T

o Fromp A p# — [e]p A [e]*p* —> [elp = [e]” p*
e Analogously for expressions in load, store, Neg, Pos.

161/471

Correctness (Of Transformations)

o Assume (p, u) A& p*. Show [a](p, 1) = [tr(a. p*)](p, 11)
¢ Remove edge if p* = L. Trivial.
o Replace r = eby r = [e]*p” if [e]*p" # T
o Fromp A p# — [e]p A [e]*p# = [e]p = [e]* p*
e Analogously for expressions in load, store, Neg, Pos.
e Replace tests on constants by Nop: Obviously correct.
e Does not depend on analysis result.

161/471

Correctness (Steps)

e Assume (o', ') = [K](p, 12) and (p, 1) A C. Show (o', ') A [K]*C.

162/471

Correctness (Steps)

o Assume (o', ') = [K](p, 12) and (p, 1) A C. Show (o', ') A [K]*C.
By case distinction on k. Assume p* := C # L.
e Note: We have p A p#

162/471

Correctness (Steps)

e Assume (¢, 1) = [K](p, 1) and (p, 1) A C. Show (o', 1') A [K]* C.
By case distinction on k. Assume p* := C # L.
e Note: We have p A p#
e Case k = (u,x = e, v): To show p(x := [€]p) A p” (x := [e]" p¥)

162/471

Correctness (Steps)

e Assume (¢, 1) = [K](p, 1) and (p, 1) A C. Show (o', 1') A [K]* C.
By case distinction on k. Assume p* := C # L.
e Note: We have p A p#
e Case k = (u,x = e, v): To show p(x := [€]p) A p” (x := [e]" p¥)
<~ [elp A [e]” p#. Already proved.

162/471

Correctness (Steps)

e Assume (¢, 1) = [K](p, 1) and (p, 1) A C. Show (o', 1') A [K]* C.
By case distinction on k. Assume p* := C # L.
e Note: We have p A p#
e Case k = (u,x = e, v): To show p(x := [€]p) A p” (x := [e]" p¥)
<~ [elp A [e]” p#. Already proved.
e Case k = (u,Pos(e), v) and [e]” p* = 0:

162/471

Correctness (Steps)

e Assume (¢, 1) = [K](p, 1) and (p, 1) A C. Show (o', 1') A [K]* C.
By case distinction on k. Assume p* := C # L.
e Note: We have p A p#
e Case k = (u,x = e, v): To show p(x := [€]p) A p” (x := [e]" p¥)
<~ [elp A [e]” p#. Already proved.
e Case k = (u,Pos(e), v) and [e]” p* = 0:
e From [e]p A [e]” p*, we have [e]p = 0

162/471

Correctness (Steps)

e Assume (¢, 1) = [K](p, 1) and (p, 1) A C. Show (o', 1') A [K]* C.
By case distinction on k. Assume p* := C # L.
e Note: We have p A p#
e Case k = (u,x = e, v): To show p(x := [€]p) A p” (x := [e]" p¥)
<~ [elp A [e]” p#. Already proved.
e Case k = (u,Pos(e), v) and [e]” p* = 0:

e From [e]p A [e]*p#, we have [e]p = 0
e Hence, [Pos(e)](p, #) = undefined. Contradiction to assumption.

162/471

Correctness (Steps)

e Assume (¢, 1) = [K](p, 1) and (p, 1) A C. Show (o', 1') A [K]* C.
By case distinction on k. Assume p* := C # L.
e Note: We have p A p#
e Case k = (u,x = e, v): To show p(x := [€]p) A p” (x := [e]" p¥)
<~ [elp A [e]” p#. Already proved.
e Case k = (u,Pos(e), v) and [e]” p* = 0:

e From [e]p A [e]*p#, we have [e]p = 0
e Hence, [Pos(e)](p, #) = undefined. Contradiction to assumption.

o Other cases: Analogously.

162/471

Correctness (Steps)

o Assume (o', ') = [K](p, 12) and (p, 1) A C. Show (o', ') A [K]*C.
By case distinction on k. Assume p* := C # L.
e Note: We have p A p#

e Case k = (u,x = e, v): To show p(x := [€]p) A p” (x := [e]" p¥)
<~ [elp A [e]” p#. Already proved.
e Case k = (u,Pos(e), v) and [e]” p* = 0:

e From [e]p A [e]*p#, we have [e]p = 0
e Hence, [Pos(e)](p, #) = undefined. Contradiction to assumption.

o Other cases: Analogously.
o Our general theory gives us: [u] A MFP[u]
e Thus, transformation wrt. MFP is correct.

162/471

Constant propagation: Caveat

e Abstract effects are monotonic

163/471

Constant propagation: Caveat

e Abstract effects are monotonic
o Unfortunately: Not distributive

163/471

Constant propagation: Caveat

e Abstract effects are monotonic
o Unfortunately: Not distributive
o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}

163/471

Constant propagation: Caveat

o Abstract effects are monotonic

o Unfortunately: Not distributive
o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}
e Have: pf U pjé =

163/471

Constant propagation: Caveat

o Abstract effects are monotonic

o Unfortunately: Not distributive
o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}
o Have: pff Upf = {x— T,y T}

163/471

Constant propagation: Caveat

o Abstract effects are monotonic

o Unfortunately: Not distributive
o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}
o Have: pff Upf = {x— T,y T}
o le[x=x+yl*(pf Up}) =

163/471

Constant propagation: Caveat

o Abstract effects are monotonic

o Unfortunately: Not distributive
o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}
o Have: pff Upf = {x— T,y T}
e le:x=x+y[*(Tup)={x— T,y =T}

163/471

Constant propagation: Caveat

o Abstract effects are monotonic
o Unfortunately: Not distributive
o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}
o Have: pff Upf = {x— T,y T}
e le:x=x+y[*(Tup)={x— T,y =T}
o However: [x = x + y]*(p?) = and
[x = x+ y1* (of) =

163/471

Constant propagation: Caveat

o Abstract effects are monotonic
o Unfortunately: Not distributive
o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}
o Have: pff Upf = {x— T,y T}
e le:x=x+y[*(Tup)={x— T,y =T}
o However: [x = x + y]*(p¥) = {x = 5,y ~— 2} and
[x = x + yI* (o) =

163/471

Constant propagation: Caveat

o Abstract effects are monotonic
o Unfortunately: Not distributive
o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}
o Have: pff Upf = {x— T,y T}
e le:x=x+y[*(Tup)={x— T,y =T}
o However: [x = x + y]*(p¥) = {x = 5,y ~— 2} and
[x = x + yI*(p5) = {x = 5,y — 3}

163/471

Constant propagation: Caveat

o Abstract effects are monotonic
o Unfortunately: Not distributive
o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}
o Have: pff Upf = {x— T,y T}
e le:x=x+y[*(Tup)={x— T,y =T}
o However: [x = x + y]*(p¥) = {x = 5,y ~— 2} and
[x = x + yI*(p5) = {x = 5,y — 3}
o Lea[x = x+ YIF (o) Ulx = x + y1¥ () =

163/471

Constant propagation: Caveat

o Abstract effects are monotonic
o Unfortunately: Not distributive
o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}
o Have: pff Upf = {x— T,y T}
e le:x=x+y[*(Tup)={x— T,y =T}
o However: [x = x + y]*(p¥) = {x = 5,y ~— 2} and
[x = x + yI*(p5) = {x = 5,y — 3}
o Lea[x = x+ Y (o) Ulx = x + I (o) = {x = 5.y = T}

163/471

Constant propagation: Caveat

e Abstract effects are monotonic
o Unfortunately: Not distributive

o Consider pi* = {x — 3,y + 2} and p} = {x — 2,y ~ 3}

o Have: pff Upf = {x— T,y T}

e le:x=x+yl*(pfupf)={x— T,y T}

o However: [x = x + y]*(p¥) = {x = 5,y ~— 2} and

[x = x + yI*(p5) = {x = 5,y — 3}

o lei[x=x+yI" () Ulx =x+y1"(p}) = {x = 5,y — T}

e Thus, MFP only approximation of MOP in general.

163/471

Undecidability of MOP

e MFP only approximation of MOP

164/471

Undecidability of MOP

e MFP only approximation of MOP
e And there is nothing we can do about :(

Theorem
For constant propagation, it is undecidable whether MOP[u](x) = T.

164/471

Undecidability of MOP

e MFP only approximation of MOP
e And there is nothing we can do about :(

Theorem
For constant propagation, it is undecidable whether MOP[u](x) = T.

e Proof: By undecidability of Hilbert’s 10th problem

164/471

Hilbert’s 10th problem (1900)

e Find an integer solution of a Diophantine equation

p(x1,...,xp) =0

165/471

Hilbert’s 10th problem (1900)

e Find an integer solution of a Diophantine equation

p(x1,...,xp) =0

e Where p is a polynomial with integer coefficients.
e E.g.p(x1,x2) = X2 4+2x1 — x5 42

165/471

Hilbert’s 10th problem (1900)

e Find an integer solution of a Diophantine equation

p(x1,...,xp) =0

e Where p is a polynomial with integer coefficients.
e E.g.p(x1,x2) = X2 4+2x1 — x5 42
e Solution:

165/471

Hilbert’s 10th problem (1900)

e Find an integer solution of a Diophantine equation

p(x1,...,xp) =0

e Where p is a polynomial with integer coefficients.
e E.g.p(x1,x2) = X2 4+2x1 — x5 42
e Solution: (-1,1)

165/471

Hilbert’s 10th problem (1900)

e Find an integer solution of a Diophantine equation

p(x1,...,xp) =0

e Where p is a polynomial with integer coefficients.
e E.g.p(x1,x2) = X2 4+2x1 — x5 42
e Solution: (-1,1)

e Hard problem. E.g. x" + y" = z" for n > 2.

165/471

Hilbert’s 10th problem (1900)

e Find an integer solution of a Diophantine equation

p(x1,...,xp) =0

e Where p is a polynomial with integer coefficients.
e E.g.p(x1,x2) = X2 4+2x1 — x5 42
e Solution: (-1,1)

e Hard problem. E.g. x" + y" = z" for n > 2. (Fermat’s last Theorem)

165/471

Hilbert’s 10th problem (1900)

e Find an integer solution of a Diophantine equation

p(x1,...,xp) =0

e Where p is a polynomial with integer coefficients.
e E.g.p(x1,x2) = X2 4+2x1 — x5 42
e Solution: (-1,1)

e Hard problem. E.g. x" + y" = z" for n > 2. (Fermat’s last Theorem)
o Wiles, Taylor: No solutions.

165/471

Hilbert’s 10th problem (1900)

e Find an integer solution of a Diophantine equation

p(x17"'7xn):0

e Where p is a polynomial with integer coefficients.
e E.g.p(x1,x2) = X2 4+2x1 — x5 42
e Solution: (-1,1)

e Hard problem. E.g. x" + y" = z" for n > 2. (Fermat’s last Theorem)
o Wiles, Taylor: No solutions.

Theorem (Matiyasevich, 1970)

(Based on work of David, Putnam, Robinson)
It is undecidable whether a Diophantine equation has an integer solution.

165/471

Regard the following program

X{1=xX2=...Xp=0

while (%) { xq x1 + 1 }

while (*) { X5 = X5, + 1 }

r=0
if (p(x41,...,X%X) == 0) then r=1
u: Nop

e For any valuation of the variables, there is a path through the program

166/471

Regard the following program

X{1=xX2=...Xp=0

while (%) { xq x1 + 1 }

while (*) { X5 = X5, + 1 }

r=0
if (p(xX1,...,Xp) == 0) then r=1
u: Nop

e For any valuation of the variables, there is a path through the program
e For every path, constant propagation computes the values of the x;

166/471

Regard the following program

X{1=xX2=...Xp=0

while (%) { xq x1 + 1 }

while (*) { X5 = X5, + 1 }

r=0
if (p(xX1,...,Xp) == 0) then r=1
u: Nop

e For any valuation of the variables, there is a path through the program
e For every path, constant propagation computes the values of the x;
e And gets a precise value for p(x1, ..., Xp)

166/471

Regard the following program

X{1=xX2=...Xp=0

while (%) { xq x1 + 1 }

while (*) { X5 = X5, + 1 }

r=0
if (p(xX1,...,Xp) == 0) then r=1
u: Nop

For any valuation of the variables, there is a path through the program
For every path, constant propagation computes the values of the x;
And gets a precise value for p(x1, ..., Xp)

ris only found to be non-constant, if p(xi,...,x,) =0

166/471

Regard the following program

X{1=xX2=...Xp=0

while (%) { x1 = x1 + 1 }
while (*) { X5 = X5, + 1 }

r=0

if (p(xX1,...,Xp) == 0) then r=1
u: Nop

For any valuation of the variables, there is a path through the program
For every path, constant propagation computes the values of the x;

And gets a precise value for p(x1, ..., Xp)

ris only found to be non-constant, if p(xi,...,x,) =0

Thus, MOP[u](r) = T if, and only if p(x1, ..., x,) = 0 has a solution O

166/471

Extensions

¢ Also simplify subexpressions:
e For {x+— T,y 3}, replace x + 2 y by x + 6.

167/471

Extensions

¢ Also simplify subexpressions:

e For {x+— T,y 3}, replace x + 2 y by x + 6.
e Apply further arithmetic simplifications

e Eg. xx0—=0,x+x1—x,...

167/471

Extensions

¢ Also simplify subexpressions:

e For {x+— T,y 3}, replace x + 2 y by x + 6.
e Apply further arithmetic simplifications

e Eg. xx0—=0,x+x1—x,...
o Exploit equalities in conditions

o if (x==4) M[0]=x+1 else M[0]=x —

167/471

Extensions

¢ Also simplify subexpressions:

e For {x+— T,y 3}, replace x + 2 y by x + 6.
e Apply further arithmetic simplifications

e Eg. xx0—=0,x+x1—x,...
o Exploit equalities in conditions

o if (x==4) M[0]=x+1 else M[0]=x —
if (x==4) M[0]=5 else M[0]=x

167/471

Extensions

¢ Also simplify subexpressions:

e For {x+— T,y 3}, replace x + 2 y by x + 6.
e Apply further arithmetic simplifications

e Eg. xx0—=0,x+x1—x,...
o Exploit equalities in conditions

o if (x==4) M[0]=x+1 else M[0]=x —
if (x==4) M[0]=5 else M[0]=x
o Use

D if[x==e]*D=1
[Pos(x==e)]" ={ L if[x==¢e]*D=0
D; otherwise

where Dy := D(x := D(x) N [e]* D)

167/471

Extensions

¢ Also simplify subexpressions:

e For {x+— T,y 3}, replace x + 2 y by x + 6.
e Apply further arithmetic simplifications

e Eg. xx0—=0,x+x1—x,...
o Exploit equalities in conditions

o if (x==4) M[0]=x+1 else M[0]=x —
if (x==4) M[0]=5 else M[0]=x
o Use

D if[x==e]*D=1
[Pos(x==e)]" ={ L if[x==¢e]*D=0
D; otherwise

where Dy := D(x := D(x) N [e]* D)
e Analogously for Neg(x # e)

167/471

Table of Contents

9 Abstract Interpretation
Constant Propagation
Interval Analysis

168/471

Interval Analysis

e Constant propagation finds constants

e But sometimes, we can restrict the value of a variable to an interval, e.g.,
[0..42].

169/471

Example

int a[42];
for (i=0;i<42;++1i) {
if (0<=1 && 1i<42)
ali] = ix2;
else
fail();

e Array access with bounds check

170/471

Example

int a[42];
for (i=0;i<42;++1i) {
if (0<=1 && 1i<42)
ali] = ix2;
else
fail();

e Array access with bounds check

e From the for-loop, we know i € [0..41]

170/471

Example

int a[42];
for (i=0;i<42;++1i) {
if (0<=1 && 1i<42)
ali] = ix2;
else
fail();

e Array access with bounds check
e From the for-loop, we know i € [0..41]
e Thus, bounds check not necessary

170/471

Intervals

Interval T:={[L,u]|l€Z > ANueZ™> ANl<u}

171/471

Intervals

Interval I:.={[L,u]|l€Z > AueZt> NI<u}
Ordering C,i.e. [h,] C[b,] iff h > bAu < up
e Smaller interval contained in larger one
e Hence:

[/1 R U1] L [/27 U2] = [min(/1 R /2)7 max(u1, Ug)]
T= [700, +OO]

171/471

Intervals

Interval I:.={[L,u]|l€Z > AueZt> NI<u}
Ordering C,i.e. [h,] C[b,] iff h > bAu < up
e Smaller interval contained in larger one
e Hence:

[/1 R U1] L [/27 U2] = [min(/1 R /2)7 max(u1, Ug)]
T= [700, +OO]

Problems

Intervals

Interval I:.={[L,u]|l€Z > AueZt> NI<u}
Ordering C,i.e. [h,] C[b,] iff h > bAu < up
e Smaller interval contained in larger one
e Hence:

[/1 R U1] L [/27 U2] = [min(/1 R /2)7 max(u1, Ug)]
T= [700, +OO]

Problems
¢ Not a complete lattice. (Will add L - element later)

Intervals

Interval I:.={[L,u]|l€Z > AueZt> NI<u}
Ordering C,i.e. [h,] C[b,] iff h > bAu < up
e Smaller interval contained in larger one
e Hence:

[/1 R U1] L [/27 U2] = [min(/1 R /2)7 max(u1, Ug)]
T= [700, +OO]

Problems

¢ Not a complete lattice. (Will add L - element later)
« Infinite ascending chains: [0,0] C [0,1] C [0,2] C ...

Building the Domain

e Analogously to CP:
e D:=(Reg—»I)U{L}
e Intuition: Map variables to intervals their value must be contained in.
e | —unreachable

172/471

Building the Domain

e Analogously to CP:
e D:=(Reg—»I)U{L}
e Intuition: Map variables to intervals their value must be contained in.
e | —unreachable

e Description relation:

172/471

Building the Domain

e Analogously to CP:
e D:=(Reg—»I)U{L}
e Intuition: Map variables to intervals their value must be contained in.
e | —unreachable

e Description relation:
e Onvalues: z A [, u]iffI<z<u

172/471

Building the Domain

e Analogously to CP:
e D:=(Reg—»I)U{L}
e Intuition: Map variables to intervals their value must be contained in.
e | —unreachable
e Description relation:
e Onvalues: z A [, u]iffI<z<u
e On register valuations: p A p# iff Vx.p(x) A p#(x)

172/471

Building the Domain

e Analogously to CP:
e D:=(Reg—»I)U{L}
e Intuition: Map variables to intervals their value must be contained in.
e | —unreachable
e Description relation:
e Onvalues: z A [, u]iffI<z<u
e On register valuations: p A p# iff Vx.p(x) A p#(x)
e On configurations: (p, u) A liff p A land | # L

172/471

Building the Domain

e Analogously to CP:
e D:=(Reg—»I)U{L}
e Intuition: Map variables to intervals their value must be contained in.
e | —unreachable
e Description relation:
e Onvalues: z A [, u]iffI<z<u
e On register valuations: p A p# iff Vx.p(x) A p#(x)
e On configurations: (p, u) A liff p A land | # L
e Obviously monotonic. (Larger interval admits more values)

172/471

Abstract operators

Constants ¢ := [c, ¢]

173/471

Abstract operators

Constants ¢ := [c, ¢]
Addition [h, u1] +7 [k, u2] := [h + b, Ut + Uo]
e Where —oco+_ 1= + —00:= —00,00+ = +00:=00

173/471

Abstract operators

Constants ¢ := [c, ¢]
Addition [/1, U1] +7 [/27 Ug] = [/1 + b, uy + U2]
e Where —oco+_ 1= + —00:= —00,00+ = +00:=00
Negation —#[/,u] := [-u, —I]

173/471

Abstract operators

Constants ¢ := [c, ¢]
Addition [/1, U1] +7 [/27 Ug] = [/1 + b, uy + U2]
e Where —oco+_ 1= + —00:= —00,00+ = +00:=00
Negation —#[/,u] := [-u, —I]
Multiplication [k, u1] 7 [k, Uz] :=
[min{hk, huo, uth, uyuo}, max{h bk, hus, uih, uyus}]

173/471

Abstract operators

Constants ¢ := [c, ¢]
Addition [/1, U1] +7 [/27 Ug] = [/1 + b, uy + Uz]
e Where —oco+_ 1= + —00:= —00,00+ = +00:=00
Negation —#[/,u] := [-u, —I]
Multiplication [k, u1] 7 [k, Uz] :=
[min{hk, huo, uth, uyuo}, max{h bk, hus, uih, uyus}]
Division [h, u1]/#[k, uz] :=
[min{hk, hug, urh, tyup}, max{hk, huz, uth, uyus}]
o If O ¢ [k, W], otherwise [h, u1]/# [k, u] := T

173/471

Examples

.5#:

174/471

Examples

o 5% = [5,5]

174/471

Examples

« 5% = [5,5]
e [3,00] +7 [-1,2] =

174/471

Examples

« 5% = [5,5]
e [3,00] +7 [-1,2] = [2,]

174/471

Examples

o 5% —[5,5]
o [3,00] +# [-1,2] = [2, 0]
o [-1,3]+# [-5,—1] =

174/471

Examples

« 5% = [5,5]
e [3,00] +7 [-1,2] = [2,]
e [-1,3] %% [-5,-1] = [-15,5]

174/471

Examples

e 57 =[5,5]

e [3,00] +7 [-1,2] = [2,]

e [-1,3] %% [-5,-1] = [-15,5]
. _#[175] =

174/471

Examples

o 5% =[5,5]

° [3,00] +7 [-1,2] = [2, 0]

e [-1,3] %% [-5,-1] = [-15,5]
e —#[1,5] = [-5, 1]

174/471

Examples

« 5% = [5,5]
e [3,00] +7 [-1,2] = [2,]
e [-1,3] %% [-5,-1] = [-15,5]

o —#[1,5] =[5, 1]
e [3,5]/%[2,5] = (round towards zero)

174/471

Examples

« 5% = [5,5]
e [3,00] +7 [-1,2] = [2,]
e [-1,3] %% [-5,-1] = [-15,5]

o —#[1,5] =[5, 1]
e [3,5]/#[2,5] = [0, 2] (round towards zero)

174/471

Examples

o 5% = [5,5]

e [3,00] +7 [-1,2] = [2,]

e [-1,3] %% [-5,-1] = [-15,5]

o —#[1,5] =[5, 1]

e [3,5]/#[2,5] = [0, 2] (round towards zero)
o [1,4]/#[-1,1] =

174/471

Examples

o 5% = [5,5]

e [3,00] +7 [-1,2] = [2,]

e [-1,3] %% [-5,-1] = [-15,5]

o —#[1,5] =[5, 1]

e [3,5]/#[2,5] = [0, 2] (round towards zero)
o [1,4]/#[-1,1]=T

174/471

Abstract operators
Equality

[1,1] if/1=U1=Ig=U2
[h,u] ==% [, o] := { [0,0] ifuy <horh > up
[0,1] otherwise

175/471

Abstract operators
Equality

[1,1] if/1=U1=Ig=U2
[h,u] ==% [, o] := { [0,0] ifuy <horh > up
[0,1] otherwise

Less-or-equal

[1 s 1] if up < /2
[/1, U1] S# [/27 U2] =<¢[0,0] ifh > uw
[0,1] otherwise

175/471

Abstract operators
Equality

[1,1] if/1=U1=Ig=U2
[h,u] ==% [, o] := { [0,0] ifuy <horh > up
[0,1] otherwise

Less-or-equal

[1 s 1] if up < /2
[/1, U1] S# [/27 U2] =<¢[0,0] ifh > uw
[0,1] otherwise

Examples
e [1,2] ==% [4,5] =

175/471

Abstract operators
Equality

[1,1] if/1=U1=Ig=U2
[h,u] ==% [, o] := { [0,0] ifuy <horh > up
[0,1] otherwise

Less-or-equal

[1 s 1] if up < /2
[/1, U1] S# [/27 U2] =<¢[0,0] ifh > uw
[0,1] otherwise

Examples
e [1,2] ==% [4,5] =[0,0]

175/471

Abstract operators
Equality

[1,1] if/1=U1=Ig=U2
[h,u] ==% [, o] := { [0,0] ifuy <horh > up
[0,1] otherwise

Less-or-equal

[1 s 1] if up < /2
[/1, U1] S# [/27 U2] =<¢[0,0] ifh > uw
[0,1] otherwise

Examples
° [1) 2] == [4’ 5] = [Ov 0]
° [172] == [7131]:

175/471

Abstract operators
Equality

[1,1] if/1:U1212=U2
[h,us] ==% [h, o] := { [0,0] ifuy <hbork >u,
[0,1] otherwise

Less-or-equal

[1 s 1] if up < /2
[/1, U1] S# [/27 U2] =<¢[0,0] ifh > uw
[0,1] otherwise

Examples
° [1) 2] == [4’ 5] = [Ov 0]
° [172] == [7131]:[031]

175/471

Abstract operators
Equality

[1,1] if/1:U1212=U2
[h,us] ==% [h, o] := { [0,0] ifuy <hbork >u,
[0,1] otherwise

Less-or-equal

[1 s 1] if up < /2
[/1, U1] S# [/27 U2] =<¢[0,0] ifh > uw
[0,1] otherwise

Examples
e [1,2] ==% [4,5] =[0,0]
° [172] ==%# [713 1] = [031]
o [1,2] <# [4,5] =

175/471

Abstract operators
Equality

[1,1] if/1:U1212=U2
[h,us] ==% [h, o] := { [0,0] ifuy <hbork >u,
[0,1] otherwise

Less-or-equal

[1 s 1] if up < /2
[/1, U1] S# [/27 U2] =<¢[0,0] ifh > uw
[0,1] otherwise

Examples
e [1,2] ==% [4,5] =[0,0]
° [172] ==%# [713 1] = [031]
e [1,2] <# [4,5] =[1,1]

175/471

Abstract operators
Equality

[1,1] if/1:U1212=U2
[h,us] ==% [h, o] := { [0,0] ifuy <hbork >u,
[0,1] otherwise

Less-or-equal

[1 s 1] if up < /2
[/1, U1] S# [/27 U2] =<¢[0,0] ifh > uw
[0,1] otherwise

Examples
e [1,2] ==% [4,5] =[0,0]
° [172] ==¥ [713 1] = [031]
e [1,2] <# [4,5] =[1,1]
° [172] S# [_171] =

175/471

Abstract operators
Equality

[1,1] if/1:U1212=U2
[h,us] ==% [h, o] := { [0,0] ifuy <hbork >u,
[0,1] otherwise

Less-or-equal

[1 s 1] if up < /2
[/1, U1] S# [/27 U2] =<¢[0,0] ifh > uw
[0,1] otherwise

Examples
e [1,2] ==% [4,5] =[0,0]
d [172] ==t [713 1] = [031]
e [1,2] <# [4,5] =[1,1]
e [1,2] <#[-1,1] =[0,1]

175/471

Proof obligations

cAc”

viAdiAve Adr — V1|]V2Ad1|:|#d2

Analogously for unary, ternary, etc. operators

176/471

Proof obligations

cAc”

viAdiAve Adr — V1DV2Ad1|:’#d2

Analogously for unary, ternary, etc. operators

Then, we get p A p#* = [e]p A [e]” p*
o As for constant propagation

176/471

Effects of edges

For p# # L
[17L=1
[Nop]” p* = p*
[x =] p* = p*(x — [e]" p%)
[x = Mlell " = p#(x = T)

[Mle:] = el p* = p*

¢ w1 it[el*p* =[0,0]

[Pos(e)]” p* = { p* otherwise

ifMel®o#* 310 0]
)P el 20
[Neg(e)]" p {L otherwise

177/471

Last lecture

o Constant propagation

o |dea: Abstract description of values, lift to valuations, states
¢ Monotonic, but not distributive

e MOP solution undecidable (Reduction to Hilbert’s 10th problem)
e Interval analysis

e Associate variables with intervals of possible values

178/471

Better exploitation of conditions

1 if [e]*p* = [0,0]
ot (x = pF(x)M[ed]"p”) ife = x==e
[Pos(e)]”p* = p#(x = p*(x)M[-o0,u]) ife = x< e and[e]”p* =11
o7 ot (x s o) N [hod]) ife = x> e and [e]fp* =1,]
ot otherwise
- if [e]*»* 2 [0,0]

pt(x e pf () N e]?p?) ife = x#e
4 4)pt(x— pt(X) N[00, u]) ife = x> e and[e]”p* = [, u]
INeg(o)"™ = p*(x = p#(x) NI, 00]) ife = x<e and[es]*p* =[,_]

o’ otherwise

e where [/, u1] M [k, U] = [max(h, k), min(uy,)]
e only exists if intervals overlap
e this is guaranteed by conditions

179/471

Transformations

e Erase nodes u with MOP[u] = L (unreachable)

180/471

Transformations

e Erase nodes u with MOP[u] = L (unreachable)

¢ Replace subexpressions e with [[e]]#p# = [v, v] by v (constant
propagation)

180/471

Transformations

e Erase nodes u with MOP[u] = L (unreachable)

¢ Replace subexpressions e with [[e]]#p# = [v, v] by v (constant
propagation)

« Replace Pos(e) by Nop if [0,0] Z [e]* p* (0 cannot occur)

180/471

Transformations

e Erase nodes u with MOP[u] = L (unreachable)

¢ Replace subexpressions e with [[e]]#p# = [v, v] by v (constant
propagation)

« Replace Pos(e) by Nop if [0,0] Z [e]* p* (0 cannot occur)
Replace Neg(e) by Nop if [e]* p# = [0,0] (Only 0 can occur)

180/471

Transformations

e Erase nodes u with MOP[u] = L (unreachable)

¢ Replace subexpressions e with [[e]]#p# = [v, v] by v (constant
propagation)

« Replace Pos(e) by Nop if [0,0] Z [e]* p* (0 cannot occur)

Replace Neg(e) by Nop if [e]* p# = [0,0] (Only 0 can occur)

e Yields function tr(k, p#)

180/471

Transformations

e Erase nodes u with MOP[u] = L (unreachable)

¢ Replace subexpressions e with [[e]]#p# = [v, v] by v (constant
propagation)

« Replace Pos(e) by Nop if [0,0] Z [e]* p* (0 cannot occur)

« Replace Neg(e) by Nop if [e]” p# = [0, 0] (Only 0 can occur)

e Yields function tr(k, p#)

o Transformation: (u, k, v) — (u, tr(k, MFP[u]), V)

180/471

Transformations

e Erase nodes u with MOP[u] = L (unreachable)
¢ Replace subexpressions e with [[e]]#p# = [v, v] by v (constant
propagation)
« Replace Pos(e) by Nop if [0,0] Z [e]* p* (0 cannot occur)
« Replace Neg(e) by Nop if [e]” p# = [0, 0] (Only 0 can occur)
e Yields function tr(k, p#)
o Transformation: (u, k, v) — (u, tr(k, MFP[u]), V)
¢ Proof obligation:
o (o) A p" = [Kl(p, 1) = Ttr(k, ™)1 (p, 1)

180/471

Example

i=i+1

Neg (i<42) Pos (i<42)

M[a+i]=1i*2

181/471

Example

i=i+1

Neg (i<42) Pos (i<42)

M[a+i]=1i*2

181/471

Example

M[a+i]=1i*2

181/471

Example
{i—T}

i=0

{i—[0,0]}

i=i+1

Neg (i<42) Pos (1i<42)

{i—[0,0]}

Pos (0<=1<42)

M[a+i]=1i*2

181/471

Example
{i—T}

i=0

{i—[0,0]}

i=i+1

Neg (i<42) Pos (1i<42)

{i—[0,0]}

Pos (0<=1<42)

{i—[0,0]}

M[a+i]=1i*2

181/471

Example
{i—T}

i=0

{i—[0,0]}

i=i+1

Neg (i<42) Pos (1i<42)

{i—[0,0]}

Pos (0<=1<42)

{i—[0,0]}

M[a+i]=1i*2

{i—[0,0]}

181/471

Example
{i—T}

i=0

{i—1[0,1]}

i=i+1

Neg (i<42) Pos (1i<42)

{i—[0,0]}

Pos (0<=1<42)

{i—[0,0]}

M[a+i]=1i*2

{i—[0,0]}

181/471

Example
{i—T}

i=0

{i—1[0,1]}

i=i+1

Neg (i<42) Pos (1i<42)

{i—1[0,1]}

Pos (0<=1<42)

{i—[0,0]}

M[a+i]=1i*2

{i—[0,0]}

181/471

Example
{i—T}

i=0

{i—1[0,1]}

i=i+1

Neg (i<42) Pos (1i<42)

{i—1[0,1]}

Pos (0<=1<42)

{i—1[0,1]}

M[a+i]=1i*2

{i—[0,0]}

181/471

Example
{i—T}

i=0

{i—1[0,1]}

i=i+1

Neg (i<42) Pos (1i<42)

{i—1[0,1]}

Pos (0<=1<42)

{i—1[0,1]}

M[a+i]=1i*2

{i—1[0,1]}

181/471

Example

i=i+1

Neg (i<42) Pos (i<42)

Neg (0<=1i<42) Pos (0<=1i<42)

M[a+i]=1i*2

About 40 iterations later ...

181/471

Example
{i—T}

i=0

i~} .

Neg (i<42) Pos (i<42)

{i—[0,41]}

Neg (0<=1i<42) Pos (0<=1i<42)

{i—[0,41]}

M[a+i]=1i*2

{i—[0,41]}

About 40 iterations later ...

181/471

Problem

e Interval analysis takes many iterations
e May not terminate at all for (i=0;x>0;x——) i=i+1

182/471

Widening

e |Idea: Accelerate the iteration

183/471

Widening

o Idea: Accelerate the iteration — at the price of imprecision

183/471

Widening

¢ Idea: Accelerate the iteration — at the price of imprecision
e Here: Disallow updates of interval bounds in Z.
e A maximal chain: [3, 8] C [—o0, 8] C [—o0, 0]

183/471

Widening (Formally)

Given: Constraint system (1) x; 3 fi(X)
e fi not necessarily monotonic
Regard the system (2) x; = x; LI fi(X)
Obviously: X solution of (1) iff X solution of (2)
e Note:xCy <— xUy=y
(2) induces a function G : D" — D"

G(X) = XU (1 (%), ..., (X))

G is not necessarily monotonic, but increasing:

VX % C G(X)

184/471

Widening (Formally)

e Gisincreasing = | C G(L)C G¥(L)C...
e i.e., (G'(L1))jen is ascending chain
If it stabilizes, i.e., X = G*(L) = GK*'(L), then X is solution of (1)
If D has infinite ascending chains, still no termination guaranteed
e Replace U by widening operator U
e Get (3) Xi = X; l:lf,()_(‘)
e Widening: Any operationD x D — D
@ withxuyC xuy
® and for every sequence ay, a, . . ., the chain by = ag, b1 = bjU a1
eventually stabilizes
e Using FP-iteration (naive, RR, worklist) on (3) will
e compute a solution of (1)
e terminate

185/471

To show

e Solutions of (3) are solutions of (1)
e Xj = X;U f,()_(’)

186/471

To show

e Solutions of (3) are solutions of (1)
o Xi = X,'l=|f,'()_(’) Jxu f,()?)

186/471

To show

e Solutions of (3) are solutions of (1)
. X,':X,'l=|f,'()_(’) Qx,uf,()_(’)g f,()?) O

186/471

To show

e Solutions of (3) are solutions of (1)

. X,‘:X,'Qf,'()_(’) Qx,uf,()_(’)g f,()_(’) O
e FP-iteration computes a solution of (3).

e Valuation increases until it stabilizes (latestat X = (T,...,T))

186/471

To show

e Solutions of (3) are solutions of (1)

o X =xuh(¥) IxiUAF) D6 =
o FP-iteration computes a solution of (3).

e Valuation increases until it stabilizes (latestat X = (T,...,T))
o FP-iteration terminates

o FP-iteration step: Replace (some) x; by x; Ufi(X)

e This only happens finitely many times (Widening operator, Criterion 2)

186/471

For interval analysis

e Widening defined as [, u1] Y[k, uz] := [/, u] with

L h i<k
"] - otherwise

U U4 if uy > Uo
"]+cc otherwise

187/471

For interval analysis

e Widening defined as [, u1] Y[k, uz] := [/, u] with

L [h k<
"] - otherwise

U U4 if uy > Uo
"]+cc otherwise

e Lift to valuations: (p#7£ I:lpf)(x) = pf(x) l:lpf(x)

187/471

For interval analysis
e Widening defined as [, u1] Y[k, uz] := [/, u] with
Kk ifth<h
" | —oo otherwise

U U4 if uy > Uo
"]+cc otherwise

e Lift to valuations: (p#7£ I:lpf)(x) = pf(x) l:lpf(x)
e andtoD=(Reg - N)U{L}: Lux=xULl=x

187/471

For interval analysis

e Widening defined as [, u1] Y[k, uz] := [/, u] with

L [h k<
"] - otherwise

U U4 if uy > Uo
"]+cc otherwise

e Lift to valuations: (p#7£ I:lpf)(x) = pf(x) l:lpf(x)
e andtoD=(Reg - N)U{L}: Lux=xULl=x
e Llis widening operator

@ xUyC xuy. Obvious
@® Lower and upper bound updated at most once.

187/471

For interval analysis

e Widening defined as [, u1] Y[k, uz] := [/, u] with

L [h k<
"] - otherwise

U U4 if uy > Uo
"]+cc otherwise

Lift to valuations: (p#7£ I:lpf)(x) = pf(x) l:lpf(x)
andtoD = (Reg - U{L}: Lux=x4dLl=x
U is widening operator

@ xUyC xuy. Obvious
@® Lower and upper bound updated at most once.

e Note: Lis not commutative.

187/471

Examples

o [-2,2]L01,2] =

188/471

Examples

e [-2,2]41,2] =[-2,2]

188/471

Examples

o [-2,2]4]1,2] = [-2,2]
o [1,2]U[-2,2] =

188/471

Examples

e [-2,2]4[1,2] = [-2,2]
o [1,2]4[-2,2] = [~, 2]

188/471

Examples

e [-2,2]41,2] =[-2,2]
o [1,2]U[-2,2] = [-00,2]
e [1,2]U[1,3] =

188/471

Examples

e [-2,2]41,2] =[-2,2]
o [1,2]U[-2,2] = [-00,2]
o [1,2]U[1,3] =1, +o9]

188/471

Examples

o [-2,2][1,2] =[-2,2]

e [1,2]4[-2,2] = [-,2]

e [1,2]U[1,3] = [1, +oq]

e Widening returns larger values more quickly

188/471

Widening (Intermediate Result)

¢ Define suitable widening

189/471

Widening (Intermediate Result)

¢ Define suitable widening
e Solve constraint system (3)

189/471

Widening (Intermediate Result)

¢ Define suitable widening
¢ Solve constraint system (3)
e Guaranteed to terminate and return over-approximation of MOP

189/471

Widening (Intermediate Result)

Define suitable widening

Solve constraint system (3)

Guaranteed to terminate and return over-approximation of MOP
But: Construction of good widening is black magic

189/471

Widening (Intermediate Result)

Define suitable widening
Solve constraint system (3)
Guaranteed to terminate and return over-approximation of MOP

But: Construction of good widening is black magic
e Even may choose U dynamically during iteration, such that

e Values do not get too complicated
e lteration is guaranteed to terminate

189/471

Example (Revisited)

i=i+1

Neg (i<42) Pos (1<42)

190/471

Example (Revisited)
{i = [0, +ool}

i=i+1

Neg (i<42) Pos (1<42)

190/471

Example (Revisited)
{i = [0, +ool}

i=0

{i —[0,0]}

i=i+1

Neg (i<42) Pos (1<42)

190/471

Example (Revisited)
{i = [0, +ool}

i=0

{i —[0,0]}

i=i+1

Neg (i<42) Pos (1<42)

{i—[0,0]}

190/471

Example (Revisited)
{i— [—o0, +o0]}

i=0

{i —[0,0]}

i=i+1

Neg (i<42) Pos (1<42)

{i—[0,0]}

Pos (0<=1<42)

{i—[0,0]}

M[a+ti]=1ix2

190/471

Example (Revisited)

{i — [—o0, +00]}

i=0

{i —[0,0]}

i=i+1

Neg (i<42) Pos (1<42)

{i—[0,0]}

Neg (0<=1<42) Pos (0<=1<42)

{i—[0,0]}

M[a+ti]=1i*2

{i—1[0,0]}

190/471

Example (Revisited)

{i — [—o0, +00]}

i=0

{i— [0, 4o0]},

i=i+1

Neg (i<42) Pos (1<42)

{i—[0,0]}

Neg (0<=1<42) Pos (0<=1<42)

{i—[0,0]}

M[a+ti]=1i*2

{i—1[0,0]}

190/471

Example (Revisited)

{i — [—o0, +00]}

i=0

{i— [0, 4o0]},

i=i+1

Neg (i<42) Pos (1<42)

{i = [0, +o0]}

Neg (0<=1<42) Pos (0<=1<42)

{i—[0,0]}

M[a+ti]=1i*2

{i—1[0,0]}

190/471

Example (Revisited)

{i — [—o0, +00]}

i=0

{i— [0, 4o0]},

i=i+1

Neg (i<42) Pos (1<42)

{i = [0, +o0]}

Pos (0<=1<42)

{i— [0, +o0]

M[a+ti]=1i*2

{i—1[0,0]}

190/471

Example (Revisited)

{i — [—o0, +00]}

i=0

{i— [0, 4o0]},

i=i+1

Neg (i<42) Pos (1<42)

{i = [0, +o0]}

Pos (0<=1<42)

{i— [0, +o0]

M[a+ti]=1i*2

{i— [0, +o0]}

190/471

Example (Revisited)

{i — [—o0, +00]}

i=0

{i— [0, 4o0]},

i=i+1

Neg (i<42) Pos (1<42)

{i = [0, +o0]}

Pos (0<=1<42)

{i— [0, +o0]

M[a+ti]=1i*2

{i— [0, +o0]}

¢ Not exactly what we expected :(

190/471

|dea

Only apply widening at loop separators

A set S C Vis called loop separator, iff each cycle in the CFG contains a
node from S.

Intuition: Only loops can cause infinite chains of updates.
Thus, FP-iteration still terminates

Problem
e How to find suitable loop separator

i=i+1

Neg (i<42) Pos (1<42)

Neg (0<=1<42) Pos (0<=1<42)

M[ati]=1ix2

o We could take S = {2}, S = {4},...
e Results of FP-iteration are different!

