
A Conference Management System with
Verified Document Confidentiality

Sudeep Kanav, Peter Lammich, and Andrei Popescu

Fakultät für Informatik, Technische Universität München, Germany

Abstract. We present a case study in verified security for realistic systems: the
implementation of a conference management system, whose functional kernel
is faithfully represented in the Isabelle theorem prover, where we specify and
verify confidentiality properties. The various theoretical and practical challenges
posed by this development led to a novel security model and verification method
generally applicable to systems describable as input–output automata.

1 Introduction
Information-flow security is concerned with preventing or facilitating (un)desired flow
of information in computer systems, covering aspects such as confidentiality, integrity,
and availability of information. Dieter Gollmann wrote in 2005 [15]: “Currently, infor-
mation flow and noninterference models are areas of research rather than the bases of
a practical methodology for the design of secure systems.” The situation has improved
somewhat in the past ten years, with mature software systems such as Jif [1] offering
powerful and scalable information flow technology integrated with programming.

However, the state of the art in information-flow security models [24] is still far from
finding its way towards applications to real-world systems. If we further restrict atten-
tion to mechanically verified work, the situation is even more dramatic, with examples
of realistic system verification [3,8,28] being brave exceptions. This is partly explained
by the complexity of information-flow properties, which is much greater than that of
traditional functional properties [23]. However, this situation is certainly undesirable,
in a world where confidentiality and secrecy raise higher and higher challenges.

In this paper, we take on the task of implementing, and verifying the confidentiality
of, a realistic system: CoCon,1 a full-fledged conference system, featuring multiple
users and conferences and offering much of the functionality of widely used systems
such as EasyChair [10] and HotCRP [11].

Conference systems are widely used in the scientific community—EasyChair alone
claims one million users. Moreover, the information flow in such systems possesses
enough complexity so that errors can sneak inside implementations, sometimes with
bitter–comical consequences. Recently, Popescu, as well as the authors of 267 papers
submitted to a major security conference, initially received an acceptance notification,
followed by a retraction [19]: “We are sorry to inform you that your paper was not
accepted for this year’s conference. We received 307 submissions and only accepted 40
of them . . . We apologize for an earlier acceptance notification, due to a system error.”2

1 A running version of CoCon, as well as the formal proof sources, are available at [20].
2 After reading the initial acceptance notification, Popescu went out to celebrate; it was only

hours later when he read the retraction.

Fig. 1: Confidentiality bug in HotCRP

The above is an information-integrity violation (a distorted decision was initially
communicated to the authors) and could have been caused by a human error rather than
a system error—but there is the question whether the system should not prevent even
such human errors. The problem with a past version of HotCRP [11] shown in Fig. 1 is
even more interesting: it describes a genuine confidentiality violation, probably stem-
ming from the logic of the system, giving the authors capabilities to read confidential
comments by the program committee (PC).

Although our methods would equally apply to integrity violations, guarding against
confidentiality violations is the focus of this verification work. We verify properties
such as the following (where DIS addresses the problem in Fig. 1):

PAP1: A group of users learn nothing about a paper unless one of them becomes an
author of that paper or a PC member at the paper’s conference

PAP2: A group of users learn nothing about a paper beyond the last submitted version
unless one of them becomes an author of that paper

REV: A group of users learn nothing about the content of a review beyond the last
submitted version before the discussion phase and the later versions unless one of
them is that review’s author

DIS: The authors learn nothing about the discussion of their paper
We will be concerned with properties restricting the information flow from the various
documents maintained by the system (papers, reviews, comments, decisions) towards
the users of the system. The restrictions refer to certain conditions (e.g., authorship, PC
membership) as well as to upper bounds (e.g., at most the last submitted version) for
information release.

We specify CoCon’s kernel using the proof assistant Isabelle [29, 30], with which
we formulate and verify confidentiality. The functional implementation of this kernel
is automatically synthesized from the specification and wrapped into a web application
offering the expected behavior of a conference system as a menu-based interface.

A first contribution of this paper is the engineering approach behind the system
specification and implementation (§2). To keep the Isabelle specification (§3) manage-
able, yet faithful to the implementation and therefore reach a decent balance between
trust and usability, we employ state-of-the-art theorem proving and code synthesis tech-
nology towards a security-preserving layered architecture.

A second contribution is a novel security model called bounded-deducibility (BD)
security, born from confronting notions from the literature with the challenges posed by
our system (§4). The result is a reusable framework, applicable to any IO automaton.
Its main novelty is wide flexibility: it allows the precise formulation of role-based and
time-based declassification triggers and of declassification upper bounds. We endow
this framework with a declassification-oriented unwinding proof technique (§5).

Our third and last contribution is the verification itself: the BD security framework,
its general unwinding theorem, and the unwinding proofs for CoCon’s confidentiality
properties expressed as instances of BD security are all mechanized in Isabelle.

2

2 Overall Architecture and Security Guarantees

Web
Application

Functional
Program

Isabelle
Specification

code generation

The architecture of our system follows the paradigm of security by design:

– We formalize and verify the kernel of the system in the Isabelle proof assistant
– The formalization is automatically translated in a functional programming language
– The translated program is wrapped in a web application

Isabelle Specification We specify the system as an input–output automaton (Mealy
machine), with the inputs called “actions”. We first define, using Isabelle’s records, the
notions of state (holding information about users, conferences, and papers) and user
action (representing user requests for manipulating documents and rights in the system:
upload/download papers, edit reviews, assign reviewers, etc.). Then we define the step
function that takes a state and an action and returns a new state and an output.
Scala Functional Program The specification was designed to fall within the exe-
cutable fragment of Isabelle. This allows us to automatically synthesize, using Isabelle’s
code generator [17], a program in the functional fragment of Scala [2] isomorphic to
the specification. The types of data used in the specification (numbers, strings, tuples,
records) are mapped to the corresponding Scala types. An exception is the Isabelle type
of paper contents, which is mapped to the Scala/JVM file type.
Web Application Finally, the Scala program is wrapped in a web application, offering
a menu-based user interface. Upon login, a user sees his conferences and his roles for
each of them; the menus offer role-sensitive choices, e.g., assign reviewers (for chairs)
or upload papers (for authors).
Overall Security Guarantees Our Isabelle verification targets information-flow prop-
erties. These properties express that for any possible trace of the system, there is no way
to infer from certain observations on that trace (e.g., actions performed by designated
users), certain values extracted from that trace (e.g., the paper uploads by other users).
The question arises as to what guarantees we have that the properties we verified for-
mally for the specification also hold for the overall system. E.g., if we prove in Isabelle
that users never learn the content of other users’ papers, how can we be sure that this
is actually the case when using the web interface? We do not have a formal answer to
this, but only an informal argument in terms of the trustworthiness of two trusted steps.

