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Abstract. Contextual locking is a scheme for synchronizing between
possibly recursive processes that has been proposed by Chadha et al. re-
cently. Contextual locking allows for arbitrary usage of locks within the
same procedure call and Chadha et al. show that control-point reachabil-
ity for two processes adhering to contextual locking is decidable in poly-
nomial time. Here, we complement these results. We show that in pres-
ence of contextual locking, control-point reachability becomes PSPACE-
hard, already if the number of processes is increased to three. On the
other hand, we show that PSPACE is both necessary and sufficient for
deciding control-point reachability of k processes for k > 2, and that this
upper bound remains valid even if dynamic spawning of new processes
is allowed. Furthermore, we consider the problem of regular reachability,
i.e., whether a configuration within a given regular set can be reached.
Here, we show that this problem is decidable for recursive processes with
dynamic thread creation and contextual locking. Finally, we generalize
this result to processes that additionally use a form of join operations.

1 Introduction

Analysing parallel programs is notoriously hard, especially in the presence of
procedures and synchronisation. Ramalingam showed that even simple safety
properties like reachability for programs with synchronous communication and
procedures are undecidable [17]. The same holds for mutual exclusion via locks
[10]. Undecidability can be avoided by using abstraction to over-approximate
reachability [2] or by considering restricted classes of executions only to under-
approximate reachability [5, 16]. Identifying synchronization patterns where ex-
act reachability is decidable remains a challenging problem.

Chadha et al. propose contextual locking, where arbitrary locking may occur
as long as it does not cross procedure boundaries [4]. On the one hand, this
constraint on lock usage is shown to lead to a decidable simultaneous reachability
problem for two processes. On the other hand Chadha et al. demonstrate that
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it is suitable to model common locking patterns and we refer the reader to their
paper for a detailed justification of contextual locking and comparison with other
locking schemes. The contribution of this paper is to extend their result to more
general settings.

The main observation of Chadha et al. is, that it suffices to regard executions
where the procedure calls of both processes occur well-nested. This reduces the
problem of checking reachability for two processes to reachability of a single
pushdown process. However, already for three processes, this reduction is no
longer possible. Consider the following three processes T1, T2, T3 with procedures
P,Q using contextual locking:

T1 : rel(B)5; acq(B)8; rel(C)9; acq(C)12;
T2 : P ; rel(D)13; acq(D)16;
T3 : rel(A)1; acq(A)4; Q;

P : acq(A)2; rel(A)3; acq(C)10; rel(C)11;
Q : acq(B)6; rel(B)7; acq(D)14; rel(D)15;

Assume that the processes hold locks {B,C}, {D} and {A}, respectively, at the
beginning of the execution. Using further locks, this can be ensured even when
starting with the empty set of locks for each process. All three processes can
reach the end simultaneously, for example by following the annotated schedule.
However, in any execution where all processes reach the end, the calls to proce-
dures P and Q are necessarily non-nested. Lock A forces P to start before Q,
locks B and C require Q to start before P ends and lock D ensures that Q only
ends after P has ended. Therefore, in general, reachability of multi-pushdown
processes cannot be easily reduced to reachability of a single pushdown process.

We show that simultaneous reachability for systems with at least three pro-
cesses is PSPACE-complete (§2). Furthermore, the problem remains PSPACE-
complete for systems with dynamic thread creation (§3), which better fit the
concepts of real languages like Java and C with pthreads. While simultaneous
reachability focuses on the states of constantly many processes in the configu-
ration, regular reachability concerns the whole configuration, and thus is more
natural for systems with an unbounded number of processes. By exploiting well-
quasi orderings, similar to [6], for suitably abstracted configurations, we show
that regular reachability is decidable for systems with dynamic thread creation
(§4) and joins (§5) as additional synchronisation primitive.

In related work Bonnet et al. have recently combined contextual locking
with reentrant locking [1]. In this setting simultaneous reachability is shown to
be decidable under bounded context switches. Kahlon et al. have shown, that
simultaneous reachability for two processes becomes decidable when locks are
only used in a well-nested fashion, i.e., when the last lock acquired always is
the first lock to be released [10]. This result was later generalized to systems
with dynamic process creation [13], regular reachability [14, 12], and joins [7].
Furthermore, Kahlon et al. generalized their result to bounded lock-chains, where
nesting of locking may be violated, as long as chains of overlapping lock regions



are bounded. In this setting, simultaneous reachability for two processes is still
decidable [8, 9].

2 The Static Case

In [4] an algorithm is presented that decides whether two given control-states are
simultaneously reachable by a system of two possibly recursive processes which
use contextual locking. Their algorithm is exponential in the number of locks,
but polynomial in the size of the program. It remained open whether and how
this approach can be generalized to more than two threads. In the following,
we provide an algorithm for deciding a slightly more general problem, namely,
reachability of a control-sequence, for systems of k recursive processes with k ≥ 1
which runs in PSPACE. Moreover we show that the original algorithm cannot be
easily generalized to more than two threads by showing that reachability already
for three processes is PSPACE hard—even for a constant number of locks.

We consider a multi-pushdown system P with a fixed number k ∈ N of pro-
cesses with a shared finite set of locks L. Each process i ∈ {1, . . . k} maintains
a thread-local state which is of the form (q,X) where q is from a finite set Q
of process-local information and X ⊆ L is the set of currently held locks. Fur-
thermore, we are given a finite set Γ of local information of possibly called pro-
cedures. Thus, each γ ∈ Γ encodes the name of the current procedure together
with a finite amount of information about the local state of the current call to
the procedure. Accordingly, the current call-stack (or pushdown) of the process
is represented by a sequence w = γ1 . . . γk ∈ Γ ∗. For convenience, we assume
that the top of the pushdown is on the left side, i.e., equals γ1. A configuration of
a single process thus is given by a pair ((q,X), w) where q ∈ Q,X ⊆ L, w ∈ Γ ∗.
Each process is defined by a finite set of rules of the form:

r : (q, γ)
τ−→ (q′, γ′) (computation step)

r : (q, γ)
τ−→ (q′, γ1γ2) (procedure call)

r : (q, γ)
τ−→ (q′, ε) (procedure exit)

r : (q, γ)
acq(l)−−−→ (q′, γ′) (acquire lock l ∈ L)

r : (q, γ)
rel(l)−−−→ (q′, γ′) (release lock l ∈ L)

where r is a unique identifier for the corresponding rule, and τ is the empty
label. The rules define the effects of actions onto the thread configuration, i.e.,
the process-local state, the (left end of the) call-stack and the effect onto the set
of currently held locks. Let eff(r) be the effect on the set of locks of a rule r.

A step ((q,X), γw)
r

=⇒ ((q′, X ′), w′w) on local configurations is defined if there

is a rule r : (q, γ)
e−→ (q′, w′) and X ′ = X ∪ {l} with l /∈ X if eff(r) = acq(l)

or X ′ = X \ {l} with l ∈ X if eff(r) = rel(l) or X = X ′ if eff(r) = τ . For a
sequence π = r1 . . . rm of rules, we write [[π]] ((q,X), w) = ((q′, X ′), w′) if the
sequence r1, . . . , rm of rules is successively executable starting from the thread
configuration ((q,X), w) and results in the configuration ((q′, X ′), w′).



