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Abstract. We present an Isabelle/HOL formalization of Gabow’s al-
gorithm for finding the strongly connected components of a directed
graph. Using data refinement techniques, we extract efficient code that
performs comparable to a reference implementation in Java. Our style of
formalization allows for reusing large parts of the proofs when defining
variants of the algorithm. We demonstrate this by verifying an algorithm
for the emptiness check of generalized Büchi automata, reusing most of
the existing proofs.

1 Introduction

A strongly connected component (SCC) of a directed graph is a maximal subset
of mutually reachable nodes. Finding the SCCs is a standard problem from graph
theory with applications in many fields [27, Chap. 4.2].

There are several algorithms to partition the nodes of a graph into SCCs, the
main ones being the Kosaraju-Sharir algorithm [28], Tarjan’s algorithm [29], and
the class of path-based algorithms [25,22,7,4,9].

In this paper, we present the verification of Gabow’s path-based SCC algo-
rithm [9] within the theorem prover Isabelle/HOL [24]. Using refinement tech-
niques and efficient verified data structures, we extract Standard ML (SML) [21]
code from the formalization. Our verified algorithm has a performance compara-
ble to a reference implementation in Java, taken from Sedgewick and Wayne’s
textbook on algorithms [27, Chap. 4.2].

Our main interest in SCC algorithms stems from the fact that they can be
used for the emptiness check of generalized Büchi automata (GBA), a problem
that arises in LTL model checking [30,10,6]. Towards this end, we extend the
algorithm to check the emptiness of generalized Büchi automata, reusing many
of the proofs from the original verification.

Contributions and Related Work Up to our knowledge, we present the first
mechanically verified SCC algorithm, as well as the first mechanically verified
SCC-based emptiness check for GBA. Path-based algorithms have already been
regarded for the emptiness check of GBAs [26]. However, we are the first to
use the data structure proposed by Gabow [9].1 Finally, our development is

1 Although called Gabow-based algorithm in [26], a union-find data structure is used
to implement collapsing of nodes, while Gabow proposes a different data structure [9,
pg. 109]



a case study for using the Isabelle/HOL Monadic Refinement and Collection
Frameworks [14,19,17,18] to engineer a verified, efficient implementation of a
quite complex algorithm, while keeping proofs modular and reusable.

This development is part of the Cava project [8] to produce a fully verified LTL
model checker. The current Cava model checker converts GBAs to standard Büchi
automata, and uses an emptiness check based on nested depth first search [5,23].
Using GBAs directly typically yields smaller search spaces, thus making tractable
bigger models and/or more complex properties [6].

The Isabelle source code of the formalization described in this paper is publicly
available [15].

Outline The rest of this paper is organized as follows: In Section 2, we recall
Gabow’s SCC algorithm and present our extension for the emptiness check of
generalized Büchi automata. Moreover, we briefly introduce the Isabelle/HOL
Refinement and Collection Frameworks. Section 3 presents the formalization
of the abstract algorithm, Section 4 presents the refinement to Gabow’s data
structure, and Section 5 presents the refinement to executable code. Finally,
Section 6 reports on performance benchmarks and Section 7 contains conclusions
and directions of future work.

2 Preliminaries

In this section, we present the preliminaries of our formalization. Subsection 2.1
recalls Gabow’s algorithm and GBAs. Subsection 2.2 outlines our verification
approach based on the Isabelle/HOL Refinement and Collection Frameworks.

2.1 Path-Based Strongly Connected Component Algorithms

Let G = (V,E) be a finite directed graph over nodes V and edges E ⊆ V × V . A
strongly connected component (SCC) is a maximal set of nodes U ⊆ V , such that
all nodes in U are mutually reachable, i. e. for all u, v ∈ U , there is a directed
path from u to v.

A path based SCC algorithm is a depth first search (DFS) through the graph
that, whenever it finds a back edge, contracts all nodes in the cycle closed by
this edge [9]. To distinguish contracted nodes from nodes of the original graph,
we refer to the former ones as c-nodes.

