Tree Automata for Analyzing Dynamic
Pushdown Networks

Peter Lammich

Institut fiir Informatik, Fachbereich Mathematik und Informatik
Westfalische Wilhelms-Universitat Miinster
peter.lammich@uni-muenster.de

Abstract. Dynamic Pushdown Networks (DPNs) are an abstract model
for concurrent programs with recursive procedures and dynamic process
creation. Usually, DPNs are described with an interleaving semantics,
where an execution is a sequence of steps. Recently, we introduced a
true-concurrency semantics for DPNs, where executions are trees.

The standard analysis methods for DPNs are based on a saturation al-
gorithm, that, given a set of configurations, computes the set of all pre-
decessor configurations. In this paper we present an alternative analysis
algorithm that is based on tree automata. DPN executions as well as
the properties to be analyzed are represented as tree automata, and the
analysis is done by standard tree-automata algorithms for intersection
and emptiness check.

1 Introduction

Many existing analysis techniques for concurrent programs use parallel push-
down automata (e.g. [5,3,4]) or parallel procedure calls (e.g. [10, 8]) as a model
for concurrency. However, there are programming languages, like Java, that sup-
port dynamic thread creation. This cannot be mapped to parallel procedure calls
[2], and it can only be mapped to parallel pushdown systems when bounding the
maximum number of allowed threads. In contrast, dynamic pushdown networks
(DPNs)[2] natively support dynamic thread creation.

DPNs extend pushdown systems by rules with the side-effect of creating a
new pushdown process that is then executed concurrently. In [2], analysis of
DPNs is done by automata based techniques. The key result for the analysis of
DPNs is, that pre},-computation preserves regularity. This can be used for, e.g.,
bitvector kill/gen analysis [2] or bounded model checking of DPNs with shared
memory [1].

Originally, DPNs are given an interleaving semantics, where an execution is a
totally ordered sequence of steps. More recently, a true concurrency semantics for
DPNs has been introduced [7], where executions are modeled as trees. It is shown
how to decide tree-regular properties of such executions, and thus generalize the
results on DPNs of [2]. Moreover, this technique can be used to precisely compute
pre}-sets for DPNs with well-nested locks [7].

The techniques presented in [7] compute the cross-product of a DPN and a
tree automaton for the regular property to be analyzed. This cross-product is,
again, a DPN and can be analyzed using the standard pre},;-computation [2]. In
this paper, we explore a different approach for the analysis of DPNs. We also use
the true-concurrency semantics presented in [7], but instead of computing the
cross-product DPN, we use tree-automata techniques: Let M be a DPN with the
set of executions ey, and @ be a regular property. We want to check whether the
DPN has an execution with property @, i.e. whether epy N @ # (. Our analysis
computes a tree-automaton A with language L(A) from the DPN, such that
em = a(L(A)), where o maps a tree of L(A), called regular execution tree, to an
execution of the true-concurrency semantics, and «(L(A)) is the element-wise
application of « to the set L(A). The problem now reduces to checking whether
L(A) Na Y(®) # 0. If a~ () is also a regular set, this can be decided using
standard tree automata algorithms.

In this paper, we manually derive the tree automata representation of a1 (®)
for a specific reachability property @. It is left future work to automatically derive
the tree automata representations of a~!(®) from a suitable representation of
@, e.g. using theory related to macro tree-transducers.

The rest of this paper is organized as follows: In Section 2, we introduce
DPNs along with their interleaving and true-concurrency semantics. In Section 3,
we introduce regular execution trees, justify them w.r.t. the true-concurrency
semantics and derive a specific reachability property for regular execution trees.
Finally, in Section 4, we give a short conclusion and outlook to future work.

2 Dynamic Pushdown Networks

A DPN [2] is a tuple M = (P, I, L, A), where P is a finite set of control states,
I' is a finite stack alphabet with PN I" =), L is a finite set of rule labels, and
A = Ay U Ag is a finite set of non-spawning (Anx) and spawning rules (Ag).

l
A non-spawing rule py — p'w € Ay C€ PI' x L x PI'* enables a transition
on a single pushdown process with state p and top of stack v to new state p’

and new top of stack w € I'*. A spawning rule py <, pw > psws € Ag C
PI' x L x PI'"* x PI'* is a pushdown rule with the additional side-effect of
creating a new process with initial state ps and initial stack ws;. DPNs are able
to model programs with potentially recursive procedures: A rule with |w| =0
models a return from a procedure, a rule with |w| = 1 models a step inside a
procedure, and a rule with |w| = 2 models a procedure call. Rules with |w| > 2
can be seen as generalized procedure calls where more than one return address
is pushed onto the stack. In this paper, we restrict DPN rules to be of one of
the following forms:

