The CAVA Automata Library

Peter Lammich

Technische Universitdt Miinchen, lammich@in.tum.de

Abstract. We report on the graph and automata library that is used
in the fully verified LTL model checker CAVA. As most components of
CAVA use some type of graphs or automata, a common automata library
simplifies assembly of the components and reduces redundancy.

The CAVA automata library provides a hierarchy of graph and automata
classes, together with some standard algorithms. Its object oriented
design allows for sharing of algorithms, theorems, and implementations
between its classes, and also simplifies extensions of the library. Moreover,
it is integrated into the Automatic Refinement Framework, supporting
automatic refinement of the abstract automata types to efficient data
structures.

Note that the CAVA automata library is work in progress. Currently,
it is very specifically tailored towards the requirements of the CAVA
model checker. Nevertheless, the formalization techniques presented here
allow an extension of the library to a wider scope. Moreover, they are
not limited to graph libraries, but apply to class hierarchies in general.

1 Introduction

CAVA [3] is a fully verified and executable LTL model checker for finite state
systems & la SPIN [5]. It is formalized and verified in Isabelle/HOL [10]. The
design of CAVA follows a stepwise refinement approach [I]: An initial abstract
formalization of the model checker is refined to an efficiently executable program,
involving many intermediate refinement steps. The stepwise refinement allows
a separation of concerns: The correctness proofs are done on the abstract level,
which is not cluttered with implementation details, and thus allows for much
simpler and clearer proofs. The subsequent refinement steps then concentrate on
efficiently implementing some details of the abstract algorithm. In Isabelle/HOL,
this approach is supported by the Isabelle Refinement Framework [8/[7].

Figure [1] shows the overall architecture of CAVA. It follows a standard
approach for LTL model checkers: The input is an LTL formula and a model,
which is described either as a while program over Boolean variables or in Promela,
the modeling language of SPIN. The model is converted to a Kripke structure,
i.e. a directed graph with a set of initial nodes and sets of atomic propositions
annotated at the nodes.

The LTL formula is converted by Gerth’s Algorithm [4] to a generalized
Biichi automaton (GBA), which accepts all infinite words that do not satisfy the
formula. The GBA is then converted to an indexed representation, which is more
suitable for the following steps.

Then, the synchronous product of
the Kripke structure and the indexed 8ecffros Promela LTL-Formula [T to-coA

GBA is computed, resulting in an in- FTLI %I

dexed generalized Biichi graph (GBG).
Finally, the indexed GBG is checked
for emptiness by either using a strongly
connected component algorithm, or by
degeneralizing it to a Biichi Graph
(BG) and using a nested depth first
search. The result of the emptiness
check either declares the automaton
as empty, in which case the model sat- Indexed GBG
isfies the formula, or it returns a coun-
terexample, which is a representation
of an infinite run of the model that Result
violates the formula.

The different components of CAVA
are implemented separately, and also
maintained by different developers. As
the interfacing between the compo-
nents merely involves passing around different types of automata, there is a
need for a common automata library that is used by all components.

Moreover, the different automata types share common properties, which can
be exploited by a formalization: For example, both Biichi automata and Kripke
structures are directed graphs with a set of root nodes, and all properties of
directed graphs hold for both types. A main design goal of the CAVA Automata
Library is to share common theorems, algorithms, and data structures between
the different graph and automata classes, and thus reduce redundancy in the
formalization.

The CAVA Automata Library has evolved over many years and is still evolving,
as do the refinement techniques available for Isabelle. The initial automata library
used by CAVA was written by Thomas Tuerk, and extended by Alexander Schimpf.
It covered a wide spectrum of automata, however, not exactly what was needed
by CAVA:

GBA

¥

| to-index conversion

L7
LTL-to-GBA
[Enptiness Check]

Indexed GBA

Kripke Structure

Synchronous Product

| SCC-based | Blichi graph

Emptiness Check

Fig.1: Structure of the CAVA Model
Checker

— First of all, CAVA is most conveniently formalized with state-labeled au-
tomata, while Tuerk’s library only supported edge-labeled automata. This
led to some unnecessary conversions that cluttered the proofs and even the
implementation: For example, the Generalized Biichi automata were imple-
mented by taking an implementation for edge-labeled automata from Tuerk’s
library, setting the type of edge labels to unit, and then adding another map
for node labels, resulting in unnecessarily complicated definitions and proofs.