A process adheres to contextual locking if lock operations do not cross proce-
dure boundaries, i.e. a lock acquired during a procedure call must be released in
the same procedure call and no procedure called in the meantime may release it
temporarily. Formally for all X ⊆ L and every call rule (q, γ)

τ−→ (q′, γ1γ2) and
all sequences π with [[π]] ((q′, X), γ1) = ((q′′, X ′), w), the following holds:

1. X ⊆ X ′;
2. if w = ε, then X = X ′.

A configuration of a multi-pushdown system with k processes is a sequence

t = ((q1, X1), w1) . . . ((qk, Xk), wk)

where we assume that the sets Xi of locks are pairwise disjoint. W.l.o.g. we may
assume that all processes share the same set of rules, but may differ in their
respective start configurations. For an initial configuration we assume Xi = ∅
and wi ∈ Γ for all i ∈ {1, . . . , k}. An execution of the system can be considered as
an interleaving of executions of the participating threads i ∈ {1, . . . , k}. In order
to distinguish the action of one process from the same action of another process,
we identify actions by means of pairs (i, r) where i identifies the process and r
the performed action. A sequence Π of pairs (i, r) starting from configuration t is
executable resulting in configuration t′, if either Π = ε and t′ = t, or Π = Π ′(i, r)
and the following holds:

1. Π ′ is executable for t resulting in t′′ = ((q′′1 , X
′′
1 ), w1) . . . ((q′′k , X

′′
k ), wk);

2. rule r is applicable thread-locally to the configuration ((q′′i , X
′′
i ), w′′i ) of the

ith process resulting in some process configuration ((q′i, X
′
i), w

′
i);

3. if eff(r) = acq(l), then lock l is also globally available, i.e., l /∈ X ′′1 ∪ . . .∪X ′′k ;
4. t′ = ((q′1, X

′
1), w′1) . . . ((q′k, X

′
k), w′k), where ((q′j , X

′
j), w

′
j) = ((q′′j , X

′′
j ), w′′j )

for j 6= i.

In this case, we write t′ = [[Π]] t. A configuration t′ is reachable from a config-
uration t if t′ = [[Π]] t for some global execution sequence Π. Likewise, a set T
of configurations is reachable from t iff there is a configuration t′ ∈ T such that
t′ is reachable from t. We now extend simultaneous control-state reachability of
two processes to control-state sequence reachability of k processes and formulate
our first result:

Theorem 1. Assume that t = ((q1, ∅), γ1) . . . ((qk, ∅), γk) is the initial configu-
ration and σ = (q′1, X

′
1) . . . (q′k, X

′
k) is a sequence of process-local states of length

k. Then it is decidable in PSPACE for processes which adhere to contextual
locking, whether the set

T = {((q′1, X ′1), w′1) . . . ((q′k, X
′
k), w′k) | w′i ∈ Γ ∗}

is reachable from t or not.

The main observation that leads to a PSPACE algorithm is that reachability is
preserved, if only executions are considered where the sizes of occurring push-
downs are polynomially bounded. Intuitively, the pushdown of a process grows



whenever a procedure is called. For every such call, two cases can be distin-
guished. In the first case, the called procedure never returns. In this case, the
pushed return location is dead, it will never make it to the top of the push-
down again and thus can be discarded. In the second case, the called procedure
eventually returns. Thus, the pushdown grows only temporarily. In presence of
recursion, the pushdown still may grow arbitrarily. In the following we therefore
show, that in the case of deeply nested recursive calls that eventually return,
the execution can be transformed into a shorter execution that still preserves
reachability, but uses strictly smaller pushdowns.

For i = 1, . . . , k, let proji denote the homomorphism which extracts from
a global execution sequence Π, with t′ = [[Π]] t, the execution sub-sequence of
the ith process, i.e. the homomorphism proji is defined by proji(i, r) = r and
proji(i

′, r) = ε for i 6= i′. In particular, ((q′i, X
′
i), w

′
i) = [[proji(Π)]] ((qi, Xi), wi) if

((qi, Xi), wi) and ((q′i, X
′
i), w

′
i) are the configurations of the ith process in t and

t′, respectively. The proof of Theorem 1 then is based on the following sequence
of lemmas. Lemma 2 allows to discard return information of non-returning pro-
cedure calls by introducing new rules in the pushdown, that allow to effectively
inline such a procedure call.

Lemma 2. Given a multipushdown-system P , a system P ′ can be constructed
such that any control sequence σ = (q′1, X

′
1) . . . (q′k, X

′
k) is reachable from an

initial configuration t in P iff the sequence σ′ = (〈q′1,>〉, X ′1) . . . (〈q′k,>〉, X ′k) is
reachable from the initial configuration t in P ′ and all pushdowns are empty in
the final configuration.

Proof. The set of states of the new system consists of all old states and additional
states 〈q,⊥〉, 〈q,>〉. The set of pushdown symbols contains all old symbols in ad-
dition to new symbols 〈γ,#〉. The system non-deterministically decides whether
the execution will return to a level in the pushdown. The lowest level which will
be visited again is marked by # in the pushdown. Since symbols below this level
will never be at the top of the pushdown again, we construct the system to remove
them directly, thus # marks the bottom of the pushdown in the new system. ⊥,>
in the state mark whether the pushdown is empty or not. The new set of rules
consists of transitions r : (q, γ)

τ−→ (〈q,⊥〉, 〈γ,#〉) which add the markers to the

initial configuration. Furthermore, we have a rule r′ : (〈q,⊥〉, γ)
e−→ (〈q′,⊥〉, w′)

working above the marker in the pushdown for each rule r : (q, γ)
e−→ (q′, w′) of

the old system. Additionally, we add rules that apply to the marked pushdown
symbol. Computation- and lock-steps preserve the position of the marker, thus
we add r′ : (〈q,⊥〉, 〈γ,#〉) e−→ (〈q′,⊥〉, 〈γ′,#〉) for every rule r : (q, γ)

e−→ (q′, γ′).
Return below the marked level empties the pushdown and ends the execu-
tion, thus we add new rules r′ : (〈q,⊥〉, 〈γ,#〉) τ−→ (〈q′,>〉, ε) that reach a

corresponding final state for each rule r′ : (q, γ)
τ−→ (q′, ε). In case of a call-

transition, the system non-deterministically decides whether it will return from
the newly pushed symbol or not. For each call-transition r : (q, γ)

τ−→ (q′, γ1γ2)

we add one rule r′1 : (〈q,⊥〉, 〈γ,#〉) τ−→ (〈q′,⊥〉, γ1〈γ2,#〉) that decides that the
call is returning and thus preserves the position of the marker. A second rule



r′2 : (〈q,⊥〉, 〈γ,#〉) τ−→ (〈q′,⊥〉, 〈γ1,#〉) decides that the call is non-returning,
moves the marker and discards the lower pushdown symbol by only pushing the
upper symbol. To be able to reach a configuration inside a procedure with an
empty pushdown, we finally add rules r′ : (〈q,⊥〉, 〈γ,#〉) τ−→ (〈q,>〉, ε), that
may terminate an execution by emptying a pushdown of size one, preserving the
control state. The claim follows by induction on the length of an execution. The
size of the resulting system only increases by a constant factor from the size of
the original system.