Assumption 1 Let r € A be a DPN-rule. Then there exists p,p’,ps € P,
Y, 71,72,Y,vs € I' and | € L such that r has one of the following forms:

I
basic step r = py — p'v/

!
procedure call r = py < p'vy17y2
l
procedure return r = py — p’

l
process creation r = py — p'y' > pss

Note that these rule types are sufficient to model interprocedural programs with
DPNs. Moreover, by replacing generalized calls by sequences of procedure calls
(adding new states and stack symbols as necessary), one can transform any DPN
into a DPN that satisfies Assumption 1, while preserving the relevant properties
for program analysis, e.g. reachability properties. For the rest of this paper,
we assume that we have a fixed DPN M = (P, I, L,A), and a fixed initial
configuration pgyo € PI'. Note that this restricts our analysis to programs with
one initial process. If programs with more than one initial process are required,
one has to create a process that sets up the program’s initial configuration.

Interleaving Semantics. We briefly recall the interleaving semantics of a DPN
as presented in [2]: Configurations Conf := (PI™*)* are sequences of words from
PI'™* each word containing the control state and stack of one of the processes
running in parallel. The step relation —C Conf x L x Conf is the least solution
of the following constraints:

l
nospawn| ¢ (pyr)ce 4 c1(p'wr)es if py =pwe Ay
Y g

l . l
[spawn] c1(pyr)ea — c1(psws)(pwr)cy if py — p'w > pows € Ag

A [nospawn]-step corresponds precisely to a pushdown operation (manipulating
the control state and the top of the stack), a [spawn]-step additionally creates
a new process that is inserted to the left of the creating process. We define
—* C Conf x L* x Conf to be the reflexive, transitive closure of —. This seman-
tics is an interleaving semantics, because steps of processes running in parallel
are interleaved. It models the possible executions on a single processor, where
preemption may occur after any step.

In order to simplify the presentation of the analysis, we assume that no
configuration with an empty stack is reachable from the initial process pgyo:

Assumption 2 Vi € L, ¢ € Conf. pgyo e = ¢ (Pr+)*

Again, any DPN can be transformed to satisfy this assumption while preserving
the relevant properties. The transformation adds a new stack symbol v, at the
bottom of each stack.

Also note that a DPN contains no rules to remove an existing process from
the configuration. Thus we have:

Lemma 3. Vpw € PI'*, l € L, ¢’ € Conf. py e = ¢ (PI*)*+

In DPNs, termination of a process can be modeled, e.g., by going into a special
state from that there is no more progress.

Predecessor Computation. Given a set C' C Conf of configurations, the set

pre,;(C) :={c| 3 eC’, leL.c 4 c'} is the set of immediate predecessors
of ¢, i.e. the set of configurations that can make a transition to a ¢ € C’ in

exactly one step. Similarly, pre},(C') :={c|3c € C', | € L*. ¢ —l>*c’} is the set
of predecessors of C', i.e. the set of configurations that can make a transition to
a ¢’ € C' by executing an arbitrary number of steps.

An important result on DPNs is that pre,, and pre}, preserve regularity,
i.e. if C" is a regular set then pre,;(C’) and pre},;(C’) are regular as well, and
given an automaton accepting C’, automata accepting pre,,(C”) and prej, (C’),
respectively, can be computed in polynomial time [2]. This result is the key
to analysis of DPNs. For example, let py € PI" be a state where a resource
is write-accessed. Let p'y' € PI" be another state where the same resource is
read-accessed. The regular set

with S = PI'™ contains exactly those configurations where one process is at
state py and another process is at state p’+’. Thus, the query poyo € pre},(C)
decides whether a conflict situation between the two resource accesses at py and
p'+' is reachable’.

Tree Semantics. We recently presented a tree-based semantics for DPNs [7]. An
execution of the interleaving semantics is a sequence of steps, inducing a total
ordering on the steps. Even steps of independent processes are ordered. In the
tree-based semantics, an execution is a tree of steps, only inducing an ordering
on steps of the same process and on steps of a created process to come after the
step that created the process.

