Isabelle Formalization of Hedge-Constrained pre* and DPNs with Locks

Peter Lammich

January 30, 2009

Abstract

Dynamic Pushdown Networks (DPNs) are a model for concurrent programs with recursive procedures and thread creation. We formalize a true-concurrency semantics for DPNs. Executions of this semantics have a tree structure. We show the relation of our semantics to the original interleavings semantics. We then show how to compute predecessor sets of regular sets of configurations w.r.t. tree-regular constraints on the execution.

Acquisition histories have been introduced by Kahlon et al. to model-check parallel pushdown systems with well-nested locks, but without thread creation. We generalize acquisistion histories to be used with DPNs. For this purpose, our tree-based semantics can be naturally applied. Moreover, the generalized acquisition histories enable us to characterize the (tree-based) executions that have a schedule that is valid w.r.t. locks, thus obtaining an algorithm to compute locksensitive predecessor sets.

Contents

1 Introduction 3
2 Labeled transition systems 5
2.1 Definitions 6
2.2 Basic properties of transitive reflexive closure 6
2.2.1 Appending of elements to paths 7
2.2.2 Transitivity reasoning setup 8
2.2.3 Monotonicity 8
2.2.4 Special lemmas for reasoning about states that are pairs 8
2.2.5 Invariants 8
3 Dynamic Pushdown Networks 9
3.1 Model Definition 9
4 Semantics 9
4.1 Interleaving Semantics 9
4.2 Tree Semantics 10
4.2.1 Scheduler 14
5 Predecessor Sets 19
5.1 Hedge-Constrained Predecessor Sets 19
6 DPN Semantics on Lists 22
6.1 Definitions 22
6.2 Theorems 23
6.2.1 Representation of Single Processes 23
6.2.2 Representation of Configurations 24
6.2.3 Step Relation on List-Configurations 28
6.3 Predecessor Sets on List-Semantics 30
7 Automata for Execution Hedges 31
8 Computation of Hedge-Constrained Predecessor Sets 32
8.1 Correctness of Reduction 34
8.2 Effectiveness of Reduction 38
8.2.1 Definitions 39
8.2.2 Theorems 40
8.3 What Does This Proof Tell You? 45
9 DPNs With Locks 45
9.1 Model 46
9.2 Interleaving Semantics 46
9.3 Tree Semantics 47
9.4 Equivalence of Interleaving and Tree Semantics 48
10 Well-Nestedness of Locks 50
10.1 Well-Nestedness Condition on Paths 51
10.2 Well-Nestedness of Configurations 53
10.2.1 Auxilliary Lemmas about wn-c 53
10.3 Well-Nestedness Condition on Trees 58
10.4 Well-Nestedness of Hedges 59
10.4.1 Auxilliary Lemmas about wn-h 59
10.4.2 Relation to Path Condition 61
10.5 Well-Nestedness and Tree Scheduling 66
11 Acquisition Structures 69
11.1 Utilities 69
11.1.1 Combinators for option-datatype 69
11.2 Acquisition Structures 70
11.2.1 Parallel Composition 70
11.2.2 Acquisition Structures of Scheduling Trees and Hedges 71
11.3 Consistency of Acquisition Structures 74
11.3.1 Minimal Elements 79
11.3.2 Well-Nestedness and Acquisition Structures 81
11.4 Soundness of the Consistency Condition 85
11.5 Precision of the Consistency Condition 88
11.5.1 Custom Size Function 88
12 DPNs with Initial Configuration 110
12.1 DPNs with Initial Configuration 110
12.1.1 Reachable Configurations 111
13 Property Specifications 111
13.1 Specification Formulas 112
13.2 Semantics 112
13.3 Examples 112
13.3.1 Conflict analysis 113
13.3.2 Bitvector analysis 113
14 Hedge Constraints for Acquisition Histories 114
14.1 Locks Encoded in Control State 114
14.2 Characterizing Schedulable Execution Hedges 118
14.3 Checking Specifications Using prehc $\Delta H l s$ 120
15 Monitors (aka Block-Structured Locks) 123
15.1 Non-Trivial Instance of a Well-Nested DPN 128
16 Conclusion 130
16.1 Trusted Code Base 131

1 Introduction

Writing parallel programs has become popular in the last decade. However, writing correct parallel programs is notoriously difficult, as there are many possibilities for concurrency related bugs. These are hard to find and hard to reproduce due to the nondeterministic behaviour of the scheduler. Hence there is a strong need for formal methods to verify parallel programs and help find concurrency related bugs. A formal model for parallel programs, that has been studied in the last few years, are dynamic pushdown networks (DPNs) [2], a generalization of pushdown systems, where a rule may have the additional side effect of creating a new process, that is then executed in parallel. Analysis of DPNs is usually done w.r.t. to an interleaving semantics, where an execution is a sequence of rule applications. The interleaving
semantics models the execution on a single processor, that performs one step at a time and may switch the currently executing process after every step. However, these interleaved executions do not have nice language theoretic properties, what makes them difficult to reason about. For example, it is undecidable whether there exists an execution with a given regular property. Moreover, executions of the interleaving semantics are not suited to track properties of specific processes, e.g. acquired locks.

In the first part of this formalization, we define a semantics that models an execution as a partially ordered set of steps, rather than a (totally ordered) sequence of steps. This partial ordering only reflects the ordering between steps of the same process and the causality due to process creation, i.e. steps of a created process must be executed after the step that created the process. However, it does not enforce any ordering between steps of processes running in parallel. The interleaved executions can be interpreted as topological sorts of the partial ordering. For executions of DPNs the partial ordering has a tree shape, where thread creation steps have at most two successors and pushdown steps have at most one successor. We formally define these executions as list of trees (called execution hedges).

The key concept of model-checking DPNs is to compute the set of predecessor configurations of a set of configurations. Configurations of DPNs are represented as words over control- and stack- symbols, and for a regular set of configurations, the set of predecessor configurations is regular as well and can be computed efficiently [2]. Predecessor computations can be used for various interesting analysis, like kill/gen analysis on bitvectors [2] and context-bounded model checking [1]. Our approach extends the predecessor computation by additionally allowing tree-regular constraints on the executions. The counterpart for the interleaving semantics, i.e. predecessor computations with (word-)regular constraints on the interleaved executions, is not effective.

In the second part of this formalization, we extend DPNs by adding mutual exclusion via well-nested locks. Locks are a commonly used synchronization primitive to manage shared resources between processes. A process may acquire and release a lock, and, at any time, each lock may be owned by at most one process. If a process wants to acquire a lock already owned by another process, it has to wait until the lock is released. We assume that locks are used in a well-nested fashion, i.e. a process has to release locks in the reversed order of acquisition. Note that in practice locks are commonly used in a well-nested fashion, e.g. the synchronized-blocks of Java guarantee well-nested lock usage. Also note that for non-well-nested locks, even simple reachability problems are undecidable [4]. Parallel pushdown processes with well-nested locks have been analyzed using acquisition histories $[4,3]$. We generalize this technique to DPNs. Our generalization is non-trivial, as the original technique is defined for a model where only two parallel processes that both exist at the beginning of the execution need to
be considered, while we have a model with unboundedly many processes that may be created at any point of the execution. The generalized acquisition histories allow us to characterize the executions, that are consistent w.r.t. lock usage, by a tree-regular set. Applying the results from the first part of this paper yields an algorithm for computing lock-sensitive predecessor sets with tree-regular constraints.

This formalization accompanies a paper that is currently in preparation. Thus the proofs in this work partially depend on unpublished results that are currently in the process of submission. The following are the most notable results proven in this formalization:

- We present a tree-based view on DPN executions, and an efficient predecessor computation with tree-regular constraints.
- We generalize the concept of acquisition histories to programs with process creation.
- We characterize lock-sensitive executions by tree-regular constraints, thus obtaining an algorithm for computing lock-sensitive predecessor sets.

However, this formalization also has its limits. In particular, it does not include:

- A formalization of operations on automata or tree automata, that would allow to generate executable code.
- A formalization of the saturation algorithm for computing predecessor sets of DPNs [2] - another prerequisite for generating executable code. We have an unpublished formalization of this saturation algorithm, that we will adapt to the latest version of Isabelle and publish in near future.
- Due to the first two limitations, we cannot give a formal proof that shows that our methods are, indeed, executable. However, we prove some lemmas that give strong evidence that our methods are effective and could be implemented in principle.

2 Labeled transition systems

```
theory LTS
imports Main
begin
```

Labeled transition systems (LTS) provide a model of a state transition system with named transitions.

2.1 Definitions

An LTS is modeled as a ternary relation between start configuration, transition label and end configuration

```
types ('c,'a) LTS = ('c }\times\mp@subsup{}{}{\prime}a\times\mp@subsup{}{}{\prime}c)\mathrm{ set
    Transitive reflexive closure
inductive-set
    trcl :: ('c,'a) LTS => ('c,'a list) LTS
    for }
    where
    empty[simp]:(c,[],c)\intrcl t
    | cons[simp]:\llbracket(c,a,\mp@subsup{c}{}{\prime})\int;(\mp@subsup{c}{}{\prime},w,\mp@subsup{c}{}{\prime\prime})\in\operatorname{trcl}t\rrbracket\Longrightarrow(c,a#w,\mp@subsup{c}{}{\prime\prime})\in\operatorname{trcl}t
```


2.2 Basic properties of transitive reflexive closure

lemma trcl-empty-cons: $\left(c,[], c^{\prime}\right) \in \operatorname{trcl} t \Longrightarrow\left(c=c^{\prime}\right)$
by (auto elim: trcl.cases)
lemma trcl-empty-simp $[$ simp $]:\left(c,[], c^{\prime}\right) \in$ trcl $t=\left(c=c^{\prime}\right)$
by (auto elim: trcl.cases intro: trcl.intros)
lemma trcl-single $[$ simp $]:\left(\left(c,[a], c^{\prime}\right) \in \operatorname{trcl} t\right)=\left(\left(c, a, c^{\prime}\right) \in t\right)$
by (auto elim: trcl.cases)
lemma trcl-uncons: $\left(c, a \# w, c^{\prime}\right) \in \operatorname{trcl} t \Longrightarrow \exists c h .(c, a, c h) \in t \wedge\left(c h, w, c^{\prime}\right) \in \operatorname{trcl} t$
by (auto elim: trcl.cases)
lemma trcl-uncons-cases: 【
$\left(c, e \# w, c^{\prime}\right) \in \operatorname{trcl} S$;
$!!c h . \llbracket(c, e, c h) \in S ;\left(c h, w, c^{\prime}\right) \in \operatorname{trcl} S \rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
by (blast dest: trcl-uncons)
lemma trcl-one-elem: $\left(c, e, c^{\prime}\right) \in t \Longrightarrow\left(c,[e], c^{\prime}\right) \in \operatorname{trcl} t$
by auto
lemma trcl-unconsE[cases set, case-names split]: 【
$\left(c, e \# w, c^{\prime}\right) \in \operatorname{trcl} S$;
$!!c h . \llbracket(c, e, c h) \in S ;\left(c h, w, c^{\prime}\right) \in t r c l S \rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
by (blast dest: trcl-uncons)
lemma trcl-pair-unconsE[cases set, case-names split]: [
$\left((s, c), e \# w,\left(s^{\prime}, c^{\prime}\right)\right) \in \operatorname{trcl} S$;
$!!s h c h . \llbracket((s, c), e,(s h, c h)) \in S ;\left((s h, c h), w,\left(s^{\prime}, c^{\prime}\right)\right) \in \operatorname{trcl} S \rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
by (fast dest: trcl-uncons)
lemma trcl-concat: !! c. $\llbracket\left(c, w 1, c^{\prime}\right) \in \operatorname{trcl} t ;\left(c^{\prime}, w 2, c^{\prime \prime}\right) \in \operatorname{trcl} t \rrbracket$
$\Longrightarrow\left(c, w 1 @ w 2, c^{\prime \prime}\right) \in \operatorname{trcl} t$
proof (induct w1)
case Nil thus ?case by (subgoal-tac $c=c^{\prime}$) auto
next

```
    case (Cons a w) thus ?case by (auto dest: trcl-uncons)
qed
lemma trcl-unconcat: !! c. (c,w1@w2, c')\intrcl t
    \exists ch. (c,w1,ch)\intrcl t ^ (ch,w\mathcal{L},\mp@subsup{c}{}{\prime})\in\operatorname{trcl}t
proof (induct w1)
    case Nil hence (c,[],c)\intrcl t ^ (c,w2,c')\intrcl t by auto
    thus?case by fast
next
    case (Cons a w1) note IHP = this
    hence (c,a#(w1@w2), c')\intrcl t by simp
    with trcl-uncons obtain chh where (c,a,chh)\int ^(chh,w1@w2, c')\intrcl t by
fast
    moreover with IHP obtain ch where (chh,w1,ch)\intrcl t ^ (ch,w2, c')\intrcl t
by fast
    ultimately have (c,a#w1,ch)\intrcl t ^ (ch,w2, c')\intrcl t by auto
    thus ?case by fast
qed
```


2．2．1 Appending of elements to paths

```
lemma trcl-rev-cons: \(\llbracket(c, w, c h) \in \operatorname{trcl} T ;\left(c h, e, c^{\prime}\right) \in T \rrbracket \Longrightarrow\left(c, w @[e], c^{\prime}\right) \in \operatorname{trcl} T\)
    by (auto dest: trcl-concat iff add: trcl-single)
lemma trcl-rev-uncons: ( \(\left.c, w @[e], c^{\prime}\right) \in \operatorname{trcl} T\)
    \(\Longrightarrow \exists\) ch. \((c, w, c h) \in \operatorname{trcl} T \wedge\left(c h, e, c^{\prime}\right) \in T\)
    by (force dest: trcl-unconcat)
lemma trcl-rev-uncons-cases: 【
        \(\left(c, w @[e], c^{\prime}\right) \in \operatorname{trcl} T ;\)
        \(!!c h . \llbracket(c, w\), ch \() \in\) trcl \(T ;\left(c h, e, c^{\prime}\right) \in T \rrbracket \Longrightarrow P\)
    \(\rrbracket \Longrightarrow P\)
    by (blast dest: trcl-rev-uncons)
lemma trcl-rev-induct[induct set, consumes 1, case-names empty snoc]: !! c'. 【
        \(\left(c, w, c^{\prime}\right) \in \operatorname{trcl} S ;\)
        !!c. P c [] c;
        \(!!c w c^{\prime} e c^{\prime \prime} . \llbracket\left(c, w, c^{\prime}\right) \in \operatorname{trcl} S ;\left(c^{\prime}, e, c^{\prime \prime}\right) \in S ; P c w c^{\prime} \rrbracket \Longrightarrow P c(w @[e]) c^{\prime \prime}\)
    \(\rrbracket \Longrightarrow P c w c^{\prime}\)
    by (induct \(w\) rule: rev-induct) (auto dest: trcl-rev-uncons)
lemma trcl-rev-cases: !!c c \(c^{\prime}\).【
        \(\left(c, w, c^{\prime}\right) \in \operatorname{trcl} S\);
        \(\llbracket w=[] ; c=c \rrbracket \Longrightarrow P\);
        \(!!c h\) e wh. \(\llbracket w=w h @[e] ;(c, w h, c h) \in \operatorname{trcl} S ;\left(c h, e, c^{\prime}\right) \in S \rrbracket \Longrightarrow P\)
    \(\rrbracket \Longrightarrow P\)
    by (induct \(w\) rule: rev-induct) (simp, blast dest: trcl-rev-uncons)
```

lemma trcl-cons2: $\llbracket(c, e, c h) \in T ;\left(c h, f, c^{\prime}\right) \in T \rrbracket \Longrightarrow\left(c,[e, f], c^{\prime}\right) \in \operatorname{trcl} T$
by auto

2.2.2 Transitivity reasoning setup

declare trcl-cons2[trans] - It's important that this is declared before trcl-concat, because we want trcl-concat to be tried first by the transitivity reasoner
declare cons[trans]
declare trcl-concat[trans]
declare trcl-rev-cons[trans]

2.2.3 Monotonicity

```
lemma trcl-mono: !! \(A B . A \subseteq B \Longrightarrow \operatorname{trcl} A \subseteq \operatorname{trcl} B\)
    apply (clarsimp)
    apply (erule trcl.induct)
    apply auto
done
lemma trcl-inter-mono: \(x \in \operatorname{trcl}(S \cap R) \Longrightarrow x \in \operatorname{trcl} S \quad x \in \operatorname{trcl}(S \cap R) \Longrightarrow x \in \operatorname{trcl} R\)
proof -
    assume \(x \in \operatorname{trcl}(S \cap R)\)
    with trcl-mono[of \(S \cap R S\) ] show \(x \in \operatorname{trcl} S\) by auto
next
    assume \(x \in \operatorname{trcl}(S \cap R)\)
    with trcl-mono \([\) of \(S \cap R R\) ] show \(x \in \operatorname{trcl} R\) by auto
qed
```


2.2.4 Special lemmas for reasoning about states that are pairs

lemmas trcl-pair-induct $=$ trcl.induct $[o f(x c 1, x c \mathcal{Z}) \quad x b \quad(x a 1, x a 2)$, consumes 1 , split-format (complete), case-names empty cons]
lemmas trcl-rev-pair-induct $=$ trcl-rev-induct[of $(x c 1, x c 2) \quad x b \quad(x a 1, x a 2)$, consumes 1, split-format (complete), case-names empty snoc]

2.2.5 Invariants

lemma trcl-prop-trans[cases set, consumes 1, case-names empty steps]: \llbracket
$\left(c, w, c^{\prime}\right) \in \operatorname{trcl} S$;
$\llbracket c=c^{\prime} ; w=[] \rrbracket \Longrightarrow P$;
$\llbracket c \in$ Domain $S ; c^{\prime} \in$ Range (Range S) $\Longrightarrow P$
$\rrbracket \Longrightarrow P$
apply (erule-tac trcl-rev-cases)
apply auto
apply (erule trcl.cases)
apply auto
done
end

3 Dynamic Pushdown Networks

theory $D P N$

imports Main common/LTS
begin declare predicate $2 I[H O L . r u l e ~ d e l, ~ P u r e . r u l e ~ d e l] ~$

3.1 Model Definition

A Dynamic Pushdown Network (DPN) [2] is a system of pushdown rules over states from ${ }^{\prime} Q$ and stack symbols from ${ }^{\prime} \Gamma$, where each pushdown rule may spawn additional processes. Rules are labeled by elements of type ' L

```
datatype ( \({ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L\) ) pushdown-rule \(=\)
```



```
    SPAWN 'P \(\Gamma\) 'L 'P \(\Gamma\) list \({ }^{\prime} P \quad\) ' list \((\quad-,-\hookrightarrow--,-\sharp-,-51)\)
notation NOSPAWN (-,- ↔- -,- 51)
notation SPAWN (-,- ↔--,- \#-,- 51)
types \(\left({ }^{\prime} Q,{ }^{\prime} \Gamma,{ }^{\prime} L\right)\) dpn \(=\left({ }^{\prime} Q,{ }^{\prime} \Gamma,{ }^{\prime} L\right)\) pushdown-rule set
```

We fix the finiteness assumption of the set of rules in a locale. Note that we do not assume the base types of states, stack symbols, or labels to be finite. However, the finiteness assumption of the set of rules implies that the sets of used control states, stack symbols, and labels are finite.

```
locale DPN =
    fixes }\Delta::('Q,'\Gamma,'L)dp
    assumes ruleset-finite[simp, intro!]: finite }
```

end

4 Semantics

theory Semantics
imports DPN RegSet-add
begin
In this theory, we define an interleaving and a tree-based semantics of DPNs. We show the equivalence of the two semantics.

4.1 Interleaving Semantics

The interleaving semantics models the execution of a DPN on a single processor, that makes one step at a time, and may switch the currently executed process after each step. This is the original semantics of DPNs [2].

The interleaving semantics is formalized by means of a labeled transition system. A single process is modeled as a pair of its control state and its stack.

A configuration of the DPN is modeled as a list of processes. Note that we use lists of processes here, rather than multisets, to enable representation of configurations as regular sets, as required by the algorithms of [2].

types

$\left({ }^{\prime} Q, \Gamma\right) p c o n f={ }^{\prime} Q \times \top$ list
$(' Q, \top) \operatorname{conf}=(' Q, \top)$ pconf list
The (single-) step relation dpntr of the interleavings semantics is defined as the least solution of the following constraints:

inductive-set dpntr :: ('Q, $\left.\Gamma,{ }^{\prime} L\right) d p n \Rightarrow\left((' Q, \top) \operatorname{conf} \times{ }^{\prime} L \times\left({ }^{\prime} Q, \top\right)\right.$ conf $)$ set

 for Δ where- A non-spawning step modifies a single pushdown process according to a nonspawning rule in the DPN:
dpntr-no-spawn:
$\left(p, \gamma \hookrightarrow_{l} p^{\prime}, w\right) \in \Delta \Longrightarrow$
$\left(c 1 @(p, \gamma \# r) \# c 2, l, c 1 @\left(p^{\prime}, w @ r\right) \# c 2\right) \in d p n t r \Delta \mid$
- A spawning step modifies a pushdown process according to a spawning rule in the DPN and adds the spawned process immediately before the spawning process:
dpntr-spawn:
$\left(p, \gamma \hookrightarrow_{l} p s, w s \sharp p^{\prime}, w\right) \in \Delta \Longrightarrow$

$$
\left(c 1 @(p, \gamma \# r) \# c \mathcal{2}, l, c 1 @(p s, w s) \#\left(p^{\prime}, w @ r\right) \# c \mathcal{Z}\right) \in \operatorname{dpntr} \Delta
$$

We denote the reflexive, transitive closure of the single-step relation by dpntrc:
abbreviation dpntrc $M==\operatorname{trcl}($ dpntr $M)$

4.2 Tree Semantics

Now we regard a true concurrency semantics, where an execution does not contain the interleaving between independent steps. When starting at a single process, we model such an execution as a tree, where each node corresponds to an applied step. A node corresponding to a non-spawning step has one successor, a node corresponding to a spawning step has two successors. We annotate the leafs of the tree by the configuration of the reached process.

When starting at a configuration consisting of (a list of) multiple processes, we model the execution as a list of multiple execution trees, one for each process.

```
datatype ('Q,'\Gamma,'L) ex-tree =
    NLEAF ('Q,'\Gamma) pconf |
    NNOSPAWN 'L ('Q,'\Gamma,'L) ex-tree \
    NSPAWN 'L ('Q,'\Gamma,'L) ex-tree ('Q,'\Gamma,'L) ex-tree
types ('Q,'\Gamma,'L) ex-hedge = ('Q,'\Gamma,'L) ex-tree list
inductive tsem
```

```
\(::\left({ }^{\prime} Q,{ }^{\prime} \Gamma,{ }^{\prime} L\right) d p n \Rightarrow\left({ }^{\prime} Q, \Gamma\right)\) pconf \(\Rightarrow\left({ }^{\prime} Q,{ }^{\prime} \Gamma,{ }^{\prime} L\right)\) ex-tree \(\Rightarrow\left({ }^{\prime} Q,{ }^{\prime} \Gamma\right)\) conf \(\Rightarrow\) bool
for \(\Delta\) where
tsem-leaf[simp, intro!]:
    tsem \(\Delta p w(N L E A F p w)[p w] \mid\)
tsem-nospawn:
    \(\llbracket\left(p, \gamma \hookrightarrow_{l} p^{\prime}, w\right) \in \Delta ; \operatorname{tsem} \Delta\left(p^{\prime}, w @ r\right) t c^{\prime} \rrbracket \Longrightarrow\)
        tsem \(\Delta(p, \gamma \# r)(N N O S P A W N l t) c^{\prime} \mid\)
tsem-spawn:
    \(\llbracket\left(p, \gamma \hookrightarrow_{l} p s, w s \sharp p^{\prime}, w\right) \in \Delta ;\) tsem \(\Delta(p s, w s)\) ts cs; tsem \(\Delta\left(p^{\prime}, w @ r\right) t c^{\prime} \rrbracket \Longrightarrow\)
        tsem \(\Delta(p, \gamma \# r)(N S P A W N ~ l t s t)\left(c s @ c c^{\prime}\right)\)
```


inductive hsem

$::\left({ }^{\prime} Q, \Gamma, ' L\right) d p n \Rightarrow\left({ }^{\prime} Q, \Gamma\right)$ conf $\Rightarrow\left({ }^{\prime} Q, \Gamma,{ }^{\prime} L\right)$ ex-hedge $\Rightarrow\left({ }^{\prime} Q, \Gamma\right)$ conf \Rightarrow bool for Δ where
hsem-empty[simp, intro!](final-t): hsem Δ [] [] [] |
$h s e m-c o n s: \llbracket t s e m \Delta \pi t c f^{\prime} ; h s e m \Delta c h c^{\prime} \rrbracket \Longrightarrow h s e m \Delta(\pi \# c)(t \# h)\left(c f^{\prime} @ c^{\prime}\right)$
In the following we show some basic facts about the tsem- and hsemrelations.
lemma hsem-empty-h[simp]:
$h s e m \Delta c[] c^{\prime} \longleftrightarrow c=[] \wedge c^{\prime}=[]$
by (auto elim: hsem.cases intro: hsem.intros)
lemma hsem-length: hsem $\Delta c h c^{\prime} \Longrightarrow$ length $c=$ length h
by (induct rule: hsem.induct) auto
The hedges and configurations of the hedge semantics can be concatenated.
lemmas hsem-cons-single $=h$ sem-cons $\left[\right.$ where $c f^{\prime}=[\pi \eta$, simplified, standard $]$
lemma hsem-conc: 【hsem $\Delta c 1 h 1 c 1^{\prime} ; h s e m \Delta c 2 h 2 c 2 \rrbracket \Longrightarrow$ hsem $\Delta(c 1 @ c 2)(h 1 @ h 2)\left(c 1^{\prime} @ c \mathcal{Z}^{\prime}\right)$
by (induct c1 h1 c1' rule: hsem.induct) (auto intro: hsem-cons)
lemmas hsem-conc-lel $=$ hsem-conc[OF - hsem-cons]
lemmas hsem-conc-leel $=$ hsem-conc[OF - hsem-cons[OF -hsem-cons]]
lemma tsem-not-empty[simp]: \neg tsem $\Delta \pi t[]$
by (induct t arbitrary: π) (auto elim: tsem.cases)
lemma hsem-empty-simps1[simp]:
hsem $\Delta[] h c^{\prime} \longleftrightarrow\left(h=[] \wedge c^{\prime}=[]\right)$
hsem $\Delta c h[] \longleftrightarrow(c=[] \wedge h=[])$
by (auto elim: hsem.cases)
lemma hsem-id[simp, intro!](final-t): hsem $\Delta c(m a p$ NLEAF $c) c$
by (induct c) (auto intro: hsem-cons-single)
lemmas hsem-id'[simp, intro!](final-t) = hsem-id[of- $\pi \# c$, simplified, standard]
Given a partition of the starting configuration, we can construct a cor-
responding partition of the hedge and the final configuration．

lemma hsem－split＇：

$$
\begin{aligned}
\llbracket h s e m \Delta(c 1 @ c \mathcal{L}) h c \rrbracket & \Longrightarrow \exists h 1 h 2 c 1^{\prime} c \mathcal{R}^{\prime} . \\
& h=h 1 @ h \mathcal{2} \wedge c^{\prime}=c 1^{\prime} @ c \mathcal{R}^{\prime} \wedge \\
& h s e m \Delta c 1 h 1 c 1^{\prime} \wedge h s e m \Delta c \mathcal{Z} h 2 c \mathcal{R}^{\prime}
\end{aligned}
$$

proof（induct c1 arbitrary：c2 $h c^{\prime}$ ）
case Nil hence $h=[] @ h \quad c^{\prime}=[] @ c^{\prime} \quad h s e m \Delta \quad[][][] \quad h s e m \Delta c 2 h c^{\prime}$ by（auto intro：hsem．intros）
with Nil show ？case by blast
next
case（Cons p c1）
from Cons．prems［simplified］show ？case
proof（cases rule：hsem．cases）
case hsem－empty hence False by simp thus ？thesis ．．
next
case（hsem－cons pxtct＇chxcx）
hence $C C$ ：$h=t \# h x \quad t s e m \Delta p t c t^{\prime} \quad h s e m \Delta(c 1 @ c 2) h x c x^{\prime} \quad c^{\prime}=c t^{\prime} @ c x^{\prime}$ by simp－all
from Cons．hyps［OF CC（3）］obtain h1 h2 c1＇$c 2^{\prime}$ where IHAPP：hx＝h1＠h2 cx＇＝c1＇＠c2＇hsem $\Delta c 1 h 1 c 1 ' \quad h s e m \Delta c 2 h 2 c 2^{\prime}$ by blast
have $h=(t \# h 1) @ h 2 \quad c^{\prime}=\left(c t^{\prime} @ c 1^{\prime}\right) @ c \mathcal{Q}^{\prime}$ using $C C$ IHAPP by simp－all
with hsem．intros（2）［OF CC（2）IHAPP（3）］IHAPP（4）show ？thesis by blast qed
qed
lemma hsem－split［consumes 1］：【hsem $\Delta(c 1 @ c \mathcal{L}) h c^{\prime}$ ；
！！h1 h2 c1＇$c 2^{\prime}$ ． $\llbracket h=h 1 @ h 2 ; c^{\prime}=c 1^{\prime} @ c$ 2 $^{\prime} ; h s e m \Delta c 1$ h1 $c 1^{\prime} ; h s e m \Delta c 2 h 2 c 2 \rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
by（blast dest：hsem－split＇）
lemma hsem－single：
$\llbracket h s e m \Delta[\pi] h c^{\prime} ;!!t . \llbracket h=[t] ;$ tsem $\Delta \pi t c^{\prime} \rrbracket \Longrightarrow P \rrbracket \Longrightarrow P$
by（auto intro：hsem．intros elim！：hsem．cases）
lemma hsem－split－single［consumes 1］：【hsem $\Delta(\pi \# c 2) h c^{\prime} ;$
！！t1 h2 c1＇c2＇．
$\llbracket h=t 1 \# h 2 ; c^{\prime}=c 1^{\prime} @ c \mathcal{Z}^{\prime} ;$ tsem $\Delta \pi t 1 c 1^{\prime} ; h s e m \Delta c 2 h 2 c 2 \rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
by（fastsimp elim：hsem－split $[$ where ？$c 1.0=[\pi]$ ，simplified $]$ hsem－single）
lemma hsem－lel：【hsem $\Delta(c 1 @ \pi \# c 2) h c^{\prime}$ ；
！！$h 1 t h 2 c 1^{\prime} c t^{\prime} c 2^{\prime}$ ．
$h=h 1 @ t \# h 2 ; c^{\prime}=c 1^{\prime} @ c t^{\prime} @ c$ 2 $^{\prime} ;$
hsem $\Delta c 1$ h1 c1＇；tsem $\Delta \pi t c t^{\prime} ; h s e m \Delta c 2 h 2 c 2^{\prime}$
$\rrbracket \Longrightarrow P$

$\rrbracket \Longrightarrow P$

by (fastsimp elim: hsem-split hsem-split-single)
Given a partition of the hedge, we can construct a corresponding partition of the initial and final configuration.

```
lemma hsem-split-h': \(\llbracket h s e m \Delta c(h 1 @ h 2) c \rrbracket \Longrightarrow\)
    \(\exists c 1 c 2 c 1^{\prime} c 2^{\prime} . c=c 1 @ c 2 \wedge c^{\prime}=c 1^{\prime} @ c 2^{\prime} \wedge\)
                hsem \(\Delta c 1 h 1 c 1^{\prime} \wedge\) hsem \(\Delta c 2 h 2 c 2^{\prime}\)
proof (induct h1 arbitrary: h2 c c \({ }^{\prime}\) )
    case Nil hence \(c=[] @ c \quad c^{\prime}=[] @ c^{\prime} \quad\) hsem \(\Delta[][]\left[\right.\) hsem \(\Delta c h 2 c^{\prime}\)
        by (auto intro: hsem.intros)
    with Nil show? ?ase by blast
next
    case (Cons th1)
    from Cons.prems[simplified] show ?case proof (cases rule: hsem.cases)
        case hsem-empty hence False by simp thus? thesis ..
    next
        case (hsem-cons p tx ct' cx hx cx')
        hence \(C C: c=p \# c x \quad t s e m \Delta p t c t^{\prime} \quad h s e m \Delta c x(h 1 @ h 2) c x^{\prime} \quad c^{\prime}=c t^{\prime} @ c x^{\prime}\)
            by simp-all
    from Cons.hyps \([O F C C(3)]\) obtain \(c 1 c 2 c 1^{\prime} c 2^{\prime}\) where
                IHAPP: cx=c1@c2 cx'=c1 @c2' hsem \(\Delta c 1 h 1 c 1^{\prime} \quad h s e m \Delta c 2 h 2\)
c2'
        by blast
        have \(c=(p \# c 1) @ c 2 \quad c^{\prime}=\left(c t^{\prime} @ c 1^{\prime}\right) @ c 2^{\prime}\) using CC IHAPP by simp-all
        with hsem.intros(2)[OF CC(2), OF IHAPP(3)] IHAPP(4) show?thesis
            by blast
    qed
qed
lemma hsem-split-h:
    [ hsem \(\Delta c(h 1 @ h 2) c^{\prime}\);
        !!c1 c2 c1' \({ }^{\prime} 2^{\prime}\).
            \(\llbracket c=c 1 @ c 2 ; c^{\prime}=c 1\) @ \({ }^{\prime}\) 2'; hsem \(\Delta c 1\) h1 \(c 1\) '; hsem \(\Delta c 2 h 2 c 2 \rrbracket \Longrightarrow P\)
    \(\rrbracket \Longrightarrow P\)
    by (blast dest: hsem-split-h')
lemma hsem-single-h:
    【hsem \(\Delta c[t] c^{\prime} ;!!p . \llbracket c=[p] ;\) tsem \(\Delta p t c^{\prime} \rrbracket \Longrightarrow P \rrbracket \Longrightarrow P\)
    by (force intro: hsem.intros elim!: hsem.cases)
lemmas \(h\) sem-split-h-single \(=\) hsem-split-h \([\) where \(? ~ ? ~ h 1.0=[t]\), simplified, standard \(]\)
lemma hsem-lel-h: \(\llbracket\) hsem \(\Delta c(h 1 @ t \# h 2) c^{\prime} ;\)
    !!c1 p c2 c1' ct' \(c 2^{\prime}\). 【
        \(c=c 1 @ p \# c 2 ; c^{\prime}=c 1^{\prime} @ c t^{\prime} @ c 2^{\prime} ;\)
        hsem \(\Delta c 1 h 1 c 1^{\prime} ;\) tsem \(\Delta p t c t^{\prime} ; ~ h s e m \Delta c 2 h 2 c 2^{\prime}\)
    \(\rrbracket \Longrightarrow P\)
```

$$
\begin{aligned}
& \rrbracket \Longrightarrow P \\
& \text { by (fastsimp elim!: hsem-split-h hsem-split-h-single hsem-single-h) }
\end{aligned}
$$

4.2.1 Scheduler

The scheduler maps execution hedges to compatible label sequences. This is done by eating up the given hedge from the roots to the leafs, until all non-leaf nodes have been consumed. From an ordering point of view, the hedge represents a partial ordering on the steps, and the scheduler maps this ordering to the set of all its topological sorts.