The algorithm starts with the original graph and a path that consists of
a single arbitrary node. In each step, an edge starting at the end of the path
is selected. If it leads back to a c-node on the path, all c-nodes on the cycle
formed by this back edge and the path are collapsed. If the edge leads to an
unfinished c-node, this node is appended to the path. Otherwise, the edge is
ignored. If all edges from the end of the path have already been considered, the
last c-node is removed from the path and marked as finished. At this point, the
last c-node represents an SCC of the original graph. If the path becomes empty,
the algorithm is repeated for another unfinished node, until all nodes have been
finished.
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Implementation The problem when implementing this algorithm is to keep track
of the collapsed nodes in the graph efficiently. Initially, general set merging
algorithms were proposed for identifying the collapsed nodes [25,22]. The idea
of [9] (variants of it are also used in [7,4]) is to represent the current path by two
stacks: A stack S that contains nodes of the original graph, and a boundary stack B
that contains indexes into the first stack, which represent the boundaries between
the collapsed nodes. For example, to represent the path [{a, b}, {c}, {d, e}], one
uses S = [a, b, c, d, e] and B = [0, 2, 3]. Moreover, the (partial) index map I maps
each node on S to its index. I is also used to represent nodes that belong to
finished c-nodes, by mapping them to a special value (e. g. a negative number).

Collapsing is always due to a back edge (u, v), where u is in the last c-node
of the path. Thus, it can be implemented by looking up the index I v of v, and
then popping elements from B until its topmost element is less than or equal to
I v. Appending a new c-node to the path is implemented by pushing it onto S
and its index onto B. Removing the last c-node from the path is implemented by
popping elements from S until its length becomes top B, and then popping the
topmost element from B.

With this data structure, the algorithm runs in time O(|V |+ |E|), i. e. linear
time in the size of the graph [9].

For our main purpose, i. e. LTL model checking, we generalize the algorithm
to only consider the part of the graph that is reachable from a set of start nodes
V0 ⊆ V . This is easily achieved by only repeating the algorithm for unfinished
nodes from V0.

Generalized Büchi Automata Generalized Büchi Automata (GBA) [30] have been
introduced as a generalization of Büchi automata (BA) [3] that allows for more
efficient automata based LTL model checking [31].

A GBA is a finite directed graph (V,E) with a set of initial nodes V0 ⊆ V ,
a finite set of acceptance classes C, and a map F : V → 2C . As we are only
interested in emptiness, we need not consider an alphabet.

An accepting run is an infinite path starting at a node from V0, such that a
node from each acceptance class occurs infinitely often on that path. A GBA is
non-empty, if it has an accepting run. As the GBA is finite, this is equivalent
to having a reachable accepting cycle, i. e. a cyclic, finite path with at least one
edge that contains nodes from all acceptance classes. Obviously, a graph has a
reachable accepting cycle iff it has a reachable non-trivial SCC that contains
nodes from all acceptance classes. Here, an SCC is called non-trivial, if there is
at least one edge between its nodes.

To decide emptiness, we don’t need to compute all SCCs first: As the c-nodes
on the path are always subsets of SCCs, we can report ,,non-empty” already
if the last c-node on the path contains nodes from all acceptance classes, after
being collapsed (i. e. becoming non-trivial). This way, the algorithm reports
non-emptiness as soon as it has seen all edges of an accepting cycle.

To implement this check efficiently, we store the set of acceptance classes
for each c-node on the path. This information can be added to the B stack, or
maintained as a separate stack. On collapsing, the sets belonging to the collapsed

3



c-nodes are joined. This adds a factor of |C| to the run time. However, |C| is
typically small, such that the sets can be implemented efficiently, e. g. as bit
vectors.

2.2 Refinement Based Program Verification in Isabelle/HOL

Our formalization is done in four main steps, using Isabelle/HOL [24]:

1. Verification of the abstract path-based algorithm.
2. Refinement to Gabow’s data structure.
3. Refinement to efficient data structures (e. g. arrays, hash tables).
4. Extraction of Standard ML code.

The key advantage of this approach is that proofs in one step are not influenced
by proofs in the other steps, which greatly reduces the complexity of the whole
development, and makes more complex developments possible in the first place.

With its refinement calculus [1] that is based on a nondeterminism monad [32],
the Monadic Refinement Framework [19,17] provides a concise way to phrase
the algorithms and refinements in Steps 1–3. The Isabelle Collection Frame-
work [14,16] contributes the efficient data structures. Moreover, we use the
Autoref tool [18] to add some automation in Step 3. Finally, we use the Is-
abelle/HOL code generator [11,12] in Step 4. In the following, we briefly recall
these techniques.