— Another source of unnecessary complication were the automata used to
represent the Kripke structure and the synchronous product. A natural
assumption is that the set of states reachable by the system is finite, whereas
the type of the state space is typically infinite.

However, the automata library only supported automata with an explicit set
of states that had to be finite, and the transition relation had to respect this
set of states. Thus, the transition relation had to be artificially reduced to the
set of reachable states. On the abstract level, this restriction is quite harmless.
However, on the concrete level, this restriction is infeasible to implement, as
it would require exploration of the whole state space first, which is contrary
to the idea of an on-the-fly model checker. Luckily, the search algorithms
only query transitions from reachable states, such that the implementation
could circumvent this problem, however, at the cost of a quite complicated
proof that broke the stepwise refinement approach.

When adding more features to the initial CAVA model checker, the problems
described above led to a complete reimplementation of the automata library, tai-
lored to the needs of CAVA. This paper reports on the resulting automata library,
which is already used by CAVA, but is still work in progress, as it undergoes
continuous extensions and simplifications. We also report on the formalization
techniques that we used to achieve our design goal, namely to develop a verified,
efficient automata library, which supports various types of automata while mini-
mizing redundancy between the formalizations for the different automata types,
and being easily extensible to new automata types. These techniques can be used
to formalize class hierarchies in general.

Preliminaries As this paper is submitted to the Isabelle Workshop, concepts from
Isabelle are used without further explanation. We also assume some familiarity
of the reader with automata theory and LTL model checking. However, concepts
that are essential for understanding the paper are quickly introduced where
required.

Structure of the Paper The rest of this paper is structured as follows: In Section [2]
we present the CAVA Automata Library, where Section [2.1] describes the provided
classes, Section describes the concepts defined on these classes, Section [2.3
describes the provided algorithms, and Section describes the implementations.
Finally, Section [3] gives the conclusions and a description of related work.

2 The CAVA Automata Library

In this section we describe the structure of the CAVA Automata Library and its
formalization in Isabelle/HOL. We use an object oriented design that provides a
hierarchy of classes on which certain concepts and algorithms are defined.

2.1 Classes

Figure 2] shows the classes of the CAVA Automata Library. Each class inherits the
fields and invariants from its superclasses, and may add new fields and invariants.

The class fr_graph models a finitely reachable graph (FRG, for short). It
consists of a set of nodes V, a set of root nodes V0, and a set of edges E, which

igb_graph <t igba

+num_acc: nat +L: node - label - bool
+acc: node - nat set Vgl.Lql=-q€V
U(range (igbg acc G)) < {0..<(igbg_num_acc G)}
Vq. igbg acc G q # {} = q € V
L:=L
F:={{q.i€accq}|i i<num_acc}
fr_graph A Y
+V: node set <+—— gb_graph <;F— gba
:z?:(:gg: ie;ode) set +F: node set set +L: node - label - bool
Vé cv F < Pow V Vgl.Lgql=q€V
EcVaxV finite F
finite ((frg E G)*''frg VO G) A
A F:= {F}
b_graph

sa +F: node set
+L: node - label FcVv

fin_graph fin_gb_graph fin_gba

finite V

Fig. 2: Structure of the CAVA Automata Library

are modeled as pairs of nodes. The invariant ensures that the root nodes are
actually nodes, that edges are only between nodes, and that there are only finitely
many reachable nodes.

In order to formalize the class hierarchy, we use records for the fields, and
locales to express the invariants:

type_synonym v digraph = ('vXx 'v) set

record v fr_graph_rec =

frg-V :: 7w set
frg_E :: v digraph
frg_VO :: v set

locale fr_graph = fixes G :: ('v,’more) fr_graph_rec_scheme
assumes finite_reachable E_V0[simp, intro!]: finite ((frg-E G)* “frg_-V0 G)
assumes V0_ss: frg_-V0 G C (frg-V G)
assumes FE_ss: frg.E G C (frg-V G)x(frg-V G)
begin
abbreviation V= frg.V G
abbreviation F = frg_ F G
abbreviation V0 = frg_ V0 G

Inside the locale, we define suitable abbreviations for the fields. This makes
definitions and lemmas inside the locale more readable.

