Precise Fixed Point Based Analysis of Programs
with Thread-Creation

Peter Lammich and Markus Miiller-Olm

Institut fiir Informatik, Fachbereich Mathematik und Informatik
Westfilische Wilhelms-Universitdt Miinster
peter.lammich@uni-muenster.de and mmo@math.uni-muenster.de

Abstract. This paper presents an efficient, fixed point based algorithm
for precise kill/gen analysis of interprocedural flow graphs with thread
creation. The main idea of the algorithm is to separate a path reaching
a control node into those steps required to reach the node and interfer-
ing steps, that are executed concurrently. These two parts are analyzed
separately and combined afterwards. Exploiting the structure of kill/gen
analysis we can show soundness and precision.

Key words: Interprocedural program analysis, parallelism, fixed-point
based program analysis, thread-creation, bitvector problems, kill/gen
problems

1 Introduction

As programming languages with explicit support for parallelism, such as Java,
have become popular, the interest in analysis of parallel programs has increased
in recent years. Most papers on precise analysis, such as [5,11,7,9,8,3,4], use
fork/join as a model for parallelism. However, this is not adequate for analyzing
languages like Java, because in presence of procedures or methods the thread-
creation primitives used in such languages cannot be simulated by fork-join [1].
This paper presents a fixed-point based approach to precise kill/gen analysis of
programs with thread-creation.

For parallel programs with (potentially recursive) procedures and synchro-
nization statements, already reachability analysis is undecidable [10], even if data
is ignored and guarded branching is abstracted by nondeterministic branching,
as common in program analysis. So this paper, as well as other related work like
[11,1], ignores synchronization statements completely.

In this paper, we concentrate on kill/gen problems, a simple but yet prac-
tically relevant class of dataflow problems that comprise the more well-known
bitvector problems (e.g. live variables, available expressions, etc.) Note that only
slightly more powerful analyses, like copy constants or truly life variables are in-
tractable or even undecidable (depending on the atomicity of assignments) for
parallel programs [7,9, 8], even when synchronization is ignored.

For programs with fork/join parallelism, Knoop, Steffen and Vollmer [5] have
proposed an efficient fixed-point based approach for precise intraprocedural anal-
ysis of bitvector problems. This approach has been generalized to an interpro-
cedural analysis of kill/gen-problems by Seidl and Steffen [11]. For programs
with thread-creation, Bouajjani et al. [1] have developed an efficient automata
theoretic approach to precise interprocedural bitvector analysis. Using tree au-
tomata, they have also generalized their approach to support some weak form
of synchronization capable of simulating fork-join. However, to the best of our
knowledge there has been no fixed-point based approach to precise interproce-
dural analysis of programs with thread creation.

The aim of this paper is to close this gap by developing an efficient fixed-
point based approach for precise interprocedural kill/gen analysis of programs
with thread-creation. We adopt the algorithmic idea of [5, 11] and equip it with
a new analysis of possible interference for programs with thread-creation. Our
approach can also be generalized to programs with both fork/join and thread
creation, as described in the first author’s diploma thesis [6].

This paper is organized as follows: In Section 2 we define parallel flow graphs
used as program representation and equip them with an operational semantics.
In Section 3 we define kill/gen analyses and the MOP-solution, that we want
to compute precisely or approximately. In Section 4 we characterize the MOP-
solution by means of directly reaching paths and possible interference, following
an idea from [11]. In Section 5, we develop constraint systems for the directly
reaching paths and possible interference and in Section 6, we use abstract in-
terpretation [2] to transform these constraint systems into those with efficiently
computable least solutions, that we can use to correctly approximate the MOP-
solution. For the class of positive distributive kill/gen analyses, that comprises
many practically relevant analyses, in particular all bitvector analyses, this ap-
proximation is even precise. Finally, in Section 7, we give a short conclusion and
discuss future research.