Remark 3. Instead of using ⊥ and # in the construction of Lemma 2, one can
also use this annotation to store information about the discarded pushdown. For
example one can impose a regular constraint on each pushdown in the final con-
figuration. To this end we use states s, s′ of a given automaton A over pushdown
symbols and propagate the state when discarding a pushdown symbol, i.e., only
add call rules r′2 : (〈q, s〉, 〈γ, s′〉) τ−→ (〈q′, s〉, 〈γ1, s′′〉) of the second kind, where

(s′′, γ2, s
′) is a transition of A, return rules r′ : (〈q, s〉, 〈γ, s′〉) τ−→ (〈q′,>〉, ε)

where s = s′ and rules r′ : (〈q, s〉, 〈γ, s′〉) τ−→ (〈q,>〉, ε) ending the computation
where (s, γ, s′) is a transition of A. By additionally requiring that s is an initial

and s′ a final state of A in rules r : (q, γ)
τ−→ (〈q, s〉, 〈γ, s′〉) for the initial mark-

ing, we ensure that reaching a final state implies that the discarded pushdown
has an accepting run in the automaton.

Lemma 4 shows that we may disregard nested returning procedure calls, that
are executed in a similar context. Recently, a similar statement was developed
independently by Bonnet et al. for the main proof of [1].

Lemma 4. Assume that t′ = [[Π]] t for global configurations t, t′ where the con-
figuration of the ith process in t is given by ((qi, Xi), wi). Assume further that

there is a call rule r : (q, γ)
τ−→ (q′, γ1γ2) together with a state p such that the

following holds:

– proji(Π) can be written as c1rπc2 with ((q,X), γw) = [[c1]] ((qi, Xi), wi) for
some w where [[π]] ((q′, X), γ1) = (p, ε); and furthermore,

– π = u1rπ
′u2 such that ((q,X ′), γw′) = [[u1]] ((q′, X), γ1) for some w′ where

[[π′]] ((q′, X ′), γ1) = (p, ε).

Consider a factorization of the global execution Π = C1(i, r)U1(i, r)Π ′U2C2 with
proji(Cj) = cj, proji(Uj) = uj for j ∈ {1, 2} and proji(Π

′) = π′. Assume that for
j ∈ {1, 2}, U ′j is obtained from Uj by removing all steps of the ith process. Then
the sequence C1U

′
1(i, r)Π ′U ′2C2 is an execution for t which also results in t′.

Proof. Let t1 denote the configuration which is reached by the global execution
C1. In particular, X is the set of locks held by the ith process in t1. We proceed
by considering longer and longer prefixes of the executions. Let V and V ′ denote
a prefix of U1 and the corresponding prefix of U ′1, respectively. By induction on
the length of V , we prove that

– The set X is included in the set of locks held by the ith process in the
configuration [[(i, r)V ]] t1.



– V ′ is executable and the set X equals the set of locks held by the ith process
in the configuration [[V ′]] t1.

Now consider the second occurrence of the call transition r of the ith process. We
have proven so far, that in particular, X ⊆ X ′. For all other processes, the sets
of acquired locks after the executions (i, r)U1(i, r) and U ′1(i, r) agree, since these
processes have executed the same sequences of actions. Let t2 = [[(i, r)U1(i, r)]] t1
and t′2 = [[U ′1(i, r)]] t1. Due to contextual locking, the local execution π′ of the
ith process does not depend on any lock being in X ′ and only acquires locks
that are not in X ′, thus it may also execute with the smaller initial set of locks
X. Therefore, Π ′ is executable both in configurations t2 and t′2 resulting in
configurations t3 and t′3, respectively. Since the processes adhere to contextual
locking, the sets of locks held by the ith process in configurations t3 and t′3,
respectively, equal again X ′ and X, respectively. Now let V and V ′ denote a
prefix of U2 and the corresponding prefix of U ′2, respectively. By induction on
the length of V , we prove that

– The set X is included in the set of locks held by the ith process in the
configuration [[V ]] t3.

– V ′ is executable and the set X equals the set of locks held by the ith process
in the configuration [[V ′]] t′3.

Due to contextual locking, the set of locks held by the ith process in configuration
[[U2]] t3 precisely equals X. It follows that the two configurations [[U2]] t3 and
[[U ′2]] t′3 coincide. Accordingly, C1U

′
1(i, r)U ′2C2 is a global execution sequence for

t, and the configurations [[Π]] t and [[C1U
′
1(i, r)Π ′U ′2C2]] t agree.

Proof (Theorem 1). We can now essentially reduce the problem to checking
reachability of a finite state system, whose configurations have polynomial size.
Instead of checking reachability in the original system we check for reachabil-
ity with an empty pushdown in the modified system of Lemma 2. According
to Lemma 4, we can eliminate nested returning procedure calls, which have the
same initial state q, pushdown symbol γ and final state p. It follows by a simple
counting argument, that reachability can be checked using bounded pushdowns
of size O(|Q|2 · |Γ |), since each execution using a larger pushdown can be trans-
formed into one using a smaller pushdown.

We now show that the PSPACE algorithm to establish the decidability of reach-
ability in Theorem 1 cannot be improved in general. In fact, we show that control
sequence reachability is PSPACE-hard already for three processes using contex-
tual locking with a constant number of locks only. Note that this is in sharp
contrast with the result of [4] for two processes with contextual locking where
an upper bound is obtained which is polynomial in the size of the processes and
exponential only in the number of locks.

Theorem 5. For three processes using contextual locking with a constant num-
ber of locks, control sequence reachability is PSPACE-hard.



Proof. The construction of the three processes builds on the observation that
the set of successful runs of a linear space-bounded Turing Machine can be
represented as an intersection L1 ∩ L2 of two languages Li over an alphabet of
fixed size, each of which can be accepted by a pushdown automaton of polynomial
size, that uses its pushdown in a disciplined fashion.

Configurations of a linear space-bounded Turing Machine, i.e. the contents of
the tape together with the current control state, can be represented by words of
fixed length m = k · (n+ 1) over a binary alphabet, where n is the space-bound
and k depends logarithmically on the size of the alphabet and the number of
control states of the Turing Machine. The control state is inserted to the left of
the current position of the head on the tape and each tape symbol and the state
of the Turing Machine is encoded using k bits.

A word of the language L1 is a sequence of subwords of length m, where the
first subword encodes an initial and the last subword is the reverse of a final
configuration of the Turing Machine and the (2l+1)-th subword is the reverse of
the (2l+ 2)-th subword. The language L2 consists of words, where each word is
again a sequence of subwords of length m and the (2l+1)-th subword is now the
reverse encoding of a configuration reachable from the configuration encoded by
the 2l-th subword in one step of the Turing Machine.

We can construct two pushdown processes which accept the languages L1

and L2, respectively, together with an additional finite state process that checks
the intersection. Instead of formally realizing these three processes as a multi-
pushdown system, we prefer to use a more intuitive notation by means of pro-
grams with procedures. In our construction, reading a bit i ∈ {0, 1} is simulated
by temporarily acquiring the lock Ai associated with that bit using use(Ai). We
write use(Z) = acq(Z); rel(Z) for short for a lock Z. The third process tries to
enforce that both pushdown processes read the same bit by only allowing access
to one bit at a time. This is achieved by blocking all locks and only temporarily
releasing the one associated with the intended bit using free(Ai), where we write
free(Z) = rel(Z); acq(Z) for a lock Z.

