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Abstract We present a formally verified and executable on-the-fly LTL model checker that
uses ample set partial order reduction. The verification is done using the proof assistant
Isabelle/HOL and covers everything from the abstract correctness proof down to the generated
SML code.

Building on Doron Peled’s paper “Combining Partial Order Reductions with On-the-Fly
Model-Checking”, we formally prove abstract correctness of ample set partial order reduction.
This theorem is independent of the actual reduction algorithm. We then verify a reduction
algorithm for a simple but expressive fragment of PRoMELA. We use static partial order
reduction, which allows separating the partial order reduction and the model checking
algorithms regarding both the correctness proof and the implementation. Thus, the Cava
model checker that we verified in previous work can be used as a back end with only minimal
changes. Finally, we generate executable SML code using a stepwise refinement approach.
We test our model checker on some examples, observing the effectiveness of the partial order
reduction algorithm.

1 Introduction

Partial order reduction [28] is an important optimization for model checkers, enabling them
to deal better with models involving concurrency. It allows the model checker to consider
only a subset of all possible interleavings of concurrently executing operations by identifying
equivalences between them. Unfortunately, partial order reduction is notoriously complex
and can easily affect the correctness of the model checker. For instance, [28] describes a
partial order reduction algorithm and claims that it can simply be used with on-the-fly nested
depth-first search. It was found out later that this compromises correctness due to the reduction
possibly differing between the inner and the outer search [9]]. Moreover, while formalizing
the algorithm in [28]], we discovered that its correctness proof uses an invalid lemma.
Implementation correctness is usually assessed via testing in the context of model
checking algorithms. However, testing is necessarily incomplete and may lead to incorrect
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implementations due to missed corner cases. Furthermore, when using models of realistic size,
determining the correct outcome for a given test input requires the use of a model checker.

Thus, although in widespread use, neither the correctness of partial order reduction
algorithms, nor the correctness of their implementations can be taken for granted. This is
especially problematic since the trust in the correctness of a single model checker is used to
justify the confidence in the correctness of the many models that it checks. In order to meet
the very strict correctness requirements of model checking algorithms, we implement and
formally verify a partial order reduction algorithm.

In previous work [6]], we have presented the Cava model checker, a fully verified and
executable LTL model checker a la Spin. The verification was done with the proof assistant
Isabelle/HOL [27]] and covers everything from the correctness of the algorithms down to the
implementation. Due to its LCF-like architecture, Isabelle/HOL is more trustworthy than a
large unverified implementation like Spin. This paper now adds the following contributions:

Formalization of a fragment of the modeling language PROMELA
Formalization of the static analysis required for partial order reduction
Formal abstract correctness proof for ample set partial order reduction
Verified implementation and integration into the Cava model checker
Development of reusable libraries for automata and trace theory

NS

This results in what we believe to be the first formally verified and executable imple-
mentation of partial order reduction, addressing both of the issues mentioned earlier. The
verification is carried out completely in Isabelle/HOL, such that the correctness of the model
checker only depends on the correctness of Isabelle/HOL. This integration avoids logical
gaps that may arise when manually composing the results of different verification tools. Most
importantly, we now have a formally verified reference implementation that can deal with
many models that would be infeasible without partial order reduction. This improves its
usefulness for testing other model checkers. To the best of our knowledge, there has been only
one other attempt at formalizing partial order reduction [5]]. However, it does not cover the
reduction algorithm and is restricted to a specific fairness assumption.

The rest of the paper is organized as follows. In section 2] we cover theoretical aspects
of partial order reduction and elaborate on our choice of algorithm. In section[3} we report
on our Isabelle/HOL formalization. In section[d] we test the reduction effectiveness of our
implementation. Finally, in section[6} we give conclusions and future research directions.

This paper is an extended version of [4]. It includes more details about the formalization
of the abstract correctness proof of partial order reduction in section[3.6] There is also the
new section [3.9]describing the architecture of the Cava model checker. Finally, we added
section 5] It describes a counterexample for the invalid lemma used in the correctness proof
of dynamic partial order reduction with on-the-fly model checking.

2 Theory

Figure[T]illustrates the basics of partial order reduction. In regular model checking, the system
automaton ‘S’ is derived from the system and used as input for the model checker together
with the formula ‘’. The model checker then determines if the system automaton satisfies
the property expressed by the formula (£ S C L ). When using partial order reduction,
a reduction algorithm obtains a reduced system automaton ‘R’ from the system instead,
which fulfills certain reduction conditions. These conditions imply stuttering equivalence
between the language of the system automaton and that of the reduced system automaton
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(L S = L R). Since properties expressed by next-free LTL formulae are stuttering-invariant
[29], using the reduced system automaton instead of the system automaton when model
checking yields the same result (L S C L ¢ <= L R C L o).

system
reduction
system reduced system | reduction
automaton S automaton R conditions
modfel mOdf?l abstract
checking checking correctness

LSCLp LRCLp

Fig. 1: Partial Order Reduction Overview. A reduction algorithm obtains the reduced system automaton
‘R’, which is then used as an input of the model checker instead of the system automaton ‘S’. The
reduction algorithm guarantees that the reduced system automaton fulfills certain reduction conditions,
from which one can prove stuttering equivalence between the two languages. This implies that the
result of the model checker is not affected by the reduction.

This is a very abstract description of partial order reduction. In actual implementations,
the reduced system automaton may be represented implicitly, and the reduction algorithm may
be merged with the model checking algorithm. However, this view allows us to identify the
three major tasks involved in developing a verified implementation of partial order reduction:

1. Reduction algorithm correctness: The automaton produced by the reduction algorithm
fulfills the reduction conditions.

2. Abstract correctness: If an automaton fulfills the reduction conditions, its language is
stuttering equivalent to that of the system automaton.