An execution hedge is called final if it solely consists of leaf nodes.

inductive final- t where

lemma [simp, intro!](final-t):
\neg final-t (NNOSPAWN l t)
\neg final-t (NSPAWN l ts t)
by (auto elim: final-t.cases)
abbreviation final $==$ list-all final- t
Final execution hedges contain no steps, hence they do not change the configuration.
lemma final-tsem-nostep: \llbracket final-t t; tsem $\Delta p w t c^{\prime} \rrbracket \Longrightarrow c^{\prime}=[p w]$
by (cases t) (auto elim: tsem.cases)
lemma final-hsem-nostep: \llbracket final h; hsem $\Delta c h c^{\rrbracket} \rrbracket \Longrightarrow c^{\prime}=c$
apply (rotate-tac)
apply (induct rule: hsem.induct)
apply (auto intro: final-tsem-nostep)
done
As described above, the scheduler eats up the execution hedge from the roots to the leafs, until there are no inner nodes remaining, i.e. the hedge is final.
inductive sched :: ('Q,' $\left.\Gamma,{ }^{\prime} L\right)$ ex-hedge $\Rightarrow{ }^{\prime} L$ list \Rightarrow bool where
sched-final: final $h \Longrightarrow$ sched $h[] \mid$
sched-nospawn:
sched (h1@t\#h2) $w \Longrightarrow$ sched (h1@(NNOSPAWN l t)\#h2) (l\#w)|
sched-spawn:
sched (h1@ts\#t\#h2) $w \Longrightarrow$ sched $(h 1 @(N S P A W N l t s t) \# h 2)(l \# w)$
inductive-set sched-rel :: (('Q,'T,'L) ex-hedge, 'L) LTS where sched-rel-nospawn: ((h1@(NNOSPAWN l t)\#h2),l,h1@t\#h2) l sched-rel | sched-rel-spawn: ((h1@(NSPAWN l ts t)\#h2),l,(h1@ts\#t\#h2)) l sched-rel
definition sched ${ }^{\prime} h l l==\left(\exists h^{\prime} .\left(h, l l, h^{\prime}\right) \in\right.$ trcl sched-rel \wedge final $\left.h^{\prime}\right)$

```
lemma sched-alt1: sched h ll \Longrightarrow sched'h ll
    by (unfold sched'-def, induct rule: sched.induct)
        (auto intro: trcl.intros sched-rel.intros)
lemma sched-rel-alt2: \llbracket(h,ll,h')\intrcl sched-rel; final h` \Longrightarrow sched h ll
    by (induct rule: trcl.induct) (auto intro: sched.intros elim: sched-rel.cases)
lemma sched-alt: sched' h ll \longleftrightarrow sched h ll
    by (unfold sched'-def, auto intro: sched-alt1[unfolded sched'-def] sched-rel-alt2)
```

We now show some basic facts about the scheduler.
lemma sched-empty-seq[simp]: sched $h[] \longleftrightarrow$ final h
by (auto intro: sched-final elim: sched.cases)
lemma sched-empty-hedge[simp]: sched []$l l \longleftrightarrow l l=[]$
by (auto intro: sched-final elim: sched.cases)
lemma sched-empty-empty[simp, intro!](final-t): sched [] [] by (auto intro: sched-final)
lemma sched-final-simp[simp]: final $h \Longrightarrow$ sched $h c \longleftrightarrow c=[]$
by (auto elim: sched.cases)
In the following few lemmas we derive an induction scheme that reasons about hedges in the way they are consumed by the scheduler

```
fun sched-ind-size where
    sched-ind-size (NLEAF \pi)=0 |
    sched-ind-size (NNOSPAWN l t) = Suc (sched-ind-size t)
    sched-ind-size (NSPAWN l ts t)=Suc(sched-ind-size ts + sched-ind-size t)
abbreviation sched-ind-sizeh h == listsum (map sched-ind-size h)
lemma sched-ind-h-cases[consumes 1, case-names NOSPAWN SPAWN]:
    | sched-ind-sizeh h>0;
        !!h1 l th2.h=h1@(NNOSPAWN l t)#h2 \LongrightarrowP;
        !!h1 ts t h2 l. h=h1@(NSPAWN l ts t)#h2 \LongrightarrowP
    \Longrightarrow P
proof (induct h)
    case Nil thus?case by auto
next
    case (Cons t h)
    show ?case proof (cases t)
        case (NLEAF \pi)
        with Cons.prems(1) have I:0< sched-ind-sizeh h by simp
        show ?thesis proof (rule Cons.hyps[OF I])
            fix h1 l tt h2
            assume h=h1 @ NNOSPAWN l tt # h2
            hence t#h=(t#h1)@ NNOSPAWN l tt # h2 by simp
            with Cons.prems(2) show ?thesis by blast
```

```
    next
            fix h1 ts tt h2 l
            assume h=h1 @ NSPAWN l ts tt # h2
            hence t#h=(t#h1)@ NSPAWN l ts tt # h2 by simp
            with Cons.prems(3) show ?thesis by blast
        qed
    next
        case (NNOSPAWN L tt)
        with Cons.prems(2)[of [], simplified] show ?thesis by auto
    next
        case (NSPAWN L ts tt)
        with Cons.prems(3)[of [], simplified] show ?thesis by auto
    qed
qed
lemma sched-ind-helper:
    \llbracket!!h. final h\LongrightarrowPh;
        !!h1 th2 l. P (h1@t#h2) \LongrightarrowP(h1@(NNOSPAWN l t)#h2);
        !!h1 ts t h2 l. P (h1@ts#t#h2) \LongrightarrowP(h1@(NSPAWN l ts t)#h2);
        sched-ind-sizeh h=k
    \ Ph
proof (induct k arbitrary: h)
    case 0 note C=this from C(4) have final h
        apply (induct h)
        apply simp
        apply (case-tac a)
        apply auto
        done
    with C(1) show ?case by blast
next
    case (Suc k) hence S: sched-ind-sizeh h>0 by simp
    thus ?case proof (cases rule: sched-ind-h-cases)
        case (NOSPAWN h1 l t h2)
        with Suc.prems(4) have I: sched-ind-sizeh (h1@t#h2) = k by simp
        with Suc.prems(1,2,3) NOSPAWN show ?thesis
        by (drule-tac Suc.hyps) blast+
    next
        case (SPAWN h1 ts t h2 l)
        with Suc.prems(4) have I: sched-ind-sizeh(h1@ts#t#h2) = k by simp
        with Suc.prems (1,2,3) SPAWN show ?thesis
        by (drule-tac Suc.hyps) blast+
    qed
qed
lemma sched-ind[case-names FINAL NOSPAWN SPAWN]:
    \llbracket!!h. final h\LongrightarrowPh;
        !!h1 t h2 l. P(h1@t#h2) \LongrightarrowP(h1@(NNOSPAWN l t)#h2);
        !!h1 ts th2 l. P(h1@ts#t#h2) \LongrightarrowP(h1@(NSPAWN l ts t)#h2)
    \Longrightarrow Ph
```


using sched-ind-helper by blast

Every tree/hedge has at least one schedule. From an ordering point of view, this is because hedge-structures are acyclic, and thus have always at least one topological sort. However, using the inductive definition of the scheduler, the proof of this lemma is by straightforward induction.

```
lemma exists-schedule: \(\llbracket!!l l\). sched \(h l l \Longrightarrow P \rrbracket \Longrightarrow P\)
    by (induct \(h\) rule: sched-ind) (auto intro: sched.intros)
```

Next, we want to show that the true concurrency semantics corresponds to the interleaving semantics. For this purpose, we show that we have an execution with labeling sequence $l l$ in the interleaving semantics if and only if there is an execution h in the true concurrency semantics that has $l l$ in its set of schedules.

The next two lemmas show the two directions of this claim.

```
lemma sched-correct1: \(\left(c, l l, c^{\prime}\right) \in d p n t r c \Delta \Longrightarrow \exists h . h s e m \Delta c h c^{\prime} \wedge\) sched \(h l l\)
proof (induct rule: trcl.induct)
    case (empty c) thus ?case by (induct c) (auto intro: hsem-cons-single)
next
    case (cons c lch ll c')
    from cons.hyps(3) obtain \(h\) where \(I H A P P: h s e m \Delta c h h c^{\prime} \quad\) sched \(h l l\) by
blast
    from cons.hyps(1) show ?case
    proof (cases)
        case (dpntr-no-spawn p \(\gamma\) la \(\left.p^{\prime} w c 1 r c 2\right)\)
        hence
            \(C-\operatorname{simp}[\operatorname{simp}]: c=c 1 @(p, \gamma \# r) \# c \mathcal{2} \quad c h=c 1 @\left(p^{\prime}, w @ r\right) \# c 2\) and
                \(C:\left(p, \gamma \hookrightarrow_{l} p^{\prime}, w\right) \in \Delta\)
        by auto
    from hsem-lel[OF IHAPP(1)[simplified]] obtain h1 th2 c1' ct' c2' where
                [simp]: \(h=h 1\) @ \(\# h 2 \quad c^{\prime}=c 1^{\prime} @ c t^{\prime} @ c 2^{\prime}\) and
            HSPLIT: hsem \(\Delta c 1 h 1 c 1^{\prime} \quad t s e m \Delta\left(p^{\prime}, w @ r\right) t c t^{\prime} \quad h s e m \Delta c 2 h 2 c 2^{\prime}\)
            from tsem-nospawn[OF C HSPLIT(2)] have
                ST: tsem \(\Delta(p, \gamma \# r)(N N O S P A W N l t) c t^{\prime}\).
    from hsem-conc-lel[OF HSPLIT(1) ST HSPLIT(3)] have
                hsem \(\Delta c(h 1 @ N N O S P A W N l t \# h 2) c^{\prime}\)
                by \(\operatorname{simp}\)
    moreover from sched-nospawn[OF IHAPP(2)[simplified]] have
                sched (h1 @ NNOSPAWN lt\#h2) (l\#ll).
    ultimately show ?thesis by blast
    next
        case (dpntr-spawn \(\left.p \gamma l a p s w s p^{\prime} w c 1 r c 2\right)\)
        hence
            [simp]: \(c=c 1 @(p, \gamma \# r) \# c 2\)
                            \(c h=c 1 @(p s, w s) \#\left(p^{\prime}, w @ r\right) \# c 2\) and
                \(C:\left(p, \gamma \hookrightarrow_{l} p s, w s \sharp p^{\prime}, w\right) \in \Delta\)
```

```
        by auto
    from IHAPP(1)[simplified] obtain h1 ts th2 c1' cs' ct' c2' where
        [simp]:h=h1@ ts #t # h2 c}\quad\mp@subsup{c}{}{\prime}=c\mp@subsup{1}{}{\prime}@c\mp@subsup{s}{}{\prime}@c\mp@subsup{t}{}{\prime}@c\mp@subsup{2}{}{\prime}\mathrm{ 'and
        HSPLIT: hsem \Delta c1 h1 c1' tsem \Delta (ps,ws) ts cs'
            tsem \Delta ( }\mp@subsup{p}{}{\prime},w@r)tc\mp@subsup{t}{}{\prime} hsem \Delta c2 h2 c2''
        by (fastsimp elim: hsem-split hsem-split-single)
    from tsem-spawn[OF C HSPLIT(2,3)] have
        ST: tsem \Delta (p,\gamma#r) (NSPAWN l ts t) (cs'@ct').
    from hsem-conc-lel[OF HSPLIT(1) ST HSPLIT(4)] have
        hsem \Delta c(h1 @ NSPAWN l ts t # h2) c' by simp
    moreover from sched-spawn[OF IHAPP(2)[simplified]] have
        sched (h1 @ NSPAWN l ts t # h2) (l#ll).
    ultimately show ?thesis by blast
    qed
qed
lemma sched-correct2: \llbracket sched hll; hsem \Delta ch c'\rrbracket\Longrightarrow(c,ll,c')\indpntrc \Delta
proof (induct h ll arbitrary: c c' rule: sched.induct)
    case (sched-final h c c') thus ?case by (auto dest: final-hsem-nostep)
next
    case (sched-nospawn h1 t h2 ll l c c')
    from hsem-lel-h[OF sched-nospawn.prems] obtain c1 p\gammarc2 c1' ct' c2' where
        [simp]: c=c1@ @ r # c2 c
        SPLIT: hsem \Delta c1 h1 c1'
                        tsem \Delta p\gammar (NNOSPAWN l t) ct'
                        hsem \Delta c2 h2 c2'
    from SPLIT(2) obtain p\gammar p'w where
        [simp]: p\gammar=(p,\gamma#r) and
        ST: (p,\gamma \hookrightarrowl p}\mp@subsup{p}{}{\prime},w)\in\Delta tsem \Delta ( p',w@r)tct'
    by (erule-tac tsem.cases) fastsimp+
    from dpntr-no-spawn[OF ST(1)] have (c,l,c1 @ ( }\mp@subsup{p}{}{\prime},w @ r) # c\mathcal{L})\indpntr \Delta
by auto
    also from sched-nospawn.hyps(2)[OF hsem-conc-lel[OF SPLIT(1) ST(2) SPLIT(3)]]
have
        SST:(c1@ ( p',w@ @)# c2, ll, c1' @ ct' @ c2') \indpntrc \Delta.
    finally show ?case by auto
next
    case (sched-spawn h1 ts t h2 ll l c c')
    from hsem-lel-h[OF sched-spawn.prems] obtain c1 p\gammarc2 c1' ct' cQ' where
        [simp]: c=c1@ @ r # c2 }\quad\mp@subsup{c}{}{\prime}=c\mp@subsup{1}{}{\prime}@c\mp@subsup{t}{}{\prime}@c\mp@subsup{2}{}{\prime}\mathrm{ and
            SPLIT: hsem \Delta c1 h1 c1'
                tsem \Delta p\gammar (NSPAWN l ts t) ct'
                                hsem \Delta c2 h2 c2'
    from SPLIT(2) obtain p\gammarps ws p'wcts'ctt' where
        [simp]: p\gammar=(p,\gamma#r) ct'=cts'@ctt' and
        ST: (p,\gamma \hookrightarrowl ps,ws # p',w)\in\Delta tsem \Delta (ps,ws)ts cts'
```

```
            tsem \Delta( p',w@r)t ctt'
    by (erule-tac tsem.cases) fastsimp+
    from dpntr-spawn[OF ST(1)] have
    (c,l,c1 @ (ps,ws) # ( p',w@ @) # c\mathcal{L})\indpntr \Delta
    by auto
    also from sched-spawn.hyps(2)[OF hsem-conc-leel[OF SPLIT(1) ST(2,3) SPLIT(3)]]
have
    SST:(c1@ (ps,ws) # ( p', w@ r)# c\mathcal{L},ll,\mp@subsup{c}{}{\prime})\indpntrc \Delta
    by simp
    finally show ?case by auto
qed
```

Finally, we formulate the correspondance between the interleaving and the true concurrency semantics as a single equivalence:
theorem sched-correct: $\left(c, l l, c^{\prime}\right) \in d p n t r c \Delta \longleftrightarrow\left(\exists h\right.$. hsem $\Delta c h c^{\prime} \wedge$ sched $\left.h l l\right)$ by (auto intro: sched-correct1 sched-correct2)

As any hedge has at least one schedule, we always get an interleaving execution from a hedge execution:

```
lemma obtain-schedule:
    \llbrackethsem \Delta ch c';
        !!ll. \llbracket(c,ll,c})\indpntrc \Delta; sched h ll\rrbracket\Longrightarrow
    \LongrightarrowP
    apply (rule-tac h=h in exists-schedule)
    apply (metis sched-correct)
    done
```


5 Predecessor Sets

Following [2], we define the set of immediate predecessors pre ΔC and predecessors pre* ΔC of a set of configurations C. The set of immediate predecessors contains those configurations from that we can reach (a configuration in) C with exactly one step. The set of predecessors contains those configurations from that we can reach C with an arbitrary number of steps, including no steps at all (i.e. pre* is reflexive).

Computing predecessor sets is the key to model checking and analysis of DPNs, see [2] for details.
definition pre $\Delta C^{\prime}==\left\{c \cdot \exists l c^{\prime} . c^{\prime} \in C^{\prime} \wedge\left(c, l, c^{\prime}\right) \in\right.$ dpntr $\left.\Delta\right\}$
definition pre-star (pre*) where

$$
\text { pre }{ }^{*} \Delta C^{\prime}==\left\{c \cdot \exists l l c^{\prime} \cdot c^{\prime} \in C^{\prime} \wedge\left(c, l l, c^{\prime}\right) \in d p n t r c \Delta\right\}
$$

5.1 Hedge-Constrained Predecessor Sets

For a set of configurations C^{\prime} and a set of execution hedges H, we define the hedge-constrained predecessor set of C^{\prime} w.r.t. H as the set of those configurations from that we can reach C^{\prime} with an execution hedge in H.
definition prehc $\Delta H C^{\prime}==\left\{c . \exists h c^{\prime} . h \in H \wedge c^{\prime} \in C^{\prime} \wedge h s e m \Delta c h c^{\prime}\right\}$
lemma prehcI: $\llbracket h \in H ; c^{\prime} \in C^{\prime} ; h s e m \Delta c h c \rrbracket \Longrightarrow c \in$ prehc $\Delta H C^{\prime}$ by (unfold prehc-def) auto

lemma prehcE:

$\llbracket c \in$ prehc $\Delta H C^{\prime} ;!!h c^{\prime} . \llbracket h \in H ; c^{\prime} \in C^{\prime} ; h s e m \Delta c h c^{\prime} \rrbracket \Longrightarrow P \rrbracket \Longrightarrow P$ by (unfold prehc-def) auto

The hedge-constrained predecessor set is monotonic in the constraint
lemma prehc-mono: $H \subseteq H^{\prime} \Longrightarrow$ prehc $\Delta H C^{\prime} \subseteq$ prehc $\Delta H^{\prime} C^{\prime}$
by (auto simp add: prehc-def)
The hedge-constrained predecessor set without constraints is the same as the original predecessor set.

```
lemma prehc-triv-is-pre-star: prehc \(\Delta U N I V C^{\prime}=\) pre \({ }^{*} \Delta C^{\prime}\)
    apply (unfold prehc-def pre-star-def)
    apply auto
    apply (rule-tac \(h=h\) in exists-schedule)
    apply (metis sched-correct)
    apply (metis sched-correct)
    done
```

The hedge-constrained predecessor set is always a subset of the unconstrained predecessor set.
lemma prehc-subset-pre-star: prehc $\Delta H C^{\prime} \subseteq$ pre* ΔC^{\prime}
apply (unfold prehc-def pre-star-def)
apply auto
apply (rule-tac $h=h$ in exists-schedule)
apply (metis sched-correct)
done

We can use a hedge-constraint to express immediate predecessor sets.

```
definition Hpre :: ('P,'\Gamma,'L) ex-hedge set where
    Hpre == { hl1@t#hl2 | hl1 t hl2 lab ts t'.
        final hl1 ^ final hl2 ^ final-t ts ^ final-t t' }
        ( }t=NNOSPAWN lab t'\vee t=NSPAWN lab ts t')
```

lemma HpreI-nospawn:
\llbracket final h1; final h2; final-t $t \rrbracket \Longrightarrow h 1 @ N N O S P A W N$ lab $t^{\prime} \# h 2 \in$ Hpre
by (unfold Hpre-def) blast
lemma HpreI-spawn:
【final h1; final h2; final-t ts; final-t t $\rrbracket \Longrightarrow h 1 @ N S P A W N$ lab ts $t^{\prime} \# h 2 \in H p r e$
by (unfold Hpre-def) blast
lemmas HpreI $=$ HpreI-nospawn HpreI-spawn
lemma HpreE[cases set, consumes 1, case-names nospawn spawn]:

```
\llbracket h\inHpre;
    !!h1 lab t' h2. |
        h=h1@NNOSPAWN lab t'#h2; final h1; final h2; final-t t'
    \ \LongrightarrowP;
    !!h1 lab ts t' h2. |
            h=h1@NSPAWN lab ts t'#h2;
        final h1; final h2; final-t ts; final-t t t'
    \LongrightarrowP
    \ P
    by (unfold Hpre-def) blast
```

In order to show that Hpre is correct, we first show that it exactly admits the schedules of length one.
lemma Hpre-length1: $\llbracket h \in$ Hpre; sched $h l l \rrbracket \Longrightarrow$ length $l l=1$
proof (erule HpreE)
case (goal1 h1 lab $t^{\prime} h 2$) note $C=$ this - nospawn
note $[$ simp $]=C(2-)$
from $C(1)$ obtain $l l l^{\prime}$ where $l l=l \# l l^{\prime} \quad$ sched ($h 1$ @t'\#h2) $l l^{\prime}$
by (erule-tac sched.cases) (auto dest!! prop-matchD $[$ where $P=$ final-t $]$)
moreover have final ($h 1$ @ $t^{\prime} \# h 2$) by auto
ultimately show? ?case by auto
next
case (goal2 h1 lab ts t' h2) note $C=$ this - spawn
note $[$ simp $]=C(2-)$
from $C(1)$ obtain $l l l^{\prime}$ where $l l=l \# l l^{\prime} \quad$ sched ($h 1 @ t s \# t^{\prime} \# h 2$) $l l^{\prime}$
by (erule-tac sched.cases) (auto dest!: prop-match $D[$ where $P=$ final- $t]$)
moreover have final (h1@ts\#t'\#h2) by auto
ultimately show ?case by auto
qed
lemma Hpre-length: : \llbracket sched $h \mathrm{ll}$; length $l l=1 \rrbracket \Longrightarrow h \in$ Hpre by (erule sched.cases) (auto intro: HpreI)
theorem Hpre-length: sched $h l l \Longrightarrow h \in H p r e ~ \longleftrightarrow$ length $l l=1$
using Hpre-length1 Hpre-length2 by blast
It is then straightforward to show that prehc Δ Hpre $=$ pre Δ

```
lemma Hpre-correct1: c\inprehc }\Delta\mathrm{ Hpre C'}\Longrightarrowc\in\mathrm{ pre }\Delta\mp@subsup{C}{}{\prime
    apply (unfold prehc-def)
    apply auto
    apply (rule-tac h=h in exists-schedule)
    apply (simp only:Hpre-length)
    apply (drule (1) sched-correct2)
    apply (case-tac ll)
    apply simp
    apply simp
    apply (auto simp add: pre-def)
    done
```

```
lemma Hpre-correct2: c\inpre \Delta C' \Longrightarrowc\inprehc \Delta Hpre C'
    apply (unfold pre-def)
    apply auto
    apply (drule iffD2[OF trcl-single])
    apply (drule sched-correct1)
    apply auto
    apply (drule Hpre-length2)
    apply (auto simp add: prehc-def)
    done
theorem Hpre-correct: prehc \Delta Hpre = pre \Delta
    using Hpre-correct1 Hpre-correct2 by (blast intro: ext)
end
```


6 DPN Semantics on Lists

theory ListSemantics
imports Semantics
begin
The interleaving semantics works on configurations that are lists of process configurations.

However, in [2] a DPN configuration is represented as a sequence of control and stack symbols. Each process starts with a control symbol, followed by its stack symbols. The configuration is simply a concatenation of processes. This representation allows the notion of a regular set of configurations as a set of configurations accepted by a FSM.

In this theory, we adopt this representation of configurations, define a semantics directly over this representation, and show that this representation is isomorphic to ours for sequences starting with a control symbol. Note that sequences starting with a stack symbol have no meaningful interpretation, as each process's configuration has to start with a control symbol.

6.1 Definitions

We separate stack and control symbols using a datatype with two constructors:
datatype ('Q, Γ) cl-item $=C T R L{ }^{\prime} Q \mid S T A C K ~ \Gamma$
types ('Q,' Γ) cl $=\left({ }^{\prime} Q, \Gamma\right)$ cl-item list
The mapping from configurations to list-based configurations is straightforward:

```
fun pc2cl :: ('Q,'\Gamma) pconf }=>(\mp@subsup{}{}{\prime}Q,'\Gamma) cl where
    pc2cl (p,w) = CTRL p# map STACK w
```

definition $c 2 c l::\left({ }^{\prime} Q,{ }^{\prime} \Gamma\right)$ conf $\Rightarrow\left({ }^{\prime} Q, \Gamma\right) c l$ where
$c 2 c l c==$ concat (map pc2cl c)
abbreviation c2cl-abbrv :: ('Q, Γ) conf $\Rightarrow\left({ }^{\prime} Q, T\right) c l$

- This abbreviation is just for convenience
where
c2cl-abbrv $c==$ concat (map pc2cl c)
Valid single-process configurations are those that start with a control symbol followed by a list of stack symbols:
definition pclvalid $==\{C T R L$ p\#map STACK $w \mid p w$. True $\}$
Valid configurations are those that start with a control symbol:
definition clvalid $==\{[]\} \cup\{C T R L p \# c \mid p c$. True $\}$
We also define the step relation directly on list representation of configurations:

```
inductive-set cltr :: ('Q,'\Gamma,'L) dpn => (('Q,T) cl × 'L }\times(\mp@subsup{}{}{\prime}Q,'\Gamma) cl) se
    for }\Delta\mathrm{ where
    cltr-no-spawn:
        \llbracket(p,\gamma \hookrightarrowl p}\mp@subsup{p}{}{\prime},w)\in\Delta\rrbracket
        (c1@[CTRL p,STACK \gamma]@c2,
            l,
            c1@CTRL p'#(map STACK w)@c2
        ) \incltr \Delta |
    cltr-spawn:
    \llbracket(p,\gamma \hookrightarrowl ps,ws \sharp p
        ( c1@[CTRL p,STACK \gamma]@c2,
            l,
            c1@CTRL ps#(map STACK ws)@CTRL p'#(map STACK w)@c2
        ) }\in\operatorname{cltr}
```


6.2 Theorems

lemma inj-STACK[simp, intro!](final-t): inj STACK by (rule injI) auto

6.2.1 Representation of Single Processes

```
lemma pc2cl-not-empty[simp]: pc2cl \pi}\not=[] by (cases \pi) aut
lemma pc2cl-inj[simp, intro!]: inj pc2cl
    apply (rule injI)
    apply (case-tac x, case-tac y)
    apply simp
    done
lemmas pc2cl-inj-simp[simp] = inj-eq[OF pc2cl-inj]
lemma pc2cl-valid[intro!,simp]: pc2cl \pi \in pclvalid
```

```
by (cases \pi) (auto simp add: pclvalid-def)
lemma pc2cl-surj: \llbracket\pil\inpclvalid; !!\pi. \pil=pc2cl \pi\LongrightarrowP\rrbracket\LongrightarrowP
    apply (unfold pclvalid-def)
    apply (cases \pil)
    apply simp
    apply fastsimp
    done
```


6.2.2 Representation of Configurations

We start with a bunch of simplification rules and other auxilliary lemmas:

```
lemma stack-no-ctrl1[simp]:
    map STACK w\not=c1@CTRL p#c2
    by (auto elim!: map-eq-concE)
lemmas stack-no-ctrl2 [simp] = stack-no-ctrl1 [symmetric]
lemma map-stack-ne-cCc1 [simp]:
    map STACK w = c@CTRL s#c'
    apply (induct w arbitrary: c s c')
    apply auto
    apply (case-tac c)
    apply auto
    done
lemmas map-stack-ne-cCc2[simp] = map-stack-ne-cCc1[symmetric]
lemmas map-stack-ne-add-simps[simp] =
    map-stack-ne-cCc1[where c=[], simplified]
    map-stack-ne-cCc1[where c=[a], simplified, standard]
lemma map-STACK-eq-map-STACK-simp[simp]:
    map STACKw @CTRL p#cl=map STACK w'@ CTRL p' # cl'}
        w'=w}\wedge \mp@subsup{p}{}{\prime}=p\wedgec\mp@subsup{l}{}{\prime}=c
    apply (induct w arbitrary: w')
    apply (case-tac w')
    apply auto[2]
    apply (case-tac w')
    apply auto
done
```

lemma map-stack-ne-pc2cl[simp]:
map STACK $w \neq c @ p c 2 c l \pi @ c^{\prime}$
$c @ p c 2 c l \pi @ c^{\prime} \neq \operatorname{map}$ STACK w
by (cases π, auto)+
lemmas map-stack-ne-pc2cl-add-simps $[\operatorname{simp}]=$

```
map-stack-ne-pc2cl[where c=[], simplified]
```

lemma map-STACK-eq-map-STACK-add-simps[simp]:
map STACK w @ CTRL $p \# c l=\operatorname{map}$ STACK $w^{\top} @ p c 2 c l \pi^{\prime} @ c l^{\prime} \longleftrightarrow$
$w=w^{\prime} \wedge p=f s t \pi^{\prime} \wedge c l=m a p \operatorname{STACK}\left(\right.$ snd $\left.\pi^{\prime}\right) @ c l^{\prime}$
map STACK $w^{\prime} @ p c 2 c l \pi^{\prime} @ c l^{\prime}=\operatorname{map} S T A C K w(C T R L p \# c l \longleftrightarrow$
$w=w^{\prime} \wedge p=f s t \pi^{\prime} \wedge c l=m a p \operatorname{STACK}\left(\right.$ snd $\left.\pi^{\prime}\right) @ c l^{\prime}$
by (cases π^{\prime}, auto) +
lemma c2cl-simps[simp]:
c2cl [] = []
$c 2 c l(\pi \# c)=p c 2 c l \pi @ c 2 c l c$
$c 2 c l(c 1 @ c 2)=c 2 c l c 1 @ c 2 c l c 2$
by (unfold c2cl-def) auto
lemma c2cl-empty[simp]:
c2cl $c=[] \longleftrightarrow c=[]$
[] $=c 2 c l c \longleftrightarrow c=[]$
by (cases c, auto) +
lemma c2cl-start-with-ctrl[simp]:
c2cl $c \neq$ STACK $\gamma \# c l$
STACK $\gamma \# c l \neq c 2 c l c$
by (cases c, auto) +
lemma c2cl-start-with-ctrl-map:
$w \neq[] \Longrightarrow c 2 c l c \neq$ map STACK w
$w \neq[] \Longrightarrow \operatorname{map} S T A C K \quad w \neq c 2 c l c$
by (cases w, auto) +
lemma map-stack-c2cl-eq-simps[simp]:
map STACK w @ c2cl $c=$ map STACK $w^{\prime} @ c 2 c l c^{\prime} \longleftrightarrow w=w^{\prime} \wedge c 2 c l c=c 2 c l$
c^{\prime}
apply (rule iffI)
defer
apply simp
apply (induct w arbitrary: w^{\prime})
apply (case-tac w^{\prime})
apply auto
apply (case-tac w')
apply auto
apply (case-tac w')
apply auto
done
lemma c2cl-s-cl-eqE:

```
    \llbracketSTACK \gamma # cl = map STACK w @ c2cl c;
```

 \(!!w r . \llbracket w=\gamma \# w r ; c l=\operatorname{map} S T A C K w r @ c 2 c l c \rrbracket \Longrightarrow P\)
 \(\rrbracket \Longrightarrow P\)
 by (cases w) auto
 lemma c2cl-first-processE:
$\llbracket c 2 c l c=C T R L p \# c l 2$;
$!!w c 2 c l 2^{\prime} . \llbracket c=(p, w) \# c \mathcal{Z} ; c l 2=(\operatorname{map} S T A C K w) @ c l 2^{\prime} ; c 2 c l c \mathcal{L}=c l 2^{\prime} \rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
apply (cases c)
apply simp
apply simp
apply (case-tac a)
apply simp
apply blast
done
lemma c2cl-find-process1:
【 $c 2 c l c=c l 1 @ C T R L p \# c l 2$;
!!c1 w c2. 【 $c=c 1 @(p, w) \# c 2 ; c l 2=(\operatorname{map} S T A C K w) @ c 2 c l c 2$;
$c l 1=c 2 c l c 1$
$\rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
proof (induct cl1 arbitrary: c P rule: length-compl-induct)
case Nil thus? ?ase by (force elim!: c2cl-first-processE)
next
case (Cons e cl1') show ?case proof (cases e)
case (STACK γ) with Cons.prems(1) have False by simp thus ?thesis ..
next
case $\left(C T R L p^{\prime}\right)[s i m p]$
from Cons.prems(1) have E: c2cl $c=$ CTRL $p^{\prime} \#\left(c l 1^{\prime} @ C T R L p \# c l 2\right)$ by
simp
from c2cl-first-processE[OF E] obtain $w c 2 c l 2 '$ where
$[\operatorname{simp}]: c=\left(p^{\prime}, w\right) \# c \mathcal{Z}$ and
S:cl1' @ CTRL p\#cl2 = map STACK w @cl2' $c 2 c l c \mathcal{2}=c l 2^{\prime}$
obtain $c l 1^{\prime} 2$ where $[s i m p]: c l 1^{\prime}=m a p S T A C K w @ c l 1^{\prime} 2$
proof -
from $S(1)$ have take (length $w)\left(c l 1^{\prime} @ C T R L p \# c l 2\right)=$ map $S T A C K w$ by
auto
hence map STACK $w=$ take (length w) cl1'
by (cases length w - length cl1) auto
hence $c l 1^{\prime}=$ map STACK w @ drop (length w) cl1' by auto
thus ?thesis using that by blast
qed
with S have
P: c2cl c2=cl1'2@CTRL p\#cl2 and
LEN: length cl1'2 \leq length cl1' by auto
from Cons.hyps[OF LEN P] obtain $c 1 x w x c 2 x$ where

```
        IHAPP:c2 = c1x@(p,wx)#c2x
                cl2=map STACK wx @ c2cl c2x and
        [simp]:cl1'2 = c2cl c1x
        by metis
    hence 1: c=(( }\mp@subsup{p}{}{\prime},w)#c1x)@(p,wx)#c2x by aut
    show ?thesis by (rule Cons.prems(2)[OF 1 IHAPP(2)]) auto
    qed
qed
```