This mechanism, though, is not yet sufficient to synchronize the two push-
down processes. The third process may allow a series of bits, but it is not ensured
that each of these bits is read by both pushdown processes or that a pushdown
does not use one release to read the same bit twice. The second problem can be
solved by introducing an additional lock B. Reading a bit i ∈ {0, 1} is then repre-
sented by use(Ai); use(B) and allowing a bit i to be processed by free(Ai); free(B).
Since one occurrence of use(Ai) is no longer directly followed by another one,
two separate uses can no longer be associated with the same operation free(Ai).

Solving the first problem is more intricate. A first idea would be to use
the same mechanism in reverse and introduce locks that are blocked by the
pushdown processes and are meant to be acquired by the synchronizing process.
These could be used after each bit to prevent the synchronizing process from
going ahead before both pushdown processes have read the proposed bit. This,
however, would violate contextual locking, since the pushdown processes would
have to block these locks from the start and only release them temporarily after



each bit, which in general, occurs in a context different from the initial context.
The second idea therefore is to exploit the disciplined pushdown usage of the two
pushdown processes. Both processes read words consisting of pairs of subwords of
a fixed length m. Each pair of subwords is independent from the next. Thus, the
pushdown processes can be constructed in a way that they return to the initial
context after reading 2m bits. In order to implement this idea, we introduce
locks S1, S2, R1, R2 that synchronize the third process with the two pushdown
processes exactly every 2m steps. In the following, we present the programs for
each of the three processes.

The synchronizing process does not use push- or pop-operations and thus
can be represented by a finite-state program:

acq(A0); acq(A1); acq(B);
use(Z1); use(Z2); acq(Y );

s3 : while (∗) {
((free(A0) ∨ free(A1)); free(B))m; use(R1); use(R2);
((free(A0) ∨ free(A1)); free(B))m; use(S1); use(S2)
}

l3 : // program point to be reached

The processes reading L1 and L2 are given by:

acq(R1); acq(R2); acq(S1); acq(S2);
acq(Z1); use(Y ); acq(Z2); use(Y );

s1 : checkInput; free(R1); free(R2); s2 : while (∗) {
while (∗) { checkStep; free(S1); free(S2)

checkRev; free(R1); free(R2) }
} l2 : // point to be reached
checkFinal;

l1 : // point to be reached

The locks Y,Z1, Z2 and their usage pattern enforce, that all processes first have
to reach their starting label si, and thus acquire the initial set of locks required
to block the other processes. The sub-routines checkInput and checkFinal for
verifying the first and last configurations, respectively, can be implemented by
a finite-state program in a straight-forward way. The sub routines checkRev and
checkStep can be implemented as follows, using procedures Ci with 0 ≤ i ≤ m
and Pi with 3 ≤ i ≤ n+ 1:

checkRev : Cm
Ci : (use(A0); use(B);Ci−1; use(A0); use(B))
∨ (use(A1); use(B);Ci−1; use(A1); use(B))

C0 : skip
checkStep : Pn+1

Pi :
∨
{read(a);Pi−1; read(a) | a is tape symbol}
∨
∨
{read(a1a2a3);C(i−3)·k; read(b1b2b3) | (a1a2a3, b1b2b3) is a step}

We write read(w) = use(Ai0); use(B); . . . use(Aij ); use(B); for reading the binary
encoding i0 . . . ij of a word w over tape symbols and states of the Turing Machine



and read(w) for the same operation using the reverse of the encoding of w. A pair
(a1a2a3, b1b2b3) is a step of the Turing Machine if a2 is the control state, a1, a3
are tape symbols and b1b2b3 describes the rewritten portion of the configuration
after a step, including the movement of the head.

The description should have made it clear that, starting from their initial
configurations with empty sets of held locks, the control-sequence

(l1, {R1, R2, Z1})(l2, {S1, S2, Z2})(l3, {A0, A1, B, Y })

will be reachable if and only if the simulated Turing Machine has an accepting
computation for the given initial configuration.

3 Spawning of New Processes

In this section, we show how the algorithm for control sequence reachability
from the last section can be enhanced to multi-pushdown systems where new
processes can be dynamically spawned. Programs now additionally may have
transitions of the form:

r : (q, γ)
(q1,γ1)−−−−→ (q2, γ2) (spawn step)

where the effect of the transition is the spawning of a new thread with the
initial configuration ((q1, ∅), γ1). The function eff(r) is extended accordingly.
The pair (q2, γ2) on the right-hand side describes the continuation of the process

executing this step. The local step relation
·

=⇒ affects the current process similar
to a compute-rule. The global step relation additionally extends the sequence of
processes which are concurrently running, by one more process. As in [3, 7], we
find it convenient to keep track of the ancestry between processes. For that, each
local configuration of a process is equipped with an extra component which is
meant to hold all successively spawned processes. Thus, a global configuration is
now a rooted tree (h, (q,X), w) where, as before, q is a process state, X is a finite
set of locks, w ∈ Γ ∗ is the pushdown and h is a (possibly empty) sequence of
sub-trees representing the child processes. Again, we additionally demand that
the different occurrences of sets of locks in a global configuration are mutually
disjoint. Initial configurations consist only of a single process and are of the form
(ε, (q, ∅), γ). In order to identify sub-configurations within a global configuration t
we use sequences of positive integers called positions. In particular, ε is a position
in t and the sub-configuration of t at position ε, denoted by t/ε, equals t itself.
Furthermore, if t = (t1 . . . tk, (q,X), w) and η is a position of ti for i = 1, . . . , k,
then iη is a position in t with t/iη = ti/η. Likewise, if t = (t1 . . . tk, (q,X), w),
then the root process of t, i.e. the process in t at position ε, denoted by t[ε], has
the process-local configuration ((q,X), w) and has successively spawned the root
processes of t1, . . . , tk. We write t[η] for the root process of t/η, i.e. t[η] = t/η[ε].

Now, global steps are rules applied to sub-configurations. A global step (η, r)
transforms a global configuration t into t′, if the following holds:

– t/η = (h, (q,X), w), ((q,X), w)
r

=⇒ ((q′, X ′), w′) and t′/η = (h′, (q′, X ′), w′)



– l /∈ X ′′ for all local configurations t[η′] = ((q′′, X ′′), w′′), if eff(r) = acq(l)
– if eff(r) = (q1, γ1) then h′ = h(ε, (q1, ∅), γ1) else h′ = h
– all other sub-configurations t/η′ are preserved

In this case, we denote the resulting configuration also as t′ = [[(η, r)]] t and
extend the notation to sequences Π of global steps. Note that each newly created
process initially holds the empty set of locks. A multipushdown system with
dynamic process generation by means of spawn-rules has been called dynamic
pushdown network or DPN [3]. The DPN adheres to contextual locking if each
process of the DPN does so. We first consider reachability of a control sequence
of a fixed length for DPNs. This means that we require only a subset of the
processes to reach certain control states simultaneously. A control sequence

σ = (q′1, X
′
1) . . . (q′k, X

′
k)

is reachable from a global configuration t if a global configuration t′ is reachable
such that t′[ηi] = ((q′i, X

′
i), w

′
i) for a suitable sequence η1 < . . . < ηk of positions

in t′ where the ordering < on positions is given by the left-right ordering within
the textual representation of t′, i.e. η < η′ if η′ is a proper prefix of η or η = η0jη1
and η′ = η0j

′η2 where j < j′. In this case, we also say that t′ is compatible with
the control sequence σ at positions η1, . . . , ηk. The main theorem of this section
is:

Theorem 6. For every DPN P with contextual locking and control-sequence σ
it is decidable in PSPACE whether or not σ is reachable from an initial config-
uration (ε, (q, ∅), γ) of the DPN.