2 Parallel Flow Graphs

A parallel flowgraph (P, (G,)pep) consists of a finite set P of procedure names,
with main € P. For each procedure p € P, there is a directed, edge annotated
finite graph G, = (N,, Ep, e, rp) where N, is the set of control nodes of proce-
dure p and E, C N, x A x N, is the set of edges that are annotated with base,
call or spawn statements: 4 ::= base b | call p | spawn p where b ranges over
B and p over P. The set B of base edge annotations depends on the program
being analyzed and is not specified further for the rest of this paper. ey, r, € N,
denote the entry and return node of a procedure p € P. As usual we assume
that the nodes of the procedures are disjoint, i.e. N, N N, = 0 for p # p’ and
define N = J,cp Np and E = . p Ep.

We use M(X) to denote the set of multisets of elements from X, §§ for the
empty multiset, {a} for the multiset containing the element a once and AW B for
multiset union. Then we describe the operational semantics of a flowgraph by

a labeled transition system — C Conf x £ x Conf over configurations Conf :=
M(N*) and labels £ := E U {ret}. A configuration consists of the stacks of
all threads running in parallel. A stack is modeled as a list of control nodes,
the first element being the current control node. Each transition is labeled with
the corresponding edge in the flowgraph or with ret for a procedure return. We
use an nterleaving semantics, nondeterministically picking the thread to make
a transition among all available threads. Thus, we define — by the following
inference rules, that describe the desired behavior:

[base] ({[u]r}wc)—=({[v]r} We) for edges e = (u, base a,v) € E
[calll ({[u]r} W e)—=({[eg][v]r} W) for edges e = (u,call g,v) € E
ret] ({[rrtwe)“S({riwe) for procedures g € P

[spawn] ({{u]r} We)——({[v]r} @ {fe,]} Wc) for edges e = (u,spawn ¢,v) €

3 Dataflow Analysis

Dataflow analysis provides a generic, lattice based framework for constructing
program analyses. A specific analysis is specified by a tuple (L, C, xg, f) where
(L, C) is a complete lattice representing analysis information, o € L is the initial
analysis information and f : £ — (L™>'L) maps transition labels e to monotonic
functions f. that describe how a transition labeled e transforms analysis infor-
mation. We assume that only base-transitions have transformers other than the
identity.

In this paper we consider kill/gen-analyses, i.e. we require (L,C) to be dis-
tributive and the transformers to have the form f.(z) = (z Ma.) U be for some
ae,be € L. Note that all transformers of this form are monotonic and that the set
of these transformers is closed under composition of functions. Kill/gen-analysis
comprise classic analyses like determination of available expressions or poten-
tially uninitialized variables.

We are interested in the forward MOP-solution of a dataflow analysis (L, C
,Zo, f) and a flowgraph (P, @), that is defined for each node u € N as:

MOP[u] := |_| fuw(o)

wéEReach[u]

where Reach[u] := {w | 3r, ¢’ : {[emain]} —{[u]r}Wc'} is the set of paths reaching
node u from the initial configuration {[emain]}; fer,...en = fe, © ... 0 fe, with
fe := Az.z, and -2 is the natural extension of — to sequences of labels. MOP[u]
is the smallest, i.e. most precise analysis information valid after all executions
reaching control node wu.

4 Possible Interference

It follows from results in [1] that the sets Reach[u] cannot be characterized as
least solution of a system of equations or inequations on sets of paths (constraint

systems) using the natural operators ,,concatenation” and ,,interleaving” from
[11]. Therefore we cannot compute the MOP-solution directly by an abstract
interpretation of such a constraint system.

To avoid this problem, in this section we de-
rive an alternative characterization of the MOP-
solution as the join of two values, each of which
can be computed by abstract interpretation. = f__o___________ »
The idea is to split a reaching path into directly
reaching transitions and interfering transitions,
as illustrated by Figure 1. The vertical lines are
the executions of the threads and the horizon- .
tal arrows symbolize thread creation. The exe-
cution depicted in this figure reaches, possibly \ Z \
among others, the control node u. The directly [ulr
reaching transitions w.r.t. to u are marked with
thick lines. The other transitions are interfer- Fig.1: Splitting a reaching
ing transitions, that are executed concurrently Path-
with the directly reaching transitions. The path depicted by this figure is some
interleaving of the directly reaching and the interfering transitions.