Isabelle/HOL Isabelle/HOL [24] is a theorem prover for higher order logic. The
listings contained in this paper are actual Isabelle/HOL source, sometimes slightly
polished for better readability. We quickly review some non-standard syntax used
in this paper: Functions are defined by sequential pattern matching, using ≡ as
defining equation operator. Theorems are written as [[P1,. . . ,Pn]] =⇒ Q, which
is syntactic sugar for P1 =⇒ . . . =⇒ Pn =⇒ Q.

Program Refinement The Monadic Refinement Framework represents programs
as a monad over the type ’a nres = res ’a set | fail. A result res X means that
the program nondeterministically returns a value from the set X, and the result
fail means that an assertion failed. The subset ordering is lifted to results:

res X ≤ res Y ≡ X ⊆ Y | ≤ fail ≡ True | ≤ ≡ False

Intuitively, m ≤ m’ (m refines m′) means that all possible values of m are also
possible values of m’. Note that this ordering yields a complete lattice on results,
with smallest element res {} and greatest element fail. The monad operations
are then defined as follows:

return x ≡ res {x}
bind (res X) f ≡ Sup {f x | x∈X} | bind fail f ≡ fail

Intuitively, return x is the result that contains the single value x, and bind m f
is sequential composition: Choose a value from m, and apply f to it.
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As a shortcut to specify values satisfying a given predicate Φ, we define
spec Φ ≡ res {x | Φ x}. Moreover, we use a Haskell-like do-notation, and define
a shortcut for assertions:

assert Φ ≡ if Φ then return () else fail

Recursion is defined by a fixed point:

rec B x ≡ do {assert (mono B); gfp B x}

As we use the greatest fixed point, a non-terminating recursion causes the result
to be fail. This matches the notion of total correctness. Note that we assert
monotonicity of the recursive function’s body B, which typically follows by
construction [13]. On top of the rec primitive, we define loop constructs like
while and foreach.

In a typical development based on stepwise refinement, one specifies a series
of programs m1 ≤ . . . ≤ mn, such that mn has the form spec Φ, where Φ is the
specification, and m1 is the final implementation. In each refinement step (from
mi+1 to mi), some aspects of the program are refined.

Example 1. Given a finite set S of sets, the following specifies a set r that contains
at least one element from every non-empty set in S:

sel3 S ≡ do {assert (finite S); (spec r. ∀s ∈ S. s 6= {} −→ r ∩ s 6= {})}

This specification can be implemented by iteration over the outer set, adding an
arbitrary element from each non-empty inner set to the result:

sel2 S ≡ do {
assert (finite S);
foreach S (λs r.

if s={} then return r else do {x←spec x. x∈s; return (insert x r)}
) {} }

Using the verification condition generator (VCG) of the monadic refinement
framework, it is straightforward to show that sel2 is a refinement of sel3:

lemma sel2 S ≤ sel3 S
unfolding sel2 def sel3 def
by (refine rcg foreach rule[where I=λit r. ∀s∈S − it. s6={} −→ r∩s 6={}])

auto

As constructs used in monadic programs are monotonic, sel3 can be replaced by
sel2 in a bigger program, yielding a correct refinement.

Data Refinement In a typical refinement based development, one also wants to
refine the representation of data. For example, we need to refine the abstract
path by Gabow’s data structure. A data refinement is specified by a single-valued
refinement relation between concrete and abstract values. Equivalently, it can
be expressed by an abstraction function from concrete to abstract values and
an invariant on concrete values. A prototypical example is implementing sets by
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distinct lists, i. e. lists that contain no duplicate elements. Here, the refinement
relation 〈R〉list set rel relates a distinct list to the set of its elements, where the
elements are related by R.

Given a refinement relation R, we define the function ⇓R to map results over
the abstract type to results over the concrete type:

⇓R (res A) ≡ res {c | ∃a ∈ A. (c,a) ∈ R} | ⇓R fail ≡ fail

Thus, m1 ≤ ⇓R m2 states that m1 is a refinement of m2 w. r. t. the refinement
relation R, i. e. all concrete values in m1 correspond to abstract values in m2.