3. Implementation and verification of the reduction algorithm.

Unlike our formalization, [5]] only covers the second task. This means there is no input
language, no static analysis, no reduction algorithm, no implementation, and no executable
model checker. Furthermore, it only covers the case where a certain fairness assumption is
met, which simplifies the abstract correctness proof. In absence of other formalizations, we
believe that our work is a significant contribution over the existing body of research.

2.1 Reduction Conditions

Both the reduction algorithm and the abstract correctness are built around the reduction
conditions, making them the main object of interest when dealing with partial order reduction.
We chose to implement an algorithm based on the ample set method and chose the reduction
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conditions accordingly. Let ‘en ¢’ be the set of enabled actions at state ‘q’ of the system
automaton (enabled set). Let ‘ren ¢’ be the set of enabled actions at state ‘g’ of the reduced
system automaton (ample set) Let ‘ex a ¢’ be the successor of state ‘g’ after executing action
‘a’ (‘ex’ is called execution function). This way, the pair ‘(en, ex)’ represents the system
automaton, while ‘(ren, ex)’ represents the reduced system automaton. The set of finite paths
executable at state ‘g’ of the system automaton ‘paths ¢’ is defined in terms of ‘en’ and
‘ex’. For a more detailed description of the system definitions, see section With these
prerequisites, we define the following reduction conditions:

subset Vq.ren g Cenq
nonempty Vg.renq Cenq = renq # {}
independent Jindependence relation I. Vq w. ren ¢ C en ¢ =
w € paths ¢ = rengNset w ={} = I (ren q) (set w)
wellfounded J well-founded relation R. Vqa.ren ¢ C en ¢ —
a€renqg = R(exaq)q
invisible Vq.ren q C en g = ren q C invisible

Condition subset states that the reduced system automaton is a subautomaton of the system
automaton and is usually not stated explicitly in the literature. Condition nonempty states that
the reduction algorithm must not omit all of the actions at any state. Condition independent
requires that all the actions that are executed after reaching some state but before an action
from the ample set at this state are independent of all the actions in this ample set. Condition
wellfounded requires that every cycle in the system automaton contains at least one state
where no reduction is performed. Condition invisible states that when a proper reduction
takes place, the ample set cannot contain any actions that are visible to the formula. Conditions
nonempty, independent, and wellfounded correspond to conditions CO, C1, and C2 in [5}
pages 268, 269]. Condition invisible corresponds to condition C3’ in [28| page 50]. Note that
even though the reduction conditions are similar, our formalization is not based on [J5].

2.2 Reduction Algorithm

These conditions are very abstract, so there are still many choices to be made with respect
to the actual reduction algorithm. We originally planned to verify dynamic partial order
reduction with on-the-fly model checking [28]], but soon encountered difficulties. Dynamic
partial order reduction detects cycles during the emptiness check in order to ensure condition
wellfounded. This tight integration with the emptiness check has led to bugs in the past
[9]. When used with on-the-fly model checking, this integration also extends to the product
construction, effectively turning the whole system into one monolithic algorithm. It also
introduces a mismatch since an algorithm that conceptually works on a system automaton is
now used with a product automaton, requiring complicated reasoning. And indeed, during
our effort of formalizing the proof given in 28], we discovered a counterexample for one of
the lemmata used in this proof. This counterexample is based on the fact that, when exploring
the product automaton, different instances of the system automaton appearing in the product
automaton may be reduced differently. A detailed description can be found in section[5] Note
that this, while refuting the lemma, does not necessarily invalidate the correctness theorem,
only this particular proof thereof. However, despite investing a significant amount of time,
we were unable to find an alternative proof as it seems that the reasoning required is more
complex than anticipated in the original paper.

We chose to implement a static partial order reduction [10] algorithm instead, which avoids
these problems of the dynamic approach. It ensures condition wellfounded by performing



Formal Verification of an Executable LTL Model Checker with Partial Order Reduction 5

some static analysis initially, identifying a set of sticky edges which break every cycle in the
control flow graph. Static partial order reduction is much more modular, making it possible to
verify the reduction algorithm independently of the product construction and the emptiness
check. This way, we were able to simply add the reduction algorithm as a preprocessing step
to the existing Cava model checker, enabling reuse of existing optimizations.

The reduction algorithm itself is similar to the one used in Spin [8]]. The basic idea is to
take the set of enabled actions of each process at some state as a candidate for an ample set. For
each candidate, an over-approximation of the reduction conditions is tested. If no candidate
satisfies the conditions, the state is fully expanded, that is, no reduction is performed.

For instance, our approximation checks that, in order to be used as an ample set, the
actions of a process must be independent of all actions of other processes. Moreover, it is
checked that no additional action of this process can be enabled as a consequence of executing
actions of other processes. Thus, only independent actions of other processes can be executed
before an action of the ample set, which implies condition independent.

3 Formalization

Our formalization contains all three of the tasks outlined in section [2] We integrated our
implementation into the Cava model checker, which was published previously [|6} 7]]. Since
then, various features have been added to this model checker. For instance, it now supports
using PROMELA as an input language [25]]. Furthermore, the library for automata has been
updated [20||14] and a new framework for depth-first search algorithms has been formalized
[18]. Also, an alternative algorithm for deciding language emptiness of Biichi automata based
on Gabow’s strongly-connected components algorithm has been implemented [[16]. In order to
make all of these changes possible, the architecture of the Cava model checker was improved
to be more modular and extensible (see section [3.9). However, the focus of this paper is on
the implementation and verification of the partial order reduction algorithm.