Since the lower-bound result from the last section also applies to DPNs, we con-
clude that control sequence reachability for DPNs is in fact, PSPACE-complete.

The key observation for the PSPACE upper bound is, that for reachability of
a control sequence σ only steps of processes at one of the positions in the control
sequence, or ancestors of such a process, must be considered.

Assume that t0 = (ε, (p, ∅), γ) is an initial configuration of a DPN and t =
[[Π]] t0. Then we call a position η inactive w.r.t. a global execution sequence Π,
if Π does not contain any step (η, r) and thus also no step (ηη′, r) for any η′.
The following lemma can be proven by induction on the length of prefixes of Π.

Lemma 7. Assume that t is compatible with the σ = (q1, X1) . . . (qk, Xk) at
positions η1, . . . , ηk. Let Π ′ denote the subsequence of Π which is obtained from
Π by removing all steps (η, r) where η is not a prefix of any of the ηi. Then the
following holds:

1. t′ = [[Π ′]] t0 is still a global configuration which is compatible with the given
control-sequence σ at positions η1, . . . , ηk.

2. Every position η of t′ is either inactive or a prefix of one of the ηi. ut

Let us call the configuration t′ together with the global execution sequence Π ′

which is constructed according to Lemma 7, purified w.r.t. the control-sequence



σ. A purified global execution sequence may still be further reduced while pre-
serving compatibility with the given control-sequence. For that, we first add
transitions that skip spawning of inactive processes altogether.

For a given DPN P , consider the DPN P ′ which is obtained from P by adding

a transition r′ : (q, γ)
τ−→ (p2, γ2) for every transition r : (q, γ)

(p1,γ1)−−−−→ (p2, γ2).
The resulting DPN has the same number of states and pushdown symbols as P
and at most twice as many transitions. We have:

Lemma 8. Consider a non-empty control sequence σ = (q1, X1) . . . (qk, Xk).
Let t0 = (ε, (q0, ∅), γ0) be an initial configuration. Then the following statements
are equivalent:

1. a configuration t is reachable from t0 w.r.t. P which is compatible with σ;
2. a configuration t′ is reachable from t0 w.r.t. P ′ which is compatible with σ;
3. a configuration t′′ is reachable from t0 w.r.t. P ′ which is compatible with σ at

positions η1, . . . , ηk where t′ has no inactive processes w.r.t. these positions.

Proof. Assertion (2) follows from assertion (1) since every execution of DPN P
is also an execution of DPN P ′. Assertion (3) follows from assertion (2) in two
stages. First, we may assume by Lemma 7 w.l.o.g. that the global execution
sequence is purified. Then this global execution sequence is modified in such a
way that spawning of inactive processes is replaced with the corresponding basic
computation step which avoids the new process but preserves the process local
successor state and pushdown. Note that not spawning inactive processes may
cause a decrease in the number of spawned processes and thus may change the
addresses of corresponding processes. Finally, given a global execution reaching
t′′ from t0 w.r.t. DPN P ′ which is compatible with σ and does not spawn inactive
processes, a global execution of DPN P can be recovered which is still compatible
with σ essentially by introducing spawn-operations r again for the corresponding
compute-operations r′. The additionally created processes will be treated as
inactive processes.

Henceforth, we call an execution sequence according to statement (3) of Lemma
8 strongly purified. In a strongly purified execution, a process may still have
an arbitrary number of ancestors. Thus still an arbitrary number of processes
would have to be tracked in order to check reachability. However, here our second
main observation comes in handy, namely, that similar to deeply nested recursive
procedure calls, also deeply nested recursive spawns can be cut out of a given
execution. Consider a situation where a process spawns a second process. The
second process in turn spawns a third process with the same initial configura-
tion as the second process and no other processes are spawned by the second
process. In this case, the execution of the second process can be replaced by the
execution of the third process. This eliminates one ancestor from the execution.
This observation can be used to derive a bound on the number of processes that
must be tracked in order to decide control-sequence reachability.

Lemma 9. Assume that t′ = [[Π ′]] t0 where t′ is compatible with the control
sequence σ at positions η1, . . . , ηk and t′ together with Π ′ is strongly purified



w.r.t. the control sequence σ. Then there is a subsequence Π ′′ of Π ′ such that
the following holds:

1. t′′ = [[Π ′′]] t0 is still a global configuration which is compatible with the given
control sequence σ – but now at positions η′1, . . . , η

′
k where the number of

distinct non-empty prefixes of η′1, . . . , η
′
k is at most (2k − 1) · |Q| · |Γ |.

2. The number of active positions in Π ′′ is bounded by (2k − 1) · |Q| · |Γ |+ 1.

Proof. For the first statement, we purge positions as follows. Assume that ηi =
ηη′η′′ and the processes at positions η and ηη′ are spawned with the same initial
configuration (ε, (q, ∅), γ) and additionally, there is no proper prefix η′′′ of η′

such that ηη′′′ is the longest common prefix of ηi and some ηj , i 6= j. Then ηη′

is replaced in all positions ηj where it occurs as a prefix, with η, and the global
execution sequence Π is reduced accordingly. This means that all steps (ηχ, r)
are removed from Π ′ where χ is a prefix of η′, and then all steps (ηη′χ, r) are
replaced with (ηχ, r).

This reduction is performed until it is no longer applicable. Let η′1, . . . , η
′
k

denote the resulting sequence of positions, and Π ′′ the resulting global execution
sequence. Assume for a contradiction that the number of distinct non-empty
prefixes of η′1, . . . , η

′
k exceeds (2k − 1) · |Q| · |Γ |. As there are only |Q| · |Γ |

distinct initial configurations of spawned processes, Π ′′ must create at least
2k of the sub-processes represented by these non-empty prefixes with the same
initial configuration, say (ε, (q, ∅), γ). Let ρ1, . . . , ρl, l ≥ 2k, be (all) the non-
empty prefixes of η′1, . . . , η

′
k created with this initial configuration (ε, (q, ∅), γ).

Consider the (potentially multi-rooted) tree induced on ρ1, . . . , ρl by the prefix
relation, i.e. ρj is a successor of ρi in the tree, if ρi is a proper prefix of ρj but
there is no ρh that is a proper prefix of ρj and a proper suffix of ρi. This tree
has at most k leafs as any leaf must be a maximal prefix among the ρ1, . . . , ρl
of one of the positions η′1, . . . , η

′
k. This implies that at most k − 1 inner nodes

can be branching. On the other hand, there are at least k non-maximal prefixes.
Hence, at least one of the non-maximal prefixes, say η = ρi, is non-branching,
i.e. has just one successor ρj = ηη′. This implies that the above reduction can be
applied with η and η′ resulting in a sequence of shorter positions–contradiction.
Due to strong purification only ε and non-empty prefixes of the purged positions
η′1, . . . , η

′
k can be active in Π ′′. Hence, the second statement follows from the

first one.