The Monadic Refinement Framework implements a refinement calculus [1]
that is used by the VCG for refinement proofs. Moreover, the Autoref tool [18]
can be used to automatically synthesize the concrete program and the refinement
proof, guided by user-adjustable heuristics to find suitable implementations of
abstract data types. For the algorithm sel2 from Example 1, Autoref generates
the implementation

sel1 Xi ≡ foldl
(λσ x. if is Nil x then σ else let xa = hd x in glist insert op = xa σ) [] Xi

and proves the theorem

(Xi1, X1) ∈ 〈〈Id〉list set rel〉list set rel =⇒
return (sel1 Xi1) ≤ ⇓〈Id〉list set rel (sel2 X1)

By default, Autoref uses the Isabelle Collection Framework [14,16], which provides
a large selection of verified collection data structures.

Code Generation After the last refinement step, one typically has arrived at a
deterministic program inside the executable fragment of Isabelle/HOL. The code
generator [11,12] extracts this program to Standard ML code. For example, it
generates the following ML function for sel1:

fun sel1 xi =
List.foldl (fn sigma ⇒ fn x ⇒

(if Autoref Bindings HOL.is Nil x then sigma
else let val xa = List.hd x;

in Impl List Set.glist insert Arith.equal nat xa sigma
end)) [] xi;

3 Abstract Algorithm

In this section, we describe our formalization of the abstract path based algorithm
for finding SCCs. The goal is to formalize two variants of the algorithm, one
for computing a list of SCCs, and another for emptiness check of GBAs, while
sharing common parts of the proofs. For this purpose, we first define a skeleton
algorithm that maintains the path through the graph, but does not store the
found SCCs. This skeleton algorithm helps us finding invariants that hold in all
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skeleton ≡ do {
let D = {};
foreachouter invar V0 (λv0 D0. do {
if v0 /∈D0 then do {
let (p,D,pE) = initial v0 D0;

(p,D,pE) ← whileinvar v0 D0 (λ(p,D,pE). p 6= []) (λ(p,D,pE). do {
(vo,(p,D,pE)) ← select edge (p,D,pE);
case vo of
Some v ⇒ do {
if v ∈

⋃
set p then return (collapse v (p,D,pE))

else if v/∈D then return (push v (p,D,pE))
else return (p,D,pE)
}
| None ⇒ return (pop (p,D,pE))
}) (p,D,pE);
return D
} else
return D0

}) D
}

Listing 1.1: Skeleton of a path-based algorithm

path-based algorithms, and can be used as a starting point for defining the actual
algorithms. Listing 1.1 displays the code of the skeleton algorithm.2 It formalizes
the path-based algorithm sketched in Section 2.1: First, we initialize the set D of
finished nodes. Then, we iterate over the root nodes V0 of the graph, and for each
unfinished one, we start the inner loop of the search algorithm, which runs until
the path becomes empty again. In the inner loop, we additionally keep track of
the current path p and a set pE of pending edges, i. e. edges that have not yet
been explored and start from nodes on the path. For better manageability of the
proofs, we have defined constants for the basic operations:

initial v0 D0 ≡ ([{v0}], D0, E ∩ {v0} × UNIV)
select edge (p,D,pE) ≡ do {

e ← select (pE ∩ last p × UNIV);
case e of

None ⇒ return (None,(p,D,pE))
| Some (u,v) ⇒ return (Some v, (p,D,pE − {(u,v)}))
}

collapse v (p,D,pE) ≡ let i=idx of p v in (take i p @ [
⋃

set (drop i p)],D,pE)
where idx of p v ≡ THE i. i<length p ∧ v∈p!i

push v (p, D, pE) ≡ (p @ [{v}], D, pE ∪ E ∩ {v} × UNIV)
pop (p, D, pE) ≡ (butlast p, last p ∪ D, pE)

2 Shortened a bit by removing some assert-statements.
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These constants are defined over the whole state (p,D, pE) of the inner loop,
even if they only work on parts of it. This allows for nicer refinement proofs, as
operations on the abstract state are refined to operations on the concrete state,
without exposing the inner structure of the states, which differs on the concrete
and abstract domain. Note that this also results in a more modular correctness
proof, as invariant preservation can be shown separately for each operation.