Note that there is currently no record or locale for v digraph. This is mainly
due to historical reasons, as formalizing a single value as a record with a single
field seems overkill without having later extension to a whole class hierarchy

in mind. Moreover, there is no class for a directed graph with an explicit set
of nodes. This, as well as other obvious omissions and shortcuts in the class
hierarchy, is because those classes have not yet been needed for CAVA. However,
thanks to the extensible design of the CAVA Automata Library, the effort for
adding those additional classes is expected to be rather low.

The class gb_graph extends FRGs to generalized Biichi graphs (GBGs), by
adding a set F' of sets of accepting nodes. We again define a record that inherits
its fields from the base class record. Also the locale includes the locale for the
base class:

record 'Q gb_graph_rec = ’Q fr_graph_rec +
gbg_F :: ’Q set set

locale gb_graph = fr_graph G
for G :: (’Q,’more) gb_graph_rec_scheme +
assumes finite_F[simp, introl]: finite (gbg_-F G)
assumes F_ss: gbg F G C Pow V

begin
abbreviation F = gbg_F G

Similarly, we formalize the class gba, which derives state labeled generalized
Biichi automata (GBAs) from GBGs, by adding a labeling predicate that assigns
labels to states.

Each of the three classes described above also comes with a finite version,
which restricts the set of nodes to be finite. Although most properties of a finitely
reachable graph are preserved when restricting it to the set of its reachable nodes,
this makes a subtle difference from an implementation point of view, as discussed
in Section [I} We use multiple inheritance for the finite graph classes. As only one
of the superclasses contributes new fields, this can be elegantly formalized by
locale expressions, without the need to define new records:

locale fin_fr_graph = fr_graph G
for G :: ('v,’more) fr_graph_rec_scheme
+ assumes finite_V[simp, introl]: finite V

locale fin_gb_graph = gb_graph G + fin_fr_graph G
for G :: (’Q,’more) gb_graph_rec_scheme

locale fin_gba = gba G + fin_gb_graph G
for G :: (’Q,’L, more) gba_rec_scheme

Another method to represent the set of sets of accepting nodes of a GBG
is to assign each state to a set of acceptance classes, which are represented by
natural numbers. This representation is particularly useful for implementing
the degeneralization and the SCC-based emptiness check algorithms. The corre-
sponding classes are indexed generalized Biichi graphs (igb-graph) and indezed
generalized Biichi automata (igba). From a refinement point of view, they can
be seen as implementations of the non-indexed versions. In the diagram, this is

denoted by an arrow annotated with the abstraction function, which transforms
an indexed graph to the corresponding non-indexed one. In the formalization,
this correspondence is expressed by a sublocale relationship:

context igb_graph begin
definition accn i = {q . i€acc q}
definition F = { accn i | i. i<num_acc }

definition to_gbg_ext m
=(frg-V =1V, frg.E =E, frg_ V0 = V0, gbg-F = F, ...=m |

sublocale gbg!: gb_graph (to_gbg_ext m)

The class sa models system automata, which are node-labeled finitely reachable
graphs. In CAVA, they are used to represent the Kripke structure generated from
the model to be checked.

Finally, the class b_graph models Biichi graphs, which are FRGs with a set
of accepting nodes. They can be seen as generalized Biichi graphs with a single
acceptance set, which is, again, expressed by a sublocale relationship.

2.2 Concepts

On the above classes, the CAVA Automata Library defines some basic concepts,
and provides useful theorems about them.

Edge Relations On edge relations, it defines finite and infinite paths and strongly
connected components:

inductive path :: v digraph = v = ’v list = v = bool for E where
path0: path E u [] u
| path_prepend: | (u,v)€E; path E vl w] = path E u (u#l) w

definition ipath :: ’q digraph = ’q word = bool
where ipath E r = Vi. (r i, r (Suc i))€E

definition is_scc :: ’q digraph = ’q set = bool
where is_scc E U<+— U € UNIV // (E* N (E~Y)%)

A finite path is modeled by its start and end node, and the list of intermediate
nodes, including the start node but excluding the end node. This formalization
allows convenient theorems for concatenation and splitting of paths, for example:

lemma path_conc_conv:
path E u (1a@Ib) w +— (Fv. path E u la v A path E v b w)

An infinite path is modeled as an infinite sequence of nodes, represented by a
function from natural numbers to nodes! (’a word is a synonym for nat = ’a).
The start node of an infinite path ris r 0.