Proof (Theorem 6). For deciding whether a control sequence σ of length k is
reachable from the initial configuration, it suffices by Lemma 8 to consider
strongly purified global executions only. By Lemma 9, only global configura-
tions must be considered where the number of active positions is bounded by
(2k − 1) · |Q| · |Γ |. Additionally, the construction of Lemma 2 can be extended
to DPNs so that only the case must be considered where all processes in the
final configuration have an empty pushdown. Then we proceed analogous to the
proof of Lemma 4 and derive a bound on the pushdown of each process. The
bound now must take the length k of the control sequence into account, since



recursive calls may not be removed in which a process needed for reachability of
σ is spawned.

Assume that t = [[Π]] t0 for an initial configuration t0 and a global config-
uration t. Assume that σ = (q′1, X

′
1) . . . (q′k, X

′
k) is a control sequence in t at

positions η1 < . . . < ηk. Assume further that the execution sequence is strongly
purified w.r.t. σ. If during Π a call rule r : (q, γ)

τ−→ (q′, γ1γ2) is called more
often than k · |Q| times for the same position η, then there is a state p such that
Π can be factored into Π = C1(r, η)U1(r, η)Π1U2C2 and the following holds:

– U1, U2 do not spawn any processes;
– projη((r, η)Π1) as well as projη((r, η)U1(r, η)Π1U2) are same-level computa-

tions for the subconfiguration t[η] resulting in the same control state p.

For i = 1, 2, let U ′i be the sequence obtained from Ui by removing all steps of
process η. Then the sequence Π ′ = C1U

′
1(r, η)Π1U

′
2C2 is again a computation

sequence for t which is compatible with the control sequence σ at the same
positions η1 < . . . < ηk.

We conclude that a configuration compatible with σ can be reached by an
execution where the depth of each intermediately occurring call-stack is bounded
by a polynomial, now in the number of positions in the control sequence and
the size of the DPN. Overall, we find that space polynomial in the length of
the control-sequence σ and the size of the DPN P is sufficient to verify for P
whether σ is reachable by P from the initial configuration (ε, (p, ∅), γ).

4 Regular Reachability

In this section we introduce regular control reachability as a reachability property,
that allows to specify properties of configurations of an arbitrary and varying
number of processes. Here the word of control states obtained by postorder
traversal of a configuration must be contained in a regular language. For that,
we define the yield of a configuration t = (t1 . . . tk, ((q,X), w)) of a DPN as

yield(t) = yield(t1) . . . yield(tk)(q,X)

In the following, we show that regular control reachability is decidable for DPNs
with contextual locking.

Theorem 10. For a DPN P with contextual locking and a regular language L
over the alphabet Q × 2L, it is decidable whether or not a configuration t with
yield(t) ∈ L is reachable from an initial configuration in P .

In order to prove Theorem 10, we first show that regular control reachability for
a DPN can be reduced to control-set reachability of a DPN. In a second step
we explicitly reduce each pushdown system to a finite state system, using the
same argument for recursive calls as before. A DPN without a pushdown is also
called dynamic finite-state network (DFN). W.r.t. control-set reachability, con-
figurations of DFNs can be further abstracted by just abstracting configurations



to vectors which only keep the multiplicities of occurring process-local states. In
the following, we are going to make these ideas precise.

First, we reduce regular control reachability to control-set reachability. For
that, we define the state set of a configuration t = (t1 . . . tk, ((q,X), w)) by:

states(t) = states(t1) ∪ . . . ∪ states(tk) ∪ {(q,X)}

Lemma 11. For a DPN P with contextual locking and a regular language L over
the alphabet Q×2L, there exists a DPN P ′ with states Q′ and contextual locking,
and a set Q′0 ⊆ Q′×2L, such that a configuration t with yield(t) ∈ L is reachable
from an initial configuration in P iff a configuration t′ with states(t′) ⊆ Q′0 is
reachable from a corresponding initial configuration in P ′.

Proof. Assume that L is given by the finite automaton A = (S,Q× 2L, δ, s0, F )
where S is the finite set of states of A. We construct a new DPN that encodes
the regular reachability into its control states. The yield of a configuration is
accepted by the automaton iff there is a run of the automaton that accepts it.
The idea is to guess and verify this accepting run during an execution of the
DPN. Since the yield of a configuration is constructed from the local process
configurations it suffices to guess a partial run for each local configuration and
make sure that the partial runs form a run of the automaton. To this end we
introduce new control states 〈s, q, s′〉 where s, s′ ∈ S. A control state 〈s, q, s′〉
signals that s and s′ have been guessed as initial and final states for the partial
run that recognizes the yield of the subconfiguration generated by this process,
and all process it has yet to spawn. As a first step, an initial guess is made. For
that, we add transitions r : (q, γ)

τ−→ (〈s0, q, s〉, γ) where s ∈ F . We proceed by

replacing each non-spawn-transition r : (q, γ)
e−→ (q′, w′) with a transition pre-

serving the guess r′ : (〈s, q, s′〉, γ)
e−→ (〈s, q′, s′〉, w′). In case of a spawn-transition

r : (q, γ)
(q1,γ1)−−−−→ (q2, γ2), the guess for the spawned process is initialized by split-

ting the guess for the parent and distributing it. Therefore, we add transitions

r′ : (〈s, q, s′〉, γ)
(〈s,q1,s′′〉,γ1)−−−−−−−−→ (〈s′′, q2, s′〉, γ2). If all processes in an execution of

P ′ reach local configurations ((〈s1, q, s2〉, X), w) where (s1, (q,X), s2) is a transi-
tion of A, then all guesses have been correct, implying that there is an accepting
path for the yield of this configuration. If on the other hand an execution of P
reaches a configuration whose yield is accepted by A we can annotate the guesses
to obtain an execution of P ′. Checking regular reachability thus reduces to check-
ing control set reachability of the set Q′0 = {(〈s1, q, s2〉, X) | (s1, (q,X), s2) ∈ δ}.

Remark 12. One can modify the construction from Remark 3 such that it allows
to reduce general regular reachability, which also includes the stack content
of each process, to regular control reachability. To see this, consider a finite
automaton A, now over the input alphabet (Q×2L)∪Γ . Then the initial marking
of a process can be used to further split the guess from Lemma 11 into parts for
the state and the pushdown, i.e. we only add marking rules r : (〈s1, q, s2〉, γ)

τ−→
(〈〈s1, q, s′2〉, s′2〉, 〈γ, s2〉). The remaining construction proceeds as in Remark 3
using the transitions of A.



In the next step, we reduce control set reachability of a DPN to control set
reachability of a DPN without push or pop operations, i.e., a DFN:

Lemma 13. For a DPN P with contextual locking and a set Q0 ⊆ Q × 2L of
control states, there exists a DPN P ′ with contextual locking, no push or pop
operations and a set Q′0 ⊆ Q′ × 2L, such that a configuration t with states(t) ⊆
Q0 is reachable from an initial configuration in P iff a configuration t′ with
states(t′) ⊆ Q′0 is reachable from a corresponding initial configuration in P ′.