We briefly explain the operations: The initial operation initializes the state
for the inner loop with a path that consists of the single node v0. The select edge
operation checks if there is a pending edge from the end of the path. If there
is no such edge, it returns None and does not change the state. Otherwise, it
removes the edge from the set of pending edges, and returns its target node. The
operation collapse first determines the index of the node on the path, and then
collapses the corresponding suffix of the path. The operation push appends a new
node to the path, and the operation pop removes the last node from the path.

3.1 Invariants

Correctness of while and foreach loops is proved by establishing a loop invariant.
Moreover, we have to show that the body of a while loop transforms states within
a well-founded relation, and that the set iterated over by a foreach loop is finite.

We specify invariants for the skeleton algorithm and show that they are
preserved by the operations inside the loop. The invariants and the preservation
lemmas are then reused for the actual algorithms. In Listing 1.1, the loops are
annotated with their invariants, such that the VCG sees them.

The invariant of the outer loop depends on the nodes it still to be iterated
over, and on the finished nodes D. It states that (1) we only iterate over start
nodes, (2) nodes that we have already iterated over are finished, (3) finished nodes
are reachable, and (4) edges from finished nodes lead to finished nodes again.
The invariant is formalized using the locale mechanism of Isabelle/HOL [2]:

locale outer invar = digraph loc + fixes it and D
assumes 1: it⊆V0 and 2: V0 − it ⊆ D and 3: D⊆E∗‘‘V0 and 4: E‘‘D ⊆ D

Here, digraph loc defines a finite directed graph, represented by its edge relation E
and a set of initial nodes V0. The set V of nodes is implicitly fixed to the universal
set UNIV, and thus not explicitly mentioned in the formalization. Moreover, r∗ de-
notes the reflexive transitive closure of a relation r, and r‘‘s = {y. ∃x∈s. (x,y)∈r}
denotes the image of a set s under a relation r.

The invariant invar v0 D0 (p,D,pE) of the inner loop is more complex. We
only sketch its main idea here, and refer the reader to the actual formalization [15]
for more details. The main parts of the inner loop’s invariant are:

(1) Edges from finished nodes lead to finished nodes; nodes on the path are not
finished; non-pending edges from the path lead either to nodes on the path
or to finished nodes.

(2) Only pending edges may go back on the path.
(3) The nodes inside a c-node on the path are mutually reachable.
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(1) is a standard invariant for DFS. (2) ensures that all cycles that have
already been seen are collapsed, and (3) ensures that the c-nodes on the path are
always subsets of SCCs. In particular, when a c-node is popped from the path,
it has no pending edges left. Then, it easily follows from the invariant that this
c-node is a maximal set of mutually reachable nodes, i. e. an SCC.

We now apply the VCG to the skeleton algorithm, after unfolding the definition
of select edge. This leaves us with proof obligations to show invariant preservation
for each of the operations in the loop. These are proved as separate lemmas, to
be reused later. For example, we prove for the pop operation:

invar pop: [[invar v0 D0 (p, D, pE); p 6= []; pE ∩ last p × UNIV = {}]]
=⇒ invar v0 D0 (pop (p, D, pE))

To show termination of the inner loop, we define an edge to be visited if it is
not pending and starts at a finished node, or at a node on the path. We then show
that, in each step, either the set of visited edges grows, or it remains the same
and the path length decreases. Technically, we define a well-founded relation over
the state of the while loop and show that the operations are compatible with it.
These verification conditions are also proved as separate lemmas.

3.2 Computing the SCCs

In a next step, we extend the skeleton algorithm to actually compute a list of SCCs
of the graph. We define the algorithm compute SCC by replacing the statement
return (pop (p,D,pE)) in Listing 1.1 with return (last p#l,pop (p,D,pE)), and
pass the list l through the inner and outer loop, initializing it to the empty list.