Then we show that our representation mapping is injective and surjective on valid configurations.

```
lemma c2cl-inj[simp, intro!]: inj c2cl
    apply (rule injI)
proof -
    case (goal1 cc \(c^{\prime}\) )
    thus ? case proof (induct \(c\) arbitrary: \(c^{\prime}\) )
        case Nil thus? case by auto
    next
        case (Cons \(\pi c\) )
        thus ?case
        apply (cases \(c^{\prime}\) )
        apply simp
        apply simp
        apply (cases \(\pi\) )
        apply (case-tac a)
        apply auto
        done
    qed
qed
lemmas c2cl-inj-simps[simp] \(=\) inj-eq[OF c2cl-inj]
lemmas c2cl-img-Int \([\) simp \(]=\) image-Int \([\) OF c2cl-inj]
lemma c2cl-valid[simp,intro!]: c2cl c \(\in\) clvalid
    by (cases c) (auto simp add: clvalid-def)
lemma c2cl-surj: \(\llbracket c l \in\) clvalid; !!c. \(c l=c 2 c l ~ c \Longrightarrow P \rrbracket \Longrightarrow P\)
    apply (unfold clvalid-def)
    apply auto
proof -
    case goal1 thus ?case proof (induct c arbitrary: p)
        case Nil from Nil[of \([(p,[])]]\) show ?case by auto
    next
        case (Cons s c) show ?case
            apply (cases s)
            apply (rule-tac \(p=Q\) in Cons.hyps)
            apply (rule-tac \(c=(p,[]) \# c\) in Cons.prems)
            apply simp
            apply (rule-tac \(p=p\) in Cons.hyps)
```

```
    apply (case-tac c)
    apply simp
    apply (case-tac a)
    apply simp
    apply (rule-tac c=(p,\Gamma#b)#list in Cons.prems)
    apply simp
    done
    qed
qed
```


6.2.3 Step Relation on List-Configurations

lemma cltr-pres-valid: $\left(c l, l, c l^{\prime}\right) \in c l t r \Delta \Longrightarrow c l \in c l v a l i d ~ \longleftrightarrow c l^{\prime} \in c l v a l i d$ apply (erule cltr.cases)
apply (auto simp add: clvalid-def)
apply (case-tac c1)
apply auto
done
lemma dpntr-is-cltr: $\llbracket\left(c, l, c^{\prime}\right) \in d p n t r \Delta \rrbracket \Longrightarrow\left(c 2 c l c, l, c 2 c l c^{\prime}\right) \in c l t r \Delta$
apply (erule dpntr.cases)
apply (unfold c2cl-def)
apply (auto)
apply (drule-tac ?c2.0=map STACK r@c2cl-abbrv c2 in cltr-no-spawn)
apply simp
apply (drule-tac ?c2.0=map STACK r@c2cl-abbrvc2 in cltr-spawn)
apply simp
done
lemma cltr-is-dpntr: $\llbracket\left(c 2 c l c, l, c 2 c l c^{\prime}\right) \in c l t r \Delta \rrbracket \Longrightarrow\left(c, l, c^{\prime}\right) \in d p n t r \Delta$
apply (erule cltr.cases)
apply auto
apply (erule c2cl-find-process1)
apply (erule c2cl-find-process1)
apply auto
apply (erule c2cl-s-cl-eqE)
apply (auto simp del: map-append append-assoc
simp add: map-append[symmetric] append-assoc[symmetric] intro: dpntr-no-spawn)
apply (erule c2cl-find-process1)
apply (erule c2cl-find-process1)
apply auto
apply (erule c2cl-s-cl-eqE)

```
apply auto
apply (case-tac c2b)
apply simp
apply (case-tac a)
apply (auto simp del: map-append append-assoc
    simp add: map-append[symmetric] append-assoc[symmetric]
    intro: dpntr-spawn)
done
```

The following theorem formulates the equivalence of the original semantics and the list-based semantics.

```
theorem cltr-eq-dpntr: (c2cl c,l,c2cl c')\incltr \Delta \longleftrightarrow < c,l,c})\indpntr \Delta
```

 by (metis cltr-is-dpntr dpntr-is-cltr)
 The next two lemmas ease the derivation of executions of the original semantics from executions of the list-based semantics.

```
lemma cltr2dpntr-fwd:
    |(c2cl c,l,cl')\incltr \Delta;
        !!c'.}\llbracketc\mp@subsup{l}{}{\prime}=c2cl c'; (c,l,c')\indpntr \Delta\rrbracket\Longrightarrow
    \LongrightarrowP
proof -
    assume
        A:(c\mathcal{Lcl c,l,cl')\incltr }\Delta\mathrm{ and}
        C:!!c'. \llbracketcl'=c2cl c'; (c,l,c})\indpntr \Delta\rrbracket\Longrightarrow
    from cltr-pres-valid[OF A] have V:cl'\inclvalid by auto
    from c2cl-surj[OF V] obtain c' where [simp]:cl'=c2cl c' .
    from A show ?thesis by (auto intro: C simp add: cltr-is-dpntr)
qed
lemma cltr2dpntr-bwd:
    \llbracket (cl,l,c2cl c') \incltr \Delta;
        !!c. \llbracketcl=c2cl c; (c,l,c})\indpntr \Delta\rrbracket\Longrightarrow
    \LongrightarrowP
proof -
    assume
        A: (cl,l,c2cl c')\incltr \Delta and
        C:!!c.\llbracketcl=c2cl c; (c,l, c')\indpntr \Delta\rrbracket\Longrightarrow \Longrightarrow
    from cltr-pres-valid[OF A] have V:cl\inclvalid by auto
    from c2cl-surj[OF V] obtain c where [simp]: cl=c2cl c .
    from A show ?thesis by (auto intro: C simp add: cltr-is-dpntr)
qed
```

Finally, we give some lemmas to directly reason about the transitive closure of the step relation:
lemma cltr-is-dpntrc:
$\left(c 2 c l c, l, c 2 c l c^{\prime}\right) \in \operatorname{trcl}(\operatorname{cltr} \Delta) \Longrightarrow\left(c, l, c^{\prime}\right) \in d p n t r c \Delta$
by (induct l arbitrary: c) (auto elim!: trcl-unconsE cltr2dpntr-fwd)
lemma dpntrc-is-cltr:

$$
\left(c, l, c^{\prime}\right) \in \operatorname{dpntrc} \Delta \Longrightarrow\left(c 2 c l c, l, c 2 c l c^{\prime}\right) \in \operatorname{trcl}(c l t r \Delta)
$$

by (induct rule: trcl.induct) (auto dest: dpntr-is-cltr)

theorem cltr-eq-dpntrc:

```
    \(\left(c 2 c l c, l, c 2 c l c^{\prime}\right) \in \operatorname{trcl}(\) cltr \(\Delta) \longleftrightarrow\left(c, l, c^{\prime}\right) \in d p n t r c \Delta\)
    apply safe
    apply (induct \(l\) arbitrary: \(c\) )
    apply (auto elim!: trcl-unconsE cltr2dpntr-fwd)
    apply (induct rule: trcl.induct)
    apply (auto dest: dpntr-is-cltr)
    done
```

lemma cltrc-pres-valid:
$\left(c l, w, c l^{\prime}\right) \in \operatorname{trcl}($ cltr $\Delta) \Longrightarrow c l \in c l v a l i d ~ \longleftrightarrow c l^{\prime} \in c l v a l i d$
by (induct rule: trcl.induct) (auto simp add: cltr-pres-valid)
lemma cltr2dpntrc-fwd:
$\llbracket\left(c 2 c l c, l, c l^{\prime}\right) \in \operatorname{trcl}(\operatorname{cltr} \Delta)$;
$!!c^{\prime} . \llbracket c l^{\prime}=c 2 c l c^{\prime} ;\left(c, l, c^{\prime}\right) \in d p n t r c \Delta \rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
proof -
assume
A: $\left(c 2 c l c, l, c l^{\prime}\right) \in \operatorname{trcl}(c l t r \Delta)$ and
$C:!!c^{\prime} . \llbracket c l^{\prime}=c \mathcal{2} c l c^{\prime} ;\left(c, l, c^{\prime}\right) \in d p n t r c \Delta \rrbracket \Longrightarrow P$
from cltrc-pres-valid $[O F A]$ have V : cl' ${ }^{\prime}$ clvalid by auto
from $c 2 c l-s u r j[O F V]$ obtain c^{\prime} where $[s i m p]: c l^{\prime}=c 2 c l c^{\prime}$.
from A show ?thesis by (auto intro: C simp add: cltr-is-dpntrc)
qed
lemma cltr2dpntrc-bwd:
$\llbracket\left(c l, l, c 2 c l c^{\prime}\right) \in \operatorname{trcl}(\operatorname{cltr} \Delta) ;$
$!!c . \llbracket c l=c 2 c l c ;\left(c, l, c^{\prime}\right) \in d p n t r c \quad \Delta \rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
proof -
assume
A: $\left(c l, l, c 2 c l c^{\prime}\right) \in \operatorname{trcl}(c l t r \Delta)$ and
$C:!!c . \llbracket c l=c 2 c l c ;\left(c, l, c^{\prime}\right) \in$ dpntrc $\Delta \rrbracket \Longrightarrow P$
from cltrc-pres-valid $[O F A]$ have V : cleclvalid by auto
from c2cl-surj $[O F V]$ obtain c where $[s i m p]$: $c l=c \mathcal{Z} c l c$.
from A show ?thesis by (auto intro: C simp add: cltr-is-dpntrc)
qed

6.3 Predecessor Sets on List-Semantics

We also define predecessor sets for the list-semantics:

```
definition precl ( pre \(_{c l}\) ) where
    \(\operatorname{pre}_{c l} \Delta C^{\prime}==\left\{c \cdot \exists l c^{\prime} . c^{\prime} \in C^{\prime} \wedge\left(c, l, c^{\prime}\right) \in \operatorname{cltr} \Delta\right\}\)
definition precl-star \(\left(p r e_{c l}^{*}\right)\) where
```

$$
p_{r e}^{*}{ }_{c l} \Delta C^{\prime}==\left\{c \cdot \exists l l c^{\prime} . c^{\prime} \in C^{\prime} \wedge\left(c, l l, c^{\prime}\right) \in \operatorname{trcl}(c l t r \Delta)\right\}
$$

And show that they are equivalent to their counterparts defined over the original semantics:

```
lemma precl-is-pre: pre cl }\Delta(c2cl`C)=c2cl``(pre \Delta C)
    apply (unfold precl-def pre-def)
    apply (auto elim!: cltr2dpntr-bwd intro: dpntr-is-cltr)
    done
lemma precl-star-is-pre-star: pre* }\mp@subsup{}{cl}{}\Delta(c\mathcal{Lcl}`C)=c\mathcal{Lcl}\mp@subsup{|}{}{`}(\mathrm{ pre* }\DeltaC
    apply (unfold precl-star-def pre-star-def)
    apply (auto elim!: cltr2dpntrc-bwd intro: dpntrc-is-cltr)
    done
```

end

7 Automata for Execution Hedges

theory HedgeAutomata
 imports Main Semantics
 begin

In this section we define hedge automata that accept execution hedges.
A hedge automaton consists of a set of states, an regular initial language of state sequences and a set of transitions. Transitions are either leaf transitions that label a leaf node with a state if the configuration at the leaf node is contained in some (regular) language, or non-spawning or spawning transitions, that label a spawning or non-spawning node respectively with a state depending on the states of the successor nodes.

In this formalization, we model the initial language and the regular languages at the leafs just at sets. However, if we want an executable representation, we need to model real automata there. This is planned to be done in the future.

```
datatype ( \({ }^{\prime} S,{ }^{\prime} P,{ }^{\top} \Gamma,{ }^{\prime} L\) ) ha-rule \(=\)
    HAR-LEAF 'S 'P ' \(\Gamma\) list set |
    HAR-NOSPAWN 'S 'L 'S |
    HAR-SPAWN 'S 'L 'S 'S
types \(\left({ }^{\prime} S,{ }^{\prime} P, \Gamma,{ }^{\prime} L\right) h a={ }^{\prime} S\) list set \(\times\left({ }^{\prime} S,{ }^{\prime} P, ' \Gamma,{ }^{\prime} L\right)\) ha-rule set
```

In order to model acceptance of a hedge, we define a relation between trees and states with which we can label those trees. We then extend this relation to hedges.
inductive $l a b$

```
:: ('S,'P,'\Gamma,'L) ha-rule set }=>(\mp@subsup{}{}{\prime}P,'\Gamma,'L) ex-tree = 'S > bool
for }H\mathrm{ where
lab-leaf:
    \llbracketHAR-LEAF s p W GH;w\inW\rrbracket\Longrightarrow lab H(NLEAF (p,w)) s|
    lab-nospawn:
    \llbracketHAR-NOSPAWN s l s}\mp@subsup{s}{}{\prime}\inH;labHt\mp@subsup{s}{}{\prime}\rrbracket\LongrightarrowlabH(NNOSPAWN l t) s
lab-spawn:
    \llbracketHAR-SPAWN s l ss s}\mp@subsup{s}{}{\prime}\inH;labHts ss;labHt s'\rrbracket
        lab H (NSPAWN l ts t) s
```

inductive labh $::\left({ }^{\prime} S,{ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L\right)$ ha-rule set $\Rightarrow\left({ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L\right)$ ex-hedge $\Rightarrow{ }^{\prime} S$ list \Rightarrow bool
for H where
labh-empty[simp, intro!](final-t): labh H [] [] |
labh-cons: $\llbracket l a b H t s ; l a b h H h \sigma \rrbracket \Longrightarrow l a b h H(t \# h)(s \# \sigma)$
lemma labh-empty[simp]:
labh $H[] \sigma \longleftrightarrow \sigma=[]$
labh $H h[] \longleftrightarrow h=[]$
by (auto elim: labh.cases)
lemma labh-length: labh $H h \sigma \Longrightarrow$ length $h=$ length σ
by (induct rule: labh.induct) auto

The language of a hedge automaton consists of those hedges whose roots can be labeled with a state sequence in the initial language.
definition langh :: ('S,'P,' $\left.\Gamma,{ }^{\prime} L\right) h a \Rightarrow\left({ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L\right)$ ex-hedge set where
langh $H A==\{h . \exists \sigma \in f s t H A . l a b h($ snd HA) $h \sigma\}$
end

8 Computation of Hedge-Constrained Predecessor Sets

theory CrossProd
imports ListSemantics HedgeAutomata
begin
In this section we show how to compute predecessor sets with regular hedge constraints. The computation is done by reduction to the computation of the unconstrained predecessor set. The reduction uses a cross-product like approach, computing a product-DPN of the original DPN and the hedge automaton, and a product regular set of the original regular set and the hedge-automaton's leaf rules.

This theory uses a list-based representation of DPN-configurations, where the type of a configuration is a list of control- and stack-symbols. This type is less structured than the original type of configurations, that is lists of pairs
of control symbol and stack. However, it admits handling configurations as words, and sets of configurations as (regular) languages.

This theory does not use a formalization of regular languages, nor does it generate executable code. Instead, regular sets are modeled as sets. The effectiveness proofs show representations that only contain operations wellknown to preserve regularity. However, an implementation of those operations is not formalized.

The cross-product DPN simulates the rules of the hedge-automaton via its transitions, the current state of the hedge automaton is stored in the DPN's state:

```
inductive-set
    \(x d p n::\left({ }^{\prime} P, \Gamma,{ }^{\prime} L\right) d p n \Rightarrow\left({ }^{\prime} S,{ }^{\prime} P,{ }^{\prime} \Gamma, ' L\right)\) ha-rule set \(\Rightarrow\left({ }^{\prime} P \times{ }^{\prime} S,{ }^{\prime} \Gamma,{ }^{\prime} L\right) d p n\)
    for \(\Delta H\) where
    xdpn-nospawn:
        \(\llbracket\left(p, \gamma \hookrightarrow l p^{\prime}, w\right) \in \Delta ; H A R-N O S P A W N s l s^{\prime} \in H \rrbracket \Longrightarrow\)
        \(\left((p, s), \gamma \hookrightarrow_{l}\left(p^{\prime}, s^{\prime}\right), w\right) \in x d p n \Delta H \mid\)
    xdpn-spawn:
        \(\llbracket\left(p, \gamma \hookrightarrow_{l} p s, w s \sharp p^{\prime}, w\right) \in \Delta ; H A R-S P A W N\) s l ss \(s^{\prime} \in H \rrbracket \Longrightarrow\)
            \(\left((p, s), \gamma \hookrightarrow_{l}(p s, s s), w s \sharp\left(p^{\prime}, s^{\prime}\right), w\right) \in x d p n \Delta H\)
```

The $x d p n$-nospawn-rule adds a transition rule to the cross-product DPN for each original non-spawning transition rule and hedge automaton rule that could be used to label the node generated by this transition rule. Analogously, the $x d p n$-spawn-rule adds a transition rule to the cross-product DPN for spawning rules.

We now define operators to map configurations of the cross-product DPN to configurations of the original DPN and sequences of states of the hedge automaton.

abbreviation

proj-c1 :: ($\left.{ }^{\prime} P \times{ }^{\prime} S, \top\right)$ conf $\Rightarrow\left({ }^{\prime} P, \top\right)$ conf where
$\operatorname{proj}-c 1 c x==\operatorname{map}(\lambda((p, s), w) .(p, w)) c x$

abbreviation

proj-c2 :: (${ }^{\prime} P \times$ 'S,$\left.~ \Gamma\right) ~ c o n f ~ \Rightarrow ' S ~ l i s t ~ w h e r e ~$
$\operatorname{proj}-c 2 c x==\operatorname{map}(\lambda((p, s), w) . s) c x$
We also have to define a mapping for execution hedges, because the labeling of the leafs is different:

```
fun proj-t1 :: \(\left({ }^{\prime} P \times{ }^{\prime} S, ' \Gamma,{ }^{\prime} L\right)\) ex-tree \(\Rightarrow\left({ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L\right)\) ex-tree where
    proj-t1 \((\operatorname{NLEAF}((p, s), w))=\operatorname{NLEAF}(p, w) \mid\)
    proj-t1 \((\) NNOSPAWN \(l t)=\) NNOSPAWN \(l(\) proj-t1 \(t) \mid\)
    proj-t1 \((\) NSPAWN l ts \(t)=\) NSPAWN l (proj-t1 ts) \((\) proj-t1 t)
```

Next we define how to transform the target set, that contains the configurations of that we want to compute the predecessors.

The new target set contains the configurations of the original target set with all labelings that may be done by leaf-rules of the hedge automaton:

- Process labeled by a leaf-rule: abbreviation

$$
x d p n C L P H==\{((p, s), w) . \exists W . H A R-L E A F s p W \in H \wedge w \in W\}
$$

- Configuration labeled by leaf-rules:

abbreviation

```
\(x d p n C L H==\{c x \cdot(\forall((p, s), w) \in\) set \(c x .((p, s), w) \in x d p n C L P H)\}\)
```

- New target set:

definition

$x d p n C C H==\{c x$. proj-c1 $c x \in C\} \cap x d p n C L H$
Finally we define how to transform the computed predecessor set in order to get a set of configurations of the original DPN. This phase consists of two operations: First, we have to restrict the configurations to those that are accepted by the hedge automaton's initial language, and then we have to project away the hedge-automaton's states to get a configuration of the original DPN. In the following definition, these two steps are combined:

definition

```
projH :: 'S list set }=>(\mp@subsup{}{}{\prime}P\times'S,\Gamma) conf set => ('P, \Gamma) conf set where
projH H0 Cx == { proj-c1 cx | cx.cx\inCx ^ proj-c2 cx \inH0}
```


8.1 Correctness of Reduction

In this section we show that our reduction is correct, i.e. that we really get the hedge-constrained predecessor set by computing the predecessor set of the cross-product DPN and a transformed target set, and then applying the projH-operator to the result.

We first need to introduce a combination operator that combines an original DPN's configuration and a list of hedge automaton states to a crossproduct DPN's configuration.
abbreviation cxs c $\sigma==\operatorname{zipf}(\lambda(p, w) s .((p, s), w)) c \sigma$
lemma proj-cxs1[simp]: length $c=$ length $\sigma \Longrightarrow \operatorname{proj-c1}(c x s \quad c \quad \sigma)=c$
by (induct rule: list-induct2) auto
lemma proj-cxs2[simp]: length $c=$ length $\sigma \Longrightarrow \operatorname{proj-c\mathcal {L}}($ cxs $c \quad \sigma)=\sigma$ by (induct rule: list-induct2) auto
lemma cxs-proj[simp]: cxs (proj-c1 cx) $($ proj-c2 $c x)=c x$
by (induct $c x$) auto
lemma xdpnc-proj: cx $\in x d p n C C H \Longrightarrow$ proj-c1 $c x \in C$
by (unfold $x d p n C$-def) auto
We now prove the two directions of our main goal. Each direction requires 2 lemmas, the first one for a single tree and the second one for a hedge.

```
lemmas tsem-induct-x =
    tsem.induct[ where ?x1.0 = (( p,s),w), split-format (complete),
                            consumes 1, case-names tsem-leaf tsem-nospawn tsem-spawn
]
lemmas tsem-induct-p =
    tsem.induct[ where ?x1.0 = ( p,w), split-format (complete),
                            consumes 1, case-names tsem-leaf tsem-nospawn tsem-spawn
]
lemma xdpn-correct1-t:
    \llbracketsem (xdpn \Delta H) ((p,s),w)t c'; c'\inxdpnCL H\rrbracket\Longrightarrow
        tsem \Delta (p,w)(proj-t1 t) (proj-c1 c') ^ lab H (proj-t1 t) s
proof (induct arbitrary:C rule: tsem-induct-x)
    case (tsem-leaf p s w) thus ?case by (auto intro: lab.intros)
next
    case (tsem-nospawn p s \gamma l p' s'wrt c') thus ?case
        by (auto elim: xdpn.cases intro: lab.intros tsem.intros)
next
    case (tsem-spawn ps \gamma l ps ss ws p}\mp@subsup{p}{}{\prime}\mp@subsup{s}{}{\prime}w\mathrm{ ts cs r t c') thus ?case
        by (auto elim: xdpn.cases intro: lab.intros tsem.intros)
qed
lemma xdpn-correct1:
    \llbrackethsem (xdpn \Delta H) ch c'; c'\inxdpnCL H\rrbracket\Longrightarrow
        hsem \Delta (proj-c1 c) (map proj-t1 h) (proj-c1 c') ^
        labh H (map proj-t1 h) (proj-c2 c)
proof (induct arbitrary: C' rule: hsem.induct)
    case hsem-empty thus ?case by auto
next
    case (hsem-cons \pi t cf' ch c')
    obtain p s w where [simp]: }\pi=((p,s),w) by (cases \pi) aut
    from hsem-cons.prems have CLHS:cf'\inxdpnCL H c'\inxdpnCL H by auto
    from xdpn-correct1-t[OF hsem-cons.hyps(1)[simplified] CLHS(1)]
            hsem-cons.hyps(3)[OF CLHS(2)]
    show ?case by (auto intro: labh.intros hsem.intros)
qed
lemma xdpn-correct2-t:
    |sem \Delta (p,w)t c';lab Hts\rrbracket\Longrightarrow
        \existstx cx'. tsem (xdpn \Delta H) ((p,s),w) tx cx'^
                        cx'\inxdpnCL H ^ proj-t1 tx = t^
                        proj-c1 cx' = c'
proof (induct arbitrary: s rule: tsem-induct-p)
    case (tsem-leaf p w s) thus ?case
        apply (rule-tac x=NLEAF ((p,s),w) in exI)
        apply (rule-tac x=[((p,s),w)] in exI)
        by (auto elim: lab.cases)
next
```

```
    case (tsem-nospawn p \gamma l p' wrt c's)
    from tsem-nospawn.prems obtain s' where
        HRULE:HAR-NOSPAWN s l s'\inH lab Ht s'
        by (auto elim: lab.cases)
    from tsem-nospawn.hyps(3)[OF HRULE(2)] obtain tx cx' where
        IHAPP: tsem (xdpn \Delta H) (( p', s'),w@ @ tx cx'
            cx'\in xdpnCL H proj-t1 tx = t proj-c1 cx' = c'
    by blast
    from tsem.intros(2)[OF xdpn-nospawn[OF tsem-nospawn.hyps(1) HRULE(1)]
IHAPP(1)]
    have tsem (xdpn \Delta H) ((p,s),\gamma# r) (NNOSPAWN l tx)cx'.
    thus ?case using IHAPP(2,3,4) by fastsimp
next
    case (tsem-spawn p \gamma l ps ws p' w ts cs rt c' s)
    from tsem-spawn.prems obtain ss s' where
        HRULE:HAR-SPAWN s l ss s'\inH lab H ts ss labHt s'
        by (auto elim: lab.cases)
    from tsem-spawn.hyps(3)[OF HRULE(2)] tsem-spawn.hyps(5)[OF HRULE(3)]
    obtain txs cxs tx cx' where
        IHAPPS: tsem (xdpn \Delta H) ((ps, ss), ws) txs cxs
                cxs \in xdpnCL H proj-t1 txs = ts proj-c1 cxs = cs and
        IHAPP: tsem (xdpn \DeltaH) (( }\mp@subsup{p}{}{\prime},\mp@subsup{s}{}{\prime}),w@r)txc\mp@subsup{x}{}{\prime}\quadc\mp@subsup{x}{}{\prime}\inxdpnCL 
                proj-t1 tx = t proj-c1 cx'}=\mp@subsup{c}{}{\prime
    by blast
    from tsem.intros(3)[ OF xdpn-spawn[OF tsem-spawn.hyps(1) HRULE(1)]
                        IHAPPS(1) IHAPP(1)]
    have tsem (xdpn \Delta H) ((p,s),\gamma# r) (NSPAWN l txs tx) (cxs@ @ cx').
    thus ?case using IHAPPS(2,3,4) IHAPP(2,3,4) by fastsimp
qed
lemma xdpn-correct2:
    \llbracket hsem \Deltach c'; labh Hh\sigma\rrbracket\Longrightarrow
        \existshxcx'.hsem (xdpn \Delta H) (cxs c \sigma) hx cx'^
                        cx'\inxdpnCL H^
                        (map proj-t1 hx) =h^
                        proj-c1 cx' = c'
proof (induct arbitrary: \sigma rule: hsem.induct)
    case hsem-empty thus ?case by (auto)
next
    case (hsem-cons \pi tcf'ch c'\sigma)
    from hsem-cons.prems obtain s\sigmas where
        [simp]: \sigma=s#\sigmas and
            LS: lab Hts labh Hh \sigmas
        by (fastsimp elim: labh.cases)
    from hsem-cons.hyps(3)[OF LS(2)] obtain hx cx' where
        IHAPP: hsem (xdpn \DeltaH) (cxs c \sigmas)hx cx'
                cx' \in xdpnCL H
```

$$
\begin{aligned}
& \text { map proj-t1 } h x=h \\
& \text { proj-c1 } c x^{\prime}=c^{\prime}
\end{aligned}
$$

 by blast
 moreover obtain \(p w\) where \([\operatorname{simp}]: \pi=(p, w)\) by (cases \(\pi\)) auto
 from \(x d p n\)-correct2- \(t[O F\) hsem-cons.hyps(1)[simplified] \(L S(1)]\)
 obtain \(t x c f x^{\prime}\) where
 tsem \((x d p n \Delta H)((p, s), w) t x c f x^{\prime}\)
 \(c f x^{\prime} \in x d p n C L H\)
 proj-t1 \(t x=t\)
 proj-c1 cfx \(x^{\prime}=c f^{\prime}\)
 by blast
 ultimately show ?case
apply (rule-tac $x=t x \# h x$ in $e x I$)
apply (rule-tac $x=c f x^{\prime} @ c x^{\prime}$ in exI)
by (auto intro: hsem.intros)
qed

Finally we use the lemmas proven above to show our main goal, i.e. a representation of the hedge-constrained predecessor set w.r.t. the language of a hedge automaton by means of the sequential pre*-operator and the cross-product construction.
theorem xdpn-correct:
prehc $\Delta(\operatorname{langh}(H 0, H)) C^{\prime}=\operatorname{projH} H 0\left(p r e^{*}(x d p n \Delta H)\left(x d p n C C^{\prime} H\right)\right)$
proof (intro equalityI subsetI)
fix c
assume $A: c \in$ prehc $\Delta(\operatorname{langh}(H 0, H)) C^{\prime}$
then obtain $c^{\prime} h$ where
$D: c^{\prime} \in C^{\prime} \quad h s e m \Delta c h c^{\prime} \quad h \in \operatorname{langh}(H 0, H)$
by (unfold prehc-def) auto
then obtain σ where $D D: \sigma \in H 0 \quad$ labh $H h \sigma$ by (unfold langh-def) auto

- We need the following later in order to reason about the (underdefined) cxs-operator:
from hsem-length $[O F D(2)]$ labh-length $[O F D(2)]$ have
[simp]: length $c=$ length σ
by simp
from xdpn-correct2[OF $D(2) D D(2)]$ obtain $h x c x^{\prime}$ where
M : hsem $(x d p n \Delta H)(c x s c \sigma) h x c x^{\prime}$
$c x^{\prime} \in x d p n C L H$
map proj-t1 $h x=h$
proj-c1 $c x^{\prime}=c^{\prime}$
by blast
from $M(2,4) D(1)$ have $c x^{\prime} \in x d p n C C^{\prime} H$ by (unfold xdpnC-def) auto
hence cxs $c \sigma \in p^{*} e^{*}(x d p n \Delta H)\left(x d p n C C^{\prime} H\right)$
by (rule-tac obtain-schedule[OF M(1)]) (auto simp add: pre-star-def)
with $D D(1)$ show $c \in \operatorname{projH} H 0\left(p r e^{*}(x d p n \Delta H)\left(x d p n C C^{\prime} H\right)\right)$
apply (unfold projH-def)
apply auto
apply (rule-tac $x=c x s c \sigma$ in exI)

```
    apply auto
    done
next
    fix \(c\)
    assume \(A: c \in \operatorname{projH} H 0\left(p r e^{*}(x d p n \Delta H)\left(x d p n C C^{\prime} H\right)\right)\)
    then obtain \(c x\) where
        \(D: c=p r o j-c 1 c x \quad\) proj-c2 \(c x \in H 0 \quad c x \in p r e^{*}(x d p n \Delta H)\left(x d p n C C^{\prime} H\right)\)
        by (unfold projH-def) auto
    then obtain \(l l c x^{\prime}\) where
        \(D D: c x^{\prime} \in\left(x d p n C C^{\prime} H\right) \quad\left(c x, l l, c x^{\prime}\right) \in d p n t r c(x d p n \Delta H)\)
        by (unfold pre-star-def) auto
    then obtain \(h x\) where \(D D H: h s e m(x d p n \Delta H) c x h x c x^{\prime}\)
        by (auto simp add: sched-correct)
    from \(D D(1)\) have \(C L: c x^{\prime} \in x d p n C L H \quad p r o j-c 1 c x^{\prime} \in C^{\prime}\)
        by (unfold xdpnC-def) auto
    from xdpn-correct1[OF DDH CL(1)] have
        M: hsem \(\Delta\) (proj-c1 cx) (map proj-t1 hx) (proj-c1 cx')
            labh H (map proj-t1 hx) (proj-c2 cx)
        by auto
    from \(D(2) M(2)\) have (map proj-t1 hx) \(\in\) langh ( \(H 0, H\) )
        by (unfold langh-def) auto
    with \(M(1) D(1) C L(2)\) show \(c \in \operatorname{prehc} \Delta(\operatorname{langh}(H 0, H)) C^{\prime}\)
        by (unfold prehc-def) auto
qed
```


8.2 Effectiveness of Reduction

In this section we give indication that the cross-product construction is computable for regular target sets.

The new set of rules $x d p n$ can be computed if the set of dpn rules and the set of hedge automaton transitions are finite, as the definition of $x d p n$ is not recursive and each LHS depends on only one element of each set. However, as said above, we do not provide executable code here.

In [2], a configuration is represented as a sequence of control and stack symbols, each process starting with a control symbol followed by its stack. For sequences that start with a control symbol, this representation is isomorphic to our representation (cf. Section 6.2.3). As regular sets of configurations are best defined on this list-based semantics, we also show the effectiveness of our construction on the list-based semantics.

This section, especially the proofs of the Theorems, are rather technical. The theorems itself show how to compute the new target configuration and the projection from the computed predecessor set using only operations wellknown to preserve regularity (in this case intersection, union, concatenation, star, and substitution) as well as some sets that are obviously regular. However, no formal proof of regularity or effectiveness is given.

8.2.1 Definitions

This function defines the projection operator from the extended to the original configuration:

```
fun \(f p\)-cl1 where
    fp-cl1 \((\operatorname{CTRL}(p, s))=C T R L p \mid\)
    fp-cl1 \((\) STACK \(\gamma)=\) STACK \(\gamma\)
```

This function maps a hedge-automaton state to the regular set of all process configurations labeled with that state. Note that the sets $\{[C T R L$ $(p, s)] \mid p$. True $\}$ and $\{[S T A C K \gamma] \mid \gamma$. True $\}$ are obviously regular.
definition fp-inv-subst2 where

```
fp-inv-subst2 s = conc {[CTRL (p,s)]|p. True } (star {[STACK \gamma]|\gamma. True})
```

The projection operator can be written using substitution, projection (a special form of substitution), and intersection.