In this section, we give some technical background regarding the tools that were used
as well as a high-level overview of the formalization. We also describe certain noteworthy
aspects of the formalization in isolated detail. The full formalization is available at https:
//cava.in.tum.de/CAVA_POR.

3.1 Isabelle/HOL

Isabelle/HOL [27,[26] is a proof assistant based on Higher-Order Logic (HOL), which can be
thought of as a combination of functional programming and logic. Formalizations done in
Isabelle/HOL are trustworthy for two reasons. Firstly, Isabelle’s LCF architecture guarantees
that all proofs are checked using a very small logical core which is rarely modified but tested
extensively over time. This reduces the trusted code base to a minimum. Secondly, bugs in
the core rarely lead to accidentally proving false propositions. Bugs that have large effects are
easily caught, while the limited applicability of bugs with small effects is unlikely to coincide
with a logical mistake in the large-scale structure of the proof.

Isabelle/HOL notation resembles standard mathematical notation with just a few differ-
ences. For instance, as in functional programming, functions are usually curried in HOL.
This means that instead of ‘f :: A x B — C” with application syntax f(x,y)’, we have
‘f + A— B — C” with application syntax ‘f = y’.
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3.2 Refinement Framework

‘We want our model checker and the partial order reduction algorithm contained therein to
be executable. When developing formally verified algorithms, there is a trade-off between
the efficiency of the algorithm and the efficiency of the proof: For complex algorithms, a
direct proof of an efficient implementation tends to get unmanageable, as implementation
details obfuscate the main ideas of the proof. A standard approach to this problem is stepwise
refinement [/1]], which modularizes the correctness proof: One starts with an abstract version
of the algorithm and then refines it in correctness-preserving steps to the concrete, efficient
version. A refinement step may reduce the nondeterminism of a program, replace abstract
mathematical specifications by concrete algorithms, and replace abstract datatypes by their
implementations. For example, selection of an arbitrary element from a set may be refined to
getting the head of a list. This approach separates the correctness proof of the algorithm, which
focuses on the main algorithmic ideas, from the correctness proof of the implementation,
where the proof of each refinement step focuses on a specific implementation detail, not
caring about the overall correctness property.

In Isabelle/HOL, stepwise refinement is supported by the Refinement Framework [19, 12}
13, [15] and the Isabelle Collection Framework [[17,11]]. The former framework implements
a refinement calculus [1] based on a nondeterminism monad [30], and the latter provides
a library of verified efficient data structures. Both frameworks come with tool support to
simplify their usage for algorithm development and to automate canonical tasks such as
verification condition generation.

3.3 Basics

The most basic concept needed for nearly all parts of the formalization is that of sequences.
With HOL being very similar to functional programming languages like SML or Haskell,
the standard library already includes extensive support for finite sequences via the type
‘a list = Nil | Cons « (« list). For infinite sequences, the type ‘« word’ is used, which is
simply a type synonym for ‘N — a’.

We also use the library Coinductive [21]] which formalizes lazy lists using codatatypes [?2].
It provides the type ‘a llist’, which models both finite and infinite sequences. This is useful
for selecting subsequences of infinite lists that can be either finite or infinite. Reasoning about
selections and indices of lazy lists required us to significantly extend the library Coinductive.

Another important component needed for partial order reduction is stuttering equivalence
and the proof that next-free LTL formulae can only express stuttering-invariant properties.
The library Stuttering Equivalence [23| is used for both.

3.4 Systems

Model checkers usually represent systems using the type ‘(state X state) set’. Reasoning
about partial order reduction requires transitions to be labeled with actions, suggesting the
type ‘(state x action x state) set’. However, this type allows multiple successor states
to be reached given a state and an action, making the type a bad fit for the deterministic
action model of partial order reduction. This leads to unnecessary wellformedness conditions,
inaccessible successor states, and overspecified path predicates. We thus chose the following
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representation of the system automaton which was already referred to in section[2.1}

en :: state — action set (la)
ex :: action — state — state (1b)
init :: state set (1¢)

Here, ‘en’ is the set of enabled actions at a state (enabled set), ‘ex’ is the function that, given
an action, maps each state to its successor state (execution function), and ‘init’ is the set of
initial states.

This representation allows paths to be introduced in a straightforward way via the
inductively defined set ‘paths :: state — action list set’:

[| € paths p (2a)
a €enp = w € paths (ex a p) = a# w € paths p (2b)

Inductive definitions specify the smallest sets that satisfy the given rules. Equivalently, they
specify the sets containing those elements whose membership can be derived using the given
rules. These rules can be declared as safe introduction rules, so that whenever Isabelle/HOL
encounters proof obligations of the form ‘[] € paths p’ or ‘a# w € paths p’, it can
automatically split them into simpler goals or discharge them completely.

We prove an additional rule for the append operator on lists:

u € paths p = v € paths (fold ex u p) = u@uv € paths p 3)

Note how ‘fold’ lifts the execution function ‘ex :: action — state — state’ from single
actions to sequences of actions ‘fold ex :: action list — state — state’. Also note how
this rule generalizes rule[2b]

Together, rules [2a] [2b] and [3]form a set of introduction rules that break down most goals
automatically. For instance, the goal ‘u @a # v € paths p’ gets transformed into three
subgoals:

u € paths p (4a)
a € en (fold ex u p) (4b)
v € paths (ex a (fold ex u p)) (4c)

Compared to the formalization using the type ‘(state x action X state) set’, this automates
proofs significantly. In some cases, proofs comprised of 50 to 100 lines become one-liners.
We have proven many more rules about this system formalization, making it a useful addition
to the Cava automata library.