In order to specify the intended result, we first define a strongly connected
component as a maximal mutually connected set of nodes:

is scc E U ≡ U×U⊆E∗ ∧ (∀U’. U’⊃U −→ ¬ (U’×U’⊆E∗))

Then, we define the intended result as a list that covers all reachable nodes and
contains SCCs in (reverse) topological order:

compute SCC spec ≡ spec l.⋃
set l = E∗‘‘V0 ∧ (∀U∈set l. is scc E U)
∧ (∀i j. i<j ∧ j<length l −→ l!j × l!i ∩ E∗ = {})

Next, we extend the invariant of the skeleton algorithm. The invariant ex-
tension is the same for the inner and outer invariant, and states that the list
computed so far (1) covers exactly the finished nodes and (2) contains SCCs in
(3) reverse topological order. The new invariants can be elegantly defined using
the locale mechanism of Isabelle/HOL:

locale cscc invar ext = digraph loc + fixes l D
assumes 1:

⋃
set l = D and 2: ∀U∈set l. is scc E U

and 3:
∧

i j. [[i<j; j<length l]] =⇒ l!j × l!i ∩ E∗ = {}

locale cscc outer invar = outer invar + cscc invar ext
locale cscc invar = invar + cscc invar ext
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In order to prove the algorithm correct, we have to show that the extended
invariant is preserved. We add the following rule to the VCG:

cscc invarI: [[invar v0 D0 s; invar v0 D0 s =⇒ cscc invar ext (l, s)]]
=⇒ cscc invar v0 D0 (l, s)

We also add the analogous rule cscc outer invarI for the outer loop’s invariant.
These rules split a proof of the extended invariant into a proof of the original
invariant and a proof of the invariant extension.

As we already have proved lemmas for the verification conditions concerning
invar, we only have to prove lemmas for the invariant extension. For example,
for finishing a node, we prove

cscc invar pop: [[cscc invar v0 D0 (l, p, D, pE); invar v0 D0 (pop (p, D, pE));
p 6= []; pE ∩ last p × UNIV = {}]]

=⇒ cscc invar ext (last p # l, pop (p, D, pE))

The other operations, i. e. collapse and push, have not been modified at all, and
also do not change the parts of the state that the invariant extension depends
on. Thus, proving preservation of the invariant extension for these operations is
straightforward. Moreover, the termination argument from the skeleton algorithm
can be reused. Finally, we prove the theorem compute SCC ≤ compute SCC spec,
which states that the SCC algorithm behaves according to its specification. This
is straightforward, using the VCG with the invariant preservation lemmas from
the skeleton algorithm together with the new ones for the invariant extension.

While the formalization of the skeleton algorithm and the invariants requires
about 1300 lines of proof text, the extension to compute SCCs requires only
about 300 lines.

3.3 Emptiness Check for GBA

The extension to check for emptiness of GBAs is more complex, but is formalized
in the same way. We sketch the extension here very briefly, and refer the reader
to the actual formalization [15] for details.

Starting from the skeleton algorithm, we extend the collapse operation to
check whether the collapsed c-node contains nodes from all acceptance classes. If
so, we break the loop immediately and return the result for non-emptiness. It
contains the two sets

⋃
butlast p and last p, which can be used to reconstruct the

accepting run: The path reaching the accepting cycle only contains nodes from
the first set, the accepting cycle itself only contains nodes from the second set.

The invariant for the outer loop is extended to state that there is no accepting
cycle within finished nodes. The invariant of the inner loop is extended to state
that there is no accepting cycle over visited edges. The extension of the skeleton
algorithm to GBA emptiness check requires about 700 lines of proof text.
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4 Implementation using Gabow’s Data Structure

In the last section, we described the verification of the abstract path based
algorithm. In this section, we describe the refinement to Gabow’s data structure,
which was already sketched in Section 2.2.

We implement the stack S and the boundary stack B by lists of nodes and
natural numbers, respectively. The index map I is implemented as a function
from nodes to node state option, where

node state = DONE | STACK nat

Finished nodes are mapped to Some DONE, nodes on the stack are mapped to
Some (STACK j), where j is the index of the node in S, and nodes not yet seen
are mapped to None.