First, we need to trust Isabelle’s code generator. Its general-purpose design is very
flexible, supporting program and data refinement [17]. In the presence of these rich
features, the code generator is only known to preserve partial correctness, hence safety
properties [16, 17]. However, here we use the code generator in a very restrictive man-
ner, to “refine” an already deterministic specification which is an implementation in its

3

own right—the code generator simply translates it from the functional language of Isa-
belle to that of Scala. In addition, all the used Isabelle functions are proved to terminate,
and nontrivial data refinement is disabled. These allow us to (informally) conclude that
the synthesized implementation is trace-isomorphic to the specification, hence the for-
mer leaks as little information as the latter. (This meta-argument does not cover timing
channels, but these seem to be of little importance for leaking document content.)

Second, we need to trust that no further leakage occurs via the web application
wrapper. To acquire this trust, we make sure that the web application acts as a stateless
interface to the step function: upon a user request, all it does is invoke “step” (one or
multiple times) with input from the user and then process and display the output of
the step function. The third-party libraries used by our web application also have to be
trusted to not be vulnerable to exploits.

In summary, the formal guarantees we provide in Isabelle have to be combined
with a few trusted steps to apply to the whole system. Our verification targets only the
system’s implementation logic—lower-level attacks such as browser-level forging are
out of its reach, but are orthogonal issues that could in principle be mitigated separately.

3 System Specification
The system behaves similarly to EasyChair [10], a popular conference system created
by Andrei Voronkov. It hosts multiple users and conferences, allowing the creation of
new users and conferences at any time. The system has a superuser, which we call
voronkov as a tribute to EasyChair. The voronkov is the first user of the system, and his
role is to approve new-conference requests. A conference goes through several phases.
No-Phase Any user can apply for a new conference, with the effect of registering it in
the system with “No-Phase”. After approval from the voronkov, the conference moves
to the setup phase, with the applicant becoming a conference chair.
Setup A conference chair can add new chairs and new regular PC members. From here
on, moving the conference to successor phases can be done by the chairs.
Submission A user can list the conferences awaiting submissions (i.e., being in sub-
mission phase). He can submit a paper, upload new versions, or indicate other users as
coauthors thereby granting them reading and editing rights.
Bidding Authors are no longer allowed to upload or register new papers and PC mem-
bers are allowed to view the submitted papers. PC members can place bids, indicating
for each paper one of the following preferences: “want to review”, “would review”, “no
preference”, “would not review”, and “conflict”. If the preference is “conflict”, the PC
member cannot be assigned that paper, and will not see its discussion. “Conflict” is
assigned automatically to papers authored by a PC member.
Reviewing Chairs can assign papers to PC members for reviewing either manually or
by invoking an external program to establish fair assignment based on some parameters:
preferences, number of papers per PC member, and number of reviewers per paper.
Discussion All PC members having no conflict with a paper can see its reviews and can
add comments. Also, chairs can edit the decision.
Notification The authors can read the reviews and the accept/reject decision, which no
one can edit any longer.

4

3.1 State, Actions, and Step Function

The state stores the lists of registered conference, user, and paper IDs and, for each
ID, actual conference, user, or paper information. Each paper ID is assigned a paper
having title, abstract, content, and, in due time, a list of reviews, a discussion text, and
a decision: Paper = String×String×Paper_Content×List(Review)×Dis×Dec

We keep different versions of the decision and of each review, as they may transpar-
ently change during discussion: Dec= List(String) and Review= List(Review_Content)
where Review_Content consists of triples (expertise, text, score).

In addition, the state stores: for each conference, the list of (IDs of) papers submitted
to that conference, the list of news updated by the chairs, and the current phase; for each
user and paper, the preferences resulted from biddings; for each user and conference, a
list of roles: chair, PC member, paper author, or paper reviewer (the last two roles also
containing paper IDs).
record State =
confIDs : List(ConfID) conf : ConfID→ Conf userIDs : List(UserID)
pass : UserID→ Pass user : UserID→ User roles : ConfID→ UserID→ List(Role)
paperIDs : ConfID→ List(PaperID) paper : PaperID→ Paper
pref : UserID→ PaperID→ Pref news : ConfID→ List(String) phase : ConfID→ Phase

Actions are parameterized by user IDs and passwords. There are 45 actions forming
five categories: creation, update, undestructive update (u-update), reading and listing.

The creation actions register new objects (users, conferences, chairs, PC members,
papers, authors), assign reviewers (by registering new review objects), and declare con-
flicts. E.g., cPaper cid uid pw pid title abs is an action by user uid with password pw
attempting to register to conference cid a new paper pid with indicated title and abstract.

The update actions modify the various documents of the system: user information
and password, paper content, reviewing preference, review content, etc. For example,
uPaperC cid uid pw pid ct is an attempt to upload a new version of paper pid by modi-
fying its content to ct. The u-update actions are similar, but also record the history of a
document’s versions. E.g., if a reviewer decides to change his review during the discus-
sion phase, then the previous version is still stored in the system and visible to the other
PC members (although never to the authors). Other documents subject to u-updates are
the news, the discussion, and the accept-reject decision.

The reading actions access the content of the system’s documents: papers, reviews,
comments, decisions, news. The listing actions produce lists of IDs satisfying various
filters—e.g., all conferences awaiting paper submissions, all PC members of a confer-
ence, all the papers submitted by a given user, etc.

Note that the first three categories of actions are aimed at modifying the state, and
the last two are aimed at observing the state through outputs. However, the modification
actions also produce a simple output, since they may succeed or fail. Moreover, the
observation actions can also be seen as changing the state to itself. Therefore we can
assume that both types produce a pair consisting of a new state and an action.

