
The GRAT Tool Chain

Efficient (UN)SAT Certificate Checking with Formal
Correctness Guarantees

Peter Lammich

Technische Universität München, lammich@in.tum.de

Abstract. We present the GRAT tool chain, which provides an efficient
and formally verified SAT and UNSAT certificate checker. It utilizes a
two phase approach: The highly optimized gratgen tool converts a DRAT
certificate to a GRAT certificate, which is then checked by the formally
verified gratchk tool.
On a realistic benchmark suite drawn from the 2016 SAT competition,
our approach is faster than the unverified standard tool drat-trim, and
significantly faster than the formally verified LRAT tool. An optional
multithreaded mode allows for even faster checking of a single certificate.

1 Introduction

The complexity and high optimization level of modern SAT solvers makes them
prone to bugs, and at the same time hard to (formally) verify. A common approach
in such situations is certification, i. e. to make the SAT solver produce a certificate
for its output, which can then be checked independently by a simpler algorithm.
While SAT certificates describe a satisfying assignment and are straightforward
to check, UNSAT certificates are more complex. The de facto standard are DRAT
certificates [15] checked by drat-trim [3]. However, efficiently checking a DRAT
certificate still requires a quite complex and highly optimized implementation.1

A crucial idea [2] is to split certificate checking into two phases: The first phase
produces an enriched certificate, which is then checked by the second phase. This
effectively shifts the computationally intensive and algorithmically complex part
of checking to the first phase, while the second phase is both computationally
cheap and algorithmically simple, making it amenable to formal verification.

Cruz-Filipe et al. [2] originally implemented this approach for the weaker
DRUP certificates [14], and later extended it to DRAT certificates [1,6], obtaining
the LRAT tool chain. Independently, the author also extended the approach to
DRAT certificates [9]. While Cruz-Filipe et al. use an extended version of drat-
trim to enrich the certificates, the author implemented the specialized gratgen
tool for that purpose. Compared to drat-trim, gratgen’s distinguishing feature is
its support for multithreading, allowing it to generate enriched certificates several
times faster at the cost of using more CPU time and memory. Moreover, we have

1 We found several bugs in drat-trim. Most of them are already fixed [4, 9].



implemented some novel optimizations, making gratgen faster than drat-trim
even in single-threaded mode. While [9] focuses on the formal verification of the
certificate checker (gratchk), this paper focuses on gratgen. The GRAT tools
and raw benchmark data are available at http://www21.in.tum.de/~lammich/
grat/.

2 The GRAT Toolchain

To obtain a formally verified solution for a CNF formula, it is first given to a
SAT solver. If the formula is satisfiable, the SAT-solver outputs a valuation of
the variables, which is then used by gratchk to verify that the formula is actually
satisfiable. If the formula is unsatisfiable, the SAT-solver outputs a DRAT
certificate. This is processed by gratgen to produce a GRAT certificate, which, in
turn, is used by gratchk to verify that the formula is actually unsatisfiable. We
have formally proved that gratchk only accepts satisfiable/unsatisfiable formulas.

2.1 DRAT Certificates

A DRAT certificate [15] is a list of clause addition and deletion items. Clause
addition items are called lemmas. The following pseudocode illustrates the forward
checking algorithm for DRAT certificates:

F := F0 // F0 is CNF formula to be certified as UNSAT

F := unitprop(F); if F == conflict then exit "s UNSAT"

for item in certificate do
case item of

delete C => F := remove_clause(F,C)

| add C =>

if not hasRAT(C,F) then exit "s ERROR Lemma doesn’t have RAT"

F := F ∧ C

F := unitprop(F); if F == conflict then exit "s UNSAT"

exit "s ERROR Certificate did not yield a conflict"