We additionally use the pending stack P to store the pending edges. P contains
entries of the form nat × node set. An entry (j,succs) means that the edges
{S!j} × succs are pending. The pending stack only contains entries with non-
empty second component, and the entries are always sorted by first component.
Thus, the last entry (j,succs) of P contains the pending edges for the last node
on S that has pending edges left. By comparing j to last B, one efficiently checks
whether this node belongs to the last collapsed node on the path. Also, pushing
a new node is efficiently implemented by pushing an entry for its successors, if
any, onto P . The invariant for Gabow’s data structure is, again, formalized as a
locale, based on the locale GS, which fixes (S,B, P, I):

locale GS invar = GS +
(∗1∗) assumes sorted B and distinct B and set B ⊆ {0..<length S}
(∗2∗) and S 6=[] =⇒ B 6=[] ∧ B!0=0 and distinct S
(∗3∗) and (I v = Some (STACK j)) ←→ (j<length S ∧ v = S!j)
(∗4∗) and sorted (map fst P) and distinct (map fst P)
(∗5∗) and set P ⊆ {0..<length S}×{x. x6={}}
Intuitively, Line 1 states that the boundary stack is sorted, distinct, and contains
valid indexes into S. Line 2 states that a non-empty stack implies a non-empty
boundary stack with the first boundary being 0, and that S is distinct. Line 3
states that the index map is consistent with the stack. Finally, Lines 4 and 5
state that the first elements of the pending edge stack are sorted and distinct,
and that the pending edge stack contains valid indexes into the stack and no
empty successor sets.

To map concrete to abstract states, we define (in the locale GS):

seg start i ≡ B!i
seg end i ≡ if i+1 = length B then length S else B!(i+1)
seg i ≡ {S!j | j. seg start i ≤ j ∧ j < seg end i}

p α ≡ map seg [0..<length B]
D α ≡ {v. I v = Some DONE}
pE α ≡ { (u,v) . ∃j I. (j,I)∈set P ∧ u = S!j ∧ v∈I }
GS α ≡ (p α,D α,pE α)
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Here, GS α is the abstraction function, mapping the concrete state (S,B, P, I)
(fixed by the locale GS) to its corresponding abstract state. Finally, we define
GS rel as the refinement relation induced by GS α and GS invar. Similarly, we
define oGS rel for the state of the outer loop.

Next, we provide concrete versions of the operations and show that they refine
their abstract counterparts. For example, for the pop operation, we define (in
GS):

pop impl ≡ do {
I ← mark as done (seg start (|B| − Suc 0)) (seg end (|B| − Suc 0)) I;
return (take (last B) S, butlast B, I, P) }

Here, mark as done l u marks the nodes in {S!i | l≤ i ∧ i<u} as finished. We
show the following refinement lemma:

pop refine: [[((S,B,I,P), p, D, pE) ∈ GS rel; p 6= []; pE ∩ last p × UNIV = {}]]
=⇒ pop impl (S,B,I,P) ≤ ⇓GS rel (return (pop (p, D, pE)))

After having defined the other operations, and shown similar lemmas for
them, we finally define skeleton impl and show that it refines skeleton. Exploiting
the automation provided by the Refinement Framework, this is straightforward:

theorem skeleton impl ≤ ⇓oGS rel skeleton
unfolding skeleton impl def skeleton def
by (refine rcg skeleton refines)

(vc solve (nopre) solve: asm rl I to outer simp: skeleton refine simps)

4.1 Refinement of SCC Computation and GBA Emptiness Check

In order to implement the actual algorithm for computing a list of SCCs, the
only thing we have to add is a function that builds a set out of the last segment
of S. This set is added to the output list upon finishing a c-node. This extension
is straightforward, and, all together, the formalization requires less than 100 lines.
It completely reuses what is already proved for the skeleton algorithm.

The refinement for the GBA emptiness check is more complicated. For better
manageability, it is split into two steps: In the first step, the sets of acceptance
classes for each c-node on the path are explicitly maintained in a list A, and the
check after the collapse operation is refined to use A. Proving refinement is quite
simple as only redundant information is added. In the second step, we refine the
algorithm to use Gabow’s data structure.

For a clearer structure of the formalization, we decided to define new constants
for the operations of the emptiness check algorithm, which use the operations
from the skeleton, and add the new functionality for keeping track of A. For
the collapse operation, we have to compute idx of v twice: Once in the original
collapse operation, and a second time for updating A. Thus, we add another
refinement step to refine this operation to an optimized version that computes
idx of v only once. Note that this refinement is limited to the collapse operation,
and does not affect the overall proof.
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All together, the implementation of the emptiness check requires 900 lines of
proof text. Using the refinement framework, we have broken down the formal-
ization into small, manageable steps: First, we introduced the list A, then we
introduced Gabow’s data structure, and for the collapse operation, we added an
additional optimization step. If we would have done all these in one big step, we
would have ended up with a complicated formalization, which is hard to maintain
or change. In contrast, our approach has already proven its flexibility: In a first
version, we had only formalized the inner loop of the algorithms. Thus, we could
only handle graphs where all nodes are reachable from a single node v0. Later,
we added the outer loop without any major problems.