The intuitive idea is, that subst fp-inv-subst2 HO is the set of all configurations with a hedge-automaton labeling sequence that is accepted by HO.
definition projH-cl :: 'S list set $\Rightarrow\left({ }^{\prime} Q \times{ }^{\prime} S, ' \Gamma\right)$ cl set $\Rightarrow\left({ }^{\prime} Q, ' \Gamma\right)$ cl set where projH-cl H0 Clx = lang-proj fp-cl1 (subst fp-inv-subst2 H0 $\cap(\mathrm{Clx})$)

The derivation of the new target set is done by first characterizing all sets of cross-product configurations whose leafs are labeled correctly according to the leaf rules of the hedge automaton. Note that there are only finitely many leaf-rules, hence the union below is over a finite set. Moreover, the language W at a leaf rule is regular by default, the operation map $S T A C K$ ‘ - is a projection and the operation op \# ($\operatorname{CTRL}(p, s))^{\text {' }}$ - is a concatenation. Hence all the operations below are effective.

```
definition \(x d p n C L-c l::\left({ }^{\prime} S,{ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L\right)\) ha-rule set \(\Rightarrow\left({ }^{\prime} P \times{ }^{\prime} S,{ }^{\prime} \Gamma\right)\) cl set where
    xdpnCL-cl \(H=\) star \((\bigcup\{\) op \# (CTRL \((p, s))\) ' (map STACK'W)|
                        s \(p W . H A R-L E A F\) s \(p W \in H\}\)
        )
```

Having characterized all configurations that are correctly labeled, one gets the new target set by intersecting them with all configurations that correspond to the old target set:

```
definition \(x d p n C-c l\)
    \(::\left({ }^{\prime} P, \top\right)\) cl set \(\Rightarrow\left({ }^{\prime} S,{ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L\right)\) ha-rule set \(\Rightarrow\left({ }^{\prime} P \times{ }^{\prime} S,{ }^{\prime} \Gamma\right)\) cl set
    where
    xdpnC-cl Cl \(H=\) lang-inv-proj fp-cl1 \(\mathrm{Cl} \cap x d p n C L\)-cl \(H\)
```

In order to compute prehc $\Delta(\operatorname{langh}(H 0, H)) C^{\prime}$, we map C ' to its corresponding regular set of list-based configurations c 2 cl ' C^{\prime} and apply the list-based operations for cross-product, predecessor set and projection on it:
definition prehc-cl
$::\left({ }^{\prime} Q,{ }^{\prime} \Gamma,{ }^{\prime} L\right) d p n \Rightarrow\left({ }^{\prime} S,{ }^{\prime} Q,{ }^{\prime} \Gamma,{ }^{\prime} L\right) h a \Rightarrow\left({ }^{\prime} Q, \Gamma\right)$ cl set $\Rightarrow\left({ }^{\prime} Q, \Gamma\right)$ cl set where
prehc-cl $\triangle H A C l^{\prime}=$

```
projH-cl (fst HA) (pre* cl (xdpn \Delta (snd HA)) (xdpnC-cl Cl' (snd HA)))
```


8.2.2 Theorems

lemma fp-cl1-map-stack-id[simp]: map fp-cl1 (map STACK $w)=$ map STACK w by (induct w) auto

```
lemma fp-cl1-stack-id[simp]: fp-cl1 s=STACK \(\gamma \longleftrightarrow s=S T A C K \gamma\)
```

 by (cases s) auto
 lemma fp-cl1-eq-map-stack[simp]:
map fp-cl1 la $=$ map STACK $w \longleftrightarrow l a=\operatorname{map} S T A C K w$
apply (induct w arbitrary: la)
apply simp
apply (case-tac la)
apply auto
done
lemma star-STACK[simplified,simp]:
star $\{[$ STACK $\gamma] \mid \gamma$. True $\}=\{$ map STACK $w \mid w$. True $\}$
apply auto
proof -
case goal1 thus ?case
apply (induct rule: star.induct)
apply auto
apply (rule-tac $x=\gamma \# w$ in $e x I$)
apply simp
done
next
case goal2 thus ?case
apply (induct w)
apply (auto intro: star.ConsI[of [a], simplified, standard])
done
qed
lemma proj-c1-effective: c2cl (proj-c1 c) = map fp-cl1 (c2cl c)
by (induct c) auto
lemma fp-inv-subst2I[intro!, simp]:
CTRL $(p, s) \#$ map STACK $w \in f p$-inv-subst2 s
proof -
have 1: $[\operatorname{CTRL}(p, s)] \in\{[\operatorname{CTRL}(p, s)] \mid p$. True $\}$ by auto
have 2: map STACK $w \in$ (star $\{[S T A C K \gamma] \mid \gamma$. True $\}$) by auto
from concI[OF 1 2] show ?thesis by (auto simp add: fp-inv-subst2-def)

qed

lemma fp-inv-subst2E:

```
    \(\llbracket c l \in f p\)-inv-subst2 \(s ;!!p\) w. cl=CTRL \((p, s) \# \operatorname{map} S T A C K w \Longrightarrow P \rrbracket \Longrightarrow P\)
    apply (unfold fp-inv-subst2-def)
    apply (erule concE)
    apply fastsimp
    done
```

Idea of the operation on the original representations of configurations:

lemma projH-effective':

 projH HO Cx = lang-proj \((\lambda((p, s), w) .(p, w))\)
 (lang-inv-proj \((\lambda((p, s), w) . s) H 0 \cap C x)\)
 by (unfold projH-def lang-proj-def lang-inv-proj-def) auto
 Correctness of the list-level operation:
theorem projH-effective: c2cl ' projH HO Cx = projH-cl HO (c2cl' Cx)
apply (unfold projH-effective' lang-proj-def lang-inv-proj-def projH-cl-def)
apply auto
proof -
case (goal1 cx) thus ?case proof (induct cx arbitrary: Cx H0)
case Nil thus?case
by (force simp add: subst-def subst-word-def)
next
case (Cons $\pi x c x$)
obtain p sw where $[$ simp $]: \pi x=((p, s), w)$ by (cases $\pi x)$ auto
from Cons.prems[simplified] have
P:cx $\in\left\{c x^{\prime} .((p, s), w) \# c x^{\prime} \in C x\right\} \quad p r o j-c 2 c x \in\{s s . s \# s s \in H 0\}$
by auto
from Cons.hyps $[$ OF P] show ?case
apply auto
proof -
case goal1
from imageI[OF goal1(3), of c2cl, simplified $]$ have
$\operatorname{CTRL}(p, s)$ \# map STACK w @ $c 2 c l x a \in c 2 c l$ ' $C x$.
moreover from goal1 (2) have
CTRL $(p, s) \#$ map STACK w @ c2cl xa \in subst fp-inv-subst2 H0
apply (auto simp add: subst-def subst-word-def)
apply (rule-tac $x=s \# x$ in bexI)
apply auto
apply (simp only: append.simps(2)[symmetric])
apply (rule concI)
apply auto
done
ultimately have
$\operatorname{CTRL}(p, s)$ \# map STACK $w @ c 2 c l x a \in$
subst fp-inv-subst2 $\mathrm{HO} \cap \mathrm{c2cl}$ ' Cx
by blast
from imageI[OF this, of map fp-cl1] show ?case by simp

```
    qed
    qed
next
    case (goal2 cx) thus ?case
    proof (induct cx arbitrary: Cx H0)
    case Nil thus ?case
        apply (auto simp add: subst-def subst-word-def fp-inv-subst2-def)
        apply (case-tac x)
        apply (auto simp add: conc-def)
        done
    next
        case (Cons \pix cx Cx H0)
    obtain psw where [simp]: }\pix=((p,s),w) by (cases \pix) aut
    from Cons.prems[simplified] have
        CTRL ( }p,s) # map STACK w @ c2cl cx \in subst fp-inv-subst2 H0
        ((p,s),w)#cx\inCx
        by auto
    hence
        P:c2cl cx \in
            { cl. CTRL (p,s) # map STACK w @ cl \in subst fp-inv-subst2 H0 }
        cx\in{cx. ((p,s),w)#cx\inCx }
        by auto
    from P(1) have P':c2cl cx \in subst fp-inv-subst2 { ss . s#ss\inH0 }
        apply (auto simp add: subst-def subst-word-def)
        apply (case-tac x)
        apply simp
        apply simp
        apply (erule concE)
        apply auto
        apply (erule fp-inv-subst2E)
        apply auto
        apply (rule-tac x=list in exI)
        apply auto
    proof -
        case (goal1 list b wa) hence wa=w ^ b=c2cl cx
            apply (cases list)
            apply simp
            apply (cases cx)
            apply simp-all
            apply (erule concE)
            apply auto
            apply (erule fp-inv-subst2E)
            apply simp
            apply (cases cx)
            apply simp-all
            apply (erule fp-inv-subst2E)
            apply simp
            apply (cases cx)
            apply auto
```


done

thus c2cl cx \in conc-list (map fp-inv-subst2 list) using goal1(2) by simp qed
from Cons.hyps[OF P' P(2)] show ?case by force qed
qed
lemma c2cl-empty-rev: [] = c2cl [] by simp
theorem $x d p n C L$-effective: $c 2 c l '(x d p n C L H)=x d p n C L-c l H$ apply (unfold c2cl-def-raw xdpnCL-cl-def) apply safe
proof -
case goal1 thus ?case proof (induct c)
case Nil thus?case by simp
next case (Cons πc) from Cons have

$$
\text { IHAPP: c2cl-abbrv } c \in
$$

$$
\text { RegSet.star }(\bigcup\{o p \#(C T R L(p, s)) \text { ' map STACK' } W \mid
$$ s $p W$. HAR-LEAF s $p W \in H\}$

 by auto
 moreover from Cons.prems have
 pc2cl \(\pi \in(\bigcup\{o p \#(\operatorname{CTRL}(p, s))\) ' map STACK' \(W\) |
 s \(p W . H A R-L E A F\) s \(p W \in H\}\)
)
 by (auto) (auto simp add: split-paired-all)
 ultimately show ?case by auto
 qed
 next
case goal2 thus ?case proof (induct rule: star.induct)
case NilI have [] $\operatorname{xdpnCL} H$ by auto
thus ?case by (blast intro: c2cl-empty-rev[unfolded c2cl-def])
next
case (ConsI $\pi l \mathrm{cl}$)
from ConsI.hyps(1) obtain p s $w W$ where
$[$ simp $]: \pi l=\operatorname{CTRL}(p, s) \#$ map STACK w and
P: w $\mathcal{W} \quad$ HAR-LEAF s $p W \in H$
by auto
hence
$[$ simp]: $\pi l=p c 2 c l((p, s), w)$ and
C1: $[((p, s), w)] \in x d p n C L H$
by auto
from ConsI.hyps(3) obtain c where
[simp]: cl $=c 2 c l-a b b r v c$ and

```
                C2: c\inxdpnCL H
```

by auto
from C1 C2 have $((p, s), w) \# c \in x d p n C L H$ by auto
moreover have $\pi l @ c l=c 2 c l-a b b r v(((p, s), w) \# c)$ by auto
ultimately show ?case by blast
qed
qed
lemma inv-proj-c1-effective:
c2cl' $\{c x \cdot p r o j-c 1 c x \in C\}=$ lang-inv-proj fp-cl1 $(c 2 c l ' C)$
apply (unfold c2cl-def-raw)
apply safe
proof -
case goal1
thus ?case proof (induct c arbitrary: C)
case Nil hence [] $\in C$ by auto
thus ?case
by (auto simp add: lang-inv-proj-def)
(blast intro: c2cl-empty-rev[unfolded c2cl-def])
next
case (Cons π c)
then obtain $p s w$ where $[$ simp $]: \pi=((p, s), w)$ by (cases $\pi)$ auto
from Cons.prems have $P:$ proj-c1 $c \in\{c 1 \cdot(p, w) \# c 1 \in C\}$ by auto
from Cons.hyps $[O F P]$ show ?case
apply (auto simp add: lang-inv-proj-def)
apply (drule-tac $f=c 2 c l-a b b r v$ in imageI)
apply simp
done
qed
next
case (goal2 cl) thus ?case
apply (auto simp add: lang-inv-proj-def)
proof -
case goal1 thus ?thesis
proof (induct c arbitrary: $C \mathrm{cl}$)
case Nil hence [simp]: cl=[] by (cases cl) auto
from $\operatorname{Nil}(2)$ have []$\in\{c x$. proj-c1 $c x \in C\}$ by simp
thus ?case by (drule-tac $f=c 2 c l-a b b r v$ in imageI) simp
next
case (Cons πc)
obtain $p w$ where $[$ simp $]: \pi=(p, w)$ by (cases $\pi)$ auto
from Cons.prems have P1: $c \in\{c . \pi \# c \in C\}$ by simp
from Cons.prems(1)[simplified] obtain $s \mathrm{cl}^{\prime}$ where
[simp]: cl=CTRL (p, s) \# map STACK w @ $c l^{\prime}$ and
P2: map fp-cl1 cl' $=c 2 c l-a b b r v c$
apply -
apply (elim map-eq-consE map-eq-concE)
apply (case-tac a)

```
            apply fastsimp
            apply simp
            done
            from Cons.hyps[OF P2 P1] show ?case
                apply auto
            proof -
            case (goal1 cx) hence (( }p,s),w)#cx\in{cx.proj-c1 cx \inC} by aut
            thus?case by (drule-tac f=c2cl-abbrv in imageI) auto
            qed
    qed
qed
qed
theorem xdpnC-effective:c2cl' (xdpnC C H)=xdpnC-cl (c2cl'C) H
apply (unfold xdpnC-def xdpnC-cl-def)
apply (simp only: c2cl-img-Int)
apply (simp only: inv-proj-c1-effective xdpnCL-effective)
done
```

theorem prehc-effective:

```
c2cl ' prehc \Delta (langh (H0,H)) C' = prehc-cl \Delta (H0,H) (c2cl ' C')
apply (simp add: xdpn-correct prehc-cl-def)
apply (simp add: xdpnC-effective[symmetric] precl-star-is-pre-star projH-effective)
done
```


8.3 What Does This Proof Tell You ?

In order to believe that our construction is effective, you have to believe that the RHS of Theorem prehc-effective is really effective.

The effectiveness of the pre* - computation is shown in [2], and we have also an unpublished formal proof of the algorithm presented there. We are planning to adapt this proof to our model definition and the latest Isabelle version in near future, and then publish it.

The effectiveness of the involved automata computations is well-known. In a future version of this formalization, we plan to formalize or adopt an automata library and use it to generate executable code.
end

9 DPNs With Locks

theory LockSem
 imports DPN Semantics
 begin

In this theory, we define an extension of DPNs, where synchronization of the processes via a finite set of locks is allowed.

For this purpose, we assume that the rules are labeled with lock operations.

9.1 Model

- If a label has either no effect on locks, we allow it to be labeled by some other generic type ' L. Otherwise, the label indicates either the acquisition or the release of a lock:
datatype $\left({ }^{\prime} L, ' X\right)$ lockstep $=L N o n e ~ ' L\left|L A c q{ }^{\prime} X\right| L R e l ' X$
- Abbreviation for the datatype of a DPN with locks:
types $\left({ }^{\prime} P, ' \Gamma,{ }^{\prime} L,{ }^{\prime} X\right)$ ldpn $=\left({ }^{\prime} P, \Gamma,\left({ }^{\prime} L,{ }^{\prime} X\right)\right.$ lockstep $) d p n$
We encode DPNs with locks in a locale.
To save some case distinctions in proofs, we assume that only nonspawning rules are labeled with lock operations.

```
locale \(L D P N=D P N+\)
    constrains
        \(\Delta::\left({ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L,{ }^{\prime} X::\right.\) finite \() ~ l d p n\)
    assumes
        spawn-no-locks: \(\llbracket\left(p, \gamma \hookrightarrow a p s, w s \sharp p^{\prime}, w\right) \in \Delta ;!!l . a=L N o n e ~ l \Longrightarrow P \rrbracket \Longrightarrow P\)
begin
    lemma snl-simps[simp, intro!]:
            \(\left(p, \gamma \hookrightarrow\right.\) LAcq x \(\left.p s, w s \sharp p^{\prime}, w\right) \notin \Delta\)
            \(\left(p, \gamma \hookrightarrow\right.\) LRel x \(\left.p s, w s \sharp p^{\prime}, w\right) \notin \Delta\)
            by (auto elim: spawn-no-locks)
    lemma \(X\)-finite: finite (UNIV \(::^{\prime} X\) set) by simp
end
```


9.2 Interleaving Semantics

The following predicate models the step-relation on the set of allocated locks:

```
inductive lock-valid \(::\) ' \(X\) set \(\Rightarrow\left({ }^{\prime} L, ' X\right)\) lockstep \(\Rightarrow{ }^{\prime} X\) set \(\Rightarrow\) bool where
    - A LNone-step does not change the set of allocated locks:
    lv-none: lock-valid \(X\) (LNone l) \(X \mid\)
    - A \(L A c q\)-step adds the acquired lock to the set of locks. It is only executable
    if the lock was not allocated before:
    lv-acquire: lock-valid \((X-\{x\})(L A c q x)(\) insert \(x X) \mid\)
        - A LRel-step removes the released lock from the set of locks. It is only
        executable if the lock was allocated before:
        lv-release: lock-valid (insert \(x\) X) (LRel \(x)(X-\{x\})\)
lemma lock-valid-simps[simp]:
    lock-valid \(X\) (LNone l) \(X^{\prime} \longleftrightarrow X=X^{\prime}\)
    lock-valid \(X(\operatorname{LAcq} x) X^{\prime} \longleftrightarrow X^{\prime}=\) insert \(x X \wedge x \notin X\)
    lock-valid \(X(\) LRel \(x) X^{\prime} \longleftrightarrow X=\) insert \(x X^{\prime} \wedge x \notin X^{\prime}\)
    apply (auto elim: lock-valid.cases intro: lock-valid.intros)
```

```
apply (subst set-minus-singleton-eq[symmetric], assumption)
apply (rule lock-valid.intros)
apply (subst (3) set-minus-singleton-eq[symmetric], assumption)
apply (rule lock-valid.intros)
done
```

Configurations of the lock-sensitive step-relation consists of the list of processes and the set of currently acquired locks. Note that, at this point in the formalization, we do not make any assumptions on which process may release a lock, or on well-nestedness of locks.

That is, we allow a process releasing a lock that it has not acquired before, or locks being used in non-well-nestedness fashion.

However, in Section 10, we formalize such assumptions.
The lock-sensitive step-relation is the intersection of the original steprelation and the step-relation on allocated locks.

```
definition ldpntr
    \(::\left({ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L, ' X\right)\) ldpn \(\Rightarrow\left(\left({ }^{\prime} P, ' \Gamma\right)\right.\) conf \(\times{ }^{\prime} X\) set, \(\left({ }^{\prime} L, ' X\right)\) lockstep \() L T S\)
    where
    ldpntr \(\Delta=\left\{\left((c, X), l,\left(c^{\prime}, X^{\prime}\right)\right) \cdot\left(c, l, c^{\prime}\right) \in\right.\) dpntr \(\Delta \wedge\) lock-valid \(\left.X l X^{\prime}\right\}\)
abbreviation ldpntrc \(\Delta==\operatorname{trcl}(\) ldpntr \(\Delta)\)
lemma ldpntr-subset: \(\left((c, X), w,\left(c^{\prime}, X^{\prime}\right)\right) \in l d p n t r \Delta \Longrightarrow\left(c, w, c^{\prime}\right) \in d p n t r \Delta\)
    by (auto simp add: ldpntr-def)
lemma ldpntrc-subset: \(\left((c, X), w,\left(c^{\prime}, X^{\prime}\right)\right) \in\) ldpntrc \(\Delta \Longrightarrow\left(c, w, c^{\prime}\right) \in\) dpntrc \(\Delta\)
    by (induct rule: trcl-pair-induct) (auto dest: ldpntr-subset)
```


9.3 Tree Semantics

For the tree semantics, we only need to redefine the scheduler, such that it keeps track of the allocated locks.

- Abbreviation for type of execution trees and hedges with locks:
types $\left({ }^{\prime} Q, \Gamma,{ }^{\prime} L,{ }^{\prime} X\right)$ lex-tree $=\left({ }^{\prime} Q, \Gamma,\left({ }^{\prime} L, ' X\right)\right.$ lockstep $)$ ex-tree
types $\left({ }^{\prime} Q,{ }^{\prime} \Gamma,{ }^{\prime} L, ' X\right)$ lex-hedge $=\left({ }^{\prime} Q, \Gamma,\left({ }^{\prime} L, ' X\right)\right.$ lockstep $)$ ex-hedge
- The definition of the lock-sensitive scheduler is straightforward:

inductive lsched

$::\left({ }^{\prime} Q,{ }^{\prime} \Gamma,{ }^{\prime} L,{ }^{\prime} X\right)$ lex-hedge $\Rightarrow{ }^{\prime} X$ set $\Rightarrow\left({ }^{\prime} L,{ }^{\prime} X\right)$ lockstep list \Rightarrow bool
where
lsched-final: final $h \Longrightarrow$ lsched h X []
lsched-nospawn:
$\llbracket l s c h e d(h 1 @ t \# h 2) X^{\prime} w$; lock-valid XlX $\rrbracket \Longrightarrow$
lsched (h1@(NNOSPAWN lt)\#h2) $X(l \# w) \mid$
lsched-spawn:
【lsched (h1@ts\#t\#h2) $X^{\prime} w$; lock-valid X l X $\rrbracket \Longrightarrow$
lsched (h1@(NSPAWN l ts t)\#h2) X (l\#w)

- Obviously, a lock-sensitive schedule is also a schedule of the original scheduler:
lemma lsched-is-sched: lsched h X ll \Longrightarrow sched h ll
by (induct rule: lsched.induct) (auto intro: sched.intros)

9.4 Equivalence of Interleaving and Tree Semantics

- Straightforward adoption of proof of sched-correct1
lemma lsched-correct1:
$\left((c, X), l l,\left(c^{\prime}, X^{\prime}\right)\right) \in l d p n t r c \Delta \Longrightarrow \exists h . h s e m \Delta c h c^{\prime} \wedge l s c h e d h X l l$
proof (induct rule: trcl-pair-induct)
case (empty c X)
thus ?case
by (induct c)
(fastsimp intro!: hsem-cons-single lsched-final elim: lsched.cases)+
next
case (cons c X lch Xh ll c' X^{\prime})
from cons.hyps (3) obtain h where
IHAPP: hsem Δ ch h c' lsched h Xh ll
by blast
from cons.hyps(1) have
$(c, l, c h) \in d p n t r \Delta$ and
LV: lock-valid X l Xh
by (unfold ldpntr-def) auto
thus ?case proof (cases)
case (dpntr-no-spawn p γ la $\left.p^{\prime} w c 1 r c 2\right)$ hence
C-simp $[\operatorname{simp}]: c=c 1 @(p, \gamma \# r) \# c 2$ $c h=c 1 @\left(p^{\prime}, w @ r\right) \# c 2$ and
$C:\left(p, \gamma \hookrightarrow_{l} p^{\prime}, w\right) \in \Delta$
by auto
from hsem-lel[$O F \operatorname{IHAPP}(1)[$ simplified $]]$ obtain $h 1 t h 2 c 1^{\prime} c t^{\prime} c 2^{\prime}$ where
[simp]: $h=h 1$ @ $t \# h 2 \quad c^{\prime}=c 1^{\prime} @ c t^{\prime} @ c 2^{\prime}$ and HSPLIT: hsem $\Delta c 1 h 1 c 1^{\prime} \quad t s e m \Delta\left(p^{\prime}, w @ r\right) t c t^{\prime}$ hsem $\Delta c 2 h 2 c 2^{\prime}$
from tsem-nospawn[OF C HSPLIT(2)] have
ST: tsem $\Delta(p, \gamma \# r)(N N O S P A W N l t) c t^{\prime}$.
from hsem-conc-lel[OF HSPLIT(1) ST HSPLIT(3)] have
hsem $\Delta c(h 1$ @ NNOSPAWN $l t \# h 2) c^{\prime}$
by simp
moreover from lsched-nospawn[OF IHAPP(2)[simplified] LV] have
lsched (h1 @ NNOSPAWN l t \# h2) X (l\#ll).
ultimately show ?thesis by blast
next
case (dpntr-spawn $\left.p \gamma l a p s w s p^{\prime} w c 1 r c 2\right)$
hence

$$
\begin{aligned}
{[\operatorname{simp}]: c } & =c 1 @(p, \gamma \# r) \# c 2 \\
c h & =c 1 @(p s, w s) \#\left(p^{\prime}, w @ r\right) \# c 2 \text { and }
\end{aligned}
$$

```
        C:(p,\gamma \hookrightarrowl ps,ws \sharp p
        by auto
    from IHAPP(1)[simplified] obtain h1 ts th2 c1' cs'ct' c2' where
        [simp]:h=h1@ ts #t#h2 c'=c\mp@subsup{1}{}{\prime}@c\mp@subsup{s}{}{\prime}@c\mp@subsup{t}{}{\prime}@c\mp@subsup{2}{}{\prime}}\mathrm{ and
        HSPLIT: hsem \Delta c1 h1 c1' tsem \Delta (ps,ws) ts cs'
            tsem \Delta ( }\mp@subsup{p}{}{\prime},w@r)tc\mp@subsup{t}{}{\prime} hsem \Delta c\mathcal{L}2\mathcal{L2'
        by (fastsimp elim: hsem-split hsem-split-single)
    from tsem-spawn[OF C HSPLIT(2,3)] have
        ST: tsem \Delta (p,\gamma#r) (NSPAWN l ts t) (cs'@ct').
    from hsem-conc-lel[OF HSPLIT(1) ST HSPLIT(4)] have
        hsem \Delta c(h1@ NSPAWN l ts t # h2) c'
        by simp
    moreover from lsched-spawn[OF IHAPP(2)[simplified] LV] have
        lsched (h1 @ NSPAWN l ts t # h2) X (l#ll).
    ultimately show ?thesis by blast
    qed
qed
- Straightforward adoption of proof of sched-correct2
lemma lsched-correct2:
    \llbracketlsched h X ll; hsem \Delta ch c'\rrbracket\Longrightarrow \exists X'. ((c,X),ll,( (c', X'))\inldpntrc \Delta
proof (induct h X ll arbitrary: c c' rule: lsched.induct)
    case (lsched-final h X c c') thus ?case by (auto dest: final-hsem-nostep)
next
    case (lsched-nospawn h1 t h2 Xh ll X l c c')
    from hsem-lel-h[OF lsched-nospawn.prems] obtain c1 p\gammarc2 c1'ct' c2' where
        [simp]:c=c1@ p\gammar # c2 c'=c1'@ ct'@ c2' and
            SPLIT: hsem \Delta c1 h1 c1' tsem \Delta p\gammar (NNOSPAWN l t) ct'
                hsem \Delta c2 h2 c2'
    from SPLIT(2) obtain p\gammar p'w where
        [simp]: p\gammar=(p,\gamma#r) and
            ST:(p,\gamma \hookrightarrowl }\mp@subsup{p}{}{\prime},w)\in\Delta tsem \Delta ( p',w@r)tct'
        by (erule-tac tsem.cases) fastsimp+
    from dpntr-no-spawn[OF ST(1)] have (c,l,c1 @ ( p',w@ @)#c\mathcal{L})\indpntr \Delta
        by auto
    with lsched-nospawn.hyps(3) have
        ((c,X),l,(c1@ ( p',w@ r) # c2,Xh))\inldpntr \Delta
        by (unfold ldpntr-def) auto
    also
    from lsched-nospawn.hyps(2)[OF hsem-conc-lel[OF SPLIT(1) ST(2) SPLIT(3)]]
    obtain X' where
        SST:((c1@ (p',w @ r) # c2, Xh), ll, (c1'@ ct'@ c\mp@subsup{\mathcal{R}}{}{\prime},\mp@subsup{X}{}{\prime}))\inldpntrc \Delta
        by blast
    finally show ?case by auto
next
    case (lsched-spawn h1 ts th2 Xh ll X l c c')
    from hsem-lel-h[OF lsched-spawn.prems] obtain c1 p\gammar c2 c1' ct' c2' where
```

```
    [simp]:c=c1@ p\gammar# c2 c}\quad\mp@subsup{c}{}{\prime}=c\mp@subsup{1}{}{\prime}@c\mp@subsup{t}{}{\prime}@c\mp@subsup{2}{}{\prime}\mathrm{ and
        SPLIT: hsem \Delta c1 h1 c1' tsem }\Delta\mathrm{ p pr (NSPAWN l ts t) ct'
                hsem \Delta c2 h2 c2''
    from SPLIT(2) obtain p\gammar ps ws p' w cts' ctt' where
        [simp]: p\gammar=(p,\gamma#r) ct'=cts'@ctt' and
        ST: (p,\gamma \hookrightarrowl ps,ws \sharp 午,w)\in\Delta tsem \Delta (ps,ws) ts cts'
            tsem \Delta( p',w@r)tctt'
        by (erule-tac tsem.cases) fastsimp+
    from dpntr-spawn[OF ST(1)] have
        (c,l,c1@ @ ps,ws)# ( p',w@ @) # c2) \indpntr \Delta
        by auto
    with lsched-spawn.hyps(3) have
        ((c,X),l,(c1@ (ps,ws)#( p},w\mp@code{w % # c\mathcal{L},Xh))\inldpntr \Delta
        by (unfold ldpntr-def) auto
    also from
        lsched-spawn.hyps(2)[OF hsem-conc-leel[OF SPLIT(1)ST(2,3) SPLIT(3)]]
    obtain }\mp@subsup{X}{}{\prime}\mathrm{ where
        SST:((c1@ (ps,ws) # (p',w @ r) # c2,Xh), ll, (c', X')) \in ldpntrc \Delta
        by fastsimp
    finally show ?case by auto
qed
```

theorem lsched-correct:
$\left(\exists X^{\prime} .\left((c, X), l l,\left(c^{\prime}, X^{\prime}\right)\right) \in l d p n t r c \Delta\right) \longleftrightarrow\left(\exists h\right.$. hsem $\Delta c h c^{\prime} \wedge l$ sched $\left.h X l l\right)$ by (auto intro: lsched-correct1 lsched-correct2)
end

10 Well-Nestedness of Locks

theory WellNested
imports DPN Semantics LockSem
begin
Well-nestedness of locks is the property that no locks are re-acquired by the same process and a released locks is always the last one that was acquired and not yet released by the releasing process. Usually, these two properties are called non-reentrance and well-nestedness.

In this theory, we formulate a sufficient condition for well-nestedness, that regards every possible lock-insensitive run of the DPN from some initial configuration. We then define an equivalent condition on execution hedges.

Note that our condition may rule out DPNs where some non-well-nested runs are blocked by deadlocks or other lock-induced effects. However, important classes of programs, in particular programs that use locks in a blockstructured way (like synchronized-blocks in Java), always satisfy our condi-
tion.
Further work required at this point is to formalize a program analysis or some sufficient conditions (like block-structured lock-acquisition [monitors]) for well-nestedness. We would then be able to prove some non-trivial DPNs to have well-nested configurations, thus giving a stronger indication that the well-nestedness assumption is correct. In the current state, we have no formal proof that the well-nestedness assumption is correct, i.e. an uncorrect well-nestedness assumption, e.g. a too strict one, would affect the scope of all our proofs that use this assumption. In the worst case, there would be no well-nested DPNs at all (or only trivial ones).