3.5 Trace Theory

In order to formalize partial order reduction, we need the concept of independent actions,
which can be executed in any order without changing the result or enabling or disabling
each other. Trace theory [22] lifts this notion of commutable items to that of equivalent (=1)
sequences, which is needed in the abstract correctness proof.

Finite sequences are equivalent if they differ by a finite number of commutations of
independent actions. Using equivalence on finite sequences, it is possible to define equivalence
on infinite sequences via a series of definitions [28| page 41]. Unfortunately, these definitions
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are not easily generalized to lazy lists, so we decided to work with separate types and
definitions for finite and infinite sequences.

Formalizing the necessary parts of trace theory took significant effort due to the large
number of theorems. There are also some theorems that look simple but are difficult to prove,
for instance:

w1 =7y w2 <= uQuw Qu=yuQuw:Qu 5)

The left to right direction can be proven via rule induction on the transitive structure of ‘=;’.
Doing the same for the right to left direction results in an unprovable induction step. It was
necessary to prove the following lemmata:

w1 =7 wa — removel ¢ w1 =7 removel ¢ w2 (6a)
uQuwi = uQuws — w1 =5 wa2 (6b)
w1 =7 Wy = rev wp =j rev ws (6¢)

Here, ‘removel c w’ removes the first occurrence of ‘c’ from the sequence ‘w’, and ‘rev w’
reverses the sequence ‘w’. Lemma [6a]uses ‘removel’ to avoid the fact that rule induction
does not work with modified assumptions. We use lemma [6ato prove lemma [6b] via reverse
induction on the sequence ‘v’. Lemma [6c|is proven via rule induction and with lemma[6B] it
completes the proof of theorem 3]

We also had to define some concepts specific to partial order reduction. For instance, the
predicate specifying that the first occurrence of a symbol in a sequence is independent of all
symbols before it. In the end, the formalization of the relevant aspects of trace theory required
about as much proof text as the formalization of the abstract correctness proof itself.

3.6 Abstract Correctness

In this section, we discuss the part of the formalization dealing with the abstract correctness
proof of ample set partial order reduction. Assume that *S” is a system automaton and ‘R’ is
a reduced system automaton such that the reduction conditions introduced in section[2.1] hold.
Then, the abstract correctness theorem states that the languages of ‘S’ and ‘R’ are stuttering
equivalent:

LS~LR @)

The proof of this theorem required about 1000 lines of formal proof text including dozens of
lemmata. Its structure is similar to that of the informal proof [28].

However, we present the formalization of a lemma [28| Theorem 3.11] in detail and
highlight the differences between the formal and the informal proof. Informally, the lemma
states that, given an infinite sequence in the system automaton, it is possible to find a
corresponding sequence in the reduced system automaton. We would like to convey an idea
of what the formal proof looks like without going into every detail of it.

To do so, we need some definitions and some notation. We use ‘—~’ to denote concatenation
of a finite sequence and an infinite sequence. The constant ‘Ind’ lifts the independence
relation ‘I’ to sets. The operators ‘=’ and ‘=;’ denote equivalence between finite and
infinite sequences, respectively.

First, we construct an arbitrarily long but finite sequence in the reduced system automaton
by transcribing longer and longer prefixes of the infinite sequence ‘v’ in the system automaton.
In order to do so, we inductively define a predicate that describes a valid state during this
construction process where a prefix of the sequence in the system automaton has already
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been processed. We use the command ‘inductive’ to define the constant ‘reduced_run’ as
the least predicate that satisfies the rules init, absorb, and extend.

inductive reduced_run :: ”state = action list = action word = action list =

action list = action list = action list = action word = bool” where

77|

init: "reduced_rung [Jv[] [ [ [J v

absorb: "reduced_run g vi ([a] ~v2)lwwi w2 u = a €setl =
reduced_run g (v1 Q [a]) v2 (removel a ) w w1 w2 u” |

extend: "reduced_run quvi ([a] ~v2)lwwi wau = a ¢ setl =
b@ [a] € R.paths (fold ex w q) = Ind {a} (set b) = set b C invisible =
b=p b1 Qby = [a] ~b1 —~u' =y u = Ind (set b2) (range u’) =
reduced_run ¢ (v1 @ [a]) v2 (1@ b1) (w@ bQ [a]) (w1 @ by Q@ [a]) (w2 @ ba) u'”

The predicate ‘reduced_run’ uses the following parameters:

q Iinitial state for ‘v’

vy prefix of ‘v’ that has been processed so far

vo suffix of ‘v’ that has not yet been processed

[ actions that have been appended to ‘w;’ but did not yet appear in ‘vy’
w  sequence in the reduced system automaton constructed so far

w1 possibly visible part of ‘w’

wsg invisible part of ‘w’

u  possible continuation of ‘w’

This predicate specifies that the state of the construction where both the sequence in the
system automaton and the one in the reduced system automaton are empty is valid (init). It
also specifies how one can extend a valid construction state by adding a step in the system
automaton and a sequence of corresponding steps in the reduced system automaton (absorb
and extend).

