
Data Refinement for Verified Model-Checking
Algorithms in Isabelle/HOL

Peter Lammich

Theorem Proving Group, Institut für Informatik, TU-München
lammich@in.tum.de

Extended Abstract

Our goal is to verify model-checking algorithms with Isabelle/HOL. When re-
garding such algorithms on an abstract level, they often use nondeterminism like
”take an element from this set”. Which element is actually taken depends on the
concrete implementation of the set. When formalizing these algorithms, one has
to either fix the concrete implementation for the correctness proof, or describe
the algorithm nondeterministically. The former approach makes it difficult to
exchange the implementation afterwards. Moreover, using a set implementation
(e.g. Red Black Trees) instead of the standard set datatype of Isabelle makes
the use of automated reasoning tools more complicated, as they are tailored to
Isabelle’s standard types.

In this extended abstract, we briefly present our current effort to address the
latter approach. We describe a framework that allows to specify nondeterministic
algorithms on Isabelle’s standard datatypes, prove them correct, and then refine
them to executable algorithms. Our framework smoothly integrates with exist-
ing Isabelle/HOL specifications, is powerful enough to express model-checking
algorithms, and automates tedious but canonical tasks.

Overview

Our framework is based on program and data refinement (cf. [1]). The possible
results of a program are described by sets. Additionally, we add the result >
that represents a failed assertion. Lifting the subset ordering, we get a complete
lattice of results, where ∅ is the smallest element, and > is the greatest element.
We write v for the lifted subset ordering.

Programs itself are described by a nondeterminism monad [9]. We define the
operations return and bind as follows:

return x := {x}

bind M f :=

{
> if M = >⊔
{f x | x ∈M} otherwise

Intuitively, the return operation builds a result that contains a single value, and
the bind operation applies the function f to each result in M . In addition to the



return and bind operations, we define the following elementary operations:

spec Φ := {x | Φ x}

assert Φ :=

{
return () if Φ holds

> otherwise

assume Φ :=

{
return () if Φ holds

∅ otherwise

Intuitively, spec Φ describes all results that satisfy the predicate Φ, assert Φ
fails if Φ does not hold, and assume Φ returns the empty set of results if Φ does
not hold. Note that the empty set of results is the least element w.r.t. v, and
thus trivially satisfies any specification. Dually, > is the greatest element, and
thus satisfies no specification.

Functions defined using our monad are always monotonic. Hence, we can use
the partial function package [6] of Isabelle/HOL to define recursive functions.
A particular interesting recursive function is the while-combinator while b f s0,
that models a loop. When using the partial function package to define recursion,
we get a notion of partial correctness, as the result contains exactly the values
that are reached by finite executions. As Isabelle/HOL’s code generator only
guarantees partial correctness, too, this is adequate in our setting.

In order to model data refinement, we use a relation R that relates concrete
values to abstract values. We assume that R is single-valued, i.e., (x, y) ∈ R ∧
(x, z) ∈ R =⇒ y = z. We then define ⇓R as a function that maps abstract
results to concrete results. Then, S1 v ⇓R S2 describes that the results of S1

only contain valid concretizations of the results of S2, i.e., S1 is a valid refinement
of S2, w.r.t. R. We define ⇓R to map the result > to > again. This allows us to
refine assertions with the following rule:

Φ =⇒ Φ′, S v ⇓R S′

assert Φ S v ⇓R assert Φ′ S′

Note that this rule does not hold if we would have defined > as the universal set
of all results, as the image of the universal set of abstract values under ⇓R is, in
general, not the universal set of concrete values: There may be concrete values
that make no sense, e.g. data structures that does not satisfy there invariants.

In a typical program development, first an initial program S1 is written, and
it is shown that P i =⇒ S1 i v spec (Q i), where i is the input, P the
precondition, and Q the postcondition. The program S1 typically contains the
basic structure of the algorithm, but leaves some details underspecified, using
spec-statements to only specify the possible results. Moreover, it uses Isabelle’s
standard data types rather than efficient data structures. For example, selection
of an element from a set X would be encoded by spec (λx. x ∈ X). In order to
prove that S1 matches its specification, our framework provides Hoare-rules for
all its program constructs and a verification condition generator to automate the
application of the rules. Loop invariants may be either annotated in the program



text, or the verification condition generator inserts a schematic variable for them,
that may be instantiated while proving the generated verification conditions.

After S1 has been proven correct, it will be refined towards an efficient im-
plementation, yielding programs S2, . . . , Sn. In these refinement steps, all spec-
statements have to be refined to actual operations, and the datatypes have to
be refined to the ones used for implementation. In our simple example, we first
may implement sets by distinct lists, i.e., we show

(X ′, X) ∈ R =⇒ spec (λx. x ∈ set X ′) v spec (λx. x ∈ X)

where R is the relation that maps a distinct list to the set of its elements. Then,
we may implement the selection operation by taking the first element from a
list, i.e., we show

return (hd X ′) v spec (λx. x ∈ set X ′)

For this program, the Isabelle/HOL code generator can generate code. Our
framework supports this refinement steps by a set of rules to show data re-
finements that preserve the structure of the program. These rules decompose a
refinement goal between two programs into refinement goals between the ele-
mentary statements (return,spec) of the program. Newly introduced refinement
relations are left schematic, and need to be instantiated after decomposition. For
example, the rule for bind is as follows:

M v ⇓R1 M
′, ∀x x′. (x, x′) ∈ R1 =⇒ f x v ⇓R2 f

′ x′

bind M f v ⇓R2 bind M ′ f ′

When this rule is applied, the new refinement relation R1 becomes a schematic
variable, that can be instantiated later.