192/471

Loop Separator S = {2}
€

i=i+1

Neg (i<42) Pos (1<42)

Pos (0<=1<42)

Mla+i]=i%2

193/471

Loop Separator S = {2}

{fF+[—00r+0°H

i=i+1

Neg (i<42) Pos (1<42)

Pos (0<=1<42)

Mla+i]=i*2

193/471

Loop Separator S = {2}

{i +— [—o0, +o0]}

193/471

Loop Separator S = {2}

{i +— [—o0, +o0]}

193/471

Loop Separator S = {2}

{i +— [—o0, +o0]}

193/471

Loop Separator S = {2}

{i > [o0, +ool}

i=0

o0y

Neg (i<42) Pos (i<42)

{i—[0,0]}

Neg (0<=1<42) Pos (0<=1<42)

{i —[0,0]}

Mla+i]=i*2

{i—1[0,0]}

193/471

Loop Separator S = {2}

{i > [o0, +ool}

i=0

(i (0,00}

Neg (i<42) Pos (i<42)

{i—[0,0]}

Neg (0<=1<42) Pos (0<=1<42)

{i —[0,0]}

Mla+i]=i*2

{i—1[0,0]}

193/471

Loop Separator S = {2}

{i — [—o0, +00]}

i=0

(i [0, 4ool},

Neg (i<42) Pos (i<42)

{i—[0,41]}

Pos (0<=1<42)

{i —[0,0]}

193/471

Loop Separator S = {2}

{i > [o0, +ool}

i=0

(i (0,00}

Neg (i<42) Pos (i<42)

{i—[0,41]}

Neg (0<=1<42) Pos (0<=1<42)

{i—[0,41]}

Mla+i]=i*2

{i—1[0,0]}

193/471

Loop Separator S = {2}

{i > [o0, +ool}

i=0

(i (0,00}

Neg (i<42) Pos (i<42)

{i—[0,41]}

Neg (0<=1<42) Pos (0<=1<42)

{i—[0,41]}

Mla+i]=i*2

{i—[0,41]}

193/471

Loop Separator S = {2}

{i > [o0, +ool}

i=0

(i (0,00}

Neg (i<42) Pos (1<42)

{i—[0,41]}

Neg (0<=1<42) Pos (0<=1i<42)

{i—[0,41]}

Mla+i]=i*2

{i—[0,41]}

e Fixed point

193/471

Loop Separator S = {4}
1

i=i+1

Neg (i<42) Pos (1<42)

Pos (0<=1i<42)

M[a+i]=1%2

194/471

Loop Separator S = {4}

{i— [—o0, +o0]}

i=i+1

Neg (i<42) Pos (1<42)

Pos (0<=1i<42)

M[a+1i]=1%2

194/471

Loop Separator S = {4}

{i— [—o0, +o0]}

194/471

Loop Separator S = {4}

{i— [—o0, +o0]}

194/471

Loop Separator S = {4}

{i— [—o0, +o0]}

194/471

Loop Separator S = {4}

{i — [—o0, +00]}

i=0

ooy

Neg (i<42) Pos (1<42)

{i—[0,0]}

Pos (0<=1i<42)

{i —[0,0]}

M[a+i]=1%2

{i—[0,0]}

194/471

Loop Separator S = {4}

{i — [—o0, +00]}

i=0

(e

Neg (i<42) Pos (1<42)

{i—[0,0]}

Pos (0<=1i<42)

{i —[0,0]}

M[a+i]=1%2

{i—[0,0]}

194/471

Loop Separator S = {4}

{i — [—o0, +00]}

i=0

(e

Neg (i<42) Pos (1<42)

{i— [0, 4o0]}

Pos (0<=1i<42)

{i —[0,0]}

M[a+i]=1%2

{i—[0,0]}

194/471

Loop Separator S = {4}

{i — [—o0, +00]}

i=0

(e

Neg (i<42) Pos (1<42)

{i— [0, 4o0]}

Pos (0<=1i<42)

{i—[0,41]}

M[a+i]=1%2

{i—[0,0]}

194/471

Loop Separator S = {4}

{i — [—o0, +00]}

i=0

(e

Neg (i<42) Pos (1<42)

{i— [0, 4o0]}

Pos (0<=1i<42)

{i—[0,41]}

M[a+i]=1%2

{i—[0,41]}

194/471

Loop Separator S = {4}

{i — [—o0, +00]}

i=0

{im D42} _

Neg (i<42) Pos (1<42)

{i— [0, 4o0]}

Pos (0<=1i<42)

{i—[0,41]}

M[a+i]=1%2

{i—[0,41]}

194/471

Loop Separator S = {4}

{i — [—o0, +00]}

i=0

{im D42} _

Neg (i<42) Pos (1<42)

M[a+i]=1%2

{i—[0,41]}

194/471

Loop Separator S = {4}

{i — [—o0, +00]}

i=0

{im D42} _

Neg (i<42) Pos (1<42)

M[a+i]=1%2

{i—[0,41]}

e Fixed point

194/471

Result

e Only S = {2} identifies bounds check as superfluous

195/471

Result

e Only S = {2} identifies bounds check as superfluous
e Only S = {4} identifies x = 42 at end of program

195/471

Result

e Only S = {2} identifies bounds check as superfluous
e Only S = {4} identifies x = 42 at end of program
e We could combine the information

195/471

Result

e Only S = {2} identifies bounds check as superfluous
e Only S = {4} identifies x = 42 at end of program
e We could combine the information

¢ But would be costly in general

195/471

Narrowing

e Let X be a solution of (1)

196/471

Narrowing

e Let X be a solution of (1)
e le,x; O f,()?)

196/471

Narrowing

e Let X be a solution of (1)
e le,x; O f,()?)
e Then, for monotonic f;:

e XIJFX)DF*(X) ...

196/471

Narrowing

e Let X be a solution of (1)
e le,x; O f,()?)
e Then, for monotonic f;:
e XIJFX)DF*(X) ...
e By straightforward induction

196/471

Narrowing

e Let X be a solution of (1)
e le,x; O f,()?)
e Then, for monotonic f;:
e XIJFX)DF*(X) ...
e By straightforward induction
— Every F¥(X) is a solution of (1)!

196/471

Narrowing

e Let X be a solution of (1)
e le,x; O f,()?)
e Then, for monotonic f;:
e XIJFX)DF*(X) ...
e By straightforward induction
— Every F¥(X) is a solution of (1)!
e Narrowing iteration: lterate until stabilization

196/471

Narrowing

e Let X be a solution of (1)
e le,x; O f,()?)
e Then, for monotonic f;:
e XIJFX)DF*(X) ...
e By straightforward induction
— Every F¥(X) is a solution of (1)!
e Narrowing iteration: lterate until stabilization

e Or some maximum number of iterations reached
e Note: Need not stabilize within finite number of iterations

196/471

Narrowing

e Let X be a solution of (1)
e le,x; O f,()?)
e Then, for monotonic f;:
e XIJFX)DF*(X) ...
e By straightforward induction
— Every F¥(X) is a solution of (1)!
e Narrowing iteration: lterate until stabilization

e Or some maximum number of iterations reached
e Note: Need not stabilize within finite number of iterations

e Solutions get smaller (more precise) with each iteration

196/471

Narrowing

Let X be a solution of (1)
l.e., x; O f,()?)
Then, for monotonic f;:
e XIJFX)DF*(X) ...
e By straightforward induction
— Every F¥(X) is a solution of (1)!
Narrowing iteration: lterate until stabilization
e Or some maximum number of iterations reached
o Note: Need not stabilize within finite number of iterations
Solutions get smaller (more precise) with each iteration
Round robin/Worklist iteration also works!

196/471

Narrowing

Let X be a solution of (1)
l.e., x; O f,()?)
Then, for monotonic f;:
e XIJFX)DF*(X) ...
e By straightforward induction
— Every F¥(X) is a solution of (1)!
Narrowing iteration: lterate until stabilization
e Or some maximum number of iterations reached
o Note: Need not stabilize within finite number of iterations
Solutions get smaller (more precise) with each iteration
Round robin/Worklist iteration also works!
e Important to have only one constraint per x;!

196/471

Example

o Start with over-approximation.

{i — [—o0, +00]}

i=0

{i= Otecl},

Neg (i<42) Pos (1<42)

M[a+i]=1*2

{i— [0, +o0]}

197/471

Example

o Start with over-approximation.

{i — [—o0, +00]}

i=0

{i= Otecl},

Neg (i<42) Pos (1<42)

M[a+i]=1*2

{i— [0, +o0]}

197/471

Example

o Start with over-approximation.

{i — [—o0, +00]}

i=0

{i= Otecl},

Neg (i<42) Pos (1<42)

{i—[0,41]}

Pos (0<=1<42)

{i—[0,41]}

M[a+i]=1*2

{i— [0, +o0]}

197/471

Example

o Start with over-approximation.

{i — [—o0, +00]}

i=0

{i= Otecl},

Neg (i<42) Pos (1<42)

{i—[0,41]}

Pos (0<=1<42)

{i—[0,41]}

M[a+i]=1*2

{i—[0,41]}

197/471

Example

o Start with over-approximation.

{i — [—o0, +00]}

i=0
{i—[0,42]} i
Neg (i<42) Pos (1<42)
{i—[0,41]}

Pos (0<=1<42)

{i—[0,41]}

M[a+i]=1*2

{i—[0,41]}

197/471

Example

o Start with over-approximation.

{i — [—o0, +00]}

i=0
{i—[0,42]} i
Neg (i<42) Pos (1<42)
{i—[0,41]}

Pos (0<=1<42)

{i—[0,41]}

M[a+i]=1*2

{i—[0,41]}

197/471

Example

o Start with over-approximation. Stabilized

{i — [—o0, +00]}

i=0
{i—[0,42]} i
Neg (i<42) Pos (1<42)
{i—[0,41]}

Pos (0<=1<42)

{i—[0,41]}

M[a+i]=1*2

{i—[0,41]}

197/471

Discussion

¢ Not necessary to find good loop separator

198/471

Discussion

¢ Not necessary to find good loop separator
¢ In our example, it even stabilizes

198/471

Discussion

¢ Not necessary to find good loop separator
¢ In our example, it even stabilizes
o Otherwise: Limit number of iterations

198/471

Discussion

¢ Not necessary to find good loop separator
¢ In our example, it even stabilizes
o Otherwise: Limit number of iterations
¢ Narrowing makes solution more precise in each step

198/471

Discussion

Not necessary to find good loop separator
In our example, it even stabilizes
o Otherwise: Limit number of iterations
¢ Narrowing makes solution more precise in each step

¢ Question: Do we have to accept possible nontermination/large number of
iterations?

198/471

Accelerated narrowing

e Let X O F(X) be solution of (1)

199/471

Accelerated narrowing

e Let X O F(X) be solution of (1)
e Consider function H : X — X 1 F(X)

199/471

Accelerated narrowing

e Let X O F(X) be solution of (1)
e Consider function H : X — X 1 F(X)
e For monotonic F, we have X J F(X) J F2(X) 2 ...

199/471

Accelerated narrowing

e Let X O F(X) be solution of (1)
e Consider function H : X — X 1 F(X)

e For monotonic F, we have X J F(X) J F2(X) 2 ...
e and thus H*(X) = F¥(X)

199/471

Accelerated narrowing

Let X J F(X) be solution of (1)

Consider function H : X — X 1 F(X)

For monotonic F, we have X J F(X) J F2(X) 3 ...
e and thus H*(X) = F¥(X)

Now regard / : (X) — XF1F(X), where

199/471

Accelerated narrowing

Let X J F(X) be solution of (1)
Consider function H : X — X 1 F(X)
For monotonic F, we have X J F(X) 2 F2(X) 3 ...
e and thus H*(X) = F¥(X)
Now regard / : (X) — XF1F(X), where
7 Narrowing operator, whith
@ xnNyCxAyCx

® For every sequence o, a1, . . ., the (down)chain by = ao, bix1 = biF a4
eventually stabilizes

199/471

Accelerated narrowing

e Let X O F(X) be solution of (1)
e Consider function H : X — X 1 F(X)
 For monotonic F, we have X J F(X) J F?(X) 2
e and thus H¥(X) = F¥(X)

Now regard / : (X) — XF1F(X), where
¢ 1 Narrowing operator, whith

@ xnyCxAyCx

® For every sequence o, a1, . . ., the (down)chain by = ao, bix1 = biF a4

eventually stabilizes

e We have: [X(X) 3 HX(X) = FK(X) 2 FF1(X).

e le., IX(X) greater (valid approx.) than a solution.

199/471

For interval analysis

e Preserve (finite) interval bounds: [/, u1] Ak, 2] := [/, u], where
| — 12 if /1 = —0
" 14 otherwise

U= U if uy = oo
" | u otherwise

200/471

For interval analysis

e Preserve (finite) interval bounds: [/, u1] Ak, 2] := [/, u], where
| — 12 if /1 = —0
" 14 otherwise

U= U if uy = oo
" | u otherwise

200/471

For interval analysis

e Preserve (finite) interval bounds: [/, u1] Ak, 2] := [/, u], where
| — 12 if /1 = —0
" 14 otherwise

U= U if uy = oo
" | u otherwise

e Check:
o [h,] N[k,] T [h, u] Ak, u2] T [h, uy]

200/471

For interval analysis

e Preserve (finite) interval bounds: [/, u1] Ak, 2] := [/, u], where
| — 12 if /1 = —0
" 14 otherwise

U= U if Uy = o0
" | u otherwise

e Check:

o [h,n] N[k, u] E[h,] Alk, te] T [h,]
o Stabilizes after at most two narrowing steps

200/471

For interval analysis

e Preserve (finite) interval bounds: [/, u1] Ak, 2] := [/, u], where
| — 12 if /1 = —0
" 14 otherwise
U= U if uy = oo
" lu; otherwise
e Check:

o [h,n] N[k, u] E[h,] Alk, te] T [h,]
o Stabilizes after at most two narrowing steps

e [1is not commutative

200/471

For interval analysis

Preserve (finite) interval bounds: [/, u1] Ak, us] := [/, u], where
| — 12 if /1 = —0
" 14 otherwise

U= U if Uy = o0
" | u otherwise

e Check:

o [h,n] N[k, u] E[h,] Alk, te] T [h,]
o Stabilizes after at most two narrowing steps

e Fis not commutative
e For our example: Same result as non-accelerated narrowing!

200/471

Discussion

e Narrowing only works for monotonic functions
e Widening worked for all functions

201

471

Discussion

e Narrowing only works for monotonic functions
e Widening worked for all functions

e Accelerated narrowing can be iterated until stabilization

201

471

Discussion

e Narrowing only works for monotonic functions
e Widening worked for all functions

e Accelerated narrowing can be iterated until stabilization
e However: Design of good widening/narrowing remains black magic

201

471

Last Lecture

e Interval analysis (ctd)

o Abstract values: Intervals [/, ul with | < u, | € Z— o, U € ZT
e Abstract operators: Interval arithmetic

202/471

Last Lecture

e Interval analysis (ctd)

o Abstract values: Intervals [/, ul with | < u, | € Z— o, U € ZT
e Abstract operators: Interval arithmetic

e Main problem: Infinite ascending chains
e Analysis not guaranteed to terminate

202/471

Last Lecture

e Interval analysis (ctd)

o Abstract values: Intervals [/, ul with | < u, | € Z— o, U € ZT
e Abstract operators: Interval arithmetic

e Main problem: Infinite ascending chains
e Analysis not guaranteed to terminate

e Widening: Accelerate convergence by over-approximating join
o Here: Update interval bounds to —oo/4-o00

202/471

Last Lecture

e Interval analysis (ctd)
o Abstract values: Intervals [/, ul with | < u, | € Z— o, U € ZT
e Abstract operators: Interval arithmetic
e Main problem: Infinite ascending chains
e Analysis not guaranteed to terminate
e Widening: Accelerate convergence by over-approximating join
o Here: Update interval bounds to —oo/4-o00
e Problem: makes analysis imprecise

e Idea 1: Widening only at loop separators
¢ |dea 2: Narrowing
e FP-lteration on solution preserves solution
e But may make it smaller
e Accelerated narrowing:
e Use narrowing operator for update, that lies “in between” M and original
value
e ... and converges within finite time
o Here: Keep finite interval bounds

202/471

Recipe: Abstract Interpretation (I)
e Define abstract value domain A, with partial order C
e LI must be totally defined (M need not always exists)
¢ Define description relation between values: AC Z x A

e Show: Monotonicity: Va; C a,v.vAa = vAa
o Standard: Lift to valuations (Reg — A), domain (D := (Reg — A) U {L})

o Define abstract operators v : A, O#% . A x A — A, etc.
e Show soundness wrt. concrete ones:
veeZ. v Avt

Yvi,Vo €Z, di,db €A vi Adi Ao A O — V1\:|V2Ad1|:|#d2

o Forfree:p A p#* = [e]p A [e]” p#
e Define transformation tr :: Act x D — Act
e Show correctness: (p,u) A d = [a](p, p) = [tr(a, d)](p, 1)
« Define abstract effects []* : Act — D — D, initial value dy € D

o Usually: Creativity only required on Pos,Neg
e Show: Monotonicity: Vdy C db, a. [a]” di T [a]* o and simulation:

Vo, p. (p, 1) A do
V(p, 1) € dom([a]), d. (p,) A d = [al(p,) A [a]"d

203/471

Recipe: Abstract Interpretation (ll)

e Check finite chain height of domain

¢ Finite: Done
e Infinite (or too high)

o Define widening, narrowing operator

204/471

Short recapture of methods so far

e Operational semantics on flowgraphs

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs
o Edges have effect on states. Extend to paths.

205/471

Short recapture of methods so far
e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.
o Collecting semantics: [u] — States reachable at u.

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.
o Collecting semantics: [u] — States reachable at u.

e Program analysis

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.
o Collecting semantics: [u] — States reachable at u.

e Program analysis
o Abstract description of

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs
o Edges have effect on states. Extend to paths.
o Collecting semantics: [u] — States reachable at u.
e Program analysis
o Abstract description of
e Forward: States reachable at u

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.

o Collecting semantics: [u] — States reachable at u.
e Program analysis

o Abstract description of

e Forward: States reachable at u
e Backward: Executions leaving u

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.

o Collecting semantics: [u] — States reachable at u.
e Program analysis

o Abstract description of

e Forward: States reachable at u
e Backward: Executions leaving u

e Abstract effects of edges:

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.

o Collecting semantics: [u] — States reachable at u.
e Program analysis

o Abstract description of

e Forward: States reachable at u
e Backward: Executions leaving u

e Abstract effects of edges:
e Must be compatible with concrete effects

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.

o Collecting semantics: [u] — States reachable at u.
e Program analysis

o Abstract description of

e Forward: States reachable at u
e Backward: Executions leaving u

e Abstract effects of edges:

e Must be compatible with concrete effects
e Forward: Simulation; Backward: Also (kind of) simulation

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.

o Collecting semantics: [u] — States reachable at u.
e Program analysis

o Abstract description of

e Forward: States reachable at u
e Backward: Executions leaving u

e Abstract effects of edges:

e Must be compatible with concrete effects
e Forward: Simulation; Backward: Also (kind of) simulation

e MOP[u] — Abstract effects reachable at u

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.

o Collecting semantics: [u] — States reachable at u.
e Program analysis

o Abstract description of

e Forward: States reachable at u
e Backward: Executions leaving u

e Abstract effects of edges:
e Must be compatible with concrete effects
e Forward: Simulation; Backward: Also (kind of) simulation
e MOP[u] — Abstract effects reachable at u
e Special case: abstract interpretation — domain describes abstract values

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.

o Collecting semantics: [u] — States reachable at u.
e Program analysis

o Abstract description of

e Forward: States reachable at u
e Backward: Executions leaving u

e Abstract effects of edges:

e Must be compatible with concrete effects
e Forward: Simulation; Backward: Also (kind of) simulation

e MOP[u] — Abstract effects reachable at u
e Special case: abstract interpretation — domain describes abstract values

e Transformation: Must be compatible with states/leaving paths described
by abstract effects

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.

o Collecting semantics: [u] — States reachable at u.
e Program analysis

o Abstract description of

e Forward: States reachable at u
e Backward: Executions leaving u

o Abstract effects of edges:

e Must be compatible with concrete effects
e Forward: Simulation; Backward: Also (kind of) simulation

e MOP[u] — Abstract effects reachable at u
e Special case: abstract interpretation — domain describes abstract values

e Transformation: Must be compatible with states/leaving paths described
by abstract effects

e Computing analysis result

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.

o Collecting semantics: [u] — States reachable at u.
e Program analysis

o Abstract description of

e Forward: States reachable at u
e Backward: Executions leaving u

o Abstract effects of edges:

e Must be compatible with concrete effects
e Forward: Simulation; Backward: Also (kind of) simulation

e MOP[u] — Abstract effects reachable at u
e Special case: abstract interpretation — domain describes abstract values

e Transformation: Must be compatible with states/leaving paths described
by abstract effects

e Computing analysis result
e Constraint system. For monotonic abstract effects. Precise if distributive.

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.

o Collecting semantics: [u] — States reachable at u.
e Program analysis

o Abstract description of

e Forward: States reachable at u
e Backward: Executions leaving u

o Abstract effects of edges:

e Must be compatible with concrete effects
e Forward: Simulation; Backward: Also (kind of) simulation

e MOP[u] — Abstract effects reachable at u
e Special case: abstract interpretation — domain describes abstract values
e Transformation: Must be compatible with states/leaving paths described
by abstract effects
e Computing analysis result

e Constraint system. For monotonic abstract effects. Precise if distributive.
e Solving algorithms: Naive iteration, RR-iteration, worklist algorithm

205/471

Short recapture of methods so far

e Operational semantics on flowgraphs

o Edges have effect on states. Extend to paths.

o Collecting semantics: [u] — States reachable at u.
e Program analysis

o Abstract description of

e Forward: States reachable at u
e Backward: Executions leaving u

o Abstract effects of edges:

e Must be compatible with concrete effects
e Forward: Simulation; Backward: Also (kind of) simulation

e MOP[u] — Abstract effects reachable at u
e Special case: abstract interpretation — domain describes abstract values

e Transformation: Must be compatible with states/leaving paths described
by abstract effects

e Computing analysis result

e Constraint system. For monotonic abstract effects. Precise if distributive.
e Solving algorithms: Naive iteration, RR-iteration, worklist algorithm

e Forcing convergence: Widening, Narrowing

205/471

Remark: Simulation (Backwards)

e Describe execution to end node (state, path)

206/471

Remark: Simulation (Backwards)

e Describe execution to end node (state, path)
e Dead variables: Execution does not depend on dead variables
* (p,p),m A Diffvx € D, v. [x](p(x := v),) = [7](p, 1)

206/471

Remark: Simulation (Backwards)

e Describe execution to end node (state, path)

e Dead variables: Execution does not depend on dead variables
* (p,p),m A Diffvx € D, v. [x](p(x := v),) = [7](p, 1)

¢ Proof obligations

o (pv /L),{-: A DO
® [al(p,), m AD = (p,p),ar A [a]* D

206/471

Remark: Simulation (Backwards)

e Describe execution to end node (state, path)
e Dead variables: Execution does not depend on dead variables

e (p.p),m A Diffvx € D, v. [x](p(x :=),) = [x](p. 1)
¢ Proof obligations

o (pv /L),{-: A DO
® [al(p,), m AD = (p,p),ar A [a]* D

e Yields: Vp, u. (p,p), m A |I7T]]#D0
e Note: Could even restrict to reachable states p, u.

206/471

Remark: Simulation (Backwards)

e Describe execution to end node (state, path)
e Dead variables: Execution does not depend on dead variables

e (p.p),m A Diffvx € D, v. [x](p(x :=),) = [x](p. 1)
¢ Proof obligations

0 (pv /L),{-: A DO
® [al(p,), m AD = (p,p),ar A [a]* D

e Yields: Vp, u. (p,p), m A |[7T]]#D0
e Note: Could even restrict to reachable states p, u.

(pn,ﬂn),s

A

206/471

Remark: Simulation (Backwards)

e Describe execution to end node (state, path)

e Dead variables: Execution does not depend on dead variables
* (p,p),m A Diffvx € D, v. [x](p(x := v),) = [7](p, 1)

¢ Proof obligations

0 (pv /L),{-: A DO
® [al(p,), m AD = (p,p),ar A [a]* D

e Yields: Vp, u. (p,p), m A |[7T]]#D0
e Note: Could even restrict to reachable states p, u.

[al
(Pn=1, tn—1), @ — (pn, ttn), €

206/471

Remark: Simulation (Backwards)

e Describe execution to end node (state, path)

e Dead variables: Execution does not depend on dead variables
* (p,p),m A Diffvx € D, v. [x](p(x := v),) = [7](p, 1)

¢ Proof obligations

0 (pv /L),{-: A DO
® [al(p,), m AD = (p,p),ar A [a]* D

e Yields: Vp, u. (p,p), m A |[7T]]#D0
e Note: Could even restrict to reachable states p, u.

[al
(Pn=1, tn—1), @ — (pn, ttn), €

206/471

Remark: Simulation (Backwards)

e Describe execution to end node (state, path)
e Dead variables: Execution does not depend on dead variables

e (p.p),m A Diffvx € D, v. [x](p(x :=),) = [x](p. 1)
¢ Proof obligations

0 (pv /L),{-: A DO
® [al(p,), m AD = (p,p),ar A [a]* D

e Yields: Vp, u. (p,p), m A |[7T]]#D0
e Note: Could even restrict to reachable states p, u.

[al
« ——> (pn—1, n-1), @ — (pn, ktn), €

A A

[a]”

206/471

Remark: Simulation (Backwards)

e Describe execution to end node (state, path)
e Dead variables: Execution does not depend on dead variables

e (p.p),m A Diffvx € D, v. [x](p(x :=),) = [x](p. 1)
¢ Proof obligations

0 (pv /L),{-: A DO
® [al(p,), m AD = (p,p),ar A [a]* D

e Yields: Vp, u. (p,p), m A |[7T]]#D0
e Note: Could even restrict to reachable states p, u.

[al
(po, o), @ ———> -+ —— (pn—1, tn—1),@ — (Pn; ftn), €

A A

[a]”

206/471

Remark: Simulation (Backwards)

e Describe execution to end node (state, path)
e Dead variables: Execution does not depend on dead variables

e (p.p),m A Diffvx € D, v. [x](p(x :=),) = [x](p. 1)
¢ Proof obligations

0 (pv /L),{-: A DO
® [al(p,), m AD = (p,p),ar A [a]* D

e Yields: Vp, u. (p,p), m A |[7T]]#D0
e Note: Could even restrict to reachable states p, u.

[al
(po, o), @ ———> -+ —— (pn—1, tn—1),@ — (Pn; ftn), €

A A A

[a]”

206/471

Table of Contents

o Alias Analysis

207/471

Motivation

e Want to consider memory

208/471

Motivation

e Want to consider memory
e Eg.M[y] = 5; x = M[y] + 1—=M[y] = 5; x=6

208/471

Motivation

e Want to consider memory
e Eg.M[y] = 5; x = M[y] + 1—=M[y] = 5; x=6
e Here: Assume analyzed program is the only one who accesses memory

208/471

Motivation

e Want to consider memory
e Eg.M[y] = 5; x = M[y] + 1—=M[y] = 5; x=6
e Here: Assume analyzed program is the only one who accesses memory

e In reality: Shared variables (interrupts, threads), DMA, memory-mapped
hardware, ...

208/471

Motivation

e Want to consider memory
e Eg.M[y] = 5; x = M[y] + 1—=M[y] = 5; x=6
e Here: Assume analyzed program is the only one who accesses memory

e In reality: Shared variables (interrupts, threads), DMA, memory-mapped
hardware, ...
o Compilers provide, e.g., volatile annotation

208/471

First Attempt

e Available expressions:
o Memorize loads: Load: x = M[e] — { Ty = Mlel; x=Tuq}
o Effects

[Te = e]"A=[A]" U {e} [Twe = Mel]” A = [A]" u {M[e]}
[x = e]* A = [A]" \ Expr, [M[e] = e2]* A = [A]* \ loads

209/471

First Attempt

e Available expressions:
o Memorize loads: Load: x = M[e] — { Ty = Mlel; x=Tuq}
o Effects

[Te = e]"A=[A]" U {e} [Twe = Mel]” A = [A]" u {M[e]}
[x = e]* A = [A]" \ Expr, [M[e] = e2]* A = [A]* \ loads

¢ Problem: Need to be conservative on store
o Store destroys all information about memory

209/471

Constant propagation

e Apply constant propagation to addresses?

210/471

Constant propagation

e Apply constant propagation to addresses?
e Exact addresses not known at compile time

210/471

Constant propagation

e Apply constant propagation to addresses?
e Exact addresses not known at compile time
o Usually, different addresses accessed at same program point

210/471

Constant propagation

e Apply constant propagation to addresses?
e Exact addresses not known at compile time

o Usually, different addresses accessed at same program point
o E.g., iterate over array

Constant propagation

Apply constant propagation to addresses?

Exact addresses not known at compile time

Usually, different addresses accessed at same program point
o E.g., iterate over array

Storing at unknown address destroys all information

Last Lecture

e Motivation to consider memory
o Alias analysis required!
e Changing the semantics of memory

o Pointers to start of blocks, indexing within blocks

¢ No pointer arithmetic

e Some assumptions about program correctness: Semantics undefined if
e Program accesses address that has not been allocated
e Indexes block out of bounds
e Computes with addresses

Extending semantics by blocked memory

e Organize memory into blocks

e p = new (e) allocates new block of size e
e x = ple] loads cell e from block p
e pler] = ey writes cell e; from block p

212/471

Extending semantics by blocked memory

e Organize memory into blocks

e p = new (e) allocates new block of size e
e x = ple] loads cell e from block p
e pler] = ey writes cell e; from block p

e Semantics

212/471

Extending semantics by blocked memory

e Organize memory into blocks
e p = new (e) allocates new block of size e
e x = ple] loads cell e from block p
e pler] = ey writes cell e; from block p
e Semantics
e Value: Val = Z U Addr
e Integer values and block addresses

212/471

Extending semantics by blocked memory

e Organize memory into blocks
e p = new (e) allocates new block of size e
e x = ple] loads cell e from block p
e pler] = ey writes cell e; from block p
e Semantics
e Value: Val = Z U Addr
e Integer values and block addresses
e Memory described by p : Addr — Z — Val

e Maps addresses of blocks to arrays of values
e — - partial function (Not all addresses/indexes are valid)

212/471

Extending semantics by blocked memory

e Organize memory into blocks
e p = new (e) allocates new block of size e
e x = ple] loads cell e from block p
e pler] = ey writes cell e; from block p
e Semantics
e Value: Val = Z U Addr
e Integer values and block addresses
e Memory described by p : Addr — Z — Val

e Maps addresses of blocks to arrays of values
e — - partial function (Not all addresses/indexes are valid)

e Assumption: Type correct
e In reality: Type system

212/471

Extending semantics by blocked memory

e Organize memory into blocks
e p = new (e) allocates new block of size e
e x = ple] loads cell e from block p
e pler] = ey writes cell e; from block p
e Semantics
e Value: Val = Z U Addr
e Integer values and block addresses
e Memory described by p : Addr — Z — Val

e Maps addresses of blocks to arrays of values
e — - partial function (Not all addresses/indexes are valid)

e Assumption: Type correct
e In reality: Type system
e We write null and 0 synonymously

212/471

Semantics

[Nopl(p; 1) = (ps 1)
[x = €l(p, 1) = (p(x — [€lp), 1)
[Pos(e)](p; 1) = [€elp # 07(p, 1) : undefined
[Neg(e)l(p, 1) = [€lp = 07(p, i) : undefined
[x = plell(p; 1) = (p(x = p(lPlp, [€]p)) 1)
[ples] = exl(p, 1) = (p, u(lplp, [e1]p) — [e2lp)
[x = new(&)](p, u) = (p(x — &), (@~ (i~ 0[]0 <i<[e]p)))

e New initializes the block

a ¢ dom(y;

Semantics

[Nopl(p; 1) = (ps 1)
[x = €l(p, 1) = (p(x — [€lp), 1)
[Pos(e)](p; 1) = [€elp # 07(p, 1) : undefined
[Neg(e)l(p, 1) = [€lp = 07(p, i) : undefined
[x = plell(p; 1) = (p(x = p(lPlp, [€]p)) 1)
[ples] = exl(p, 1) = (p, u(lplp, [e1]p) — [e2lp)
[x = new(&)](p, u) = (p(x — &), (@~ (i~ 0[]0 <i<[e]p)))

e New initializes the block
e Java: OK, C/C++: ???

a ¢ dom(y;

Semantics

[Nopl(p; 1) = (ps 1)
[x = el(p, 1) = (p(x = [€]p), 1)
[Pos(e)](p; 1) = [€elp # 07(p, 1) : undefined
[Neg(e)l(p, 1) = [€lp = 07(p, i) : undefined
[x = plell(p; 1) = (p(x = p(lPlp, [€]p)) 1)
[ples] = exl(p, 1) = (p, u(lplp, [e1]p) — [e2lp)
[x = new(e)](p, u) = (p(x — @), (@~ (i— 0[]0 <i<[e]p)) a¢dom(u

¢ New initializes the block
e Java: OK, C/C++: 2?7

e Assume that only valid addresses are used
e Otherwise, we formally get undefined

Semantics

[Nop](p, 1) = (ps 1)
[x = el(p, 1) = (p(x = [€]p), 1)
[Pos(e)](p; 1) = [€elp # 07(p, 1) : undefined
[Neg(e)](p, 1) = [€e]p = 0?(p, p) : undefined
[x = plell(p. 1) = (p(x = u(lplp, [€]p)), 1)
[oled] = e2](p. 1) = (p, u(lplp, [e1]p) — [e2]p)
(psp) =

[x = new(€)](p. 1) = (p(x = &) (@~ (i 0| 0 < i< [ep)) a¢ dom(u

¢ New initializes the block
e Java: OK, C/C++: 2?7

e Assume that only valid addresses are used
e Otherwise, we formally get undefined

e Assume that no arithmetic on addresses is done

Semantics

[Nop](p,) =

[x = el(p,n) =
[Pos(e)l(p, n) =
[Neg(e)l(p, 1) =

[x = plell(p. 1) =
[olei] = ex](p, 1) =
[x = new(e)l(p, n) =

(1)

(p(x — [elp), 1)

[elp # 0?(p, 1) : undefined
[elp = 0?(p,) : undefined
(p(x = u([Plp, [€lp)), 1)

(0, 1([P]p: [e1]lp) = [e2lp)
(p(x = a),u(ar (i 0]0<i<[e]p))

¢ New initializes the block
e Java: OK, C/C++: 2?7

e Assume that only valid addresses are used
e Otherwise, we formally get undefined

Assume that no arithmetic on addresses is done
Assume infinite supply of addresses

a ¢ dom(y;

Equivalence

¢ Note: Semantics does not clearly specify how addresses are allocated

214/471

Equivalence

¢ Note: Semantics does not clearly specify how addresses are allocated

e This is irrelevant, consider e.g.
x=new (4); y=new(4) and y=new (4); x=new (4)

214/471

Equivalence

¢ Note: Semantics does not clearly specify how addresses are allocated

e This is irrelevant, consider e.g.
x=new (4); y=new(4) and y=new (4); x=new (4)
e Programs should be equivalent

214/471

Equivalence

¢ Note: Semantics does not clearly specify how addresses are allocated
e This is irrelevant, consider e.qg.
x=new (4); y=new(4) and y=new (4); x=new (4)
e Programs should be equivalent
o Although memory manager would probably assign different physical
addresses

214/471

Equivalence

¢ Note: Semantics does not clearly specify how addresses are allocated
e This is irrelevant, consider e.g.
x=new (4); y=new(4) and y=new (4); x=new (4)

e Programs should be equivalent
o Although memory manager would probably assign different physical
addresses

o Two states (p, 1) and (o, i) are considered equivalent, iff they are
equivalent up to permutation of addresses

o We write (p, u) = (o', 1t')

214/471

Equivalence

¢ Note: Semantics does not clearly specify how addresses are allocated
e This is irrelevant, consider e.g.
x=new (4); y=new(4) and y=new (4); x=new (4)

e Programs should be equivalent
o Although memory manager would probably assign different physical
addresses

o Two states (p, 1) and (o, i) are considered equivalent, iff they are
equivalent up to permutation of addresses
o We write (p, u) = (o', 1t')
¢ Note: To avoid this nondeterminism in semantics:

e Choose Addr to be totally ordered
o Always take the smallest free address

214/471

Examples

e Building the linked list [1, 2]

p1 = new (2)

p2 = new (2)
p1[0] =1
p1ll] = p2
p2[0] = 2
p2[l] = null

"1
P2

null

215/471

Examples

e List reversal

d
Il

£

—

)
=2

Wom oA T b
—
o

=

!'= null) {

o 1
I“'—]i—]/\i—‘
(@]

oo

216/471

Examples

e List reversal

W oHm e
oo
N el
oo

e Sketch algorithm on whiteboard

216/471

Alias analysis

e May alias: May two pointers point to the same address

¢ On store: Only destroy information for addresses that may alias with stored
address

217/471

Alias analysis

e May alias: May two pointers point to the same address

¢ On store: Only destroy information for addresses that may alias with stored
address

e Must alias: Must two pointers point to the same address
e If so, store to one can update information for the other

217/471

Alias analysis

e May alias: May two pointers point to the same address

¢ On store: Only destroy information for addresses that may alias with stored
address

e Must alias: Must two pointers point to the same address
e If so, store to one can update information for the other
e Here: Focus on may-alias

e Important to limit the destructive effect of memory updates
e Must alias: Usually only done in local scope, by, e.g., copy propagation

First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)

allocation sites
e Use start node of edge in CFG to identify allocation site

o Abstract values Addr* = V , Val* = 244" (Possible targets for pointer)

e Domain: (Reg — Val?) x (Addr — Val?)
o Effects

L. x =y, _1#(R. M) = (R(x — R(y)), M)
L,x=e _]*(R,M) = (R(x — 0), M)
[u, x = new(e), v]* (R, M) = (F{(x — {u}), M)
L. x = plel,_1#(R,M) = (R(x — |_J{Ml[a] | a € R[p]}), M)
L. ples] =y, _1#(R,M) = (R, M(a — M(a) U R(y) | a € R(p)))
L. ples] = e, _1*(R,M) = (R, M)

for y € Reg
for e ¢ Reg

for y € Reg
for e ¢ Reg

218

471

First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)

allocation sites
e Use start node of edge in CFG to identify allocation site

o Abstract values Addr* = V , Val* = 284 (Possible targets for pointer)

o Domain: (Reg — Val*) x (Addr* — Val?)
o Effects

[.x =y, I"(R,M) = (R(x = R(y)), M)
L,x =e _]7(R,M) = (R(x — 0), M)
[u, x = new(e), v]*(R, M) = (Ff(x = {u}), M)
L. x = ple], _I#*(R, M) = (R(x — |_J{Mla] | a € R[p]}), M)
[ples] =y, 17 (R,M) = (R, M(a— M(a) UR(y) | a € R(p)))
L. ples] = e, _1#(R,M) = (R, M)

X may point to addresses where y may point to.

for y € Reg
for e ¢ Reg

for y € Reg
for e ¢ Reg

First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)
allocation sites

e Use start node of edge in CFG to identify allocation site

o Abstract values Addr* = V , Val* = 284 (Possible targets for pointer)
e Domain: (Reg — Val#) x (Addr* — Val¥)

o Effects
Lx=y,]]#(R M) = (R(x = R(y)), M) for y € Reg
L.x=e, J*(R,M)=(R(x — 0), M) for e ¢ Reg
[u, x = new(e), v]* (R, M) = (R(x — {u}), M)
(R(x — [J{MId] | a € Rlp]}), M)

L. ples] =y, _I*(R.M) = (R,M(a~ M(a) UR(y) | a€ R(p))) fory € Reg

(

va = p[e]vfll#('qv M)
(

L, pled] = e, 17 (R, M) = (R, M) for e ¢ Reg

Expressions are never pointers.

First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)

allocation sites

e Use start node of edge in CFG to identify allocation site

e Abstract values Addr* = V , Val* =

e Domain: (Reg — Val#) x (Addr* — Val¥)

o Effects

Lx=vy JI#(R M) =
L.x=e 1*(RM) =

[u, x = new(e), v]* (R, M) =
L. x = plel, 1" (R.M) =
L.pled =y, 1#(R.M) =
L. ples] = e J#(R.M) =

X points to this allocation site.

(
(
(
(A(
(R
(R

R(x — R(y)), M)

R(x — 0), M)

R(x — {u}),M)

R(x — | J{M(a] | a € Rp]}), M)

)

)

M(a— M(a) U R(y) | a € R(p)))
M)

Addr? (Possible targets for pointer)

for y € Reg
for e ¢ Reg

for y € Reg
for e ¢ Reg

First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)

allocation sites
e Use start node of edge in CFG to identify allocation site

o Abstract values Addr* = V , Val* = 284" (Possible targets for pointer)

e Domain: (Reg — Val?) x (Addr — Val?)
o Effects

L. x =y, 1%(R.M) = (R(x = R(y)), M)

L,x=e _]%(R,M) = (R(x — 0), M)
[u, x = new(e), v]* (R, M) = (R(x — {u}), M)
[, x = plel,_I"(R,M) = (R(x — | J{Mld] | a € Rlp]}), M)
L. ples] =y, _1#(R, M) = (R, M(a — M(a) UR(y) | a € R(p)))
L. ples] = e, 1#(R,M) = (R, M)

X may point to everything that a may point to, for p pointing to a

for y € Reg
for e ¢ Reg

for y € Reg
for e ¢ Reg

First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)
allocation sites

e Use start node of edge in CFG to identify allocation site

o Abstract values Addr* = V , Val* = 284 (Possible targets for pointer)
e Domain: (Reg — Val#) x (Addr* — Val¥)

o Effects
Lx=y,]]#(R M) = (R(x = R(y)), M) for y € Reg
L,x =e _]7(R,M) = (R(x — 0), M) for e ¢ Reg
[u, x = new(e), v][#(R, M) = (R(x — {u}), M)
(R(x — [J{MId] | a € Rlp]}), M)

[pled] =y._J*(R.M) = (R,M(a~ M(a)UR(y) | a€ R(p))) fory € Reg

(

va = p[e]vfll#('qv M)
(

L, pled] = e, 17 (R, M) = (R, M) for e ¢ Reg

Add addresses from y to each possible address of p

First |Idea

e Summarize (arbitrarily many) blocks of memory by (fixed number of)
allocation sites

e Use start node of edge in CFG to identify allocation site

o Abstract values Addr* = V , Val* = 284 (Possible targets for pointer)
e Domain: (Reg — Val#) x (Addr* — Val¥)

o Effects
Lx=y,]]#(R M) = (R(x — R(y)), M) for y € Reg
L. x =e,_1*(R, M) = (R(x — 0), M) for e ¢ Reg
[u, x = new(e), v][#(R, M) = (R(x — {u}), M)
L. x = plel, _I*(R. M) = (R(x — | J{Mla] | a € Rlp]}), M)

L plei] = y,_1#(R.M) = (R.M(a~ M(a) UR(y) | a€ R(p))) fory & Reg
[ples] =e, _J*(R,M) = (R,M) for e ¢ Reg

Expressions are never pointers.