! The formalization of w-words is by Stephan Merz.

A strongly connected component (SCC) is a maximal set of mutually con-
nected nodes. The SCCs can elegantly be defined as the equivalence classes of
the ,,mutually connected” relation. However, we provide a bunch of equivalent
characterizations, which are useful for special purposes.

Finitely Reachable Graphs On finitely reachable graphs, an infinite run is defined
as an infinite path that starts at a root node:

context fr_graph begin
definition is.run r=r 0 € VO A ipath E r

Functions that are clearly related to a single class are defined inside the locale
of that class. They roughly correspond to methods of the class. Note that we
use the abbreviations declared earlier to conveniently refer to the fields of the
class. Moreover, all lemmas proved inside the locale implicitly contain the locale’s
assumptions. For example, we state that a run only contains finitely many nodes
as follows, implicitly using the finitely reachable assumption from the locale:

lemma is_run_finite: is_run r => finite (range 1)

Generalized Biichi Graphs On generalized Biichi graphs, we define an accepting
run as a run that visits states from each acceptance set infinitely often:

context gb_graph begin
definition is_acc_run r = is.run v A (VAEF. 3oi. 71 € A)

Note how this definition exploits the subtyping provided by the record mechanism.
The is_run predicate comes from the fr_graph locale, where it has been defined
for FRGs. However, here it can also be used with GBGs. The ability to easily
reuse definitions and lemmas from a superclass in the subclass is an important
mechanism to keep redundancy of the formalization low.

We also prove an alternative characterization of accepting runs: A run is
accepting iff the set of states that it visits infinitely often contains states from
each acceptance set:

lemma is_acc_run_limit_alt:
is—accrun v <— iscrun v A (VAEF. limit rN A # {})

Note that this characterization depends on the finitely reachable assumption,
which is imported from the superclass.

Generalized Biichi Automata On generalized Biichi automata, we define accepted
words as words that are related to an accepting run via the labeling predicate.
Moreover, the language is defined as the set of all accepted words. The definitions
are done in a similar way, reusing the definitions from the superclass.

2.3 Algorithms

Beyond defining concepts like run or language on a single class, the CAVA
Automata Library also provides algorithms that typically incorporate multiple
objects.

Renaming A basic concept on graphs is that of renaming the nodes: Given an
injection f on the nodes, compute a new graph that is isomorphic to the original
graph w.r.t. f. Renaming is first defined on edge relations and finitely reachable
graphs:

abbreviation rename E f E = (M u,v). (fu, fv))‘F

definition fr_rename_ext ecnv f G =
frg-V = f(frg-V G),
frg_E = rename_E f (frg_FE G),
fro-VO = (frgV0 G),
. =ecnv G
)

locale fr_rename_precond
= fr_graph G for G :: (’u,’more) fr_graph_rec_scheme +
fixes f:: 'u= "v
fixes ecnv :: ('u, ‘'more) fr_graph_rec_scheme = ’more’
assumes INJ: inj_on f V

begin
abbreviation G’ = fr_rename_ext ecnv f G
sublocale G’!: fr_graph G’

We first define the renaming function. Apart from the injection fand the graph
G, it gets an additional parameter ecnv, which describes how the extension field
(...) of the record is transformed. The extension field contains the extensions
made by subclasses. This additional parameter will help us to extend renaming
to subclasses, reusing the original definition and lemmas. Next, we define a locale
that summarizes the preconditions of the renaming, i.e. that f is actually an
injection. Inside the precondition locale, we use a sublocale relationship to express
the fact that the renamed graph is also a finitely reachable graph. This makes all
fields and concepts of the new graph readily accessible, with the prefix G’. For
example, we state that runs of the original and the renamed graph simulate each
other as follows, where fi is the inverse of f:

lemma run_siml: is-run r = G .is_run (f o r)
lemma run_sim2: G’.is_run r = is_run (fi o r)