Next, we present some theorems that can be proven about this predicate using Isabelle
syntax, which should be fairly intuitive. After the theorem name, assumptions are stated using
the ‘assumes’ directive and the conclusion is stated using the ‘shows’ directive. The notation
‘obtains x where P’ denotes that the theorem proves an existential statement of the form
‘Jz. P’. We first prove that certain invariants hold at each point of the construction:

lemma reduced_run_invariants:

assumes "reduced_run q vi va | w w1 wa u”’

” 9

shows "w € R.pathsq” "va =5l ~u” "01 @ [l =p w1” "w = w1 Q wy”

”

?filter visible w1 = filter visible w” ”set wo C invisible”

"Ind (set w2) (range u)” ”length v1 < length wi” ”length v1 < length w”
We also prove that the construction can always be extended:

lemma reduced_run_step :

” ” 9

assumes "¢ € reachable” v —~ [a] —~ v2 € runs ¢’
assumes "reduced_run q v1 ([a] ~ v2) l wwi w2 v’

. ! ! i i I
obtains /' w wi wa u
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where ”reduced_run ¢ (v1 @ [a]) v2 I’ (w@ w') (w1 @ w}) (w2 @ wh) u'”
Proving reduced_run_invariants and reduced_run_step required a lot of effort as the informal
proof only provided a rough sketch of the arguments underlying these proofs.

With these lemmata proven, we can now show our lemma [28| Theorem 3.11]:

lemma reduction_word:

) »

assumes "¢ € reachable” "v € runs ¢”

obtains v w
where "w € R.runsq” "v =5 uv” "u <5 w”’
"filter visible (inf_llist u) = lfilter visible (inf_llist w)”
proof —
def P ="Xkwwi. 31wz u. reduced_run q (prefix k v) (suffix k v) l w w1 w2 w”
obtain w w; where "V k. Pk (wk) (w1 k)” ”chain w” ”chainwy” ...

proof (rule chain_construct_2’[of P])

show "PO[][]” ...
next
fix kww

assume " P kw wi”
show "3 w’ wi. P (Suck)w wi Aw <w' Awr <wi” ...
show "k < length w” "k < length wi” ...
qed rule
show ?thesis
proof
show ”limit w € R.runsq” ...
show "v = limit wq” ...
show ”limit w1 <7 limit w” ...
show ”lfilter visible (inf_llist (limit w1 )) = lfilter visible (inf_llist (limit w))”

qed
qed

Here, ‘Ifilter’ is the filter function on lazy lists and ‘inf_llist’ converts an infinite sequence
to a lazy list. Proofs are enclosed in ‘proof ... qed’ blocks, with ‘next’ separating subgoals.
Inside these blocks, arbitrary propositions can be proven. Existential statements use the
form ‘obtain . .. where’. Local definitions can also be made via ‘def’. The directives ‘fix’,
‘assume’, and ‘show’ are used to work with universally quantified variables, assumptions,
and goals, respectively. Once all goals have been discharged via ‘show’, the proof block can
be closed via ‘ged’. Note that we used ‘. ..” to signify that a proof was omitted at a certain
position.

In the proof, we have to show that there exists an infinite sequence ‘w’ with the required
properties in the reduced system automaton. While this step is almost completely skipped in
the informal proof, the formal one forces us to consider it rigorously. Lemma reduced_run_step
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guarantees that for any number of steps that were already taken, another step can be taken,
extending the sequence in the process. Intuitively, such a theorem can be applied “infinitely
often” to obtain an infinite sequence, but this is not logically sound. Performing a step like
this in a formal proof requires precise reasoning and in our case the use of Hilbert’s epsilon
operator in lemma chain_construct_2’. This lemma turns the ability to perform an arbitrary
number of steps into an infinite chain of finite sequences where each sequence is a prefix of
the one following it. This property is stated via the constant ‘chain’. The constant ‘limit’ is
then used to derive the uniquely determined infinite sequence from this chain.

We believe that these difficulties do not point to a shortcoming of formal logic or the
particular system we are using. Instead, we think that situations like this one point to areas
where it became customary to use sloppy reasoning in informal proofs, possibly leading to
mistakes or overlooked side conditions. For instance, it is often not made clear in which way
variables depend on each other or what guarantees that an infinite sequence can actually be
constructed from an infinite set of finite sequences. Formal proofs point out required side
conditions like the fact that the infinite concatenation of these finite sequences needs to be
infinite. It also brought attention to the fact that many concepts need to be defined on both
finite and infinite sequences and that they need to correspond to each other in a specific way.

The formal proof constitutes both a certificate of the theorem’s correctness as well as a
detailed documentation of the reasoning used to prove it. As mentioned in sections[3.3] 3:4]
and[3.3] a large amount of foundational work was required in order to formally prove the
abstract correctness theorem.

3.7 The SM Language

In order to implement an executable reduction algorithm, we require a concrete modeling
language. We use a simple fragment of PRoMELA that is expressive enough to model interesting
examples. We call this fragment the SM language (simple modeling language).

A program in this language consists of a set of processes, each of which is described using
a guarded command language. Each process has a set of local variables and communication
between processes is modeled via global variables. A configuration of the system consists
of a valuation of the global variables and a list of process configurations, where a process
configuration consists of a command and a valuation of the local variables.

Most features of PRoMELA are either contained in the SM language or can be expressed
directly using global variables. The behavior of channels, small integers, arrays, dynamic
processes, and process priorities has to be emulated via constructions using global variables.

We specify a structural operational semantics that establishes a control flow graph where
the nodes are commands and the edges are labeled with local actions. A local action can be a
guarded assignment, a test, or the skip action. Each local action is assigned an enabledness
check and an effect function on the local and global variables.