We define the function step : State→Act→Out×State that operates by determin-
ing the type of the action and dispatching specialized handler functions. The initial state
of the system, istate ∈ State, is the one with a single user, the voronkov, and a dummy
password (which can be changed immediately). The step function and the initial state
are the only items exported by our specification to the outside world.

5

4 Security Model

Here we first analyze the literature for possible inspiration concerning a suitable secu-
rity model for our system. Then we introduce our own notion, which is an extension of
Sutherland’s nondeducibility [38] that factors in declassification triggers and bounds.

4.1 Relevant Literature
There is a vast amount of literature on information-flow security, with many variants of
formalisms and verification techniques. An important distinction is between notions that
completely forbid information flow (between designated sources and sinks) and notions
that only restrict the flow, allowing some declassification. Historically, the former were
introduced first, and the latter were subsequently introduced as generalizations.
Absence of Information Flow The information-flow security literature starts in the
late 1970s and early 1980s [7, 13, 32], motivated by the desire to express the absence
of information leaks of systems more abstractly and more precisely than by means of
access control [4, 21]. Very influential were Goguen and Meseguer’s notion of nonin-
terference [13] and its associated proof by unwinding [14]. Unwinding is essentially a
form of simulation that allows one to construct incrementally, from a perturbed trace of
the system, an alternative “corrected” trace that “closes the leak”. Many other notions
were introduced subsequently, either in specialized programming-language-based [36]
or process-algebra-based [12,35] settings or in purely semantic, event-system-based set-
tings [25,26,31,38]. (Here we are mostly interested in the last category.) These notions
are aimed at extending noninterference to nondeterministic systems, closing Trojan-
horse channels, or achieving compositionality. The unwinding technique has been gen-
eralized for some of these variants—McLean [27] and Mantel [23] give overviews.

Even ignoring our aimed declassification aspect, most of these notions do not ade-
quately model our properties of interest exemplified in the introduction. One problem is
that they are not flexible enough w.r.t. the observations. They state nondetectability of
absence or occurrence of certain events anywhere in a system trace. By contrast, we are
interested in a very controlled positioning of such undetectable events: in the property
PAP2 from the introduction, the unauthorized user should not learn of preliminary (non-
final) uploads of a paper. Moreover, we are not interested in whole events, but rather in
certain relevant values extracted from the events: e.g., the content of the paper, and not
the ID of one of the particular authors who uploads it.

A fortunate exception to the above flexibility problems is Sutherland’s early notion
of nondeducibility [38]. One considers a set of worlds World and two functions F :
World→ J and H : World→ K. For example, the worlds could be the valid traces of
the system, F could select the actions of certain users (potential attackers), and H could
select the actions of other users (intended as being secret). Nondeducibility of H from F
says that the following holds for all w ∈World: for all k in the image of H, there exists
w1 ∈World such that F w1 = F w and H w1 = k. Intuitively, from what the attacker
(modeled as F) knows about the actual world w, the secret actions (the value of H)
could be anything (in the image of H)—hence cannot be “deduced”. The generality of
this framework allows one to fine-tune both the location of the relevant events in the
trace and their values of interest. But generality is no free lunch: it is no longer clear
how to provide an unwinding-like incremental proof method.

6

Halpern and O’Neill [18] recast nondeducibility as a property called secrecy main-
tenance, in a multi-agent framework of “runs-and-systems” [33] based on epistemic
logic. Their formulation enables general-purpose epistemic logic primitives for deduc-
ing absence of leaks, but no unwinding or any other inductive reasoning technique.

On the practical verification side, Arapinis et al. [3] introduce ConfiChair, a con-
ference system that improves on standard systems such as EasyChair by guaranteeing
that “the cloud”, consisting of the system provider/administrator, cannot learn the con-
tent of the papers and reviews and cannot link users with their written reviews. This is
achieved by a cryptographic protocol based on key translations and mixes. They encode
the desired properties as strong secrecy (a property similar to Goguen-Meseguer nonin-
terference) and verify them using the ProVerif [5] tool specialized in security protocols.
Our work differs from theirs in three major aspects. First, they propose a cryptography-
based enhancement, while we focus on a traditional conference systems not involving
cryptography. Second, they manage to encode and verify the desired properties auto-
matically, while we use interactive theorem proving. While their automatic verification
is an impressive achievement, we cannot hope for the same with our targeted properties
which, while having a similar nature, are more nuanced and complex. E.g., proper-
ties like PAP2 and REV, with such flexible indications of declassification bounds, go
far beyond strong secrecy and require interactive verification. Finally, we synthesize
functional code isomorphic to the specification, whereas they provide a separate imple-
mentation, not linked to the specification which abstracts away from many functionality
aspects.
Restriction of Information Flow A large body of work on declassification was pur-
sued in a language-based setting. Sabelfeld and Sands [37] give an overview of the state
of the art up to 2009. Although they target language-based declassification, they phrase
some generic dimensions of declassification most of which apply to our case:

– What information is released? Here, document content, e.g., of papers, reviews, etc.
– Where in the system is information released? In our case, the relevant “where” is

a “from where” (referring to the source, not to the exit point): from selected places
in the system trace, e.g., the last submitted version before the deadline.

– When can information be released? After a certain trigger occurs, e.g., authorship.
Sabelfeld and Sands consider another interesting instance of the “where” dimension,
namely intransitive noninterference [22, 34]. This is an extension of noninterference
that allows downgrading of information, say, from High to Low, via a controlled De-
classifier level. It could be possible to encode aspects of our properties of interest as
intransitive noninterference—e.g., we could encode the act of a user becoming an au-
thor as a declassifying action for the target paper. However, such an encoding would be
rather technical and somewhat artificial for our system; additionally, it is not clear how
to factor in our aforementioned specific “where” dimension.

Recently, the “when” aspect of declassification has been included as first-class cit-
izen in customized temporal logics [6, 9], which can express aspects of our desired
properties, e.g., “unless/until he becomes an author”. Their work is focused on effi-
ciently model-checking finite systems, whereas we are interested in verifying an infinite
system. Combining model checking with infinite-to-finite abstraction is an interesting
prospect, but reflecting information-flow security properties under abstraction is diffi-
cult problem.