Formally, we model an execution starting at a single process as an execution
tree of type T :=N LT |S LT T |L PI'*. A tree of the form N [¢ models an
execution that performs the non-spawning step [first, followed by the execution
described by t. A tree of the form S [t5 t models an execution that performs the
spawning step [first, followed by the execution of the spawned process described
by ts and the remaining execution of the spawning process described by ¢. A node
of the form L pw indicates that the process makes no more steps and that its
final configuration is pw. The annotation of the reached configuration at the leafs
of the execution tree increases expressiveness of regular sets of execution trees,
e.g. one can characterize execution trees that reach certain control states. The
distinction between spawned and spawning tree at S-nodes allows for keeping
track of which steps belong to which process, e.g. when tracking the acquired
locks of a process, as done in [7].

! Note that the regular sets are not required to only model valid configurations, thus
we could also use the set C' = (S*pyS*p'+v'S*) | (S*p'v'S*pyS*) with S = PUT. It
has a simpler automata but does not satisfy C' C Conf.

The relation = C PI™ x T x Conf characterizes the execution trees starting
at a single process. It is defined as the least solution of the following constraints:

[leaf] qw Loy quw
I
[nospawn] gyr LR if gy = qwe Ay A qur == ¢

X . l
[spawn] gyr St csc if gy = ¢'w > qsws € Ag

to ¢
A qws == c; N qwr = ¢

In order to relate the tree semantics to the interleaving semantics, we define
a scheduler that maps execution trees to compatible sequences of rules. From the
ordering point of view, the scheduler maps the steps ordered by the execution
tree to the set of its topological sorts. The scheduler is modeled as a labeled
transition system over lists of execution trees. A step replaces the root node of
a tree in the list by its successors. Formally, the scheduler ~~C T* x L x T* is
the least relation satisfying the following constraints:

[nospawn] hy (N 1 t)hg ~b hyiths
[spawn] hi(S 1 ts t)hy ~ hitsths

We call sched(t) := {l € L* | 30’ € (L PI'*)*. [t] ~~*h'} the set of schedules of
a tree t € T, where (L PI'™*)* is the set of all lists of L-nodes, and ~~* is the
reflexive, transitive closure of the scheduler ~~». Notice that this definition of
the scheduler corresponds to the well-known topological sorting algorithm that
iteratively removes minimal elements (in this case root nodes of trees in the list)
until there are no more minimal elements left. It can be shown by induction?
that every execution of the interleaving semantics is a schedule of an execution
of the tree semantics and vice versa:

Theorem 4. Let p € P, w € I'*, ¢ € Conf and | € L*, then pw AR if and
only if there is an execution tree t € T with pw =L ¢ andl e sched(t).

Moreover, as trees are acyclic and thus any tree has at least one topological sort,
any execution tree has at least one schedule:

Lemma 5. Vt € T. sched(t) # ()

Reached Configuration. The execution tree already determines the configuration
that is reached by the execution, as the reached configuration is annotated at
the leafs of the execution tree. We define the function conf : 7" — Conf that
returns the configuration reached by an execution tree:

conf(L pw) = pw
conf(N [t) = conf(t)
conf(S [ts t) = conf(ts)conf(t)

2 To get the induction through, one has to generalize the ==-relation to more than
one initial process and lists of execution trees, as done in [7, 6].

It is straightforward to show that conf(¢) really returns the configuration reached
by any execution of t:

Lemma 6. Vpw € PI'*, t € T,c' € Conf. pw Ll = = conf(t)

3 Regular Execution Trees

An execution tree makes the structure of process creation explicitely visible.
However, the structure of procedure calls and matching returns is not explicitely
visible in the structure of the execution tree. The information whether a proce-
dure call returns and where the matching return node is, can only be obtained
by inspecting the execution of the process and searching for a matching return
node. In this section, we develop another tree-based representation of executions,
so called regular execution trees. The structure of those execution trees makes
visible both, process creation and procedure calls. For the remainder of this pa-
per, we will use the term standard execution tree to refer to the execution trees
introduced above. Regular execution trees have the advantage that the set of
executions starting at a configuration of the form p~y (in particular pyyp) can be
described as a regular set, and it is straightforward to construct a tree-automaton
for this set from the rules of the DPN. Thus, we can use standard tree-automata
operations like intersection and emptiness check for the analysis. We distinguish
between the set R, of returning execution trees and the set R,, of non-returning
execution trees. A returning execution tree returns from the current procedure,
while a non-returning execution tree does not. Formally, regular execution trees
have the type:

R, :=ret L P|base L R, |callr L R, R, |spawn L R, R,
R, :=nil PI" |base L R, |callr L R, R, |calin L R, I | spawn L R, R,