The system semantics describes a step relation between configurations by nondeterminis-
tically picking a process from a configuration, following an edge in the control flow graph
from the process’ command that is labeled with an enabled local action, and applying the
effect of the local action to the local and global state. To ensure that all runs of the system are
infinite, we apply a stuttering extension, that is, if there is no process with an enabled action,
the system may take a step that does not change the configuration.

Since we want to use the SM language in an LTL model checker, we need to define aromic
propositions and their connection to the system states. In our case, atomic propositions are
simply expressions in the SM language that contain only global variables. Then, we define the
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interpretation function to map each state to the set of expressions that evaluate to a non-zero
value in this state. Finally, we define the language of a program as the set of infinite sequences
of sets of atomic propositions that correspond to infinite runs of the program:

L :: program — exp set word set 8)

We define a global action to consist of a process ID and a control flow graph edge. The
process ID is the position of the associated process in the list of all processes. A global action
is enabled if the associated process exists, the control flow graph edge is consistent with the
current command of the associated process, and the corresponding local action is enabled.
Execution of a global action transforms the state of the associated process and the global
variables according to the corresponding local action.

3.8 Reduction Algorithm

We make some approximations similar to those made in Spin in order to define an efficiently
executable function which selects an ample set for a configuration, thereby implementing
the reduction algorithm. We call an action statically enabled if it occurs on a control flow
graph edge consistent with the current command of its process in the configuration. This
overapproximates the set of enabled actions by ignoring the enabledness conditions.

Similar to Spin, candidates for ample sets are the sets of enabled actions of each process.
We make a crude approximation and allow a nonempty set of enabled actions of a process as
an ample set, if (1) there is no statically enabled action of the process that reads or writes
global variables, and (2) none of the enabled actions corresponds to a sticky edge in the
control flow graph. Here, (1) is a way of guaranteeing condition independent (see section
[2-1), and (2) is the condition imposed by static partial order reduction (see section [2.2).

We implemented and verified an algorithm based on depth-first search which computes
the set of sticky edges before the model checking phase. This algorithm starts with the set of
edges labeled with actions containing global variables and extends it to a feedback arc set on
the control flow graphs of the processes. For this task, we used the DFS Framework [18]],
which simplifies the implementation and verification of efficient DFS-based algorithms.

We define the reduced system automaton based on this ample function and prove that
all of the reduction conditions from section 2] are fulfilled. This allows us to invoke the
abstract correctness theorem to obtain stuttering equivalence between the language of the
system automaton and that of the reduced system automaton. Together with the assumption
that the formula is next-free, this implies that using the reduced system automaton for model
checking instead of the system automaton does not change the result.

3.9 Architecture of the Cava Model Checker

Since the previous publication on the Cava model checker [6]], many improvements have been
made. Following an overhaul of the automata library [20, |14], the architecture of the model
checker has been generalized to a point where it can be considered a generic framework
for assembling formally verified LTL model checkers. It is this architecture that we want to
describe in this section. Figure [2| shows the data flow of the Cava model checker. We use
generalized Biichi graphs to represent the product automaton, which are generalized Biichi
automata over the unit alphabet. As the alphabet is not needed to check for emptiness, this
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model formula

. LTL-to-GBA
semantics
generalized
system Biichi
automaton automaton

synchronous product

generalized
Biichi
graph

emptiness check

projection

4

result

Fig. 2: Architecture of the Cava Model Checker. The boxes show the data, and the arrows show the
operations of the model checker. The input is a model and a formula. The semantics of the modeling
language interprets the model as a system automaton, and the LTL-to-GBA conversion creates a
generalized Biichi automaton from the formula. Then, the synchronous product of the two is formed,
and checked for emptiness. The result is either emptiness or an accepting run of the product automaton.
In the latter case, the run is projected back to the system automaton.

avoids forcing implementations to include alphabet information in their product automaton
implementation.

In order to get a flexible framework, we specify the data and components on an abstract
level. Automata are specified as relations over nodes and a function assigning sets of atomic
propositions to nodes. The specification is parameterized over the types of nodes and atomic
propositions. We do not specify an abstract model, but start with the system automaton.

The abstract components are nondeterministic specifications of the expected behavior. For
example, we specify the emptiness check ‘echk_abs’ to return ‘UNSAT”’ together with some
accepting run ‘ry’ of the generalized Biichi graph ‘G” if there is one, and ‘SAT’ otherwise:

case echk_abs G of
SAT = G.runs = {} | )
UNSAT rx = rx € G.runs

We assemble the abstract components to form the abstract model checker ‘cava_abs’
and show its correctness:

case cava_abs S ¢ of
SAT = intp' S.runs C £ ¢ | (10)
UNSAT r = r € Sruns Aintpr ¢ L ¢
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For a system automaton ‘S’ and an LTL formula ‘p’, the model checker returns ‘SAT” if all
runs of the system satisfy the formula, and ‘UNSAT 7 if ‘s’ is a run that does not satisfy the
formula. Note that LTL formulae are independent of the system: They specify valid sequences
of sets of atomic propositions, while a run of the system is a sequence of system states. The
function ‘intp’ maps a run to the sequence of sets of atomic propositions that hold at the
states of the run, and ‘intp"’ is its extension to sets of runs. Note that ‘intp' S.runs = £ S".

Next, we assume that we have implementations of the components that match the
implementations of the data. Formally, we fix refinement relations to relate the implementation
of data to its abstract representation, and assume that the components’ implementations
refine the abstract components’ specifications. This means that for related arguments, the
implementation and the abstract component return related results. For example, we assume
refinement relations ‘gbg_rel” and ‘resx_rel” for generalized Biichi graphs and results of the
emptiness check, and an implementation ‘echk_impl’, such that:

(echk_impl, echk_abs) € gbg_rel — resx_rel (11)

Then, we assemble the assumed implementations of the components to a model checker
implementation ‘cava_impl’, and show that it refines the abstract model checker:

(cava_impl, cava_abs) € sa_rel — res_rel (12)

Here, ‘sa_rel’ relates the system automata implementation to the abstract system automata,
and ‘res_rel’ relates projected results.