Next, we extend renaming to generalized Biichi graphs:

definition gb_rename_ecnv ecnv f G = |
gbg F ={ ffA| A. Aegbg_.F G}, ... = ecnv G
)

abbreviation gb_rename_ext ecnv f = fr_rename_ext (gb_rename_ecnv ecnv f) f

locale gb_rename_precond = gb_graph G +
fr_rename_precond G f (gb_rename_ecnv ecnv f)
for G :: ('u,’more) gb_graph_rec_scheme

and f:: 'u = ’vand ecnv
begin
sublocale G’!: gb_graph G’ proof unfold_locales
(x // Goals for assumptions of fr_graph already discharged x)

We first define the effect of renaming on the record extension for GBGs, again
adding an extra parameter for further subclass extensions. Then, we define
a precondition locale that includes both the locale for GBGs and the original
precondition locale for renaming FRGs. Inside this locale, we extend the sublocale
relationship for the renamed graph to GBGs. In the proof, we only have to
discharge the goals for the assumptions added by gb_graph, the goals from
fr_graph are already discharged by Isabelle/HOL’s locale mechanism, because
we have included the fr_rename_precond locale. Inside the new locale, we prove
simulation of accepting runs:

lemma acc_run_siml1: is_acc_run r = G .is_acc_run (f o 1)
using run_siml ...
lemma acc_run_sim2: G .is_acc_run r = is_acc_run (fi o r)

For the proofs, we reuse the simulation between runs that we have proved for
the renaming of FRGs. This reduces the proof to showing that the acceptance
condition is preserved under renaming.

In a similar way, we extend renaming to generalized Biichi automata, and
show that it preserves the language.

Synchronous Product An important operation of an LTL model checker is to
compute the synchronous product of the Kripke structure generated from the
model and the indexed GBA generated from the LTL formula. The result is an
indexed generalized Biichi graph, whose states are the product of the GBA’s and
SA’s states. We prove that the product is a valid GBG, and that its accepting
runs correspond to words in the language of both the SA and the GBA.

For CAVA, we currently define the product construction directly between
indexed GBAs and system automata, without defining products between the
superclasses, or providing an extension possibility to subclasses. The rest of
the approach is, however, similar to renaming: We define a precondition locale,
include the indexed GBG locale for the product via a sublocale relationship, and
prove the properties inside the precondition locale.

Degeneralization Another algorithm is degeneralization, i.e. to convert a general-
ized Biichi graph to a standard Biichi graph. The standard construction, which
we have formalized, is to create a copy of the GBG for each acceptance class,
and link the copies such that the automaton switches to the copy for the next
acceptance class when visiting a node that is in the current acceptance class. We
have formalized this algorithm on indexed GBGs, and proved that accepting runs
of the degeneralized graph correspond to accepting runs of the original graph.
From a formalization point of view, this algorithm falls into a special class:
It has no preconditions apart from its input being a valid GBG. Thus, its

precondition locale would collapse to be a copy of the GBG locale. Instead of

defining a precondition locale, we formalize degeneralization directly inside the
GBG locale:

context igb_graph begin
definition degeneralize_ext :: - = (’Q X nat,) b_graph_rec_scheme
sublocale degen!: b_graph degeneralize_ext ecnv
lemma degen_acc_run_iff:
is_acc_run v <— (3. fst o v’ = r A degen.is_acc.run T ecnv 1)

Note that the sublocale relationship has a free parameter (ecnv). For that reason,
all constants imported via this sublocale relationship also get an extra free
parameter. In the current version of Isabelle (Isabelle-2013-2) they also get a
phantom type parameter, which is, however, unnecessary and probably due to
some issue in the locale package. By universally quantifying the lemmas over
these additional parameters, they also apply to extensions of degeneralization to
subclasses.

To-Index Conversion Any finite GBG can be converted to an indexed version,
by enumerating its acceptance sets, and then converting them to acceptance
classes. This algorithm is implemented for GBGs and then extended to GBAs. It
is used by the conversion algorithm from LTL formulas to GBAs, which initially
produces a non-indexed GBA that is then converted to an indexed GBA. We
show that the sets of accepted runs and the languages of the GBA and its indexed
version are the same.