Moreover, we define the set R of all regular execution trees by R := R, U R,,.
Intuitively, a nil py-node represents the end of a process’s execution. The process
ends in state p with top-of-stack . A ret [p-node represents a procedure return.
The return step is labeled with [, and the return state is p. A base [7-node
represents a basic-step with label [. After the basic step, the execution continues
with 7. A callr [7. 7-node represents a returning procedure call labeled with
. The execution of the procedure is described by 7. and the execution after
the procedure has returned is described by 7. A calln [7. y-node represents a
procedure call that does not return. 7. represents the execution of the procedure,
and + is the return address of the procedure, that will — as the procedure does
not return — remain on the stack for the rest of the execution. A spawn [75 7-
node represents a process creation step, where 7, is the execution of the created
process and 7 is the remaining execution of the creating process. Note that, due
to Assumption 2, a (reachable) spawned process does not return from its initial
procedure, and thus we have 75, € R,,.

In order to map from a regular execution tree to a standard execution tree,
we need to define a concatenation operation that glues together two standard

execution trees, by replacing the rightmost leaf of the first tree by the second
tree. We define the operation -;- : T' x T" — T recursively over the structure of
the first tree:

(L pw);t' =t

(NIt); ¢ =N1T (tt)

(Sltyt):t' =Sty (t:t)

In order to define the function o : R — T that maps from regular execution trees
to standard execution trees, we first define the auxiliary function o’ : RxI'™ — T
that maps a regular execution tree and some stack to a standard execution tree.
Intuitively, the stack contains the symbols that will not be popped during the
rest of the execution.

O/
Oé/
Oé/
Oé/
al
O/

nil py,s) = Lp(7s)

ret I p,s) =N 1 (L ps)

base 7,5) =N (¢/(7), s)

callr I 7o 7,8) = N I (&/(7¢,€); &/ (7, 8))
calln I 7oy, 8) = N 1 o/ (7¢,7s)

spawn [75 7,8) =S | &/ (75,¢) &/(T,s)

o~ o~~~ o~ o~

The function « is then defined as a(7) := o/(7,). We overload « : 2% — 27 for
sets of trees by element-wise function application, i.e. a(X) = {a(7) | 7 € X}.

We now characterize the regular execution trees of a DPN by the least fixed
point of a constraint system. The constraint system contains variables of the form
Nip,7] € R, and R[p,v,q] C R, for p,q € P and v € I'. Intuitively, N[p,~]
contains the set of non-returning execution trees starting at configuration pry
and Rl[p, 7, q] contains the set of execution trees starting at configuration py and
returning with state g:

[n-nil] nil py € N(p,]
for pry <L peA:
[r-ret] ret L p’ € Rlp,v,D]
forp7i>p'7’€A,ﬁ€P:
[n-base] base ! 7 € N[p,~] <=T7eN[p,Y]
[r-base] base ! T € Rip,,p] <7 € RPp,Y, D]

for py <> p'y1vz € A, pp € P
[n-calln] callnl 772 € N[p,7] < 71€ N[p',7]
[n-callr] «callrl 7. 7€ Nlp,y] <<71.€R}p,7,p]AT € NP,
[r-callr] «callrl 7. 7 € Rlp,v,p] < 7c € R[p',71,p] AT € R[p, 72, D]

1 .
for py — p'y' > psys € A, peP:
[n-spawn] spawn [75 7 € N[p,y] <= 75 € N[ps,vs| AT € N[p',7]
[r-spawn] spawn [75 T € R[p,v,p| < 7s € N|ps,vs] AT € R[p',~', D]

In the remainder, we use N[p,7] and R[p,~,q] to refer to the least solution of
this constraint system. Note that these constraints also define rules of a tree
automaton over states {N[p,y] | p € P,y € '} U{R[p,v,q] | p,q € P,y € I'}.

Thus, the sets N[p,v] and R[p,~,q] are tree regular sets. We will use this tree-
automata view and the closedness properties of regular tree languages in order
to decide whether a DPN has some execution that satisfies a given tree-regular
property @ C R, as this is equivalent to N[pg, o] N ® # () which can be decided
by standard tree automata operations.