7

4.2 Bounded-Deducibility Security

We introduce a novel notion of information-flow security that:

– retains the precision and versatility of nondeducibility
– factors in declassification as required by our motivating examples
– is amenable to a general unwinding technique

We shall formulate security in general, not only for our concrete system from §3.1,
but for any IO automaton indicated by the following data. We fix sets of states, State,
actions, Act, and outputs, Out, an initial state istate ∈ State, and a step function step :
State→ Act→ Out× State. We let Trans, the set of transitions, be State×Act×
Out×State. Thus, a transition trn is a tuple, written (s, a, o, s′); s indicates the source,
a the action, o the output, and s′ the target. trn is called valid if it is induced by the step
function, namely step s a = (o, s′).

A trace tr ∈Trace is any list of transitions: Trace= List (Trans). For any s∈ State,
the set of valid traces starting in s, Valids ⊆ Trace, consists of the traces of the form
[(s1, a1, o1, s2), (s2, a2, o2, s3), . . . , (sn−1, an−1, on, sn)] for some n where s1 = s and
each transition (si, ai, oi, si) is valid. We will be interested in the valid traces starting in
the initial state istate—we simply call these valid traces and write Valid for Validistate.

Besides the IO automaton, we assume that we are given the following data:
– a value domain Val, together with a value filter ϕ : Trans→ Bool and a value pro-

ducer f : Trans→ Val
– an observation domain Obs, together with an observation filter γ : Trans→ Bool

and an observation producer g : Trans→ Obs

We define the value function V : Trace→ List(Val) componentwise, filtering out values
not satisfying ϕ and applying f :

V []≡ [] V([trn] · tr)≡ if ϕ trn then (f trn) · (V tr) else V tr

We also define the observation function O : Trace→ List(Obs) just like V, but using γ
as a filter and g as a producer.

We think of the above as an instantiation of the abstract framework for nondeducibil-
ity recalled in §4.1, where World = Valid, F = O, and H = V. Thus, nondeducibility
states that the observer O may learn nothing about V. Here we are concerned with a
more fine-grained analysis, asking ourselves what may the observer O learn about V.

Using the idea underlying nondeducibility, we can answer this precisely: Given a
trace tr ∈ Valid, the observer sees O tr and therefore can infer that V tr belongs to the
set of all values V tr1 for some tr1 ∈ Valid such that O tr1 = O tr. In other words, he
can infer that the value is in the set V (O−1(O tr) ∩ Valid), and nothing beyond this.
We call this set the declassification associated to tr, written Dectr.

We want to establish, under certain conditions, upper bounds for declassification,
or in set-theoretic terms, lower bounds for Dectr. To this end, we further fix:

– a declassification bound B : List(Val)→ List(Val)→ Bool
– a declassification trigger T : Trans→ Bool

The system is called bounded-deducibility-secure (BD-secure) if for all tr ∈ Trace such
that never T tr, it holds that {vl1 | B (V tr) vl1} ⊆ Dectr (where “never T tr” means “T
holds for no transition in tr”). Informally, BD security expresses the following:

8

If the trigger T never holds (i.e., unless T eventually holds, i.e., until T holds),
the observer O can learn nothing about the values V beyond B

We can think of B positively, as an upper bound for declassification, or negatively, as
a lower bound for uncertainty. On the other hand, T is a trigger removing the bound B—
as soon as T becomes true, the containment of declassification is no longer guaranteed.
In the extreme case of B being everywhere true and T everywhere false, we have no
declassification, i.e., total uncertainty—in other words, standard nondeducibility.

Unfolding some definitions, we can alternatively express BD security as the follow-
ing being true for all tr ∈ Valid and vl, vl1 ∈ List(Val):

never T tr ∧ V tr = vl ∧ B vl vl1 → (∃tr1 ∈ Valid. O tr1 = O tr ∧ V tr1 = vl1) (∗)

4.3 Discussion
BD security is a natural extension of nondeducibility. If one considers the latter as
reasonably expressing the absence of information leak, then one is likely to accept the
former as a reasonable means to indicate bounds on the leak. Unlike previous notions
in the literature, BD security allows to express the bounds as precisely as desired.

As an extension of nondeducibility, BD security is subject to the same criticism.
The problem with nondeducibility [25,27,35] is that in some cases it is too weak, since
it takes as plausible each possible explanation for an observation: if the observation se-
quence is ol, then any trace tr such that O tr = vl is plausible. But what if the low-level
observers can synchronize their actions and observations with the actions of other enti-
ties, such as a high-level user or a Trojan horse acting on his behalf, or even a third-party
entity that is neither high nor low? Even without synchronization, the low-level observer
may learn from outside the system, of certain behavior patterns of the high-level users.
Then the set of plausible explanations can be reduced, leading to information leak.

In our case, the low-level observers are a group of users assumed to never acquire
a certain status (e.g., authorship of a paper). The other users of the system are either
“high-level” (e.g., the authors of the paper) or “third-party” (e.g., the non-author users
not in the group of observers). Concerning the high-level users, it does not make sense
to assume that they would cooperate to leak information through the system, since they
certainly have better means to do that outside the system, e.g., via email. Users also
do not have to trust external software, since everything is filtered through the system
kernel—e.g., a chair can run an external linear-programming tool for assigning review-
ers, but each assignment is still done through the verified step function. As for the
possible third-party cooperation towards leaks of information, this is bypassed by our
consideration of arbitrary groups of observers: in the worst case, all the unauthorized
users can be placed in this group. However, the possibility to learn and exploit behavior
patterns from outside the system is not explicitly addressed by BD security—it would
be best dealt with by a probabilistic analysis.

4.4 Instantiation to Our Running Examples
Recall that BD security involves the following parameters:

– an IO automaton (State, Act, Out, istate, step)
– infrastructures for values (Val, ϕ, f) and observations (Obs, γ, g)
– a declassification specification: trigger T and bound B

9

In particular, this applies to our conference system automaton. BD security then cap-
tures our examples by suitably instantiating the observation and declassification param-
eters. For all our examples, we have the same observation infrastructure. We fix UIDs,
the set of IDs of the observing users. We let Obs = Act×Out. Given a transition, γ
holds iff the action’s subject is a user in UIDs, and g returns the pair (action,output).
O tr thus purges tr keeping only actions of users in UIDs.