To-index conversion adds another technical challenge, as it is inherently
nondeterministic: There are many enumerations of the acceptance sets, and
without knowing the precise implementation, one cannot decide for a specific one.
Thus, it has to be formalized inside the nondeterminism monad of the Isabelle
Refinement Framework [§], i.e. its return type is a set of possible results?:

definition gbg_to_idx_ext :: - = _ = (’a, _) igb_graph_rec_scheme nres

This makes it impossible to define a sublocale for the result. Instead, we prove a
lemma of the form

lemma (in fin_gb_graph) gbg_to_idz_ext_correct:
gbg_to_idz_ext ecnv G
< (spec G’. igb_graph G’ A igb_graph.is_acc_run G’ = is_acc_run)

When proving correctness of an algorithm that uses to-index conversion, the
verification condition generator will generate a proof obligation of the form:

[igb-graph G’; igb_graph.is_acc-run G’ = is_acc_run] = ...

When discharging such a proof obligation, we can interpret the igb_graph locale
locally in the proof, making available all concepts from igb_graph for G".

2 Actually, the inner type of the nondeterminism monad has the form
‘a nres = RES ’a set | FAIL, where the value FAIL represents failed assertions or
nontermination.

10

2.4 Implementations

In CAVA, we use the Automatic Refinement Framework (Autoref) [7] to refine
abstract algorithms to efficient implementations, using the efficient data structures
for standard types provided by the Isabelle Collection Framework (ICF) []].
Autoref is based on the idea of parametricity [I3I14] to express refinement: Each
concrete type comes with a relator, which transforms a relation on the arguments
to a relation between the concrete and abstract type. For example, the relator

list_set_rel :: ("a x 'b) set = (a list x ’b set) set

transforms a relation on elements to a relation between (distinct) lists and sets.

For each operation, a refinement theorem is provided, which relates the
concrete with the abstract operation. For example, for sets implemented by
distinct lists, we have:

(I,{}) € (R)list_set_rel
[(eqop =) € R — R — bool_rel |
= (glist_insert eq, insert) € R — (R)list_set_rel — (R)list_set_rel

Note that we write the application of relator arguments in prefix form with (),
and use — for the natural relator on functions. This has technical reasons, and,
additionally, makes relators more look like type constructors, which matches their
intuition.

For the CAVA Automata Library, we first define data structures for the
classes together with suitable relators, and show refinement theorems for the
basic operations, namely field access and constructors. Then, we use Autoref to
generate implementations of the algorithms.

On-the-fly Model Checking An important requirement that influences the choice
of data structures is the fact that CAVA is an on-the-fly model checker: The state
space of the model is constructed lazily while searching for a counterexample.
When a counterexample is found, the model checker terminates without having
constructed the complete state space.

Edge Relations The edges in CAVA are implemented by a successor function,
which maps a node to a distinct list of its successors. This implementation is
suited for a lazy exploration of the state space, as the successors of a state can
be computed on request. Using a list to represent the set of successors is also
adequate, as the only operation on successors is to iterate over them, which can
be implemented efficiently by a fold operation. Thus, we make the following
definitions, and set up the Autoref framework accordingly:

type_synonym ’a slg = ‘a = ’a list

definition slg_rel :: ("ax’b) set = (’a slg x ’b digraph) set where (R)slg_rel
= (R — (R)list_set_rel) O br (Asuccs. {(u,v). vE€suces u}) (A_. True)

lemma (Asuccs v. succs v, A\E v. E‘{v}) € (R)slg-rel — R — (R)list_set_rel

11

Finitely Reachable Graphs For finitely reachable graphs, we represent the set
of root nodes by a distinct list. This choice is appropriate, as the only required
operation is, again, iteration. However, the adequate representation of the set of
nodes depends on where in CAVA the graph is used: For the system automata,
the set of nodes is the universal set of the state type. We can implement this by
a degenerate set implementation, that is only able to represent the universal set?.
On the other hand, when implementing renaming, we need to iterate over the
set of nodes, which requires it to be finite. For this purpose, we use distinct lists
again.

Technically, we face two problems when formalizing implementations of finitely
reachable graphs: First, we want to reduce redundancy between the different
implementations of the node set. Second, we want to allow for an easy extension
of the implementation to subclasses.