[emain]

To formalize the directly reaching paths, we define the direct transition re-
lation = C (N* x M(N*)) x L x (N* x M(N*)), by the following inference
rules:

[base] ([u]r,c)==([v]r,c) for edges e = (u, base a,v) € E
[call] ([u]r, o)== ([eg][v]r, c) for edges e = (u,call g,v) € E
[ret] ([rg]rs 0)==(r,) for procedure g € P

[spawnl] ([u]r, c)==>([v]r, {[e;]} Wec) for edges e = (u,spawn ¢,v) € E
[spawn2] ([u]r, c)==([ey], {[v]r} W) for edges e = (u,spawn ¢,v) € E

Intuitively, the first component of the state is the current thread’s stack and the
second component collects all stacks that can make interfering transitions. The
rules are similar to that of —, but only can operate on the current thread’s
stack. On a spawn transition, either the spawning thread remains the current
thread ([spawnl]), or the spawned thread becomes the current thread ([spawn2]).
A key observation is that due to the lack of synchronization, the interfering
transitions are mostly independent from the directly reaching transitions. The
only dependence is, that the thread executing an interfering transition must
have been already created. When given a reaching path to a control node u,
we can move the interfering transitions to the end of that path, thus getting
a path with a prefix of directly reaching transitions and a suffix of interfering
transitions, that reaches the same configuration as the original path. Thereby
the interfering transitions will not affect the thread that reached w any more.
Accordingly, we define the set of directly reaching paths to u as

R®[u] == {w | 3r, ¢ : ([emain], 0)==([u]r, &)}

and the possible interference at u as

PI®[u] i= {e | 3r,¢, ¢/, : ([emainl,)= ([ulr, &) A 2%}

Intuitively, R°P[u] captures the set of directly reaching paths to u, and PI°P[u]
captures the set of interfering transitions that may be executed on some reaching
path to u. In contrast to Reach, both R°P and PI°? can be characterized by
constraint systems as we will see in the next section.

Now we can prove the following theorem:

Theorem 1. For kill/gen-analyses, we have at each control node u € N:
MOP[u] = ar(R°P[u]) U api(PI°P[u])
with ar(W) := [{fuw(x0) | w € W} and api(E) := | [{bc|e € E}.

Proof. (Sketch): For the C-direction, we observe that the transitions on a reach-
ing path to u are either directly reaching transitions, and thus contained in
R°P[u] or interfering transitions, that could also be executed at the end of the
reaching path and are thus contained in PI°P[u]. The proposition then follows
from a structural property of kill/gen problems also exploited in [11], that states
that for w € wy ® wa we have fi,(z) T fu, () U [{be | € € wa} for any kill/gen
function f and argument z.

For the J-direction, we first observe that any directly reaching path is also
a reaching path, and hence MOP[u] 3 ar(R°P[u]).

For each transition e € PI°P[u], we obviously can construct a reaching path
to u, that executes e as last transition. Let this path be wle]. The transfer
function of wle] has the form Ax.f, (x) M a. U b, and is thus greater than b,
for any argument, and hence we have MOP[u] 3 ap(PI°P[u]) and altogether the
proposition follows. a

5 Constraint Systems

In order to compute the MOP-solution, we will characterize R°? and PI°P as the
least solutions Ifp(R) and Ifp(Pl) of constraint systems R and Pl. In Section 6
we then use abstract interpretation to compute ar(Ifp(R)) and ap(Ifp(Pl)) by
fixpoint iteration.

For technical reasons, we assume that every edge e € E is dynamically reach-
able, i.e. that Reach[u] # 0 if u has an outgoing edge. For general flowgraphs, we
can detect the unreachable edges by a simple analysis and then remove them.
This obviously does not affect Reach or MOP.