Instantiating the above with actual implementations of the components and the data
yields an executable model checker and its correctness theorem. This approach has several
advantages. Firstly, the components of the model checker can be developed separately, as
long as they match the implementations of the passed data. Secondly, the Cava Automata
Library [[14]] provides efficient implementations of the required automata types, which can be
conveniently used by the components. Finally, components can easily be added or exchanged.
For example, the current Cava model checker supports two emptiness check algorithms, one
based on nested DFS, and the other based on SCCs, which can be selected by a configuration
option. Adding another algorithm amounts to proving that the algorithm refines the abstract
emptiness check, and then adding a new configuration option to Cava. In particular, it does
not require changing other components or the overall correctness proof.

Finally, using this refinement-based approach allows for the seamless integration of many
implementation techniques required to design an efficient model checker:

— When instantiating Cava with a modeling language, the modeling language has a
semantics which maps a model to an abstract system automaton. Moreover, we compile a
model to a system automaton implementation, usually a successor function, which maps
configurations to lists of successor configurations. Showing compiler correctness amounts
to showing that the abstract system automaton is related to the concrete one. Then, the
Cava correctness theorem (theorem[T2) implies that the result of the implementation is
related to the abstract system automaton, that is, the semantics of the model.

— The states of the product automaton are constructed lazily. This saves memory if a
counterexample is found before the whole state space is explored, as the unexplored parts
of the state space do not occupy memory. This only affects the product construction
component and the generalized Biichi graph that is implemented by its successor function.

— The alphabets of the automata are sets of atomic propositions. However, these sets
have exponential size in general, so storing them explicitly is not efficient. Instead, the
automaton constructed from the LTL formula stores two sets ‘P’ and ‘N’ of atomic
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propositions, representing all sets ‘A’ with ‘P C A A AN N = {}". This representation
is naturally generated by many algorithms that convert LTL formulae to automata.

The automaton constructed from the model uses system states to represent the set of all
atomic propositions that hold in a state. On product construction, it has to be decided
whether the intersection of two sets of atomic propositions, one represented by ‘(P, N)’
and the other represented by a system state ‘S’ is empty. This can simply be done by
evaluating the atomic propositions in ‘P’ and ‘N’ on ‘S".

— The result of the emptiness check may contain a counterexample, which is an infinite
run of the generalized Biichi graph. Clearly, a direct representation of infinite runs is not
possible. However, a common representation is to use a lasso, that is, a finite path to an
accepting state, and a finite, non-empty loop on this state, which has to contain states
from all acceptance classes of the generalized Biichi graph. For a non-empty graph, there
is always an accepting path that can be described by a lasso, which can be computed
naturally by the emptiness check algorithms.

3.10 Integration of Partial Order Reduction

With all these prerequisites out of the way, we can now integrate partial order reduction
into the Cava model checker. We refine the ample function, the execution function, and the
interpretation function to efficiently executable implementations. This includes compilation
of the model to a more efficient representation. Then, we replace the implementation of the
successor function with the ample function. Instantiating the generic infrastructure of the
Cava model checker then yields an executable LTL model checker ‘cava_por’” which uses the
reduced system automaton. Combining its correctness theorem with that of abstract partial
order reduction and the theorem about stuttering invariance of LTL properties then yields the
main theorem of our development:

case cava_por S ¢ of SAT=LSC L |UNSAT=LSZ Ly (13)

This theorem states that the function ‘cava_por’ decides whether or not the sequences of
atomic propositions admitted by runs of the program satisfy the LTL formula. The meaning
of this statement only depends on the abstract semantics of the SM language (£ S) and the
abstract semantics of LTL formulae (£ ). All other parts of the formalization, including
partial order reduction, LTL model checking, and implementations, are covered by this
machine-checked correctness theorem. Note that the model checker can actually provide a
counterexample in case the program does not satisfy the formula. However, we only show the
simplified view here as it is easier to understand.

Finally, Isabelle/HOL can generate Standard ML code from the definition of the function
‘cava_por’. This code then constitutes a formally verified and executable LTL model checker.
A snapshot of this formalization can be found athttps://cava.in. tum.de/CAVA_POR. We
are currently working on integrating the partial order reduction formalization into an up-to-date
AFP entry of the Cava model checker, which can be found at https://www.isa-afp.org.

We conclude with some statistics about the formalization, which took about 15 person-
months and resulted in about 13k lines of theory text being added to the model checker.
This includes both definitions and proofs and splits up into 6k lines for abstract partial order
reduction and 7k lines for the SM language and the associated program analysis. The size of
the whole codebase of the model checker and its libraries is about 140k lines of theory text.


https://cava.in.tum.de/CAVA_POR
https://www.isa-afp.org
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4 Evaluation

We perform some basic sanity checks using systems that admit no reduction and complete
sequentialization. As a practical example, we implement a distributed mutual exclusion
algorithm called MuLoG [24] using the supported PrRoMELA fragment. The tested property
specifies that at most one process can be in the critical section at any point in time. We
perform model checking using both the Cava and the Sein model checkers, both with and
without partial order reduction. Figure [3]shows the reduction effectiveness for this algorithm.

n | SeIN | Sein* | Factor SPIN | Cava | Cava* | Factor Cava
1 27 27 1 52 52 1
2 2,674 2,004 1.33 5,538 4,284 1.29
3 2,376,180 1,171,578 2.03 5,205,376 | 2,779,218 1.87

Fig. 3: Reduction Effectiveness for MuLog. Shown are the number of states that were explored during
model checking using both the Spin and the Cava model checkers for a given number of processes
‘n’. The starred variants indicate where partial order reduction was used. The table also shows the
reduction factor that was achieved by each model checker.