The algorithm maintains the invariant that F is satisfiable if the initial CNF
formula F0 is satisfiable. Deleting a clause and unit propagation obviously preserve
this invariant. When adding a clause, the invariant is ensured by the clause having
the RAT property. The algorithm only reports UNSAT if F has clearly become
unsatisfiable, which, by the invariant, implies unsatisfiability of F0. A clause C
has the RAT property wrt. the formula F iff there is a pivot literal l ∈ C, such that
for all RAT candidates D ∈ F with ¬l ∈ D, we have (F ∧¬(C∪D\{¬l}))u = {∅}.
Here, F u denotes the unique result of unit propagation, where we define F u = {∅}
if unit propagation yields a conflict. Exploiting that (F ∧¬(C∪D))u is equivalent
to ((F ∧ ¬C)u ∧ ¬D)u, the candidates do not have to be checked if the first unit
propagation (F ∧ ¬C)u already yields a conflict. In this case, the lemma has
the RUP property. This optimization is essential, as most lemmas typically have
RUP, and gathering the list of RAT candidates is expensive.

http://www21.in.tum.de/~lammich/grat/
http://www21.in.tum.de/~lammich/grat/


2.2 GRAT Certificates

The most complex and expensive operation in DRAT certificate checking is
unit propagation,2 and highly optimized implementations like two watched
literals [11] are required for practically efficient checkers. The main idea of
enriched certificates [2] is to make unit propagation output a sequence of the
identified unit and conflict clauses. The enriched certificate checker simulates the
forward checking algorithm, verifying that the clauses from the certificate are
actually unit/conflict, which is both cheaper and simpler than performing fully
fledged unit propagation. For RAT lemmas, the checker also has to verify that
all RAT candidates have been checked.

A GRAT certificate consists of a lemma and a proof part. The lemma part
contains a list of lemmas to be verified by the forward checking algorithm, and
the proof part contains the unit and conflict clauses, deletion information, and
counters how often each literal is used as a pivot in a RAT proof.

The lemma part is stored as a text file roughly following DIMACS CNF format,
and the proof part is a binary file in a proprietary format. The gratchk tool
completely reads the lemmas into memory, and then streams over the proof during
simulating the forward checking algorithm. We introduced the splitting of lemmas
and proof after gratchk ran out of memory for some very large certificates.3

2.3 Generating GRAT Certificates

Our gratgen tool reads a DIMACS CNF formula and a DRAT certificate, and
produces a GRAT certificate. Instead of the simple forward checking algorithm,
it uses a multithreaded backwards checking algorithm, which is outlined below:

fun forward_phase:

F := unitprop(F); if F == conflict then exit "s UNSAT"

for item in certificate do
case item of
delete C => F := remove_clause(F,C)

| add C =>

F := F ∧ C

F := unitprop(F);

if F == conflict then truncate certificate; return

exit "s ERROR Certificate did not yield a conflict"

fun backward_phase(F):

for item in reverse(certificate) do
case item of
delete C => F := F ∧ C

| add C =>

2 We found that more than 90% of the execution time is spent on unit propagation.
3 LRAT [6] uses a similar streaming optimization, called incremental mode.



remove_clause(F,C); undo_unitprop(F,C)

if is_marked(C) && acquire(C) then
if not hasRAT(C,F) then exit "s ERROR Lemma doesn’t have RAT"

fun main:

F := F0 // F0 is formula to be certified as UNSAT

forward_phase

for parallel 1..N do
backward_phase(copy(F))

collect and write out certificate

The forward phase is similar to forward checking, but does not verify the lemmas.
The backward phase iterates over the certificate in reverse order, undoes the
effects of the items, and verifies the lemmas. However, only marked lemmas are
actually verified. Lemmas are marked by unit propagation, if they are required
to produce a conflict. This way, lemmas not required for any conflict need not be
verified nor included into the enriched certificate, which can speed up certificate
generation and reduce the certificate size. Moreover, we implement core-first
unit propagation, which prefers marked lemmas over unmarked ones, aiming
at reducing the number of newly marked lemmas. While backwards checking
and core-first unit propagation are already used in drat-trim, the distinguishing
feature of gratgen is its parallel backward phase: Verification of the lemmas is
distributed over multiple threads. Each thread has its own copy of the clause
database and watch lists. The threads only synchronize to ensure that no lemma
is processed twice (each lemma has an atomic flag, and only the thread that
manages to acquire it will process the lemma), and to periodically exchange
information on newly marked lemmas (using a spinlock protected global data
structure).