Example

u: py = new (2)
v: pp = new (2)
p1[0] =1
p1[1l] = p2
p2[0] = 2
p2[l] = null

e At end of program, we have

R=pi— {u},po = {v}
M=u—{v}v—{}

219/471

Description Relation

(p, 1) A (R, M) iff 3s : Addr — V. Va,a € Addr. Vx, i.
p(x) =a = s(a) € R(x) (1)
Au(ai)=a = s(a) e M(s(a)) (2)

Intuitively: There is a mapping s from addresses to allocation sites, with:
(1) If a register contains an address, its abstract value contains the
corresponding allocation site
(2) If a memory block contains an address (at any index), its abstract value
contains the corresponding allocation site

220/471

Description Relation

(p, 1) A (R, M) iff 3s : Addr — V. Va,a € Addr. Vx, i.
p(x) =a = s(a) € R(x) (1)
Au(ai)=a = s(a) e M(s(a)) (2)

Intuitively: There is a mapping s from addresses to allocation sites, with:
(1) If a register contains an address, its abstract value contains the
corresponding allocation site
(2) If a memory block contains an address (at any index), its abstract value
contains the corresponding allocation site
From this, we can extract may-alias information: Pointers py, p» may only
alias (i.e., p(p1) = p(p2) € Addr), if R(p1) N R(p2) # 0.
e B/cif p(p1) = p(p2) = a € Addr, we have s(a) € R(p1) N R(p2)

220/471

Description Relation

(p, 1) A (R, M) iff 3s : Addr — V. Va,a € Addr. Vx, i.
p(x) =a = s(a) € R(x) (1)
Au(ai)=a = s(a) e M(s(a)) (2)

Intuitively: There is a mapping s from addresses to allocation sites, with:
(1) If a register contains an address, its abstract value contains the
corresponding allocation site
(2) If a memory block contains an address (at any index), its abstract value
contains the corresponding allocation site
From this, we can extract may-alias information: Pointers py, p» may only
alias (i.e., p(p1) = p(p2) € Addr), if R(p1) N R(p2) # 0.
e B/cif p(p1) = p(p2) = a € Addr, we have s(a) € R(p1) N R(p2)
Correctness of abstract effects (sketch)
e On whiteboard

220/471

Discussion

e May-point-to information accumulates for store.
o If store is not initialized, we find out nothing

221

471

Discussion

e May-point-to information accumulates for store.
o If store is not initialized, we find out nothing
e Analysis can be quite expensive

o Abstract representation of memory at each program point
e Does not scale to large programs

221

471

Flow insensitive analysis

e |dea: Do not consider ordering of statements

222/471

Flow insensitive analysis

e |dea: Do not consider ordering of statements
e Compute information that holds for any program point

222/471

Flow insensitive analysis

e |dea: Do not consider ordering of statements
e Compute information that holds for any program point
e Only one instance of abstract registers/memory needed

222/471

Flow insensitive analysis

e |dea: Do not consider ordering of statements
e Compute information that holds for any program point
e Only one instance of abstract registers/memory needed

e For our simple example: No loss in precision

222/471

First attempt

e Each edge (u, a, v) gives rise to constraints

a | constraints

xX=y R(x) 2 R(y)

X = new(e) R(x) 2 {u}
x = ple] R(x) 2 U{M(a) | a< R(p)}

plei]=x | M(a) 2 (a€ R(p)?R(x):0) forallaeV

223/471

First attempt

e Each edge (u, a, v) gives rise to constraints

a | constraints

xX=y R(x) 2 R(y)

X = new(e) R(x) 2 {u}
x = ple] R(x) 2 U{M(a) | a< R(p)}

pler]=x | M(a) 2 (a€ R(p)?R(x):0) forallaeV
e Other edges have no effect

223/471

First attempt

e Each edge (u, a, v) gives rise to constraints

a | constraints

xX=y R(x) 2 R(y)

X = new(e) R(x) 2 {u}
x = ple] R(x) 2 U{M(a) | a< R(p)}

pler]=x | M(a) 2 (a€ R(p)?R(x):0) forallaeV
e Other edges have no effect

e Problem: Too many constraints
e O(kn) for k allocation sites and n edges.

223/471

First attempt

Each edge (u, a, v) gives rise to constraints

a | constraints

xX=y R(x) 2 R(y)

X = new(e) R(x) 2 {u}
x = ple] R(x) 2 U{M(a) | a< R(p)}

plei]=x | M(a) 2 (a€ R(p)?R(x):0) forallaeV
Other edges have no effect

e Problem: Too many constraints
e O(kn) for k allocation sites and n edges.

¢ Does not scale to big programs

223/471

Last Lecture

¢ Flow sensitive points-to analysis

o |dentify blocks in memory with allocation sites
e Does not scale. One abstract memory per program point.

¢ Flow-insensitive points-to analysis

e Compute one abstract memory that approximates all program points.
e Does not scale. Too many constraints

e Flow-insensitive alias analysis
e Compute equivalence classes of p and p|]

224/471

Alias analysis

¢ Idea: Maintain equivalence relation between variables p and memory

accesses p[]
e x ~ y whenever x and y may contain the same address (at any two program
points)

u: p1 = new (2)
v: p2 = new (2)
py1[0] =1
p1ll] = p2
p2[0] = 2
p2[l] = null

o ~={pill, P2}, {p1}: {p2[l}}

225/471

Equivalence relations

e Relation ~C R x R that is reflexive, transitive, symmetric

226/471

Equivalence relations

e Relation ~C R x R that is reflexive, transitive, symmetric
e Equivalenceclass [p] :={p' € R|p~p'}

226/471

Equivalence relations

e Relation ~C R x R that is reflexive, transitive, symmetric
e Equivalenceclass [p] :={p' € R|p~p'}

e The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.

226/471

Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}

The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.

~C~' (~ finer than ~')

226/471

Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}
The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.
~C~' (~ finer than ~')

e The set of all equivalence relations on R with C forms a complete lattice

226/471

Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}
The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.
~C~' (~ finer than ~')

e The set of all equivalence relations on R with C forms a complete lattice

e ~)=

226/471

Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}
The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.
~C~' (~ finer than ~')
e The set of all equivalence relations on R with C forms a complete lattice
o ~ii= (=)

226/471

Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}
The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.
~C~' (~ finer than ~')

e The set of all equivalence relations on R with C forms a complete lattice

s = ()

226/471

Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}
The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.
~C~' (~ finer than ~')

e The set of all equivalence relations on R with C forms a complete lattice

e ~)= (:)
e ~T:=RxR

226/471

Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}
The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.
~C~' (~ finer than ~')

e The set of all equivalence relations on R with C forms a complete lattice

e ~)= (:)
e ~T:=RxR

° |_|S:

226/471

Equivalence relations

Relation ~C R x R that is reflexive, transitive, symmetric
Equivalence class [p] :={p' € R|p~ p'}
The equivalence classes partition R. Conversely, any partition of R
defines an equivalence relation.
~C~' (~ finer than ~')

e The set of all equivalence relations on R with C forms a complete lattice

e ~)= (:)
e ~T:=RxR

e Us=WUS)"

226/471

Operations on ERs

e find (~,p): Return equivalence class of p

227/471

Operations on ERs

e find (~,p): Return equivalence class of p
e union (~,p,p’): Return finest ER ~' with p ~' p’ and ~C~/

227/471

Operations on ERs

e find (~,p): Return equivalence class of p
e union (~,p,p’): Return finest ER ~' with p ~' p’ and ~C~/
e On partitions of finite sets: Let R = [p1]~ U... U [pn]~

o union(~,p,p’):Let;_)€[pf]N,,D'G[,Dj]N N
Result: {[pi]~ U [pj]~} U{lpx] | 1 < k < nAk & {ij}t}

227/471

Recursive Union

e If x ~ y, then also x[] ~ y][] (rec)

228/471

Recursive Union

e If x ~ y, then also x[] ~ y][] (rec)
¢ After union, we have to add those equivalences!

228/471

Recursive Union

o If x ~ y, then also x[] ~ y[] (rec)
¢ After union, we have to add those equivalences!
e unionx* (~,p,p’):
e The finest ER that is coarser than union (~, p, p’) and satisfies (rec)

228/471

Alias analysis

T = { {x}, {x[]1} | x € Vars } // Finest ER

for (_,a,_) in E do {
case a of
x=y: 7 = unionx (m,x,Vy)
| x=y[e]l: m = union= (m,x,y[]) // y variable
| ylel=x: ™ = union= (m,x,y[]) // y variable

o Start with finest ER (=)

229/471

Alias analysis

T = { {x}, {x[]1} | x € Vars } // Finest ER

for (_,a,_) in E do {
case a of
x=y: 7 = unionx (m,x,Vy)
| x=y[e]l: m = union= (m,x,y[]) // y variable
| ylel=x: ™ = union= (m,x,y[]) // y variable

o Start with finest ER (=)

e lterate over edges, and union equivalence classes

229/471

Example

1l: p1 = new (2)
2: p2 = new (2)
3: p1[0] =1
4: p1[1] = po
5: po[0] = 2
6: p2[l] = null

it {{p1},{p=}, {P1[l}, {p2[l}}
122 {{pi}{p} {pill}: {p2[l}}
23 {{pi},{p2}, {p: (I}, {P2ll}}
3—4 {pi} {p2} {p1ll}, {P2ll}}
4—=5 {{p1},{p2,; (I}, {Pell}}
5—=6 {{p1},{p2, (I}, {Pell}}

230/471

Example

: R = null
: if Neg (T != null) goto 8

T
T

oo oI

o

s

I —
(@]
oo

: goto 2

O J o U b w N

init — {{H}, {R}, {T}, {H[]}, {TT}}
3—4 {H T} {R}{HI], TII}}
4=95 {H, T, H, TN} {R}}
556 {{H,T,H[], T[], R}}
6—7 {{H, T,H[, T[], R}}

231/47

Discussion

¢ All memory content must have been constructed by analyzed program

232/471

Discussion

¢ All memory content must have been constructed by analyzed program
* p=pll; p=pll; g=ql]

232/471

Discussion

¢ All memory content must have been constructed by analyzed program

e p=pll; p=pll; g=qll
o What if g points to third element of linked list at p.

232/471

Discussion

¢ All memory content must have been constructed by analyzed program

e p=pll; p=pll; g=qll
o What if g points to third element of linked list at p.

= Only works for whole programs, no input via memory

232/471

Correctness

e Intuition: Each address ever created represented by register

233/471

Correctness

e Intuition: Each address ever created represented by register
e Invariant:

233/471

Correctness

e Intuition: Each address ever created represented by register
e Invariant:
© If register holds address, it is in the same class as address’ representative

233/471

Correctness

e Intuition: Each address ever created represented by register
e Invariant:

© If register holds address, it is in the same class as address’ representative
® If memory holds address, it is in the same class as address of address
dereferenced

233/471

Correctness

e Intuition: Each address ever created represented by register
e Invariant:
@ If register holds address, it is in the same class as address’ representative
® If memory holds address, it is in the same class as address of address
dereferenced
e Formally: For all reachable states (p, 1), there exists a map
m : Addr — Reg, such that

233/471

Correctness

e Intuition: Each address ever created represented by register
e Invariant:

@ If register holds address, it is in the same class as address’ representative
® If memory holds address, it is in the same class as address of address
dereferenced

e Formally: For all reachable states (p, 1), there exists a map
m : Addr — Reg, such that

@ o(x) € Addr = x ~ m(p(x))

233/471

Correctness

e Intuition: Each address ever created represented by register
e Invariant:

© If register holds address, it is in the same class as address’ representative
® If memory holds address, it is in the same class as address of address
dereferenced

e Formally: For all reachable states (p, 1), there exists a map
m : Addr — Reg, such that

O o(x) € Addr = x ~ m(p(x))
@ u(a i) € Addr = m(a)[] ~ m(u(a, 1))

233/471

Correctness

Intuition: Each address ever created represented by register
Invariant:

@ If register holds address, it is in the same class as address’ representative
® If memory holds address, it is in the same class as address of address
dereferenced

Formally: For all reachable states (p, 1), there exists a map
m : Addr — Reg, such that

@ o(x) € Addr = x ~ m(p(x))
O u(a, i) € Addr = m(a)[] ~ m(n(a,i))
e Extracting alias information: x, y may alias, if x ~ y.
e p(X)=p(y)=ac Addr = x~m(a)~y

233/471

Correctness

Intuition: Each address ever created represented by register
Invariant:

@ If register holds address, it is in the same class as address’ representative
® If memory holds address, it is in the same class as address of address
dereferenced

Formally: For all reachable states (p, 1), there exists a map
m : Addr — Reg, such that

@ o(x) € Addr = x ~ m(p(x))
O u(a, i) € Addr = m(a)[] ~ m(n(a,i))
e Extracting alias information: x, y may alias, if x ~ y.
e p(X)=p(y)=ac Addr = x~m(a)~y
To show: Invariant holds initially, and preserved by steps

233/471

Correctness

Intuition: Each address ever created represented by register
Invariant:

@ If register holds address, it is in the same class as address’ representative
® If memory holds address, it is in the same class as address of address
dereferenced

Formally: For all reachable states (p, 1), there exists a map
m : Addr — Reg, such that

@ o(x) € Addr = x ~ m(p(x))
@ u(a i) € Addr = m(a)[] ~ m(u(a,i))
e Extracting alias information: x, y may alias, if x ~ y.
e p(X)=p(y)=ac Addr = x~m(a)~y
To show: Invariant holds initially, and preserved by steps
o Initially: By assumption, neither registers nor memory hold addresses!

233/471

Correctness

Intuition: Each address ever created represented by register
Invariant:

@ If register holds address, it is in the same class as address’ representative
® If memory holds address, it is in the same class as address of address
dereferenced

Formally: For all reachable states (p, 1), there exists a map
m : Addr — Reg, such that

@ o(x) € Addr = x ~ m(p(x))
® u(a i) e Addr = m(a)[] ~ m(u(a,i))
e Extracting alias information: x, y may alias, if x ~ y.
e p(X)=p(y)=ac Addr = x~m(a)~y
To show: Invariant holds initially, and preserved by steps

o Initially: By assumption, neither registers nor memory hold addresses!
e Preservation: On whiteboard

233/471

Implementation

¢ Need to implement union»* operation efficiently

234/471

Implementation

¢ Need to implement union»* operation efficiently
e Use Union-Find data structure

234/471

Implementation

¢ Need to implement union»* operation efficiently
e Use Union-Find data structure
e Equivalence classes identified by unique representative

234/471

Implementation

Need to implement union« operation efficiently

Use Union-Find data structure

Equivalence classes identified by unique representative
Operations:

234/471

Implementation

Need to implement union« operation efficiently
Use Union-Find data structure
Equivalence classes identified by unique representative

Operations:
e find(x): Return representative of [x]

234/471

Implementation

Need to implement union« operation efficiently
Use Union-Find data structure
Equivalence classes identified by unique representative

Operations:

e find(x): Return representative of [x]
e union (x,y):Join equivalence classes represented by x and y

e Destructive update!

234/471

Union-Find: Idea
e ER represented as forest.

235/471

Union-Find: Idea

e ER represented as forest.
e Each node contains element and parent pointer.

235/471

Union-Find: Idea

e ER represented as forest.
e Each node contains element and parent pointer.
e Elements of trees are equivalence classes

235/471

Union-Find: Idea

ER represented as forest.

Each node contains element and parent pointer.
Elements of trees are equivalence classes
Representatives are roots of trees

235/471

Union-Find: Idea

ER represented as forest.

Each node contains element and parent pointer.
Elements of trees are equivalence classes
Representatives are roots of trees

Find: Follow tree upwards

235/471

Union-Find: Idea

ER represented as forest.

Each node contains element and parent pointer.
Elements of trees are equivalence classes
Representatives are roots of trees

Find: Follow tree upwards

Union: Link root node of one tree to other tree

235/471

Union-Find: Idea

e ER represented as forest.

e Each node contains element and parent pointer.
Elements of trees are equivalence classes
Representatives are roots of trees

Find: Follow tree upwards

Union: Link root node of one tree to other tree

@}D\g .

Lof1]2]3[4]s5]6]7]

[efsfi]4a]7]s]7]

235/471

Union-Find: Optimizations

o Complexity: Union: O(1), find: O(n) :(

236/471

Union-Find: Optimizations

o Complexity: Union: O(1), find: O(n) :(
¢ Union by size: Connect root of smaller tree to root of bigger one

236/471

Union-Find: Optimizations

o Complexity: Union: O(1), find: O(n) :(
¢ Union by size: Connect root of smaller tree to root of bigger one
o Store size of tree in root node

236/471

Union-Find: Optimizations

o Complexity: Union: O(1), find: O(n) :(
¢ Union by size: Connect root of smaller tree to root of bigger one

e Store size of tree in root node
e C - implementation hack: Re/ab-use parent-pointer field for that

236/471

Union-Find: Optimizations

o Complexity: Union: O(1), find: O(n) :(
¢ Union by size: Connect root of smaller tree to root of bigger one

o Store size of tree in root node
e C - implementation hack: Re/ab-use parent-pointer field for that
e Complexity: Union: O(1), find: O(log n) ;|

236/471

Union by size: Example

@ %

237/471

Union by size: Example

@}D\g @

237/471

Path compression

o After find, redirect pointers on path to root node

238/471

Path compression

o After find, redirect pointers on path to root node
e Requires second pass for find

238/471

Path compression

o After find, redirect pointers on path to root node
¢ Requires second pass for find
o Alternative: Connect each node on find-path to its grandfather

238/471

Path compression

o After find, redirect pointers on path to root node
¢ Requires second pass for find
o Alternative: Connect each node on find-path to its grandfather
e Complexity, amortized for m find and n — 1 union operations
o O(n+ ma(n))
e Where « is the inverse Ackerman-function

238/471

Path compression

o After find, redirect pointers on path to root node
¢ Requires second pass for find
o Alternative: Connect each node on find-path to its grandfather
e Complexity, amortized for m find and n — 1 union operations
o O(n+ ma(n))
e Where « is the inverse Ackerman-function
e Note n < 10® — a(n) <5

238/471

Path compression

o After find, redirect pointers on path to root node
¢ Requires second pass for find
o Alternative: Connect each node on find-path to its grandfather
e Complexity, amortized for m find and n — 1 union operations
o O(n+ ma(n))
e Where « is the inverse Ackerman-function

e Note n < 10® — a(n) <5
o Note: This complexity is optimal :)

238/471

Path compression: Example

@ @}@ﬁ

239/471

Path compression: Example

2222222

Path compression: Example

10
® [®
@

Path compression: Example

3

@
® [®
@

Path compression: Example

@
® [®
@

Placing registers on top

e Try to preserve invariant:

240/471

Placing registers on top

e Try to preserve invariant:

o If equivalence class contains register, its representative (root node) is
register

240/471

Placing registers on top

e Try to preserve invariant:

o If equivalence class contains register, its representative (root node) is
register
e On union, if linking register class to non-register class:

240/471

Placing registers on top

e Try to preserve invariant:

o If equivalence class contains register, its representative (root node) is
register
e On union, if linking register class to non-register class:
e Swap stored values in roots

240/471

Placing registers on top

e Try to preserve invariant:

o If equivalence class contains register, its representative (root node) is
register
e On union, if linking register class to non-register class:
e Swap stored values in roots

e Then, register equivalence class can be identified by its representative

240/471

Implementing union*

unionx* (x,vy) :
x = find(x); y=find(y)
if x !'= y then
union (x,Vy)
if x € Regs & y € Regs then
unionx (x[]1,y[])

241/471

Summary

e Complexity:
e O(|E| + |Reg]) calls to union*, find. O(|Reg|) calls to union.

242/471

Summary

e Complexity:
e O(|E| + |Reg]) calls to union*, find. O(|Reg|) calls to union.
e Analysis is fast. But may be imprecise.

242/471

Summary

e Complexity:

e O(|E| + |Reg]) calls to union*, find. O(|Reg|) calls to union.
e Analysis is fast. But may be imprecise.
¢ More precise analysis too expensive for compilers.

242/471

Last Lecture

o Alias analysis by merging equivalence classes
¢ Implementation by union-find structure
e Optimizations: Union-by-size, path-compression
e Implementing union*

243/471

Evaluation

Please fill out evaluation forms online.

Table of Contents

6 Avoiding Redundancy (Part Il)

245/471

Table of Contents

e Avoiding Redundancy (Part Il)
Partial Redundancy Elimination
Partially Dead Assignments

246/471

Idea

247/471

Idea

if x {
x = M[5]
} else {
vy = x + 1

yo = x + 1
M[1]=y1 + yeo

e x+1 is evaluated on every path

247/471

Idea

if x {

x = M[5]
} else {

vy = x + 1
}

yo = x + 1
M[1]=y1 + yeo

e x+1 is evaluated on every path
¢ On else-path even two times

247/471

Goal

248/471

Goal

248/471

|dea

e Insert assignments T, = e, such that e is available at all program points
where it is required.

249/471

|dea

e Insert assignments T, = e, such that e is available at all program points
where it is required.

¢ Insert assignments as early as possible.

249/471

|dea

e Insert assignments T, = e, such that e is available at all program points
where it is required.

¢ Insert assignments as early as possible.
¢ Do not add evaluations of e that would not have been executed at all.
e if x!=0 then y=6 div x v/ T=6 div x; if x!=0 then y=T

249/471

Very busy expressions

e An expression e is busy on path m, if it is evaluated on 7 before a variable
of e is changed.

250/471

Very busy expressions

e An expression e is busy on path m, if it is evaluated on 7 before a variable
of e is changed.

e eis very busy at u, if it is busy for all path from u to an end node.

250/471

Very busy expressions

e An expression e is busy on path m, if it is evaluated on 7 before a variable
of e is changed.

e eis very busy at u, if it is busy for all path from u to an end node.
e Backwards must analysis, i.e., C=D, U =nN

250/471

Very busy expressions

An expression e is busy on path =, if it is evaluated on = before a variable
of e is changed.

eis very busy at u, if it is busy for all path from u to an end node.
Backwards must analysis, i.e., E=D, L1 =N

Semantic intuition:

e e busy on m — evaluation of e can be placed at start of path
e e very busy at u — evaluation can be placed at u

e Without inserting unwanted additional evaluations

250/471

Abstract effects

[Nop]*B =B
[Pos(e)]*B = BU {e}
[Neg(e)]” B = BU {e}
[x := e]*B = (B\ Expr,) U{e}
[x := M[e]]” B = (B Expr,) U {€}
[M[es] = e:]*B = BU {e, e}

e Initial value: 0
e No very busy expressions at end nodes

251/47

Abstract effects

[Nop]*B =B
[Pos(e)]*B = BU {e}
[Neg(e)]” B = BU {e}
[x := e]*B = (B\ Expr,) U{e}
[x := M[e]]” B = (B Expr,) U {€}
[M[es] = e:]*B = BU {e, e}

e Initial value: 0
e No very busy expressions at end nodes
e Kill/Gen analysis, i.e., distributive
e MOP = MFP, if end node reachable from every node

251/471

Example (Very Busy Expressions)

x=M[5] y1=x+1

252/471

Example (Very Busy Expressions)

252/471

Example (Very Busy Expressions)

252/471

Example (Very Busy Expressions)

x=M[5] y1=x+1

O {x+1}

O U +y}
M[1] = yi+ y2

{3

252/471

Example (Very Busy Expressions)

{} x+1}
x=M[5] y1=x+1

O {x+1}

O U +y}
M[1] = yi+ y2

{3

252/471

Example (Very Busy Expressions)

{3 x+1}

x=M[5] yi1=x+1

{x+1}

{x+1}
yo=x+1
n + ye}
M[1] = yit y2

{3

252/471

Available expressions

¢ Recall: Available expressions before memo-transformation

[[Nop]]jA =A
[Pos(e)]%A = AU {e}
[Neg(e)]4A = AU {e}
[R = el A:= (AU {e}) \ Exprq
[R = Mle]]4A = (AU {e}) \ Exprp
[Mle] = e]%A = AU {er, e}

253/471

Transformation

e Insert T, = e after edge (u, a, v), if

254/471

Transformation

e Insert T, = e after edge (u, a, v), if
e eisverybusy at v

254/471

Transformation

e Insert T, = e after edge (u, a, v), if
e eisverybusy at v
o Evaluation could not have been inserted before, b/c

e edestroyed by a, or
e e neither available, nor very busy at u

254/471

Transformation

e Insert T, = e after edge (u, a, v), if
e eisverybusy at v
o Evaluation could not have been inserted before, b/c

e edestroyed by a, or
e e neither available, nor very busy at u

o Formally: e € B[v] \ [a]% (Alu] U B[u])

254/471

Transformation

e Insert T, = e after edge (u, a, v), if

e eisverybusy at v
e Evaluation could not have been inserted before, b/c

e edestroyed by a, or
e e neither available, nor very busy at u

o Formally: e € B[v] \ [a]% (Alu] U B[u])
o At program start, insert evaluations of B[]

254/471

Transformation

e Insert T, = e after edge (u, a, v), if

e eisverybusy at v
e Evaluation could not have been inserted before, b/c

e edestroyed by a, or
e e neither available, nor very busy at u

o Formally: e € B[v] \ [a]% (Alu] U B[u])
o At program start, insert evaluations of B[]
¢ Note: Order does not matter

254/471

Transformation

¢ Place evaluations of expressions
e (u,a,v) > {(u,a,w),(w, Te = e,v)} for e € B[] \ [a]% (A[u] U B[u])
e For fresh node w

255/471

Transformation

¢ Place evaluations of expressions
e (u,a,v) > {(u,a,w),(w, Te = e,v)} for e € B[] \ [a]% (A[u] U B[u])
e For fresh node w

o vy — Vo' with (W', Te = €, vp) for e € B|v]

255/471

Transformation

¢ Place evaluations of expressions
o (u,a,v)— {(u,a,w),(w, Te =e,v)} fore € B[v]\ [[a]]j(A[u] U B[u])
e For fresh node w

o vy — Vo' with (W', Te = €, vp) for e € B|v]

¢ Note: Multiple memo-assignments on one edge
e Can just be expanded in any order

255/471

Transformation

Place evaluations of expressions
o (u,a,v)— {(u,a,w),(w, Te =e,v)} fore € B[v]\ [[a]]j(A[u] U B[u])
e For fresh node w

o vy — Vo' with (W', Te = €, vp) for e € B|v]

Note: Multiple memo-assignments on one edge
e Can just be expanded in any order

e Replace usages of expressions

o (Uyx=2eV)— (Ux=TeV)

¢ analogously for other uses of e

255/471

Example

e For expression x + 1 only

x=M[5] y1=x+1

256/471

Example
e For expression x + 1 only
B={},A={}

B={}A={} B={x+1},A={}

x=M[5] yi1=x+1

B={x+1},A={} B={x+1},A={x+1}

B={x+1},A={}
yo=x+1
B={n+yh,A={x+1}
MI1] = yi+ y2

B={}LA={x+1y+y}

256/471

Example
e For expression x + 1 only
B={},A={}

B={}A={} B={x+1},A={}

x=M[5] yi1=x+1

B={x+1},A={} B={x+1},A={x+1}

B={x+1},A={}
yo=x+1
B={n+yh,A={x+1}
MI1] = yi+ y2

B={}LA={x+1y+y}

256/471

Example
e For expression x + 1 only

x=M[5] y1=x+t1

yo=x+1

256/471

Example
e For expression x + 1 only
T=x+1

yi=x+1

256/471

Example
e For expression x + 1 only
T=x+1

y1=T

256/471

Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

e True for our translation scheme
e Be careful in general!

257/471

Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

e True for our translation scheme
e Be careful in general!

—> Required expressions are very busy at start node of edge

257/471

Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

e True for our translation scheme
e Be careful in general!

—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms

e Assume expression e required by a
e ec Blu]

257/471

Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node
o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge
¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]
e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed
such that it is available at v

257/471

Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v
e Induction on 7.

257/471

Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v

¢ Induction on 7.

e Empty path: Evaluation placed before start node

257/471

Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v
e Induction on 7.

o Empty path: Evaluation placed before start node
o m=n'(U,a,V):

257/471

Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v
e Induction on 7.

o Empty path: Evaluation placed before start node
o m=n'(U,a,V):

e Case amodifiese =— e ¢ [a]]j(. ..) = Evaluation placed here.

257/471

Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v
e Induction on 7.

o Empty path: Evaluation placed before start node
o m=n'(U,a,V):

e Case amodifiese =— e ¢ [a]]j(. ..) = Evaluation placed here.
e Case e ¢ Alu] U Blu] = Evaluation placed here.

257/471

Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v
e Induction on 7.

o Empty path: Evaluation placed before start node
o m=n'(U,a,V):

e Case amodifiese =— e ¢ [a]]j(. ..) = Evaluation placed here.
e Case e ¢ Alu] U Blu] = Evaluation placed here.
e Assume: a does not modify e

257/471

Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v
e Induction on 7.

o Empty path: Evaluation placed before start node
o m=n'(U,a,V):

e Case amodifiese =— e ¢ [a]]j(. ..) = Evaluation placed here.
e Case e ¢ Alu] U Blu] = Evaluation placed here.

e Assume: a does not modify e

e Case e € B[u]. Induction hypothesis.

257/471

Correctness (Sketch)

e Assumption: Same set of expressions occur at all outgoing edges of a
node

o True for our translation scheme
e Be careful in general!
—> Required expressions are very busy at start node of edge

¢ Regard path from start node over edge to end node: 71(u, a, v)ms
e Assume expression e required by a
e ec Blu]

e Show: On any path 7 from v, to v with e € B|v], evaluation of e is placed

such that it is available at v

¢ Induction on 7.
o Empty path: Evaluation placed before start node
o m=n'(U,a,V):

e Case amodifiese =— e ¢ [a]]j(. ..) = Evaluation placed here.

e Case e ¢ Alu] U Blu] = Evaluation placed here.

e Assume: a does not modify e

e Case e € B[u]. Induction hypothesis.

e Caseec Alu] = =’ =nj(U,a,v')r), such that) does not modify e, and e
required by 8@ = e € B[u’]. Induction hypothesis.

257/471

Non-degradation of performance

e On any path: Placement of T, = e corresponds to replacing an e by T,
¢ e not evaluated more often than in original program

258/471

Non-degradation of performance

¢ On any path: Placement of T, = e corresponds to replacing an e by T,
¢ e not evaluated more often than in original program
e Proof sketch: Placement only done where e is very busy

258/471

Non-degradation of performance

¢ On any path: Placement of T, = e corresponds to replacing an e by T,
¢ e not evaluated more often than in original program
e Proof sketch: Placement only done where e is very busy

e |.e., every path from placement contains evaluation of e, which will be
replaced

258/471

Non-degradation of performance

¢ On any path: Placement of T, = e corresponds to replacing an e by T,
¢ e not evaluated more often than in original program
e Proof sketch: Placement only done where e is very busy

e |.e., every path from placement contains evaluation of e, which will be

replaced
o Moreover, no path contains two evaluations of e, without usage of e in
between

258/471

Non-degradation of performance

¢ On any path: Placement of T, = e corresponds to replacing an e by T,
¢ e not evaluated more often than in original program
e Proof sketch: Placement only done where e is very busy

e |.e., every path from placement contains evaluation of e, which will be

replaced
o Moreover, no path contains two evaluations of e, without usage of e in
between

e By contradiction. Sketch on board.

258/471

Last Lecture

o Partial Redundancy Elimination
e Place evaluations such that

e They are evaluated as early as possible, such that:
e Expressions are only evaluated if also evaluated in original program

e Analysis: Very Busy Expressions
e Transformation: Placement on edges

o where expression stops to be very busy
e oris destroyed (and very busy at target)

e Placement only if expression is not avalable

259/471

Application: Moving loop-invariant code

for (i=0;i<N; ++1i)
ali] = b + 3

e b+3 evaluated in every iteration.

260/471

Application: Moving loop-invariant code

for (i=0;i<N; ++1i)
ali] = b + 3

e b+3 evaluated in every iteration.
e To the same value

260/471

Application: Moving loop-invariant code

for (i=0;i<N; ++1i)
ali] = b + 3

e b+3 evaluated in every iteration.
e To the same value
e Should be avoided!

260/471

Example (CFG)

CFG of previous example
: 1=0;
: if (i<N) |
alfi] = b + 3
i=i+l
goto 2
}

o U W N

261/471

Example (CFG)

Analysis results for expression b + 3

1: i=0;

2: 1f (i<N) {

3: al[il] =b + 3 // B
4: i=i+1 // A
5: goto 2 // A
6: }

261/471

Example (CFG)

Placement happens inside loop, on edge (2, Pos(i < N),3) :(

1: i=0;

2: 1if (i<N) {
X: T=b+3

3: ali] =T
4: i=i+1

5: goto 2
6: }

261/471

Example (CFG)

There is no node outside loop for placing e!

1: i=0;

2: 1if (i<N) {
X: T=b+3

3: ali]l] =T
4: i=i+1

5: goto 2
6: }

261/471

Solution: Loop inversion

¢ |dea: Convert while-loop to do-while loop

while (b) do c F>f (b) {do c while (b)}

262/471

Solution: Loop inversion

¢ |dea: Convert while-loop to do-while loop
while (b) do c |—>if (b) {do c while (b)}

¢ Does not change semantics

262/471

Solution: Loop inversion

¢ |dea: Convert while-loop to do-while loop
while (b) do c |—>if (b) {do c while (b)}

¢ Does not change semantics
e But creates node for placing loop invariant code

262/471

Example

CFG after loop inversion

1: 1i=0;

2: 1if (i<N) {

3: alfi] = b + 3

4: i=i+1

5: if (i<N) goto 3
6: }

263/471

Example

Analysis results for expression b + 3

1: i=0;

2: 1f (i<N) {

3: ali] = b + 3 // B
4: i=i+1 // A
5: if (i<N) goto 3 // A
6: }

263/471

Example

Placement happens outside loop, on edge (2, Pos(i < N),3) :)

1: i=0;

2: 1if (i<N) {

X T=b+3;

3: ali] =T

4: i=i+1

5: if (i<N) goto 3
6: }

263/471

Conclusion

e PRE may move loop-invariant code out of the loop

264/471

Conclusion

e PRE may move loop-invariant code out of the loop
e Only for do-while loops

264/471

Conclusion

e PRE may move loop-invariant code out of the loop
e Only for do-while loops
e To also cover while-loops: Apply loop-inversion first

264/471

Conclusion

e PRE may move loop-invariant code out of the loop
Only for do-while loops

e To also cover while-loops: Apply loop-inversion first
e Loop inversion: No additional statements executed.

e But slight increase in code size.
o Side note: Better pipelining behavior (Less jumps executed)

264/471

Detecting loops in CFG

e Loop inversion can be done in AST

265/471

Detecting loops in CFG

e Loop inversion can be done in AST
e Butonly if AST is available

265/471

Detecting loops in CFG

e Loop inversion can be done in AST

e Butonly if AST is available
e What if some other CFG-based transformations have already been run?

265/471

Detecting loops in CFG

e Loop inversion can be done in AST

e Butonly if AST is available
e What if some other CFG-based transformations have already been run?

e Need CFG-based detection of loop headers

265/471

Detecting loops in CFG

e Loop inversion can be done in AST

e Butonly if AST is available
e What if some other CFG-based transformations have already been run?

e Need CFG-based detection of loop headers
e |dea: Predominators

265/471

Predominators

¢ A node u pre-dominates v (u = v), iff every path vy —* v contains v.

266/471

Predominators

¢ A node u pre-dominates v (u = v), iff every path vy —* v contains v.
e = is a partial order.
o reflexive, transitive, anti-symmetric

266/471

Predominator example

267/471

Predominator example

267/471

Remark: Immediate Predominator

e The =-relation, with reflexivity and transitivity removed, is a tree

268/471

Remark: Immediate Predominator

e The =-relation, with reflexivity and transitivity removed, is a tree
e Clearly, vo dominates every node (root of tree)

268/471

Remark: Immediate Predominator

e The =-relation, with reflexivity and transitivity removed, is a tree

e Clearly, vo dominates every node (root of tree)
e Every node has at most one immediate predecessor:

268/471

Remark: Immediate Predominator

e The =-relation, with reflexivity and transitivity removed, is a tree

e Clearly, vo dominates every node (root of tree)
e Every node has at most one immediate predecessor:

e Assume uy = V, Us = Vv, and neither uy = us nor U, = Uy

268/471

Remark: Immediate Predominator

e The =-relation, with reflexivity and transitivity removed, is a tree

e Clearly, vo dominates every node (root of tree)
e Every node has at most one immediate predecessor:

e Assume uy = Vv, U = V, and neither uy = U nor u» = Uy
e Regard path = to v. Assume, wlog, © = 7 uym2V, such that uq, us ¢ mo

268/471

Remark: Immediate Predominator

e The =-relation, with reflexivity and transitivity removed, is a tree

e Clearly, vo dominates every node (root of tree)

e Every node has at most one immediate predecessor:
e Assume uy = Vv, U = V, and neither uy = U nor u» = Uy
e Regard path = to v. Assume, wlog, © = 7 uym2V, such that uq, us ¢ mo
e Then, every path ©’ to u; gives rise to path 7/ to v.

268/471

Remark: Immediate Predominator

e The =-relation, with reflexivity and transitivity removed, is a tree

e Clearly, vo dominates every node (root of tree)
e Every node has at most one immediate predecessor:
e Assume uy = Vv, U = V, and neither uy = U nor u» = Uy
Regard path = to v. Assume, wlog, © = 7 uymaV, such that uq, us & mo
Then, every path =’ to uy gives rise to path 7’7 to v.
Thus, up € 7’mp. By asm, notin mo. l.e. u, € '.

268/471

Remark: Immediate Predominator

e The =-relation, with reflexivity and transitivity removed, is a tree

e Clearly, vo dominates every node (root of tree)
e Every node has at most one immediate predecessor:
e Assume uy = Vv, U = V, and neither uy = U nor u» = Uy
Regard path = to v. Assume, wlog, © = 7 uymaV, such that uq, us & mo
Then, every path =’ to uy gives rise to path 7’7 to v.
Thus, up € 7’mp. By asm, notin mo. l.e. u, € '.

[]
[]
[]
e Thus, u» = uy, contradiction.

268/471

Computing predominators

 Use a (degenerate) dataflow analysis. Forward, Must. Domain 2V.