First, we justify the regular execution tree semantics defined by the constraint
system w.r.t. the standard execution tree semantics:

Theorem 7. Let p,p’ € P and v € I'. Then we have:

a) {t|3 e (PIH)t. py== ¢} = a(Np))
b) {t|3c, € (PTH)*. py == cp'} = a(R[p,7,7'])

Intuitively, Theorem 7a states that there is a standard execution ¢, starting
at configuration py and ending in a configuration with no empty stack (¢’ €
(PI'*T)™), if and only if there is a regular execution tree 7 € N|[p, | that matches
the standard execution tree ¢, i.e. (a(7) = t). Theorem 7b makes the analog
statement for returning executions.

Reached Configuration. We now extract the configuration reached by a regular
execution tree: We overload the function conf : R — Conf:

conf(nil p v) = py

conf(ret Il p) =¢

conf(base [7) = conf(7)

conf(callr I 7. 7) = conf(7.)conf(7)

conf(calln I 7.) = conf(7.)y

conf(spawn [75 7) = conf(7s)conf(7)

It is straightforward to show that, for non-returning execution trees, the configu-
ration computed by conf matches the configuration reached by the corresponding
standard execution tree:

Lemma 8. V7 € R,,. conf(7) = conf(a(T))

In the rest of this paper, we want to characterize the set of regular execution
trees that reach a configuration that is in a given regular set of configurations.
For this purpose, we regard a finite state machine (FSM) F = (Q, qo, QF,0)
with states @, initial state ¢y € @, final states @r C @ and transition relation
0 C QX (PUI')xQ. Let §* be the reflexive, transitive closure of 4. The language
of F is defined by L(F) :={ce (PUI)* | 3¢ € QF- (q0,¢,¢") € 6*}. We regard
a constraint system over variables T'[q,¢'] C R for ¢q,¢' € Q. Intuitively, Tq, ¢']
contains all regular execution trees whose reached configuration drives the FSM
from state ¢ to state ¢’:

t-nil] nil py € Tq, ¢] <= (g,p7.¢') € 0"
t-ret] ret I p € T|q,q] =qeq
t-base] base I 7 € T|q, ('] <=7€Tq.q

[

[

[]

[t-callr] callrl 1. 7€Tlq,q] <3G 17.€T[g, 4] AT €TI§{J]
[t-calln] callnl 7. v€Tlg,q¢] <3G 7 €Tlq,4) N (§7,qd)€d
[t-spawn] spawn [75 7 € Tq,q'] < 3G. 7s € T|q, g A7 € T[4, 4]

In the rest of this paper we use T[q,q’] to refer to the least solution of this
constraint system. Note that this constraint system also defines the rules of a tree
automaton, and thus the sets T'[q, ¢'] are regular. It is straightforward to show
that T'[q, ¢'] contains exactly those regular execution trees whose configuration
transfers the FSM from state ¢ to state ¢':

Theorem 9. V7T € R, ¢,¢ € Q. 1 €Tlq,¢'] & (q,conf(r),q’) € 6*

By combining the previous results of this paper, we can now decide whether
some configuration from the regular set of configurations L(F') is reachable from
the initial configuration pg~yo:

Theorem 10 (Main Result).

(3l e L*, ¢ € L(F). poyo L*c’) < Npo,v] N U{T[Qanl] | €Qr}#0

Note that both N[po,v0] and J{T[q0,¢'] | ¢ € Qr} are regular tree languages,
and the rules of the corresponding tree automata can be constructed from the
scheme given by the constraint systems for NV, R and T. Hence, the right hand
side of the equivalence can be decided using standard tree automata algorithms
for intersection and emptiness check.

Proof. For the =-direction assume there is an sequential execution l€L*and a
configuration ¢’ € L(F) with poyo L*¢/. With Theorem 4, we obtain an standard

execution tree ¢t with pgvo =L ¢/. From Assumption 2 and Lemma 3 we have
¢ € (PI'")", hence we can use Theorem 7a to obtain a regular execution tree
T € Npo,Y0] with a(7) =t.

Moreover, with Lemma 6, we have conf(t) = ¢/, and with Lemma 8 we get
conf(7) = /. With ¢’ € L(F) we obtain a state ¢ € QF with (go,conf(7),q’) €
0*. With Theorem 9, we have 7 € T[qo, ¢'] and hence 7 € |J{T'[q0,¢'] | ¢ € Qr}.
Ultimately, we get N[po,vo] N U{T[q0,¢'] | ¢' € Qr} # 0.