The value infrastructure depends on the considered type of document. For PAP1 and
PAP2 we fix PID, the ID of the paper of interest. We let Val = List(Paper_Content).
Given a transition, ϕ holds iff the action is an upload of paper PID, and f returns the
uploaded content. V tr thus returns the list of all uploaded paper contents for PID.

The declassification triggers and bounds are specific to each example. For PAP1,
we define T(s, a, o, s′) as “in state s′, some user in UIDs is an author of PID or a PC
member of some conference cid where PID is registered,” formally:

∃uid ∈ UIDs. isAut s′ uid PID ∨ (∃cid. PID ∈ paperIDs s′ cid ∧ isPC s′ uid cid)

Intuitively, the intent with PAP1 is that, provided T never holds, users in UIDs learn
nothing about the various consecutive versions of PID. But is it true that they can learn
absolutely nothing? There is a remote possibility that a user could infer that no version
was submitted (by probing the current phases of the conferences in the system and
noticing that none has reached the submission phase). But indeed, nothing beyond this
quite harmless information should leak: any nonempty value sequence vl might as well
have been any other (possibly empty!) sequence vl1. Hence we define B vl vl1 as vl 6= [].

For PAP2, the trigger involves only authorship, ignoring PC membership at the pa-
per’s conference—we take T(s, a, o, s′) to be ∃uid ∈ UIDs. isAut s′ uid PID. Here we
have a genuine example of nontrivial declassification bound—since a PC member can
learn the paper’s content but only as its last submitted version, we define B vl vl1 as
vl 6= [] 6= vl1∧ last vl = last vl1, where the function last returns the last element of a list.

For REV, the value infrastructure refers not only to the review’s content but also to
the conference phase: Val= List (Phase×Review_Content). The functions ϕ and f are
defined similarly to those for paper contents, mutatis mutandis; in particular, f returns
a pair (ph, rct) consisting of the conference’s current phase and the updated review’s
content; hence V returns a list of such pairs. The trigger T is similar to that of PAP2 but
refers to review authorship rather than paper authorship. The bound B is more complex.
Any user can infer that the only possiblities for the phase are Reviewing and Discussion,
in this order—i.e., that vl has the form ul ·wl such that the pairs in ul have Reviewing as
first component and the pairs in wl have Discussion. Moreover, any PC member having
no conflict with PID can learn last ul (the last submitted version before Discussion),
and wl (the versions updated during Discussion, public to non-conflict PC members);
but (until T holds) nothing beyond these. So B vl vl1 states that vl decomposes as ul ·wl
as indicated above, vl1 decomposes similarly as ul1 ·wl, and last ul = last ul1.

DIS needs rephrasing to be captured as BD security. It can be decomposed into:

DIS1: An author always has conflict with his papers
DIS2: A group of users learn nothing about a paper’s discussion unless one of them

becomes a PC member at the paper’s conference having no conflict with the paper

DIS1 is a safety property. DIS2 is an instance of BD security defined as expected.

10

Source Declassification Trigger Declassification Bound
1 Paper Content Paper Authorship Last Uploaded Version
2 Paper Authorship or PC MembershipB Absence of Any Upload

3 Review Review Authorship
Last Edited Version
Before Discussion and
All the Later Versions

4
Review Authorship or
Non-Conflict PC MembershipD

Last Edited Version
Before Notification

5
Review Authorship or
Non-Conflict PC MembershipD or
PC MembershipN or Paper AuthorshipN

Absence of Any Edit

6 Discussion Non-Conflict PC Membership Absence of Any Edit
7 Decision Non-Conflict PC Membership Last Edited Version

8
Non-Conflict PC Membership or
PC MembershipN or Paper AuthorshipN

Absence of Any Edit

9
Reviewer
Assignment Non-Conflict PC MembershipR

Non-Conflict PC Membership
of Reviewers and No. of Reviews

10
Non-Conflict PC MembershipR or
Paper AuthorshipN

Non-Conflict PC Membership
of Reviewers

Phase Stamps: B = Bidding, D = Discussion, N = Notification, R = Review

4.5 More Instances
The above table shows an array of confidentiality properties formulated as BD security.
They provide a classification of relevant roles, statuses and conference phases that are
necessary conditions for degrees of information release. The observation infrastructure
is always the same, given by the actions and outputs of a fixed group of users as in §4.4.

The table lists several information sources, each yielding a different value infras-
tructure. In rows 1–8, the sources are actual documents: paper content, review, discus-
sion, decision. The properties PAP1, PAP2, REV and DIS2 form the rows 2, 1, 3, and 6.
In rows 9 and 10, the sources are the identities of the reviewers assigned to the paper.

The declassification triggers express paper or review authorship (being or becom-
ing an author of the indicated document) or PC membership at the paper’s conference,
with or without the requirement of lack of conflict with the paper. Some triggers are
also listed with “phase stamps” that strengthens the statements. E.g., row 2 contains a
strengthening of the trigger discussed so far for PAP1: “PC membershipB” should be
read as “PC membership and paper’s conference phase being at least bidding.” Some of
the triggers require lack of conflict with the paper, which is often important for the se-
curity statement to be strong enough. This is the case of DIS2 (row 6), since without the
non-conflict assumption DIS2 and DIS1 would no longer imply DIS. By contrast, lack
of conflict cannot be added to PC membership in PAP1 (row 2), since such a stronger
version would not hold: even if a PC member decides to indicate conflict with a paper,
this happens after he had the opportunity to see the paper’s content.

Most of the declassification bounds are similar to those from §4.4. The row 10 prop-
erty states that, unless one becomes a PC member having no conflict with a paper in the
reviewing phase or a paper’s author in the notification phase, one can’t learn anything
about the paper’s assigned reviewers beyond what everyone knows: that reviewers are
non-conflict PC members. If we remove the non-authorship restriction, then the user
may also infer the number of reviewers—but, as row 9 states, nothing beyond this.

11

5 Verification
To cope with general declassification bounds, BD security speaks about system traces
in conjunction with value sequences that must be produced by these traces. We extend
the unwinding proof technique to this situation and employ the result to the verification
of our confidentiality properties.