5 Refinement to Efficient Standard ML Code

In order to generate efficient SML code, we first have to decide for the data
structures used to implement the stacks S, B, and P , and the map I. We resort to
the large selection of verified data structures provided by the Isabelle Collection
Framework [14,16]: For the stacks, we use arrays with dynamic resizing, which
have an amortized constant time per operation. For the index map I, we also
use an array, assuming the nodes to be natural numbers.3 Once we have fixed
the refinement relations, the Autoref tool [18] synthesizes and proves correct the
refined versions of the algorithms automatically. Finally, the code generator [11,12]
is used to extract the SML code.

For computing the SCCs, we encode the output as a list of distinct lists. This
is adequate as we only prepend items to the output, which is a constant time
operation. Moreover, when extracting an SCC from the path, we know that each
node occurs at most once on the path. Thus, building a distinct list of these
nodes can be done in linear time. When adding a corresponding assertion to the
program, the Autoref tool performs this optimization automatically.

For the GBA emptiness check, we represent the acceptance classes C by
natural numbers in the range {0..<|C|}, and use bitvectors to implement the
sets of acceptance classes that are stored on the stack.

6 Benchmarks

We have benchmarked the extracted code against a reference implementation
of Gabow’s algorithm in Java, taken from Sedgewick and Wayne’s book on
algorithms [27] and slightly adapted to work with an explicit set of root nodes.
To produce the input graphs, we used a random graph generator, also taken
from [27], and let it produce graphs with the number of edges |E| in the range

from 105 to 106. Each graph has |V | = b6
√
|E|c nodes, and b |V |10 c SCCs. The

results of the benchmark are displayed in Figure 1, using a log-log scale where

3 This choice is adequate for comparison with the Java reference implementation, which
also uses an array for I. For model checking, a hash table is more adequate, which
can be used by changing only a few lines of the formalization.
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the y-axis is the required time to determine the lists of SCCs in milliseconds, and
the x-axis is the number of edges. We compiled the extracted code with PolyML
5.5.1 and MLton 20130715, and used Java 7 for the reference implementation.
All tests where performed on an x86/64 linux platform.
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Fig. 1: Benchmarking of extracted code
against Java reference Implementation

All implementations scale linearly
with the graph size. On first glance,
our implementation looks slightly
faster than the Java reference imple-
mentation. However, performance in
Java is very unpredictable, in partic-
ular due to just in time compilation
taking place in parallel to program ex-
ecution. Thus, we have modified the
Java implementation to allow it to
”warm up” with a few graphs, before
we started the measurement. This en-
sures that the JIT compiler has gath-
ered enough statistics about the pro-
gram and actually finished compila-
tion. The ”Java*” - line displays the re-
sults for the modified program, which
are roughly one order of magnitude better, but required some non-obvious modi-
fication to the Java program, exploiting intimate knowledge of the JIT compiler.

7 Conclusion

We have presented a verification of two variants of Gabow’s algorithm: Computa-
tion of the strongly connected components of a graph, and emptiness check of a
generalized Büchi automaton. We have extracted efficient code with a performance
comparable to a reference implementation in Java.

We have modularized the formalization in two directions: First, we share most
of the proofs between the two variants of the algorithm. Second, we use a stepwise
refinement approach to separate the algorithmic ideas and the correctness proof
from implementation details. Sharing of the proofs reduced the overall effort of
developing both algorithms. Using a stepwise refinement approach allowed us
to formalize an efficient implementation, without making the correctness proof
complex and unmanageable by cluttering it with implementation details.

Our development approach is independent of Gabow’s algorithm, and can be
reused for the verification of other algorithms.

Current and Future Work Currently, we are integrating our algorithm into the
Cava [8] verified LTL model checker. We expect a considerable improvement in
checking speed. Moreover, fine-tuning of the used data structures, e. g. using
bit vectors and machine words instead of the currently used arbitrary precision
integers may give some performance improvements. The foundations for using
those low-level data structures in Isabelle/HOL have recently been laid [20].
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