In order to treat procedures when characterizing R°P we adopt a standard
technique from interprocedural analysis, that first regards so called same-level
paths captured in a constraint system S over variables S[u], u € N and then uses
these to assemble all reaching paths in the constraint system R over variables
Rlu],u € N:

[inits] Sleq] 2 {e} forqge P

[base] Sv] 2 S[ul; {[e]} for e = (u,base _,v) € E
[call] S[v] D Sul; {[e]}; S[rg); {[ret]} for e = (u,call g,v) € E
[spawn] Siv] 2 S[ul; {[e] for e = (u,spawn ¢q,v) € E
[init] Rlemain] 2 {e}

[reach] Ru] 2 R[ep]; S[u] for u € N,

[callt] Rleq] 2 Rul; {[e]} for e = (u,call¢q,.) € E
[spawnt] Rleq] D Rul; {[e]} for e = (u,spawn q,_) € B

The operator ; denotes list concatenation, lifted to sets of lists. The main novelty
here is the constraint [spawn], that allows a same-level path to contain spawn
edges, and the constraint [spawnt], that coincides with the [spawn2]-rule from the
definition of = and allows a reaching path to ‘switch’ to the spawned thread.

With Ifp(X) we denote the least solution of a constraint system X, if it exists.
The existence of Ifp(S) and Ifp(R) follows from the Knaster-Tarski fixed point
theorem and, using standard techniques from program analysis, we can show
Ifp(R) = ReP.

PI°P can be characterized by the following constraint system, that is split into
four parts for the sake of clarity:

[GP.init) GPlu] D {e} fore=(u,_,)€ E

[GP.edge] GP[u] 2 GP[v] for (u,base _,v) € F or (u,spawn _,v) € E
[GP.calle] GP[u] 2 GP[v] for (u,call g,v) € E if ¢ can terminate
[GP.trans] GP[u] D GP[e,] for (u,call ¢,v) € E or (u,spawn ¢,v) € E
[SP.edge] SP[u] 2 SP[v] for (u,base _,v) € E or (u,spawn _,v) € E
[SP.calle] SP[u] 2 SP[v] for (u,call ¢,v) € E if ¢ can terminate
[SP.callt] SP[u] D SPe,] for (u,call ¢,v) € E if v can terminate
[SP.spawnt] SP[u] 2 GP[e,] for (u,spawn ¢,v) € E if v can terminate
[DG.init] DG[u] D {e} fore=(u,_,)€ E

[DG.edge] DG[u] 2 DG[v] for (u,base _,v) € F or (u,spawn _,v) € E
[DG.calle] DG[u] 2 DG[v] for (u,call g,v) € E if ¢ can terminate
[DG.trans] DGu] 2 DGle,] for (u,call ¢,v) € E or (u,spawn ¢,v) € E
[DG.deepen] DGJr,] 2 DG[v] for (u,call ¢,v) € E if ¢ can terminate

[PLedge] Plv] 2 Plfu] for (u,base _,v) € E or (u,spawn _,v) € E
[PI.calle] Plv] 2 Pllu] for (u,call ¢,v) € E if ¢ can terminate
[PILtrans] Plleg] 2 Plfu] for (u,call ¢,v) € E or (u,spawn ¢,v) € E
[PI.calli] Pl[v] D SPle,] for (u,call ¢,v) € E

[PLspawnl] Pl[v] 2 GP[e,] for (u,spawn ¢,v) € E

[PLspawn2] Plleg] O DGv] for (u,spawn ¢,v) € E

Here we say that a procedure p € P can terminate, iff there exists a same-level
path from e, to r,. Accordingly, a node v € N, can terminate iff there exists a

same-level path from v to r,. This information can be determined by a simple
abstract interpretation of the constraint system S for same-level paths.

The proof that Ifp(Pl) = PI°P is omitted here due to lack of space, but we will
try to give an intuition about the constraints. The constraint [PI.edge] propa-
gates the possible interference along a base edge, [Pl.calle] along a call edge
and [PLtrans] into a called or spawned procedure. [Pl.calli] adds the possible
interference caused by threads that are created during a run through the called
procedure to the end node of the call edge. This interference is called the spawn
potential of the procedure and characterized by the SP-part of the constraint
system. [PL.spawnl] accounts for the interference caused by the created thread
in the creator thread and [PL.spawn2] accounts for the interference caused by
the creator thread in the created thread. The constraints for the former gen-
erate potential (GP) and the latter deep generate potential (DG) differ only in
the [DG.deepen] constraint that has no correspondence for GP. This constraint
captures that the creator thread may have a non-empty return stack, so that
also transitions of procedures deeper on the stack can cause interference to the
created thread.