269/471

Computing predominators

 Use a (degenerate) dataflow analysis. Forward, Must. Domain 2V.
e [L_I*P=PU{V}, b = {v}

269/471

Computing predominators

 Use a (degenerate) dataflow analysis. Forward, Must. Domain 2V.

e [I"P=PU{v}, do = {w}
e Collects nodes on paths

269/471

Computing predominators

 Use a (degenerate) dataflow analysis. Forward, Must. Domain 2V.

e [VI"P=PU{v}, do = {w}
e Collects nodes on paths
o Distributive, i.e. MOP can be precisely computed

269/471

Computing predominators

 Use a (degenerate) dataflow analysis. Forward, Must. Domain 2V.

e [VI"P=PU{v}, do = {w}
e Collects nodes on paths
o Distributive, i.e. MOP can be precisely computed

e MOP[U] = N{[]"{vo} | vo " u}

269/471

Computing predominators

 Use a (degenerate) dataflow analysis. Forward, Must. Domain 2V.

e [VI"P=PU{v}, do = {w}
e Collects nodes on paths
o Distributive, i.e. MOP can be precisely computed

e MOP[u] = N{[x]"{vo} | vo =~ u}
e Which is precisely the set of nodes occurring on all paths to u

269/471

Computing predominators

 Use a (degenerate) dataflow analysis. Forward, Must. Domain 2V.

e [VI"P=PU{v}, do = {w}
e Collects nodes on paths
o Distributive, i.e. MOP can be precisely computed

e MOP[U] = N{[]"{vo} | vo " u}

e Which is precisely the set of nodes occurring on all paths to u
e |.e. the predominators of u

269/471

Detecting loops using predominators

e Observation: Entry node of loop predominates all nodes in loop body.

if v e Plu]

Neg (e) Pos (e)

270/471

Detecting loops using predominators

e Observation: Entry node of loop predominates all nodes in loop body.
¢ In particular the start node of the back edge

if v e Plu]

Neg (e) Pos (e)

270/471

Detecting loops using predominators

e Observation: Entry node of loop predominates all nodes in loop body.
¢ In particular the start node of the back edge

e Loop inversion transformation

Neg (e) Pos (e)

if v e Plu]

—

Neg (e) Pos (e)

Neg (e) Pos (e)

270/471

Detecting loops using predominators

e Observation: Entry node of loop predominates all nodes in loop body.
¢ In particular the start node of the back edge

e Loop inversion transformation

Neg (e) Pos (e)

if v e Plu]

—

Neg (e) Pos (e)

Neg (e) Pos (e)

e Obviously correct

270/471

Example
CFG of running example

Neg (i<N) Pos (1i<N)

ali]=b+3

271/471

Example
2 € P[6], identified pattern for transformation

Neg (1<N) Pos (i<N)

i=i+1

271/471

Example
Inverted loop

Neg (i<N) Pos (1<N)

Neg (1<N) Pos (1<N)

®

i=i+1

271/471

Warning

e Transformation fails to invert all loops

272/471

Warning

e Transformation fails to invert all loops
e E.g., if evaluation of condition is more complex

272/471

Warning

e Transformation fails to invert all loops
e E.g., if evaluation of condition is more complex

¢ E.g., condition contains loads
e while (M[O0])

272/471

Warning

e Transformation fails to invert all loops
e E.g., if evaluation of condition is more complex

¢ E.g., condition contains loads
e while (M[O0])

272/471

Warning

e Transformation fails to invert all loops
e E.g., if evaluation of condition is more complex

¢ E.g., condition contains loads
e while (M[O0])

e We would have to duplicate the load-edge, too

272/471

Last Lecture

e Partial redundancy elimination
e Very busy expressions
e Place evaluations as early as possible
e Loop inversion
e while — do-while
o Enables moving loop-invariant code out of loops
e Computation on CFG: Use pre-dominators

Table of Contents

e Avoiding Redundancy (Part Il)
Partial Redundancy Elimination
Partially Dead Assignments

274/471

Motivation

e Consider program

T = x+1
if (%) then M[0]=T

e Assume (*) does notuse T, and T dead at end

275/471

Motivation

e Consider program

T = x+1
if (%) then M[0]=T

e Assume (*) does notuse T, and T dead at end

e Assignment T = x 4+ 1 only required on one path

275/471

Motivation

e Consider program
T = x+1
if (%) then M[0]=T

e Assume (*) does notuse T, and T dead at end
e Assignment T = x 4+ 1 only required on one path
e Would like to move assignment into this path

if (x) then {T = x+1; M[0]=T}

275/471

Idea

e Delay assignments as long as possible

276/471

|dea

e Delay assignments as long as possible
e Can delay assignment x : =e over edge Kk, if

e X is not used, nor defined by k
¢ No variable of e is defined by k

276/471

Delayable Assignments Analysis

e Domain: {x = e| x € Reg A e € Expr}, Ordering: C=D2, forward
e |.e. forward must analysis

277/471

Delayable Assignments Analysis

e Domain: {x = e| x € Reg A e € Expr}, Ordering: C=D2, forward
e |.e. forward must analysis
e dy = (), no delayable assignments at program start

[Nop]*D =D
[x = e]*D =D\ (Ass(e) UOcc(x)) U {x = e}
[Pos(e)]* D = D\ Ass(e)
[Neg(e)]*D = D\ Ass(e)
[x = M[e]]* D = D\ (Ass(e) U Oce(x))
[M[e:] = e:]*D = D\ (Ass(e1) U Ass(62))
where

Ass(e) := {x = €& | x € Reg(e)} Assignments to variable in e
Occ(x) := {x' = e| x = x' v x € Reg(e)} Assignments in which x occurs

277/471

Intuition

e x = e € D[u]: On every path reaching u, the assignment x = e is
executed, and no edge afterwards:

e Depends on x
e Changes x or a variable of e

278/471

Intuition

e x = e € D[u]: On every path reaching u, the assignment x = e is
executed, and no edge afterwards:

e Depends on x
e Changes x or a variable of e

e Thus, this assignment can be safely moved to u

278/471

Transformation
e Delay assignments as far as possible

279/471

Transformation

e Delay assignments as far as possible
e Do not place assignments to dead variables

279/471

Transformation

e Delay assignments as far as possible
e Do not place assignments to dead variables
o (U,x=e,Vv)— (u,ssy,w),(w,sss, V) where
e ss; Assignments to live variables that cannot be delayed over action x = e
e ss, Assignments to live variables delayable due to edge, but not at v (Other
paths over v)
e w is fresh node

279/471

Transformation

e Delay assignments as far as possible
e Do not place assignments to dead variables
o (U x=-e,v)— (u,ss1,w),(w,ssy, v)where
e ss; Assignments to live variables that cannot be delayed over action x = e
e ss, Assignments to live variables delayable due to edge, but not at v (Other
paths over v)
o w is fresh node
e Formally

ssy = {x'=¢& e D[u]\ [x = e]*D[u] | x' € L[u]}
ss, = {x' =€ e [x=e]"Dlu]\ D|v] | X' € L[v]}

279/471

Transformation

e Delay assignments as far as possible
e Do not place assignments to dead variables
o (U x=-e,v)— (u,ss1,w),(w,ssy, v)where
e ss; Assignments to live variables that cannot be delayed over action x = e
e ss, Assignments to live variables delayable due to edge, but not at v (Other
paths over v)
o w is fresh node
e Formally
ssy = {x'=¢& e D[u]\ [x = e]*D[u] | x' € L[u]}
ss, = {x' =€ e [x=e]"Dlu]\ D|v] | X' € L[v]}

e (u,a,v)— (u,ss1,wy),(wy,a, wa),(we, ssy, v) for a not assignment

ss; = {x' =€ e D[u]\ [a]* D[u] | X' € L[u]}
ss; = {x' = € e [a]*D[u]\ D[v] | X' € L[v]}

279/471

Transformation

e Delay assignments as far as possible
e Do not place assignments to dead variables
o (U x=-e,v)— (u,ss1,w),(w,ssy, v)where
e ss; Assignments to live variables that cannot be delayed over action x = e
e ss, Assignments to live variables delayable due to edge, but not at v (Other
paths over v)
o w is fresh node
e Formally

ssy = {x'=¢& e D[u]\ [x = e]*D[u] | x' € L[u]}
ss, = {x' =€ e [x=e]"Dlu]\ D|v] | X' € L[v]}

e (u,a,v)— (u,ss1,wy),(wy,a, wa),(we, ssy, v) for a not assignment
ssy = {x' = € e D[u]\ [a]* D[u] | X' € L[u]}
ss, = {x' = € € [a]” D[u] \ D[v] | X' € L[v]}

® Vo € Vend = (Vea D[Ve]’ Vé)
e where v, is fresh end node, and ve no end node any more.

279/471

Dependent actions

e Two actions ay, a; are independent, iff [a1a2] = [a2ai]
e Actions may be swapped

280/471

Dependent actions

e Two actions ay, a; are independent, iff [a1a2] = [a2ai]
e Actions may be swapped
o Assignments only delayed over independent actions

280/471

Correctness (Rough Sketch)

e First: D[u] does never contain dependent assignments
e Placement order is irrelevant

281/471

Correctness (Rough Sketch)

e First: D[u] does never contain dependent assignments

e Placement order is irrelevant
e Proof sketch: x = e only inserted by [-]#, after all dependent assignments
removed

281/471

Correctness (Rough Sketch)

e First: D[u] does never contain dependent assignments

e Placement order is irrelevant
e Proof sketch: x = e only inserted by [-]#, after all dependent assignments
removed

o Regard path with assignment (u, x = e, v).

281

471

Correctness (Rough Sketch)

e First: D[u] does never contain dependent assignments

e Placement order is irrelevant
e Proof sketch: x = e only inserted by [-]#, after all dependent assignments
removed

o Regard path with assignment (u, x = e, v).

e Wehave x=e€ [x = e]]#D[u]. (1) Either placed here, (2) x dead, (3) or
delayable at v

281/471

Correctness (Rough Sketch)

e First: D[u] does never contain dependent assignments

e Placement order is irrelevant
e Proof sketch: x = e only inserted by [-]#, after all dependent assignments
removed

o Regard path with assignment (u, x = e, v).

e Wehave x=e€ [x = e]]#D[u]. (1) Either placed here, (2) x dead, (3) or
delayable at v
e (1) No change of path

281/471

Correctness (Rough Sketch)

e First: D[u] does never contain dependent assignments

e Placement order is irrelevant
e Proof sketch: x = e only inserted by [-]#, after all dependent assignments
removed

o Regard path with assignment (u, x = e, v).
e Wehave x=e€ [x = e]]#D[u]. (1) Either placed here, (2) x dead, (3) or
delayable at v

e (1) No change of path
e (2), not (3): Assignment dropped, but was dead anyway

281/471

Correctness (Rough Sketch)

e First: D[u] does never contain dependent assignments
e Placement order is irrelevant
e Proof sketch: x = e only inserted by [-]#, after all dependent assignments
removed

o Regard path with assignment (u, x = e, v).

e Wehave x=e€ [x = e]]#D[u]. (1) Either placed here, (2) x dead, (3) or
delayable at v

e (1) No change of path
e (2), not (3): Assignment dropped, but was dead anyway
e (3). Three subcases: Sketch on whiteboard!
e (3.1) x = e stops being delayable due to dependent action
— Assignment placed before this action, if live
e (3.2) x = e stops being delayable at node
— Assignment placed after edge to this node, if live
e (3.3) x = e delayable until end
— Assignment placed at end node, if live

281

471

Example

1: T = x+1 D: {} L: {x}
2: 1if (*) then { D: {T=x+1} L: {T}
3: M[0]=T D: {T=x+1} L: {T}
4: Nop D: {} L: {}
5: } D: {} L: {}

282/471

Example

1: T = x+1 D: {} L: {x}
2: 1if (*) then { D: {T=x+1} L: {T}
3: M[0]=T D: {T=x+1} L: {T}
4: Nop D: {} L: {}
5: } D: {} L: {}

e Placement of T = x + 1 before edge (3, 4)
e Wehave T = x + 1€ D[3]\ [M[0] = T]*D[4], and T € L[3]

282/471

Example

1: T = x+1 D: {} L: {x}
2: 1if (*) then { D: {T=x+1} L: {T}
3: M[0]=T D: {T=x+1} L: {T}
4: Nop D: {} L: {}
5: } D: {} L: {}

e Placement of T = x + 1 before edge (3, 4)
e Wehave T = x + 1€ D[3]\ [M[0] = T]*D[4], and T € L[3]

: if (%) then {

T = x+1
M[O]=T
Nop

a b X W N

282/471

Summary

e PDE is generalization of DAE

o Assignment to dead variable will not be placed
e As variable is dead on all paths leaving that assignment

283/471

Summary

e PDE is generalization of DAE

o Assignment to dead variable will not be placed
e As variable is dead on all paths leaving that assignment

e May also use true liveness.

283/471

Summary

e PDE is generalization of DAE

o Assignment to dead variable will not be placed
e As variable is dead on all paths leaving that assignment

e May also use true liveness.

e Non degradation of performance

e Number of assignments on each path does not increase (without proof)
e In particular: Assignments not moved into loops (Whiteboard)

283/471

Summary

e PDE is generalization of DAE

o Assignment to dead variable will not be placed
e As variable is dead on all paths leaving that assignment

May also use true liveness.

Non degradation of performance

e Number of assignments on each path does not increase (without proof)
e In particular: Assignments not moved into loops (Whiteboard)

e Profits from loop inversion (Whiteboard)

283/471

Conclusion

e Design of meaningful optimization is nontrivial

e Optimizations may only be useful in connection with others
Order of optimization matters

e Some optimizations can be iterated

284/471

A meaningful ordering

LINV Loop inversion
ALIAS Alias analysis
Al Constant propagation
Intervals
RE (Simple) redundancy elimination
CP Copy propagation
DAE Dead assignment elimination
PRE Partial redundancy elimination
PDE | Partially dead assignment elimination

Table of Contents

6 Interprocedural Analysis

286/471

Last Lecture

o Partially dead assignments
e Started semantics with procedures

287/471

Motivation

e So far:

e Only regarded single procedure
o But program typically has many procedures
¢ Need to be pessimistic about their effect

288/471

Motivation

e So far:
e Only regarded single procedure
o But program typically has many procedures
¢ Need to be pessimistic about their effect
e Now:
Analyze effects of procedures
Restrict to procedures without parameters/return values
But with local and global variables!
Can emulate parameters/return values!

288/471

Extending the semantics

« Each procedure f represented by control flow graph G'. Assume these
are distinct!

289/471

Extending the semantics

« Each procedure f represented by control flow graph G'. Assume these
are distinct!

e Add edge label f() for call of procedure f

289/471

Extending the semantics

« Each procedure f represented by control flow graph G'. Assume these
are distinct!

e Add edge label f() for call of procedure f

e Procedure main must exist

Conf = Stack x Globals x Store
Globals = Glob — Val

Store = Addr — Val

Stack = Frame™
Frame = V x Locals

Locals = Loc — Val

o where Glob are global variable names, and Loc are local variable names

289/471

Execution, small-step semantics

e [el(pi, pg) : Val. Value of expression.

290/471

Execution, small-step semantics

e [el(pi, pg) : Val. Value of expression.
e [a](pr1, pg, 1) : Locals x Globals x Store. Effect of (non-call) action.

290/471

Execution, small-step semantics

e [€el(ps, pg) : Val. Value of expression.
e [a](pr1, pg, 1) : Locals x Globals x Store. Effect of (non-call) action.
o Initial configuration: ([(vo™@", Ax. 0)], pg, 1)

290/471

Execution, small-step semantics

e [€el(ps, pg) : Val. Value of expression.

e [a](pr1, pg, 1) : Locals x Globals x Store. Effect of (non-call) action.
o Initial configuration: ([(vo™@", Ax. 0)], pg, 1)

e —C Conf x Conf

((u, pr)a, pgs 1) — ((v, p)o, pg, 1') (basic)
if (u,a,v) € EALal(pr; pg: 1) = (p1 Py 1)

((u, pr)o, pg. 1) = (o, Ax. 0)(v, p1)o, pg. 1) (call)
if (u, f(),v) € E

((u,), pg, 1) — (0, pg: 1) (return)

ifue Vend/\0'7£€

290/471

Example (factorial)

main () :
M[0] = fac(3)

fac(x) :

if (x <= 1) return 1
else return x * fac(x-1)

291/471

Example (factorial)

main () :
M[0] = fac(3)

fac(x) :

if (x <= 1) return 1
else return x * fac(x-1)

Translation to no arguments and return values

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = x*Gret
£f7: }

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()

m3: M[0] = Gret
m4:

fac():
fl: x = Gx
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
fo6: Gret = x*Gret
£f7: }

A run:

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

Oﬂ1,—)

Gx : —, Gret: — ,M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

Uﬂ2,—)

Gx : 3, Gret : — ,M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f1,x:0)

Unsa_)

Gx : 3,Gret: —,M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f2,x :3)

Unsa_)

Gx : 3,Gret: —,M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f4,x:3)

Unsa_)

Gx : 3,Gret: —,M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f5,x:3)

Unsa_)

Gx :2,Gret: —,M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(F1,x: 0)

(f6,x:3)

Uﬂ3,—)

Gx : 2,Gret: —,M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f2,x:2)

(f6,x:3)

Uﬂ3,—)

Gx : 2,Gret: —,M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f4,x - 2)

(f6,x:3)

Uﬂ3,—)

Gx : 2,Gret: —,M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(75, x - 2)

(f6,x:3)

Uﬂ3,—)

Gx :1,Gret: — ,M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f1,x:0)

(f6,x : 2)

(f6,x :3)

Uﬂ3,—)

Gx :1,Gret: — ,M|[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f2,x:1)

(f6,x : 2)

(f6,x :3)

Uﬂ3,—)

Gx :1,Gret: — ,M|[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f38,x:1)

(f6,x : 2)

(f6,x :3)

Uﬂ3,—)

Gx :1,Gret: — ,M|[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f7,x:1)

(f6,x:2)

(f6,x :3)

(nv37——)

Gx :1,Gret : 1,M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f6,x:2)
(f6,x:3)
(n037——)

Gx :1,Gret : 1,M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f7,x :2)
(f6,x:3)
(n037——)

Gx :1,Gret : 2, M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f6,x:3)

(nqsv__)

Gx :1,Gret : 2, M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

(f7,x:3)

(nqsv__)

Gx :1,Gret : 6, M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

UﬂS,—)

Gx :1,Gret : 6, M[0] : —

291/471

Example (factorial)

main () :
ml: Gx = 3;
m2: fac ()
m3: M[0] = Gret
m4:
fac():
fl: x = Gx A run:
f2: if (x <= 1) {
£3: Gret =1
} else {
f4: Gx = x-1
£5: fac ()
f6: Gret = xx*Gret
£f7: }

0”4’_)
Gx :1,Gret: 6,M[0] : 6

291/471

Realistic Call Semantic

e On real machine, procedure call involves

e Save registers
e Create stack frame

o Push parameters, return address
o Allocate stack space for local variables

e Jump to procedure body

292/471

Realistic Call Semantic

e On real machine, procedure call involves

e Save registers
e Create stack frame

o Push parameters, return address
o Allocate stack space for local variables

e Jump to procedure body
e Procedure return
e Free stack frame

e Jump to return address
o Remove parameters from stack

o Restore registers
e Handle result

292/471

Realistic Call Semantic

e On real machine, procedure call involves

e Save registers
e Create stack frame

o Push parameters, return address
o Allocate stack space for local variables

e Jump to procedure body
e Procedure return
e Free stack frame

e Jump to return address
o Remove parameters from stack

o Restore registers
e Handle result

e Short demo: cdecl calling convention on x86

292/471

Inlining

e Procedure call is quite expensive

int f(int a, int b) {
int 1 = a + b
return 1 + 1

int g (int a) {
return f (a,a)

293/471

Inlining

e Procedure call is quite expensive
e Idea: Copy procedure body to call-site

int f(int a, int b) {
int 1 = a + b
return 1 + 1

int g (int a) {
int 1 = a + a
return 1 + 1

293/471

Problems

e Have to keep distinct local variables

294 /471

Problems

e Have to keep distinct local variables
e Our simple language has no parameters/ returns

294 /471

Problems

e Have to keep distinct local variables

e Our simple language has no parameters/ returns
e Be careful with recursion

¢ Inlining optimization might not terminate

294 /471

Problems

e Have to keep distinct local variables
e Our simple language has no parameters/ returns
e Be careful with recursion
¢ Inlining optimization might not terminate
e Too much inlining of (non-recursive procedures) may blow up the code

294 /471

Problems

e Have to keep distinct local variables
e Our simple language has no parameters/ returns

e Be careful with recursion
¢ Inlining optimization might not terminate

e Too much inlining of (non-recursive procedures) may blow up the code
o Exponentially!

void mO ()
void ml ()
void m2 ()

void mN ()

{x=x+1}
{mO () ;m0 () }
{ml();ml()}

{mN-1(); mN-1()}

294 /471

Problems

e Have to keep distinct local variables
e Our simple language has no parameters/ returns
e Be careful with recursion
¢ Inlining optimization might not terminate
e Too much inlining of (non-recursive procedures) may blow up the code
o Exponentially!
void mO () {x=x+1}

void ml () {mO(),;mO0 ()}
void m2 () {ml(),;ml()}

void mN () {mN-1(); mN-1()}

« Inlining everything, program gets size O(2")

294 /471

Call Graph

e Graph over procedures

295/471

Call Graph

e Graph over procedures
e Edge from f to g, if body of f contains call to g

295/471

Call Graph

e Graph over procedures
e Edge from f to g, if body of f contains call to g
e In our examples

©O—0O

295/471

Call Graph

e Graph over procedures
e Edge from f to g, if body of f contains call to g
e In our examples

©O—0O

¢ Inline strategies

295/471

Call Graph

e Graph over procedures
e Edge from f to g, if body of f contains call to g
e In our examples

©O—0O

¢ Inline strategies
o Leaf: Only leaf procedures

295/471

Call Graph

e Graph over procedures
e Edge from f to g, if body of f contains call to g
e In our examples

©O—0O

¢ Inline strategies

o Leaf: Only leaf procedures
e Everything: Every non-recursive procedure

295/471

Call Graph

e Graph over procedures
e Edge from f to g, if body of f contains call to g
e In our examples

©O—0O

¢ Inline strategies

o Leaf: Only leaf procedures
o Everything: Every non-recursive procedure
¢ Real compilers use complex heuristics

e Based on code size, register pressure, ...

295/471

Inlining transformation

e For edge (u, f(), v)

296/471

Inlining transformation

e For edge (u, f(), v)
 Make a copy of G, rename locals to fresh names /f, ... If

296/471

Inlining transformation

e For edge (u, f(), v)
 Make a copy of G, rename locals to fresh names /f, ... If
e Replace by edges:

296/471

Inlining transformation

e For edge (u, f(), v)
 Make a copy of G, rename locals to fresh names /f, ... If
e Replace by edges:

e (u,I" =0,) (Initialize locals, goto start node of copy)

296/471

Inlining transformation

e For edge (u, (), v)
« Make a copy of G', rename locals to fresh names /f, ..., I
¢ Replace by edges:

o (u, /" =0, V) (Initialize locals, goto start node of copy)
e (v}, Nop, v),forall v} € V! (Link end nodes of copy with v)
f:

O

296/471

Inlining transformation

e For edge (u, f(), v)
 Make a copy of G, rename locals to fresh names /f, ... If
e Replace by edges:

e (u,I" =0,) (Initialize locals, goto start node of copy)
e (vL,Nop, v),forall vi € VI, (Link end nodes of copy with v)

296/471

Tail call optimization

e |dea: If after recursive call, the procedure returns
¢ Re-use the procedure’s stack frame, instead of allocating a new one

void f() {
if (Gi < Gn-1) {
t = al[Gi]
Gi = Gi+1

al[Gi]=a[Gi]+t
£()

297/471

Tail call optimization

e |dea: If after recursive call, the procedure returns
¢ Re-use the procedure’s stack frame, instead of allocating a new one

void f£() { void £ () {
if (Gi < Gn-1) { if (Gi < Gn-1) {
t = al[Gi] t = a[Gi]
Gi = Gi+l |) Gi = Gi+1l
al[Gi]=a[Gi]+t al[Gi]=a[Gi]+t

£() t=0; goto f

297/471

Tail call optimization

e |dea: If after recursive call, the procedure returns
¢ Re-use the procedure’s stack frame, instead of allocating a new one

void f£() { void f£() {
if (Gi < Gn-1) { if (Gi < Gn-1) {
t = al[Gi] t = a[Gi]
Gi = Gi+l |) Gi = Gi+1l
al[Gi]=a[Gi]+t al[Gi]=a[Gi]+t
£() t=0; goto f

e Requires no code duplication

297/471

Tail call optimization

e |dea: If after recursive call, the procedure returns
¢ Re-use the procedure’s stack frame, instead of allocating a new one

void f£() { void f£() {
if (Gi < Gn-1) { if (Gi < Gn-1) {
t = a[Gi] t = a[Gi]
Gi = Gi+l |) Gi = Gi+1l
al[Gi]=a[Gi]+t al[Gi]=a[Gi]+t
£() t=0; goto f

e Requires no code duplication
e Have to re-initialize local variables, according to semantics

o Target for DAE ;)

297/471

Tail-Call Transformation

298/471

Discussion

e Crucial optimization for languages without loop construct
e E.g., functional languages

299/471

Discussion

e Crucial optimization for languages without loop construct
e E.g., functional languages

¢ No duplication of code or additional local variables

299/471

Discussion

e Crucial optimization for languages without loop construct
e E.g., functional languages
¢ No duplication of code or additional local variables
e The optimization may also be profitable for non-recursive calls

o Re-use stack-space of current frame for new stack frame
o But not expressable in our semantics (Too high-level view on locals)

299/471

Interprocedural Analysis

e Want to extend our program analysis to procedures
e For example, constant propagation

300/471

Interprocedural Analysis

e Want to extend our program analysis to procedures
e For example, constant propagation

main () { int t;
t =0
if (t
al = t;

work ()

ret = 1 - ret;

M[17] = 35

4

)
t
(

work () {
if (al) work();
ret = al ;

300/471

Interprocedural Analysis

e Want to extend our program analysis to procedures
e For example, constant propagation

main () { int t; main () { int t;
t = 0; t = 0;
if (t) M[17] = 3; //if (t) M[17] = 3;
al = t; al = 0;
work (); workg ();
ret = 1 - ret; F—} ret = 1;
} }
work () { workg () |
if (al) work(); //if (al) work();

ret = al ; ret = 0

300/471

Last Lecture

Stack-based semantics with procedures
Inlining optimization

Tail-call optimization

Path-based semantics

301/47

Generalization of Paths
¢ Recall: Paths were sequences of actions

path = ¢ | Act - path

302/471

Generalization of Paths
¢ Recall: Paths were sequences of actions
path = ¢ | Act - path

e Now: We can call procedures. A procedure call may

e Return on path
e Not return on path

302/471

Generalization of Paths
¢ Recall: Paths were sequences of actions
path = ¢ | Act - path

e Now: We can call procedures. A procedure call may

e Return on path
e Not return on path
e Advantageous to make this visible in path structure

slpath = ¢ | Act - slpath | f(slpath) - slpath
path = € | Act - path | f(slpath) - path | f< - path

302/471

Generalization of Paths
¢ Recall: Paths were sequences of actions
path = ¢ | Act - path

e Now: We can call procedures. A procedure call may

e Return on path
e Not return on path
e Advantageous to make this visible in path structure

slpath = ¢ | Act - slpath | f(slpath) - slpath
path = € | Act - path | f(slpath) - path | f< - path

e Intuitively:
o f(m): Call to procedure f, which executes = and returns
o f.: Call to procedure f, which does not return
e slpath: Same level paths, which end on same stack-level as they begin
o Note: Inside returning call, all calls must return.

302/471

Generalization of Paths
¢ Recall: Paths between nodes
- k=(uav)eE vow

[app] =
u—u u—w

[empty]

303/471

Generalization of Paths
¢ Recall: Paths between nodes
- k=(uav)eE vow

[empty] [app] =

u—u u—w

e Now
- k=(uav)eE vSogw

[empty] — (app) <=)kﬂ '

u—su u—g w

M f T2

[Ca”](u, fO,v)€EE v —gVi€ Ve VvV—"aw

f(mq)
U (1)2le

303/471

Generalization of Paths
¢ Recall: Paths between nodes
- k=(uav)eE vow

[empty] [app) <
u—u u=—"w
e Now
— k=(uav)cE vIogw
[empty] — (app) <=)kﬂ '
Uu—qgu U—rq w

(U, f()’ V) €E VOf ‘11—>sl Vé € Vcnd v ‘12’)5] w

[call] =
U w
e And
— k=(uav)cE vow
lempl——— [app = {42 €
u—u u—w

[cal/](u’ fO,V)EE vl Zogvie Ve v w

f
U (m1)m2 w

(u,f),V)€E v SHw

fem
u—mw

[ncall]

303/471

Executions of paths
e Recall

[els = s [knls = [7](I]s)

304/471

Executions of paths
e Recall

[els = s [knls = [7](I]s)

e Now
[els =s [knls = [r]([k]s)

[f(m)]s=H[r] s [f<]s=enters

where

enter(py, pg, 1) := (0, pg, 1)
combine((py, pg, 1), (Pl g 1)) == (p1, g 1)
H e s := combine(s, (e(enter S)))

304/471

Executions of paths
e Recall
[els =s [knls = [~]1([k]s)
e Now
[els =s [knls = [~]1([k]s)

[f(m)]s=H[r] s [f<]s=enters

where

enter(py, pg, 1) := (0, pg, 1)
combine((py, pg, 1), (Pl g 1)) == (p1, g 1)
H e s := combine(s, (e(enter S)))

e Intuition:
enter Set up stack frame
combine Combine procedure result with old frame

304/471

Example

£ 0 |
if x>0 then {

305/471

Example

£ 0 |
if x>0 then { SL-path through main
x =x = 1 <=1
£ 0 o
x =x+1 Pos (x>0)
} else { x=x—1
u: Nop £(
: Neg (x>0)
J Nop
.)
main O A x =x + 1
x = 1;)
£ 0 x =0
x =0

305/471

Example

£ 0 |
if x>0 then { SL-path through main
x =x -1 <=1
E _() £y Path from main to u
x =x+1 Pos (x>0)
} else { x=x—1 x=1
u: Nop £ f<
} Neg (x>0) Pos (x>0)
} N g x=x-1
) op f<
main () | = x + 1 Neg (x>0)
x = 1;)
£ 0 x =0
x =0

305/471

Equivalence of semantics

Theorem
The stack-based and path-based semantics are equivalent:

(30' ([U, P/]apgaﬂ) —" ([Va p;]g, pfqnu',))
= (3r.u > vAL(enpg, 1) = (Pl Pgs 1))

306/471

Proof sketch (Whiteboard)

e Auxiliary lemma: Same-level paths

(([u, pi); pgs 1)) =" (v, pils pgs 11")
= (3. u S vA I pr pg: 1) = (01, Pgs 1))

307/471

Proof sketch (Whiteboard)

e Auxiliary lemma: Same-level paths

((Lu, pil, pgs 1)) =~ (v, pil, pg, 1)
= (3. u S vA I pr pg: 1) = (01, Pgs 1))

e Main ideas (=)

¢ Induction on length of execution
¢ |dentify non-returning calls:

e Execution in between yields same-level paths (aux-lemma)

307/471

Proof sketch (Whiteboard)

e Auxiliary lemma: Same-level paths

((Lu, pil, pgs 1)) =~ (v, pil, pg, 1)
= (3. u S vA I pr pg: 1) = (01, Pgs 1))

e Main ideas (=)

¢ Induction on length of execution
¢ |dentify non-returning calls:

e Execution in between yields same-level paths (aux-lemma)
e Main ideas («=)
e Induction on path structure
o Executions can be repeated with stack extended at the bottom

(0,09, 1) =" (0", pg, 1) = (06, pg,) =" ('8, pg, 1")

307/471

Abstraction of paths

« Recall: Abstract effects of actions: [a]” : D — D

308/471

Abstraction of paths

« Recall: Abstract effects of actions: [a]” : D — D
e Actions: Nop, Test, Assign, Load, Store

308/471

Abstraction of paths

« Recall: Abstract effects of actions: [a]” : D — D
e Actions: Nop, Test, Assign, Load, Store

e Now: Additional actions: Returning/non-returning procedure call

308/471

Abstraction of paths

« Recall: Abstract effects of actions: [a]” : D — D

e Actions: Nop, Test, Assign, Load, Store
e Now: Additional actions: Returning/non-returning procedure call
¢ Require: Abstract effects for f(7) and f<

308/471

Abstraction of paths

« Recall: Abstract effects of actions: [a]” : D — D

e Actions: Nop, Test, Assign, Load, Store
e Now: Additional actions: Returning/non-returning procedure call
¢ Require: Abstract effects for f(7) and f<

e Define abstract enterf, combinef’é

308/471

Abstraction of paths

« Recall: Abstract effects of actions: [a]” : D — D

e Actions: Nop, Test, Assign, Load, Store
e Now: Additional actions: Returning/non-returning procedure call
¢ Require: Abstract effects for f(7) and f<

e Define abstract enterf, combinef’é

° Hf ed= combinef’£(d7 e(enterf(d)))

308/471

Abstraction of paths

« Recall: Abstract effects of actions: [a]” : D — D

e Actions: Nop, Test, Assign, Load, Store
e Now: Additional actions: Returning/non-returning procedure call
¢ Require: Abstract effects for f(7) and f<

e Define abstract enterf, combinef’é

° Hf ed= combinef’£(d7 e(enterf(d)))
o [F(m1d = Hf [+]* d

308/471

Abstraction of paths

« Recall: Abstract effects of actions: [a]” : D — D

e Actions: Nop, Test, Assign, Load, Store
e Now: Additional actions: Returning/non-returning procedure call
¢ Require: Abstract effects for f(7) and f<

e Define abstract enterf, combinef’é

° Hf ed= combinef’£(d7 e(enterf(d)))

o [f(m]"d = Hf [x]” d

o [f]"d= enterf&(d)

308/471

Example: Copy constants

e Simplified constant propagation

309/471

Example: Copy constants

e Simplified constant propagation
e Conditions not exploited

309/471

Example: Copy constants

e Simplified constant propagation
e Conditions not exploited
e Only assignments of formx = yandx=c,c€Z

309/471

Example: Copy constants

e Simplified constant propagation
e Conditions not exploited
e Only assignments of formx = yandx=c,c€Z

e Domain: D := Reg — Z '

309/471

Example: Copy constants

e Simplified constant propagation
e Conditions not exploited
e Only assignments of formx = yandx=c,c€Z

e Domain: D := Reg — Z '
e Initially: dy / := 0,/ € Loc, dy g := T, g € Glob

309/471

Example: Copy constants

e Simplified constant propagation
e Conditions not exploited
e Only assignments of formx = yandx=c,c€Z

e Domain: D := Reg — Z '
e Initially: dy / := 0,/ € Loc, dy g := T, g € Glob
e Abstract effects
[x :=c]*d = d(x:
[x = y]*d =d(x :=d(y)) fory e Reg
[x :=e]*d=d(x:=T) foreecExpr\ (ZUReg)
[x := M(e)]*d = d(x := T)
[Pos(e)]*d = [[Neg()n#d = [Nop]*d = [M(e1) = e2]"d = d
enterf d=d(/:=0]|1¢€Loc)
combine? d d’' = Ax. x € Loc?d(x) : d'(x)

c) forceZ

309/471

Correctness

e Description relation (p;, pg, 1) A d
o iff p A d‘Lgc and Pg A d|G]gb

310/471

Correctness

e Description relation (p;, pg, 1) A d
o iff py A d‘Lgc and pg A d|G]gb

e Show: Ypg, u. [x](0, pg, 1) A [7]" o

310/471

Correctness

e Description relation (p;, pg, 1) A d
o iff py A d‘Lgc and pg A d|G]gb

e Show: Ypg, u. [x](0, pg, 1) A [7]" o
e By induction on path

310/471

Correctness

e Description relation (p;, pg, 1) A d
o iff py A d|Loc @and pg A d|Gio

e Show: Ypg, u. [x](0, pg, 1) A [7]" o
e By induction on path
e Then, case distinction on edges

310/471

Correctness

e Description relation (p;, pg, 1) A d
° |ff Pl A d‘an and pg A d|Glnb

e Show: Ypg, u. [x](0, pg, 1) A [7]" o
e By induction on path

e Then, case distinction on edges
e Generalization of simulation proofs for intraprocedural case

310/471

Computing Solutions

s

e Interested in MOP[u] := |_|{[[7r]|#d0 | vpmain Ty)

311/471

Computing Solutions

s

e Interested in MOP[u] := | [{[x]" db | vo™@" =5 u}
¢ Idea: Constraint system for same-level effects of functions

Sw']Zid
S[v] 2 [k]* o S[u] k=(uav)eE
S[v] 3 H*(S[f]) o S[u] k= (uf(),v)eE

S[f] 2 S[v{] Vi € Vi

311

Computing Solutions

o Interested in MOP[u] := | [{[«]" db | vo™@"

s

— u}

¢ Idea: Constraint system for same-level effects of functions

Sw']Zid
S[v] 2 [K]” o S[u]
S[v] 3 H#(8[f]) o S[u]
Sif] 2 S[v]
e And for effects of paths reaching u
R[vo™"] O enter” dy
RV 2 [K1* Rlu]
R[v] 3 H# S[f] R[u]
R[vo'] 3 enter” R[u]

k=(uav)eE
k=(u,f(),v)eE

f f
Ve € Vend

Coincidence Theorems

e Let MFP be the least solution of R, then we have

MOP C MFP

e For monotonic effects

312/471

Coincidence Theorems

e Let MFP be the least solution of R, then we have

MOP C MFP

e For monotonic effects

o If each program point is reachable, and all effects as well as H* are
distributive:

MOP = MFP

312/471

Coincidence Theorems

e Let MFP be the least solution of R, then we have

MOP C MFP

e For monotonic effects

o If each program point is reachable, and all effects as well as H* are
distributive:

MOP = MFP

e Generalization of corresponding intra-procedural theorems

312/471

Coincidence Theorems

Let MFP be the least solution of R, then we have

MOP C MFP

e For monotonic effects

If each program point is reachable, and all effects as well as H# are
distributive:

MOP = MFP

e Generalization of corresponding intra-procedural theorems
e Intuition: Constraint system joins early

312/471

Coincidence Theorems

Let MFP be the least solution of R, then we have

MOP C MFP

e For monotonic effects

If each program point is reachable, and all effects as well as H# are
distributive:

MOP = MFP

e Generalization of corresponding intra-procedural theorems
e Intuition: Constraint system joins early
e Information from multiple incoming edges

312/471

Coincidence Theorems

Let MFP be the least solution of R, then we have

MOP C MFP

e For monotonic effects

If each program point is reachable, and all effects as well as H# are
distributive:

MOP = MFP

e Generalization of corresponding intra-procedural theorems
e Intuition: Constraint system joins early

e Information from multiple incoming edges
o All paths through procedure on returning call

312/471

Remaining problem

e How to compute effects of call efficiently?

313/471

Remaining problem

e How to compute effects of call efficiently?
e How to represent functions D — D

313/471

Remaining problem

e How to compute effects of call efficiently?

e How to represent functions D — D
o efficiently?

313/471

Remaining problem

e How to compute effects of call efficiently?
e How to represent functions D — D
o efficiently?

e For copy constants:

313/471

Remaining problem

e How to compute effects of call efficiently?
e How to represent functions D — D
o efficiently?

e For copy constants:

e Domain is actually finite: Only need to consider constants that actually occur
in the program

313/471

Remaining problem

e How to compute effects of call efficiently?
e How to represent functions D — D
o efficiently?

e For copy constants:

e Domain is actually finite: Only need to consider constants that actually occur
in the program
e But this would yield huge tables for functions

313/471

Remaining problem

e How to compute effects of call efficiently?
e How to represent functions D — D
o efficiently?

e For copy constants:

e Domain is actually finite: Only need to consider constants that actually occur
in the program
e But this would yield huge tables for functions

e Possible solutions:

313/471

Remaining problem

e How to compute effects of call efficiently?
e How to represent functions D — D
o efficiently?

e For copy constants:

e Domain is actually finite: Only need to consider constants that actually occur
in the program
e But this would yield huge tables for functions

e Possible solutions:
o Find efficient representation for functions

313/471

Remaining problem

e How to compute effects of call efficiently?
e How to represent functions D — D
o efficiently?
e For copy constants:
e Domain is actually finite: Only need to consider constants that actually occur
in the program
e But this would yield huge tables for functions
e Possible solutions:

o Find efficient representation for functions
e Function actually not applied to all values d € D. — compute on demand.