10.1 Well-Nestedness Condition on Paths

We first define the set of all paths that may occur from a process. We collect local paths and environment paths.
ppairs (q, w) False l means that there is a local path l from process (q, w).
ppairs (q, w) True l means that we can reach a spawn step from process (q, w) that spawns a process having path "l".

```
inductive ppairs
    :: ('P, \(\left.\Gamma,{ }^{\prime} L,{ }^{\prime} X\right)\) ldpn \(\Rightarrow\left({ }^{\prime} P, \Gamma\right)\) pconf \(\Rightarrow\) bool \(\Rightarrow\left({ }^{\prime} L,{ }^{\prime} X\right)\) lockstep list \(\Rightarrow\) bool
    for \(\Delta\) where
    ppairs-empty: ppairs \(\Delta(q, w)\) False [] |
    ppairs-prepend1:
    \(\llbracket\left(q, \gamma \hookrightarrow a q^{\prime}, w\right) \in \Delta\); ppairs \(\Delta\left(q^{\prime}, w @ r\right)\) False \(l \rrbracket \Longrightarrow\)
        ppairs \(\Delta(q, \gamma \# r)\) False \((a \# l) \mid\)
    ppairs-mvenv1:
    \(\llbracket\left(q, \gamma \hookrightarrow a q^{\prime}, w\right) \in \Delta\); ppairs \(\Delta\left(q^{\prime}, w @ r\right)\) True \(l \rrbracket \Longrightarrow\)
        ppairs \(\Delta(q, \gamma \# r)\) True \(l \mid\)
    ppairs-prepend2:
    \(\llbracket\left(q, \gamma \hookrightarrow a q s, w s \sharp q^{\prime}, w\right) \in \Delta\); ppairs \(\Delta\left(q^{\prime}, w @ r\right)\) False \(l \rrbracket \Longrightarrow\)
    ppairs \(\Delta(q, \gamma \# r)\) False \((a \# l) \mid\)
    ppairs-mvenv2: \(\llbracket\left(q, \gamma \hookrightarrow a q s, w s \sharp q^{\prime}, w\right) \in \Delta\); ppairs \(\Delta\left(q^{\prime}, w @ r\right)\) True \(l \rrbracket \Longrightarrow\)
    ppairs \(\Delta(q, \gamma \# r)\) True \(l \mid\)
    ppairs-genenv: \(\llbracket\left(q, \gamma \hookrightarrow a q s, w s \sharp q^{\prime}, w\right) \in \Delta ;\) ppairs \(\Delta(q s, w s) x l \rrbracket \Longrightarrow\)
    ppairs \(\Delta(q, \gamma \# r)\) True \(l\)
```

This function checks whether a path is well-nested by using a lock stack.

```
fun wn-p :: ('L,'X) lockstep list \(\Rightarrow{ }^{\prime} X\) list \(\Rightarrow\) bool where
    wn-p [] \(\mu=\) distinct \(\mu \mid\)
    wn-p (LAcq \(x \# l) \mu \longleftrightarrow w n-p l(x \# \mu) \mid\)
    \(w n-p(\) LRel \(x \# l) \mu \longleftrightarrow\left(\exists \mu^{\prime} . \mu=x \# \mu^{\prime} \wedge x \notin\right.\) set \(\left.\mu^{\prime} \wedge w n-p l \mu^{\prime}\right) \mid\)
    \(w n-p(-\# l) \mu \longleftrightarrow w n-p l \mu\)
```

A process π is defined to be well-nested w.r.t. some initial lock stack μ if all reachable path - local paths and environment paths - are well-nested.

definition $w n-\pi \Delta \pi==$

```
case \(\pi\) of \((p, w) \Rightarrow\)
    \(\forall l\). (ppairs \(\Delta(p, w)\) False \(l \longrightarrow w n-p l \mu) \wedge\)
            (ppairs \(\Delta(p, w)\) True \(l \longrightarrow w n-p l[])\)
```

Introduction and elimination rules for $w n-\pi$

lemma $w n-\pi I$:

【
!!l. ppairs $\Delta(q, w)$ False $l \Longrightarrow$ wn-p $l \mu$;
!!l. ppairs $\Delta(q, w)$ True $l \Longrightarrow$ wn-p $l[]$
$\rrbracket \Longrightarrow w n-\pi \Delta(q, w) \mu$
by (unfold wn-T-def) auto

lemma $w n-\pi E$:

$\llbracket w n-\pi \Delta(q, w) \mu ;$ [
!!l. ppairs $\Delta(q, w)$ False $l \Longrightarrow$ wn-p $l \mu$;
!!l. ppairs $\Delta(q, w)$ True $l \Longrightarrow w n-p l[]$
$\rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
by (unfold wn-T-def) auto
We have set up the definitions such that well-nestedness w.r.t a lock stack implies distinctness of this lock stack.
lemma wn-p-distinct: wn-p l $\mu \Longrightarrow$ distinct μ
by (induct rule: wn-p.induct) auto

```
lemma \(w n\) - \(\pi\)-distinct: \(w n-\pi \Delta \pi \mu \Longrightarrow\) distinct \(\mu\)
    using ppairs.intros(1)
    apply (unfold wn-T-def)
    apply (simp split: prod.split-asm)
    apply (rule wn-p-distinct)
    apply (fast)
    done
```

Well-nestedness is preserved by steps:

lemma wn-T-none:

 by (unfold wn- \(\pi\)-def) (auto intro: ppairs.intros)
 lemma (in LDPN) wn- π-spawn1:
$\llbracket\left(q, \gamma \hookrightarrow a q s, w s \sharp q^{\prime}, w\right) \in \Delta ; w n-\pi \Delta(q, \gamma \# r) \mu \rrbracket \Longrightarrow w n-\pi \Delta\left(q^{\prime}, w @ r\right) \mu$
by (cases a, unfold wn- π-def) (auto intro: ppairs.intros)
lemma wn- π-spawn2:
$\llbracket\left(q, \gamma \hookrightarrow_{a} q s, w s \sharp q^{\prime}, w\right) \in \Delta ;$ wn- $\left.\pi \Delta(q, \gamma \# r) \mu \rrbracket \Longrightarrow w n-\pi \Delta(q s, w s) \llbracket\right]$
by (cases a, unfold wn- π-def) (auto intro: ppairs.intros)
lemma wn-т-acq:
$\llbracket\left(q, \gamma \hookrightarrow L A c q x q^{\prime}, w\right) \in \Delta ; w n-\pi \Delta(q, \gamma \# r) \mu \rrbracket \Longrightarrow w n-\pi \Delta\left(q^{\prime}, w @ r\right)(x \# \mu)$
by (unfold wn- π-def) (auto intro: ppairs.intros)
lemma wn-r-rel:

```
    assumes \(A:\left(q, \gamma \hookrightarrow\right.\) LRel \(\left.x q^{\prime}, w\right) \in \Delta \quad w n-\pi \Delta(q, \gamma \# r) \mu\) and
        \(C:!!\mu^{\prime} . \llbracket \mu=x \# \mu^{\prime} ; x \notin\) set \(\mu^{\prime} ; w n-\pi \Delta\left(q^{\prime}, w @ r\right) \mu^{\prime} \rrbracket \Longrightarrow P\)
    shows \(P\)
proof -
    from \(w n-\pi E[O F A(2)]\) have \(X:!!l\). ppairs \(\Delta(q, \gamma \# r)\) False \(l \Longrightarrow w n-p l \mu\)
        by blast
    from \(X[\) OF ppairs-prepend1[OF A(1) ppairs-empty],simplified \(]\) obtain \(\mu^{\prime}\) where
        [simp]: \(\mu=x \# \mu^{\prime} \quad x \notin\) set \(\mu^{\prime}\)
        by blast
    moreover from \(A\) have wn- \(\pi \Delta\left(q^{\prime}, w @ r\right) \mu^{\prime}\)
        by (unfold wn- \(\pi\)-def) (auto intro: ppairs.intros)
    ultimately show \(P\) by (rule \(C\) )
qed
lemma (in \(L D P N\) ) wn- \(\pi\)-preserve:
    \(\llbracket\left(q, \gamma \hookrightarrow l q^{\prime}, w\right) \in \Delta ; w n-\pi \Delta(q, \gamma \# r) x s ;\)
        \(!!x s^{\prime}\). wn- \(\pi \Delta\left(q^{\prime}, w @ r\right) x s^{\prime} \Longrightarrow P\)
        \(\rrbracket \Longrightarrow P\)
    \(\llbracket\left(q, \gamma \hookrightarrow_{l} q s, w s \sharp q^{\prime}, w\right) \in \Delta ; w n-\pi \Delta(q, \gamma \# r) x s ;\)
        \(!!x s^{\prime}\). 【wn- \(\left.\pi \Delta\left(q^{\prime}, w @ r\right) x s^{\prime} ; w n-\pi \Delta(q s, w s) \llbracket\right] \rrbracket \Longrightarrow P\)
        \(\rrbracket \Longrightarrow P\)
    apply (cases l)
    apply (auto dest!: wn- \(\pi\)-none wn- \(\pi-a c q\) elim!: wn- \(\pi-r e l\) ) [3]
    apply (frule (1) wn- \(\pi\)-spawn1)
    apply (auto dest!: wn- \(\pi\)-spawn2)
done
```


10.2 Well-Nestedness of Configurations

The locks of a list of lock stacks
abbreviation locks- μ :: ' X list list \Rightarrow ' X set where locks- $\mu \mu==$ list-collect-set set μ
A configuration $c=\pi_{1} \ldots \pi_{n}$ is well-nested w.r.t. a list $\mu=s_{1} \ldots s_{n}$ of lock stacks ($w n-h h \mu$), iff all π_{i} are well-nested w.r.t. stack s_{i} and μ is consistent, i.e. contains no duplicate locks.

fun $w n-c$ where

```
wn-c \(\Delta[][] \longleftrightarrow\) True |
\(w n-c \Delta(\pi \# c)(x s \# \mu) \longleftrightarrow\)
    wn-c \(\Delta\) с \(\mu \wedge\) set \(x s \cap\) locks- \(\mu \mu=\{ \} \wedge w n-\pi \Delta \pi x s \mid\)
    wn-c \(\Delta--\longleftrightarrow\) False
```


10.2.1 Auxilliary Lemmas about wn-c

lemma wn-c-simps[simp]:

```
\(w n-c \Delta c[] \longleftrightarrow c=[]\)
\(w n-c \Delta[] \mu \longleftrightarrow \mu=[]\)
apply (induct \(c\) )
```

```
    apply auto
    apply (induct }\mu\mathrm{ )
    apply auto
    done
lemma wn-c-length: wn-c \Delta c \mu\Longrightarrow length c = length }
    by (induct \Delta c \mu rule: wn-c.induct) auto
lemma wn-c-prepend-c:
    |wn-c \Delta (\pi#c) \mu;
        !!xs \mu}\mp@subsup{\mu}{}{\prime}.\llbracket \mu=xs#\mp@subsup{\mu}{}{\prime}; wn-c\Delta с 先;
                            set xs \cap locks- }\mu\mp@subsup{\mu}{}{\prime}={};wn-\pi\Delta\pix
                    \LongrightarrowP
    \rrbracket }
    by (induct }\mu\mathrm{ arbitrary: }\pi\mathrm{ c) fastsimp+
lemma wn-c-prepend- }\mu\mathrm{ :
    \llbracketwn-c\Delta c(xs#\mu);
        !!\pi c}\mp@subsup{c}{}{\prime}\llbracketc=\pi#\mp@subsup{c}{}{\prime};wn-c\Delta\mp@subsup{c}{}{\prime}\mu
                        set xs \cap locks- }\mu\mu={};wn-\pi\Delta\pi x
                \LongrightarrowP
    \LongrightarrowP
    by (induct c arbitrary: \mu) auto
lemma wn-c-append-c-helper:
    assumes
            A:wn-c\Delta c\mu c1@c2=c and
```



```
                        locks- }\mu\mu1\cap\mathrm{ locks- }\mu \mu2={
                    \LongrightarrowP
    shows P
    using A C
    apply (induct \Delta c \mu arbitrary: c1 c2 P rule: wn-c.induct)
    apply auto
    apply fastsimp
    apply (case-tac c1)
    apply fastsimp
    apply auto
proof -
    case goal1
    show P
        apply (rule goal1(1))
    apply simp
    apply (rule-tac ? }\mu1.0=xs#\mu1 and ? \mu2.0 = \mu2 in goal1 (2))
    apply (insert goal1(3-))
    apply auto
    done
qed
```

```
lemma wn-c-append-c:
    \llbracketwn-c \Delta (c1@c\mathcal{L})}\mu
        !!\mu1 \mu2.\llbracket [= 11@ <2 ^wn-c \Delta c1 \mu1 ^wn-c \Delta c2 \mu2 ^
                        locks-\mu \mu1 \cap locks-\mu \mu2 = {}\\LongrightarrowP
    \LongrightarrowP
    using wn-c-append-c-helper
    by blast
lemma wn-c-append-\mu-helper:
    assumes
    A:wn-c \Delta c \mu \mu1@ }\mu2=\mu\mathrm{ and
    C:!!c1 c\mathbb{2. \llbracket c=c1@c2 ^wn-c\Delta s1 \mu1 ^wn-c\Delta c2 \mu2 ^}
    locks-\mu \mu1\cap locks- }\mu\mathrm{ [2 = {}\ ఋP
    shows P
    using A C
    apply (induct \Delta c \mu arbitrary: }\mu1\mu2P\mathrm{ rule: wn-c.induct)
    apply auto
    apply (case-tac \mu1)
    apply fastsimp
    apply auto
proof -
    case goal1
    show P
        apply (rule goal1 (1))
        apply simp
        apply (rule-tac ?c1.0 = (a,b)#c1 and ?c2.0 = c2 in goal1(2))
        apply (insert goal1(3-))
        apply auto
        done
qed
lemma wn-c-append-\mu:
    \llbracketwn-c \Delta c( }\mu1@\mu2)
    !!c1 c2.\llbracketc=c1@c2 ^wn-c \Delta c1 \mu1 ^wn-c \Delta c2 \mu2 ^
                            locks-\mu \mu1 \cap locks- }\mu\textrm{\mu}={2={}\rrbracket\Longrightarrow
    \LongrightarrowP
    using wn-c-append-\mu-helper
    by blast
lemma wn-c-appendI:
    |n-c\Delta c1 \mu1; wn-c \Delta c2 \mu2; locks- }\mu\mu1\cap\mathrm{ locks- }\mu\mu2={}\rrbracket
        wn-c\Delta (c1@c\mathcal{)}(\mu1@\mu2)
    by (induct \Delta c1 \mu1 arbitrary: c2 \mu2 rule: wn-c.induct) auto
lemma wn-c-prependI:
    \llbracketwn-\pi \Delta\pi xs;wn-c\Delta c ; set xs \cap locks- }\mu\mu={}\rrbracket\Longrightarrowwn-c\Delta (\pi#c)(xs#\mu
    by auto
lemma wn-c-singlecE: \llbracketwn-c \Delta [\pi] \mu;!!xs. \llbracket }\mu=[xs];wn-\pi\Delta\pixs\rrbracket\LongrightarrowP\rrbracket\Longrightarrow
```

$$
\text { by }(\text { cases } \mu) \text { auto }
$$

lemma wn-c-split-aux:

assumes
$W N$: wn-c $\Delta c \mu$ and
$H F M T[\operatorname{simp}]: c=c 1 @ \pi \# c 2$ and
$C:!!\mu 1$ xs $\mu 2 . \llbracket \mu=\mu 1 @ x s \# \mu 2 ; w n-\pi \Delta \pi x s ; w n-c \Delta c 1 \mu 1 ; w n-c \Delta c 2 \mu 2$; locks $-\mu \mu 1 \cap$ set $x s=\{ \} ;$ locks $-\mu \mu 1 \cap$ locks $-\mu \mu 2=\{ \} ;$ set $x s \cap$ locks $-\mu \mu 2=\{ \}$

$$
\rrbracket \Longrightarrow P
$$

shows P
using $W N$ [simplified]
apply (elim wn-c-append-c wn-c-prepend-c conjE)
apply (rule C)
apply (auto)
done
Well-nestedness of configurations is preserved by lock-sensitive steps.

```
lemma (in LDPN) wnc-preserve-singlestep:
    assumes
    A: \(\left((c\right.\), locks- \(\left.\mu \mu), l,\left(c^{\prime}, X^{\prime}\right)\right) \in l d p n t r \Delta \quad\) wn-c \(\Delta c \mu\) and
    \(C:!!\mu^{\prime} . \llbracket X^{\prime}=\) locks- \(\mu \mu^{\prime} ;\) wn-c \(\Delta c^{\prime} \mu \rrbracket \Longrightarrow P\)
    shows \(P\)
proof -
    from \(A\) have \(T R:\left(c, l, c^{\prime}\right) \in d p n t r \Delta\) and \(L V\) : lock-valid \((\) locks- \(\mu \mu) l X^{\prime}\)
    by (auto simp add: ldpntr-def)
    from \(T R\) show ?thesis proof (cases rule: dpntr.cases)
    case (dpntr-no-spawn p \(\left.\gamma-p^{\prime} w c 1 r c 2\right)\)
    hence
                FMT[simp]: \(c=c 1 @(p, \gamma \# r) \# c \mathcal{2} \quad c^{\prime}=c 1 @\left(p^{\prime}, w @ r\right) \# c \mathcal{2}\) and
                \(R:\left(p, \gamma \hookrightarrow_{l} p^{\prime}, w\right) \in \Delta\)
        by auto
    from wn-c-split-aux[OF A(2) FMT(1)] obtain \(\mu 1\) xs \(\mu 2\) where
            [simp]: \(\mu=\mu 1\) @ xs \# \(\mu 2\) and
            WNS: wn- \(\Delta(p, \gamma \# r)\) xs wn-c \(\Delta c 1 \mu 1 \quad w n-c \Delta c 2 \mu 2\) and
            DISJ: locks \(-\mu \mu 1 \cap\) set \(x s=\{ \} \quad\) locks \(-\mu \mu 1 \cap\) locks \(-\mu \mu 2=\{ \}\)
                set \(x s \cap\) locks \(-\mu \mu 2=\{ \}\)
            obtain \(x s^{\prime}\) where
            \(w n-\pi \Delta\left(p^{\prime}, w @ r\right) x s^{\prime} \quad X^{\prime}=\left(l o c k s-\mu\left(\mu 1 @ x s^{\prime} \# \mu 2\right)\right)\)
            locks- \(\mu \mu 1 \cap\) set \(x s^{\prime}=\{ \} \quad\) set \(x s^{\prime} \cap\) locks \(-\mu \mu 2=\{ \}\)
            proof (cases l)
            case LNone[simp]
            from that[OF wn- \(\pi\)-none[OF R[simplified] WNS(1)]] DISJ LV show ?thesis
                by \(\operatorname{simp}\)
    next
            case \((L A c q x)[s i m p]\)
            from that \([\) OF wn- \(\pi-a c q[O F R[\) simplified \(] ~ W N S(1)]] L V D I S J\) show ?thesis
                by simp
```

```
    next
    case (LRel x)[simp]
    from wn-\pi-rel[OF R[simplified] WNS(1)] obtain xs' where
            [simp]:xs=x#xs' and
                1: x\not\inset xs' and
                2:wn-\pi \Delta( }\mp@subsup{p}{}{\prime},w@r)x\mp@subsup{s}{}{\prime
    from 1 LV DISJ show ?thesis by (rule-tac that[OF 2]) auto
    qed
    with WNS(2,3) DISJ(2) show P
    by (rule-tac \mp@subsup{\mu}{}{\prime}=\mu1@xs'#\mu2 in C) (auto intro!: wn-c-appendI wn-c-prependI)
next
    case (dpntr-spawn p \gamma-ps ws p' w c1rc2)
    hence
        FMT[simp]: c=c1 @ ( p,\gamma# r) # c2
                    c}=c1@(ps,ws)#(\mp@subsup{p}{}{\prime},w@r)#c2 and
        R:(p,\gamma \hookrightarrowl ps,ws \sharp p',w)\in\Delta
        by auto
    from R obtain ll where [simp]: l=LNone ll by (cases l) auto
    from wn-c-split-aux[OF A(2) FMT(1)] obtain \mu1 xs \mu2 where
        [simp]: }\mu=\mu1@xs # \mu2 and
        WNS:wn-\pi \Delta (p,\gamma # r) xs wn-c \Delta c1 \mu1 wn-c \Delta c2 \mu2 and
        DISJ: locks-\mu \mu1\cap set xs ={} locks- }\mu\mu1\cap\mathrm{ locks- }\mu\mu2={
            set xs \cap locks- }\mu\mu2={
    from wn-\pi-spawn1[OF R WNS(1)] wn-\pi-spawn2[OF R WNS(1)]
            WNS(2,3) DISJ
    have wn-c \Delta c'(\mu1@[]#xs#\mu2)
        by (auto intro!: wn-c-appendI wn-c-prependI)
    thus ?thesis using LV by (rule-tac \mp@subsup{\mu}{}{\prime}=\mu1@[]#xs#\mu2 in C) auto
    qed
qed
lemma (in LDPN) wnc-preserve:
    assumes A: ((c,locks-\mu \mu),ll,(c',X'))\inldpntrc \Delta wn-c\Delta c \mu and
            C:!! }\mp@subsup{\mu}{}{\prime}.\llbracket\mp@subsup{X}{}{\prime}=locks-\mu \mp@subsup{\mu}{}{\prime};wn-c\Delta\mp@subsup{c}{}{\prime}\mu\rrbracket\Longrightarrow
        shows P
proof -
    {
        fix c X \mull c' X'P
```



```
        C:!! ' ' \llbracketX'=locks-\mu \mu}\mp@subsup{\mu}{}{\prime};wn-c\Delta\mp@subsup{c}{}{\prime}\mu\rrbracket\Longrightarrow
    hence P
    proof (induct arbitrary: }\mu\mathrm{ P rule: trcl-pair-induct)
            case empty thus ?case by auto
    next
            case (cons cx l ch Xh ll c' X' }\muP\mathrm{ ) note [simp]= <x=locks- }\mu\mu
            from wnc-preserve-singlestep[OF cons.hyps(1)[simplified] cons.prems(1)]
            obtain }\mp@subsup{\mu}{}{\prime}\mathrm{ where P: wn-c | ch }\mp@subsup{\mu}{}{\prime}\quadXh=locks- \mu \mu'
```

```
            from cons.hyps(3)[OF P] cons.prems(3) show ?case by blast
    qed
    } with A C show ?thesis by blast
qed
```


10.3 Well-Nestedness Condition on Trees

Now we define well-nestedness on scheduling trees. Note that scheduling trees that contain spawn steps with locks interaction are not well-nested.

We define two equivalent formulations of well-nestedness of a tree:

```
fun wn-t' :: ('P,'\Gamma,'L,'X) lex-tree }\mp@subsup{=>}{}{\prime}\mp@subsup{}{}{\prime}X\mathrm{ list }=>\mathrm{ bool where
    wn-t'}(NLEAF\pi) \mu\longleftrightarrow distinct \mu |
    wn-t' (NNOSPAWN (LNone l) t) }\mu\longleftrightarrowwn-\mp@subsup{t}{}{\prime}t\mu
    wn-t'(NSPAWN (LNone l) ts t) }\mu\longleftrightarrowwn-\mp@subsup{t}{}{\prime}t\mu\wedgewn-t'ts []
    wn-t'}(NNOSPAWN (LAcq x) t) \mu\longleftrightarrowwn-t't (x#\mu)\wedge x\not\inset \mu
    wn-t'}(NNOSPAWN (LRel x) t) \mu\longleftrightarrow \longleftrightarrow
        (\exists\mp@subsup{\mu}{}{\prime}.\mu=x#\mp@subsup{\mu}{}{\prime}\wedgewn-\mp@subsup{t}{}{\prime}t\mp@subsup{\mu}{}{\prime}\wedgex\not\inset \mp@subsup{\mu}{}{\prime})|
    wn-t' - < \longleftrightarrow False
```

inductive $w n-t::\left({ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L,{ }^{\prime} X\right)$ lex-tree \Rightarrow ' X list \Rightarrow bool where
distinct $\mu \Longrightarrow w n-t(N L E A F \pi) \mu$
wn-t $t \mu \Longrightarrow w n-t$ (NNOSPAWN (LNone l) t) $\mu \mid$
$\llbracket w n-t t \mu$; wn-t ts [] 】 $\Longrightarrow w n-t(N S P A W N(L N o n e ~ l) ~ t s ~ t) ~ \mu \mid ~$
$\llbracket w n-t t(x \# \mu) ; x \notin$ set $\mu \rrbracket \Longrightarrow w n-t($ NNOSPAWN $($ LAcq $x) t) \mu \mid$
$\llbracket w n-t t \mu ; x \notin \operatorname{set} \mu \rrbracket \Longrightarrow w n-t(N N O S P A W N($ LRel $x) t)(x \# \mu)$

inductive lock-valid-xs where

```
distinct xs \(\Longrightarrow\) lock-valid-xs (LNone l) xs xs
\(\llbracket\) distinct \(x s ; x \notin\) set \(x s \rrbracket \Longrightarrow\) lock-valid-xs (LRel \(x)(x \# x s) x s \mid\)
\(\llbracket\) distinct \(x s ; x \notin\) set \(x s \rrbracket \Longrightarrow\) lock-valid-xs \((\) LAcq \(x)\) xs ( \(x \# x s\) )
```

The two formulations of well-nestedness of trees are, indeed, equivalent:

```
lemma wnt-eq-wnt':wn-t t \mu =wn-t't \mu
    apply safe
    apply (induct rule: wn-t.induct)
    apply auto
    apply (induct rule: wn-t'.induct)
    apply (auto intro: wn-t.intros)
    done
```

Well-nestedness of trees also implies distinctness of the lock stacks
lemma wnt-distinct: wn-t $t \mu \Longrightarrow$ distinct μ
by (induct rule: wn-t.induct) auto
lemma wnt-distinct': wn-t' t ms \Longrightarrow distinct ms using wnt-distinct wnt-eq-wnt ${ }^{\prime}$ by auto
lemma all-t-wnt-distinct: $\forall t c^{\prime}$. tsem $\Delta(q, w) t c^{\prime} \longrightarrow w n-t t \mu \Longrightarrow$ distinct μ by (auto intro: wn-t.intros wnt-distinct)

10.4 Well-Nestedness of Hedges

The well-nestedness property of a hedge expresses that each tree is wellnested, and the allocated locks of the trees are consistent.

Consistency of a list of lock stacks. $\mu=s_{1} \ldots s_{n}$ is consistent, iff all s_{i} are distinct and $\forall i j . i \neq j \longrightarrow$ set $s_{i} \cap$ set $s_{j}=\{ \}$.
fun cons- μ :: 'X list list \Rightarrow bool where
cons- $\mu[] \longleftrightarrow$ True \mid
cons $-\mu(x s \# \mu) \longleftrightarrow$ cons $-\mu \mu \wedge$ distinct $x s \wedge$ set $x s \cap$ locks $-\mu \mu=\{ \}$
A hedge $h=t_{1} \ldots t_{n}$ is well-nested w.r.t. a list $\mu=s_{1} \ldots s_{n}$ of lock stacks ($w n-h h \mu$), iff all t_{i} are well-nested w.r.t. stack s_{i} and μ is consistent.
fun $w n-h$ where

```
wn-h [] [] \(\longleftrightarrow\) True |
\(w n-h(t \# h)(x s \# \mu) \longleftrightarrow w n-h h \mu \wedge\) set \(x s \cap\) locks \(-\mu \mu=\{ \} \wedge\) wn-t't \(t\) ss \(\mid\)
wn-h \(--\longleftrightarrow\) False
```

lemma cons- μ-append $[$ simp $]$:
cons $-\mu(\mu 1 @ \mu 2) \longleftrightarrow$ cons $-\mu \mu 1 \wedge$ cons $-\mu \mu 2 \wedge$ locks $-\mu \mu 1 \cap$ locks $-\mu \mu 2=\{ \}$ by (induct $\mu 1$ arbitrary: $\mu 2$) auto

10.4.1 Auxilliary Lemmas about wn-h

lemma $w n$-h-simps $[\operatorname{simp}]$:
$w n-h h[] \longleftrightarrow h=[]$
$w n-h[] \mu \longleftrightarrow \mu=[]$
apply (induct h)
apply auto
apply (induct μ)
apply auto
done
lemma wn-h-length: wn-h $h \mu \Longrightarrow$ length $h=$ length μ
by (induct $h \mu$ rule: wn-h.induct) auto
lemma $w n$-h-prepend-h:
【wn-h (t\#h) μ;
$!!x s \mu^{\prime} . \llbracket \mu=x s \# \mu^{\prime} ; w n-h h \mu^{\prime} ;$ set $x s \cap$ locks- $\mu \mu^{\prime}=\{ \} ; w n-t^{\prime} t x s \rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
by (induct μ arbitrary: $t h$) auto
lemma $w n$ - h-prepend- μ :
【 wn-h h (xs\# $\mu)$;
$!!t h^{\prime} . \llbracket h=t \# h^{\prime} ; w n-h h^{\prime} \mu$; set $x s \cap$ locks- $\mu \mu=\{ \} ; w n-t^{\prime} t x s \rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
by (induct h arbitrary: $s \mu$) auto
lemma wn-h-append-h-helper:

```
assumes
    A:wn-hh \mu h1@h2=h and
    C:!! 1 1 \mu2.\llbracket |= L1@ L2 ^ wn-h h1 \mu1 ^wn-h h2 \mu2 ^
                locks-\mu \mu1 \cap locks- }\mu \mu2={}\\Longrightarrow
    shows P
    using A C
    apply (induct h \mu arbitrary: h1 h2 P rule: wn-h.induct)
    apply auto
    apply fastsimp
    apply (case-tac h1)
    apply fastsimp
    apply auto
proof -
    case goal1
    show P
    apply (rule goal1(1))
    apply simp
    apply (rule-tac ? }\mu1.0=xs#\mu1 and ? \mu2.0 = <2 in goal1(2)
    apply (insert goal1(3-))
    apply auto
    done
qed
lemma wn-h-append-h:
    \llbracketwn-h(h1@h2) \mu;
    !! \mu1 \mu2. \llbracket \mu= 11@ %2 ^ wn-h h1 \mu1 ^wn-h h2 \mu2 ^
```



```
    \LongrightarrowP
    using wn-h-append-h-helper
    by blast
lemma wn-h-append- }\mu\mathrm{ -helper:
    assumes
    A:wn-h h \mu \mu1@\mu2= = and
    C:!!h1 h2. \llbracketh=h1@h2 ^ wn-h h1 \mu1 ^ wn-h h2 \mu2 ^
    locks-\mu \mu1\cap locks- }\mu\textrm{\mu}={\mp@code{{}\\Longrightarrow
    shows P
    using A C
    apply (induct h }\mu\mathrm{ arbitrary: }\mu1 \mu2 P rule:wn-h.induct
    apply auto
    apply (case-tac \mu1)
    apply fastsimp
    apply auto
proof -
    case goal1
    show P
    apply (rule goal1(1))
    apply simp
    apply (rule-tac ?h1.0 = t#h1 and ?h2.0 = h2 in goal1(2))
```

```
    apply (insert goal1 (3-))
    apply auto
    done
qed
lemma wn-h-append- \(\mu\) :
    【wn-h h ( \(\mu 1\) @ \(\mu 2\) );
        !!h1 h2. \(\llbracket h=h 1 @ h 2 \wedge w n-h h 1 \mu 1 \wedge w n-h h 2 \mu 2 \wedge\)
            locks \(-\mu \mu 1 \cap\) locks \(-\mu \mu 2=\{ \}\)
            \(\rrbracket \Longrightarrow P\)
    \(\rrbracket \Longrightarrow P\)
    using wn-h-append- \(\mu\)-helper by blast
lemma wn-h-appendI:
    \(\llbracket w n-h h 1 \mu 1 ; w n-h h 2 \mu 2 ;\) locks \(-\mu \mu 1 \cap\) locks \(-\mu \mu 2=\{ \} \rrbracket \Longrightarrow\)
        wn-h(h1@h2) ( \(\mu 1\) @ \(\mu 2\) )
    by (induct h1 \(\mu 1\) arbitrary: h2 \(\mu 2\) rule: wn-h.induct) auto
lemma wn-h-prependI:
    \(\llbracket w n-t^{\prime} t x s ;\) wn-h \(h \mu\); set \(x s \cap\) locks \(-\mu \mu=\{ \} \rrbracket \Longrightarrow w n-h(t \# h)(x s \# \mu)\)
    by auto
lemma wn-h-singlehE: \(\llbracket w n-h[t] \mu ;!!x s . \llbracket \mu=[x s] ; w n-t^{\prime} t x s \rrbracket \Longrightarrow P \rrbracket \Longrightarrow P\)
    by (cases \(\mu\) ) auto
Auxilliary lemma to split the list of lock－stacks w．r．t．to that a hedge is well－nested by some tree in that hedge．
```

```
lemma wn-h-split-aux:
```

lemma wn-h-split-aux:
assumes
assumes
$W N$: wn-h $h \mu$ and
$W N$: wn-h $h \mu$ and
HFMT[simp]: $h=h 1 @ t \# h 2$ and
HFMT[simp]: $h=h 1 @ t \# h 2$ and
$C:!!\mu 1$ xs μ 2. 【
$C:!!\mu 1$ xs μ 2. 【
$\mu=\mu 1 @ x s \# \mu 2$;
$\mu=\mu 1 @ x s \# \mu 2$;
wn-t' t xs; wn-h h1 $\mu 1$; wn-h h2 $\mu 2$;
wn-t' t xs; wn-h h1 $\mu 1$; wn-h h2 $\mu 2$;
locks $-\mu \mu 1 \cap$ set $x s=\{ \} ;$ locks $-\mu \mu 1 \cap$ locks $-\mu \mu 2=\{ \} ;$
locks $-\mu \mu 1 \cap$ set $x s=\{ \} ;$ locks $-\mu \mu 1 \cap$ locks $-\mu \mu 2=\{ \} ;$
set $x s \cap$ locks $-\mu \mu 2=\{ \}$
set $x s \cap$ locks $-\mu \mu 2=\{ \}$
$\rrbracket \Longrightarrow P$
$\rrbracket \Longrightarrow P$
shows P
shows P
using $W N[$ simplified]
using $W N[$ simplified]
apply (elim wn-h-append-h wn-h-prepend-h conjE)
apply (elim wn-h-append-h wn-h-prepend-h conjE)
apply (rule C)
apply (rule C)
apply (auto)
apply (auto)
done

```
done
```


10．4．2 Relation to Path Condition

We show that the notion of well－nestedness on paths and trees are equivalent， i．e．a configuration is well－nested w．r．t．a lock stack μ if and only if all trees from that configuration are well－nested w．r．t．μ ．