5.1 Unwinding Proof Method
We see from definition (∗) that to prove BD security, one starts with a valid tr (starting
in s and having value sequence vl) and an “alternative” value sequence vl1 such that
B vl vl1 and one needs to produce an “alternative” trace tr1 starting in s whose value
sequence is vl1 and whose observation sequence is the same as that of tr.

In the tradition of unwinding for noninterference [14, 34], we wish to construct tr1
from tr incrementally: as tr grows, tr1 should grow nearly synchronously. In order for
tr1 to have the same observation sequence (produced by O) as tr, we need to require
that the observable transitions of tr1 (i.e., for which γ holds) be identical to those of tr.

As for the value sequences (produced by V), we face the following problem. In
contrast to the unwinding relations studied so far in the literature, we must consider
an additional parameter, namely the a priori given value sequence vl1 that needs to be
produced by tr1. In fact, it appears that one would need to maintain, besides an unwind-
ing relation on states θ : State→ State→ Bool, also an “evolving” generalization of
the declassification trigger B; then θ and B would certainly need to be synchronized.
We resolve this by enlarging the domain of the unwindings to quaternary relations
∆ : State→ List(Val)→ State→ List(Val)→ Bool that generalize both θ and B. Intu-
itively, ∆ s vl s1 vl1 keeps track of the current state of tr, the remaining value sequence
of tr, the current state of tr1, and the remaining value sequence of tr1.

Let the predicate consume trn vl vl′ mean that the transition trn either produces a
value that is consumed from vl yielding vl′ or produces no value and vl = vl′. Formally:

if ϕ trn then (vl 6= [] ∧ f trn = head vl ∧ vl′ = tail vl) else (vl′ = vl)
In light of the above discussion, we are tempted to define an unwinding as a relation ∆
such that ∆ s vl s1 vl1 implies either of the following conditions:

– REACTION: For any valid transition (s, a, o, s′) and lists of values vl, vl′ such that
consume (s, a, o, s′) vl vl′ holds, either of the following holds:
• IGNORE: The transition yields no observation (¬ γ a o) and ∆ s′ vl′ s1 vl1 holds
• MATCH: There exist a valid transition (s1, a1, o1, s′1) and a list of values vl′1

such that consume (s, a, o, s′) vl1 vl′1 and ∆ s1 vl′ s′1 vl′1 hold
– INDEPENDENT ACTION: There exist a valid transition (s1, a1, o1, s′1) that yields

no observation (¬ γ a1 o1) and a list of values vl′1 such that consume a1 o1 vl1 vl′1
and ∆ s vl s′1 vl′1 hold

The intent is that BD security should hold if there exists an unwinding ∆ that “initially
includes” B. A trace tr1 could then be constructed incrementally from tr, vl and vl1,
applying REACTION or INDEPENDENT ACTION until the three lists become empty.

Progress However, such an argument faces difficulties. First, INDEPENDENT ACTION
is not guaranteed to decrease any of the lists. To address this, we strengthen INDEPEN-
DENT ACTION by adding the requirement that ϕ (s1, a1, o1, s′1) holds—this ensures

12

that vl1 decreases (i.e., vl′1 is strictly shorter then vl1). This way, we know that each RE-
ACTION and INDEPENDENT ACTION decreases at least one list: the former tr and the
latter vl1; and since vl is empty whenever tr is, the progress problem seems resolved.

Yet, there is a second, more subtle difficulty: after tr has become empty, how can
we know that vl1 will start decreasing? With the restrictions so far, one may still choose
REACTION with parameters that leave vl1 unaffected. So we need to make sure that the
following implication holds: if tr = [] and vl1 6= [], then vl1 will be consumed. Since
from inside the unwinding relation we cannot (and do not want to!) see tr, but only
vl, we weaken the assumption of this implication to “if vl = [] and vl1 6= [];” more-
over, we strengthen its conclusion to requiring that only the INDEPENDENT ACTION
choice (guaranteed to shorten vl1) be available. Equivalently, we condition the alterna-
tive choice of REACTION by the negation of the above, namely vl 6= [] ∨ vl1 = [].

Exit Condition The third observation is not concerned with a difficulty, but with an
optimization. We note that BD security holds trivially if the original trace tr cannot
saturate the value list vl, i.e., if V tr 6= vl—this happens if and only if, at some point, an
element v of vl can no longer be saturated, i.e., for some decompositions tr = tr′ · tr′′
and vl= vl′ · [v] ·vl′′ of tr and vl, it holds that V tr′ = vl′ and ∀trn∈ tr′′. ϕ trn→ f trn 6= v.
Can we detect such a situation from within ∆? The answer is (an over-approximated)
yes: after ∆ s vl s1 vl1 evolves by REACTION and INDEPENDENT ACTION to ∆ s′ ([v] ·
vl′′) s′1 vl′1 for some s′, s′1 and vl′1 (presumably consuming tr′ and saturating the vl′ prefix
of vl), then one can safely exit the game if one proves that no valid trace tr′′ starting
from s′ can ever saturate v, in that it satisfies ∀trn ∈ tr′′. ϕ trn→ f trn 6= v.

The final definition of BD unwinding is given below, where reach : State→ Bool
is the state reachability predicate and reach ¬ T : State→ Bool is its strengthening to
reachability by transitions that do not satisfy T:

unwind ∆ ≡ ∀s vl s1 vl1. reach ¬ T s ∧ reach s1 ∧ ∆ s vl s1 vl1 →
((vl 6= [] ∨ vl1 = []) ∧ reaction ∆ s s vl s1 vl1) ∨
iaction ∆ s s vl s1 vl1 ∨
(vl 6= [] ∧ exit s (head vl))

The predicates iaction and reaction formalize INDEPENDENT ACTION (with its afore-
mentioned strengthening) and REACTION, the latter being a disjunction of predicates
formalizing IGNORE and MATCH. The predicate exit s v is defined as ∀ tr trn. (tr ·
[trn]) ∈ Valids ∧ ϕ trn→ f trn 6= v. It expresses a safety property, and therefore can be
verified in a trace-free manner. We can now prove that indeed any unwinding relation
constructs an “alternative” trace tr1 from any trace tr starting in a P-reachable state:

Lemma. unwind∆ ∧ reach ¬ T s ∧ reach s1 ∧ ∆ s vl s1 vl1 ∧ tr∈Valids ∧ never T tr ∧
V tr = vl → (∃tr1. tr1 ∈ Valids1 ∧ O tr1 = O tr ∧ V tr1 = vl1)

Unwinding Theorem. If unwind ∆ and ∀vl vl1. B vl vl1 → ∆ istate vl istate vl1, then
the system is BD-secure.