313/471

Efficient representation of same-level effects

o Observation: Functions S[u] # L are of form (m) where

(my:=ADx.myxu || Dy

yemo x

e my x: Z] - Join of constants that may be assigned to x
e mp x : 2% - get of variables that may be assigned to x (non-empty)

314/471

Efficient representation of same-level effects

o Observation: Functions S[u] # L are of form (m) where

(my:=ADx.myxu || Dy

yemo x
e my x: Z] - Join of constants that may be assigned to x

e mp x : 2% - get of variables that may be assigned to x (non-empty)
e Let F:= {(m)|m:Reg — Z] x 2R} pe the set of those functions

314/471

Efficient representation of same-level effects

o Observation: Functions S[u] # L are of form (m) where

(my:=ADx.myxu || Dy

yemo x

e my x: Z] - Join of constants that may be assigned to x
e mp x : 2% - get of variables that may be assigned to x (non-empty)

e Let F:= {(m)|m:Reg — Z] x 2R} pe the set of those functions
« To show: id, [a]* € F, and F closed under o, LI, enter#, and H#

314/471

Identity and effects representable

id = (. (L, {x}))

(
(id(x — (c,0))) fore=ceZ
[x := el® = { (id(x — (L, {y}))) fore=y cReg
{d(x — (T,0)) otherwise

315/471

Identity and effects representable

id = (Ax. (L, {x}))
(id(x — (c,0))) fore=ceZ
[x := el® = { (id(x — (L, {y}))) fore=y cReg
{d(x — (T,0)) otherwise

o Effects of other actions similarly

315/471

Closed under function composition and join

{myo(m') = (x. (mxu || my, J my)

yemz x yemy x

(m)yu(m') =(mun)

316/471

Closed under function composition and join

{myo(m') = (x. (mxu || my, J my)

yemz x yemy x

(m)yu(m') =(mun)

e Intuition: Assigned constants by my, or by m, and variable goes through
ma
o [x:=c;foo]”, or [x :=y;y = c]*
o Note: If x not touched, we have m, x = {x}
o Note: U defined pointwise: (mu m’) x = (my x U m} x, me X U m, X)

316/471

Closed under enter” and H#

enter” = ((AX. (0,0))|Loc) @ id|Giob
H#(<m>) = id|Loc (&) (<m> o enter#)|G10b
{(M)|Loc ® (M)|Giob := (AX. X € Loc?m x : m’" x)

317/471

Closed under enter” and H*

enter” = ((AX. (0,0))|Loc) @ id|Giob
H#(<m>) = id|Loc (&) (<m> o enter#)|G10b
{(M)|Loc ® (M)|Giob := (AX. X € Loc?m x : m’" x)

e Intuition

e Function call only affects globals
o enter” is effect of entering function (set locals to 0)
o fioc ® flyop - Use f for local variables, f’ for global variables

317/471

Recall initial example

main() { int t;
t = 0; // t=0, al=T, ret=T
if (t) // t=0, al=T, ret=T
M[17] = 3; // t=0, al=T, ret=T
al = t; // t=0, al=T, ret=T
work (); // t=0, al=0, ret=T
ret = 1 - ret; // t=0, al=0, ret=0
} // t=0, al=0, ret=T
work () {
if (al) { // id al=0, ret=T
work () // id al=0, ret=T
Nop } // 1id[ret-> (L, {al}) 1 al=0, ret=0
ret = al ; // id[ret-> (L, {ret,al})] al=0, ret=T
} // id[ret->(Ll,{al})] al=0, ret=0

318/471

Discussion

¢ At least copy-constants can be determined interprocedurally

e For that, we had to ignore conditions and complex assignments

e However, for the reaching paths, we could have been more precise
e Extra abstractions were required as

@ Set of abstract same-level effects must be finite
® and efficiently implementable

319/471

Last Lecture

e Copy-Constant propagation
e Functional approach to interprocedural analysis

e Compute same-level effects by constraint system
o Find efficient representation for same-level effects

320/471

Idea: Evaluation on demand

Procedures often called only for few distinct abstract arguments
e Observed early (Sharir/Pneuli’81, Cousot’77)

Only analyze procedures for these

Intuition: [f, a]” - effect of f if called in abstract state a
Put up constraint system

v a” Ja
v, al* 2 k17 ([u, a]*) for basic edge k = (u, —, v)
[v, al* 2 combine® ([u, a]*, [g, enter® ([u, a]#)]*) for call edge k = (u, (), v)
If,al* 2 v, a1” forvie VI,

Idea: Keep track of effect for any node of procedure

321/471

Evaluation on demand

e This constraint system may be huge

« Idea: Only evaluate [f, a]” for values a that actually occur
o Local fixed-point algorithms (not covered)

e But, we can do an example nevertheless :)

322/471

Example: Full constant propagation

// al,ret | locals
main() { int t;

t = 0; T,T |1 0
if (t) T, T 1 0
M[17] = 3; 1
al = t; T, T 10
work (); 0, T 10
ret = 1 - ret; 0,0 | O
} 0,1 | O
work () { [work, (0, T)]*
if (al) 0,T
work () 1
ret = al ; 0, T
0,0

e Only need to keep track of a; for calling context of work

323/471

Discussion

e This analysis terminates, if

324/471

Discussion

e This analysis terminates, if
¢ D has finite height,

324/471

Discussion

e This analysis terminates, if

¢ D has finite height,
¢ and every procedure only analyzed for finitely many arguments

324/471

Discussion

e This analysis terminates, if

¢ D has finite height,
¢ and every procedure only analyzed for finitely many arguments

e Analogous algorithms have proved efficient for analysis of PROLOG

324/471

Discussion

e This analysis terminates, if

¢ D has finite height,
¢ and every procedure only analyzed for finitely many arguments

e Analogous algorithms have proved efficient for analysis of PROLOG

e Together with points-to analysis, algorithms of this kind used in the
Goblint-Tool

324/471

Discussion

e This analysis terminates, if

¢ D has finite height,
¢ and every procedure only analyzed for finitely many arguments

e Analogous algorithms have proved efficient for analysis of PROLOG

e Together with points-to analysis, algorithms of this kind used in the
Goblint-Tool

e Data-race detection for C with POSIX-Threads

324/471

Crude approximation

o Start with very crude approximation:

325/471

Crude approximation

o Start with very crude approximation:
¢ Just insert edges from function-call to procedure start

325/471

Crude approximation

o Start with very crude approximation:

¢ Just insert edges from function-call to procedure start
e And from return of procedure to target-node of function call

325/471

Crude approximation

o Start with very crude approximation:

¢ Just insert edges from function-call to procedure start
e And from return of procedure to target-node of function call

e le, for (u,f(), v), generate constraints
D[v'] 2 enterfD[u]

D[v] 3 combine} (D[u], D[v{]) vie V!

end

325/471

Crude approximation

o Start with very crude approximation:

¢ Just insert edges from function-call to procedure start
e And from return of procedure to target-node of function call

e le, for (u,f(), v), generate constraints
D[v'] 2 enterfD[u]
D[v] 3 combine} (D[u], D[v{]) vie V!

end

e Clearly covers all possible paths

325/471

Crude approximation

o Start with very crude approximation:

¢ Just insert edges from function-call to procedure start
e And from return of procedure to target-node of function call

le, for (u, f(), v), generate constraints

D[v'] 2 enterfD[u]
D[v] 3 combine} (D[u], D[v{]) vie V!

end

Clearly covers all possible paths
But also infeasible ones

325/471

Crude approximation, example

main: (f f: 0—0O
f

326/471

Crude approximation, example

326/471

Crude approximation, example

326/471

Crude approximation, example

326/471

Crude approximation, example

£ ..
g O { £0 3}

main () |

Infeasible paths

326/471

Crude approximation, example

Infeasible paths

326/471

Crude approximation, example

£ ..
g OO { £0 1}

main () {

Infeasible paths

326/471

Call strings

e Idea: Call string contains sequence of up to k program points

327/471

Call strings

e Idea: Call string contains sequence of up to k program points
e These are the topmost k return addresses on the stack

327/471

Call strings

e Idea: Call string contains sequence of up to k program points
e These are the topmost k return addresses on the stack
e Analyze procedures for every (feasible) call-string

327/471

Call strings

Idea: Call string contains sequence of up to k program points
These are the topmost k return addresses on the stack

e Analyze procedures for every (feasible) call-string

e Only create edges that match call-string

327/471

Call strings

D[, (vw)|x] 2 enter” (D[u, w]) (u,f(),v) e E
D[v,w] 3 combine™(D[u,w], D[f, (vw)|k]) (u,f(),v) € E
D[f,w] 2 D[ve,w] Ve € Vi

D[VOmain7€] g dO
D[v,w] 3 [k]” D[u,w] k=(uav)eE

o where (()|«) limits string size to k, cutting off nodes from the end

328/471

Example

g ()
main: f

329/471

329/471

Discussion

e Analysis terminates if D has finite height

330/471

Discussion

e Analysis terminates if D has finite height
o Call strings with kK = 0 matches crude approximation

330/471

Discussion

e Analysis terminates if D has finite height
o Call strings with kK = 0 matches crude approximation
e Can increase precision by eliminating (some) infeasible paths

330/471

Discussion

e Analysis terminates if D has finite height

o Call strings with kK = 0 matches crude approximation

e Can increase precision by eliminating (some) infeasible paths
Cost increases exponentially with size of k

330/471

Discussion

e Analysis terminates if D has finite height

o Call strings with kK = 0 matches crude approximation

e Can increase precision by eliminating (some) infeasible paths
e Cost increases exponentially with size of k

e Inpractice k=00ork =1

330/471

Discussion

e Analysis terminates if D has finite height

o Call strings with kK = 0 matches crude approximation

e Can increase precision by eliminating (some) infeasible paths
e Cost increases exponentially with size of k

e Inpractice k=00ork =1

e Correctness proof: Simulation wrt. stack-based semantics

330/471

Summary: Interprocedural Analysis

e Semantics: Stack-based, path-based

331/471

Summary: Interprocedural Analysis

e Semantics: Stack-based, path-based
e Analysis:

331/471

Summary: Interprocedural Analysis

e Semantics: Stack-based, path-based

e Analysis:
e Functional: Compute same-level effects

331/471

Summary: Interprocedural Analysis

e Semantics: Stack-based, path-based

e Analysis:
e Functional: Compute same-level effects
o Requires efficient representation of effects

331/471

Summary: Interprocedural Analysis

e Semantics: Stack-based, path-based

e Analysis:
e Functional: Compute same-level effects
o Requires efficient representation of effects
o Evaluation on demand: Same-level effects for finite number of arguments

331/471

Summary: Interprocedural Analysis

e Semantics: Stack-based, path-based
e Analysis:
e Functional: Compute same-level effects
o Requires efficient representation of effects
o Evaluation on demand: Same-level effects for finite number of arguments
e Requires finite/small number of abstract arguments for each function

331

471

Summary: Interprocedural Analysis

e Semantics: Stack-based, path-based
e Analysis:
e Functional: Compute same-level effects
o Requires efficient representation of effects
o Evaluation on demand: Same-level effects for finite number of arguments
e Requires finite/small number of abstract arguments for each function
e Call-Strings: Limit stack-depth, add extra (stack-insensitive) paths above
depth limit

331

471

Summary: Interprocedural Analysis

e Semantics: Stack-based, path-based

e Analysis:

e Functional: Compute same-level effects
o Requires efficient representation of effects

o Evaluation on demand: Same-level effects for finite number of arguments
e Requires finite/small number of abstract arguments for each function

e Call-Strings: Limit stack-depth, add extra (stack-insensitive) paths above

depth limit

e Adds extra imprecision, exponentially cost in depth-limit

331

471

Table of Contents

0 Analysis of Parallel Programs

332/471

Analysis of Parallel Programs

e Concurrency gets more important nowadays

333/471

Analysis of Parallel Programs

e Concurrency gets more important nowadays
e Admits new classes of bugs

333/471

Analysis of Parallel Programs

e Concurrency gets more important nowadays
e Admits new classes of bugs
e E.g, dataraces

333/471

Analysis of Parallel Programs

e Concurrency gets more important nowadays
e Admits new classes of bugs
e E.g, dataraces

e These are hard to find/ hard to reproduce

333/471

Analysis of Parallel Programs

Concurrency gets more important nowadays
Admits new classes of bugs
e E.g, dataraces

These are hard to find/ hard to reproduce
Can program analysis help?

333/471

Data races

e Concurrent accesses to global data, one is a write

join;
print g

334/471

Data races

e Concurrent accesses to global data, one is a write

join;
print g
}

e What will the program print?

334/471

Data races

e Concurrent accesses to global data, one is a write

join;
print g
}

e What will the program print?
e Assuming sequential consistency?

334/471

Data races

e Concurrent accesses to global data, one is a write

join;
print g

e What will the program print?
e Assuming sequential consistency?

e Answer: In most cases: 2

334/471

Data races

e Concurrent accesses to global data, one is a write

join;
print g

e What will the program print?
e Assuming sequential consistency?

e Answer: In most cases: 2
e Butin very rare cases: 1

334/471

Data races

e Concurrent accesses to global data, one is a write

join;
print g

What will the program print?
e Assuming sequential consistency?

e Answer: In most cases: 2
e Butin very rare cases: 1

Depends on machine, other programs, OS, start time, ...

334/471

Locks

e Threads can acquire/release locks

int g = 0; lock 1lg;
tl (O |
acquire(lg); g = g + 1; release(lq);
}
main () {
fork t1;
acquire(lg); g = g + 1; release(lqg);
join;
print g

335/471

Locks

e Threads can acquire/release locks
e Each lock can only be acquired by one thread at the same time

int g = 0; lock 1lg;
tl (O |
acquire(lg); g = g + 1; release(lq);
}
main () {
fork t1;
acquire(lg); g = g + 1; release(lqg);
join;
print g

335/471

Locks

e Threads can acquire/release locks
e Each lock can only be acquired by one thread at the same time
e Other threads that want to acquire the lock have to wait

int g = 0; lock 1lg;
tl (O |
acquire(lg); g = g + 1; release(lq);
}
main () {
fork t1;
acquire(lg); g = g + 1; release(lqg);
join;
print g

335/471

Locks

e Threads can acquire/release locks

Each lock can only be acquired by one thread at the same time
Other threads that want to acquire the lock have to wait

e Used to prevent data races

int g = 0; lock 1lg;
tl O |

acquire(lg); g = g + 1; release(lqg);
}
main () {
fork t1;
acquire(lg); g = g + 1; release(lqg);
join;

print g

335/471

Demo: Goblint data race analyzer

e Program with data race
¢ Try to show bad reproducibility + dependence on machine load, etc.
e Show goblint-analyzer to find the race

http://goblint.in.tum.de

336/471

http://goblint.in.tum.de

Abstract semantics with locks

o We will regard an abstract semantics with locks

337/471

Abstract semantics with locks

o We will regard an abstract semantics with locks

e l.e., it contains no state beyond the current program points and status of
locks

337/471

Abstract semantics with locks

o We will regard an abstract semantics with locks

e l.e., it contains no state beyond the current program points and status of
locks

e Concrete program mapped to this semantics

337/471

Abstract semantics with locks

o We will regard an abstract semantics with locks

e l.e., it contains no state beyond the current program points and status of
locks

e Concrete program mapped to this semantics
e E.g., pointer analysis to identify locks

337/471

Abstract semantics with locks

We will regard an abstract semantics with locks

l.e., it contains no state beyond the current program points and status of
locks

Concrete program mapped to this semantics
e E.g., pointer analysis to identify locks
Has more possible executions than concrete program

337/471

Abstract semantics with locks

We will regard an abstract semantics with locks

l.e., it contains no state beyond the current program points and status of
locks

Concrete program mapped to this semantics

e E.g., pointer analysis to identify locks
Has more possible executions than concrete program
Analysis results are safe

337/471

Abstract semantics with locks

We will regard an abstract semantics with locks

l.e., it contains no state beyond the current program points and status of
locks

Concrete program mapped to this semantics

e E.g., pointer analysis to identify locks
Has more possible executions than concrete program
Analysis results are safe

o |f we find no datarace, there is none

337/471

Abstract semantics with locks

We will regard an abstract semantics with locks

l.e., it contains no state beyond the current program points and status of
locks
Concrete program mapped to this semantics
e E.g., pointer analysis to identify locks
Has more possible executions than concrete program
Analysis results are safe

o |f we find no datarace, there is none
e But there may be false positives

337/471

Parallel flowgraphs with fork

o Add fork(v) edge label, that forks new thread starting at v

338/471

Parallel flowgraphs with fork

o Add fork(v) edge label, that forks new thread starting at v
e For now, we ignore joins!

338/471

Parallel flowgraphs with fork

o Add fork(v) edge label, that forks new thread starting at v
e For now, we ignore joins!
¢ Abstract semantics: State is multiset of nodes.

338/471

Parallel flowgraphs with fork

o Add fork(v) edge label, that forks new thread starting at v
e For now, we ignore joins!

¢ Abstract semantics: State is multiset of nodes.
o Initial state: {w}

{urUs) = ({vius) (u,a,v) e E
{urUs) = ({v,wtUs) (u, fork(w),v) € E

338/471

Parallel flowgraphs with fork and locks

o Additionally: Finite set of locks L, actions acq(/) and rel(/)

339/471

Parallel flowgraphs with fork and locks

o Additionally: Finite set of locks L, actions acq(/) and rel(/)
e State: Each thread together with its acquired locks

339/471

Parallel flowgraphs with fork and locks

o Additionally: Finite set of locks L, actions acq(/) and rel(/)
e State: Each thread together with its acquired locks
e Initial state: {(vo,0)}

{(u, L)} Us) = ({(v,L)} Us) (u,a,v) e E

{(u, L)} Us) = ({(v,L),(w,0)} Us) (u,fork(w),v) € E
{(u, L)Y Uus) — ({(v,Lu{l})}Us) (u,acq(/),v) e Eand/ ¢ s|5
{(u,D)}yus) = ({(v,L\{}}Us) (u,rel(l),v) € E

339/471

Parallel flowgraphs with fork and locks

o Additionally: Finite set of locks L, actions acq(/) and rel(/)
e State: Each thread together with its acquired locks
e Initial state: {(vo,0)}

{(u, L)} Us) = ({(v,L)} Us) (u,a,v) e E

{(u, L)} Us) = ({(v,L),(w,0)} Us) (u,fork(w),v) € E
{(u, L)Y Uus) — ({(v,Lu{l})}Us) (u,acq(/),v) e Eand/ ¢ s|5
{(u,D)}yus) = ({(v,L\{}}Us) (u,rel(l),v) € E

¢ Note: We assume that a thread only releases locks that it possesses.

339/471

Parallel flowgraphs with fork and locks

Additionally: Finite set of locks L, actions acq(/) and rel(/)
State: Each thread together with its acquired locks
Initial state: {(vo,0)}

{(u, L)} Us) = ({(v,L)} Us) (u,a,v) e E

{(u, L)} Us) = ({(v,L),(w,0)} Us) (u,fork(w),v) € E
{(u, L)Y Uus) — ({(v,Lu{l})}Us) (u,acq(/),v) e Eand/ ¢ s|5
{(u,D)}yus) = ({(v,L\{}}Us) (u,rel(l),v) € E

Note: We assume that a thread only releases locks that it possesses.
o We assume that a thread does not acquire a lock it already possesses.

339/471

Parallel flowgraphs with fork and locks

Additionally: Finite set of locks L, actions acq(/) and rel(/)
State: Each thread together with its acquired locks
Initial state: {(vo,0)}

{(u, L)} Us) — ({(v,L)} Us) (u,a,v) e E
({(u, L)} Us) = ({(v,L),(w,0)}Us) (u, fork(w),v) € E
{(u, L)Y Uus) — ({(v,Lu{l})}Us) (u,acq(/),v) e Eand/ ¢ s|5
{(u,)Y Us) — ({(v,L\{I}}Us) (u,rel(l),v) e E
Note: We assume that a thread only releases locks that it possesses.

We assume that a thread does not acquire a lock it already possesses.
Invariant: For each reachable state, the thread’s lock-sets are disjoint

{(vo,0)} =" {(ur, L), (U2, L2)} Us = LiNLa =0

339/471

Analysis Plan

¢ Lock-insensitive may-happen in parallel (MHP)

340/471

Analysis Plan

¢ Lock-insensitive may-happen in parallel (MHP)
e Sets of program points that may be executed in parallel

340/471

Analysis Plan

¢ Lock-insensitive may-happen in parallel (MHP)
e Sets of program points that may be executed in parallel
e Lock-sets

340/471

Analysis Plan

¢ Lock-insensitive may-happen in parallel (MHP)

e Sets of program points that may be executed in parallel
o Lock-sets

o Sets of locks that must be allocated at program point

340/471

Analysis Plan

¢ Lock-insensitive may-happen in parallel (MHP)
e Sets of program points that may be executed in parallel
e Lock-sets

e Sets of locks that must be allocated at program point
e Used to make MHP more precise

340/471

Analysis Plan

¢ Lock-insensitive may-happen in parallel (MHP)
e Sets of program points that may be executed in parallel
e Lock-sets

e Sets of locks that must be allocated at program point
e Used to make MHP more precise

e MHP(u, v) only if u and v have disjoint lock sets

340/471

Analysis Plan

¢ Lock-insensitive may-happen in parallel (MHP)
e Sets of program points that may be executed in parallel
e Lock-sets

e Sets of locks that must be allocated at program point
e Used to make MHP more precise

e MHP(u, v) only if u and v have disjoint lock sets
e Data-Races

340/471

Analysis Plan

¢ Lock-insensitive may-happen in parallel (MHP)
e Sets of program points that may be executed in parallel
e Lock-sets

e Sets of locks that must be allocated at program point
e Used to make MHP more precise

e MHP(u, v) only if u and v have disjoint lock sets
e Data-Races

¢ |dentify conflicting program points, with outgoing actions that read/write the
same global variable

340/471

Analysis Plan

¢ Lock-insensitive may-happen in parallel (MHP)
e Sets of program points that may be executed in parallel
e Lock-sets

e Sets of locks that must be allocated at program point
e Used to make MHP more precise

e MHP(u, v) only if u and v have disjoint lock sets
e Data-Races

¢ |dentify conflicting program points, with outgoing actions that read/write the
same global variable
e Check whether they may happen in parallel

340/471

Lock-insensitive MHP

o Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u

341/471

Lock-insensitive MHP

o Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u

o Reachable also over forks

341/471

Lock-insensitive MHP

o Put up constraint system, R[u]: Set of (interesting) nodes reachable from

u
o Reachable also over forks

Rlu] 2 {u}
R[u] 2 R[v]
Rlu] 2 Rw]

if u interesting (R.node)
if (u,_,v)eE (R.edge)
if (u,fork(w),_) € E (R.trans)

341/471

Lock-insensitive MHP

o Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u
e Reachable also over forks

Rlu] 2 {u} if u interesting (R.node)
R[u] 2 R[v] if(u,_,v)e E (R.edge)
R[u] 2 R[w] if (u,fork(w),_) € E (R.trans)
MHP[v] > MHP[u] if(u,_,v)eE (MHP.edge)
MHP[w]| O MHP[u] if (u,fork(w),v) € E (MHP.trans)
MHP[v] D R[w] if (u, fork(w), v) € (MHP-fork1)
MHP[w] D RJ[v] if (u, fork(w), v) € (MHP.fork2)

341/47

Lock-insensitive MHP

e Put up constraint system, R[u]: Set of (interesting) nodes reachable from

u
e Reachable also over forks

Rlu] 2 {u} if u interesting
R[u] > R[v] if (u,_,v)e E
Rlu] 2 R[w] if (u, fork(w),_) € E

E

m

MHP[v] 2 MHP|[u] if (u,_,v)

MHP[w] > MHP|[u] if (u, fork(w),v) € E

MHP[v] 2 R[w] if (u, fork(w),v) € E
if ((

MHP[w] 2 RJ[v] u,fork(w),v) € E

(R.node) Interesting node reachable from itself

(R.node)
(R.edge)
(R.trans)

MHP.edge
MHP.trans
MHP.fork1
MHP.fork2

o~ o~~~
—_ — — —

341/47

Lock-insensitive MHP

e Put up constraint system, R[u]: Set of (interesting) nodes reachable from

u
e Reachable also over forks

Rlu] 2 {u} if u interesting
R[u] > R[v] if (u,_,v)e E
Rlu] 2 R[w] if (u, fork(w),_) € E

E

m

MHP[v] > MHP[u] if (u,_,v)
MHP[w] > MHP|[u] if (u, fork(w),v) € E
MHP[v] 2 R[w] if (u, fork(w),v) € E
MHP[w] 2 RJ[v] if (u,fork(w),v) € E

(R.edge) Propagate reachability over edge

(R.node)
(R.edge)
(R.trans)

MHP.edge
MHP.trans
MHP.fork1
MHP.fork2

o~ o~~~
—_ — — —

341/47

Lock-insensitive MHP

e Put up constraint system, R[u]: Set of (interesting) nodes reachable from

u
e Reachable also over forks

Rlu] 2 {u} if u interesting
R[u] > R[v] if (u,_,v)e E
Rlu] 2 R[w] if (u, fork(w),_) € E

E

m

MHP[v] > MHP[u] if (u,_,v)
MHP[w] > MHP|[u] if (u, fork(w),v) € E
MHP[v] 2 R[w] if (u, fork(w),v) € E
MHP[w] 2 RJ[v] if (u,fork(w),v) € E

(R.trans) Propagate reachability over fork

(R.node)
(R.edge)
(R.trans)

MHP.edge
MHP.trans
MHP.fork1
MHP.fork2

o~ o~~~
—_ — — —

341/47

Lock-insensitive MHP

e Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u
e Reachable also over forks

Rlu] 2 {u} if u interesting (R.node)
R[u] > R[v] if (u,_,v)e E (R.edge)
Rlu] 2 R[w] if (u, fork(w),_) € E (R.trans)

MHP[v] © MHP[u] if(u,_,v)eE (MHP.edge)
MHP[w] > MHP|[u] if (u, fork(w),v) € E (MHPtrans)
MHP[v] 2 R[w] if (u, fork(w),v) € E (MHP.fork1)
MHP[w] 2 R[v] if (u,fork(w),v) € E (MHP.fork2)

(MHP.edge) If this edge executed, other threads still at same positions

341/47

Lock-insensitive MHP

e Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u
e Reachable also over forks

R[u] 2 {u} if u interesting (R.node)
Rlu] 2 R[v] if(u,_,v)e E (R.edge)
Rlu] > R[w] if (u,fork(w),_) € E (R.trans)

MHP[v] > MHP|[u] if (u,_,v)e E (MHP.edge)
MHP[w]| O MHP[u] if (u, fork(w), v) € (MHP.trans)
MHP[v] 2 R[w] if (u,fork(w),v) € E (MHP-fork1)
MHP[w] D RJv] if (u,fork(w),v) € E (MHP.fork2)

(MHP.trans) Start node of forked thread parallel to other threads

341/47

Lock-insensitive MHP

o Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u
o Reachable also over forks

R[u] > {u} if u interesting (R.node)
Rlu] 2 R[v] if(u,_,v)e E (R.edge)
R[u] 2 R[w] if (u,fork(w),_) € E (R.trans)
MHP[v] > MHP[u] if(u,_,v)eE (MHP.edge)
MHP[w]| O MHP[u] if (u, fork(w), v) € E (MHP.trans)
MHP[v] 2 R[w] if (u, fork(w), v) € (MHP.fork1)
MHP[w] 2 RJ[v] if (u, fork(w), v) € (MHP.fork2)

(MHP.fork1) Forking thread parallel to everything that may be reached
from forked thread

341/47

Lock-insensitive MHP

e Put up constraint system, R[u]: Set of (interesting) nodes reachable from
u
¢ Reachable also over forks

Rlu] 2 {u} if u interesting (R.node)
R[u] 2> R[v] if (u,_,v)eE (R.edge)
Rlu] 2 R[w] if (u, fork(w),_) € E (R.trans)
MHP[v] 2 MHP[u] if (u,_,v)e E (MHP.edge)
MHP[w] > MHP[u] if (u, fork(w), v) € (MHP.rans)
MHP[v] 2 R[w] if (u, fork(w), v) € (MHP.fork1)
MHP[w] D RJv] if (u,fork(w),v) € E (MHP.fork2)

(MHP.fork2) Forked thread parallel to everything that may be reached
from forking thread

341/47

Correctness

e For interesting nodes u and v (also u=v), we have:

Js. {w} =" {u,v}Us = u e MHP[v]

342/471

Correctness

e For interesting nodes u and v (also u=v), we have:
Js. {w} =" {u,v}Us = u e MHP[v]

e Proof sketch

342/471

Correctness

e For interesting nodes u and v (also u=v), we have:
Js. {w} =" {u,v}Us = u e MHP[v]

¢ Proof sketch
o Auxiliary: {u} »* {v}Us = v € R[]

342/471

Correctness

e For interesting nodes u and v (also u=v), we have:
Js. {w} =" {u,v}Us = u e MHP[v]
e Proof sketch
o Auxiliary: {u} »* {v}Us = v € R[]

e Find the crucial fork, where u is reached from, wlog, the forked thread, and v
is reached from the forking thread

342/471

Correctness

e For interesting nodes u and v (also u=v), we have:
Js. {w} =" {u,v}Us = u e MHP[v]

e Proof sketch
o Auxiliary: {u} »* {v}Us = v € R[]
e Find the crucial fork, where u is reached from, wlog, the forked thread, and v
is reached from the forking thread
o {y}—=*{a}U..., and (a,fork(c),b) € E, and {b} —* {u} U...,and
{c} =" {v}IU...

342/471

Lock-set analysis

e Forward, must analysis (standard)

LS[vo] €0

LS[w] C 0 (u,fork(w),v) € E

LS[v] C LS[u] (u,a,v) € E, ano lock-action
LS[v] C LS[u] U{l} (u,acq(l),v) € E

LS[v] C LS[u] \ {/} (u,rel(l),v) € E

343/471

Lock-set analysis

e Forward, must analysis (standard)

LS[vo] €0

LS[w] C 0 (u,fork(w),v) € E

LS[v] C LS[u] (u,a,v) € E, ano lock-action
LS[v] C LS[u] U{l} (u,acq(l),v) € E

LS[v] C LS[u] \ {/} (u,rel(l),v) € E

e Correctness:

leLS[u] = (Vs. {(v0.0)} =" {(u, L)} Us = leL)

343/471

Data-Race analysis

e Interesting nodes:

344 /471

Data-Race analysis

e Interesting nodes:
o Nodes with actions that read or write global variables

344 /471

Data-Race analysis

e Interesting nodes:
o Nodes with actions that read or write global variables

e For each pair (u, v) of conflicting nodes, check
u € MHP[v] = LS[u]NLS[v] # 0

344 /471

Data-Race analysis

e Interesting nodes:
o Nodes with actions that read or write global variables

e For each pair (u, v) of conflicting nodes, check
u € MHP[v] = LS[u]NLS[v] # 0
o If satisfied, report ,definitely no data race”

344 /471

Data-Race analysis

e Interesting nodes:
o Nodes with actions that read or write global variables

For each pair (u, v) of conflicting nodes, check
u € MHP[v] = LS[u]NLS[v] # 0

o If satisfied, report ,definitely no data race”

e Otherwise, report possible data race

344 /471

Example
int g = 0; lock lg;

SN

O ~J o U

9:

10:
11:
12:
13:

e Check lock-sets for 2/7 and 2/11

tl

}

0 A
acquire (1lqg);
g=g9+1;
release (1qg);

main () {

}

fork tl;
acquire (lg);
g =9+ 1;
release (1lqg);
join;
acquire (1qg);
print g
release (1lqg);

o n

o

U o R v I V> VR S Y

2,7,11
7,11
7,11
11

11

11

11

{1}

{1}

MHP :
MHP :
MHP :
MHP :

MHP :
MHP :
MHP :
MHP :
MHP :
MHP :
MHP :
MHP :
MHP :

{7,11}
{7,11}
{7,11}
{7,11}

{}

{2}
{2}
{2}
{2}
{2}
{2}
{2}
{2}

o o e

o o e e o o e e

{}
{1g}
{1lg}
{1

{}
{}
{1lg}
{1lg}
{}
{}
{1g}
{1lg}
{}

345/471

Example
int g = 0; lock lg;

SN

O ~J o U

9:

10:
11:
12:
13:

e Check lock-sets for 2/7 and 2/11
e Lock /g contained in all of them

tl

}

0O A
acquire (1lqg);
g=g9+1;
release (1qg);

main () {

}

fork tl;
acquire (lg);
g =9+ 1;
release (1lqg);
join;
acquire (1qg);
print g
release (1lqg);

o n

o

U o R v I V> VR S Y

2,7,11
7,11
7,11
11

11

11

11

{1}

{1}

MHP :
MHP :
MHP :
MHP :

MHP :
MHP :
MHP :
MHP :
MHP :
MHP :
MHP :
MHP :
MHP :

{7,11}
{7,11}
{7,11}
{7,11}

{}

{2}
{2}
{2}
{2}
{2}
{2}
{2}
{2}

o o e

o o e e o o e e

{}
{1g}
{1lg}
{1

{}
{}
{1lg}
{1lg}
{}
{}
{1g}
{1lg}
{}

345/471

Example
int g = 0; lock lg;

SN

O ~J o U

9:

10:
11:
12:
13:

e Check lock-sets for 2/7 and 2/11
e Lock /g contained in all of them

tl

}

0O A
acquire (1lqg);
g=g9+1;
release (1qg);

main () {

}

fork tl;
acquire (lg);
g =9+ 1;
release (1lqg);
join;
acquire (1qg);
print g
release (1lqg);

e Program is safe!

o n

o

U o R v I V> VR S Y

2,7,11
7,11
7,11
11

11

11

11

{1}

{1}

MHP :
MHP :
MHP :
MHP :

MHP :
MHP :
MHP :
MHP :
MHP :
MHP :
MHP :
MHP :
MHP :

{7,11}
{7,11}
{7,11}
{7,11}

{}

{2}
{2}
{2}
{2}
{2}
{2}
{2}
{2}

o o e

o o e e o o e e

{}
{1g}
{1lg}
{1

{}
{}
{1lg}
{1lg}
{}
{}
{1g}
{1lg}
{}

345/471

Discussion

e Simple (and relatively cheap) analysis

346/471

Discussion

e Simple (and relatively cheap) analysis
e Can prove programs data-race free

346/471

Discussion

e Simple (and relatively cheap) analysis
e Can prove programs data-race free
e But may return false positives, due to:

346/471

Discussion

e Simple (and relatively cheap) analysis

e Can prove programs data-race free

e But may return false positives, due to:
¢ Not handling joins

346/471

Discussion

e Simple (and relatively cheap) analysis
e Can prove programs data-race free
e But may return false positives, due to:

¢ Not handling joins
e Ignoring data completely

346/471

Discussion

e Simple (and relatively cheap) analysis
e Can prove programs data-race free
e But may return false positives, due to:

¢ Not handling joins

e Ignoring data completely
e Not handling interaction of locks and control flow

346/471

Discussion

e Simple (and relatively cheap) analysis
e Can prove programs data-race free
e But may return false positives, due to:

¢ Not handling joins

e Ignoring data completely
e Not handling interaction of locks and control flow

e Fork inside lock

346/471

Discussion

e Simple (and relatively cheap) analysis
e Can prove programs data-race free
e But may return false positives, due to:

¢ Not handling joins

e Ignoring data completely
e Not handling interaction of locks and control flow

e Fork inside lock
e Deadlocks

346/471

Discussion

Simple (and relatively cheap) analysis
e Can prove programs data-race free
e But may return false positives, due to:

¢ Not handling joins

e Ignoring data completely
e Not handling interaction of locks and control flow

e Fork inside lock
e Deadlocks

Goblint:

346/471

Discussion

Simple (and relatively cheap) analysis
e Can prove programs data-race free
e But may return false positives, due to:

¢ Not handling joins

e Ignoring data completely
e Not handling interaction of locks and control flow

e Fork inside lock
e Deadlocks

Goblint:
e Interprocedural

346/471

Discussion

Simple (and relatively cheap) analysis
e Can prove programs data-race free
e But may return false positives, due to:

¢ Not handling joins

e Ignoring data completely
e Not handling interaction of locks and control flow

e Fork inside lock
e Deadlocks

Goblint:

e Interprocedural
e Pointer-analysis

346/471

Discussion

Simple (and relatively cheap) analysis
e Can prove programs data-race free
e But may return false positives, due to:

¢ Not handling joins

e Ignoring data completely

e Not handling interaction of locks and control flow
e Fork inside lock
o Deadlocks

Goblint:
e Interprocedural
o Pointer-analysis
e Constant propagation

346/471

Discussion

Simple (and relatively cheap) analysis
e Can prove programs data-race free
e But may return false positives, due to:

¢ Not handling joins

e Ignoring data completely

e Not handling interaction of locks and control flow
e Fork inside lock
o Deadlocks

Goblint:

Interprocedural
Pointer-analysis

Constant propagation
Equality/inequality of indexes

346/471

Discussion

Simple (and relatively cheap) analysis
e Can prove programs data-race free
e But may return false positives, due to:

¢ Not handling joins

e Ignoring data completely

e Not handling interaction of locks and control flow
e Fork inside lock
o Deadlocks

Goblint:

Interprocedural
Pointer-analysis

Constant propagation
Equality/inequality of indexes

346/471

Discussion

e Freedom of data races often not enough

int x[N];

void norm()
lock 1; n length(x); unlock 1;
lock 1; x = 1/n * x; unlock 1;

—_

347/471

Discussion

e Freedom of data races often not enough

int x[N];

void norm()
lock 1; n length(x); unlock 1;
lock 1; x = 1/n * x; unlock 1;

—_

e Thread-safe?

347/471

Discussion

e Freedom of data races often not enough

int x[N];

void norm()
lock 1; n length(x); unlock 1;
lock 1; x = 1/n * x; unlock 1;

—_

e Thread-safe? No!

347/471

Discussion

e Freedom of data races often not enough

int x[N];

void norm()
lock 1; n length(x); unlock 1;
lock 1; x = 1/n * x; unlock 1;

—_

e Thread-safe? No!
= Transactionality

347/471

Discussion

e Freedom of data races often not enough

int x[N];

void norm()
lock 1; n length(x); unlock 1;
lock 1; x = 1/n * x; unlock 1;

—_

e Thread-safe? No!
= Transactionality

e Advanced locking patterns

347/471

Discussion

e Freedom of data races often not enough

int x[N];

void norm()
lock 1; n length(x); unlock 1;
lock 1; x = 1/n * x; unlock 1;

—_

e Thread-safe? No!
= Transactionality

e Advanced locking patterns
e E.g., lock chains:

lock 1; lock 2; unlock 1; lock 3;

unlock 2

347/471

Discussion

e Freedom of data races often not enough

int x[N];

void norm() {
lock 1; n = length(x); unlock 1;
lock 1; x = 1/n * x; unlock 1;

e Thread-safe? No!
= Transactionality

e Advanced locking patterns
e E.g., lock chains:

lock 1; lock 2; unlock 1; lock 3; unlock 2

e Two lock-chains executed simultaneously will never overtake

347/471

Last Lecture

e Analysis of parallel programs
e Intraprocedural with thread creation
o May-happen in parallel + lockset analysis = datarace analysis
e Caveats
e Need to abstract program into model with fixed locks
e Problematic if locks are addressed via pointers/arrays
o Datarace freedom may no be enough

e Transactions
e Advanced locking patterns like lockchains

348/471

Table of Contents

@ Replacing Expensive by Cheaper Operations

349/471

Table of Contents

g Replacing Expensive by Cheaper Operations
Strength Reduction
Peephole Optimization
Linearization

350/471

Motivating Example

for (i=1;i<r;i=i+h) {
a=ag + bxi
M[a] = ...

}

e Initialize array in range: [/, r[, every hth element

351/471

Motivating Example

for (i=1;i<r;i=i+h) {
a=ag + bxi
M[a] = ...

}

e Initialize array in range: [/, r[, every hth element
e Element size of array: b

351/471

Motivating Example

for (i=1;i<r;i=i+h) {
a=ag + bxi
M[a] = ...

}

e Initialize array in range: [/, r[, every hth element
e Element size of array: b
e Loop requires r — | multiplications

351/471

Motivating Example

for (i=1;i<r;i=i+h) {
a=ag + bxi
M[a] = ...

}

Initialize array in range: [/, r[, every hth element
Element size of array: b

Loop requires r — I multiplications

Multiplications are expensive, addition much cheaper

351/47

Motivating Example

for (i=1;i<r;i=i+h) {
a=ag + bxi
M[a] = ...

e Initialize array in range: [/, r[, every hth element

e Element size of array: b

e Loop requires r — | multiplications

e Multiplications are expensive, addition much cheaper

e Observation: From one iteration of the loop to the next:
o Difference between as is constant: (ap + b(i + h)) — (a0 + bi) = bh

351/471

Optimization

e First, loop inversion

i=1;
if (i<r) {
do {
a=ag + bxi
M[a]
i=i+h
} while (i<r)

352/471

Optimization
e First, loop inversion

e Second, pre-compute difference and replace computation of a
o No multiplication left in loop

i=1;
if (i<r) {
delta = bxh
a=ag + bxi
do {
Ml[a] =
i=i+h
a=atdelta
} while (i<r)

352/471

Optimization
e First, loop inversion

e Second, pre-compute difference and replace computation of a
o No multiplication left in loop

o If
e j not used elsewhere in the loop, and
e j dead after loop
e bnot zero
i=1;

if (i<r) {
delta = bxh
a=apg + bxi
do {
M[a] =
i=i+h
a=atdelta
} while (i<r)

352/471

Optimization

e First, loop inversion
e Second, pre-compute difference and replace computation of a
o No multiplication left in loop

o [f
e jnot used elsewhere in the loop, and
e j dead after loop
e b not zero
e Get rid of j altogether
if (l<r) {

delta = bxh
a=ag + bxl
N = ag + bx*r
do {
M[a] =
a=atdelta
} while (a<N)

352/471

In general

e |dentify
e loops
o jteration variables
e constants
e Matching use structures

353/471

Loops

e Identify loop by node v where back-edge leads to, i.e., (u, a, v) € E with
vV=u

e Nodes of loop:

looplv]={w |w—=>"vAVv=w}

¢ |.e., nodes which can only be reached via v, and from which v can be
reached again

354/471

Example

@
(=)
@—E—0©@—=™®

355/471

Example

@
(=
@—E—@—=™0®

355/471

lteration variable

e Variable /, such that

356/471

lteration variable

e Variable /, such that
e All assignments to i in loop have form i:=i+ h
e where his loop constant

356/471

lteration variable

e Variable /, such that
e All assignments to i in loop have form i:=i+ h
e where his loop constant

e Loop constant: Plain constant, or, more sophisticated:

356/471

lteration variable

e Variable /, such that
e All assignments to i in loop have form i:=i+ h
e where his loop constant
e Loop constant: Plain constant, or, more sophisticated:
o Expression that does not depend on variables modified in loop

356/471

lteration variable

e Variable /, such that
e All assignments to i in loop have form i:=i+ h
e where his loop constant

e Loop constant: Plain constant, or, more sophisticated:
o Expression that does not depend on variables modified in loop
e Heuristics for application:

356/471

lteration variable

e Variable /, such that
e All assignments to i in loop have form i:=i+ h
e where his loop constant
e Loop constant: Plain constant, or, more sophisticated:
o Expression that does not depend on variables modified in loop
e Heuristics for application:
e There is an assignment to i in loop

356/471

lteration variable

e Variable /, such that
e All assignments to i in loop have form i:=i+ h
e where his loop constant
e Loop constant: Plain constant, or, more sophisticated:
o Expression that does not depend on variables modified in loop
e Heuristics for application:

e There is an assignment to i in loop
e Assignment to i/ executed in every iteration

356/471

Strength reduction

¢ Strength reduction possible for expressions of the form ag + b * i, such
that

357/471

Strength reduction

¢ Strength reduction possible for expressions of the form ag + b * i, such
that

e ap, b are loop constants

357/471

Strength reduction

¢ Strength reduction possible for expressions of the form ag + b * i, such
that

e ap, b are loop constants
e | is iteration variable with increment h

357/471

Strength reduction

¢ Strength reduction possible for expressions of the form ag + b * i, such
that

e ap, b are loop constants
e | is iteration variable with increment h

e Introduce temporary variables a and A

357/471

Strength reduction

¢ Strength reduction possible for expressions of the form ag + b * i, such
that

e ap, b are loop constants
e | is iteration variable with increment h

e Introduce temporary variables a and A
e Initialize a= ay + b * i and A = b x h right before loop
¢ Note: Loop must be inverted, to avoid extra evaluations!