A process π is well-nested w.r.t. some stack of locks μ, if all its execution trees are well-nested w.r.t. μ :

```
definition wn- \(\pi-t \Delta \pi x s==\left(\forall t c^{\prime}\right.\). tsem \(\left.\Delta \pi t c^{\prime} \longrightarrow w n-t t x s\right)\)
definition wn-c-h \(\Delta c \mu==\left(\forall h c^{\prime} . h s e m \Delta c h c^{\prime} \longrightarrow w n-h h \mu\right)\)
lemma wn- \(\pi-t I[\) intro? \(]: \llbracket!!t c^{\prime} . t s e m \Delta \pi t c^{\prime} \Longrightarrow w n-t t x s \rrbracket \Longrightarrow w n-\pi-t \Delta \pi x s\)
    by (auto simp add: wn- \(\pi-t-d e f\) )
lemma wn-c-hI[intro?]: \(\llbracket!!h c^{\prime} . h s e m \Delta c h c^{\prime} \Longrightarrow w n-h h \mu \rrbracket \Longrightarrow w n-c-h \Delta c \mu\)
    by (auto simp add: wn-c-h-def)
lemma wn- \(\pi\)-t-distinct: wn- \(\pi-t \Delta \pi \mu \Longrightarrow\) distinct \(\mu\)
    apply (cases \(\pi\) )
    apply (unfold wn- \(\pi-t-d e f\) )
    by (auto intro: wn-t.intros wnt-distinct)
lemma wn-c-h-prepend1: assumes \(A\) : wn-c-h \(\Delta(\pi \# c)(x s \# \mu)\)
    shows wn- \(\pi-t \Delta \pi\) xs \(\quad w n-c-h \Delta c \mu \quad\) set \(x s \cap\) locks- \(\mu \mu=\{ \}\)
proof -
    from \(A\) have \(A^{\prime}:!!h c^{\prime} . h s e m \Delta(\pi \# c) h c^{\prime} \Longrightarrow w n-h h(x s \# \mu)\)
        by (auto simp add: wn-c-h-def)
    from \(A^{\prime}[\) of map NLEAF \((\pi \# c) \quad \pi \# c\), simplified \(]\)
    show set \(x s \cap\) locks \(-\mu \mu=\{ \}\)
        by auto
    show wn- \(\pi-t \Delta \pi x s\) proof
        fix \(t c^{\prime}\) assume \(A\) : tsem \(\Delta \pi t c^{\prime}\)
        from \(A^{\prime}[O F\) hsem-cons[OF A hsem-id]] show wn-t \(t\) xs
            by (auto simp add: wnt-eq-wnt')
    qed
    show wn-c-h \(\Delta c \mu\) proof
        fix \(h c^{\prime}\) assume \(A\) : hsem \(\Delta c h c^{\prime}\)
        from \(A^{\prime}[O F\) hsem-cons [OF tsem-leaf A]] show wn-h \(h \mu\) by auto
    qed
qed
lemma wn-c-h-prepend2:
    \(\llbracket w n-\pi-t \Delta \pi x s ; w n-c-h \Delta\) c \(\mu\); set \(x s \cap\) locks- \(\mu \mu=\{ \} \rrbracket \Longrightarrow\)
        \(w n-c-h \Delta(\pi \# c)(x s \# \mu)\)
    apply (auto simp add: wn-c-h-def wn- \(\pi-t-d e f\) )
    apply (erule hsem-split-single)
    apply (auto simp add: wnt-eq-wnt')
    done
lemma wn-c-h-prepend \([\) simp \(]\) :
    \(w n-c-h \Delta(\pi \# c)(x s \# \mu) \longleftrightarrow\)
    wn- \(\pi-t \Delta \pi x s \wedge w n-c-h \Delta c \mu \wedge\) set \(x s \cap\) locks- \(\mu \mu=\{ \}\)
    using wn-c-h-prepend1 wn-c-h-prepend2 by fast
```

lemma wn-c-h-empty $[$ simp $]:$ wn-c-h $\Delta c[] \longleftrightarrow(c=[])$ by (auto simp add: wn-c-h-def)

```
lemma wn-c-h-prepend-c:
    \llbracketwn-c-h \Delta (\pi#c) \mu;
```



```
            set xs \cap locks- }\mu\mp@subsup{\mu}{}{\prime}={}\rrbracket\Longrightarrow
    \LongrightarrowP
    by (cases \mu) (auto)
lemma wn-c-h-simps[simp]:wn-c-h \Delta [] }\mu\longleftrightarrow(\mu=[]
    by (unfold wn-c-h-def) (auto)
lemma (in LDPN) wn\pi2wnt: \llbrackettsem \Delta (q,w)t c'; wn-\pi \Delta (q,w) \mu\rrbracket\Longrightarrowwn-t t \mu
proof (induct arbitrary: }\mu\mathrm{ rule: tsem.induct)
    case tsem-leaf thus ?case by (auto intro: wn-t.intros dest: wn-\pi-distinct)
next
    case (tsem-nospawn q \gamma l q' wrtct' }\mu\mathrm{ ) note C=this
    show ?case proof (cases l)
        case LNone[simp]
        from C have wn-t t }
            by (rule-tac C) (auto intro: ppairs.intros C simp add: wn-\pi-def)
        thus ?thesis by (auto intro: wn-t.intros)
    next
        case (LAcq x)[simp]
        from C have wn-t t (x#\mu)
            by (rule-tac C) (auto intro: ppairs.intros C simp add: wn-\pi-def)
        moreover hence x\not\inset \mu by (auto dest: wnt-distinct)
        ultimately show ?thesis by (auto intro: wn-t.intros)
    next
        case (LRel x)[simp]
        from wn-\pi-rel[OF tsem-nospawn.hyps(1)[simplified] tsem-nospawn.prems]
        obtain }\mp@subsup{\mu}{}{\prime}\mathrm{ where [simp]: }\mu=x#\mp@subsup{\mu}{}{\prime}\quadx\not\in\mathrm{ set }\mp@subsup{\mu}{}{\prime}
        from C have wn-t t \mu'
            by (rule-tac C) (auto intro: ppairs.intros C simp add:wn-\pi-def)
        thus ?thesis by (auto intro: wn-t.intros)
    qed
next
    case (tsem-spawn q \gamma l qs ws q' w ts cs'r t ct' }\mu\mathrm{ ) note C=this
    then obtain ll where [simp]: l=LNone ll by (cases l) auto
    from C have wn-t t }
        apply simp-all
        apply (rule-tac C)
        apply (auto intro: ppairs.intros C simp add: wn-\pi-def)
        done
    moreover from tsem-spawn.hyps(1,3) tsem-spawn.prems[rule-format]
    have wn-t ts [] by (auto intro: wn-\pi-spawn2)
    ultimately show ?case by (auto intro: wn-t.intros)
qed
```

```
lemma (in LDPN) wnt2wnp:
    \llbracket p p a i r s ~ \Delta ~ ( q , w ) ~ e n ~ l ; \forall t ~ c ' . t s e m ~ \Delta ~ ( q , w ) t ~ c ' > ~ < ~ w n - t ~ t ~ \mu \rrbracket \Longrightarrow
        (\negen \longrightarrowwn-pl \mu)^(en \longrightarrowwn-pl[])
proof (induct arbitrary: }\mu\mathrm{ rule: ppairs.induct)
    case ppairs-empty thus ?case by (auto intro: all-t-wnt-distinct)
next
    case (ppairs-genenv q \gamma a qs ws q' w en l r \mu)
    have }\forallt\mp@subsup{c}{}{\prime}.tsem \Delta (qs,ws)t c' \longrightarrow wn-t t [] proof (intro allI impI),
        fix }t\mp@subsup{c}{}{\prime
        assume A: tsem \Delta (qs,ws)t c'
        from ppairs-genenv.prems[rule-format,
                    OF tsem-spawn[OF ppairs-genenv.hyps(1) A tsem-leaf]
            ]
        show wn-t t [] by (auto elim: wn-t.cases)
    qed
    from ppairs-genenv.hyps(3)[OF this] show ?case by blast
next
    case (ppairs-mvenv1 q \gamma a q' wrl )}\mathrm{ [simplified] show ?case
    proof (simp, cases a)
        case LNone[simp]
        from ppairs-mvenv1.prems have }\forallt\mp@subsup{c}{}{\prime}.tsem \Delta ( q',w @ r)t c' \longrightarrow wn-t t \mu
        by auto (drule tsem-nospawn[OF ppairs-mvenv1.hyps(1)], auto elim: wn-t.cases)
        with ppairs-mvenv1.hyps(3) show wn-p l [] by auto
    next
        case (LAcq x)
        with tsem-nospawn[OF ppairs-mvenv1.hyps(1)] ppairs-mvenv1.prems
        show wn-p l []
            by (fastsimp intro: ppairs-mvenv1.hyps(3)[rule-format] elim:wn-t.cases)
    next
        case (LRel x) note [simp]=this
        from tsem-nospawn[OF ppairs-mvenv1.hyps(1)[simplified] tsem-leaf]
        have T: Ex (tsem }
                            (q,\gamma# r)
                                    (NNOSPAWN (LRel x) (NLEAF ( }\mp@subsup{q}{}{\prime},w@r))
                )
            by blast
        obtain }\mp@subsup{\mu}{}{\prime}\mathrm{ where [simp]: }\mu=x#\mp@subsup{\mu}{}{\prime}\quadx\not\in\mathrm{ set }\mp@subsup{\mu}{}{\prime
            apply (rule wn-t.cases[OF ppairs-mvenv1.prems[rule-format, OF T]])
            by simp-all
        from tsem-nospawn[OF ppairs-mvenv1.hyps(1)] ppairs-mvenv1.prems
        show wn-pl []
            by (fastsimp intro: ppairs-mvenv1.hyps(3)[rule-format] elim: wn-t.cases)
        qed
next
    case (ppairs-mvenv2 q \gamma a qs ws q' wr l \mu)[simplified]
    show ?case
```

```
    using tsem-spawn[OF ppairs-mvenv2.hyps(1)] ppairs-mvenv2.prems
        ppairs-mvenv2.hyps(1)
    apply (cases a)
    apply (blast intro: ppairs-mvenv2.hyps(3)[rule-format] elim:wn-t.cases)
    apply auto
    done
next
    case (ppairs-prepend1 q \gamma a q' wrl |)[simplified] show ?case
    proof (simp, cases a)
        case LNone
        with tsem-nospawn[OF ppairs-prepend1.hyps(1)] ppairs-prepend1.prems
        show wn-p (a#l) \mu
        by (fastsimp intro: ppairs-prepend1.hyps(3)[rule-format] elim: wn-t.cases)
    next
        case (LAcq x)
        with tsem-nospawn[OF ppairs-prepend1.hyps(1)] ppairs-prepend1.prems
        show wn-p (a#l) \mu
            by (fastsimp intro: ppairs-prepend1.hyps(3)[rule-format] elim:wn-t.cases)
    next
        case (LRel x) note [simp]=this
        from tsem-nospawn[OF ppairs-prepend1.hyps(1)[simplified] tsem-leaf] have
            T:Ex (tsem \Delta (q,\gamma# r)(NNOSPAWN (LRel x) (NLEAF ( }\mp@subsup{q}{}{\prime},w@r)))
            by blast
    obtain }\mp@subsup{\mu}{}{\prime}\mathrm{ where [simp]: }\mu=x#\mp@subsup{\mu}{}{\prime}\quadx\not\in\mathrm{ set }\mp@subsup{\mu}{}{\prime
                apply (rule wn-t.cases[OF ppairs-prepend1.prems[rule-format, OF T]])
                by simp-all
    from tsem-nospawn[OF ppairs-prepend1.hyps(1)] ppairs-prepend1.prems
    show wn-p (a#l) \mu
        by (fastsimp intro: ppairs-prepend1.hyps(3)[rule-format] elim: wn-t.cases)
    qed
next
    case (ppairs-prepend2 q \gamma a qs ws q' wr l \mu)[simplified]
    from ppairs-prepend2.prems[rule-format] have
        H:!!c t. tsem \Delta (q,\gamma #r) t c \Longrightarrowwn-t t \mu by blast
    show ?case using ppairs-prepend2.hyps(1)
        by (cases a)
            (auto intro: ppairs-prepend2.hyps(3)[rule-format]
                dest: tsem-spawn[OF ppairs-prepend2.hyps(1) tsem-leaf] H
                    elim: wn-t.cases
        )
qed
```

theorem (in LDPN) wn \quad-eq-wn $\pi t: w n-\pi \Delta \pi \mu \longleftrightarrow w n-\pi-t \Delta \pi \mu$ using wnt2wnp by (auto intro: wn π 2wnt simp add: wn- π-def $w n-\pi-t-d e f$)
theorem (in LDPN) wnc-eq-wnch: wn-c $\Delta c \mu \longleftrightarrow w n-c-h \Delta c \mu$

```
apply rule
apply (induct c arbitrary: }\mu\mathrm{ )
apply simp
apply (erule wn-c-prepend-c)
apply (simp add:wn\pi-eq-wn\pit)
apply (induct c arbitrary: }\mu\mathrm{ )
apply (auto simp add: wn-c-h-def) [1]
apply (erule wn-c-h-prepend-c)
apply (simp add: wn\pi-eq-wn\pit)
done
```


10.5 Well-Nestedness and Tree Scheduling

In this section we show that well-nestedness is invariant under the tree scheduling relation. This is important, as it shows that we cannot reach non-well-nested trees from well-nested ones.

```
lemma wnt-preserve-nospawn:
    【lock-valid (set xs) l \(X^{\prime}\); wn-t' \((N N O S P A W N l t) x s \rrbracket \Longrightarrow\)
        \(\exists x s^{\prime} . X^{\prime}=\) set \(x s^{\prime} \wedge\) lock-valid-xs l xs \(x s^{\prime} \wedge\) wn-t \(t x s^{\prime}\)
    apply (cases l)
    apply (rule-tac \(x=x s\) in exI)
    apply (force intro: lock-valid-xs.intros dest: wnt-distinct')
    apply (rule-tac \(x=(X \# x s)\) in exI)
    apply (force intro: lock-valid-xs.intros dest: wnt-distinct')
    apply (rule-tac \(x=t l x s\) in exI)
    apply (force simp add: insert-ident intro: lock-valid-xs.intros dest: wnt-distinct')
    done
lemma wn-h-preserve-nospawn:
    【lock-valid (locks- \(\mu \mu) l X^{\prime} ; w n-h(h 1 @(N N O S P A W N l t) \# h 2) ~ \mu \rrbracket \Longrightarrow\)
        \(\exists \mu^{\prime} . X^{\prime}=\) locks \(-\mu \mu^{\prime} \wedge w n-h(h 1 @ t \# h 2) \mu^{\prime}\)
    apply (cases l)
    apply (auto elim!: wn-h-prepend-h wn-h-append-h)
    apply (rule-tac \(x=\mu 1 @ x s \# \mu^{\prime}\) in \(e x I\) )
    apply (force intro!: wn-h-appendI)
    apply (rule-tac \(x=\mu 1 @(X \# x s) \# \mu^{\prime}\) in \(\left.e x I\right)\)
    apply (force intro!: wn-h-appendI)
    apply (rule-tac \(x=\mu 1 @\left(\mu^{\prime} a\right) \# \mu^{\prime}\) in exI)
    apply (rule conjI)
    apply (rule iffD1[OF insert-ident])
    apply assumption
    apply (auto intro!: wn-h-appendI)
    done
```

All-in-one lemma for reasoning about a non-spawning step on a wellnested hedge. In words: If we make a non-speaining step on a well-nested hedge:

- We can split the list of lock stacks according to the tree that made the
step,
- The lock stack of the tree that made the step changes according to the label (cf. lock-valid-xs),
- And the resulting hedge is well-nested w.r.t. the new locks, too.

```
lemma wn-h-split-nospawn:
assumes
A: lock-valid (locks- \(\mu \mu) l X h \quad w n-h(h 1 @(N N O S P A W N l t) \# h 2) \mu\) and
\(C:!!\mu 1\) xs \(\mu 2\) xsh. \(\mathbb{I}\)
    \(\mu=\mu 1 @ x s \# \mu 2\);
    Xh=locks- \(\mu \mu 1 \cup\) set \(x s h \cup\) locks \(-\mu \mu 2\);
    lock-valid-xs l xs xsh;
    wn-t' (NNOSPAWN l t) xs;
    \(w n-t^{\prime} t x s h\);
    wn-h h1 \(\mu 1\);
    wn-h h2 \(\mu 2\);
    \(w n-h(h 1 @ t \# h 2)(\mu 1 @ x s h \# \mu 2)\);
    locks \(-\mu \mu 1 \cap\) set \(x s=\{ \}\);
    locks \(-\mu \mu 1 \cap\) set xsh \(=\{ \}\);
    locks \(-\mu \mu 1 \cap\) locks \(-\mu \mu 2=\{ \} ;\)
    locks \(-\mu \mu 2 \cap\) set \(x s=\{ \} ;\)
    locks \(-\mu \mu 2 \cap\) set \(x s h=\{ \}\)
\(\rrbracket \Longrightarrow P\)
shows \(P\)
proof -
from \(A\) (2) obtain \(\mu 1\) xs \(\mu 2\) where
    SPLIT-simp [simp]: \(\mu=\mu 1 @ x s \# \mu 2\) and
    SPLIT: wn-h h1 \(\mu 1 \quad w n-t^{\prime}(N N O S P A W N l t) x s \quad w n-h h 2 \mu 2\)
        locks \(-\mu \mu 1 \cap\) set \(x s=\{ \} \quad\) locks \(-\mu \mu 1 \cap\) locks \(-\mu \mu 2=\{ \}\)
        set \(x s \cap\) locks \(-\mu \mu 2=\{ \}\)
    by (fastsimp elim: wn-h-prepend-h wn-h-append-h)
show ?thesis proof (cases l)
    case LNone[simp]
    from SPLIT(2) have wn-t' \(t\) xs lock-valid-xs l xs xs
    by (auto intro: lock-valid-xs.intros dest: wnt-distinct')
    moreover with SPLIT have wn-h (h1@t\#h2) ( \(\mu 1\) @ \(x s \# \mu 2\) )
    by (auto intro!: wn-h-appendI wn-h-prependI)
    ultimately show ?thesis using \(A(1)\) [simplified] SPLIT SPLIT-simp
    by (blast intro!: C)
next
    case (LRel \(x\) ) \([\) simp \(]\)
    from SPLIT(2) obtain \(x s h\) where
    [simp]: \(x s=x \# x s h\) and
                \(W N^{\prime}: w n-t^{\prime} t\) xsh \(x \notin\) set \(x s h\)
    by auto
    moreover with SPLIT have wn-h (h1@t\#h2) ( \(\mu 1\) @xsh\# \(\mu\) 2)
    by (auto intro!: wn-h-appendI wn-h-prependI)
    moreover from wnt-distinct \({ }^{\prime}\left[O F W N^{\prime}(1)\right] W N^{\prime}(2)\) have
```

```
        lock-valid-xs l xs xsh
        by (auto intro: lock-valid-xs.intros)
    ultimately show ?thesis
        using A(1)[simplified] WN' SPLIT SPLIT-simp by (fastsimp intro!: C)
    next
    case (LAcq x)[simp]
    from SPLIT(2) have wn-t't (x#xs) lock-valid-xs l xs (x#xs)
        by (auto intro: lock-valid-xs.intros dest!: wnt-distinct')
    moreover with SPLIT A(1)[simplified] have wn-h(h1@t#h2) ( }\mu1@(x#xs)#\mu2
        by (auto intro!: wn-h-appendI wn-h-prependI)
    ultimately show ?thesis
        using A(1)[simplified] SPLIT SPLIT-simp
        apply (rule-tac C)
        apply assumption+
        defer
        apply assumption+
        apply auto
        done
    qed
qed
lemma wn-h-preserve-spawn:
    \llbracketlock-valid (locks-\mu \mu)l l'; wn-h(h1@(NSPAWN l ts t)#h2) }\mu\rrbracket
        \exists}\mp@subsup{\mu}{}{\prime}.\mp@subsup{X}{}{\prime}=locks-\mu \mp@subsup{\mu}{}{\prime}\wedge wn-h(h1@ts#t#h2) \mu'
    apply (cases l)
    apply (auto elim!: wn-h-prepend-h wn-h-append-h)
    apply (rule-tac x=\mu1@[]#xs# #}\mp@subsup{\mu}{}{\prime}\mathrm{ in exI)
    apply (auto intro!: wn-h-appendI)
    done
lemma wn-h-preserve-spawn':
    \llbracketlock-valid (locks-\mu \mu) l X'; wn-h(h1@(NSPAWN l ts t)#h2) \mu\rrbracket\Longrightarrow
    \exists\mu1 xs \mu2. }\mu=\mu1@xs#\mu2\wedge \mp@subsup{X}{}{\prime}=locks-\mu \mu1 \cup set xs \cup locks- \mu \mu2 ^
        wn-h(h1@ts#t#h2)( }\mu1@[]#xs#\mu2
    apply (cases l)
    apply (auto elim!: wn-h-prepend-h wn-h-append-h)
    apply (rule-tac x= 11 in exI)
    apply (rule-tac x=xs in exI)
    apply (rule-tac x= 㐌 in exI)
    apply (auto intro!: wn-h-appendI)
    done
lemma wn-h-preserve-rel:
    \llbracket(h,l,h')\insched-rel; lock-valid (locks- }\mu\mu)l\mp@subsup{X}{}{\prime};\mathrm{ wn-h h }\mu\mathrm{ ;
        !! }\mp@subsup{\mu}{}{\prime}.\llbracket\mp@subsup{X}{}{\prime}=locks-\mu \mp@subsup{\mu}{}{\prime};wn-h \mp@subsup{h}{}{\prime}\mu\rrbracket\Longrightarrow
    \LongrightarrowP
by (auto elim!: sched-rel.cases dest: wn-h-preserve-spawn wn-h-preserve-nospawn)
lemma wn-h-spawn-simps[simp]:
```

```
\negwn-h(h @ (NSPAWN (LAcq x) ts t) # h') }
\negw-h(h@ (NSPAWN (LRel x) ts t) # h') \mu
```

by (auto elim!: wn-h-prepend-h wn-h-append-h)
lemmas wn-h-spawn-simps-add $[$ simp $]=$
wn-h-spawn-simps[where $h=[]$, simplified $]$
$w n$-h-spawn-simps $[$ where $h=[t x]$, simplified, standard $]$
lemma wn-h-spawn-imp-LNoneE:
$\llbracket w n-h\left(h @(N S P A W N l t s t) \# h^{\prime}\right) \mu ;!!l l . l=L N o n e l l \Longrightarrow P \rrbracket \Longrightarrow P$
by (cases l) auto
end

11 Acquisition Structures

theory Acqh
imports Main Semantics WellNested SpecialLemmas
begin

11.1 Utilities

11.1.1 Combinators for option-datatype

Extending a function to option datatype, where None indicates failure

```
fun opt-ext1 \(::\left({ }^{\prime} a \Rightarrow{ }^{\prime} b\right.\) option \() \Rightarrow^{\prime} a\) option \(\Rightarrow{ }^{\prime} b\) option where
    opt-ext1 f None \(=\) None \(\mid\)
    opt-ext1 \(f(\) Some \(x)=f x\)
fun opt-ext2 :: \(\left({ }^{\prime} a \Rightarrow{ }^{\prime} b \Rightarrow^{\prime} c\right.\) option \() \Rightarrow{ }^{\prime} a\) option \(\Rightarrow{ }^{\prime} b\) option \(\Rightarrow{ }^{\prime} c\) option
    where
    opt-ext2 f None \(-=\) None
    opt-ext2 \(f\) - None \(=\) None \(\mid\)
    opt-ext2 \(f\) (Some \(x)(\) Some \(y)=f x y\)
lemma opt-ext2-simps[simp]:
    opt-ext2 \(f x\) None \(=\) None by \((\) cases \(x)\) auto
lemma opt-ext2-alt:
    opt-ext2 \(f x y=(\)
        case \(x\) of
            None \(\Rightarrow\) None
            Some \(x x \Rightarrow\) (case \(y\) of
                None \(\Rightarrow\) None |
```

```
            Some yy mfxx yy
    )
)
by (cases (f,x,y) rule: opt-ext2.cases) auto
```


11.2 Acquisition Structures

Acquisition structures are an abstraction of scheduling trees, that are sufficient to decide whether a tree is schedulable. The basic concept of acquisition structures was invented by Kahlon et al. [4, 3] as abstraction of a linear execution of a single pushdown system. We extend this concept here to scheduling trees of DPNs.

An acquisition or release history is a partial map from locks to set of locks. This is the same representation as in [3]. Another, equivalent representation is as a set of locks and a graph on locks.

An acquisition structure is a triple of a release history, a set of locks and an acquisition history.

```
types
    'X ah ='X=>'X set option
    'X as ='X ah > 'X set > 'X ah
```

This is a collection of the common split-lemmas required when reasoning about acquisition histories
lemmas eahl-splits $=$ option.split-asm list.split-asm prod.split-asm split-if-asm

11.2.1 Parallel Composition

```
fun as-comp :: ' \(X\) as \(\Rightarrow^{\prime} X\) as \(\Rightarrow^{\prime} X\) as option where
    as-comp \((l, u, e)\left(l^{\prime}, u^{\prime}, e^{\prime}\right)=(\)
        if dom \(l \cap \operatorname{dom} l^{\prime}=\{ \} \wedge \operatorname{dom} e \cap \operatorname{dom} e^{\prime}=\{ \}\) then
            Some ( \(\left.l++l^{\prime}, u \cup u^{\prime}, e++e^{\prime}\right)\)
        else
            None
    )
```

definition as-comp-op
:: ' X as option $\Rightarrow^{\prime} X$ as option $\Rightarrow^{\prime} X$ as option (infixr || 56) where
op $\|==$ opt-ext2 as-comp
lemma as-comp-op-simps[simp]:
None $\| x=$ None
$x \|$ None $=$ None
Some $a \|$ Some $b=a s$-comp $a b$
by (unfold as-comp-op-def) auto
lemma as-comp-assoc-helper:
(Some $x \|$ Some y) || Some $z=$ Some x || Some $y \|$ Some z

```
by (cases x, cases y, cases z) auto
lemma as-comp-assoc: }(x|y)|z=x|y|
    apply (cases x, simp)
    apply (cases y, simp)
    apply (cases z, simp)
    apply (simp only:as-comp-assoc-helper)
    done
interpretation as-comp-acz: ACIZ[op| Some (empty,{},empty) None]
    apply (unfold-locales)
    apply (auto simp add: as-comp-assoc)
    apply (case-tac (as-comp,x,y) rule:opt-ext2.cases)
    apply (auto simp add: map-add-comm)
    apply auto
    apply (case-tac x)
    apply simp-all
    apply (case-tac a, case-tac b)
    apply simp
    done
lemma as-comp-SomeE:
    |h1|h2 = Some (l,u,e);
    !!l1 u1 e1 l2 u2 e2. \llbracket h1=Some (l1,u1,e1); h2=Some (l2,u2,e2);
                        dom l1 \cap dom l2 = {}; dom e1 \cap dom e2 = {};
                        l=l1++l2; u=u1\cupu2; e=e1++e2
                        \LongrightarrowP
    # P
    apply (unfold as-comp-op-def)
    apply (cases h1, cases h2, simp-all)
    apply (cases h2, simp-all)
    apply (case-tac (a,aa) rule: as-comp.cases)
    apply (simp split: split-if-asm)
    apply blast
    done
```


11.2.2 Acquisition Structures of Scheduling Trees and Hedges

This function adds a set of locks to every entry in a release history. On graph interpretation, this corresponds to adding edges from any initially released lock to any lock in X.

```
definition l-add-use :: 'X ah 和X set 殒X ah where
    l-add-use l X == \lambdax. case l x of None }=>\mathrm{ None | Some Y F Some (Y UX)
```

This function removes an initially released lock x from the release history. On graph interpretation, this corresponds to removing the node x from the graph.
definition l-remove :: 'X ah $\Rightarrow^{\prime} X \Rightarrow^{\prime} X$ ah where
l-remove $l x==\lambda y$. if $y=x$ then None else $l y$
The acquisition history of a tree is defined inductively over the tree structure. Note that we assume that spawn steps have no lock operation. For spawn steps with an operation on locks, the acquisition structure is defined to be None. We further assume that a tree contains no two initial releases of the same lock. In this case, its acquisition structure has no meaning any more. However, if an execution tree contains two final acquisitions of the same lock, its acquisition structure is defined to be None.

Intuitively, the release history maps all locks that are initially released to the set of locks that have to be used before the initial release. The set of used locks contains the locks that are used by the execution tree (But not the locks that are only initially released or finally acquired). The acquisition history maps all locks that are finally acquired to the set of locks that have to be used after the final acquisition.

```
fun as :: ('P, \(\left.\Gamma,{ }^{\prime} L,{ }^{\prime} X\right)\) lex-tree \(\Rightarrow^{\prime} X\) as option where
    as \((\) NLEAF \(\pi)=\) Some (empty, \(\}\), empty \() \mid\)
    as \((\) NNOSPAWN (LNone \(l) t)=\) as \(t \mid\)
    as (NSPAWN (LNone l) ts \(t\) ) \(=\) as \(t \mathrm{t} \|\) as \(t \mid\)
    as \((\) NNOSPAWN \((L A c q x) t)=(\)
    case as \(t\) of
        None \(\Rightarrow\) None
        Some \((l, u, e) \Rightarrow\)
            if \(x \in\) dom \(l\) then
                Some (l-add-use (l-remove lx) \(\{x\}\),insert \(x u, e\) )
                else if \(x \notin\) dom \(e\) then
                    Some \((l, u, e(x \mapsto u))\)
                else
                    None
)|
as \((\) NNOSPAWN \((\) LRel \(x) t)=(\)
    case as \(t\) of
        None \(\Rightarrow\) None
        Some \((l, u, e) \Rightarrow\) Some \((l(x \mapsto\}), u, e)\)
    ) |
    as - = None
```

The aquisition structure of a hedge is the parallel composition of the acquisition structures of its trees. The acquisition structure of the empty hedge is the identity acquisition structure Some (empty, $\}$, empty).

```
fun ash :: ('P,\Gamma,'L,'X) lex-hedge }\mp@subsup{|}{}{\prime}X\mathrm{ 'X as option where
    ash [] = Some (empty,{},empty)|
    ash (t#h) = as t| ash h
lemma l-add-use-dom[simp]:dom (l-add-use l X) = dom l
    by (unfold l-add-use-def) (auto split: option.split-asm)
```

lemma l-add-use-empty[simp]: l-add-use empty $X=$ empty

```
by (rule ext) (auto simp add: l-add-use-def split: option.split)
lemma l-add-use-eq-empty[simp]:l-add-use f X = empty \longleftrightarrowf=empty
    apply (auto)
    apply (rule ext)
    apply (drule-tac x=x in fun-cong)
    apply (simp add: l-add-use-def split:option.split-asm)
    done
lemma l-add-use-add[simp]:
    l-add-use (l++l') X = l-add-use l X ++ l-add-use l' X
    apply (unfold l-add-use-def)
    apply (rule ext)
    by (auto split: option.split simp add: map-add-def)
lemma l-add-use-le:l \leql-add-use l X
    apply (auto simp add: l-add-use-def intro!: le-funI)
    apply (case-tac l x)
    apply auto
    done
lemma l-remove-add[simp]:l-remove (l1++l2) m = l-remove l1 m ++ l-remove
l2 m
    by (unfold l-remove-def map-add-def) (auto intro: ext)
lemma l-remove-no-eff[simp]: x\not\indom l \Longrightarrowl-remove l }x=
    by (unfold l-remove-def) (auto intro: ext)
lemma l-remove-dom[simp]: dom(l-remove l x) = dom l-{x}
    by (unfold l-remove-def) (auto split: split-if-asm)
lemma l-remove-app[simp]:
    l-remove l x x = None
    x\not=\mp@subsup{x}{}{\prime}\Longrightarrowl-remove l x x'=l l}\mp@subsup{x}{}{\prime
    by (unfold l-remove-def) auto
lemma l-remove-eq-empty:l-remove l x = empty \Longrightarrowdom l\subseteq{x}
    by (fastsimp simp add:l-remove-def dest: fun-cong split: split-if-asm)
lemma l-remove-le-l [simp]: l-remove l }x\leq
    by (auto simp add: l-remove-def intro: le-funI)
lemma as-ran-e-le-u: as t=Some (l,u,e)\Longrightarrow\rane\subsetequ
    apply (induct t arbitrary:l u e)
    apply fastsimp
    apply (case-tac L)
    apply (simp-all split: eahl-splits)
    apply fastsimp
    apply fastsimp
```

```
    apply (case-tac L)
    apply (simp-all)
    apply (fastsimp elim: as-comp-SomeE)
    done
lemma ash-le-u: ash h=Some (l,u,e)\Longrightarrow \ ran e\subsetequ
proof (induct h arbitrary:l u e rule: ash.induct)
    case 1 thus?case by auto
next
    case 2 thus ?case
        apply simp
        apply (erule as-comp-SomeE)
        apply (fastsimp dest!: as-ran-e-le-u)
        done
qed
lemma ash-final[simp]: final h \Longrightarrow ash h=Some (empty,{},empty)
    apply (induct h)
    apply auto
    apply (case-tac a)
    apply simp-all
    done
lemma ash-append[simp]: ash (h1@h2) = ash h1 | ash h2
    by (induct h1 arbitrary: h2) (auto simp add: as-comp-acz.simps)
lemma ash-LNone-simps[simp]:
    ash(h1@NSPAWN (LNone l) ts t#h2) = ash (h1@ts#t#h2)
    ash(h1@NNOSPAWN (LNone l) t#h2) = ash(h1@t#h2)
    by (simp-all add: as-comp-acz.simps)
```


11.3 Consistency of Acquisition Structures

The consistency criterium of an acquisition structure decides whether the corresponding hedge can be scheduled. Note that we currently do not check this criterium during construction of the acquisition structure, but only at the end, for the completely constructed acquisition structure.

The consistency criterium has two parts. The first part is a generalization of the $\neg \exists m_{1}, m_{2} . m_{1} \in h_{1}\left(m_{2}\right) \wedge m_{2} \in h_{2}\left(m_{1}\right)$-condition of [4]. There, the condition was checked for two separate acquisition histories h_{1} and h_{2} that resulted from executions of two independent pushdown systems. Here, we have one execution described as a tree. This criterium can be interpreted as checking acyclicity of a graph defined by the acquisition histories. In [4], every possible cycle has length two, hence their condition is sufficient. In our setting, a cycle may have arbitrary length (bounded only by the number of locks), hence we use a general cyclicity check.