Proof ideas. The lemma follows by induction on length tr + length vl1 (as discussed
above about progress). The theorem follows from the lemma taking s1 = s = istate.

According to the theorem, BD unwinding is a sound proof method for BD security:
to check BD security it suffices to define a relation ∆ and prove that it coincides with B
on the initial state and that it is a BD unwinding.

13

∆1

��

������
��9999

∆2

��9999 ∆3

������ gg

∆4

OO

Fig. 3: A network of unwinding components

∆1

��

&&LLLLLLLLLL // ∆2

��

��55555
// . . . // ∆n

��

xxrrrrrrrrrr

∆e

Exit
��

Fig. 4: A linear network with exit

5.2 Compositional Reasoning
To keep each reasoning step manageable, it is convenient to allow decomposing the
single unwinding relation ∆ into relations ∆1, . . . , ∆n. Unlike ∆, a component ∆i may
unwind not only to itself but to any combination of ∆ j’s. Technically, we define the
predicate unwind_to just like unwind but taking two arguments instead of one: a first
relation and a second relation to which the first one unwinds. We replace the single
requirement unwind ∆ with a set of requirements unwind_to ∆i (disj (next ∆i)), where
next ∆i is a chosen subset of {∆1, . . . , ∆n} and disj takes the disjunction of a set of predi-
cates. This enables a form of sound compositional reasoning: if we verify a condition as
above for each component ∆i, we obtain an overall unwinding relation disj {∆1, . . . , ∆n}.

The network of components can form any directed graph —Fig. 3 shows an exam-
ple. However, our unwinding proofs will be phase-directed, and hence the following
linear network will suffice (Fig. 4): each ∆i unwinds either to itself, or to ∆i+1 (if i 6= n),
or to an exit component ∆e that invariably chooses the “exit” unwinding condition. For
the first component, ∆1, we need to verify that it extends B on the initial state.

5.3 Verification of Concrete Instances
We have verified all the BD security instances listed in §4.5. For each of them we
defined a suitable chain of unwinding components ∆i as in Fig. 4.

Recall from the definition of BD security that one needs to construct an alterna-
tive trace tr1 (which produces the value sequence vl1) from the original trace tr (which
produces the value sequence vl). A chain of ∆i’s witnesses the strategy for such a con-
struction, although it does not record the whole traces tr1 and tr but only the states they
have reached so far, s and s1. The separation between ∆i’s is guided by milestones in
the journey of tr and tr1, such as: a paper’s registration to a conference, conference
phases, the registration of a relevant agent like a chair, a non-conflicted PC member, or
a reviewer. E.g., Fig. 5 shows the unwinding components in the proof of PAP2, where
B vl vl1 is the declassification bound (vl 6= [] 6= vl1 ∧ last vl = last vl1) and the changes
from ∆i to ∆i+1 are emphasized.

Each property has one or more critical phases, the only phases when vl and vl1 can
be produced. E.g., for PAP2, paper uploading is only available in Submission (while for
REV, there is an update action in Reviewing, and an u-update one in Discussion). Until
those phases, tr1 proceeds synchronously to tr taking the same actions—consequently,
the states s and s1 are equal in ∆1. In the critical phases, the traces tr and tr1 will diverge,
due to the need of producing different (but B-related) value sequences. As a result, the
equality between s and s1 is replaced with the weaker relation of equality everywhere

14

∆1 s vl s1 vl1 ¬ (∃cid. PID ∈ paperIDs s cid) ∧ s = s1 ∧ B vl vl1
∆2 s vl s1 vl1 (∃cid. PID ∈ paperIDs s cid ∧ phase s cid = Submission)∧ s =PID s1 ∧B vl vl1
∆3 s vl s1 vl1 (∃cid. PID ∈ paperIDs s cid)∧ s = s1 ∧ vl = vl1 = []

∆e s vl s1 vl1 (∃cid. PID ∈ paperIDs s cid ∧ phase s cid > Submission) ∧ vl 6= []

Fig. 5: The unwinding components for the proof of PAP2

except on certain components of the state, e.g., the content of a given paper (written
=PID for PAP2), or of a given review, or of the previous versions of a given review, etc.

At the end of the critical phases, tr1 will usually need to resynchronize with tr and
hereafter proceed with identical actions. Consequently, s and s1 will become connected
by a stronger “equality everywhere except” relation or even plain equality again. The
smooth transition between consecutive components ∆i and ∆i+1 that impose different
state equalities is ensured by a suitable INDEPENDENT-ACTION/REACTION strategy.
For PAP2, such a strategy for transitioning from ∆2 to ∆3 (with emptying vl and vl1 at
the same time) is the following: by INDEPENDENT ACTION, tr1 will produce all values
in vl1 save for the last one, which will be produced by REACTION in sync with tr when
tr reaches the last value in vl; this is possible since B guarantees last vl = last vl1. The
exit component ∆e witnesses situations (s, vl) not producible from any system trace tr
in order to exclude them via Exit. For PAP2, such a situation is the paper’s conference
phase exceeding Submission with values vl still to be produced. ∆e is reached from ∆2
when a change-phase action occurs.

Several safety properties are needed in the unwinding proofs. For PAP2, we use that
there is at most one conference to which a paper can be registered—this ensures that no
value can be produced (i.e., ϕ (head vl) does not hold) from within ∆1 or ∆2, since no
paper upload is possible without prior registration.

The verification took us two person months, during which we also developed reusable
proof infrastructure and automation. Eventually, we could prove the auxiliary safety
properties automatically. The unwinding proofs still required some interaction for in-
dicating the INDEPENDENT-ACTION/REACTION strategy—we are currently exploring
the prospect of fully automating the strategy part too, based on a suitable security-
preserving abstraction in conjunction with an external model checker.