The first problem is solved by defining a generic implementation, which is
parameterized with implementations for the fields. The second problem is solved
by also including a parameter for the implementation of the record extension
field:

record (’vi,’ei, v0i) gen_frg_impl =

frgi Vi vi
frgi_E :: ei
frgi_ VO :: v0i

definition (Rm,Rv,Re, Rv0)gen_frg_impl_rel_ext = ...

lemma gen_frg_refine:
(frgi_V,frg_V) € (Rm,Rv,Re,Rv0) gen_frg_impl_rel_ext — Rv
(frgi_E,frg-E) € (Rm,Rv,Re,Rv0)gen_frg_impl_rel_ext — Re
(frgi_V0,frg_V0) € (Rm,Rv,Re, Rv0)gen_frg_impl_rel_ext — Rv0
(gen_frg_impl_ext, fr_graph_rec_ext)
€ Rv — Re — Rv0 — Rm — (Rm,Rv,Re, Rv0) gen_frg_impl_rel_ext

Here, the record gen_frg_impl is parameterized with the types of the implemen-
tations, and the relator gen_frg_impl_rel_ext is parameterized with relations for
the actual implementations, including a relation Rm for the implementation
of the record extension field (internally called more). The refinement lemma
states refinement of the fields and the record constructors. From this generic
implementation, the concrete implementations are derived by instantiation.

Generalized Biichi Graphs For GBGs, we implement the set of acceptance sets by
a list of lists. This is appropriate, as the non-indexed GBGs occurring in CAVA
are generally small, and converted to indexed GBGs before the time critical
emptiness check phase.

Technically, we only have to formalize a relation for the record extension,
and can reuse the formalization for the base class implementation. Again, we

3 Currently, we use an implementation by characteristic functions, which is also suitable
and, unlike the degenerate implementation, already provided by the ICF.

12

provide an extra parameter for the record extension field, allowing reuse for
further subclasses:

record (v, ’ei, v0i, ’fi) gen_gbg_impl = (v, ei, v0i) gen_frg-impl +
gbgi F :: 'fi

definition (Rm,Rf)gen_gbg_impl_rel_eext = ...

abbreviation (Rm,Rf)gen_gbg_impl_rel_ext
= ((Rm,Rf)gen_gbg_impl_rel_eext) gen_frg_impl_rel_ext

lemma gen_gbg_refine:
(gbgi_F,gbg_F) € (Rm,Rf,Rv,Re, Rv0) gen_gbg_impl_rel_ext — Rf
(gen_gbg_impl_ext, gb_graph_rec_ext)
€ Rf — Rm — (Rm,Rf)gen_gbg_impl_rel_eext

Further Implementation Choices The implementations of the other classes are
derived analogously. Here, we briefly report on the choice of data structures:

The labeling functions for Generalized Biichi Automata are implemented as
functions. This choice is appropriate for model checking: The labels are sets of
atomic propositions, and the labeling function of the GBA effectively checks
whether the atomic propositions that hold at a state of the system satisfy some
constraints from the LTL formula. Note that an explicit tabulation of the labeling
function would blow up the representation size exponentially, as it would have to
consider all combinations of atomic propositions.

For indexed GBGs, we represent the acc function, which maps a state to the
set of its acceptance classes, by a function from states to bitvectors. Bitvectors
provide efficient union and compare operations, as required by the SCC-based
emptiness check algorithm, which incrementally builds up subsets of SCCs, and
immediately returns a counterexample when all acceptance classes are covered
by such a subset.

Finally, the set of accepting nodes of a Biichi graph is implemented by its
characteristic function. This is suitable, as the only operation required by CAVA
is membership query.

Implementation of Algorithms Once we have provided data structures for the
graphs, and implemented the basic operations, i.e. field access and constructors,
we can use stepwise refinement to derive implementations for the algorithms. The
last refinement step — from the abstract automata classes to their implementa-
tions — is performed automatically by the Autoref tool. Like on the abstract
level, for subclasses, we only have to implement the functions that generate the
record extension.

13

3 Conclusions

In this paper we have presented the CAVA Automata Library, which is used by
the fully verified LTL model checker CAVA. It uses an object oriented design,
modeling the different types of graphs and automata as a class hierarchy. This
design allows to eliminate redundancy by reusing theorems and definitions from
superclasses inside subclasses. Moreover, it is integrated into the Automatic
Refinement Framework, featuring automatic refinement of graph and automata
algorithms to use efficient data structures.

The formalization techniques presented here are not limited to graphs and
automata, but apply to class hierarchies in general.