The proof of the <-direction is analog. Only in order to apply Theorem 4,
we need the additional fact that every standard execution tree has at least one
schedule (Lemma 5). O

4 Conclusion

We presented a tree-based semantics for DPNs. The set of executions of the DPN
are a regular set, and a tree automata for this set can efficiently be derived from
the DPN rules. The semantics is justified w.r.t. the true-concurrency semantics
presented in [7] and thus, indirectly, w.r.t the original interleaving semantics of
DPNs [2]. By using standard tree automata techniques, we are able to decide
tree regular properties of DPN executions. To show the usefulness of tree-regular
properties, we showed that reaching a configuration from a given regular set is
a tree-regular property.

All the results presented in this paper have been formalized in the interactive
theorem prover Isabelle/HOL [9]. The proofs related to DPNs and standard
execution trees have been published as a technical report [6]. The proofs related
to regular execution trees are still unpublished.

Future Work Currently, we have only modeled one specific property — execution
trees reaching a configuration from a regular set — as a tree-automaton and
justified it by hand. However, there is strong indication that the function «, that
maps from regular execution trees to standard execution trees, can be written as
a macro tree transducer. Then, for every regular set S C T of standard execution
trees, the set a=!(T) C R of corresponding regular execution trees is also regular,
and an automaton for a1 (T') C R can be constructed automatically. This would
allow us to automatically transfer other useful properties of standard execution
trees to our new analysis technique, e.g. the analysis of reachability w.r.t. nested
locks presented in [7].

By iterating pre},;-computations, one can check for executions that reach a
sequence of intermediate configurations from given regular sets. This can be
used for, e.g., bounded model checking of DPNs with shared memory [1]. In
order to achieve the same with our tree-automata based techniques, we have to
specify tree automata for execution trees that reach a sequence of intermediate
configurations, each from a given regular set. Ideally, we would develop a method
to automatically derive these tree automata from regular properties that are
separately specified for each execution between two intermediate configurations.

Another direction of future work is to extend the power of the analyzed
model. While, in this paper, we only presented an analysis for DPNs, we are
pretty sure that our results carry over to the strictly more powerful CDPNs [2],
where rules may be constrained by properties of the state of the processes that
have been spawned by the process that executes the rule. This allows, e.g., to
model parallel procedure calls. Moreover, we could try to use other techniques, in
particular Horn-Clause solvers and symbolic representations of the tree automata
rules, to improve the performance of the analysis, in particular for large DPNs or
properties where the automaton has many states but a possible short symbolic
description.

Moreover, we have to compare our analysis techniques with the existing tech-
niques for prej,;-computations. One aspect of this comparison is to compare the
theoretical worst case complexities of the two methods. Another aspect would be
an experimental evaluation of the runtimes for typical problems. We currently
have prototype implementations for both techniques, but no experimental results
yet, nor any collection of , typical problems”.

Acknowledgment. We thank Helmut Seidl for helpful discussion about tree au-
tomata and Markus Miiller-Olm and Alexander Wenner for inspiring discussion
about DPNs. Actually, the idea of regular execution trees evolved during a meet-
ing with Helmut, Markus and Alexander.

References

1. A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability analysis of mul-
tithreaded software with asynchronous communication. In Proc. of FSTTCS 05,
volume 3821 of LNCS, pages 348-359. Springer, 2005.

10.

A. Bouajjani, M. Miiller-Olm, and T. Touili. Regular symbolic analysis of dynamic
networks of pushdown systems. In Proc. of CONCUR’05, volume 3653 of LNCS.
Springer, 2005.

V. Kahlon and A. Gupta. An automata-theoretic approach for model checking
threads for LTL properties. In Proc. of LICS 2006, pages 101-110. IEEE Computer
Society, 2006.

V. Kahlon and A. Gupta. On the analysis of interacting pushdown systems. In
POPL, pages 303-314, 2007.

V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating
via locks. In Proc. of CAV 2005, volume 3576 of LNCS. Springer, 2005.

P. Lammich. Isabelle formalization of hedge-constrained pre* and DPNs with locks.
Available from http://cs.uni-muenster.de/sev/publications/. Technical Re-
port.

P. Lammich, M. Miiller-Olm, and A. Wenner. Predecessor sets of dynamic push-
down networks with tree-regular constraints. In Computer Aided Verification, vol-
ume 5643 of LNCS, 2009.

M. Miiller-Olm. Precise interprocedural dependence analysis of parallel programs.
Theor. Comput. Sci., 311(1-3):325-388, 2004.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

H. Seidl and B. Steffen. Constraint-based inter-procedural analysis of parallel
programs. Nordic Journal of Computing (NJC), 7(4):375-400, 2000.