Conclusion Most of the information-flow security models proposed by theoreticians
have not been confronted with the complexity of a realistic application, and therefore
fail to address, or abstract away from, important aspects of the conditions for infor-
mation release or restraint. In our verification case study, we approached the problem
bottom-up: we faithfully formalized a realistic system, on which we identified, for-
mulated and verified confidentiality properties. This experience led to the design of a
flexible verification infrastructure for restricted information flow in IO automata.

Acknowledgement. Tobias Nipkow encouraged us to pursue this work. Several people made
helpful comments and/or indicated related work: the CAV reviewers, Jasmin Blanchette, Manuel
Eberl, Lars Hupel, Fabian Immler, Steffen Lortz, Giuliano Losa, Tobias Nipkow, Benedikt Nord-
hoff, Martin Ochoa, Markus Rabe, and Dmitriy Traytel. The research was supported by the DFG
project Security Type Systems and Deduction (grant Ni 491/13-2), part of Reliably Secure Soft-
ware Systems (RS3). The authors are listed in alphabetical order.

15

References

1. Jif: Java + information flow, 2014. http://www.cs.cornell.edu/jif.
2. The Scala Programming Language, 2014. http://www.scala-lang.org.
3. M. Arapinis, S. Bursuc, and M. Ryan. Privacy supporting cloud computing: Confichair, a

case study. In POST, pp. 89–108, 2012.
4. E. D. Bell and J. L. La Padula. Secure computer system: Unified exposition and multics

interpretation. Technical Report MTR-2997, MITRE, Bedford, MA.
5. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences for

security protocols. In LICS, pp. 331–340, 2005.
6. M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, and C. Sánchez.

Temporal logics for hyperproperties. In POST, pp. 265–284, 2014.
7. E. S. Cohen. Information transmission in computational systems. In SOSP, pp. 133–139,

1977.
8. A. A. de Amorim, N. Collins, A. DeHon, D. Demange, C. Hritcu, D. Pichardie, B. C.

Pierce, R. Pollack, and A. Tolmach. A verified information-flow architecture. In POPL,
pp. 165–178, 2014.

9. R. Dimitrova, B. Finkbeiner, M. Kovács, M. N. Rabe, and H. Seidl. Model checking
information flow in reactive systems. In VMCAI, pp. 169–185, 2012.

10. The EasyChair conference system, 2014. http://easychair.org.
11. The HotCRP conference management system, 2014.

http://read.seas.harvard.edu/~kohler/hotcrp.
12. R. Focardi and R. Gorrieri. Classification of security properties (part i: Information flow).

In FOSAD, pp. 331–396, 2000.
13. J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE Symposium

on Security and Privacy, pp. 11–20, 1982.
14. J. A. Goguen and J. Meseguer. Unwinding and inference control. In IEEE Symposium on

Security and Privacy, pp. 75–87, 1984.
15. D. Gollmann. Computer Security. Wiley, 2nd ed., 2005.
16. F. Haftmann. Code Generation from Specifications in Higher-Order Logic. Ph.D. thesis,

Technische Universität München, 2009.
17. F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In FLOPS

2010, pp. 103–117, 2010.
18. J. Y. Halpern and K. R. O’Neill. Secrecy in multiagent systems. ACM Trans. Inf. Syst.

Secur., 12(1), 2008.
19. IEEE Symposium on Security and Privacy. Email notification, 2012.
20. S. Kanav, P. Lammich, and A. Popescu. The CoCon website.

http://www21.in.tum.de/~popescua/rs3/GNE.html.
21. B. W. Lampson. Protection. Operating Systems Review, 8(1):18–24, 1974.
22. H. Mantel. Information flow control and applications - bridging a gap. In FME,

pp. 153–172, 2001.
23. H. Mantel. A Uniform Framework for the Formal Specification and Verification of

Information Flow Security. PhD thesis, University of Saarbrücken, 2003.
24. H. Mantel. Information flow and noninterference. In Encyclopedia of Cryptography and

Security (2nd Ed.), pp. 605–607. 2011.
25. D. McCullough. Specifications for multi-level security and a hook-up property. In IEEE

Symposium on Security and Privacy, 1987.
26. J. McLean. A general theory of composition for trace sets closed under selective

interleaving functions. In In Proc. IEEE Symposium on Security and Privacy, pp. 79–93,
1994.

16

http://www.cs.cornell.edu/jif
http://www.scala-lang.org
http://easychair.org
http://read.seas.harvard.edu/~kohler/hotcrp
http://www21.in.tum.de/~popescua/rs3/GNE.html

27. J. McLean. Security models. In Encyclopedia of Software Engineering, 1994.
28. T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, and G. Klein. Noninterference for

operating system kernels. In CPP, pp. 126–142, 2012.
29. T. Nipkow and G. Klein. Concrete Semantics. A Proof Assistant Approach. forthcoming.

310 pp. http://www.in.tum.de/~nipkow/Concrete-Semantics.
30. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for

Higher-Order Logic, vol. 2283 of LNCS. Springer, 2002.
31. C. O’Halloran. A calculus of information flow. In ESORICS, pp. 147–159, 1990.
32. G. J. Popek and D. A. Farber. A model for verification of data security in operating

systems. Commun. ACM, 21(9):737–749, 1978.
33. Y. M. Ronald Fagin, Joseph Y. Halpern and M. Vardi. Reasoning about knowledge. MIT

Press, 2003.
34. J. Rushby. Noninterference, transitivity, and channel-control security policies. Tech. report,

dec 1992.
35. P. Y. A. Ryan. Mathematical models of computer security. In FOSAD, pp. 1–62, 2000.
36. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal on

Selected Areas in Communications, 21(1):5–19, 2003.
37. A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. Journal of

Computer Security, 17(5):517–548, 2009.
38. D. Sutherland. A model of information. In 9th National Security Conference, pp. 175–183,

1986.

17

http://www.in.tum.de/~nipkow/Concrete-Semantics

	A Conference Management System with Verified Document Confidentiality
	1 Introduction
	2 Overall Architecture and Security Guarantees
	3 System Specification
	3.1 State, Actions, and Step Function

	4 Security Model
	4.1 Relevant Literature
	4.2 Bounded-Deducibility Security
	4.3 Discussion
	4.4 Instantiation to Our Running Examples
	4.5 More Instances

	5 Verification
	5.1 Unwinding Proof Method
	5.2 Compositional Reasoning
	5.3 Verification of Concrete Instances