357/471

Strength reduction

Strength reduction possible for expressions of the form ag + b * i, such
that

e ap, b are loop constants
e | is iteration variable with increment h

Introduce temporary variables a and A

Initialize a = ap + b i and A = b « h right before loop
¢ Note: Loop must be inverted, to avoid extra evaluations!

e Add a = a+ A after assignments to i

357/471

Strength reduction

Strength reduction possible for expressions of the form ag + b * i, such
that

e ap, b are loop constants
e | is iteration variable with increment h

Introduce temporary variables a and A

e Initialize a= ay + b * i and A = b x h right before loop
¢ Note: Loop must be inverted, to avoid extra evaluations!

e Add a = a+ A after assignments to i

Replace expression ay + bx i by a

357/471

Excursus: Floyd-Style verification
e Establish invariants for CFG-nodes: I, for all u € V

358/471

Excursus: Floyd-Style verification

e Establish invariants for CFG-nodes: I, for all u € V
e Invariant is set of states

358/471

Excursus: Floyd-Style verification

e Establish invariants for CFG-nodes: I, forall u ¢ V
e Invariant is set of states
e Equivalent notation: Characteristic formula over variables/memory

358/471

Excursus: Floyd-Style verification

e Establish invariants for CFG-nodes: I, for all u € V

e Invariant is set of states
e Equivalent notation: Characteristic formula over variables/memory
e E.g.,a= ay+ b« idescribes {(p, 1) | p(a) = p(a0) + b= p(i)}

358/471

Excursus: Floyd-Style verification

e Establish invariants for CFG-nodes: I, forall u ¢ V

e Invariant is set of states
e Equivalent notation: Characteristic formula over variables/memory
e E.g.,a= ay+ b« idescribes {(p, 1) | p(a) = p(a0) + b= p(i)}

e Show:

358/471

Excursus: Floyd-Style verification

e Establish invariants for CFG-nodes: I, forall u ¢ V

e Invariant is set of states
e Equivalent notation: Characteristic formula over variables/memory
e E.g.,a= ay+ b« idescribes {(p, 1) | p(a) = p(a0) + b= p(i)}

e Show:

e (po, o) € Iy
o for states (po, 1) that satisfy precondition (Here: all states)

358/471

Excursus: Floyd-Style verification

e Establish invariants for CFG-nodes: I, forall u ¢ V

e Invariant is set of states
e Equivalent notation: Characteristic formula over variables/memory
e E.g.,a= ay+ b« idescribes {(p, 1) | p(a) = p(a0) + b= p(i)}

e Show:

e (po, o) € Iy
o for states (po, 1) that satisfy precondition (Here: all states)

o For all edges (u, a, v), we have

(p;p) € lundom([a]) = [a](p,) € Iv

358/471

Excursus: Floyd-Style verification

e Establish invariants for CFG-nodes: I, forall u ¢ V

e Invariant is set of states
e Equivalent notation: Characteristic formula over variables/memory
e E.g.,a= ay+ b« idescribes {(p, 1) | p(a) = p(a0) + b= p(i)}

e Show:

e (po, o) € Iy
o for states (po, 1) that satisfy precondition (Here: all states)

o For all edges (u, a, v), we have

(p;p) € lundom([a]) = [a](p,) € Iv

e Then, we have, for all nodes u: [u] C I,
e Proof: Induction on paths.

e Recall [u] := {(p, 1) | Ipo, 1o, 7 Vo = u A [](po, 10) = (p, 1)}
o |Intuition: All states reachable at u

e Collecting semantics

358/471

Excursus: Floyd-Style verification

e Establish invariants for CFG-nodes: I, forall u ¢ V

e Invariant is set of states
e Equivalent notation: Characteristic formula over variables/memory
e E.g.,a= ay+ b« idescribes {(p, 1) | p(a) = p(a0) + b= p(i)}

e Show:

e (po, o) € Iy
o for states (po, 1) that satisfy precondition (Here: all states)

o For all edges (u, a, v), we have

(p;p) € lundom([a]) = [a](p,) € Iv

e Then, we have, for all nodes u: [u] C I,
e Proof: Induction on paths.

e Recall [u] := {(p, 1) | Ipo, 1o, 7 Vo = u A [](po, 10) = (p, 1)}
o |Intuition: All states reachable at u

e Collecting semantics
e And can use this fact to

358/471

Excursus: Floyd-Style verification

e Establish invariants for CFG-nodes: I, forall u ¢ V

e Invariant is set of states
e Equivalent notation: Characteristic formula over variables/memory
e E.g.,a= ay+ b« idescribes {(p, 1) | p(a) = p(a0) + b= p(i)}

e Show:

e (po, o) € Iy
o for states (po, 1) that satisfy precondition (Here: all states)

o For all edges (u, a, v), we have

(p;p) € lundom([a]) = [a](p,) € Iv

e Then, we have, for all nodes u: [u] C I,
e Proof: Induction on paths.

e Recall [u] := {(p, 1) | Ipo, 1o, 7 Vo = u A [](po, 10) = (p, 1)}
o |Intuition: All states reachable at u

e Collecting semantics
e And can use this fact to
e Show correctness of program

358/471

Excursus: Floyd-Style verification

e Establish invariants for CFG-nodes: I, forall u ¢ V

e Invariant is set of states
e Equivalent notation: Characteristic formula over variables/memory
e E.g.,a= ay+ b« idescribes {(p, 1) | p(a) = p(a0) + b= p(i)}

e Show:

e (po, o) € Iy
o for states (po, 1) that satisfy precondition (Here: all states)

o For all edges (u, a, v), we have

(p;p) € lundom([a]) = [a](p,) € Iv

e Then, we have, for all nodes u: [u] C I,
e Proof: Induction on paths.

e Recall [u] := {(p, 1) | Ipo, 1o, 7 Vo = u A [](po, 10) = (p, 1)}
o |Intuition: All states reachable at u

e Collecting semantics
e And can use this fact to

e Show correctness of program
o Justify transformations

358/471

Excursus: Floyd-Style verification

e Establish invariants for CFG-nodes: I, forall u ¢ V

e Invariant is set of states
e Equivalent notation: Characteristic formula over variables/memory
e E.g.,a= ay+ b« idescribes {(p, 1) | p(a) = p(a0) + b= p(i)}

e Show:

e (po, o) € Iy
o for states (po, 1) that satisfy precondition (Here: all states)

o For all edges (u, a, v), we have

(p;p) € lundom([a]) = [a](p,) € Iv

e Then, we have, for all nodes u: [u] C I,
e Proof: Induction on paths.

e Recall [u] := {(p, 1) | Ipo, 1o, 7 Vo = u A [](po, 10) = (p, 1)}
o |Intuition: All states reachable at u

e Collecting semantics
e And can use this fact to
e Show correctness of program
o Justify transformations

358/471

Correctness

e Provethata= ay+ bxiNA = bx hisinvariant for all nodes in loop
o Except the target nodes of assignments to i
e There,wehavea=ay+bx(i—h)AA=bxh

359/471

Correctness

e Provethata= ay+ bxiNA = bx hisinvariant for all nodes in loop
o Except the target nodes of assignments to i
e There,wehavea=ay+bx(i—h)AA=bxh

e Proof:

359/471

Correctness

e Provethata= ay+ bxiNA = bx hisinvariant for all nodes in loop
o Except the target nodes of assignments to i
e There,wehavea=ay+bx(i—h)AA=bxh
e Proof:
e Entering loop: Have put initialization right before loop!

359/471

Correctness

e Provethata= ay+ bxiNA = bx hisinvariant for all nodes in loop
o Except the target nodes of assignments to i
e There,wehavea=ay+bx(i—h)AA=bxh
e Proof:

e Entering loop: Have put initialization right before loop!
e Edge inside loop:

359/471

Correctness

e Provethata= ay+ bxiNA = bx hisinvariant for all nodes in loop
o Except the target nodes of assignments to i
e There,wehavea=ay+bx(i—h)AA=bxh
e Proof:

e Entering loop: Have put initialization right before loop!
o Edge inside loop:
e No assignments to A, b, and h

359/471

Correctness

e Provethata= ay+ bxiNA = bx hisinvariant for all nodes in loop
o Except the target nodes of assignments to i
e There,wehavea=ay+bx(i—h)AA=bxh
e Proof:

e Entering loop: Have put initialization right before loop!
e Edge inside loop:
e No assignments to A, b, and h
e Assignmenti:=i+ h:Checka=ay+bxi = a=ay+bx*(i+h—h).

359/471

Correctness

e Provethata= ay+ bxiNA = bx hisinvariant for all nodes in loop
o Except the target nodes of assignments to i
e There,wehavea=ay+bx(i—h)AA=bxh
e Proof:
e Entering loop: Have put initialization right before loop!
e Edge inside loop:
e No assignments to A, b, and h
e Assignmenti:=i+ h:Checka=ay+bxi = a=ay+bx*(i+h—h).
e Assignment a := a+ A. Only occurs directly after assignment to .
Checka=ay+bx(i—-h)AA=bxh = a+A=ay+bx*i

359/471

Correctness

e Provethata= ay+ bxiNA = bx hisinvariant for all nodes in loop
o Except the target nodes of assignments to i
e There,wehavea=ay+bx(i—h)AA=bxh
e Proof:
e Entering loop: Have put initialization right before loop!
o Edge inside loop:
e No assignments to A, b, and h
e Assignmenti:=i+ h:Checka=ay+bxi = a=ay+bx*(i+h—h).
e Assignment a := a+ A. Only occurs directly after assignment to .
Checka=ay+bx(i—-h)AA=bxh = a+A=ay+bx*i
e Other edges: Do not modify variables in invariant

359/471

Table of Contents

g Replacing Expensive by Cheaper Operations
Strength Reduction
Peephole Optimization
Linearization

360/471

Peephole Optimization

e |Idea: Slide a small window over the code

361/471

Peephole Optimization

e |dea: Slide a small window over the code
e Optimize aggressively inside this window

361/471

Peephole Optimization

e Idea: Slide a small window over the code
e Optimize aggressively inside this window
e Examples:

361/471

Peephole Optimization

e Idea: Slide a small window over the code
e Optimize aggressively inside this window
e Examples:

X=X%x2 — X=X+X

361/471

Peephole Optimization

e Idea: Slide a small window over the code
e Optimize aggressively inside this window
e Examples:

X=X%x2 — X=X+X
X=x+1 — x++

361/471

Peephole Optimization

e Idea: Slide a small window over the code
e Optimize aggressively inside this window
e Examples:

X=X%x2 — X=X+X
X=x+1 — x++
x=54+a-a — x=5

361/471

Peephole Optimization

e |dea: Slide a small window over the code
e Optimize aggressively inside this window

e Examples:
X=X%2
X=x+1
x=5+a—-a

X=X

Ll

X=X+X
X+ +
x=5

361/471

Peephole Optimization

e |dea: Slide a small window over the code
e Optimize aggressively inside this window

e Examples:
X=X%x2 — X=X+X
X=x+1 — Xx++
x=54+a-a — x=5
X=x — Nop
x=0 — Xx=x&x

361/471

Sub-Problem: Elimination of Nop

e For edge (u,Nop, v), such that u has no further outgoing edges

362/471

Sub-Problem: Elimination of Nop

e For edge (u,Nop, v), such that u has no further outgoing edges
e Identify uand v

362/471

Sub-Problem: Elimination of Nop

e For edge (u,Nop, v), such that u has no further outgoing edges

e Identify uand v
o Attention: Do not collapse Nop-loops

362/471

Sub-Problem: Elimination of Nop

e For edge (u,Nop, v), such that u has no further outgoing edges

e Identify uand v
o Attention: Do not collapse Nop-loops

e Implementation

362/471

Sub-Problem: Elimination of Nop

e For edge (u,Nop, v), such that u has no further outgoing edges

e Identify uand v
o Attention: Do not collapse Nop-loops

e Implementation
@ For each node:

362/471

Sub-Problem: Elimination of Nop

e For edge (u,Nop, v), such that u has no further outgoing edges
e Identify uand v
o Attention: Do not collapse Nop-loops

e Implementation
@ For each node:
e Follow chain of Nop-edges. (Check for loop)

362/471

Sub-Problem: Elimination of Nop

e For edge (u,Nop, v), such that u has no further outgoing edges
e Identify uand v
o Attention: Do not collapse Nop-loops
e Implementation
@ For each node:

e Follow chain of Nop-edges. (Check for loop)
e Then redirect all edges on this chain to its end

362/471

Sub-Problem: Elimination of Nop

e For edge (u,Nop, v), such that u has no further outgoing edges
e Identify uand v
o Attention: Do not collapse Nop-loops
e Implementation
@ For each node:

e Follow chain of Nop-edges. (Check for loop)
e Then redirect all edges on this chain to its end

@® For each edge (u, a, v) with (v, Nop, w) and v no other outgoing nodes:
Replace by (u, a, w)

362/471

Sub-Problem: Elimination of Nop

e For edge (u,Nop, v), such that u has no further outgoing edges
e Identify uand v
o Attention: Do not collapse Nop-loops
e Implementation
@ For each node:

e Follow chain of Nop-edges. (Check for loop)
e Then redirect all edges on this chain to its end

@® For each edge (u, a, v) with (v, Nop, w) and v no other outgoing nodes:
Replace by (u, a, w)

e Complexity: Linear, O(|E|)

362/471

Sub-Problem: Elimination of Nop

e For edge (u,Nop, v), such that u has no further outgoing edges
e Identify uand v
o Attention: Do not collapse Nop-loops
e Implementation
@ For each node:

e Follow chain of Nop-edges. (Check for loop)
e Then redirect all edges on this chain to its end

@® For each edge (u, a, v) with (v, Nop, w) and v no other outgoing nodes:
Replace by (u, a, w)
e Complexity: Linear, O(|E|)

@ No edge redirected twice.
(For each newly discovered edge, at most one more edge followed)

362/471

Sub-Problem: Elimination of Nop

e For edge (u,Nop, v), such that u has no further outgoing edges
e Identify uand v
o Attention: Do not collapse Nop-loops
e Implementation
@ For each node:

e Follow chain of Nop-edges. (Check for loop)
e Then redirect all edges on this chain to its end

@® For each edge (u, a, v) with (v, Nop, w) and v no other outgoing nodes:
Replace by (u, a, w)
e Complexity: Linear, O(|E|)

@ No edge redirected twice.
(For each newly discovered edge, at most one more edge followed)
@® For each edge, only one more edge followed

362/471

Table of Contents

g Replacing Expensive by Cheaper Operations
Strength Reduction
Peephole Optimization
Linearization

363/471

Motivation

e Translate CFG to instruction list
¢ Need to insert jumps. No unique translation.
e Crucial for performance

while (b) {

if (b1) |
C1y
break;

}

364/471

Motivation

e Translate CFG to instruction list
e Need to insert jumps. No unique translation.
e Crucial for performance

while (b) { l: dneg b 5

£ (b)) o jneg bl 6

c1; o
break; 5: halt
} 6:
Jmp 1

Bad linearization, jump in loop

364/471

Motivation

e Translate CFG to instruction list
e Need to insert jumps. No unique translation.
e Crucial for performance

while (b) f 1+ ineg b 7
if (by) | S
bl 6
C1y Jpes
break; jmp 1
J 6: cl
7: halt

Good linearization, jump out of loop

364/471

Heuristics

¢ Avoid jumps inside loops

365/471

Heuristics

¢ Avoid jumps inside loops
e Assign each node its loop nesting depth (temperature)

365/471

Heuristics

¢ Avoid jumps inside loops
e Assign each node its loop nesting depth (temperature)
e Hotter nodes are in inner loops

365/471

Heuristics

¢ Avoid jumps inside loops
e Assign each node its loop nesting depth (temperature)
e Hotter nodes are in inner loops

e If jump needs to be inserted: Jump to colder node (out of loop)

365/471

Implementation

© Compute temperatures

366/471

Implementation

© Compute temperatures
e Compute predominators

366/471

Implementation

© Compute temperatures

e Compute predominators
o |dentify back edges

366/471

Implementation

© Compute temperatures

e Compute predominators
o |dentify back edges
e For each loop head v (i.e., (u,_, v) is back edge)

e Increase temperature of nodes in loop[v]
e Recall:

loop[v] ={w |w—="vAV=w}

366/471

Implementation

© Compute temperatures

e Compute predominators
o |dentify back edges
e For each loop head v (i.e., (u,_, v) is back edge)

e Increase temperature of nodes in loop[v]
e Recall:

loop[v] ={w |w—="vAV=w}

® Linearize

366/471

Implementation

© Compute temperatures

e Compute predominators
o |dentify back edges
e For each loop head v (i.e., (u,_, v) is back edge)

e Increase temperature of nodes in loop[v]
e Recall:

loop[v] ={w |w—="vAV=w}

® Linearize
e Pre-order DFS to number nodes

366/471

Implementation

© Compute temperatures

e Compute predominators
o |dentify back edges
e For each loop head v (i.e., (u,_, v) is back edge)

e Increase temperature of nodes in loop[v]
e Recall:

loop[v] ={w |w—="vAV=w}

® Linearize

e Pre-order DFS to number nodes
e Visit hotter successors first

366/471

Example

367/471

Example

367/471

Example

367/471

Table of Contents

e Exploiting Hardware Features

368/471

Motivation

e Program needs to be compiled to specific hardware

369/471

Motivation

e Program needs to be compiled to specific hardware
¢ Which has some features that can be exploited for optimization, e.g.

369/471

Motivation

e Program needs to be compiled to specific hardware
¢ Which has some features that can be exploited for optimization, e.g.
o Registers

369/471

Motivation

e Program needs to be compiled to specific hardware
¢ Which has some features that can be exploited for optimization, e.g.

o Registers
¢ Pipelines

369/471

Motivation

e Program needs to be compiled to specific hardware
¢ Which has some features that can be exploited for optimization, e.g.

o Registers
¢ Pipelines
e Caches

369/471

Motivation

e Program needs to be compiled to specific hardware

¢ Which has some features that can be exploited for optimization, e.g.
Registers

Pipelines

Caches

Multiple Processors

369/471

Table of Contents

@ Exploiting Hardware Features
Register Allocation
Single Static Assignment Form
Exploiting Instruction Level Parallelism
Improving Memory/Cache Behaviour

370/471

Nomenclature

e Variables Var, e.g. x,y,z,...: Variables in source program (formerly also
called registers)

371/471

Nomenclature

e Variables Var, e.g. x,y, 2,
called registers)

e Registers Reg, e.g. Ry, Ro, ..

.... Variables in source program (formerly also

.. Registers after register allocation

371

471

Motivation

e Processor only has limited number of registers

372/471

Motivation

e Processor only has limited number of registers
e Variables need to be mapped to those registers

372/471

Motivation

e Processor only has limited number of registers
e Variables need to be mapped to those registers
¢ If no more registers free: Spill to memory

372/471

Motivation

e Processor only has limited number of registers
e Variables need to be mapped to those registers

¢ If no more registers free: Spill to memory
o Expensive!

372/471

Motivation

e Processor only has limited number of registers
Variables need to be mapped to those registers
¢ If no more registers free: Spill to memory
o Expensive!
e Want to map as much variables as possible to registers

372/471

Example

1: x=M[a]
2: y=x+1
3: if (y=0) { e How many registers are needed?
4: Z=X*X
5: Mla]==z
} else {
7 t=—y*y
8: M[a]l=t

373/471

Example

1: x=M[a]
2: y=x+1
3: if (y=0) { e How many registers are needed?
4: s xx Assuming all variables dead at 9
5: Mla]==z
} else {
7 t=—y*y
8: Mla]l=t

373/471

Example

1: x=M[a]
2: y=x+1
3: if (y=0) { e How many registers are needed?
4: s xx Assuming all variables dead at 9
5: Ml[al=z e Variables: a, x, y, z, t.
} else {
7z t=-y*y
8: M[a]l=t

373/471

Example

1: Ry=M[R3]

2: Ro=Rq1+1

3: if (R2=0) {

4: Rq1=R1*R4

5: M[R3]=R1
} else {

7z Ry1=—-R2*Rp

8: M[R3]=Rq

e How many registers are needed?
Assuming all variables dead at 9

e Variables: a, x, y, z, t.

e Three registers sulffice:
x,z,t— Ry, y— Ro, a— Rs

373/471

Live Ranges

e Live range of variable x: L[x] := {u | x € L[u]}

374/471

Live Ranges

e Live range of variable x: L[x] := {u | x € L[u]}
e Set of nodes where x is alive:

374/471

Live Ranges

e Live range of variable x: L[x] := {u | x € L[u]}
¢ Set of nodes where x is alive:
¢ Analogously: True live range

374/471

Live Ranges

e Live range of variable x: L[x] := {u | x € L[u]}
¢ Set of nodes where x is alive:
¢ Analogously: True live range

¢ Observation: Two variables can be mapped to same register, if their live
ranges do not overlap

374/471

Example

o J

g w N

T X=
: y=
: if

M[a]
x+1
(y=0)
Z=X*X
Mlal=z
else {
t=-y*y
M[al=t

{

//
//
//
//
//
//

//
//
//

{a}
{a,x}
{a,x,v}
{a, x}
{a,z}

{a,y}
{a,t}
{}

= T = S =)

[uy

375/471

Interference graph

o I = (Var, E)), with (x, y) € E; iff x # y and L[x] N L[y] # 0

376/471

Interference graph

o | = (Var, E)), with (x,y) € E;iff x £ y and L[x] N L[y] # 0
o Graph over variables. Edge iff live ranges overlap.

376/471

Interference graph

o | = (Var, E)), with (x,y) € E;iff x £ y and L[x] N L[y] # 0
o Graph over variables. Edge iff live ranges overlap.
e |is called interference graph

376/471

Interference graph

o | = (Var, E)), with (x,y) € E;iff x £ y and L[x] N L[y] # 0
o Graph over variables. Edge iff live ranges overlap.
e |is called interference graph

e In our example:

©O—
@\ ®
/
Q

376/471

Last lecture

¢ Peephole optimization, removal of NOP-edges
e Linearization
e Temperature of nodes = loop nesting depth
e Preferably jump to colder nodes
¢ Register allocation
¢ Minimal coloring of interference graph
e NP-hard

377/471

Background: Minimal graph coloring

e Given: Graph (V. E)

378/471

Background: Minimal graph coloring

e Given: Graph (V. E)
e Find coloring of nodes ¢ : V — N, such that

378/471

Background: Minimal graph coloring

e Given: Graph (V. E)
e Find coloring of nodes ¢ : V — N, such that
o (u,v) e E = c(u) #c(v)
e |.e., adjacent nodes have different colors

378/471

Background: Minimal graph coloring

e Given: Graph (V. E)
e Find coloring of nodes ¢ : V — N, such that
o (u,v) e E = c(u) #c(v)
e |.e., adjacent nodes have different colors
e max{c(v) | v e V}is minimal

378/471

Background: Minimal graph coloring

e Given: Graph (V. E)
e Find coloring of nodes ¢ : V — N, such that
o (u,v) e E = c(u) #c(v)
e |.e., adjacent nodes have different colors
e max{c(v) | v e V}is minimal

e Example:
O—
@\ M

378/471

Complexity

e Finding a minimum graph coloring is hard
o Precisely: NP-complete to determine whether there is a coloring with at most
k colors, for k > 2.

379/471

Complexity

e Finding a minimum graph coloring is hard
o Precisely: NP-complete to determine whether there is a coloring with at most
k colors, for k > 2.

¢ Need heuristics

379/471

Greedy Heuristics

e lterate over nodes, and assign minimum color different from already
colored neighbors

380/471

Greedy Heuristics

e lterate over nodes, and assign minimum color different from already
colored neighbors

e Can be implemented using DFS

380/471

Greedy Heuristics

e lterate over nodes, and assign minimum color different from already
colored neighbors

e Can be implemented using DFS

e In theory, result may be arbitrarily far from optimum

380/471

Greedy Heuristics

e lterate over nodes, and assign minimum color different from already
colored neighbors
e Can be implemented using DFS
e In theory, result may be arbitrarily far from optimum
e Regard crown graph C,, which is a complete bipartite graph over 2n nodes,
with a perfect matching removed.

380/471

Greedy Heuristics

e lterate over nodes, and assign minimum color different from already
colored neighbors
e Can be implemented using DFS
e In theory, result may be arbitrarily far from optimum
e Regard crown graph C,, which is a complete bipartite graph over 2n nodes,

with a perfect matching removed.
° Cn: (afybi | iei "'na(aivbj) | I#])

380/471

Greedy Heuristics

e lterate over nodes, and assign minimum color different from already
colored neighbors
e Can be implemented using DFS
e In theory, result may be arbitrarily far from optimum
e Regard crown graph C,, which is a complete bipartite graph over 2n nodes,
with a perfect matching removed.

e Ch=(a,bilict...n(a,b)|i#]))
e Minimal coloring uses two colors: One for the as, and one for the bs

380/471

Greedy Heuristics

e lterate over nodes, and assign minimum color different from already
colored neighbors
e Can be implemented using DFS
e In theory, result may be arbitrarily far from optimum
e Regard crown graph C,, which is a complete bipartite graph over 2n nodes,
with a perfect matching removed.
° Cn: (afabi | iei "'na(aivbj) | I#])
e Minimal coloring uses two colors: One for the as, and one for the bs
e Greedy coloring with order ay, by, az, bo, ... uses n colors

380/471

Greedy Heuristics

Iterate over nodes, and assign minimum color different from already
colored neighbors
Can be implemented using DFS
In theory, result may be arbitrarily far from optimum
e Regard crown graph C,, which is a complete bipartite graph over 2n nodes,
with a perfect matching removed.
° Cn: (afabi | iei "'na(aivbj) | I#])
e Minimal coloring uses two colors: One for the as, and one for the bs
e Greedy coloring with order ay, by, az, bo, ... uses n colors

Node ordering heuristics

380/471

Greedy Heuristics

Iterate over nodes, and assign minimum color different from already
colored neighbors
Can be implemented using DFS
In theory, result may be arbitrarily far from optimum
e Regard crown graph C,, which is a complete bipartite graph over 2n nodes,
with a perfect matching removed.
o Ch=(anbi|iel...n(a,b)]|i#]))
e Minimal coloring uses two colors: One for the as, and one for the bs
e Greedy coloring with order a1, by, az, b2, . .. uses n colors
Node ordering heuristics
e Nodes of high degree first

380/471

Greedy Heuristics

Iterate over nodes, and assign minimum color different from already
colored neighbors
Can be implemented using DFS
In theory, result may be arbitrarily far from optimum
e Regard crown graph C,, which is a complete bipartite graph over 2n nodes,
with a perfect matching removed.
e Ch=(apbi|iel...n(ai,b)|i#])
e Minimal coloring uses two colors: One for the as, and one for the bs
e Greedy coloring with order ay, by, az, bo, ... uses n colors
Node ordering heuristics

¢ Nodes of high degree first
e Here: Pre-order DFS

380/471

Greedy heuristics, pseudocode

color (u) :
n=4{v | (uv) in E }
c(u) = min i. i>=0 and forall v in n. i != c(v)
for v in n
if (c(v)==-1) color (v)
main:
for u in V do c(u) = -1;

for u in V do
if c(u)==-1 then color (u)

381/471

Live Range Splitting
e Consider basic block,

e i.e., sequence of statements, no jumps in/from in between
o (u,ar,wv1),(v1, @, ¥),...,(Va_1, an, v), with no other edges touching the v;.

382/471

Live Range Splitting
e Consider basic block,
e i.e., sequence of statements, no jumps in/from in between

o (u,ar,wv1),(v1, @, ¥),...,(Va_1, an, v), with no other edges touching the v;.

e Example:

x=M[0]
y=M[1]
t=x+y

M[2]=t
x=M[4]
z=M[5]
t=x+z

M[6]=t
y=M[7]
z=M[8]
t=y+z

M[9]=t

//
//
//
//
//
//
//
//
//
//
//
//

382/471

Live Range Splitting
e Consider basic block,
e i.e., sequence of statements, no jumps in/from in between
o (u,ar,wv1),(v1, @, ¥),...,(Va_1, an, v), with no other edges touching the v;.
e Example:

x=M[0] //

y=M[1] // x

t=x+y // xy

M[2]=t // t

x=M[4] //

z=M[5] // x

t=x+z // x z

Mi6l=t // t ®
y=M[7] //
z=M[8] // vy
t=y+z // vz
M[9]=t // t

e Requires 3 registers

382/471

Live Range Splitting
e Consider basic block,
e i.e., sequence of statements, no jumps in/from in between
o (u,ar,wv1),(v1, @, ¥),...,(Va_1, an, v), with no other edges touching the v;.
e Example:

x=M[0] //

y=M[1] // x

t=x+y // xy

M[2]=t // t

x=M[4] //

z=M[5] // x

t=x+z // x z

Mi6l=t // t ®
y=M[7] //
z=M[8] // vy
t=y+z // vz
M[9]=t // t

e Requires 3 registers
e But can do same program with two registers!

382/471

Live range splitting

x1=M[0] //

y1=MI[1] /] X4

t1=xq1+y1 /7 x1y1
M[2]=tq /7t

x2=M[4] // . .
z1=M[5] // X2 @ e
to=xo0+24 // X0z

M6)=t, // to
yo=M[7] //

Zzo=M[8] // yo @ @ @

ta=ya2+z2 // yaz2
M[9]=tg3 // ts

383/471

Live range splitting

x1=M[0]
y1=M[1]
t1=x1+y1
M[2]=t1
xp=M[4]
z1=MI[5]
to=xo0+24
M[6]=t2
yo=M[7]
zo=M[8]
ta=ya+tz2
M[9]=tg3

¢ In general: Rename variable if it is redefined

//
//
//
//
//
//
//
//
//
//
//
//

X1

X1Y1
T4

X2
X927
to

Y2
y2z2
ts

®
®

383/471

Live range splitting

x1=M[0]
y1=MI[1]
Lt1=x1+y1
M[2]=t1
Xo=M[4]
z1=M[5]
to=xo+2z1
M[6]=to
yo=MI[7]
z2=M[8]
ta=yatz2
M[9]=t3

¢ In general: Rename variable if it is redefined
e The interference graph forms an interval graph.

//
//
//
//
//
//
//
//
//
//
//
//

X1

X1Y1
T4

X2
X927
to

Y2
y2z2
ts

®
®

383/471

Interval Graphs

o Nodes are intervals over the real numbers (here: natural numbers).

384/471

Interval Graphs

o Nodes are intervals over the real numbers (here: natural numbers).
o Edge between [i,j] and [k, /], iff [i, /N [k,] # 0

384/471

Interval Graphs

o Nodes are intervals over the real numbers (here: natural numbers).
o Edge between [i,j] and [k, /], iff [i, /N [k,] # 0
e |.e., edges between overlapping intervals

384/471

Interval Graphs

o Nodes are intervals over the real numbers (here: natural numbers).
o Edge between [i,j] and [k, /], iff [i, /N [k,] # 0

e |.e., edges between overlapping intervals
¢ On interval graphs, coloring can be determined efficiently

384/471

Interval Graphs

o Nodes are intervals over the real numbers (here: natural numbers).
o Edge between [i,j] and [k, /], iff [i, /N [k,] # 0

e |.e., edges between overlapping intervals
¢ On interval graphs, coloring can be determined efficiently

o Use greedy algorithm, order intervals by left endpoints

384/471

Interval Graphs

o Nodes are intervals over the real numbers (here: natural numbers).
o Edge between [i,j] and [k, /], iff [i, /N [k,] # 0

e |.e., edges between overlapping intervals
¢ On interval graphs, coloring can be determined efficiently

o Use greedy algorithm, order intervals by left endpoints
e Proof idea:

384/471

Interval Graphs

o Nodes are intervals over the real numbers (here: natural numbers).
o Edge between [i,j] and [k, /], iff [i, /N [k,] # 0

e |.e., edges between overlapping intervals
¢ On interval graphs, coloring can be determined efficiently

o Use greedy algorithm, order intervals by left endpoints
e Proof idea:

e After coloring all nodes with left endpoint i, there are exactly o(/i) colors
allocated.

384/471

Interval Graphs

o Nodes are intervals over the real numbers (here: natural numbers).
o Edge between [i,j] and [k, /], iff [i, /N [k,] # 0

e |.e., edges between overlapping intervals
¢ On interval graphs, coloring can be determined efficiently

o Use greedy algorithm, order intervals by left endpoints
e Proof idea:
e After coloring all nodes with left endpoint i, there are exactly o(/i) colors
allocated.
e Where o(i) := |{v € V | i € v}| - number of nodes containing i.

384/471

Interval Graphs

o Nodes are intervals over the real numbers (here: natural numbers).
o Edge between [i,j] and [k, /], iff [i, /N [k,] # 0

e |.e., edges between overlapping intervals
¢ On interval graphs, coloring can be determined efficiently

o Use greedy algorithm, order intervals by left endpoints
e Proof idea:
e After coloring all nodes with left endpoint i, there are exactly o(/i) colors
allocated.
e Where o(i) := |{v € V | i € v}| - number of nodes containing i.
e Obviously, there is no coloring with less than max{o(/) | i € N} colors

384/471

Wrap-up

e Heuristics required for register allocation

385/471

Wrap-up

e Heuristics required for register allocation
o If number of available registers not sufficient

385/471

Wrap-up

e Heuristics required for register allocation
o If number of available registers not sufficient
e Spill registers into memory (usually into stack)

385/471

Wrap-up

e Heuristics required for register allocation
o If number of available registers not sufficient

e Spill registers into memory (usually into stack)
o Preferably, hold variables from inner loops in registers

385/471

Wrap-up

e Heuristics required for register allocation
o If number of available registers not sufficient

e Spill registers into memory (usually into stack)
o Preferably, hold variables from inner loops in registers

e For basic blocks:

385/471

Wrap-up

e Heuristics required for register allocation
o If number of available registers not sufficient

e Spill registers into memory (usually into stack)
o Preferably, hold variables from inner loops in registers

e For basic blocks:
o Efficient optimal register allocation

385/471

Wrap-up

e Heuristics required for register allocation
o If number of available registers not sufficient

e Spill registers into memory (usually into stack)
o Preferably, hold variables from inner loops in registers

e For basic blocks:

o Efficient optimal register allocation
e Only if live ranges are split

385/471

Wrap-up

e Heuristics required for register allocation
o If number of available registers not sufficient

e Spill registers into memory (usually into stack)
o Preferably, hold variables from inner loops in registers

For basic blocks:

o Efficient optimal register allocation
e Only if live ranges are split

Splitting live ranges for complete program

385/471

Wrap-up

e Heuristics required for register allocation
o If number of available registers not sufficient

e Spill registers into memory (usually into stack)
o Preferably, hold variables from inner loops in registers

e For basic blocks:

o Efficient optimal register allocation
e Only if live ranges are split

o Splitting live ranges for complete program
— Single static assignment form (SSA)

385/471

Table of Contents

@ Exploiting Hardware Features
Register Allocation
Single Static Assignment Form
Exploiting Instruction Level Parallelism
Improving Memory/Cache Behaviour

386/471

Idea

e Generalize live-range splitting to programs

387/471

|dea

e Generalize live-range splitting to programs
e Proceed in two steps

387/471

|dea

e Generalize live-range splitting to programs
e Proceed in two steps

@ Transform program such that every program point v is reached by at most
one definition of variable x which is live at v.

387/471

|dea

e Generalize live-range splitting to programs
e Proceed in two steps

@ Transform program such that every program point v is reached by at most
one definition of variable x which is live at v.

® Introduce a separate variant x; for each definition of x, and replace
occurrences of x by the reaching variants

387/471

SSA, first transformation

¢ Assume that start node has no incoming edges.

388/471

SSA, first transformation

¢ Assume that start node has no incoming edges.
e Otherwise, add new start node before transformation

388/471

SSA, first transformation

¢ Assume that start node has no incoming edges.
o Otherwise, add new start node before transformation
¢ Atincoming edges to join points v, i.e., nodes with > 1 incoming edges:

388/471

SSA, first transformation

¢ Assume that start node has no incoming edges.
o Otherwise, add new start node before transformation

¢ Atincoming edges to join points v, i.e., nodes with > 1 incoming edges:
e Introduce new edges, labeled with W,

388/471

SSA, first transformation

¢ Assume that start node has no incoming edges.
o Otherwise, add new start node before transformation
¢ Atincoming edges to join points v, i.e., nodes with > 1 incoming edges:

e Introduce new edges, labeled with W,
e For now: ¥, := Nop

388/471

SSA, first transformation

¢ Assume that start node has no incoming edges.
o Otherwise, add new start node before transformation
¢ Atincoming edges to join points v, i.e., nodes with > 1 incoming edges:

e Introduce new edges, labeled with W,
e For now: ¥, := Nop

388/471

Reaching definitions

e Compute reaching definitions for each variable x and program point v.

389/471

Reaching definitions

e Compute reaching definitions for each variable x and program point v.
o Intuitively: The definitions that determined the value of x

389/471

Reaching definitions

e Compute reaching definitions for each variable x and program point v.
o Intuitively: The definitions that determined the value of x
e Analyzed by forward may analysis, over domain 2P

389/471

Reaching definitions

e Compute reaching definitions for each variable x and program point v.
o Intuitively: The definitions that determined the value of x

e Analyzed by forward may analysis, over domain 2P
e where Defs = Var x V

389/471

Reaching definitions

e Compute reaching definitions for each variable x and program point v.
o Intuitively: The definitions that determined the value of x

e Analyzed by forward may analysis, over domain 2P
e where Defs = Var x V

[(u, x := e, v)]*R = R\ Defs(x) U {(x, v)}
[(u, x := M[e], V)]* R = R\ Defs(x) U {(x, v)}
[(u,a,V)]*R=R for other edges

389/471

Reaching definitions

e Compute reaching definitions for each variable x and program point v.
o Intuitively: The definitions that determined the value of x
« Analyzed by forward may analysis, over domain 2P<f
e where Defs = Var x V
[(u, x := e, v)]*R = R\ Defs(x) U {(x, v)}
[(u, x == M[e],v)]* R = R\ Defs(x) U{(x,)}
[(u,a,V)]*R=R for other edges

e Initial value: Ry := {(x, w) | x € Var}

389/471

Reaching definitions

e Compute reaching definitions for each variable x and program point v.
o Intuitively: The definitions that determined the value of x
« Analyzed by forward may analysis, over domain 2P<f
e where Defs = Var x V
[(u, x := e, v)]*R = R\ Defs(x) U {(x, v)}
[(u, x == M[e],v)]* R = R\ Defs(x) U{(x,)}
[(u,a,V)]*R=R for other edges

e Initial value: Ry := {(x, w) | x € Var}
e Intuitively: Interpret program start as end-point of definition for every variable

389/471

Simultaneous assignments

e Atincoming edges to join points v:

390/471

Simultaneous assignments

e Atincoming edges to join points v:
e SetV, :={x=x|xeL[v]A|R[v]NDefs(x)| > 1}

390/471

Simultaneous assignments

e Atincoming edges to join points v:
e SetV, :={x=x|xeL[v]A|R[v]NDefs(x)| > 1}
e Assignment x = x for each live variable that has more than one reaching
definition

390/471

Simultaneous assignments

e Atincoming edges to join points v:
e SetV, :={x=x|xeL[v]A|R[v]NDefs(x)| > 1}
e Assignment x = x for each live variable that has more than one reaching
definition
e Simultaneous assignment

390/471

Example

1l: x:=M[I]
2: y:=1
3: while (x>0) {
4 Y=X*Yy
5 x=x-1
}
6: M[R]=y

391/471

Example

1l: x:=M[I]
2: y:=1
3: if not (x>0) goto 6;
4 Y=X*Yy
5 x=x-1;
goto 3
6: M[R]=y

391/471

Example

1: x:=M[I]
2: y:=1
A: Nop // Psi3
3: if not (x>0) goto 6
4: Y=X*y
5: x=x-1
B: Nop // Psi3
goto 3
6: M[R]=y
7

391/471

Example

~J o

: x:=M[I]

y:=1

Nop

if not
Y=X*Y
x=x-1

: Nop

goto 3
M[R]=y

// Psi3
(x>0) goto 6;

// Psi3

{}
{x}
{x,v}
{x,v}
{x,y}
{x,v}
{x,y}

{y}

{(x, 1), (y, 1)}
{((x,2), (y, 1)}
{((x,2), (y,7)}
{((%,2),(x,B), (y,A), (y,5)}
{(x,2),(x,B), (y,A), (y,5)}
{(x,2),(x,B), (y,5)}
{(x,B), (y,5)}

(%,2), (x,B), (y,A), (y,5)}
(%,2), (%,B), (y,A), (y,5)}

391/471

Example

~J o

: x:=M[I]

y:=1

x=x|y=y

if not
Y=X*Y
x=x-1

1 X=x|y=y

goto 3
M[R]=y

(x>0)

goto 6;

{}
{x}
{x,v}
{x,v}
{x,y}
{x,v}
{x,y}

{y}

{(x, 1), (y, 1)}
{((x,2), (y, 1)}
{((x,2), (y,7)}
{((%,2),(x,B), (y,A), (y,5)}
{(x,2),(x,B), (y,A), (y,5)}
{(x,2),(x,B), (y,5)}
{(x,B), (y,5)}

(%,2), (x,B), (y,A), (y,5)}
(%,2), (%,B), (y,A), (y,5)}

391/471

Discussion

e This ensures that only one definition of a variable reaches each program
point

392/471

Discussion

e This ensures that only one definition of a variable reaches each program
point
o |dentifying the definitions by simultaneous assignments on edges to same
join points

392/471

Discussion

e This ensures that only one definition of a variable reaches each program
point
o |dentifying the definitions by simultaneous assignments on edges to same
join points
e However, we may introduce superfluous simultaneous definitions

392/471

Discussion

e This ensures that only one definition of a variable reaches each program
point

o |dentifying the definitions by simultaneous assignments on edges to same
join points

e However, we may introduce superfluous simultaneous definitions
e Consider, e.g.

392/471

Discussion

e This ensures that only one definition of a variable reaches each program
point
o |dentifying the definitions by simultaneous assignments on edges to same
join points
e However, we may introduce superfluous simultaneous definitions
e Consider, e.g.

1: if (%) goto 3
2: x=1
goto 4
3: X=2
4: if (%) goto 6
5: M[0]=x
6: M[1l]l=x
7: HALT

392/471

Discussion
e This ensures that only one definition of a variable reaches each program
oint
P o |dentifying the definitions by simultaneous assignments on edges to same
join points
e However, we may introduce superfluous simultaneous definitions
e Consider, e.g.

1: 1if (%) goto 3
2: x=1
A: X=X
goto 4
xX=2
X=X
if (%) goto C
M[0]=x
X=X
M[1]=x
HALT

<~ o U oW w

Q

X=X
goto 6

392/471

Improved Algorithm

¢ Introduce assignment x = x before node v only if reaching definitions of
x at incoming edges to v differ

393/471

Improved Algorithm

¢ Introduce assignment x = x before node v only if reaching definitions of

x at incoming edges to v differ
e Repeat until each node v is reached by exactly one definition for each
variable live at v

393/471

Improved Algorithm

e Introduce assignment x = x before node v only if reaching definitions of
x at incoming edges to v differ

¢ Repeat until each node v is reached by exactly one definition for each
variable live at v

o Extend analysis for reaching definitions by
[(u, {x =x| x € X},v)][*R:= R\ Defs(X) U X x {v}

Theorem

For a CFG with n variables, and m nodes with in-degree greater one, the above
algorithm terminates after at most n(m + 1) rounds.

393/471

Improved Algorithm

e Introduce assignment x = x before node v only if reaching definitions of
x at incoming edges to v differ
¢ Repeat until each node v is reached by exactly one definition for each
variable live at v
o Extend analysis for reaching definitions by

[(u, {x =x| x € X},v)][*R:= R\ Defs(X) U X x {v}
Theorem

For a CFG with n variables, and m nodes with in-degree greater one, the above
algorithm terminates after at most n(m + 1) rounds.

¢ The efficiency depends on the number of rounds

393/471

Improved Algorithm

e Introduce assignment x = x before node v only if reaching definitions of
x at incoming edges to v differ

¢ Repeat until each node v is reached by exactly one definition for each
variable live at v

o Extend analysis for reaching definitions by
[(u, {x =x| x € X},v)][*R:= R\ Defs(X) U X x {v}

For a CFG with n variables, and m nodes with in-degree greater one, the above
algorithm terminates after at most n(m + 1) rounds.

¢ The efficiency depends on the number of rounds
e For well-structured CFGs, we only need one round

393/471

Improved Algorithm

e Introduce assignment x = x before node v only if reaching definitions of
x at incoming edges to v differ

¢ Repeat until each node v is reached by exactly one definition for each
variable live at v

o Extend analysis for reaching definitions by
[(u, {x =x| x € X},v)][*R:= R\ Defs(X) U X x {v}

For a CFG with n variables, and m nodes with in-degree greater one, the above
algorithm terminates after at most n(m + 1) rounds.