Proof. First we apply the construction of Lemma 2 to only consider reachability
where all pushdowns are empty. Using the same arguments as Lemma 4 and the
proof of Theorem 6 we can derive a polynomial bound on the size of pushdown
needed to check reachability. Assume that a pushdown is reached during an
execution whose size exceeds |Q|2 · |Γ | symbols. This translates to a process with

more than |Q|2 · |Γ | nested returning procedure calls. Each nested procedure
call can be tagged with the initial control state and topmost pushdown symbol
together with the final control state. Since the number of procedure calls exceeds
the number of possible tags, there are at least two procedure calls, whose starting
and ending situation are the same. Then the outer procedure call can be replaced
with the inner call, by removing all steps of the outer procedure call as well as
of all processes spawned by it. As before, because of contextual locking and
processes starting with an empty set of locks, removing these steps does not
impose additional constraints on an execution. Since all remaining processes
still reach a state in Q0, whenever that was the case before the replacement,
control-set reachability is preserved if the sizes of all occurring pushdowns are
restricted to size at most |Q|2 · |Γ |.

Using this result a DFN can be defined with states Q′ = {(q, w) | q ∈ Q,w ∈
Γ ∗, |w| ≤ |Q|2 · |Γ |} where the bounded pushdown is encoded into the control
state. We introduce an artificial pushdown symbol # and define transitions:

((q, w),#)
eff(r)−−−→ ((q′, w′),#) if (q, w)

r
=⇒ (q′, w′) and eff(r) 6= (q1, γ1)

((q, w),#)
((q1,γ1),#)−−−−−−−→ ((q′, w′),#) if (q, w)

r
=⇒ (q′, w′) and eff(r) = (q1, γ1)

An initial configuration (ε, (q, ∅), γ) is translated into an initial configuration
(ε, ((q, γ), ∅),#). Finally, the control set for reachability in the new DFN is set
to Q′0 = {((q, ε), X) ∈ Q′ | (q,X) ∈ Q0}. The executions of the new DFN are
in one-to-one correspondence to the executions of the original DPN that do not
violate the pushdown bound. Thus, we have reduced control-set reachability for
a DPN to control-set reachability for a (possibly exponentially larger) DFN.

For control-set reachability of a DFN, the precise ordering of processes within a
configuration is irrelevant. Therefore, we now abstract configurations of a DFN
to multisets of local process configurations. The proof of Theorem 10 then is
based on a monotonicity property of control-set reachability. This monotonicity
property states that whenever a control set Q0 is reachable from a (multi set)
configuration v, then this is also the case for any multi sub-set of v.



Proof (Theorem 10). We apply Lemma 11 and Lemma 13 to only consider con-
trol set reachability of a set Q0 for a DFN. For the proof, the ordering of processes
within a configuration is irrelevant. Therefore, configurations are abstracted as
a vector v mapping pairs (q,X) of states and sets of held locks to the number
v(q,X) of processes that are currently in state q and hold the set X of locks.
Thus, v(q,X) > 1 only if X = ∅, and for X 6= ∅, v(q,X) = 1 implies v(q′, Y ) = 0
for all q′ 6= q and X ∩ Y 6= ∅. Let us call such vectors v abstract configurations.
Every transition of the DFN P induces a corresponding abstract transition on
abstract configurations. Let P ′ denote the transition system on abstract configu-
rations corresponding to the DFN P . Note that, due to unbounded application of
spawn-transitions, the transition system P ′ is still infinite. The initial configura-
tion t0 of P corresponds to the abstract configuration v0 = {(q0, ∅) 7→ 1} where
q0 is the initial state of P . Let V0 be the set of all abstract configurations such
that v(q,X) = 0 for all q /∈ Q0. Then the DFN P may reach a configuration from
t0 where all occurring states are in Q0 iff a configuration v is abstractly reach-
able from v0 where v ∈ V0. On configurations of P ′, we consider the elementwise
partial ordering defined by v � v′ iff v(q,X) ≤ v′(q,X) for all (q,X).

By case distinction, we verify that, if v � v′ and w′ is reachable in P ′ from
v′ in one abstract step, then either v � w′ or there is an abstract configuration
w which is reachable from v in one step such that w � w′.

From this fact, we conclude that whenever a configuration in V0 is reachable
from v′ and v � v′, then a configuration in V0 is also reachable from v.

Let W denote the set of abstract configurations reachable from v0 (w.r.t.
P ′) and min(W ) the set of minimal elements in W w.r.t. the ordering �. Then
V0∩W 6= ∅ iff V0∩min(W ) 6= ∅. Thus, it suffices to determine the set of minimal
configurations which are reachable from v0. The set min(W ) can be determined
by iteratively accumulating the set of reachable configurations where during
every step, only those configurations are maintained which are currently mini-
mal. Since in a set of minimal configurations, vectors are pairwise incomparable,
Dickson’s Lemma can be applied—implying that the algorithm terminates.

5 Joining of Processes

In [7], DPNs have been considered that are additionally equipped with a join
operation. A join can only be executed if all immediate children of a process
which have been spawned up to this point, have terminated. We show for DPNs
extended with such joins that regular control reachability as considered in the
last section, is still decidable.

Theorem 14. Assume that P is a DPN with joins and contextual locking, and
L is a regular language over the alphabet Q× 2L. Then it is decidable if a con-
figuration t with yield(t) ∈ L is reachable from an initial configuration in P .

Formally, a DPN with joins is a DPN where the set of rules additionally may
include dedicated transitions of the form

r : (q, γ)
join−−→ (q′, γ′) (join step)



The intended semantics is that a process may execute the join-transition only
after all processes spawned by the process executing the join-transition, have
already been terminated. For that, we assume that termination is signaled by
reaching a control state in a set Qt ⊆ Q from which no further transitions can
occur. Thus, the following condition must additionally hold for a step as defined
in Section 3:

– if eff(r) = join and h = t1 . . . tk then qi ∈ Qt for all i ∈ {1, . . . , k}, where
ti = (hi, (qi, Xi), wi).

The same arguments as in Section 4 can be applied to show that regular control
reachability of a language L for a DPN P with contextual locking and joins
can be reduced to control set reachability of a set Q0 for a DFN P ′. This is
due to the fact that removing join operations only lessens the constraints on an
execution and otherwise removing steps from an execution does not change a
thread from terminating to not terminating. As in Lemma 13, we represent the
trivial pushdown of a DFN by means of #.

Remark 15. Using the same method as in in Remark 12 Theorem 14 can be
extended to regular reachability which includes all pushdowns.