Both the Cava and the Spin model checker show a significant reduction in the number
of states. The reduction factors are comparable (roughly 1.3 for ‘n = 2’ and roughly 2 for
‘n = 3’). The SpiNn model checker explores fewer states in total (roughly factor 2) and has
shorter execution times (roughly factor 400) than the Cava model checker.

We would like to emphasize that in this paper, it is not our goal to compete with SpiN.
Instead, our focus is on providing a verified and executable reference implementation of
partial order reduction. The SpiNn model checker employs various other optimizations and
compilation to C code, while the Cava model checker interprets the semantics of the modeling
language. Thus, little insight can be gained by directly comparing execution time and memory
consumption. Incorporating these optimizations is orthogonal to partial order reduction and
we consider this subject of further research. Due to the modular architecture of the Cava
model checker, doing so will not make this contribution obsolete. At this point, it will also be
possible to perform a more comprehensive evaluation with multiple example algorithms.

5 Dynamic Partial Order Reduction with On-The-Fly Model Checking

This section presents a counterexample for the invalid lemma mentioned in section[2.2] In
[I28]], the partial order reduction algorithm designed for off-line model checking is modified
and used with on-the-fly model checking. When doing off-line partial order reduction, the
reduced system automaton is explored via depth-first search and its product with the formula
automaton ‘3’ is checked for emptiness. On-the-fly partial order reduction consists of defining
the reduced product automaton ‘A’ directly and checking its emptiness while exploring it
via nested depth-first search.

The correctness proof introduces an intermediate automaton ‘G’’ that is structurally
similar to ‘A" but fulfills the conditions of the off-line correctness theorems. Together with
the formula automaton ‘53’, the following claim is then used to prove correctness:

LA=LGNLB (14)

However, in this section, we will present an example for which this claim does not hold. This
example is adapted from [3} section 8.4], where we originally discovered the problem.
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Figures [] and [5] show the system automaton ‘G” and the formula automaton ‘5’
respectively.

{p2}

Fig. 4: System Automaton ‘G”. Fig. 5: Formula Automaton ‘13’.

We define the interpretation function ‘intp’ as follows:

{p1} ifg=9¢
: {p2} ifq=1~
tpg = 15
mip q {pz} ifg=r 15)
{} otherwise

With this, we have ‘visible = {b, e, f}".
We use the independence relation ‘I = {(a, d), (d, a), (b, d), (d,b), (¢,d), (d,c)} and
define the ample function as follows:

{d} ifz = aand (¢,y) is not open
ample (z,y) =< {a} ifz = «and (8, y) is not open (16)
en z otherwise

If more than one condition is met, the topmost valid equation is used. This function fulfills all
the necessary conditions.

Figure |§| shows the reduced product automaton ‘A"’ generated by the ample function
given above. In this case, the intermediate automaton ‘G”’ looks exactly like ‘A", except that
all states are accepting.

In order to create a counterexample, we define the word ‘w’:

w={} A} {3 {3 A{p2)}” (17)
We have ‘w € LG ANw € LBAw ¢ L A” and thus obtain:

LA#ALG NLB (18)
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{p2} {p2} {p2}

Fig. 6: Reduced product automaton ‘4’’. We use shorthand state notation. For instance, the state
‘(avy f1) is simply written as ‘a1’

This contradicts the claim [I4] made earlier. However, the proof only needs a weaker version of
the claim:
LA={} < LG NLB={} (19)

Our example does not contradict this statement and we do in fact believe that it holds true.
Unfortunately, we have not been able to find a proof for this statement.

6 Conclusion

Formal verification is sometimes downplayed as “careful documentation of proven theorems”
or “filling in obvious details in proofs”. In practice, formal proofs usually involve extensive
modeling as well as abstraction, generalization, and simplification. What may seem like trivial
completion of the informal proof often involves bridging large gaps and proving omitted
corner cases. In this project, it even helped us discover an issue with the correctness proof
given in [28]]. This demonstrates both the need for and the usefulness of formal verification.

More importantly, we developed a formally verified and executable LTL model checker
with partial order reduction. As the verification is machine-checked and covers everything
from the abstract algorithm to the generated SML code, this is a very strong correctness
guarantee. Our model checker is fast enough to serve as a reference implementation for
other model checkers on models of realistic size. This constitutes a much-needed source of
trust given the widespread use of partial order reduction together with its history of issues.
The formalization can further serve as a detailed description of the theory of partial order
reduction and its correctness proof, which is useful since nontrivial gaps were bridged in the
proof. We also developed a significant amount of foundational theories that can be reused in
other projects. Finally, our work demonstrates that large systems can now be verified using
proof assistants via modularization and reuse of existing theories.

Future work consists of extending the SM language to make it more practical, with the
ultimate goal of supporting most or all of the features of PRoMELA. It is also possible to find
smaller sets of sticky actions by incorporating heuristics about variable increments/decrements
[10]. Another way to improve reduction consists of using additional static analysis to find
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larger independence relations. Finally, there is still room for improvement concerning the
implementation, especially via the use of imperative data structures [[13]].
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