The acquisition and release histories encode a graph between locks. For
an acquisition history e, the graph contains an edge (x, x) if x has to be finally acquired before x^{\prime} is used, that is if $x \in \operatorname{dom} e \wedge x^{\prime} \in$ the (ex)

For a release history l, the graph contains an edge $\left(x, x^{\prime}\right)$ if x has to be used before x^{\prime} is initially released, that is if $x^{\prime} \in \operatorname{dom} l \wedge x \in$ the $\left(l x^{\prime}\right)$

```
definition agraph :: ' \(X\) ah \(\Rightarrow\left({ }^{\prime} X \times^{\prime} X\right)\) set where
    agraph \(e==\left\{\left(x, x^{\prime}\right) . x \in \operatorname{dom} e \wedge x^{\prime} \in\right.\) the \(\left.(e x)\right\}\)
definition rgraph :: ' \(X\) ah \(\Rightarrow\left({ }^{\prime} X \times^{\prime} X\right)\) set where
    rgraph \(l==\left\{\left(x, x^{\prime}\right) . x^{\prime} \in \operatorname{dom} l \wedge x \in\right.\) the \(\left.\left(l x^{\prime}\right)\right\}\)
```

lemma agraph-alt: agraph $e=\left\{\left(x, x^{\prime}\right) . \exists X^{\prime}\right.$. e $x=$ Some $\left.X^{\prime} \wedge x^{\prime} \in X^{\prime}\right\}$
by (unfold agraph-def) auto
lemma rgraph-alt: rgraph $l=\left\{\left(x, x^{\prime}\right) . \exists X . l x^{\prime}=\right.$ Some $\left.X \wedge x \in X\right\}$
by (unfold rgraph-def) auto

For the same map, the acquisition graph is the converse of the release graph. This lemma makes reasoning simpler at some points, as acquisition and release histories have the same type, and cyclicity is equivalent for a graph and its converse.

```
lemma agraph-rgraph-converse: agraph \(h=(\text { rgraph } h)^{-1}\)
    by (unfold agraph-def rgraph-def) auto
lemma agraph-add-union:
    \(\llbracket d o m e \cap \operatorname{dom} e^{\prime}=\{ \} \rrbracket \Longrightarrow\) agraph \(\left(e++e^{\prime}\right)=\) agraph \(e \cup\) agraph \(e^{\prime}\)
    by (unfold agraph-def) (auto simp add: map-add-def split: option.split-asm)
lemma rgraph-add-union:
    \(\llbracket\) dom \(l \cap\) dom \(l^{\prime}=\{ \} \rrbracket \Longrightarrow\) rgraph \(\left(l++l^{\prime}\right)=\) rgraph \(l \cup\) rgraph \(l^{\prime}\)
    by (unfold rgraph-def) (auto simp add: map-add-def split: option.split-asm)
lemma agraph-domain-simp[simp]:
    Domain (agraph \(h\) ) \(=\operatorname{dom} h-\{x . h x=\) Some \(\{ \}\}\)
    by (unfold agraph-def) auto
lemma agraph-range-simp[simp]: Range (agraph h) \(=\bigcup\) ran \(h\)
    by (unfold agraph-def) (auto simp add: ran-def)
lemma rgraph-domain-simp \([\) simp \(]\) : Domain (rgraph h) \(=\bigcup\) ran \(h\)
    by (unfold rgraph-def) (auto simp add: ran-def)
lemma rgraph-range-simp [simp]:
    Range \((\) rgraph \(h)=\operatorname{dom} h-\{x . h x=\) Some \(\{ \}\}\)
    by (unfold rgraph-def) auto
lemma graph-empty[simp]:
    agraph empty \(=\{ \}\)
    rgraph empty \(=\{ \}\)
    by (auto simp add: agraph-def rgraph-def)
```

```
lemma rgraph-add-use: rgraph \((l-a d d-u s e ~ l X)=\) rgraph \(l \cup X \times \operatorname{dom} l\)
    by (unfold rgraph-def l-add-use-def) (auto split: option.split-asm)
lemma rgraph-remove: rgraph \((l\)-remove \(l x)=\) rgraph \(l-U N I V \times\{x\}\)
    by (unfold rgraph-def l-remove-def) (auto split: option.split-asm)
lemma rgraph-upd: \(x \notin\) dom \(l \Longrightarrow \operatorname{rgraph}(l(x \mapsto X))=\operatorname{rgraph} l \cup X \times\{x\}\)
    by (unfold rgraph-def) auto
lemmas rgraph-ops \(=\) rgraph-add-use rgraph-remove rgraph-upd
lemma agraph-upd: \(x \notin\) dom \(e \Longrightarrow\) agraph \((e(x \mapsto X))=\) agraph \(e \cup\{x\} \times X\)
    by (unfold agraph-def) (auto split: split-if-asm)
lemmas agraph-ops \(=\) agraph-upd
lemma rgraph-mono: \(l \leq l^{\prime} \Longrightarrow\) rgraph \(l \subseteq\) rgraph \(l^{\prime}\)
    apply (unfold rgraph-alt)
    apply auto
    apply (drule-tac \(x=b\) in le-funD)
    apply (auto elim: le-optE)
    done
lemma agraph-mono: \(e \leq e^{\prime} \Longrightarrow\) agraph \(e \subseteq\) agraph \(e^{\prime}\)
    by (simp add: agraph-rgraph-converse rgraph-mono)
```

An acquisition or release history is consistent, iff its graph is acyclic.
abbreviation cons-rh $::^{\prime} X$ ah bool where cons-rh $h==$ acyclic (rgraph h) abbreviation cons-ah $::^{\prime} X$ ah \Rightarrow bool where cons-ah $h==$ acyclic (agraph h) abbreviation cons- $h==$ cons-rh

As noted above, the cyclicity criterion is equivalent for a graph and its converse, such that we can use cons-h for both, acquisition and release histories.
lemma cons-ah-rh-eq:
cons-ah $e=$ cons-h e
cons-rh $r=$ cons-h r
by (simp-all add: agraph-rgraph-converse)

```
lemma cons-h-empty[simp]: cons-h empty
    apply (unfold rgraph-def)
    apply auto
    apply (metis Collect-def wfP-acyclicP wfP-empty)
    done
```

lemma cons-h-add:
$\llbracket d o m h \cap \operatorname{dom} h^{\prime}=\{ \} ;$ cons-h $\left(h++h^{\prime}\right) \rrbracket \Longrightarrow$ cons- $h h$
$\llbracket d o m h \cap \operatorname{dom} h^{\prime}=\{ \} ;$ cons- $h\left(h++h^{\prime}\right) \rrbracket \Longrightarrow$ cons-h h^{\prime}
by (auto dest: acyclic-union simp add: rgraph-add-union)

```
lemma cons-h-antimono: \llbracketl\leql'; cons-h l\rrbracket \Longrightarrow cons-h l
    using acyclic-subset[OF - rgraph-mono].
lemma cons-h-update:
    assumes A: cons-h h X\capinsert x (dom h)={}
    shows cons-h (h(x\mapstoX))
proof -
    have l-remove hx\leqh(is ?h\leq-) by auto
    with cons-h-antimono A(1) have CONS:cons-h ?h by blast
    have MND[simp]: x\not\indom? ? by auto
    have [simp]: h(x\mapstoX)=?h(x\mapstoX) by (auto simp add: l-remove-def intro: ext)
    have cons-h (?h(x\mapstoX)) proof (rule ccontr, erule cyclicE)
        fix y assume (y,y)\in(rgraph (l-remove h x (x\mapstoX)))+
        hence }(y,y)\in(\mathrm{ rgraph (l-remove h x) }\cupX\times{x})+ by (simp add: rgraph-ops
        thus False proof (cases rule: trancl-multi-insert)
            case orig with CONS show False by (auto simp add: acyclic-def)
        next
            case (via x') hence C:(x,x) \in(rgraph ?h)* by auto
            show False using C proof (cases rule: rtrancl.cases)
                    case rtrancl-refl with A(2) via(1) show False by auto
                next
                    case (rtrancl-into-rtrancl - b) hence ( }b,\mp@subsup{x}{}{\prime})\in\mathrm{ rgraph ?h by auto
                    hence }\mp@subsup{x}{}{\prime}\indom?h by (auto simp add: rgraph-def l-remove-def
                    hence x'\indom h by (auto simp add: l-remove-def split: split-if-asm)
                    with A(2) via(1) show False by auto
                qed
        qed
    qed
    thus ?thesis by simp
qed
lemma cons-h-update2:
    assumes A: cons-h h x\not\indom h x\not\inX }x\not\in\bigcup\mathrm{ ran h
    shows cons-h (h(x\mapstoX))
proof -
    from A(1) have A': acyclic (agraph h) by (simp add: agraph-rgraph-converse)
    from A(4) have XNIR: x\not\inRange (agraph h) by simp
    hence [simp]: !!y. \neg (y,x)\in(agraph h) by blast
    have agraph }(h(x\mapstoX))=\mathrm{ agraph }h\cup{x}\times
        by (simp add: agraph-ops[OF A(2)])
    moreover have acyclic (agraph h\cup{x}\timesX)
        apply (rule ccontr)
        apply (erule cyclicE)
    proof -
        fix xa assume (xa, xa) \in(agraph h}\cup{x}\timesX)
        thus False proof (cases rule: trancl-multi-insert2)
            case orig thus False using A' by (unfold acyclic-def) auto
```

```
    next
            case (via xb) hence (xb,x)\in(agraph h)* by auto
            thus False proof (cases rule: rtrancl.cases)
                case rtrancl-refl
                with via(1) A(3) show False by auto
            next
                case (rtrancl-into-rtrancl a b c)
                hence ( }b,x)\in\mathrm{ agraph }h\mathrm{ by simp
                thus False by simp
            qed
        qed
    qed
    ultimately have acyclic (agraph (h(x\mapstoX))) by simp
    thus ?thesis by (simp add: agraph-rgraph-converse)
qed
lemma cons-h-remove: cons-h l\Longrightarrow cons-h (l-remove l m)
    by (auto simp add: rgraph-ops intro: acyclic-subset)
lemma cons-h-add-use: \llbracketm\not\indom l; cons-h l\rrbracket\Longrightarrow cons-h (l-add-use l {m})
    apply (rule ccontr)
    apply (erule cyclicE)
proof -
    fix }
    assume A: m\not\indom l cons-h l (x,x)\in(rgraph (l-add-use l {m}))+
    from A(3) have (x,x)\in(rgraph l \cup{m}\timesdom l)+ by (simp add: rgraph-ops)
    thus False
    proof (cases rule: trancl-multi-insert2)
            case orig
            with A(2) show False by (auto simp add: acyclic-def)
    next
        case (via xh) from via(2) show False
        proof (cases rule: rtrancl.cases)
            case rtrancl-refl
            hence [simp]: x=m by blast
            from via(3)[simplified] show False
            proof (cases rule: rtrancl.cases)
                    case rtrancl-refl
                    hence }xh=m\mathrm{ by blast
                    with A(1) via(1) show False by simp
            next
                    case rtrancl-into-rtrancl
                    hence m\indom l by (auto simp add: rgraph-def)
                    with A(1) via(1) show False by simp
            qed
    next
                case rtrancl-into-rtrancl
                hence m\indom l by (auto simp add: rgraph-def)
                with A(1) via(1) show False by simp
```

```
        qed
    qed
qed
lemma cons-h-add-remove: cons-h l\Longrightarrow cons-h (l-add-use (l-remove l m) {m})
    by (auto intro: cons-h-add-use cons-h-remove)
lemma cons-h-add-remove-partial:
    \llbracketm\not\indom l1; cons-h (l1++l2)\rrbracket\Longrightarrow
        cons-h (l1 ++ l-add-use (l-remove l2 m) {m})
proof -
    assume A: m\not\indom l1
    hence
        LE:l1 ++ l-add-use (l-remove l2 m) {m}\leq
            l-add-use (l-remove (l1++l2) m) {m}
        apply simp
        apply (rule map-add-first-le)
        apply (simp add:l-add-use-le)
        done
    assume cons-h (l1++l2)
    hence cons-h (l-add-use (l-remove (l1++l2) m) {m})
        by (blast intro: cons-h-add-remove)
    with cons-h-antimono[OF LE] show ?thesis by blast
qed
```

The consistency condition for acquisition structures checks available locks in addition to consistency of the acquisition and release histories.
fun cons-as :: 'X as $\Rightarrow{ }^{\prime} X$ set \Rightarrow bool where

```
cons-as \((l, u, e) \xi \longleftrightarrow\)
    \(u \cap(\xi-\) dom \(l)=\{ \} \wedge\) dom \(e \cap(\xi-\) dom \(l)=\{ \} \wedge\) cons-h \(l \wedge\) cons-h \(e\)
```

lemma cons-as-antimono: \llbracket cons-as $h \xi ; \xi^{\prime} \subseteq \xi \rrbracket \Longrightarrow$ cons-as $h \xi^{\prime}$
by (cases h) auto
fun cons where
cons None $X=$ False
cons (Some $(l, u, e)) X=$ cons-as $(l, u, e) X$

11.3.1 Minimal Elements

```
lemma finite-acyclic-wf: \llbracketinite r; acyclic r\rrbracket\Longrightarrow wf r
    apply (simp only: finite-wf-eq-wf-converse[symmetric])
    apply (blast intro: finite-acyclic-wf-converse)
    done
```

The minimal elements of acquisition and release histories corresponds to those final acquisitions or initial releases that can safely be scheduled as next step - for an acquisition history without blocking any further locks usage and for a release history without requiring usage of already acquired locks.
abbreviation rh-min $l m==m \in \operatorname{dom} l \wedge \operatorname{dom} l \cap$ the $(l m)=\{ \}$
abbreviation $a h$-min e $m==m \in \operatorname{dom} e \wedge m \notin \bigcup$ ran e
lemma rh-min-alt:
$r h$-min $l m=($ case $l m$ of None \Rightarrow False \mid Some $M \Rightarrow$ dom $l \cap M=\{ \})$
by (fastsimp split: option.split-asm)
There exists a minimal element in a consistent release history. Note that this lemma depends on the set of locks being finite, as assumed by the $L D P N$ locale.

```
theorem (in LDPN) cons-h-ex-rh-min:
    fixes \(l::{ }^{\prime} X\) ah
    assumes \(A\) : \(l \neq e m p t y\) cons-h \(l\)
    shows \(\exists m\). rh-min \(l m\)
proof -
    \{
    fix \(M\) and \(m x::^{\prime} X\) and \(k\)
    assume \(\forall m\). \(\neg r h\)-min \(l m\)
    hence \(B\) : !!m lm. \(l m=\) Some \(l m \Longrightarrow \operatorname{dom} l \cap l m \neq\{ \}\)
        by (unfold rh-min-alt) (auto split: option.split-asm)
    have \(\llbracket\) card (UNIV ::'X set) - card \(M=k ; m x \notin M ; m x \in \operatorname{dom} l\);
            \(!!m . m \in M \Longrightarrow(m x, m) \in(\text { rgraph } l)^{+}\)
            \(\rrbracket \Longrightarrow\) False
    proof (induct \(k\) arbitrary: \(M m x\) )
        case 0 hence \(M=U N I V\) by auto
        with 0 have False by simp
        thus ?case ..
    next
        case (Suc n)
        then obtain \(l m x\) where \(L M X: l m x=\) Some \(\operatorname{lm} x\) by auto
        with \(B\) obtain \(m^{\prime}\) where \(M^{\prime}: m^{\prime} \in \operatorname{dom} l \quad m^{\prime} \in l m x\) by blast
        with \(L M X\) have \(G:\left(m^{\prime}, m x\right) \in\) rgraph \(l\) by (unfold rgraph-def) auto
        \{
            assume \(m^{\prime} \in M\)
            with Suc.prems have \(\left(m x, m^{\prime}\right) \in(\text { rgraph } l)^{+}\)by auto
            also note \(r\)-into-trancl \([\) OF \(G]\)
            finally have False using A(2) by (unfold acyclic-def) auto
        \} moreover \{
            assume \(C: m^{\prime} \notin M \quad m^{\prime} \neq m x\) hence \(C^{\prime}: m^{\prime} \notin M \cup\{m x\}\) by auto
            with Suc.prems(4) G have 1: !!m. \(m \in M \cup\{m x\} \Longrightarrow\left(m^{\prime}, m\right) \in(\text { rgraph } l)^{+}\)
            by (auto intro: r-into-trancl trancl-trans)
            from Suc.prems (1,2) have
            2: card (UNIV \(:^{\prime} X\) set \()-\operatorname{card}(M \cup\{m x\})=n\)
            by (simp)
            from Suc.hyps[OF \(2 C^{\prime} M^{\prime}(1)\) 1] have False .
        \} moreover \{
                assume \(m^{\prime}=m x\)
                with \(r\)-into-trancl \([\) OF \(G]\) have False using \(A\) (2)
```

```
                    by (unfold acyclic-def) auto
        } ultimately show False by blast
    qed
    } note }X=\mathrm{ this
    from A obtain m}\mathrm{ where medom l by (subgoal-tac dom l}\not={})(blast,auto
    with X[of {}-m] A show ?thesis by - (rule ccontr, auto)
qed
There exists a minimal element in a consistent acquisition history.
Note that this lemma depends on the set of locks being finite, as constrained by the \(L D P N\) locale.
```

```
theorem (in LDPN) cons-h-ex-ah-min:
```

theorem (in LDPN) cons-h-ex-ah-min:
fixes e :: ' X ah
fixes e :: ' X ah
assumes A : efempty cons-h e
assumes A : efempty cons-h e
shows \exists m. ah-min e m
shows \exists m. ah-min e m
proof (cases agraph $e=\{ \}$)
proof (cases agraph $e=\{ \}$)
case True from $A(1)$ obtain m where $m \in d o m e$ by (blast elim: nempty-dom)
case True from $A(1)$ obtain m where $m \in d o m e$ by (blast elim: nempty-dom)
moreover with True have $m \notin \bigcup$ ran e by (auto simp add: agraph-def ran-def)
moreover with True have $m \notin \bigcup$ ran e by (auto simp add: agraph-def ran-def)
ultimately show ?thesis by blast
ultimately show ?thesis by blast
next
next
case False
case False
from A (2) cons-ah-rh-eq(1)[symmetric, of e] have cons-ah e by simp
from A (2) cons-ah-rh-eq(1)[symmetric, of e] have cons-ah e by simp
hence WF: wf (agraph e) by (auto intro: finite-acyclic-wf)
hence WF: wf (agraph e) by (auto intro: finite-acyclic-wf)
from $w f$-min [of agraph e, OF WF False] obtain m where
from $w f$-min [of agraph e, OF WF False] obtain m where
$m \in$ Domain (agraph e) - Range (agraph e).
$m \in$ Domain (agraph e) - Range (agraph e).
hence $m \in d o m e \quad m \notin \bigcup$ ran e by (auto simp add: agraph-def ran-def)
hence $m \in d o m e \quad m \notin \bigcup$ ran e by (auto simp add: agraph-def ran-def)
thus ?thesis by blast
thus ?thesis by blast
qed

```
qed
```


11.3.2 Well-Nestedness and Acquisition Structures

Only locks that are on the lock-stack can be initially released:

```
lemma wn-t-dom-l-lower- }\mu\mathrm{ :
    |n-t't }\mu\mathrm{ ; as }t=\operatorname{Some}(l,u,e)\rrbracket\Longrightarrow\operatorname{dom}l\subseteq\mathrm{ set }
    apply (induct t arbitrary: }\mulue
    apply fastsimp
    apply (case-tac L)
    apply fastsimp
    apply (auto split: option.split-asm list.split-asm split-if-asm
            simp add: l-remove-def l-add-use-def)
    apply (fastsimp)
    apply (fastsimp)
    apply (fastsimp)
    apply (case-tac L)
    apply (fastsimp elim: as-comp-SomeE)+
    done
```

lemmas $w n$-dom-l-empty $=w n$-t-dom-l-lower- $\mu[$ of - [], simplified $]$

```
lemma wn-h-dom-l-lower- }\mu\mathrm{ :
    |n-h h \mu; ash h = Some (l,u,e)\rrbracket\Longrightarrowdom l\subseteqlocks- }\mu
    apply (induct h }\mu\mathrm{ arbitrary:l u e rule: wn-h.induct)
    apply auto
    apply (force dest: wn-t-dom-l-lower-\mu elim!: as-comp-SomeE)
    done
```

Due to well-nestedness, if a lock x is left, all locks that are above this lock on the stack are left, too. This lemma expresses leaving a lock by means of the domain of the release-history. Moreover, the release histories of the locks released before are smaller or equal than the release history of x, and do not contain x.

```
lemma wn-t-dom-l-stack: \(\llbracket w n-t^{\prime} t \mu ;\) as \(t=S o m e ~(l, u, e) ; x \in \operatorname{dom} l \rrbracket \Longrightarrow\)
    \(\exists \mu 1 \mu 2 . \mu=\mu 1 @ x \# \mu 2 \wedge\) set \(\mu 1 \subseteq \operatorname{dom} l \wedge\)
        ( \(\forall x^{\prime} \in\) set \(\mu 1 . l x^{\prime} \leq l x \wedge\)
            (case l \(x^{\prime}\) of None \(\Rightarrow\) True \(\mid\) Some \(\left.l x^{\prime} \Rightarrow x \notin l x^{\prime} \wedge x^{\prime} \notin l x^{\prime}\right)\)
        )
proof (induct t arbitrary: \(\mu\) l uex)
    case NLEAF thus ?case by fastsimp
next
    case (NSPAWN lab ts t)
    from NSPAWN.prems(1) obtain nlab where [simp]: lab=LNone nlab
        by (cases lab, simp-all)
    from NSPAWN.prems(1) have \(W N\) : wn-t' ts [] wn-t't \(\mu\) by auto
    from NSPAWN.prems(2) have as ts \(\|\) as \(t=\operatorname{Some}(l, u, e)\) by simp
    then obtain l1 u1 e1 l2 u2 e2 where
        \([\) simp \(]: l=l 1++l 2 \quad u=u 1 \cup u 2 \quad e=e 1++e 2\) and
            SPLIT: as \(t s=\) Some (l1,u1,e1) as \(t=\) Some (l2,u2,e2)
                dom \(11 \cap \operatorname{dom} 12=\{ \} \quad\) dom e1 \(\cap \operatorname{dom}\) e2 \(=\{ \}\)
        by (blast elim!: as-comp-SomeE)
    have \([\) simp \(]: l 1=\) empty proof -
        \{
            fix \(x\) assume \(A: x \in \operatorname{dom} l 1\)
            from NSPAWN.hyps(1)[OF WN(1) SPLIT(1) A] have False by blast
        \}
        thus ?thesis by force
    qed
    from \(\langle x \in \operatorname{dom} l\rangle\) have \(A: x \in \operatorname{dom}\) l2 by auto
    from NSPAWN.hyps(2)[OF WN(2) SPLIT(2) A] obtain \(\mu 1 \mu 2\) where
        \(\mu=\mu 1 @ x \# \mu 2 \quad\) set \(\mu 1 \subseteq \operatorname{dom} l\)
        \(\forall x^{\prime} \in\) set \(\mu 1 . l x^{\prime} \leq l x \wedge\)
            (case l \(x^{\prime}\) of None \(\Rightarrow\) True \(\mid\) Some \(\left.l x^{\prime} \Rightarrow x \notin l x^{\prime} \wedge x^{\prime} \notin l x^{\prime}\right)\)
        by auto
    thus ?case by blast
next
    case (NNOSPAWN lab t)
    show ?case proof (cases lab)
        case (LNone nlab) with NNOSPAWN show ?thesis by simp blast
    next
```

```
case (LAcq x')[simp]
from NNOSPAWN.prems(2) obtain l' }\mp@subsup{u}{}{\prime}\mp@subsup{e}{}{\prime}\mathrm{ where
    HTFMT: as t=Some ( }\mp@subsup{l}{}{\prime},\mp@subsup{u}{}{\prime},\mp@subsup{e}{}{\prime}
    by (auto split:option.split-asm list.split-asm split-if-asm prod.split-asm)
with NNOSPAWN.prems(2,3) have MNE: x\not=\mp@subsup{x}{}{\prime}
    by (auto split: split-if-asm simp add: l-remove-def l-add-use-def)
from NNOSPAWN.prems(1) have WN:wn-t't (x'#\mu) by simp
{
    assume x'\indom l'
    with NNOSPAWN.prems(2) HTFMT have
        [simp]:l=l-add-use (l-remove l' }\mp@subsup{l}{}{\prime}){\mp@subsup{x}{}{\prime}}\quadu=\mathrm{ insert }\mp@subsup{x}{}{\prime}\mp@subsup{u}{}{\prime}\quad\mp@subsup{e}{}{\prime}=
        by (auto split: option.split-asm list.split-asm split-if-asm prod.split-asm)
    with MNE NNOSPAWN.prems(3) have MID: x\indom l' by auto
    from NNOSPAWN.hyps[OF WN HTFMT MID] obtain \mu1 \mu2 where
        IHAPP: }\mp@subsup{x}{}{\prime}#\mu=\mu1@x#\mu2 set \mu1\subseteqdom l',
            \forall\mp@subsup{x}{}{\prime}\in\mathrm{ set }\mu1.\mp@subsup{l}{}{\prime}}\mp@subsup{x}{}{\prime}\leq\mp@subsup{l}{}{\prime}x
                        (case l' x' of None }=>\mathrm{ True | Some lx' }=>x\not\inl\mp@subsup{x}{}{\prime}\wedge \ x'\not\inlx'
        by blast
    from IHAPP(3) MNE have
        IHAPP3': \forall x'\inset \mu1. l l ' 
                    (case l }\mp@subsup{x}{}{\prime}\mathrm{ of None }=>\mathrm{ True | Some lx' }=>\mathrm{ T 
    apply safe
    apply (case-tac x'=\mp@subsup{x}{}{\prime}a)
    apply (simp add:l-add-use-def)
    apply (subgoal-tac l' }\mp@subsup{x}{}{\prime}a\leq\mp@subsup{l}{}{\prime}x
    apply (erule le-optE)
    apply (simp add:l-add-use-def split: option.split)
    apply (auto simp add: l-add-use-def split: option.split) [1]
    apply simp
    apply (simp add:l-add-use-def l-remove-def)
    apply (split option.split-asm option.split)+
    apply meson
    apply fast+
    done
    from IHAPP(2) MNE have IHAPP2': l' }x\leql
        by (auto simp add: l-add-use-def split:option.split)
    from wnt-eq-wnt' WN wnt-distinct have distinct ( }\mp@subsup{x}{}{\prime}#\mu)\mathrm{ by blast
    with MNE IHAPP IHAPP3' obtain }\mu\mp@subsup{1}{}{\prime}\mathrm{ ' where
        \mu= 11'@x#\mu2 set }\mu\mp@subsup{1}{}{\prime}\subseteq\mathrm{ dom l
        \forall
            (case l x' of None }=>\mathrm{ True | Some lx' }=>\mathrm{ \ x # lx'^ ( x'&lx')
    by (cases \mu1) auto
    hence ?thesis by blast
} moreover {
    assume A: x'}\not\indom l'
    with NNOSPAWN.prems(2) HTFMT have [simp]:l=l'
        by (auto split: split-if-asm)
    from NNOSPAWN.hyps[OF WN HTFMT NNOSPAWN.prems(3)[simplified]]
```

```
        obtain }\mu1 \mu2 where IHAPP: 和 #\mu= =1@x#\mu2 set \mu1\subseteqdom l'
            by blast
        with MNE have }\mp@subsup{x}{}{\prime}\indom l' by (cases \mu1) aut
        with A have False ..
    } ultimately show ?thesis by blast
next
    case (LRel x') [simp]
    from NNOSPAWN.prems(1) obtain }\mp@subsup{\mu}{}{\prime}\mathrm{ where WN: }\mu=\mp@subsup{x}{}{\prime}#\mp@subsup{\mu}{}{\prime}\quad\mathrm{ wn-t't }\mp@subsup{\mu}{}{\prime
        by auto
    from NNOSPAWN.prems(2) obtain l' }\mp@subsup{l}{}{\prime}\mathrm{ where
        HTFMT: as t =Some ( }\mp@subsup{l}{}{\prime},\mp@subsup{u}{}{\prime},e) an
        [simp]:l=\mp@subsup{l}{}{\prime}(\mp@subsup{x}{}{\prime}\mapsto{}) u=\mp@subsup{u}{}{\prime}
        by (auto split: option.split-asm prod.split-asm list.split-asm)
    {
        assume x=\mp@subsup{x}{}{\prime}
        with WN(1) have }\mu=[]@x#\mp@subsup{\mu}{}{\prime}\mathrm{ set [] }\subseteq\operatorname{dom}
                        (\forall\mp@subsup{x}{}{\prime}\in\mathrm{ set []. l }\mp@subsup{x}{}{\prime}\leqlx^
                        (casel l x' of None }=>\mathrm{ True | Some lx'}=>十x\not\inl\mp@subsup{x}{}{\prime}\wedge\mp@subsup{x}{}{\prime}\not\inl\mp@subsup{x}{}{\prime})
            by auto
        hence ?thesis by blast
    } moreover {
        assume MNE: }x\not=\mp@subsup{x}{}{\prime
        with NNOSPAWN.prems(3) have MIDL': x\indom l'
            by (auto simp add: l-add-use-def split: option.split-asm)
        with NNOSPAWN.hyps[OF WN(2) HTFMT] obtain \mu1 \mu2 where
            IHAPP: }\mp@subsup{\mu}{}{\prime}=\mu1@x#\mu2 set \mu1\subseteqdom l'
                ( }\forall\mp@subsup{x}{}{\prime}\in\mathrm{ set }\mu1.\mp@subsup{l}{}{\prime}\mp@subsup{x}{}{\prime}\leq\mp@subsup{l}{}{\prime}x
                        (case l' x' of None }=>\mathrm{ True | Some lx}'=>x\not\inl\mp@subsup{x}{}{\prime}\wedge \mp@subsup{x}{}{\prime}\not\inl\mp@subsup{x}{}{\prime})
            by blast
        with WN(1) have }\mu=(\mp@subsup{x}{}{\prime}#\mu1)@x#\mu2 by sim
        moreover from IHAPP(2) NNOSPAWN.prems(3) have
            set (x'#\mu1)\subseteqdom l
            by auto
            moreover from IHAPP(3) MNE MIDL' have
                ( }\forall\mp@subsup{x}{}{\prime}\in\operatorname{set}(\mp@subsup{x}{}{\prime}#\mu1).l\mp@subsup{x}{}{\prime}\leqlx
                        (casel x' of None }=>\mathrm{ True | Some lx'}=>x\not\inl\mp@subsup{x}{}{\prime}\wedge ^ \mp@subsup{x}{}{\prime}\not\inl\mp@subsup{x}{}{\prime})
            by (fastsimp simp add: l-add-use-def split: option.split)
            ultimately have ?thesis by blast
    } ultimately show ?thesis by blast
    qed
qed
lemma wn-t-dom-l-stack': \llbracketwn-t't }\mu;\mathrm{ as }t=Some (l,u,e);x\indom l\rrbracket
    \exists\mu1 \mu2. }\mu=\mu1@x#\mu2 ^ set \mu1\subseteq\operatorname{dom}l
```



```
    apply (drule (2) wn-t-dom-l-stack)
    apply (elim exE)
```

```
apply (rule-tac \(x=\mu 1\) in \(e x I\) )
apply (rule-tac \(x=\mu 2\) in \(e x I\) )
apply (force)
done
```


11.4 Soundness of the Consistency Condition

context $L D P N$

begin
The consistency condition for acquisition structures is sound, i.e. if a hedge h is schedulable with initial locks X, and is well-nested w.r.t. a lock stack list μ containing the locks from X, then the acquisition structure of h is consistent w.r.t. X.

```
theorem acqh-sound:
    \(\llbracket\) lsched \(h X w ; w n-h h \mu ; X=\) locks- \(\mu \mu \rrbracket \Longrightarrow\)
        \(\exists l u\) e. ash \(h=\) Some \((l, u, e) \wedge\) cons-as \((l, u, e)(\) locks- \(\mu \mu)\)
```

 - The proof works by induction over the schedule, in each induction step
 prepending a step to teh schedele.
 For steps that have perform operation on locks, the proof is straightforward.
If the first step of the execution is a release of a lock, the acquisition history of the
new hedge (with prepended release step at one tree) remains consistent. Acyclicity
is preserved, as the release-step is the first step of the execution. Consistency w.r.t.
used locks is also preserved.
If the first step of the execution is an acquisition step, we further have to distinguish
whether it is a usage or a final acquisition.
proof (induct arbitrary: μ rule: lsched.induct)
case lsched-final thus ?case by (auto simp add: ash-final)
next
case (lsched-spawn h1 ts th2 Xh w X lab μ)
note $[$ simp $]=$ lsched-spawn.prems(2)
from lsched-spawn.prems obtain nlab where [simp]: lab=LNone nlab
by (auto elim: wn-h-spawn-imp-LNoneE)
from lsched-spawn.hyps(3) have $[$ simp $]: X h=X$ by auto
from wn-h-preserve-spawn[OF - lsched-spawn.prems(1), of X, simplified]
obtain μ^{\prime} where [simp]: locks- $\mu \mu=$ locks- $\mu \mu^{\prime} \quad$ wn-h (h1@ts\#t\#h2) μ^{\prime}
by blast
from lsched-spawn.hyps(2)[of μ^{\prime}, simplified $]$ obtain $l u e$ where
ash (h1@ts\#t\#h2) = Some (l,u,e) cons-as (l,u,e) (locks- $\mu \mathrm{\mu})$
by auto
moreover hence ash (h1@NSPAWN lab ts t\#h2) = Some (l,u,e) by simp
ultimately show ?case by auto
next
case (lsched-nospawn h1 th2 Xh w X lab μ) note lsched-nospawn.prems(2)[simp]
from wn-h-split-nospawn[OF lsched-nospawn.hyps(3)[simplified]
lsched-nospawn.prems(1)] obtain $\mu 1$ xs $\mu 2$ xsh where
[simp]: $\mu=\mu 1$ @ xs \# $\mu 2 \quad X h=$ locks- $\mu \mu 1 \cup$ set $x s h \cup$ locks $-\mu \mu 2$ and
LVX: lock-valid-xs lab xs xsh and
WNSPLIT: wn-t' (NNOSPAWN lab t) xs wn-t't xsh

```
            wn-h h1 \mu1 wn-h h2 \mu2 and
    LDIST: locks- }\mu\textrm{\mu}\cap\mathrm{ \et xs = {} locks- }\mu\mu1\cap\mathrm{ set xsh = {}
        locks-\mu \mu1\cap locks- \mu \mu2 = {} locks- \mu \mu2 \cap set xs = {}
        locks-\mu \mu2 \cap set xsh = {} and
        WNH:wn-h(h1 @ t # h2)(\mu1 @ xsh # \mu2)
have WNHR:wn-h(h1@h2)( }\mu1@\mu2)\mathrm{ using WNSPLIT LDIST
    by (auto intro: wn-h-appendI)
from lsched-nospawn.hyps(2)[OF WNH] obtain l u e where
    IHAPP: ash h1 || as t | ash h2 = Some (l,u,e)
        cons-as (l,u,e) (locks- }\mu\mu1\cup\mathrm{ set xsh U locks- }\mu\mu2)\mathrm{ and
    IHAPP':ash(h1 @t # h2) = Some (l,u,e)
    by (auto simp add: Un-ac)
then obtain lt ut et l2 u2 e2 where
    [simp]: as t = Some (lt,ut,et) (ash h1 | ash h2) = Some (l2,u2,e2)
            l=lt++l2 u=ut\cupu2 e=et++e2 and
        ASS:dom lt \cap dom l2 = {} dom et \cap dom e2 = {}
proof -
    from IHAPP have as t| ash h1 | ash h2 = Some (l,u,e) by simp
    thus ?thesis by (erule-tac as-comp-SomeE) (rule that)
qed
from wn-h-dom-l-lower-\mu[OF WNHR] have
    DOML2: dom l2 }\subseteq\mathrm{ locks- }\mu\mu1\cup\mathrm{ locks- }\mu \mu
    by fastsimp
from wn-t-dom-l-lower-\mu[OF WNSPLIT(2)] have
    DOMLT:dom lt \subseteq set xsh
    by fastsimp
have DOMDISJ: dom lt \cap dom l2 = {}
proof -
    from LDIST have set xsh \cap (locks- }\mu\mu1\cup\mathrm{ locks- }\mu\mu2)={} by blast
    with DOMLT DOML2 show ?thesis by blast
qed
show ?case proof (cases lab)
    case (LNone nlab)[simp] from LVX have [simp]: set xsh = set xs
        by (auto elim: lock-valid-xs.cases)
    from IHAPP show ?thesis by auto
next
    case (LRel x)[simp]
    from LVX have [simp]: xs=x#xsh by (auto elim:lock-valid-xs.cases)
    have ash(h1@(NNOSPAWN lab t)#h2) =
                as (NNOSPAWN lab t)|| Some (l2,u2,e2)
        apply (simp del: LRel)
        apply (subst as-comp-acz.assoc[symmetric])
        by (simp)
    also from IHAPP have as (NNOSPAWN lab t) = Some (lt (x\mapsto{}),ut,et)
        by simp
    hence as (NNOSPAWN lab t)| Some (l2,u2,e2) = Some (l(x\mapsto{}),u,e)
        using ASS DOML2 LDIST by (auto simp add: map-add-comm)
```


finally have

G1: ash (h1@(NNOSPAWN lab t)\#h2) = Some $(l(x \mapsto\}), u, e)$.
moreover from IHAPP(2) have G2: cons-as $(l(x \mapsto\}), u, e)($ locks- $\mu \mu)$
by simp (blast intro: cons-h-update[where $X=\{ \}$, simplified])
ultimately show ?thesis by blast

next

case (LAcq x) $[$ simp $]$
from $L V X$ have
[simp]: xsh $=x \# x s$ and XNIXS: $x \notin$ set $x s$
by (auto elim: lock-valid-xs.cases)
from DOML2 have XNIDL2: $x \notin$ dom l2 using LDIST by auto
show ?thesis proof (cases $x \in$ dom lt)
case True - The first step enters a lock that is left again, thus converting an initial release to a use step