3.1 Future Work

Current and future work includes stratifying and extending the class hierarchy.
For example, Biichi graphs could be modeled as a subclass of generalized Biichi
graphs, which would eliminate some more redundancy. Moreover, Biichi automata
and various alternative implementation data structures are still missing, but will
soon be required by extensions planned for CAVA. Also the current state of
indexed GBGs seems a bit odd. Conceptually, they are only implementations of
GBGs, e. g. refinements that should come with a relator and a set of refinement
theorems.

Moreover, one could implement an Isabelle package for class hierarchies,
which would significantly reduce the boilerplate code required for our current
formalization.

Finally, there are alternative approaches for embedding class hierarchies into
Isabelle/HOL, which need to be explored. One possibility might be the usage of
typedef to represent the class invariants, and coercions to realize subtyping.

3.2 Related Work

There are several automata and graph libraries for Isabelle/HOL. We already
reported on Tuerk’s automata library that was initially used by CAVA. Moreover,
there is a tree automata library [6]. While it already uses refinement techniques
and an early version of the Isabelle Collection Framework?, it has no object
oriented design.

The work closest to ours is the graph library by Noschinski [T2/11], which
defines a hierarchy of directed graph classes, also using records and locales®. This
library is focused on directed graphs, where it provides very general concepts
like labeled and parallel arcs. This generality, which is not needed by CAVA,
comes at the price of a considerable formalization overhead. Thus, we decided to

4 In fact, the ICF was initially developed specifically for this library.

5 Actually, many ideas have flown in both directions between our and Noschinski’s
library, which is pandered to by the fact that the respective authors’ offices are
vis-a-vis on the same floor.

14

reimplement the special type of directed graphs required by CAVA, which was
not a big deal, but made the subsequent extensions to automata much simpler.

Records in Isabelle/HOL have been implemented for the purpose of shallowly
embedding object oriented designs. Naraschewski and Wenzel [9] report on
techniques to shallowly embed class hierarchies in Isabelle/HOL. Our technique
is similar in that it uses extensible records. However, we additionally use locales
to represent class invariants.

Brucker and Wolff [2] have developed a translation from object oriented data
models to a shallow embedding in HOL. However, they mainly focus on modeling
the object store and references, which is not required for our formalization.

References

1. Back, R.J.: On the correctness of refinement steps in program development. Ph.D.
thesis, Department of Computer Science, University of Helsinki (1978)

2. Brucker, A.D., Wolff, B.: A package for extensible object-oriented data models with
an application to IMP. In: SVV 2006, Computing Research Repository (2006)

3. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.G.: A
fully verified executable LTL model checker. In: CAV, LNCS, vol. 8044, pp. 463-478.
Springer (2013)

4. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: Dembinski, P., Sredniawa, M. (eds.) Proc. Int.
Symp. Protocol Specification, Testing, and Verification. IFIP Conference Proceed-
ings, vol. 38, pp. 3-18. Chapman & Hall (1996)

5. Holzmann, G.J.: The Spin Model Checker — Primer and Reference Manual. Addison-
Wesley (2003)

6. Lammich, P.: Tree automata. In: Archive of Formal Proofs. http://afp.sf.net/
entries/Tree-Automata.shtml (Dec 2009), formal proof development

7. Lammich, P.: Automatic data refinement. In: Interactive Theorem Proving, LNCS,
vol. 7998, pp. 84-99. Springer Berlin Heidelberg (2013)

8. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Proc. of ITP. LNCS, vol. 7406, pp. 166—-182. Springer
(2012)

9. Naraschewski, W., Wenzel, M.: Object-oriented verification based on record sub-
typing in higher-order logic. In: Proc. of TPHOLs. vol. LNCS 1479, pp. 349-366.
Springer (1998)

10. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

11. Noschinski, L.: Graph theory. Archive of Formal Proofs (Apr 2013), http://afp!
sf.net/entries/Graph_Theory.shtml, Formal proof development

12. Noschinski, L.: A graph library for isabelle. Mathematics in Computer Science
(2014), to appear

13. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFTP Congress.
pp. 513-523 (1983)

14. Wadler, P.: Theorems for free! In: Proc. of FPCA. pp. 347-359. ACM (1989)

15

http://afp.sf.net/entries/Tree-Automata.shtml
http://afp.sf.net/entries/Tree-Automata.shtml
http://afp.sf.net/entries/Graph_Theory.shtml
http://afp.sf.net/entries/Graph_Theory.shtml

	The CAVA Automata Library