We implemented gratgen in about 3k lines of heavily documented C++ code.

2.4 Checking GRAT Certificates

We have formalized GRAT certificate checking in Isabelle/HOL [12], and used
program refinement techniques [8,10] to obtain an efficient verified implementation
in Standard ML, for which we proved:

theorem verify_unsat_impl_correct:

<DBi 7→a DB>

verify_unsat_impl DBi prf_next F_end it prf

<λresult. DBi 7→a DB * ↑(¬isl result =⇒ formula_unsat_spec DB F_end)>

This Hoare triple states that if DBi points to an integer array holding the elements
DB, and we run verify_unsat_impl, the array will be unchanged, and if the
return value is no exception, the formula represented by the range 1. . . F_end in
the array is unsatisfiable. For a detailed discussion of this correctness statement,
we refer the reader to [7, 9]. Similarly, we also defined and proved correct a
verify_sat_impl function.

The gratchk tool contains the verify_unsat_impl and verify_sat_impl

functions, a parser to read formulas into an array, and the logic to stream the



proof file. As the correctness statement does not depend on the parameters
prf_next, prf, and it, which are used for streaming and iterating over the
lemmas, the parser is the only additional component that has to be trusted.

The formalization is about 12k lines of Isabelle/HOL text, and gratchk is 4k
lines of Standard ML, of which 3.5k lines are generated from the formalization
by Isabelle/HOL.

2.5 Novel Optimizations

Apart from multithreading, gratgen includes two key optimizations that make it
faster than drat-trim, even in single-threaded mode: First, we implement core-first
unit propagation by using separate watch lists for marked and unmarked clauses.
Compared to the single watch list of drat-trim, our approach reduces the number
of iterations over the watch lists in the inner loop of unit propagation, while
requiring some more time for marking a lemma.

Second, if we encounter a run of RAT lemmas with the same pivot literal, we
only collect the candidate clauses once for the whole run. As RAT lemmas tend
to occur in runs, this approach saves a significant amount of time compared to
drat-trim’s recollection of candidates for each RAT lemma.

3 Benchmarks

We have benchmarked GRAT with one and eight threads against drat-trim and
(incremental) LRAT [6] on the 110 problems from the 2016 SAT competition main
track that CryptoMiniSat could prove unsatisfiable, and on the 128 problems
that silver medalist Riss6 proved unsatisfiable. Although not among the Top 3
solvers, we included CryptoMiniSat because it seems to be the only prover that
produces a significant amount of RAT lemmas.

Using a timeout of 20,000 seconds (the default for the 2016 SAT competition),
single-threaded GRAT verified all certificates, while drat-trim and LRAT timed
out on two certificate, and segfaulted on a third one. For fairness, we exclude these
from the following figures: GRAT required 44 hours, while drat-trim required 72
hours and LRAT required 93 hours. With 8 threads, GRAT ran out of memory
for one certificate. For the remaining 234 certificates, the wall-clock times sum
up to only 21 hours.

The certificates from CryptoMiniSAT contain many RAT lemmas, and thanks
to our RAT run optimization, we are more than two times faster than drat-trim,
and three times faster than LRAT. (17h/42h/51h) The certificates from Riss6
contain no RAT lemmas at all, and we are only slightly faster. (26h/30h/42h)
The scatter plot in Figure 1 compares the wall-clock times for drat-trim against
GRAT, differentiated by the SAT solver used to generate the certificates.

We also compare the memory consumption: In single threaded mode, gratgen
needs roughly twice as much memory as drat-trim, with 8 threads, this figure
increases to roughly 7 times more memory. Due to the garbage collection in
Standard ML, we could not measure meaningful memory consumptions for



0 2 4 6

0

2

4

6

grat/hours

d
ra

t-
tr

im
/
h
o
u
rs

Certificates by CryptoMiniSAT

single threaded

8 threads

0 1 2 3

0

1

2

3

grat/hours
Excluded points at (4.6,4.6) and (1.5,4.6)

d
ra

t-
tr

im
/
h
o
u
rs

Certificates by Riss6

Fig. 1. Comparison of drat-trim and GRAT, ran on a server board with a 22-core
XEON Broadwell CPU @2.2GHz and 128GiB RAM.

gratchk. The extra memory in single-threaded mode is mostly due to the proof
being stored in memory, the extra memory in multithreaded mode is due to the
duplication of data for each thread.