Control-set reachability for DFNs with joins, however, can no longer be natu-
rally reduced to the computation of minimal elements of suitable sets of vectors
of natural numbers. Whether or not a join can be executed, does not depend
on the multiplicities by which individual process-local states (q,X) are reached
but on whether the right subset of processes have terminated. Accordingly, the
abstraction of configurations through vectors of numbers is no longer sufficient.
Instead, the nesting of processes as given by configurations must be maintained
in order to identify the processes to be waited for. In order to apply an anal-
ogous argument as in Section 4, a well-quasi-ordering on (suitably abstracted)
configurations is required, that preserves reachability. Since configurations are
ordered trees, a candidate ordering is the embedded subtree ordering. From t � t′,
however, it not necessarily follows that every sequence of transitions for t′ gives
rise to a sequence of transitions for t resulting again in a smaller configuration.
Here, a configuration is smaller if it can be obtained from the larger configu-
ration by removing a subtree or by removing a node and replacing it with one
of its descendants. But removing and replacing a process may cause its parent
to wait for termination of a process which does not terminate. A corresponding
monotonicity property, though, is crucial in Section 4 for restricting reachability
analysis to maintaining sets of minimal elements only.

We observe that a process may be replaced by a descendant, if all processes
in the hierarchy inbetween participate in a join. Since a join requires termination
of all children and can only be executed by a process before its termination, this
ensures that termination of the original process is preceded by termination of
the process it is replaced with. Consequently in the shortened execution no join
is blocked, since all required processes are still able to terminate.

We now construct an abstraction of a DFN, where configurations are mul-
tisets of unordered trees and indicate how the monotonicity property can be



enforced. The idea is to include processes into the tree only when they partici-
pate in a join. All others are added as additional roots to the top-level. We show
that abstracting a DFN with joins in this way, preserves control-set reachability.
A similar argument as in Section 4, then allows us to show decidability. In the
following, we present the outlined proof sketch in detail.

For each spawn-transition r : (q,#)
(q1,#)−−−−→ (q2,#) we introduce a spawn’-

transition with the same semantics:

r′ : (q,#)
〈q1,#〉−−−−→ (q2,#) (spawn’ step)

Clearly, each configuration t which was reachable w.r.t. the original DFN is also
reachable w.r.t. to the DFN with the extra spawn’-transitions by an execution
where the following property holds:

S1 Every spawn’-transition is eventually followed by a join-transition in the
same process;

S2 After every spawn-transition, no join-transition occurs in the same process.

Therefore, we may concentrate on control-set reachability of a set Q0 by means
of executions satisfying properties S1 and S2. Let us call such executions S-
executions. By guessing whether a process eventually executes a join-operation
or not and maintaining a corresponding bit in the process-local state, we may
enforce that the DFN only performs prefixes of S-executions and reaches the set
Q0 of dedicated control states only by means of an S-execution. Let us call such
a DFN an S-DFN for control-state reachability of Q0.

For an S-DFN, we now abandon irrelevant nesting of processes and only
keep nesting of processes which is required for simulating join-operations. This
means that spawn’-transitions add new processes as leaves to the configuration,
while spawn-transitions add new processes on toplevel as new roots. For that,
we consider finite multi-sets m of unordered finite trees t. Each such tree t is
of the form t = (m′, (q,X),#) where q is a state of the S-DFN, X is a set of
currently held locks and m′ is a multiset of trees — each corresponding to a
process spawned by a spawn’-transition. We write ⊕ for the union of multisets.

For such multisets abstracting configurations of a S-DFN, we define the fol-

lowing abstract transitions. A join-transition r : (q,#)
join−−→ (q′,#) is applicable

at t = (m′, (q,X),#) within an abstract configuration m if all subtrees t′ ∈ m′
are terminated. In this case, it replaces the subtree t within m by the subtree

t′ = (m′, (q′, X),#). Applying the spawn’-transition r′ : (q,#)
〈q1,#〉−−−−→ (q2,#),

at t = (m′, (q,X),#) within an abstract configuration m, replaces t with t′ =

(m′ ⊕ {(∅, (q1, ∅),#)}, (q2, X),#). A spawn-transition r : (q,#)
(q1,#)−−−−→ (q2,#)

applied to a subtree t = (m′, (q,X),#) within an abstract configuration m,
replaces t with t′ = (m′, (q2, X),#) and adds the tree (∅, (q1, ∅),#) to the multi-
set on the toplevel. The abstract execution steps corresponding to the remaining
transitions are defined in a straight forward way. We remark that the notion
of an S-execution is also applicable to the abstracted DFNs with joins. Let P ]

denote the abstract DFN constructed from a S-DFN P in this way. Since every



execution of P is a prefix of an S-execution, the same also holds for abstract
executions of P ]. Moreover, we obtain that a configuration t where all states are
contained in the control set Q0, can be reached by P from the initial configura-
tion t0 = (ε, (q0, ∅),#) by means of an S-execution iff a configuration m, where
all states are from Q0, can be reached in P ] by means of an abstract S-execution
from m0 = (∅, (q0, ∅),#). Let V0 be the set of all multiset configurations m such
that all states in m are from Q0.

On unordered trees t and multisets m, the embedded subtree ordering is the
least reflexive and transitive ordering � with the following properties:

– Assume that t = (m, (q,X),#). Then t′ ∈ m′ implies t′ � t; and also m′ � m
implies (m′, (q,X),#) � t.

– Assume that m = m1 ⊕ {t} for some t. Then m1 � m; and t′ � t implies
m1 ⊕ {t′} � m.

By Kruskal’s Theorem [11], the ordering � on multisets of unordered finite trees
is a well-quasi-ordering.

As in the case without join-transitions, we find that if m � m′ and w′ is
reachable in P ] from m′ in one step, then either m � w′ or there is a multiset
configuration w which is reachable from m in a corresponding abstract step such
that w � w′. From this monotonicity, we conclude that whenever a configuration
in V0 is reachable from m′ and m � m′, then a configuration in V0 is also
reachable from m.

Proof (Theorem 14). Let W denote the set of abstract multiset configurations
reachable from m0 = {(∅, (q0, ∅),#) (w.r.t. P ]) and min(W ) the set of mini-
mal elements in W w.r.t. the ordering � on multisets. Then V0 ∩ W 6= ∅ iff
V0 ∩ min(W ) 6= ∅. Thus, it suffices to determine the set of minimal configura-
tions which are abstractly reachable from m0. The set min(W ) can be determined
by iteratively accumulating the set of abstractly reachable configurations where
during every step, only those configurations are maintained which are currently
minimal. Since in a set of minimal configurations, multisets are pairwise in-
comparable, we conclude, now no longer by Dickson’s lemma, but by Kruskal’s
Theorem that the algorithm terminates.

6 Conclusion

We have analyzed the complexity of simultaneous reachability for multiple re-
cursive processes running in parallel which may use contextual locking. While
this problem has been shown to be PTIME solvable for two processes in [4],
we have shown that this problem becomes PSPACE-complete already for k > 2
processes where PSPACE is still sufficient if dynamic thread creation is allowed.

The situation seems to be more complicated if reachability of a regular set of
configurations is considered. Such regular sets allow to formalize more intricate
properties of configurations. We succeeded to prove decidability by means of
Dickson’s lemma. The precise complexity of this problem, though, remains open.



Interestingly, decidability is preserved even if a join operation is added. Note that
fork/join parallelism through parallel procedure calls as considered, e.g., in [15,
18], can be expressed by means of DPNs with join. Accordingly, reachability
for this model of concurrency remains decidable if contextual locking is allowed.
Also there, however, the precise complexity remains open.
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