¢ The efficiency depends on the number of rounds
e For well-structured CFGs, we only need one round
e Example where 2 rounds are required on board.

393/471

Improved Algorithm

e Introduce assignment x = x before node v only if reaching definitions of
x at incoming edges to v differ

¢ Repeat until each node v is reached by exactly one definition for each
variable live at v

o Extend analysis for reaching definitions by
[(u, {x =x| x € X},v)][*R:= R\ Defs(X) U X x {v}

For a CFG with n variables, and m nodes with in-degree greater one, the above
algorithm terminates after at most n(m+ 1) rounds.

e The efficiency depends on the number of rounds
e For well-structured CFGs, we only need one round
e Example where 2 rounds are required on board.
o We always may terminate after k rounds by using naive algorithm

393/471

Well-structured CFGs

e A CFG is well-structured, if it can be reduced to a single edge or vertex
by the following transformations

1T e

394/471

Examples

e Flowgraphs produced by only using the following control-flow commands
are well-structured

o if, while, do-while, for

395/471

Examples

e Flowgraphs produced by only using the following control-flow commands
are well-structured

o if, while, do-while, for
e Break/Continue may break well-structuredness

395/471

Examples

e Flowgraphs produced by only using the following control-flow commands
are well-structured

o if, while, do-while, for
e Break/Continue may break well-structuredness
e Some examples on board

395/471

Second phase

e Assume, each program point u is reached by exactly one definition
(x, w) € RJu] for each variable x live at u

396/471

Second phase

e Assume, each program point u is reached by exactly one definition
(x, w) € RJu] for each variable x live at u

e Define ¢,(x) := x, for the w with (x, w) € R[u]

396/471

Second phase

e Assume, each program point u is reached by exactly one definition
(x, w) € RJu] for each variable x live at u

e Define ¢,(x) := x, for the w with (x, w) € R[u]
o Transform edge (u, a, v) to (u, T, v(a), v), where

u,v(Nop) = Nop
T, v(Neg(e)) Neg(®u(e))
Tuv(Pos(e)) = Pos(d,(e))
Tuv(x =€) =x, = dy(e)
Tuv(x = Mle]) = Mo, (e)]
Tyv(Mlel] = &) = M[u(€1)] = du(e2)
Tuv({x=x|xe X})={x, =dy(x) | x € X}

and ¢,(e) applies ¢, to every variable in e

396/471

Example

1: x:=M[0]
2: y:=1
A: x=x|y=y
3: if not (x>0) goto 6;
4: Y=X*y
5: x=x—-1
B: x=x|y=y
goto 3
6: M[1]=y

~J

397/471

Example

X0 :=M[0]

vA:=1

X3=X2 | Y3=YA

if not (x3>0) goto 6;
Y5=X3*Y3
xg=x3—1
x3=xB|Y3=Y5

goto 3

M[1]l=ys

W oS W N

~ O

397/471

Register Allocation for SSA form

Theorem

Assume that every program point is reachable from start and the program is in
SSA form without assignments to dead variables.

Let X denote the maximal number of simultaneously live variables and G the
interference graph of the program variables. Then:

A =w(G) =x(G)

where w(G), x(G) are the maximal size of a clique in G and the minimal
number of colors for G, respectively.

A minimal coloring of G, i.e., an optimal register allocation can be found in
polynomial time.

398/471

Background: Register allocation for SSA

e Interference graphs of program in SSA-form are chordal

399/471

Background: Register allocation for SSA

e Interference graphs of program in SSA-form are chordal
e l.e, every cycle of length > 3 has a chord

399/471

Background: Register allocation for SSA

e Interference graphs of program in SSA-form are chordal

e |.e., every cycle of length > 3 has a chord
e i.e., an edge between two nodes of the cycle that is, itself, not part of the
cycle

399/471

Background: Register allocation for SSA

e Interference graphs of program in SSA-form are chordal

e |.e., every cycle of length > 3 has a chord
e i.e., an edge between two nodes of the cycle that is, itself, not part of the
cycle

e A graph is chordal, iff it has a perfect elimination order

399/471

Background: Register allocation for SSA

e Interference graphs of program in SSA-form are chordal
e |.e., every cycle of length > 3 has a chord
e i.e., an edge between two nodes of the cycle that is, itself, not part of the
cycle
e A graph is chordal, iff it has a perfect elimination order

¢ l.e., an ordering of the nodes, such that each node v and all adjacent nodes
v > u form a clique.

399/471

Background: Register allocation for SSA

e Interference graphs of program in SSA-form are chordal
e |.e., every cycle of length > 3 has a chord
e i.e., an edge between two nodes of the cycle that is, itself, not part of the
cycle
e A graph is chordal, iff it has a perfect elimination order
¢ l.e., an ordering of the nodes, such that each node v and all adjacent nodes
v > u form a clique.
e Using a reverse perfect elimination ordering as node ordering for the
greedy algorithm yields a minimal coloring

399/471

Background: Register allocation for SSA

Interference graphs of program in SSA-form are chordal
e |.e., every cycle of length > 3 has a chord
e i.e., an edge between two nodes of the cycle that is, itself, not part of the
cycle
A graph is chordal, iff it has a perfect elimination order

¢ l.e., an ordering of the nodes, such that each node v and all adjacent nodes
v > u form a clique.

Using a reverse perfect elimination ordering as node ordering for the
greedy algorithm yields a minimal coloring

For graphs in SSA form, the dominance relation induces a perfect
elimination ordering on the interference graph

399/471

Background: Register allocation for SSA

Interference graphs of program in SSA-form are chordal
e |.e., every cycle of length > 3 has a chord
e i.e., an edge between two nodes of the cycle that is, itself, not part of the
cycle
A graph is chordal, iff it has a perfect elimination order

¢ l.e., an ordering of the nodes, such that each node v and all adjacent nodes
v > u form a clique.

Using a reverse perfect elimination ordering as node ordering for the
greedy algorithm yields a minimal coloring
For graphs in SSA form, the dominance relation induces a perfect
elimination ordering on the interference graph

e Thus, we do not even need to construct the interference graph:

399/471

Background: Register allocation for SSA

Interference graphs of program in SSA-form are chordal
e |.e., every cycle of length > 3 has a chord
e i.e., an edge between two nodes of the cycle that is, itself, not part of the
cycle
A graph is chordal, iff it has a perfect elimination order

¢ l.e., an ordering of the nodes, such that each node v and all adjacent nodes
v > u form a clique.

Using a reverse perfect elimination ordering as node ordering for the
greedy algorithm yields a minimal coloring
For graphs in SSA form, the dominance relation induces a perfect
elimination ordering on the interference graph

e Thus, we do not even need to construct the interference graph:

o Just traverse CFG with pre-order DFS, and assign registers first-come first
serve.

399/471

Background: Adjusting register pressure

e Via)\, we can simply estimate the amount of required registers (register
pressure)

400/471

Background: Adjusting register pressure

e Via)\, we can simply estimate the amount of required registers (register
pressure)

e And only perform optimizations that increase register pressure if still
enough registers available

400/471

Discussion

o With SSA form, we get a cheap, optimal register allocation

401/47

Discussion

o With SSA form, we get a cheap, optimal register allocation
e But: We still have the simultaneous assignments

401/47

Discussion

o With SSA form, we get a cheap, optimal register allocation
e But: We still have the simultaneous assignments
e Which are meant to be executed simultaneously

401

471

Discussion

o With SSA form, we get a cheap, optimal register allocation
e But: We still have the simultaneous assignments

e Which are meant to be executed simultaneously
e Note: Original variables may be mapped to arbitrary registers

401

471

Discussion

o With SSA form, we get a cheap, optimal register allocation
e But: We still have the simultaneous assignments

e Which are meant to be executed simultaneously
e Note: Original variables may be mapped to arbitrary registers
e le,, Rt = R> | R>» = Ry swaps registers Ry and R

401

471

Discussion

o With SSA form, we get a cheap, optimal register allocation
e But: We still have the simultaneous assignments

e Which are meant to be executed simultaneously
e Note: Original variables may be mapped to arbitrary registers
e le,, Rt = R> | R>» = Ry swaps registers Ry and R

e We need to translate these to machine instructions

401

471

Discussion

o With SSA form, we get a cheap, optimal register allocation
e But: We still have the simultaneous assignments
e Which are meant to be executed simultaneously
e Note: Original variables may be mapped to arbitrary registers
e le, R = R | R = Ry swaps registers Ry and R»
e We need to translate these to machine instructions
o Use auxiliary register: Rs = R, Ri = R; R = Rs

401

471

Discussion

o With SSA form, we get a cheap, optimal register allocation
e But: We still have the simultaneous assignments
e Which are meant to be executed simultaneously
e Note: Original variables may be mapped to arbitrary registers
e le, R = R | R = Ry swaps registers Ry and R»
e We need to translate these to machine instructions
o Use auxiliary register: Rs = R, Ri = R; R = Rs
e Use XOR-swap: Ri = Ri ® R;; R = Ri ® Ro; Ri = Ri @ R

401

471

Discussion

With SSA form, we get a cheap, optimal register allocation
But: We still have the simultaneous assignments
e Which are meant to be executed simultaneously
e Note: Original variables may be mapped to arbitrary registers
e le, R = R | R = Ry swaps registers Ry and R»
We need to translate these to machine instructions
o Use auxiliary register: Rs = R, Ri = R; R = Rs
e Use XOR-swap: Ri = Ri ® R;; R = Ri ® Ro; Ri = Ri @ R
e But what about more than two registers?

401

471

Discussion (ctd)

° CYC“C shifts: R =R | R, = H3 | | R, = Ry

402/471

Discussion (ctd)

° CYC“C shifts: R =R | R, = Rg | | R, = Ry

402/471

Discussion (ctd)

° CYC“C shifts: R = R» | R, = Rg | | R, = Ry

e Permutations: Consider permutation =, i.e., bijection
{0,...n} - {0,...n}

402/471

Discussion (ctd)

° CYC“C shifts: R = R» | R, = Rg | | R, = Ry

e Permutations: Consider permutation =, i.e., bijection
{0,...n} - {0,...n}
e Cycle in a permutation: Sequence ps, . .., px such that
m(p1) =p2,....m(pk) = p1,and i # | = pi # pj

402/471

Discussion (ctd)

° CYC“C shifts: R = R» | R, = Rg | | R, = Ry

e Permutations: Consider permutation =, i.e., bijection
{0,...n} - {0,...n}
e Cycle in a permutation: Sequence ps, . .., px such that

m(p1) =p2,....7(px) =pr,and i#j = pi#p
o Cayley distance: n — #cycles. Equals number of required swaps

402/471

Discussion (ctd)

° CYC“C shifts: R = R» | R, = Rg | | R, = Ry

e Permutations: Consider permutation =, i.e., bijection
{0,...n} - {0,...n}
e Cycle in a permutation: Sequence ps, . .., px such that

m(p1) =p2,....7(px) =pr,and i#j = pi#p
o Cayley distance: n — #cycles. Equals number of required swaps

e Process each cycle separately

402/471

Discussion (ctd)

° CYC“C shifts: R = R» | R, = Rg | | R, = Ry

e Permutations: Consider permutation =, i.e., bijection
{0,...n} - {0,...n}
e Cycle in a permutation: Sequence ps, . .., px such that

m(p1) =p2,....7(px) =pr,and i#j = pi#p
o Cayley distance: n — #cycles. Equals number of required swaps

e Process each cycle separately
e General case: Each register occurs on LHS at most once

402/471

Discussion (ctd)

° CYC“C shifts: R = R» | R, = Rg | | R, = Ry

e Permutations: Consider permutation =, i.e., bijection
{0,...n} - {0,...n}
e Cycle in a permutation: Sequence ps, . .., px such that

m(p1) =p2,....7(px) =pr,and i#j = pi#p
o Cayley distance: n — #cycles. Equals number of required swaps

e Process each cycle separately
e General case: Each register occurs on LHS at most once
e Decompose into sequence of linear assignments and cyclic shifts

402/471

Interprocedural Register Allocation

e For every local variable, there is an entry in the stack frame

403/471

Interprocedural Register Allocation

e For every local variable, there is an entry in the stack frame
e Save locals to stack before call, restore after call

403/471

Interprocedural Register Allocation

e For every local variable, there is an entry in the stack frame
e Save locals to stack before call, restore after call
e Sometimes, there is hardware support for this

403/471

Interprocedural Register Allocation

For every local variable, there is an entry in the stack frame
Save locals to stack before call, restore after call
Sometimes, there is hardware support for this

Otherwise, we have to insert load and stores. We may ...

403/471

Interprocedural Register Allocation

e For every local variable, there is an entry in the stack frame
e Save locals to stack before call, restore after call
e Sometimes, there is hardware support for this

e Otherwise, we have to insert load and stores. We may ...
e Save only registers which may actually be overwritten

403/471

Interprocedural Register Allocation

e For every local variable, there is an entry in the stack frame
e Save locals to stack before call, restore after call
e Sometimes, there is hardware support for this

e Otherwise, we have to insert load and stores. We may ...

e Save only registers which may actually be overwritten
e Save only registers which are live after the call

403/471

Interprocedural Register Allocation

e For every local variable, there is an entry in the stack frame
e Save locals to stack before call, restore after call
e Sometimes, there is hardware support for this

e Otherwise, we have to insert load and stores. We may ...

e Save only registers which may actually be overwritten
e Save only registers which are live after the call
e May restore into different registers —- reduction of live ranges

403/471

Table of Contents

@ Exploiting Hardware Features
Register Allocation
Single Static Assignment Form
Exploiting Instruction Level Parallelism
Improving Memory/Cache Behaviour

404 /471

Motivation

e Modern processors do not execute instructions one after the other

405/471

Motivation

e Modern processors do not execute instructions one after the other
e Each instruction passes multiple phases

405/471

Motivation

e Modern processors do not execute instructions one after the other
e Each instruction passes multiple phases

e which are independent, and thus can be done in parallel for multiple
instructions

405/471

Motivation

e Modern processors do not execute instructions one after the other
e Each instruction passes multiple phases

e which are independent, and thus can be done in parallel for multiple
instructions
e Pipelining

405/471

Motivation

e Modern processors do not execute instructions one after the other
e Each instruction passes multiple phases
e which are independent, and thus can be done in parallel for multiple
instructions
e Pipelining
e Hardware for executing instructions is duplicated (superscalar
processors)

405/471

Motivation

e Modern processors do not execute instructions one after the other
e Each instruction passes multiple phases

e which are independent, and thus can be done in parallel for multiple
instructions
e Pipelining
e Hardware for executing instructions is duplicated (superscalar
processors)
¢ Independent instructions can be executed simultaneously

405/471

Motivation

e Modern processors do not execute instructions one after the other
e Each instruction passes multiple phases

e which are independent, and thus can be done in parallel for multiple

instructions

e Pipelining

e Hardware for executing instructions is duplicated (superscalar
processors)
¢ Independent instructions can be executed simultaneously
e Usually combined with pipelining

405/471

Motivation

Modern processors do not execute instructions one after the other
Each instruction passes multiple phases

e which are independent, and thus can be done in parallel for multiple

instructions

e Pipelining
Hardware for executing instructions is duplicated (superscalar
processors)

¢ Independent instructions can be executed simultaneously

e Usually combined with pipelining

Who decides what instructions to parallelize

405/471

Motivation

Modern processors do not execute instructions one after the other
Each instruction passes multiple phases

e which are independent, and thus can be done in parallel for multiple

instructions

e Pipelining
Hardware for executing instructions is duplicated (superscalar
processors)

¢ Independent instructions can be executed simultaneously

e Usually combined with pipelining
Who decides what instructions to parallelize

e The compiler. = VLIW - architectures

e E.g., IA64, on Itanium processors

405/471

Motivation

Modern processors do not execute instructions one after the other
Each instruction passes multiple phases
e which are independent, and thus can be done in parallel for multiple
instructions
e Pipelining
Hardware for executing instructions is duplicated (superscalar
processors)
¢ Independent instructions can be executed simultaneously
e Usually combined with pipelining
Who decides what instructions to parallelize
e The compiler. = VLIW - architectures
e E.g., IA64, on Itanium processors
e The processor (e.g. x86)
e Compiler should arrange instructions accordingly

405/471

Pipelining

e Execute instruction in multiple phases

406/471

Pipelining

e Execute instruction in multiple phases
e e.g., fetch, decode, execute, write

406/471

Pipelining

e Execute instruction in multiple phases

e e.g., fetch, decode, execute, write
e Which are handled by different parts of the processor

406/471

Pipelining

e Execute instruction in multiple phases

e e.g., fetch, decode, execute, write
e Which are handled by different parts of the processor

¢ |dea: Keep all parts busy by having multiple instructions in the pipeline

406/471

Pipelining

e Execute instruction in multiple phases

e e.g., fetch, decode, execute, write
e Which are handled by different parts of the processor

¢ |dea: Keep all parts busy by having multiple instructions in the pipeline
e Problem: Instructions may depend on each other

406/471

Pipelining

e Execute instruction in multiple phases

e e.g., fetch, decode, execute, write
e Which are handled by different parts of the processor

¢ |dea: Keep all parts busy by having multiple instructions in the pipeline

e Problem: Instructions may depend on each other
e 0., Ro= 0; R = R+1l; R = R+R

406/471

Pipelining

e Execute instruction in multiple phases

e e.g., fetch, decode, execute, write

e Which are handled by different parts of the processor
¢ |dea: Keep all parts busy by having multiple instructions in the pipeline
e Problem: Instructions may depend on each other

e 0., Ro= 0; R = R+1l; R = R+R

e execute phase of second instruction cannot start, until write-phase of first
instruction completed

406/471

Pipelining

e Execute instruction in multiple phases

e e.g., fetch, decode, execute, write

e Which are handled by different parts of the processor
¢ |dea: Keep all parts busy by having multiple instructions in the pipeline
e Problem: Instructions may depend on each other

e 0., Ro= 0; R = R+1l; R = R+R

e execute phase of second instruction cannot start, until write-phase of first
instruction completed

o Pipeline stall.

406/471

Pipelining

e Execute instruction in multiple phases

e e.g., fetch, decode, execute, write

e Which are handled by different parts of the processor
¢ |dea: Keep all parts busy by having multiple instructions in the pipeline
e Problem: Instructions may depend on each other

e 0., Ro= 0; R = R+1l; R = R+R

e execute phase of second instruction cannot start, until write-phase of first
instruction completed

e Pipeline stall.
e But compiler could have re-arranged instructions

406/471

Pipelining

e Execute instruction in multiple phases

e e.g., fetch, decode, execute, write
e Which are handled by different parts of the processor

¢ |dea: Keep all parts busy by having multiple instructions in the pipeline
e Problem: Instructions may depend on each other
e 0., Ro= 0; R = R+1l; R = R+R

e execute phase of second instruction cannot start, until write-phase of first
instruction completed

e Pipeline stall.
e But compiler could have re-arranged instructions

e R = R+l; Ro= 0; R = R+R

406/471

Superscalar architectures

e Fetch > 1 instruction per cycle.

407/471

Superscalar architectures

e Fetch > 1 instruction per cycle.
o Execute them in parallel if independent

407/471

Superscalar architectures

e Fetch > 1 instruction per cycle.
o Execute them in parallel if independent
e Processor checks independence

407/471

Superscalar architectures

e Fetch > 1 instruction per cycle.
o Execute them in parallel if independent

e Processor checks independence
o Qut-of-order execution: Processor may re-order instructions

407/471

Superscalar architectures

Fetch > 1 instruction per cycle.
Execute them in parallel if independent

Processor checks independence
o Out-of-order execution: Processor may re-order instructions

Or compiler checks independence (VLIW)

407/471

Exam

e You may bring in two handwritten A4 sheets
e We will not ask you to write OCaml programs

408/471

Last Lecture

¢ Register allocation

e by coloring interference graph
e by going to SSA-form

e Instruction level parallelism
¢ Pipelining, superscalar architectures

409/471

Observation

e These architectures are profitable if there are enough independent
instructions available

410/471

Observation

e These architectures are profitable if there are enough independent
instructions available

e Here:

410/471

Observation

e These architectures are profitable if there are enough independent
instructions available

e Here:
© Re-arrange independent instructions (in basic blocks)

410/471

Observation

e These architectures are profitable if there are enough independent
instructions available
e Here:

© Re-arrange independent instructions (in basic blocks)
® Increase size of basic blocks, to increase potential for parallelizing

410/471

Data dependence graph

411/471

Data dependence graph

e Instructions g; and g;, i < j, are dependent, iff

411/471

Data dependence graph

e Instructions g; and g;, i < j, are dependent, iff
read-write &; reads register written by g;

411/471

Data dependence graph

e Instructions g; and g;, i < j, are dependent, iff

read-write &; reads register written by g;
write-read a; writes register read by ag;

411/471

Data dependence graph

e Instructions g; and g;, i < j, are dependent, iff

read-write &; reads register written by g;
write-read a; writes register read by ag;
write-write a; and g; both write same register

411/471

Data dependence graph

e Instructions g; and g;, i < j, are dependent, iff

read-write &; reads register written by g;
write-read a; writes register read by ag;
write-write a; and g; both write same register

e Dependence graph: Directed graph with

411/471

Data dependence graph

e Instructions g; and g;, i < j, are dependent, iff

read-write &; reads register written by g;

write-read a; writes register read by ag;

write-write a; and g; both write same register
e Dependence graph: Directed graph with

o V:={ai,...,an}

411/471

Data dependence graph

e Instructions g; and g;, i < j, are dependent, iff
read-write &; reads register written by g;
write-read a; writes register read by ag;
write-write a; and g; both write same register

e Dependence graph: Directed graph with
o V:={ai,...,an}

e (a;, g) € Eiff a; and g; are dependent

411/471

Data dependence graph

L]
O
o)
=
0,
Q
@
2
o
o
@,
o
o
o
o
-~
B
Q
S

Instructions a; and a;, i < j, are dependent, iff
read-write &; reads register written by g;
write-read a; writes register read by ag;
write-write a; and g; both write same register

Dependence graph: Directed graph with
o V:={ai,...,an}

e (a;, g) € Eiff a; and g; are dependent

Instructions in basic block can be reordered

411

471

Data dependence graph

[}
O
o)
=
0,
Q
@
2
o
o
@,
o
o
o
o
-~

B
Q
S

Instructions a; and a;, i < j, are dependent, iff
read-write &; reads register written by g;
write-read a; writes register read by ag;
write-write a; and g; both write same register

Dependence graph: Directed graph with
o V:={ai,...,an}

e (a;, g) € Eiff a; and g; are dependent

Instructions in basic block can be reordered
e As long as ordering respects dependence graph

471

Example

1: x=x+1

2: y=M[A]
3: t=z

4: z=M[A+x]
5: t=y+z

412/471

Example

1: x=x+1
2: y=M[A]
3: t=z
4: z=M[A+x]
5: t=y+z
1: x=xt1] |2:y=M[a]| [3it=z]

412/471

Example

Possible re-ordering:
x=x+1

1:
2: y=M[A]
2: y=M[A] 1: x=x+1
3: t=z 3: -
4: z=M[A+x] 4: =M [A+x]
5: t=y+z 5: teyiz
1: x= x+1"2 y=M[‘ ’3 t= z‘

412/471

Instruction Scheduling

¢ Goal: Find topological ordering that stalls pipeline as few as possible

413/471

Instruction Scheduling

¢ Goal: Find topological ordering that stalls pipeline as few as possible

e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)

413/471

Instruction Scheduling

¢ Goal: Find topological ordering that stalls pipeline as few as possible

e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)
¢ In general: NP-hard problem

413/471

Instruction Scheduling

¢ Goal: Find topological ordering that stalls pipeline as few as possible

e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)
¢ In general: NP-hard problem

e Common heuristics: List scheduling

413/471

Instruction Scheduling

¢ Goal: Find topological ordering that stalls pipeline as few as possible
e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)
¢ In general: NP-hard problem
e Common heuristics: List scheduling

e While scheduling, keep track of used processor resources

413/471

Instruction Scheduling

¢ Goal: Find topological ordering that stalls pipeline as few as possible
e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)
¢ In general: NP-hard problem
e Common heuristics: List scheduling
e While scheduling, keep track of used processor resources
o Requires (more or less precise) model of processor architecture

413/471

Instruction Scheduling

Goal: Find topological ordering that stalls pipeline as few as possible
e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)
¢ In general: NP-hard problem
e Common heuristics: List scheduling
e While scheduling, keep track of used processor resources
o Requires (more or less precise) model of processor architecture

Assign priorities to source nodes in graph

413/471

Instruction Scheduling

Goal: Find topological ordering that stalls pipeline as few as possible
e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)
¢ In general: NP-hard problem
e Common heuristics: List scheduling
e While scheduling, keep track of used processor resources
o Requires (more or less precise) model of processor architecture
Assign priorities to source nodes in graph

Schedule node with highest priority first

413/471

Instruction Scheduling

Goal: Find topological ordering that stalls pipeline as few as possible
e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)
¢ In general: NP-hard problem
Common heuristics: List scheduling
While scheduling, keep track of used processor resources
o Requires (more or less precise) model of processor architecture
Assign priorities to source nodes in graph
Schedule node with highest priority first
Heuristics for priorities

413/471

Instruction Scheduling

Goal: Find topological ordering that stalls pipeline as few as possible
e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)
¢ In general: NP-hard problem
Common heuristics: List scheduling
While scheduling, keep track of used processor resources
o Requires (more or less precise) model of processor architecture
Assign priorities to source nodes in graph
Schedule node with highest priority first
Heuristics for priorities
o If required resources are blocked: Lower priority

413/471

Instruction Scheduling

Goal: Find topological ordering that stalls pipeline as few as possible
e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)
¢ In general: NP-hard problem
Common heuristics: List scheduling
While scheduling, keep track of used processor resources
o Requires (more or less precise) model of processor architecture
Assign priorities to source nodes in graph
Schedule node with highest priority first
Heuristics for priorities

o If required resources are blocked: Lower priority
o If dependencies not yet available: Lower priority

413/471

Instruction Scheduling

Goal: Find topological ordering that stalls pipeline as few as possible
e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)
¢ In general: NP-hard problem
Common heuristics: List scheduling
While scheduling, keep track of used processor resources
o Requires (more or less precise) model of processor architecture
Assign priorities to source nodes in graph
Schedule node with highest priority first
Heuristics for priorities

o If required resources are blocked: Lower priority
o If dependencies not yet available: Lower priority
¢ If node creates many new sources: Rise priority

413/471

Instruction Scheduling

Goal: Find topological ordering that stalls pipeline as few as possible
e Problems: Data dependencies, limited processor resources (e.g., only single
floating-point unit)
¢ In general: NP-hard problem
e Common heuristics: List scheduling
e While scheduling, keep track of used processor resources
o Requires (more or less precise) model of processor architecture
Assign priorities to source nodes in graph
Schedule node with highest priority first
e Heuristics for priorities

If required resources are blocked: Lower priority
If dependencies not yet available: Lower priority
If node creates many new sources: Rise priority
If node lies on critical path: Rise priority

413/471

Example: Live-range splitting

e Live-range splitting helps to decrease dependencies

414/471

Example: Live-range splitting

e Live-range splitting helps to decrease dependencies
¢ No re-ordering possible

1l: x=r
2 y=x+1
3: x=s
4: z=x+1

414/471

Example: Live-range splitting

e Live-range splitting helps to decrease dependencies

e Can be re-ordered

: Xq=r
o y=xq+1
. Xp=S

DS N

1 z=xo+1

414/471

Example: Live-range splitting

e Live-range splitting helps to decrease dependencies

« Can be re-ordered ¢ Re-ordering

1: xq1=r 1: xq4=r
2: y=xq1+1 3: x2=s
3: xp=s 2: y=xq1+1
4: z=xp+1 4: z=xp+l

414/471

Example: Live-range splitting

e Live-range splitting helps to decrease dependencies

« Can be re-ordered ¢ Re-ordering

1: xq1=r 1: xq=rx
2: y=xq1+1 3t X2=s
3: Xo=8 2: y=xq1+1
4: z=x5+1 4: z=xo+1

e Some processors do that dynamically
—> Register renaming

414/471

Loop unrolling

e Consider the example

short M [...];

for (i=0;i<n;++1i) {
M[i] = 0

}

415/471

Loop unrolling

e Consider the example

short M [...];

for (i=0;i<n;++1i) {
M[i] = 0

}

e On 32 bit architecture: Writing 16 bit words

415/471

Loop unrolling

e Consider the example

short M [...];

for (i=0;i<n;++1i) {
M[i] = 0

}

e On 32 bit architecture: Writing 16 bit words
e Expensive!

415/471

Loop unrolling
e Consider the example
short M [...];
for (i=0;i<n;++1i) {
M[i] = 0
}

e On 32 bit architecture: Writing 16 bit words
e Expensive!

e Consider unrolled loop (unroll factor 2)

short M [...];
for (i=0;i+1<n;) {

M[i] = 0
i=i+1
M[i] = O
i=i+1

}
if (i<n) {M[i]=0; i=i+1} // For odd n

415/471

Loop unrolling
e Consider the example
short M [...];
for (i=0;i<n;++1i) {
M[i] = 0
}

e On 32 bit architecture: Writing 16 bit words
e Expensive!

e Consider unrolled loop (unroll factor 2)

short M [...];
for (i=0;i+1<n;) {
M[i] = 0
i=i+1
M[i] = O
i=i+1

}
if (i<n) {M[i]=0; i=i+1} // For odd n

e Loop body can now easily be optimized, e.g., by peephole optimization

415/471

Loop unrolling

e Consider the example

short M [...];

for (i=0;i<n;++1i) {
M[i] = 0

}

e On 32 bit architecture: Writing 16 bit words
o Expensive!
e Consider unrolled loop (unroll factor 2)
short M [...];
for (i=0;i+1<n;i=i+2) {
(int)M[i] = O
}
if (i<n) {M[i]=0; i=i+1} // For odd n

e Loop body can now easily be optimized, e.g., by peephole optimization

415/471

Discussion

e Loop unrolling creates bigger basic blocks

416/471

Discussion

e Loop unrolling creates bigger basic blocks
¢ Which open more opportunities for parallelization

Discussion

e Loop unrolling creates bigger basic blocks
¢ Which open more opportunities for parallelization
e Quick demo with gcc -O2 -funroll-loops

Loop fusion

e Fuse together two successive loops

417/471

Loop fusion

e Fuse together two successive loops
e With the same iteration scheme

417/471

Loop fusion

e Fuse together two successive loops

o With the same iteration scheme
e That are not data-dependent

417/471

Loop fusion

e Fuse together two successive loops

o With the same iteration scheme
e That are not data-dependent

o for (...) {cq}; for (...) {co} +—=for (...) {cq;co}

417/471

Loop fusion

e Fuse together two successive loops

o With the same iteration scheme
e That are not data-dependent

o for (...) {cq}; for (...) {co} +—=for (...) {cq;co}
e In general:

417/471

Loop fusion

e Fuse together two successive loops
e With the same iteration scheme
e That are not data-dependent
o for (...) {cq}; for (...) {co} +—=for (...) {cq;co}
e In general:
o jth iteration of ¢; must not read data, that is written in < ith iteration of ¢,

Loop fusion

e Fuse together two successive loops

o With the same iteration scheme

e That are not data-dependent
o for (...) {cq}; for (...) {co} +—=for (...) {cq;co}
e In general:

e jth iteration of ¢; must not read data, that is written in < jth iteration of ¢,
o jth iteration of ¢, must not read data, that is written in > Jith iteration of ¢4

Loop fusion

Fuse together two successive loops

o With the same iteration scheme

e That are not data-dependent
o for (...) {cq}; for (...) {co} +—=for (...) {cq;co}
e In general:

e jth iteration of ¢; must not read data, that is written in < jth iteration of ¢,
o jth iteration of ¢, must not read data, that is written in > Jith iteration of ¢4

e Heuristics

Loop fusion

Fuse together two successive loops
e With the same iteration scheme
e That are not data-dependent
o for (...) {cq}; for (...) {co} +—=for (...) {cq;co}
e In general:
e jth iteration of ¢; must not read data, that is written in < jth iteration of ¢,
o jth iteration of ¢, must not read data, that is written in > Jith iteration of ¢4
e Heuristics
e Data written to disjoint places

Loop fusion

Fuse together two successive loops
e With the same iteration scheme
e That are not data-dependent
o for (...) {cq}; for (...) {co} +—=for (...) {cq;co}
e In general:
o jth iteration of ¢; must not read data, that is written in < ith iteration of ¢,
o jth iteration of ¢, must not read data, that is written in > Jith iteration of ¢4
e Heuristics
e Data written to disjoint places
e E.g., different, statically allocated arrays

Loop fusion

Fuse together two successive loops
e With the same iteration scheme
e That are not data-dependent
o for (...) {cq}; for (...) {co} +—=for (...) {cq;co}
e In general:
o jth iteration of ¢; must not read data, that is written in < ith iteration of ¢,
o jth iteration of ¢, must not read data, that is written in > Jith iteration of ¢4
e Heuristics
e Data written to disjoint places
e E.g., different, statically allocated arrays
o More sophisticated analyses, e.g., based on integer linear programming

Example

e Consider the following loop, assume A, B, C, D are guaranteed to be
different

for (i=0;i<n;++i) C[i] = A[i] + B[i];
for (i=0;i<n;++i) D[i] = A[i] - B[i];

418/471

Example

e Consider the following loop, assume A, B, C, D are guaranteed to be
different

for
for

e Loop fusion yields

for

D[

(1i=0;1i<n; ++1)
(1=0; i<n; ++1)

(i=0; i<n;++1i)
Cli]

1

]

Ali]
Ali]

+ B[
B

Cli
D[1

{
i
i

1i
]

}

]
]

418/471

Example

e Consider the following loop, assume A, B, C, D are guaranteed to be

different

for (i=0;i<n;++i) C[i] = A[i] + B[i];
for (i=0;i<n;++i) D[i] = A[i] - B[i];

e Loop fusion yields

for (i=0;i<n;++1i) {
Cli] = A[i] + B[l],
D[i] = A[1] B[i]}

e Which may be further optimized to

for (i=0;i<n;++1) {
A[i]; Rz = B[il];

418/471

Warning

e The opposite direction, loop fission, splits one loop into two

419/471

Warning

e The opposite direction, loop fission, splits one loop into two
e May be profitable for large loops

419/471

Warning

e The opposite direction, loop fission, splits one loop into two
e May be profitable for large loops
e Smaller loops may fit into cache entirely

419/471

Warning

e The opposite direction, loop fission, splits one loop into two
e May be profitable for large loops

e Smaller loops may fit into cache entirely
e Accessed memory more local, better cache behavior

419/471

Table of Contents

@ Exploiting Hardware Features
Register Allocation
Single Static Assignment Form
Exploiting Instruction Level Parallelism
Improving Memory/Cache Behaviour

420/471

Motivation

¢ Aligning of data

421/471

Motivation

¢ Aligning of data
e Cache-aware data access

421/471

Motivation

¢ Aligning of data
e Cache-aware data access
e Reduction of allocation/deallocation cost

421/47

Alignment of data

e Processor usually loads 32/64 bit words from memory

422/471

Alignment of data

e Processor usually loads 32/64 bit words from memory
e But only from address which is multiple of 4/8

422/471

Alignment of data

e Processor usually loads 32/64 bit words from memory

e But only from address which is multiple of 4/8
¢ Read from odd addresses needs to be split

422/471

Alignment of data

e Processor usually loads 32/64 bit words from memory

e But only from address which is multiple of 4/8
¢ Read from odd addresses needs to be split
e Expensive

422/471

Alignment of data

e Processor usually loads 32/64 bit words from memory

e But only from address which is multiple of 4/8
¢ Read from odd addresses needs to be split
e Expensive

e So compilers can align data in memory accordingly

422/471

Alignment of data

e Processor usually loads 32/64 bit words from memory

e But only from address which is multiple of 4/8
¢ Read from odd addresses needs to be split
e Expensive

e So compilers can align data in memory accordingly
e Data on stack (parameters, local variables)

422/471

Alignment of data

e Processor usually loads 32/64 bit words from memory
e But only from address which is multiple of 4/8
¢ Read from odd addresses needs to be split
e Expensive

e So compilers can align data in memory accordingly

e Data on stack (parameters, local variables)
e Code (labels, functions, loop-heads)

422/471

Alignment of data

e Processor usually loads 32/64 bit words from memory
e But only from address which is multiple of 4/8
¢ Read from odd addresses needs to be split
e Expensive
e So compilers can align data in memory accordingly
e Data on stack (parameters, local variables)
e Code (labels, functions, loop-heads)
e Layout of structures

422/471

Alignment of data

e Processor usually loads 32/64 bit words from memory
e But only from address which is multiple of 4/8
¢ Read from odd addresses needs to be split
e Expensive

e So compilers can align data in memory accordingly

e Data on stack (parameters, local variables)
e Code (labels, functions, loop-heads)
e Layout of structures

o At the cost of wasting more memory

422/471

Cache-aware data access

e Load instruction loads whole cache-line

423/471

Cache-aware data access

e Load instruction loads whole cache-line
e Subsequent loads within the same cache-line much faster

423/471

Cache-aware data access

e Load instruction loads whole cache-line
e Subsequent loads within the same cache-line much faster
e Re-arrange memory accesses accordingly

423/471

Cache-aware data access

Load instruction loads whole cache-line

Subsequent loads within the same cache-line much faster
Re-arrange memory accesses accordingly

Important case: Multi-dimensional arrays

423/471

Cache-aware data access

Load instruction loads whole cache-line
Subsequent loads within the same cache-line much faster
Re-arrange memory accesses accordingly

Important case: Multi-dimensional arrays
o lteration should iterate according to memory layout

423/471

Example

e Array A[N] [M]

424/471

Example

e Array A[N] [M]
e Assume layout: & (A[i, §j1) = 1 + J*N

424/471

Example

e Array A[N] [M]
e Assume layout: & (A[i,3]) = i + j*N
e for (i=0;i<N;++i) for (j=0; j<M;++7j) x=x+A[1i, j]

424/471

Example

e Array A[N] [M]
e Assume layout: & (A[i,3]) = i + j*N
e for (i=0;i<N;++i) for (j=0; j<M;++7j) x=x+A[1i, j]

e Memory accesses:
A+0+4+0ON,A+O0+ 1N, A+0+2N,...,A+1+0N,A+1+1N, ..

424/471

Example

e Array A[N] [M]
e Assume layout: & (A[i, §j1) = 1 + J*N
e for (i=0;i<N;++i) for (j=0; j<M;++7j) x=x+A[1i, j]
e Memory accesses:
A+0+O0N;A+0+1N,A+0+2N,...,A+1+0N,A+1+1N,...
e Bad locality, when arriving at A+ 1 + ON, cache-line loaded on A+ 0 + ON
probably already overwritten

424/471

Example

e Array A[N] [M]
e Assume layout: & (A[i, §j1) = 1 + J*N
e for (i=0;i<N;++i) for (j=0; j<M;++7j) x=x+A[1i, j]
° Memory accesses:
A+0+O0ON,A+O0+1N,A+0+2N,...,A+1+0N,A+1+1N,...

e Bad locality, when arriving at A+ 1 + ON, cache-line loaded on A+ 0 + ON
probably already overwritten

Better: for (j=0; j<M;++7j) for (i=0;i<N;++i) x=x+A[i, j]

424/471

Example

e Array A[N] [M]
e Assume layout: & (A[i, §j1) = 1 + J*N
e for (i=0;i<N;++i) for (j=0; j<M;++7j) x=x+A[1i, j]
° Memory accesses:
A+0+O0ON,A+O0+1N,A+0+2N,...,A+1+0N,A+1+1N,...

e Bad locality, when arriving at A+ 1 + ON, cache-line loaded on A+ 0 + ON
probably already overwritten

Better: for (j=0; j<M;++7j) for (i=0;i<N;++i) x=x+A[i, j]
e Memory accesses: A+0+O0ON,A+1+0N,....,A+0+1N;A+1+1N,...

424/471

Example

e Array A[N] [M]
e Assume layout: & (A[i, §j1) = 1 + J*N
e for (i=0;i<N;++i) for (j=0; j<M;++7j) x=x+A[1i, j]
° Memory accesses:
A+0+O0ON,A+O0+1N,A+0+2N,...,A+1+0N,A+1+1N,...

e Bad locality, when arriving at A+ 1 + ON, cache-line loaded on A+ 0 + ON
probably already overwritten

Better: for (j=0; j<M;++7j) for (i=0;i<N;++i) x=x+A[i, j]
e Memory accesses: A+0+O0ON,A+1+0N,....,A+0+1N;A+1+1N,...
e Good locality, A+ 1 + ON probably already in cache

424/471

Loop interchange

e Swap inner and outer loop

425/471

Loop interchange

e Swap inner and outer loop
o [f they iterate over multi-dimensional array ...

425/471

Loop interchange

e Swap inner and outer loop

o [f they iterate over multi-dimensional array ...
e ... inwrong order

425/471

Loop interchange

e Swap inner and outer loop

o [f they iterate over multi-dimensional array ...

e ... in wrong order
e And loop iterations are sufficiently independent

425/471

Loop interchange

e Swap inner and outer loop

o [f they iterate over multi-dimensional array ...

e ... in wrong order
e And loop iterations are sufficiently independent

e lteration for index i, j, must only depend on iterations < i, < j

425/471

Loop interchange

e Swap inner and outer loop

o [f they iterate over multi-dimensional array ...

e ... in wrong order
e And loop iterations are sufficiently independent

e lteration for index i, j, must only depend on iterations < i, < j
o |llustration on board!