The certificates for the 64 satisfiable problems that CryptoMiniSat solved at
the 2016 SAT competition main track [13] have a size of 229 MiB and could be
verified in 40 seconds.

4 Conclusion

We have presented a formally verified (un)satisfiability certificate checker, which
is faster than the unverified state-of-the-art tool. An optional multithreaded
mode makes it even faster, at the cost of using more memory. Our tool utilizes a
two-phase approach: The highly optimized unverified gratgen tool produces an
enriched certificate, which is then checked by the verified gratchk tool.

Future Work We plan to reduce memory consumption by writing out the proof
on the fly, and by sharing the clause database between threads. While the former
optimization is straightforward, the latter has shown a significant decrease in
performance in our initial experiments: Reordering of the literals in the clauses
by moving watched literals to the front seems to have a positive effect on unit
propagation, which we have not fully understood. However, when using a shared
clause database, we cannot implement such a reordering, and the algorithm
performs significantly more unit propagations before finding a conflict. Note that
parallelization at the level of unit propagation is conjectured to be hard [5].

Acknowledgement We thank Simon Wimmer for proofreading, and the anonymous
reviewers for their useful comments.



References

1. L. Cruz-Filipe, M. Heule, W. Hunt, M. Kaufmann, and P. Schneider-Kamp. Efficient
certified RAT verification. In Proc. of CADE. Springer, 2017. To appear.

2. L. Cruz-Filipe, J. Marques-Silva, and P. Schneider-Kamp. Efficient certified resolu-
tion proof checking. In Proc. of TACAS, pages 118–135. Springer, 2017.

3. DRAT-trim homepage. https://www.cs.utexas.edu/~marijn/drat-trim/.
4. DRAT-trim issue tracker. https://github.com/marijnheule/drat-trim/issues.
5. Y. Hamadi and C. M. Wintersteiger. Seven challenges in parallel SAT solving. AI

Magazine, 34(2):99–106, 2013.
6. M. Heule, W. Hunt, M. Kaufmann, and N. Wetzler. Efficient, verified checking of

propositional proofs. In Proc. of ITP. Springer, 2017. To appear.
7. P. Lammich. Gratchk proof outline. http://www21.in.tum.de/~lammich/grat/

outline.pdf.
8. P. Lammich. Refinement to Imperative/HOL. In ITP, volume 9236 of LNCS, pages

253–269. Springer, 2015.
9. P. Lammich. Efficient verified (UN)SAT certificate checking. In Proc. of CADE.

Springer, 2017. To appear.
10. P. Lammich and T. Tuerk. Applying data refinement for monadic programs to

Hopcroft’s algorithm. In Proc. of ITP, volume 7406 of LNCS, pages 166–182.
Springer, 2012.

11. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient sat solver. In Proc. of DAC, pages 530–535. ACM, 2001.

12. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

13. SAT competition, 2016. http://baldur.iti.kit.edu/sat-competition-2016/.
14. N. Wetzler, M. J. H. Heule, and W. A. Hunt. Mechanical verification of sat

refutations with extended resolution. In Proc. of ITP, pages 229–244. Springer,
2013.

15. N. Wetzler, M. J. H. Heule, and W. A. Hunt. Drat-trim: Efficient checking and
trimming using expressive clausal proofs. In Proc. of SAT 2014, pages 422–429.
Springer, 2014.

https://www.cs.utexas.edu/~marijn/drat-trim/
https://github.com/marijnheule/drat-trim/issues
http://www21.in.tum.de/~lammich/grat/outline.pdf
http://www21.in.tum.de/~lammich/grat/outline.pdf
http://baldur.iti.kit.edu/sat-competition-2016/

	The GRAT Tool Chain