The general form of a refinement step is

(i, i′) ∈ RI =⇒ S i v ⇓RO (S′ i′)

where RI is the refinement relation on inputs, and RO is the refinement relation
on results (outputs). Note that refinement is transitive, i.e., we have

S v ⇓R S′ ∧ S′ v ⇓R′ S′′ =⇒ S v ⇓(RR′) S′′.

Thus, after the process of refining S1 has ended with program Sn, we have

(i, i′) ∈ RI ∧ P i′ =⇒ Sn i v ⇓RO spec (Q i′),

where RI is the composition of all input refinements, and RO is the composition
of all output refinements. This precisely describes the correctness of the refined
program w.r.t. the abstract specification.



Earlier Work

We encountered the problem of formalizing nondeterministic algorithms when
we tried to formalize the predecessor set computation for DPNs[3]. There1, we
formalized a WHILE-loop as the iteration of a step-relation. However, we did not
define a notion of nondeterministic programs. Thus, the loops had to be handled
separately from the other parts of the algorithm, and the actual algorithm was
not assembled until all the refinement steps had been done. Moreover, we could
not express nested loops. In our formalization of tree-automata [7], we essentially
used the same approach.

Current and Future Work

Our framework is still in a prototype development stage. So far, we have applied
it to two examples: First, we formalized a simple state-space exploration algo-
rithm, that takes as input a start state s0, a transition relation δ, and a predicate
P over states, and returns true if a state s that satisfies P is reachable, i.e., we
implement the specification spec (λx. x ⇐⇒ ∃s. (s0, s) ∈ δ∗ ∧ P s). The algo-
rithm is a simple workset-algorithm, i.e., it has an initialization phase and a main
loop, that iterates until the workset is empty or a state satisfying P has been
found. Second, we formalized Dijkstra’s shortest path algorithm in our frame-
work2. Both algorithms are first formalized on an abstract level, and then refined
towards an efficient implementation using the Isabelle Collection Framework [8]
to provide efficient data structures. The refinement of the state space exploration
algorithm is straightforward and done in a single refinement step from the ab-
stract algorithm S1 to the executable version. It could also have been done with
parameterization. However, the refinement of Dijkstra’s algorithm is done via an
intermediate step, that introduces some redundant information to come closer to
the data structures eventually used in the implementation. Combining this in-
termediate step with the implementation step is not feasible due to an explosion
of proof complexity3. Due to this intermediate step, modeling nondeterminism
with parameterization is not possible.

Future work includes the automation of refining programs. Currently, one has
to explicitly specify the abstract and the refined program, and our framework
tries to automate the proof that the refinement is, indeed, correct. However, there
are several instances of simple refinements, in particular data refinements, that
could be done automatically. That is, the user would only specify the abstract
program and how used data structures shall be implemented, and the framework
would define and prove correct the refined program automatically.

1 Unpublished, available at http://cs.uni-muenster.de/sev/staff/lammich/isabelle/
2 Based on an unpublished formalization of Nordhoff
3 This was attempted in the original formalization of the algorithm. The proof obli-

gations quickly became very large and confusing, such that this attempt was given
up in favor of introducing the intermediate refinement step.



Related Work

Our framework is based on the notion of program refinement, that has been
established by Back [1]. See [2] for an overview. However, we describe functional
(monadic) programs, that are shallowly embedded into the logic of Isabelle/HOL,
while, up to our knowledge, most work on program refinement is focused on
imperative programs.

Our programs are based on a nondeterminism monad, that is inspired by the
set monad in [9], and fits the requirements of Isabelle/HOL’s partial function
package [6] to define recursive functions.

In the context of Isabelle/HOL’s code generation [4, 5], there is also work
in progress to automatically replace inefficient data structures by efficient ones
upon code generation. However, these approaches cannot handle nondetermin-
istic operations.



Bibliography

[1] R.-J. Back. On the Correctness of Refinement Steps in Program Develop-
ment. PhD thesis, bo Akademi, Department of Computer Science, Helsinki,
Finland, 1978. Report A–1978–4.

[2] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduc-
tion. Springer-Verlag, 1998. Graduate Texts in Computer Science.

[3] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of
dynamic networks of pushdown systems. In Proc. of CONCUR’05, volume
3653 of LNCS. Springer, 2005.

[4] F. Haftmann. Code Generation from Specifications in Higher Order Logic.
PhD thesis, Technische Universität München, 2009.

[5] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite sys-
tems. In Functional and Logic Programming (FLOPS 2010), LNCS. Springer,
2010.

[6] A. Krauss. Recursive definitions of monadic functions. In Proc. of PAR 2010,
2010.

[7] P. Lammich. Tree automata. In G. Klein, T. Nipkow, and L. Paul-
son, editors, The Archive of Formal Proofs. http://afp.sf.net/entries/Tree-
Automata.shtml, Dec. 2009. Formal proof development.

[8] P. Lammich and A. Lochbihler. The isabelle collections framework. In Proc.
of ITP 2010, volume 6172 of LNCS, pages 339–354. Springer, July 2010.

[9] P. Wadler. Comprehending monads. In Mathematical Structures in Computer
Science, pages 61–78, 1992.