425/471

Loop interchange

e Swap inner and outer loop

o [f they iterate over multi-dimensional array ...

e ... in wrong order
e And loop iterations are sufficiently independent

e lteration for index i, j, must only depend on iterations < i, < j
o |llustration on board!

e The required dependency analysis is automatable

425/471

Loop interchange

e Swap inner and outer loop

o [f they iterate over multi-dimensional array ...

e ... in wrong order
e And loop iterations are sufficiently independent

e lteration for index i, j, must only depend on iterations < i, < j
o |llustration on board!

e The required dependency analysis is automatable
o To some extend for arrays

425/471

Loop interchange

e Swap inner and outer loop

o [f they iterate over multi-dimensional array ...

e ... in wrong order
e And loop iterations are sufficiently independent

e lteration for index i, j, must only depend on iterations < i, < j
o |llustration on board!

e The required dependency analysis is automatable

o To some extend for arrays
e Not so much for more complex structures

425/471

Organizing data-structures block-wise

e Warning: No automation in general

426/471

Organizing data-structures block-wise

e Warning: No automation in general
e Example: Stack-data structure with push, pop

426/471

Organizing data-structures block-wise

e Warning: No automation in general
e Example: Stack-data structure with push, pop
o Possible implementation: Linked list

426/471

Organizing data-structures block-wise

e Warning: No automation in general
e Example: Stack-data structure with push, pop

o Possible implementation: Linked list
e Disadvantage: Data items distributed over memory

426/471

Organizing data-structures block-wise

e Warning: No automation in general
e Example: Stack-data structure with push, pop

o Possible implementation: Linked list
e Disadvantage: Data items distributed over memory
e Bad cache behavior

426/471

Organizing data-structures block-wise

e Warning: No automation in general
e Example: Stack-data structure with push, pop
o Possible implementation: Linked list
e Disadvantage: Data items distributed over memory
e Bad cache behavior
e And extra memory for link-pointers

426/471

Organizing data-structures block-wise

e Warning: No automation in general
e Example: Stack-data structure with push, pop

o Possible implementation: Linked list

e Disadvantage: Data items distributed over memory
e Bad cache behavior

e And extra memory for link-pointers

e Alternative: Array-List

426/471

Organizing data-structures block-wise

e Warning: No automation in general
e Example: Stack-data structure with push, pop
o Possible implementation: Linked list
e Disadvantage: Data items distributed over memory
e Bad cache behavior
e And extra memory for link-pointers
e Alternative: Array-List
o Keep list in array, store index of last element

426/471

Organizing data-structures block-wise

e Warning: No automation in general
e Example: Stack-data structure with push, pop
o Possible implementation: Linked list
e Disadvantage: Data items distributed over memory
e Bad cache behavior
e And extra memory for link-pointers
e Alternative: Array-List

o Keep list in array, store index of last element
o If array overflows: Double the size of the array

426/471

Organizing data-structures block-wise

e Warning: No automation in general
e Example: Stack-data structure with push, pop

o Possible implementation: Linked list

e Disadvantage: Data items distributed over memory
e Bad cache behavior

e And extra memory for link-pointers

e Alternative: Array-List

o Keep list in array, store index of last element
o If array overflows: Double the size of the array
o If array less than quarter-full: Halve the size of the array

426/471

Organizing data-structures block-wise

e Warning: No automation in general
e Example: Stack-data structure with push, pop
o Possible implementation: Linked list
e Disadvantage: Data items distributed over memory
e Bad cache behavior
e And extra memory for link-pointers
e Alternative: Array-List
o Keep list in array, store index of last element
o If array overflows: Double the size of the array
o If array less than quarter-full: Halve the size of the array
e This adds amortized constant extra cost

426/471

Organizing data-structures block-wise

e Warning: No automation in general
e Example: Stack-data structure with push, pop
o Possible implementation: Linked list
e Disadvantage: Data items distributed over memory
e Bad cache behavior
e And extra memory for link-pointers
e Alternative: Array-List
Keep list in array, store index of last element
If array overflows: Double the size of the array
If array less than quarter-full: Halve the size of the array
This adds amortized constant extra cost
But makes cache-locality much better

426/471

Moving heap-allocated blocks to the stack

¢ Idea: Allocate block of memory on stack, instead of heap

427/471

Moving heap-allocated blocks to the stack

¢ Idea: Allocate block of memory on stack, instead of heap
o [f pointers to this block cannot escape the current stack frame

427/471

Moving heap-allocated blocks to the stack

¢ Idea: Allocate block of memory on stack, instead of heap

o [f pointers to this block cannot escape the current stack frame
¢ Important for languages like Java, where almost everything is allocated on
heap

427/471

Abstract example

int do_computation(...) {
AuxData aux = new AuxData ()

return ...

428/471

Abstract example

int do_computation(...) {
AuxData aux = new AuxData ()
return ...

e If no pointer to aux is returned or stored in global memory ...

428/471

Abstract example

int do_computation(...) {
AuxData aux = new AuxData ()
return

e If no pointer to aux is returned or stored in global memory ...

e ... aux can be allocated on method’s stack-frame

428/471

Example

¢ Recall our simple pointer-language. Ret is global variable.

1: x=new/()

2: y=new()
x[A] =y
z=x[A]
Ret = z

429/471

Example

¢ Recall our simple pointer-language. Ret is global variable.
1: x=new()
2: y=new()
x[A] =y
z=x[A]
Ret = z

¢ Allocation at 1 may not escape

429/471

Example

¢ Recall our simple pointer-language. Ret is global variable.

1: x=new()

2: y=new()
x[A] =y
z=x[A]
Ret = z

¢ Allocation at 1 may not escape
e Thus we may do the allocation on the stack

429/471

In general

e Memory block may escape, which is

430/471

In general

e Memory block may escape, which is
e Assigned to global variable

430/471

In general

e Memory block may escape, which is

e Assigned to global variable
e Reachable from global variable

430/471

In general

e Memory block may escape, which is

e Assigned to global variable
e Reachable from global variable

e Forward may analysis. Same as pointer-analysis

430/471

In general

e Memory block may escape, which is

e Assigned to global variable
e Reachable from global variable

e Forward may analysis. Same as pointer-analysis
o |dentify memory blocks with allocation sites

430/471

In general

e Memory block may escape, which is

e Assigned to global variable
e Reachable from global variable

e Forward may analysis. Same as pointer-analysis

o |dentify memory blocks with allocation sites
e Analyze where variables/blocks may point to

430/471

In general

e Memory block may escape, which is
e Assigned to global variable
e Reachable from global variable
e Forward may analysis. Same as pointer-analysis
o |dentify memory blocks with allocation sites
e Analyze where variables/blocks may point to
e [f global variable/unknown memory block may point to block: Possible
escape

430/471

Applying the optimization, heuristics

e Only makes sense for small blocks

431/471

Applying the optimization, heuristics

e Only makes sense for small blocks
e That are allocated only once

431/471

Applying the optimization, heuristics

e Only makes sense for small blocks
e That are allocated only once
e e.g., not inside loop

431/471

Handling procedures more precisely

¢ Require interprocedural points-to analysis

432/471

Handling procedures more precisely

¢ Require interprocedural points-to analysis
e Expensive

432/471

Handling procedures more precisely

¢ Require interprocedural points-to analysis

e Expensive
e We do not always know whole program

432/471

Handling procedures more precisely

¢ Require interprocedural points-to analysis

e Expensive
e We do not always know whole program

e E.g. Java loads classes at runtime

432/471

Handling procedures more precisely

¢ Require interprocedural points-to analysis

e Expensive
e We do not always know whole program

e E.g. Java loads classes at runtime
¢ In worst case: Assume everything visible to called procedure may escape

432/471

Handling procedures more precisely

¢ Require interprocedural points-to analysis

e Expensive
e We do not always know whole program

e E.g. Java loads classes at runtime
¢ In worst case: Assume everything visible to called procedure may escape

e Which is consistent with parameter passing by global variables and previous
analysis

432/471

Wrap-Up

o Several optimizations that exploit hardware utilization

433/471

Wrap-Up

o Several optimizations that exploit hardware utilization
e A meaningful ordering

433/471

Wrap-Up

o Several optimizations that exploit hardware utilization
e A meaningful ordering
@ Restructuring of procedures/loops for better cache-behaviour

433/471

Wrap-Up

o Several optimizations that exploit hardware utilization
e A meaningful ordering

@ Restructuring of procedures/loops for better cache-behaviour
e Loop interchange, fission

433/471

Wrap-Up

o Several optimizations that exploit hardware utilization
e A meaningful ordering

@ Restructuring of procedures/loops for better cache-behaviour

e Loop interchange, fission
e Tail-recursion/inlining, stack-allocation

433/471

Wrap-Up

o Several optimizations that exploit hardware utilization
e A meaningful ordering

@ Restructuring of procedures/loops for better cache-behaviour

e Loop interchange, fission
e Tail-recursion/inlining, stack-allocation

® Basic-block optimizations, to exploit instruction-level parallelism

433/471

Wrap-Up

o Several optimizations that exploit hardware utilization
e A meaningful ordering

@ Restructuring of procedures/loops for better cache-behaviour

e Loop interchange, fission
e Tail-recursion/inlining, stack-allocation

® Basic-block optimizations, to exploit instruction-level parallelism
e Live-range splitting

433/471

Wrap-Up

o Several optimizations that exploit hardware utilization
e A meaningful ordering

@ Restructuring of procedures/loops for better cache-behaviour

e Loop interchange, fission
e Tail-recursion/inlining, stack-allocation

® Basic-block optimizations, to exploit instruction-level parallelism
e Live-range splitting
e |Instruction scheduling

433/471

Wrap-Up

o Several optimizations that exploit hardware utilization
e A meaningful ordering

@ Restructuring of procedures/loops for better cache-behaviour

e Loop interchange, fission
e Tail-recursion/inlining, stack-allocation
® Basic-block optimizations, to exploit instruction-level parallelism
e Live-range splitting
e |Instruction scheduling
e Loop unrolling, fusion

433/471

Wrap-Up

o Several optimizations that exploit hardware utilization
e A meaningful ordering

@ Restructuring of procedures/loops for better cache-behaviour

e Loop interchange, fission
e Tail-recursion/inlining, stack-allocation
® Basic-block optimizations, to exploit instruction-level parallelism
e Live-range splitting
e |Instruction scheduling
e Loop unrolling, fusion

® Then register allocation

433/471

Wrap-Up

o Several optimizations that exploit hardware utilization
e A meaningful ordering

@ Restructuring of procedures/loops for better cache-behaviour

e Loop interchange, fission
e Tail-recursion/inlining, stack-allocation

® Basic-block optimizations, to exploit instruction-level parallelism
e Live-range splitting
e |Instruction scheduling
e Loop unrolling, fusion

® Then register allocation

@ And finally peephole optimization + instruction selection

433/471

Table of Contents

@ Optimization of Functional Programs

434/471

Last Lecture

e Optimizations to re-arrange memory access wrt. cache

e Loop interchange
o Lists vs. array-list

e Wrap-Up: Optimizations targeted towards features of hardware
o Started with functional languages

435/471

Functional language

o We consider simple functional language

prg ::= let rec f1 = ey | ... | f_n = e_n in e
e ::=b | c | x| f_i | op | e e | fn x. e

| let x=e in e

| match e with py => ey | ... | p_n => e_n

b | ¢ xq1 ... Xp

436/471

Functional language

o We consider simple functional language

prg ::= let rec f1 = ey | ... | f_n = e_n in e
e ::=b | c | x| f_i | op | e e | fn x. e
| let x=e in e
| match e with py => ey | ... | p_n => e_n
p =b | ¢ x1 ... Xp
e where
e b is primitive constant
e Cis constructor
e Xx is variable
e f;is recursive function
e op is primitive operation

436/471

Table of Contents

@ Optimization of Functional Programs
Semantics
Simple Optimizations
Specialization
Deforestation

437/471

Semantics
e Values b,c vy ... vy, fn x. e (Convention: v denotes values)

438/471

Semantics

e Values b,c vy ... vy, fn x. e (Convention: v denotes values)
o Goal of semantics: Evaluate main expression to value

438/471

Semantics

e Values b,c vy ... vy, fn x. e (Convention: v denotes values)
¢ Goal of semantics: Evaluate main expression to value

e Done by the following rules

let rec f_i = e_1i

rec
[] f, — €

op by...bp— [op](by,-..,bn)
24)6%

[op]

e [app2]

appl] ———— O
[pp]ee—>e’e Vi €2 — vy €

[B—red]

(fnx.e)v— e[x— V]
e— ¢
match e with ... — match e’ with ...

k
match v with ... — ejo ()
/
€k — €
OpVi ... Vk_1€ ...€n = 0PV| ... Vk_1 € ...€n

[matchi]

[match2]

[app—op]

e where let x = ey in ey is syntax for (fn x. e2) e
o (*): pi=>e¢; is the first pattern with pjc = v

438/471

Semantics

e Eager evaluation

439/471

Semantics

e Eager evaluation
e Arguments are evaluated before function is called

439/471

Semantics

e Eager evaluation
e Arguments are evaluated before function is called
e No types: Evaluation of badly-typed program just gets stuck

439/471

Semantics

e Eager evaluation
e Arguments are evaluated before function is called
e No types: Evaluation of badly-typed program just gets stuck
e Example: match 5 with True => ... | False => ...

439/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

fac 2

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

(fn x. ...) 2

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

match 2 with

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

(x) 2 (fac (2-1))

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

() 2 ((fn x. ...) (2-1))

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

() 2 ((fn x. ...) 1)

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

(*) 2 (match 1 with ...)

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

(x) 2 ((x) 1 (fac (1-1)))

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

(x) 2 ((*) 1 ((fn x. ...) (1-1)))

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

(*x) 2 ((x) 1 (match 0 with ...))

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

(x) 2 ((x) 1 1)

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

(x) 21

440/471

Example

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in fac 2

440/471

Lazy evaluation

e Evaluate arguments only when needed, as far as needed

441/471

Lazy evaluation

e Evaluate arguments only when needed, as far as needed
e |.e., on match or built-in function call

e T

fi— e Pl op by -~ by — [0p1(br, - -, br)

e -
[app1]e1 & — €] e 5 red](fn X. 1) €& = ei[x — e

e— ¢
[match] match e with ... — match e with ...
ho Y

[matc]match ce...e with ... = gjo (*)
[matchd] match b with ... — ejo)
[app—op] F—

OpVi ... Vku1 € ...80 — 0P Vi ... Vk_1 € ...€n

441

471

Lazy evaluation

e Evaluate arguments only when needed, as far as needed
e |.e., on match or built-in function call

[rec] let rec £ i = e_i [op] _
f— e op by ... ba — [op] (b1, . .., bn)
/
[appﬂenz%:ez 5=red) s er) 92; eilx — e
[matcht] match e with . .ej‘ : i:latch e with ...
[match2]—— —— 5 ”,é: with ... — ec (*)
[match3] maich b wit_h T Seo (%)
/
[app—op]opv1 Ve H,Z:f;,ﬁw e Vk—1 €} ... €n

o Note: Only simple patterns allowed in match

441

471

Example (lazy)

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in (fac 2)

(fac 2)

442/ 471

Example (lazy)

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in (fac 2)

((fn x. ...) 2)

442/ 471

Example (lazy)

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in (fac 2)

(match 2 with ...)

442/ 471

Example (lazy)

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in (fac 2)

((x) 2 (fac (2-1)))

442/ 471

Example (lazy)

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in (fac 2)

((*) 2 ((fn x. ...) (2-1)))

442/ 471

Example (lazy)

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in (fac 2)

((*) 2 (match (2-1) with ...))

442/ 471

Example (lazy)

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in (fac 2)

((*) 2 (match 1 with ...))

442/ 471

Example (lazy)

let
rec fac = fn x. match x with
0 =>1
| x => x * fac (x-1)
in (fac 2)

and so on

442/ 471

Eager vs. Lazy

e Eager: Argument evaluated before function call

e Lazy: Function call before argument
o Argument of match only until constructor is at top
e Weak head normal form

e Arguments of primitive operator: Completely

443/471

Optimization Plan

e Optimize on functional level

444471

Optimization Plan

e Optimize on functional level
e Translate to imperative language/IR

444 /471

Optimization Plan

e Optimize on functional level
e Translate to imperative language/IR
¢ Use optimizations for imperative code

444 /471

Optimization Plan

Optimize on functional level

Translate to imperative language/IR
Use optimizations for imperative code
Now: Optimizations on functional level

444 /471

Table of Contents

@ Optimization of Functional Programs
Semantics
Simple Optimizations
Specialization
Deforestation

445/471

Simple optimizations

¢ Idea: Move some evaluation from run-time to compile-time

446/ 471

Simple optimizations

¢ Idea: Move some evaluation from run-time to compile-time
e Function-application to let

(fn x. eq1) e ——> let x=ep in ej

446/ 471

Simple optimizations

¢ |dea: Move some evaluation from run-time to compile-time
e Function-application to let

(fn x. eq1) e ——> let x=ep in ej

e Matches, where part of the pattern is already known

match ¢ e1 ... e_n with ... ¢ x1 ... X5 => e
> let x1=eq1; ...; Xp=e_n 1in e

446/ 471

Simple optimizations

Idea: Move some evaluation from run-time to compile-time
Function-application to let

(fn x. eq1) e ——> let x=ep in ej

Matches, where part of the pattern is already known

match ¢ e1 ... e_n with ... ¢ x1 ... X5 => e
> let x1=eq1; ...; Xp=e_n 1in e

Let-reduction

let x=eq in e ——> e[x+—e1]

446/ 471

Substitution

e Beware of name-capture

let x = 1 in
let £ = fn y. x+y in
let x = 4 in

f x

447 /471

Substitution

e Beware of name-capture

let x = 1 in
let £ = fn y. x+y in
let x = 4 in

f x

e Consider reductionof f =

447 /471

Substitution

e Beware of name-capture

let x = 1 in
let £ = fn y. x+y in
let x = 4 in

f x

e Consider reductionof f =

e «-conversion: (Consistent) renaming of (bound) variables does not
change meaning of program

447 /471

Substitution

e Beware of name-capture

let x = 1 in
let £ = fn y. x+y in
let x = 4 in

f x

e Consider reductionof f =
e «-conversion: (Consistent) renaming of (bound) variables does not
change meaning of program
e Convention: Substitution uses a-conversion to avoid name-capture

447 /471

Substitution

e Beware of name-capture

let x = 1 in
let £ = fn y. x+y in
let x = 4 in

f x

e Consider reductionof f =
e «-conversion: (Consistent) renaming of (bound) variables does not
change meaning of program
e Convention: Substitution uses «-conversion to avoid name-capture
e Here: Convert let x=4 in f xt0let x1=4 in f xq

447 /471

Termination issues

e Let-reduction may change semantics
let rec £ = fn x. 1 + £ x in
let _ = £ 0 in

42

448/471

Termination issues

e Let-reduction may change semantics

let rec £f = fn x. 1 + £ x in
let _ = £ 0 in
42

e This program does not terminate

448/471

Termination issues

e Let-reduction may change semantics

let rec £f = fn x. 1 + £ x in
let _ = £ 0 in
42

e This program does not terminate
o But, applying let-reduction, we get

let rec £ = fn x. 1 + £ x in
42

448/471

Termination issues

e Let-reduction may change semantics

let rec £f = fn x. 1 + £ x in
let _ = £ 0 in
42

e This program does not terminate
o But, applying let-reduction, we get

let rec £ = fn x. 1 + £ x in
42

e which returns 42

448/471

Termination issues

e Let-reduction may change semantics

let rec £f = fn x. 1 + £ x in
let _ = £ 0 in
42

e This program does not terminate
o But, applying let-reduction, we get

let rec £ = fn x. 1 + £ x in
42

e which returns 42

e For eager evaluation, non-terminating programs may be transformed to
terminating ones

448/471

Termination issues

e Let-reduction may change semantics

let rec £f = fn x. 1 + £ x in
let _ = £ 0 in
42

e This program does not terminate
o But, applying let-reduction, we get

let rec £ = fn x. 1 + £ x in
42

e which returns 42

e For eager evaluation, non-terminating programs may be transformed to
terminating ones

e For lazy evaluation, semantics is preserved

448/471

Side-effects

e Languages like SML/OCaml/F# have side-effects

449/471

Side-effects

e Languages like SML/OCaml/F# have side-effects
o Side-effecting expressions must not be let-reduced

let _ = print "Hello"
in ()

449/471

Application of let-reduction

e May make program less efficient

450/471

Application of let-reduction

e May make program less efficient

e Re-computing values instead of storing them in variable
let x=expensive-op in x+x

450/471

Application of let-reduction

e May make program less efficient
e Re-computing values instead of storing them in variable
let x=expensive-op in x+x

e May blow up program code exponentially
let x = x+x in let x = x+x in ... in x

450/471

Application of let-reduction

e May make program less efficient
e Re-computing values instead of storing them in variable
let x=expensive-op in x+x
e May blow up program code exponentially
let x = x+x in let x = x+x in ... in x

e Heuristics for application: reduce let xi=e{in e

450/471

Application of let-reduction

e May make program less efficient
e Re-computing values instead of storing them in variable
let x=expensive-op in x+x
e May blow up program code exponentially
let x = x+x in let x = x+x in ... in x
e Heuristics for application: reduce let xi=e{in e
e if ey is a variable (or constant)

450/471

Application of let-reduction

e May make program less efficient
e Re-computing values instead of storing them in variable
let x=expensive-op in x+x
e May blow up program code exponentially
let x = x+x in let x = x+x in ... 1in X
e Heuristics for application: reduce let xi=e{in e

e if ey is a variable (or constant)
o if x; does not occur in e

450/471

Application of let-reduction

e May make program less efficient
e Re-computing values instead of storing them in variable
let x=expensive-op in x+x
e May blow up program code exponentially
let x = x+x in let x = x+x in ... 1in X
e Heuristics for application: reduce let xi=e{in e

e if ey is a variable (or constant)
o if x; does not occur in e
e if x; occurs exactly once in e

450/471

More transformations

e Valid for programs (fragments) with no side-effects

(let x=e in eq) eos ——> let x=e in eq e»
// Renaming x to avoid name capture

let x1=eq 1in let xpo=ep in e
—-—> let xp=es in let x1=eq 1in e
// If x1 not free in e»
// Renaming x» to avoid name capture

let x1 = (let xo=e» in eq) 1in e
-—> let xp=es in let xi=eq 1in e
// Renaming x» to avoid name capture

451/471

More transformations

e Valid for programs (fragments) with no side-effects

(let x=e in eq) eos ——> let x=e in eq e»
// Renaming x to avoid name capture

let x1=eq 1in let xpo=ep in e
—-—> let xp=es in let x1=eq 1in e
// If x1 not free in e»
// Renaming x» to avoid name capture

let x1 = (let xo=e» in eq) 1in e
-—> let xp=es in let xi=eq 1in e
// Renaming x» to avoid name capture

e May open potential for other optimizations

451/471

Inlining

e Consider program let f=fn x. eqin e

452/471

Inlining

e Consider program let f=fn x. eqin e
e Inside e, replace £ eo by let x=eoin ey

452/471

Inlining

e Consider program let f=fn x. eqin e
e Inside e, replace £ eo by let x=eoin ey
e Goal: Save overhead for function call

452/471

Inlining

e Consider program let f=fn x. eqin e
e Inside e, replace £ eo by let x=eoin ey
e Goal: Save overhead for function call

e Warning: May blow up the code

452/471

Example

let fmax = fn f. fn x. fn y.
if x>y then f x else f y in
let max = fmax (fn x. x) in

453/471

Example

let fmax = fn f£. fn x. fn y.
if x>y then f x else f y in
let max = (let £ = (fn x. xX) in
fn x. fn y. if x>y then f x else f y) in

(inlined fmax)

453/471

Example

let fmax = fn f£. fn x. fn y.
if x>y then f x else f y in
let max = (let £ = (fn x. xX) in

fn x. fn y. if x>y then let x=x in x else let x=y in x)

(inlined f)

453/471

i

Example

let fmax = fn f£. fn x. fn y.
if x>y then £ x else £ y in
let max = (

fn x. fn y. if x>y then x else y) in

(Let-reduction for single-var expressions and unused variables)

453/471

Note

e Inlining can be seen as special case of let-reduction

454 /471

Note

e Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects

454/471

Note

e Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects

e Only inlining terms of form £n x. e, which are not evaluated, unless
applied to an argument

454 /471

Note

e Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects
e Only inlining terms of form £n x. e, which are not evaluated, unless
applied to an argument
¢ In untyped languages (e.g., LISP), the inlining optimization may not
terminate

454/471

Note

e Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects

e Only inlining terms of form £n x. e, which are not evaluated, unless
applied to an argument

¢ In untyped languages (e.g., LISP), the inlining optimization may not
terminate

let w=fn £f. fny. £ (y £ y) in
let fix = fn f. w £ w

454 /471

Note

e Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects

e Only inlining terms of form £n x. e, which are not evaluated, unless
applied to an argument

¢ In untyped languages (e.g., LISP), the inlining optimization may not
terminate

let w=fn £f. fny. £ (v £ y) in
let fix = fn f. let f=f in let y=w in f (v f y)

(Inlined w)

454/471

Note

e Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects

e Only inlining terms of form £n x. e, which are not evaluated, unless
applied to an argument

¢ In untyped languages (e.g., LISP), the inlining optimization may not
terminate

let w=fn £f. fny. £ (v £ y) in
let fix = fn £. £ (w £ w)

((Safe) let-reduction (copy variables))

454/471

Note

e Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects

e Only inlining terms of form £n x. e, which are not evaluated, unless
applied to an argument

¢ In untyped languages (e.g., LISP), the inlining optimization may not
terminate

let w=fn £f. fny. £ (v £ y) in
let fix = fn £. £ (£ (£ (... £ (w £ w))))

()

454/471

Note

Inlining can be seen as special case of let-reduction
e However: Does not change termination behavior or side-effects

e Only inlining terms of form £n x. e, which are not evaluated, unless
applied to an argument

¢ In untyped languages (e.g., LISP), the inlining optimization may not
terminate
e In typed languages like OCaml or Haskell, however, we have
¢ Inlining always terminates

454/471

Table of Contents

@ Optimization of Functional Programs
Semantics
Simple Optimizations
Specialization
Deforestation

455/471

Specialization of recursive functions

e Function to square all elements of a list
¢ Note: Dropping the restriction that let-rec occurs outermost

let rec map = fn f. fn 1.
match 1 with
[1 => 1[1
| x#1 => f x # map £ 1
in
let £ = fn x. x*x in
let sgrl = map f in

456/471

Specialization of recursive functions

e Function to square all elements of a list
¢ Note: Dropping the restriction that let-rec occurs outermost
¢ Requires many function calls to f

let rec map = fn f. fn 1.
match 1 with
[1 => 1[1
| x#1 => f x # map £ 1
in
let £ = fn x. x*x in
let sgrl = map f in

456/471

Specialization of recursive functions

e Function to square all elements of a list
¢ Note: Dropping the restriction that let-rec occurs outermost
¢ Requires many function calls to f

¢ Idea: Replace map f by new function mapf

let rec map = fn f. fn 1.
match 1 with
[1 => 11
| x#1 => f x # map £ 1
in
let £ = fn x. x*x in
let sgrl = map f in

456/471

Specialization of recursive functions

Function to square all elements of a list
¢ Note: Dropping the restriction that let-rec occurs outermost

Requires many function calls to f
Idea: Replace map f by new function mapf
Specialization of map for argument f

let rec map = fn f. fn 1.
match 1 with
[1 => 11
| x#1 => f x # map £ 1
in
let £ = fn x. x*x in
let sgrl = map f in

456/471

Specialization of recursive functions

e Function to square all elements of a list
o Note: Dropping the restriction that let-rec occurs outermost

¢ Requires many function calls to f
¢ Idea: Replace map f by new function mapf
e Specialization of map for argument f

fn £. fn 1.

let rec map
match 1 with
[1 => 1[I
| x#1 => f x # map £ 1
in
let £ = fn x. x*x in
let rec mapf = fn 1.
match 1 with
(1 => 1[I
| x#1 => f x # mapf 1
in
let sgrl = mapf in
(Specialization)

456/471

Specialization of recursive functions

e Function to square all elements of a list
* Note: Dropping the restriction that let-rec occurs outermost
e Requires many function calls to f
e |dea: Replace map f by new function mapf
e Specialization of map for argument f

let rec map = fn £. fn 1.
match 1 with
(1 => [
| x#1 => f x # map £ 1
in
let £ = fn x. x*x in
let rec mapf = fn 1.
match 1 with
[1 => 11
| x#1 => x*x # mapf 1
in
let sgrl = mapf in
(Inlining)

456/471

Function folding

e When specializing function £ ato fa,

457/471

Function folding

e When specializing function £ ato fa,
e we may replace £ a by fa in definition of fa

457/471

Function folding

e When specializing function £ ato fa,

e we may replace £ a by fa in definition of fa
e Beware of name-captures!

457/471

Function folding

e When specializing function £ ato fa,

e we may replace £ a by fa in definition of fa
e Beware of name-captures!

e If recursive function calls alter the specialized argument:

457/471

Function folding

e When specializing function £ ato fa,

e we may replace £ a by fa in definition of fa
e Beware of name-captures!

e If recursive function calls alter the specialized argument:
o Potential for new specializations may be created

457/471

Function folding

e When specializing function £ ato fa,

e we may replace £ a by fa in definition of fa
e Beware of name-captures!

e If recursive function calls alter the specialized argument:

o Potential for new specializations may be created
e Infinitely often ...

457/471

Function folding

e When specializing function £ ato fa,
e we may replace £ a by fa in definition of fa
o Beware of name-captures!
e If recursive function calls alter the specialized argument:

o Potential for new specializations may be created
e Infinitely often ...
e let rec £f = fng. fn 1. ... £ (fn x. g (g x))

457/471

Function folding

e When specializing function £ ato fa,
e we may replace £ a by fa in definition of fa
o Beware of name-captures!
e If recursive function calls alter the specialized argument:

o Potential for new specializations may be created
e Infinitely often ...
e let rec £f = fng. fn 1. ... £ (fn x. g (g x))

e Safe and simple heuristics:

457 /471

Function folding

e When specializing function £ ato fa,

e we may replace £ a by fa in definition of fa
e Beware of name-captures!

e If recursive function calls alter the specialized argument:

o Potential for new specializations may be created
e Infinitely often ...
e let rec £f = fng. fn 1. ... £ (fn x. g (g x))

e Safe and simple heuristics:
e Only specialize functions of the form

let rec £ = fn x. e

such that recursive occurrences of f in e have the form f x

457 /471

Table of Contents

@ Optimization of Functional Programs
Semantics
Simple Optimizations
Specialization
Deforestation

458/471

Deforestation

Deforestation

e |dea: Often, lists are used as intermediate data structures

460/471

Deforestation

e |dea: Often, lists are used as intermediate data structures
e Standard list functions

let rec map = fn f. fn 1. match 1 with
(1 => 11
| x#xs => f x # map f xs

let rec filter = fn P. fn 1. match 1 with
[1 => 1[]

| x#xs => 1if P x then x#filter P xs else filter P xs

let rec foldl = fn f. fn a. fn 1.
(1 => [1
| x#xs => foldl £ (f a x) xs

match 1 with

460/471

Deforestation

e Examples of derived functions

let sum = foldl (+) O

let length = sum o map (fn x. 1)

let der = fn 1.
let n = length 1 in
let mean = sum 1 / n in
let s2 = (
sum

o map (fn x. x*x)

o map (fn x. x-mean)) 1
in

s2 / n

461/471

Idea

e Avoid intermediate list structures

462/471

Idea

¢ Avoid intermediate list structures
e E.g., we could define

length = foldl (fn a. fn _. a+l) O

462/471

|dea

¢ Avoid intermediate list structures
e E.g., we could define

length = foldl (fn a. fn _. a+l) O

¢ In general, we can define rules for combinations of the basic list functions
like fold, map, filter, ...

map £f o map g = map (f o qg)
foldl £ a o map g = foldl (fn a. £ a o g) a
filter P o filter Q = filter (fn x. P x & Q X)

462/471

|dea

¢ Avoid intermediate list structures
e E.g., we could define

length = foldl (fn a. fn _. a+l) O

¢ In general, we can define rules for combinations of the basic list functions
like fold, map, filter, ...

map £f o map g = map (f o qg)
foldl £ a o map g = foldl (fn a. £ a o g) a
filter P o filter Q = filter (fn x. P x & Q X)

e We may also need versions of these rules in first-order form, e.g.
map £ (map g 1) =

462/471

Example

let der = fn 1.
let n = length 1 in

let mean = sum 1 / n in
let s2 = (
sum
o map (fn x. x*x)
o map (fn x. x-mean)) 1
in

s2 / n

463/471

Example

let der = fn 1.

let n = length 1 in
let mean = sum 1 / length 1 in
let s2 = (

foldl (+) O
o map (fn x. x*x)
o map (fn x. x-mean)) 1
in
s2 / n

Let-optimization/ inlining

463/471

Example

let der = fn 1.
let n = length 1 in

let mean = sum 1 / length 1 in
let s2 = (
foldl (+) 0
o map ((fn x. x*x) o (fn x. x-mean))) 1
in
s2 / n

map-map rule

463/471

Example

let der = fn 1.
let n = length 1 in

let mean = sum 1 / length 1 in
let s2 = foldl (
fn a. (+) a o (fn x. x*x) o (fn xX. xX—-mean)
) 0 1
in
s2 / n

fold-map rule

463/471

Example

let der = fn 1.
let n = length 1 in
let mean = sum 1 / length 1 in
let s2 = foldl (
fn a. fn x. let x=x-mean in let x=x*x in a+x
) 0 1
in
s2 / n

function-application, unfolding of o, let-optimization.

463/471

Discussion

e Beware of side-effects!

464 /471

Discussion

e Beware of side-effects!
e Need rules for many combinations of functions.

464 /471

Discussion

e Beware of side-effects!
e Need rules for many combinations of functions.
e Does not scale

464 /471

Discussion

e Beware of side-effects!

e Need rules for many combinations of functions.
e Does not scale

e Only works for built-in functions

464 /471

Discussion

e Beware of side-effects!
e Need rules for many combinations of functions.
e Does not scale
e Only works for built-in functions
e Could try to automatically recognize user-defined functions

464 /471

Discussion

e Beware of side-effects!
Need rules for many combinations of functions.
e Does not scale
Only works for built-in functions
e Could try to automatically recognize user-defined functions
e Can be extended to algebraic datatypes in general

464 /471

Discussion

e Beware of side-effects!
Need rules for many combinations of functions.
e Does not scale
Only works for built-in functions
e Could try to automatically recognize user-defined functions
e Can be extended to algebraic datatypes in general
e They all have standard map and fold functions

464 /471

Reducing the number of required rules

¢ Try to find standard representation

465/471

Reducing the number of required rules

¢ Try to find standard representation
e foldr seems to be a good candidate:

foldr £ a [] = a
foldr £ a (x#xs)

f x (foldr £ a xs)

465/471

Reducing the number of required rules

¢ Try to find standard representation

e foldr seems to be a good candidate:
foldr £ a [] = a
foldr f a (x#xs) = £ x (foldr f a xs)

o We can represent map, filter, sum, ...

465/471

Reducing the number of required rules

¢ Try to find standard representation

e foldr seems to be a good candidate:
foldr £ a [] = a
foldr f a (x#xs) = £ x (foldr f a xs)

o We can represent map, filter, sum, ...
e But no list-reversal, as foldl can

465/471

Reducing the number of required rules

Try to find standard representation
foldr seems to be a good candidate:

foldr £ a [] = a
)

]
foldr £ a (x#xs f x (foldr £ a xs)

We can represent map, filter, sum, ...
e But no list-reversal, as foldl can
Problem: How to compose two foldr-calls?

465/471

Reducing the number of required rules

Try to find standard representation
foldr seems to be a good candidate:

foldr £ a [] = a
foldr £ a (x#xs)

f x (foldr £ a xs)

We can represent map, filter, sum, ...
e But no list-reversal, as foldl can
Problem: How to compose two foldr-calls?
e foldr fl al (foldr f2 a2 1) = 222

465/471

Composition of foldr

e |dea: Abstract over constructors
map f 1 = foldr (fn 1. fn x. £ x#1) [] 1

map’ £ 1 = fn c. fn n.
foldr (fn 1. fn x. ¢ (f x) 1) n 1

466/471

Composition of foldr

e |dea: Abstract over constructors
map f 1 = foldr (fn 1. fn x. £ x#1) [] 1

map’ £ 1 = fn c. fn n.

foldr (fn 1. fn x. ¢ (f x) 1) n 1
build g = g (#) []
map f 1 build (map’ f 1)

e Have
foldr £ a (build g) = g f a

466/471

Composition of foldr

e |dea: Abstract over constructors
map f 1 = foldr (fn 1. fn x. £ x#1) [] 1

map’ £ 1 = fn c. fn n.
foldr (fn 1. fn x. ¢ (f x) 1) n 1

e Have
foldr £ a (build g) = g f a

o If abstraction over list inside g done properly
e l.e., g actually produces list using its arguments

466/471

Example

map £ (map g 1)

467 /471

Example

map £ (map g 1)

= build (map’ f (build (map’ g 1)))

467 /471

Example

map £ (map g 1)
= build (map’ f (build (map’ g 1)))

= build (fn c. fn n.
foldr (fn 1. fn x. ¢ (£ x) 1) n (build (map’ g 1)))

467 /471

Example

map £ (map g 1)
= build (map’ f (build (map’ g 1)))

= build (fn c. fn n.
foldr (fn 1. fn x. ¢ (£ x) 1) n (build (map’ g 1)))

= build (fn c. fn n. map’ g 1 (fn 1. fn x. c (f x) 1) n)

467 /471

Intuition

e Functions may consume lists (foldr), produce lists (build), or both

468/471

Intuition

e Functions may consume lists (foldr), produce lists (build), or both
o Applying a chain of functions: (build foldr) (build foldr) ... (build foldr)

468/471

Intuition

e Functions may consume lists (foldr), produce lists (build), or both
o Applying a chain of functions: (build foldr) (build foldr) ... (build foldr)
o Can be re-bracketed to build (foldr build) ... (foldr build) foldr

468/471

Intuition

Functions may consume lists (foldr), produce lists (build), or both

o Applying a chain of functions: (build foldr) (build foldr) ... (build foldr)
o Can be re-bracketed to build (foldr build) ... (foldr build) foldr

e And the inner pairs cancel out, leaving a single build foldr

468/471

Discussion

e Single rule for deforestation: foldr f a (build g) = g f a

469/471

Discussion

e Single rule for deforestation: foldr f a (build g) = g f a
e Only correct if g is abstracted over list correctly

469/471

Discussion

e Single rule for deforestation: foldr f a (build g) = g f a

e Only correct if g is abstracted over list correctly
e Consider, e.g., foldr f a (build (fn _. fn _. [Truel))

469/471

Discussion

e Single rule for deforestation: foldr f a (build g) = g f a

e Only correct if g is abstracted over list correctly
e Consider, e.g., foldr f a (build (fn _. fn _. [Truel))

e Which is, in general, notthe sameas (fn _. fn _. [True]) f a

469/471

Discussion

e Single rule for deforestation: foldr f a (build g) = g f a

e Only correct if g is abstracted over list correctly
e Consider, e.g., foldr f a (build (fn _. fn _. [Truel))

e Which is, in general, notthe sameas (fn _. fn _. [True]) f a
¢ If language is parametric, can be enforced via type:

469/471

Discussion

e Single rule for deforestation: foldr f a (build g) = g f a

e Only correct if g is abstracted over list correctly
e Consider, e.g., foldr f a (build (fn _. fn _. [Truel))

e Which is, in general, notthe sameas (fn _. fn _. [True]) f a
e If language is parametric, can be enforced via type:
o lfghastypeV8.(A—- B8 —58)—=8—p

469/471

Discussion

e Single rule for deforestation: foldr f a (build g) = g f a

e Only correct if g is abstracted over list correctly
e Consider, e.g., foldr f a (build (fn _. fn _. [Truel))

e Which is, in general, notthe sameas (fn _. fn _. [True]) f a
e If language is parametric, can be enforced via type:
o lfghastypeV8.(A—- B8 —58)—=8—p
e It can only produce its result of type 3 by using its arguments

469/471

Discussion

e Single rule for deforestation: foldr f a (build g) = g f a

e Only correct if g is abstracted over list correctly
e Consider, e.g., foldr f a (build (fn _. fn _. [Truel))

e Which is, in general, notthe sameas (fn _. fn _. [True]) f a
e If language is parametric, can be enforced via type:
o lfghastypeV8.(A—- B8 —58)—=8—p
e It can only produce its result of type 3 by using its arguments
e Which is exactly the required abstraction over the list constructors

469/471

Wrap-up

e Transformations for functional programs

470/471

Wrap-up

e Transformations for functional programs
o Let-optimization

470/471

Wrap-up

e Transformations for functional programs
o Let-optimization
e Inlining

470/471

Wrap-up

e Transformations for functional programs
o Let-optimization
e Inlining
e Specialization

470/471

Wrap-up

e Transformations for functional programs
o Let-optimization
e Inlining
e Specialization
e Deforestation

470/471

Wrap-up

e Transformations for functional programs
o Let-optimization

Inlining

Specialization

Deforestation

470/471

Wrap-up

e Transformations for functional programs
Let-optimization

Inlining

Specialization

Deforestation

e Aim at reducing complexity before translation to IR

470/471

Wrap-up

e Transformations for functional programs
Let-optimization

Inlining

Specialization

Deforestation

e Aim at reducing complexity before translation to IR
e On (imperative) IR, all former optimizations of this lecture can be done

470/471

Wrap-up

e Transformations for functional programs
Let-optimization

Inlining

Specialization

Deforestation

e Aim at reducing complexity before translation to IR

e On (imperative) IR, all former optimizations of this lecture can be done
¢ Important one: Tail-call optimization

470/471

Wrap-up

e Transformations for functional programs
o Let-optimization

Inlining

Specialization

Deforestation

e Aim at reducing complexity before translation to IR

e On (imperative) IR, all former optimizations of this lecture can be done
¢ Important one: Tail-call optimization
e There are no loops in functional languages

470/471

That's it!
Questions?

	Introduction
	Removing Superfluous Computations
	Repeated Computations
	Background 1: Rice's theorem
	Background 2: Operational Semantics
	Available Expressions
	Background 3: Complete Lattices
	Fixed-Point Algorithms
	Monotonic Analysis Framework
	Dead Assignment Elimination
	Copy Propagation
	Summary

	Abstract Interpretation
	Constant Propagation
	Interval Analysis

	Alias Analysis
	Avoiding Redundancy (Part II)
	Partial Redundancy Elimination
	Partially Dead Assignments

	Interprocedural Analysis
	Analysis of Parallel Programs
	Replacing Expensive by Cheaper Operations
	Strength Reduction
	Peephole Optimization
	Linearization

	Exploiting Hardware Features
	Register Allocation
	Single Static Assignment Form
	Exploiting Instruction Level Parallelism
	Improving Memory/Cache Behaviour

	Optimization of Functional Programs
	Semantics
	Simple Optimizations
	Specialization
	Deforestation