6 Algorithm

It remains to compute ar(Ifp(R)) and api(Ifp(Pl)). For this purpose we replace
the operators on path sets in R and Pl in a standard way by operators on
L, obtaining constraint systems R# and PI* over L. By standard results from
abstract interpretation [2], we get

Theorem 2. In general, we have api(Ifp(P1)) = Ifp(PI¥) and ar(Ifp(R))
Ifp(R*). For positive distributive transfer functions, we even have ar(Ifp(R))
Ifp(R7).

[

Now we can efficiently compute a safe and for positive distributive analysis
even precise approximation of the MOP solution by the following algorithm:

1. Generate the constraint systems R# and PI#, as well as abstract versions of
S, DG, SP and GP, from the flowgraph.

2. Determine their least solutions.

3. Return the vector MFP with MFP[u] := R#[u] U PI#[u]. The name MFP
(minimum fizpoint solution) results from the characterization of the least
solution of a constraint system as least fixed point of an induced function.

From Theorems 1, 2 and the soundness and precision of the constraint sys-
tems, we immediately get MOP T MFP, and if the transformers are positive
distributive, we even get MOP = MFP.

The constraint systems contain O(| E|4|P|) constraints over O(|N|) variables.
If the height of (L, C) is bounded by h(L) and a lattice operation (join, compare,
assign) needs time O(op), we can calculate MFP in time O((|E|*h(L)+|N|)*op)
using a worklist algorithm.

7 Conclusion

In this paper we have presented an efficient, fixed-point based algorithm for
precise kill/gen analysis of interprocedural flowgraphs with thread creation. This
model is closer to the one used in real programming languages such as Java or
C++ than the fork/join model previously studied in the literature. In the first
author’s master thesis [6] all the proofs of a variant of the approach of this paper
are elaborated.

Our work uses a similar idea as in [11], and indeed we can combine these two
approaches resulting in a precise fixed-point based analysis of programs with
both fork/join and thread creation. We implemented this combination in [6].

Our analysis does not consider synchronization. For programs with synchro-
nization our analysis still is a correct (but poor) approximation. Precise analysis
of interprocedural parallel flowgraphs with synchronization is undecidable in
general [10], but further research needs to be done to increase approximation
quality. Also extensions to more complex domains like dependence analysis, as
studied in [8] for fork/join, have to be investigated.

Acknowledgements: We thank Helmut Seidl and Bernhard Steffen for interesting
discussions on analyzing parallel programs.

References

1. A. Bouajjani, M. Miiller-Olm, and T. Touili. Regular symbolic analysis of dynamic
networks of pushdown systems. In Proc. of CONCUR’05. Springer, 2005.

2. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
of POPL’77, pages 238-252, Los Angeles, California, 1977. ACM Press, New York,
NY.

3. J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural
data-flow analysis. In Proc. of FoSSaCS’99, pages 14-30. Springer, 1999.

4. J. Esparza and A. Podelski. Efficient algorithms for pre* and post* on interproce-
dural parallel flow graphs. In Proc. of POPL’00, pages 1-11. Springer, 2000.

5. J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Efficient and optimal
bitvector analyses for parallel programs. TOPLAS, 18(3):268-299, May 1996.

6. P. Lammich. Fixpunkt-basierte optimale Analyse von Programmen mit Thread-
Erzeugung. Master’s thesis, University of Dortmund, May 2006.

7. M. Miiller-Olm. The complexity of copy constant detection in parallel programs.
In Proc. of STACS 01, pages 490-501. Springer, 2001.

8. M. Miiller-Olm. Precise interprocedural dependence analysis of parallel programs.
Theor. Comput. Sci., 311(1-3):325-388, 2004.

9. M. Miiller-Olm and H. Seidl. On optimal slicing of parallel programs. In Proc. of
STOC’01, pages 647-656, New York, NY, USA, 2001. ACM Press.

10. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. TOPLAS, 22(2):416-430, 2000.

11. H. Seidl and B. Steffen. Constrained-based inter-procedural analysis of parallel
programs. In Proc. of ESOP’00. Springer, 2000.