- The consistency of the acquisition structure is preserved, as a use-step of
a lock is added that is not initially released (any more)
have $\operatorname{ash}(h 1 @(N N O S P A W N$ lab $t) \# h 2)=$ as (NNOSPAWN lab t) \| Some (l2,u2,e2)
apply (simp del: LAcq)
apply (subst as-comp-acz.assoc[symmetric])
by (simp)
also from True have
as $($ NNOSPAWN lab $t)=$
Some (l-add-use (l-remove lt $x)\{x\}$,insert x ut,et)
by simp
hence as (NNOSPAWN lab t) \| Some (l2,u2,e2) = Some (l2 + + l-add-use (l-remove lt $x)\{x\}$,insert $x u, e)$
using ASS DOML2 LDIST
by (auto simp add: map-add-comm)
finally have G1: ash (h1@(NNOSPAWN lab t)\#h2) =

$$
\text { Some }(l 2++l \text {-add-use (l-remove lt } x)\{x\}, \text { insert } x u, e) .
$$

moreover
have G2: cons-as (l2 ++ l-add-use (l-remove lt $x)\{x\}$,insert $x u, e)$
(locks- $\mu \mu$)
proof -
from $\operatorname{IHAPP}(2)$ have cons-h (l2 $++l$-add-use (l-remove lt $x)\{x\})$
using cons-h-add-remove-partial[OF XNIDL2, of $l t]$ by (simp add: map-add-comm[OF DOMDISJ])
moreover have
insert $x \quad \cap$
(locks- $\mu \mu-\operatorname{dom}(l 2++$ l-add-use $(l$-remove lt $x)\{x\}))=\{ \}$ using XNIXS LDIST[simplified] IHAPP(2) by simp blast
moreover have
dom $e \cap($ locks $-\mu \mu-\operatorname{dom}(l 2++$ l-add-use $(l$-remove lt $x)\{x\}))=\{ \}$ using XNIXS LDIST[simplified] IHAPP(2) by simp blast
moreover from IHAPP (2) have cons-h e by simp
ultimately show ?thesis by simp
qed

```
            ultimately show ?thesis by blast
        next
            case False - The first step finally enters a lock
            from False XNIDL2 \(\operatorname{IHAPP}\) (2) have XNIUE: \(x \notin u \quad x \notin d o m e\) by auto
            - The consistency of the acquisition structure is preserved, as no cycles are
            added by insertion of the final acquisition.
            have \(\operatorname{ash}(h 1 @(N N O S P A W N\) lab \(t) \# h 2)=\)
                as (NNOSPAWN lab t) \| Some (l2,u2,e2)
                apply (simp del: LAcq)
                apply (subst as-comp-acz.assoc[symmetric])
                by (simp)
            also from False have as (NNOSPAWN lab t) \(=\) Some \((l t, u t, e t(x \mapsto u t))\)
                using XNIUE by simp
            hence as \((\) NNOSPAWN lab t) \| Some (l2,u2,e2) \(=\) Some \((l, u, e(x \mapsto u t))\)
                using ASS XNIUE
                by (auto simp add: map-add-comm)
            finally have
                G1: ash (h1@(NNOSPAWN lab \(t) \# h 2)=\) Some \((l, u, e(x \mapsto u t))\).
            moreover
            from cons-h-update2[of e x ut] IHAPP(2) ash-le-u[OF IHAPP I XNIUE
            have cons- \(h(e(x \mapsto u t))\) by auto
            with IHAPP(2) have cons-as (l,u,e(xЊut)) (locks- \(\mu \mu)\)
                    using LDIST XNIXS by simp blast
            ultimately show ?thesis by blast
        qed
    qed
    qed
end
```


11.5 Precision of the Consistency Condition

11.5.1 Custom Size Function

In the following we construct a custom size function for hedges that is suited to do induction over hedges. This size function decreases on any step done on the hedge.

```
fun list-size' where
    list-size'f[] = (0::nat)|
    list-size' f (a#l)=fa+list-size' fl
fun size-t where
    size-t (NLEAF \pi) = Suc 0 |
    size-t (NNOSPAWN lab t) = Suc (size-t t)
    size-t (NSPAWN lab ts t) = Suc (size-t ts + size-t t)
```

lemma list-size'-conc[simp]: list-size' $f(a @ b)=$ list-size $^{\prime} f a+$ list-size $^{\prime} f b$
by (induct a) auto
abbreviation hedge-size :: ('P, $\left.\Gamma,{ }^{\prime} L,{ }^{\prime} X\right)$ lex-hedge \Rightarrow nat where

```
    hedge-size \(h==\) list-size' size-t \(h\)
lemma hedge-size-zero[simp]: hedge-size \(h=0 \longleftrightarrow h=[]\)
    apply (cases \(h\) )
    apply auto
    apply (case-tac a)
    apply simp-all
done
```

This function checks whether a lock is released in the current execution tree, and returns the set of locks that are acquired before this lock is released. Note that this function ignores the lock-effect of labels of spawn-nodes, as we assume that spawn-nodes have no lock-operation.

```
fun closing :: ' \(X \Rightarrow\left({ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L,{ }^{\prime} X\right)\) lex-tree \(\Rightarrow{ }^{\prime} X\) set option where
    closing \(x(\) NLEAF \(\pi)=\) None \(\mid\)
    closing \(x(\) NSPAWN lab ts \(t)=\) closing \(x t \mid\)
    closing \(x\) (NNOSPAWN (LNone nlab) \(t)=\) closing \(x t \mid\)
    closing \(x\left(\right.\) NNOSPAWN \(\left(\right.\) LAcq \(\left.\left.x^{\prime}\right) t\right)=(\)
        case closing \(x t\) of None \(\Rightarrow\) None
                        Some \(X \Rightarrow\) Some (insert \(x^{\prime} X\) )
    )|
    closing \(x(\) NNOSPAWN \((\) LRel \(x) t)=\left(\right.\) if \(x=x^{\prime}\) then Some \(\{ \}\) else closing \(\left.x t\right)\)
```

Function that checks whether a tree starts with the acquisition of a lock that is used (i.e. not finally acquired) and returns all the locks that are used from the acquisition to to the release of that lock:

```
fun closing' where
    closing'(NNOSPAWN (LAcq x) t)= closing x t |
    closing' - = None
```

The following functions define the set of locks that are acquired at the roots of a tree/hedge. This function is used in the case of the precision proof, where all the roots of the hedge are either leafs or final acquisitions.

```
fun rootlocks-t where
    rootlocks-t (NNOSPAWN (LAcq x) t) ={x}|
    rootlocks-t - = {}
fun rootlocks where
    rootlocks [] = {} |
    rootlocks (t # h)= rootlocks-t t \cup rootlocks h
```

lemma rootlocks-conc[simp]: rootlocks (h1@h2) = rootlocks h1 \cup rootlocks h2
by (induct h1) auto
lemma rootlocks-split:
$\llbracket x \in$ rootlocks $h ;!!h 1 t h 2 . h=h 1 @ N N O S P A W N(L A c q x) t \# h 2 \Longrightarrow P \rrbracket \Longrightarrow P$
proof (induct h arbitrary: P)
case Nil thus ?case by simp
next

```
    case (Cons tp h) from Cons.prems(1)[simplified] show ?case proof
        assume x\in rootlocks-t tp
        with Cons.prems(2)[of [], simplified] show ?thesis
            by (cases tp rule: rootlocks-t.cases) auto
    next
        assume A: x\inrootlocks h from Cons.hyps[OF A] obtain h1 th2 where
        h=h1 @ NNOSPAWN (LAcq x) t # h2 .
    hence tp#h=(tp#h1)@NNOSPAWN (LAcq x) t # h2 by simp
    thus ?thesis by (blast intro!: Cons.prems(2))
    qed
qed
```

If a lock x is closed (before it is acquired), the value of the release history for x is precisely the set of used locks before x is closed. Closing x before it is acquired is expressed by well-nestedness w.r.t. a lock-stack that contains x.
lemma closing-dom-l:
$\llbracket w n-t^{\prime} t(x s 1 @ x \# x s 2) ;$ closing $x t=$ Some $X u ;$ as $t=$ Some $(l, u, e) \rrbracket \Longrightarrow$ $l x=$ Some $X u$
proof (induct t arbitrary: xs1 l u e Xu)
case NLEAF thus ?case by auto
next
case (NSPAWN lab ts t)
then obtain nlab where [simp]: lab=LNone nlab by (cases lab) auto
from NSPAWN show? ?ase by (fastsimp elim: as-comp-SomeE dest: wn-dom-l-empty)
next
case (NNOSPAWN lab t) show ?case proof (cases lab)
case (LNone nlab) with NNOSPAWN show ?thesis by auto
next
case $\left(L A c q x^{\prime}\right)[s i m p]$
from NNOSPAWN.prems obtain $X u^{\prime}$ where
HP1: wn-t' $t\left(\left(x^{\prime} \# x s 1\right) @ x \# x s 2\right) \quad$ closing $x t=$ Some $X u^{\prime}$ and
[simp]: Xu=insert $x^{\prime} X u^{\prime}$
by (auto split: option.split-asm)
from $N N O S P A W N$.prems obtain $l^{\prime} u^{\prime} e^{\prime}$ where
HP2: as $t=$ Some $\left(l^{\prime}, u^{\prime}, e^{\prime}\right)$
by (auto split: eahl-splits)
from NNOSPAWN.hyps[OF HP1 HP2] have IHAPP: $l^{\prime} x=$ Some Xu'.
from wn-t-dom-l-stack[OF HP1(1) HP2, of $x]$
IHAPP distinct-match[OF wnt-distinct' $[$ OF HP1 (1)]] have set $\left(x^{\prime} \# x s 1\right) \subseteq \operatorname{dom} l^{\prime}$ by fastsimp
hence $X^{\prime} I D L^{\prime}: x^{\prime} \in \operatorname{dom} l^{\prime}$ by simp
with NNOSPAWN.prems(3) HP2 IHAPP
have $l=l$-add-use (l-remove $\left.l^{\prime} x^{\prime}\right)\left\{x^{\prime}\right\}$ by (simp split: eahl-splits)
moreover from wnt-distinct ${ }^{\prime}\left[O F\right.$ HP1 (1)] have MNE: $x^{\prime} \neq x$ by (auto)
ultimately show $l x=$ Some $X u$ using IHAPP by (auto simp add: l-add-use-def)
next

```
    case (LRel x')[simp]
    show ?thesis proof (cases x=x')
    case True with NNOSPAWN.prems have l }x=Some {}\quadXu={
        by (auto split: eahl-splits)
    thus ?thesis by blast
    next
        case False with NNOSPAWN.prems obtain xs1' where
        [simp]: xs1 = x'#xs1' and
            HP1:wn-t't(xs1'@x#xs2) closing x t = Some Xu
            by (cases xs1) auto
    from NNOSPAWN.prems obtain l' u' e}\mp@subsup{l}{}{\prime}\mathrm{ where
        HP2: as t =Some ( }\mp@subsup{l}{}{\prime},\mp@subsup{u}{}{\prime},\mp@subsup{e}{}{\prime})\mathrm{ and
        [simp]:l=l'( }\mp@subsup{x}{}{\prime}\mapsto{}
        by (auto split: eahl-splits)
    from NNOSPAWN.hyps[OF HP1 HP2(1)] have l' x = Some Xu.
    with False show l }x=\mathrm{ Some Xu by auto
        qed
    qed
qed
A lock must not be used before it is closed.
lemma wn-closing-ni: \(\llbracket w n-t^{\prime} t(\mu 1 @ x \# \mu 2) ;\) closing \(x t=S o m e X u \rrbracket \Longrightarrow x \notin X u\)
proof (induct t arbitrary: \(\mu 1\) Xu)
case NLEAF thus ?case by auto
next
case (NSPAWN lab ts t)
then obtain nlab where [simp]: lab=LNone nlab by (cases lab) auto
from \(N S P A W N\) show ?case by auto
next
case (NNOSPAWN lab t)
show ?case proof (cases lab)
case (LNone nlab) thus ?thesis using NNOSPAWN by auto
next
case \(\left(L A c q x^{\prime}\right)[s i m p]\)
from NNOSPAWN.prems(1) have WN: wn-t't (( \(\left.x^{\prime} \# \mu 1\right) @ x \# \mu\) 2) by auto
        from NNOSPAWN.prems(2) obtain Xu' where
\(C L\) : closing \(x t=\) Some \(X u^{\prime} \quad X u=\) insert \(x^{\prime} X u^{\prime}\)
by (auto split: option.split-asm)
from NNOSPAWN.hyps[OF WN CL(1)] have \(x \notin X u^{\prime}\).
moreover from wnt-distinct \({ }^{\prime}[O F W N]\) have \(x^{\prime} \neq x\) by auto
ultimately show ?thesis by (auto simp add: CL(2))
next
case (LRel \(x^{\prime}\) )
thus ?thesis
using NNOSPAWN by (cases \(\mu 1\) ) (auto split: split-if-asm)
qed
qed
```

This lemma gives porperties of the acquisition structure after an acquisition step of a lock usage. It is used in the case when there is a tree starting
with a usage, to reason about the acquisition structure after the root node of this tree has been scheduled.

```
lemma wn-closing-as-fmt:
    assumes \(A\) : wn-t \({ }^{\prime}(N N O S P A W N(L A c q x) t) \mu\)
        as \((\) NNOSPAWN \((L A c q x) t)=\) Some \((l, u, e)\)
        closing \(x t=\) Some Xu
    assumes \(C\) : !! \(l^{\prime} u^{\prime}\). \(\llbracket\) as \(t=\operatorname{Some}\left(l^{\prime}, u^{\prime}, e\right) ; l^{\prime} \leq l(x \mapsto X u)\);
                    \(u=\) insert \(x u^{\prime} ;\) dom \(l^{\prime}=\) insert \(x(\) dom \(l)\)
                        \(\rrbracket \Longrightarrow P\)
    shows \(P\)
proof -
    from \(A(1)\) have \(W N\) : wn-t' \(t([] @ x \# \mu)\) by auto
    from \(A(2)\) obtain \(l^{\prime} u^{\prime} e^{\prime}\) where \(A S^{\prime}:\) as \(t=\operatorname{Some}\left(l^{\prime}, u^{\prime}, e^{\prime}\right)\)
        by (auto split: eahl-splits)
    from closing-dom-l[OF \(\left.W N A(3) A S^{\prime}\right]\) have \(L^{\prime} X: l^{\prime} x=\) Some \(X u\).
    with \(A(2) A S^{\prime}\) have
        \(L F M T: l=l\)-add-use ( \(l\)-remove \(\left.l^{\prime} x\right)\{x\}\) and
        [simp]: \(u=\) insert \(x u^{\prime} \quad e^{\prime}=e\)
    by (auto split: eahl-splits)
    from \(L F M T L^{\prime} X\) have \(G 2: l^{\prime} \leq l(x \mapsto X u)\)
    by (rule-tac le-funI) (auto simp add: l-add-use-def split: option.split)
    from LFMT L'X have G3: dom \(l^{\prime}=\) insert \(x\) (dom l) by auto
    from \(C[O F-G 2-G 3]\) show \(P\) by (simp add: \(A S^{\prime}\) )
qed
```

A lock that occurs in the release history is closed in the execution tree, using the locks as described in the RH.

```
lemma dom-l-closing:
    \llbracket as t=Some (l,u,e);wn-t't }\mu;lx=Some Xu\rrbracket\Longrightarrowclosing x t = Some Xu
proof (induct t }\mu\mathrm{ arbitrary:l u e Xu rule: wn-t'.induct)
    case (1 ms) thus ?case by auto
next
    case 2 thus ?case by force
next
    case 3 thus ?case by (fastsimp elim!: as-comp-SomeE dest!: wn-dom-l-empty)
next
    case (4 xa t \mu) note C=this
    from C(3) have WN:wn-t't (xa#\mu) by auto
    from C(2) obtain l' }\mp@subsup{l}{}{\prime}\mp@subsup{e}{}{\prime}\mathrm{ where AS: as t=Some ( }\mp@subsup{l}{}{\prime},\mp@subsup{u}{}{\prime},\mp@subsup{e}{}{\prime}
        by (auto split: eahl-splits)
    from C(2,4) have XNE: xa\not=x by (auto split: eahl-splits simp add: l-add-use-def)
    with AS C(2,4) obtain Xu' where P: l' x=Some Xu'
        by (auto split: eahl-splits simp add: l-add-use-def)
    from C(1)[OF AS WN,OFP] have IHAPP: closing x t=Some Xu'.
    from wn-t-dom-l-stack'[OF WN AS, of x] P obtain }\mu1 \mu2 wher
        xa#\mu=\mu1@x#\mu2 set \mu1\subseteqdom l'
        by blast
    with XNE have xa\indom l' by (cases \mu1) auto
```

```
    with \(A S C(2,4)\) have \(l=l\)-add-use (l-remove \(\left.l^{\prime} x a\right)\{x a\}\)
    by (auto split: eahl-splits)
    with XNE P C(4) have \(X u=\left(\right.\) insert \(\left.x a X u^{\prime}\right)\) by (auto simp add: l-add-use-def)
    moreover from IHAPP
    have closing \(x(N N O S P A W N(L A c q x a) t)=\) Some (insert \(\left.x a X u^{\prime}\right)\)
    by auto
    ultimately show ?case by blast
next
    case 5 thus ?case by (fastsimp split: eahl-splits)
qed auto
```

If a tree starts with a final acquisition of x, its release history is empty and the acquisition history of x contains all the used locks.

With Lemma as-ran-e-le-u we then also have that the ranges of the acquisition histories contain precisely the used locks.

```
lemma ncl-as-fmt-single:
    assumes A: wn-t' (NNOSPAWN (LAcq x) t) }
            closing' (NNOSPAWN (LAcq x) t) = None
            as (NNOSPAWN (LAcq x) t) = Some (l,u,e)
    shows }u=\\mathrm{ ran e l=empty e x= Some u
proof -
    from A(1) have WN:wn-t' t (x#\mu) by auto
    from A(2) have NC: closing x }t=None by aut
    from A(3) obtain l' }\mp@subsup{l}{}{\prime}\mp@subsup{e}{}{\prime}\mathrm{ where AS: as t =Some ( l',},\mp@subsup{u}{}{\prime},\mp@subsup{e}{}{\prime}
        by (auto split: eahl-splits)
    from dom-l-closing[OF AS WN] NC have XNIDL': \negx\indom l' by auto
    with AS A(3) have
        EFMT: e= e'(x\mapstou) x\not\indom }\mp@subsup{e}{}{\prime}\mathrm{ and
        [simp]: l=l'
    by (auto split: eahl-splits)
    from EFMT(1) show e x=Some u by auto
    with EFMT have u\subseteq\ ran e by auto
    with as-ran-e-le-u[OF A(3)] show u=\bigcup ran e by simp
    {
        fix }\mp@subsup{x}{}{\prime
        assume CONTR: x'\indom l'
        with XNIDL' have XNE: }\mp@subsup{x}{}{\prime}\not=x\mathrm{ by auto
        from wn-t-dom-l-stack'[OF WN AS CONTR] obtain }\mu1 \mu2 where
            DS: x#\mu=\mu1@ 古#\mu2 set }\mu1\subseteq\operatorname{dom}\mp@subsup{l}{}{\prime
            by blast
    with XNE have x\indom l' by (cases }\mu1\mathrm{ ) auto
    with XNIDL' have False ..
    } thus l=empty
    by (auto simp add: dom-empty-simp[symmetric] simp del: dom-empty-simp)
qed
```

This lemma describes properties of the acquisition structure of a tree after a final acquisition has been scheduled.
lemma ncl-as-fmt-single':

```
    assumes A: wn-t' (NNOSPAWN (LAcq x) t) \(\mu\)
    closing' \((\) NNOSPAWN \((\) LAcq \(x) t)=\) None
    as (NNOSPAWN \((\operatorname{LAcq} x) t)=\) Some \((l, u, e)\)
    assumes \(C:!!e^{\prime}\). 【 as \(t=\) Some (empty, \(\left.u, e^{\prime}\right)\);
    \(u=\bigcup\) ran e; l=empty;
    \(e=e^{\prime}(x \mapsto u) ; x \notin \operatorname{dom} e^{\prime}\)
    \(\rrbracket \Longrightarrow P\)
    shows \(P\)
proof -
    from \(A(1)\) have \(W N\) : wn-t' \(t(x \# \mu)\) by auto
    from \(A(2)\) have \(N C\) : closing \(x t=\) None by auto
    from \(A(3)\) obtain \(l^{\prime} u^{\prime} e^{\prime}\) where \(A S\) : as \(t=\operatorname{Some}\left(l^{\prime}, u^{\prime}, e^{\prime}\right)\)
    by (auto split: eahl-splits)
    from dom-l-closing[OF AS WN] NC have XNIDL': \(\neg x \in d o m l^{\prime}\) by auto
    with \(A S A(3)\) have
        EFMT: \(e=e^{\prime}(x \mapsto u) \quad x \notin d o m e^{\prime}\) and
        [simp]: \(l^{\prime}=l \quad u^{\prime}=u\)
        by (auto split: eahl-splits)
    with \(E F M T\) have \(u \subseteq \bigcup\) ran \(e\) by auto
    with as-ran-e-le-u[OF A(3)] have UFMT: \(u=\bigcup\) ran e by simp
    \{
    fix \(x^{\prime}\)
    assume CONTR: \(x^{\prime} \in \operatorname{dom} l^{\prime}\)
    with \(X N I D L^{\prime}\) have \(X N E: x^{\prime} \neq x\) by auto
    from wn-t-dom-l-stack' \([O F W N\) AS CONTR] obtain \(\mu 1 \mu 2\) where
            \(D S: x \# \mu=\mu 1 @ x^{\prime} \# \mu 2 \quad\) set \(\mu 1 \subseteq \operatorname{dom} l^{\prime}\)
            by blast
        with \(X N E\) have \(x \in d o m l^{\prime}\) by (cases \(\mu 1\) ) auto
        with \(X N I D L^{\prime}\) have False ..
    \} hence \(L F M T[s i m p]: l=e m p t y\)
    by (auto simp add: dom-empty-simp[symmetric] simp del: dom-empty-simp)
    from \(C[O F-U F M T L F M T E F M T] A S\) show \(P\) by simp
qed
```

The acquisition structure of a hedge whose trees start with final acquisitions or are leafs has a special structure:

- The release history is empty.
- The ranges of the acquisition histories contain precisely the used locks.
- The acquisition histories for the locks at the roots of the hedge contain precisely the used locks.
- The acquisistion histories are defined for the locks at the roots of the hedge.

The first proposition follows because an initial release cannot come after a final acquisition due to well-nestedness. The second and third propositions follow as the roots of the hedge preceed every other node in the hedge. The
forth proposition follows directly from the assumption that every root node that acquired a lock is a final acquisistion.

```
lemma ncl-as-fmt:
    【
    wn-h \(h \mu\); ash \(h=\) Some ( \(l, u, e)\);
    \(!!Q t . \llbracket t \in\) set \(h ;!!x t^{\prime} . t=N N O S P A W N(L A c q x) t^{\prime} \Longrightarrow Q\);
                    \(!!p w \cdot t=\operatorname{NLEAF}(p, w) \Longrightarrow Q\)
            \(\rrbracket \Longrightarrow Q\);
    \(\forall t \in\) set h. closing \({ }^{\prime} t=\) None
    \(\rrbracket \Longrightarrow l=e m p t y \wedge u=\bigcup\) ran \(e \wedge\)
        \(\bigcup\) ran \(\left(\left.e\right|^{\prime}\right.\) rootlocks \(\left.h\right)=\bigcup\) ran \(e \wedge\)
        rootlocks \(h \subseteq\) dom \(e\)
proof (induct harbitrary: \(\mu l u e\) )
    case Nil thus? case by auto
next
    case (Cons \(t h\) )
    from Cons.prems(1) obtain xs \(\mu^{\prime}\) where
        [simp]: \(\mu=x s \# \mu^{\prime}\) and
            WN-SPLIT: wn-t t xs wn-h \(h \mu^{\prime}\) and
            WN-DISJ: set \(x s \cap\) locks \(-\mu \mu^{\prime}=\{ \}\)
        by (auto elim!: wn-h-prepend-h)
    from Cons.prems(2) obtain l1 u1 e1 l2 u2 e2 where
        \([\operatorname{simp}]: l=l 1++l 2 \quad u=u 1 \cup u 2 \quad e=e 1++e 2\) and
            AS-SPLIT: as \(t=\) Some (l1,u1,e1) ash \(h=\) Some (l2,u2,e2) and
            AS-DISJ: dom \(11 \cap \operatorname{dom} 12=\{ \} \quad \operatorname{dom}\) e \(1 \cap \operatorname{dom}\) e2 \(=\{ \}\)
        by (fastsimp elim!: as-comp-SomeE)
    have \(12=\) empty \(\wedge u 2=\bigcup\) ran e2 \(\wedge\)
            \(\bigcup\) ran \(\left(\left.e 2\right|^{\prime}\right.\) rootlocks \(\left.h\right)=\bigcup\) ran e2 \(\wedge\) rootlocks \(h \subseteq \operatorname{dom}\) e2
        apply (rule-tac Cons.hyps[OF WN-SPLIT(2) AS-SPLIT(2)])
        apply (rule-tac \(t=t\) in Cons.prems(3))
        apply auto
        apply (rule-tac Cons.prems(4)[rule-format \(]\) )
        apply simp
        done
    hence \(I H A P P: l 2=\) empty
                                    u2 \(=\bigcup\) ran e2
                                    \(\bigcup\) ran \((e 2\) |'rootlocks \(h)=\bigcup\) ran e2
                    rootlocks \(h \subseteq\) dom e2
        by auto
    have \(t \in\) set ( \(t \# h\) ) by simp
    thus ?case proof (cases rule: Cons.prems(3)[cases set, case-names acquire leaf])
    case leaf [simp] with \(A S\)-SPLIT(1) have [simp]: l1=empty \(\quad u 1=\{ \} \quad e 1=\) empty
by auto
    from \(I H A P P\) show ?thesis by simp
    next
    case (acquire \(\left.x t^{\prime}\right)[s i m p]\)
    from ncl-as-fmt-single[of \(x t^{\prime}\) xs ll u1 e1] \(W N-S P L I T(1) A S-S P L I T(1)\)
                Cons.prems (4)[rule-format, of \(t]\) have
            \(P: l 1=\) empty \(\quad u 1=\bigcup\) ran e1 \(\quad\) e1 \(x=\) Some u1
```

by auto
from P IHAPP AS-DISJ have G1: $l=$ empty $\wedge u=\bigcup$ ran e by auto
from $P(3)$ have $G 2-1$: rootlocks-t $t \subseteq$ dom e1 by auto
from $P(2,3)$ have G3-1: \bigcup ran (e1 |' rootlocks-t $t)=\bigcup$ ran e1
by (auto simp add: restrict-map-def ran-def)
from G2-1 IHAPP (4) AS-DISJ have
\bigcup ran $\left(\left.(e 1++e 2)\right|^{‘}(\right.$ rootlocks-t $t \cup$ rootlocks $\left.h)\right)=\bigcup$ ran e1 $\cup \bigcup$ ran e2
by (rule-tac union-ran-add-aux [OF G3-1 $\operatorname{IHAPP}(3)]$) auto
hence G3: \bigcup ran ($\left.e\right|^{\prime}$ rootlocks $\left.(t \# h)\right)=\bigcup$ ran e using $A S$-DISJ by auto
show ?thesis using G1 G2-1 IHAPP(4) G3 by auto
qed
qed
This lemma makes explicit the case-distinction along which the precision proof is done. The cases are:
final All trees are leaf nodes.
spawn There is a tree starting with a $N S P A W N x$ - node.
none There is a tree starting with a NNOSPAWN LNone - node.
release There is a tree starting with a $N N O S P A W N(L R e l x)$-node.
acquire All trees start with a $N N O S P A W N(L A c q x)$-node or are leafs. At least one tree is no leaf.
lemma h-cases[case-names final spawn none release acquire]:
assumes C :
final $h \Longrightarrow P$
!! h1 lab ts th2. h=h1@NSPAWN lab ts t\#h2 $\Longrightarrow P$
!!h1 t nlab h2. $h=h 1 @ N N O S P A W N(L N o n e ~ n l a b) ~ t \# h 2 \Longrightarrow P$
!!h1 x th2. $h=h 1 @ N N O S P A W N($ LRel $x) t \# h 2 \Longrightarrow P$
$\llbracket!!Q t . \llbracket t \in$ set $h ;!!x t^{\prime} . t=N N O S P A W N(L A c q x) t^{\prime} \Longrightarrow Q$;
$!!p w \cdot t=\operatorname{NLEAF}(p, w) \Longrightarrow Q$
$\rrbracket \Longrightarrow Q$;
$!!Q . \llbracket!!t^{\prime} x . N N O S P A W N(\operatorname{LAcq} x) t^{\prime} \in \operatorname{set} h \Longrightarrow Q \rrbracket \Longrightarrow Q$
$\rrbracket \Longrightarrow P$
shows P
proof (cases $h=[]$)
case True with $C(1)$ show P by simp
next
case False hence set $h \neq\{ \}$ by simp
\{
assume $\exists t$ nlab. NNOSPAWN (LNone nlab) $t \in$ set h
with $C(3)$ have P by (blast elim: in-set-list-format)
\} moreover \{
assume $\exists t x$. NNOSPAWN (LRel $x) t \in$ set h
with $C(4)$ have P by (blast elim: in-set-list-format)
\} moreover \{

```
    assume \existslab ts t. NSPAWN lab ts t\inset h
    with C(2) have P by (blast elim: in-set-list-format)
    } moreover {
    assume }\forallt\in\mathrm{ set h. }\neg(\existslab t. NNOSPAWN lab t\inset h) ^
        \neg (\exists lab ts t.NSPAWN lab ts t\inset h)
    hence }\forallt\in\mathrm{ set h. final-t t
        apply safe
        apply (case-tac t)
        apply auto
        done
    with C(1) have P by (auto simp add: list-all-iff)
} moreover {
    assume A: }\neg(\existst\mathrm{ nlab. NNOSPAWN (LNone nlab) t set h)
                \neg ( \exists t x . N N O S P A W N ~ ( L R e l ~ x ) ~ t \in ~ s e t ~ h )
                \neg(\exists lab ts t.NSPAWN lab ts t\inset h)
                (\existslab t. NNOSPAWN lab t\inset h)
    hence (\existstx.NNOSPAWN (LAcq x) t\inset h)
        apply auto
        apply (case-tac lab)
        by auto
    with A(1,2,3) have P apply auto
        apply (rule-tac C(5))
        apply auto
        apply (case-tac ta)
        apply auto
        apply fast
        apply (case-tac L)
        apply auto
        apply fast
        done
    } ultimately show ?thesis by blast
qed
```

This lemma determines the tree within a hedge whose release history contains a specific lock.

```
lemma ash-find-l-t[consumes 2]:
    \llbracketash h=Some (l,u,e); x\indom l;
            !!h1 t h2 l1 u1 e1 l2 u2 e2. \llbracket
            h=h1@t#h2; l=l1++l2; u=u1\cupu2; e=e1++e2;
            as t = Some (l1,u1,e1); ash h1 || ash h2 = Some (l2,u2,e2);
            x\indom l1; dom l1\capdom l2 = {}; dom e1\capdom e2 = {}
            \Longrightarrow P
    \LongrightarrowP
proof (induct h arbitrary:l u e P rule:ash.induct)
    case 1 thus ?case by fastsimp
next
    case (2th) note C=this
    from as-comp-SomeE[OF C(2)[simplified]] obtain l1 u1 e1 l2 u2 e2 where
        SPLIT-simps[simp]:l=l1++l2 u= u1\cupu2 e=e1 ++ e2 and
```

```
    SPLIT: as \(t=\) Some (l1, u1, e1) ash \(h=\) Some (l2, u2, e2)
        dom \(11 \cap \operatorname{dom} 12=\{ \} \quad\) dom e \(1 \cap \operatorname{dom} e 2=\{ \}\)
    from \(C(3)\) have \(x \in \operatorname{dom} l 1 \vee x \in \operatorname{dom} l 2\) by auto
    moreover \{
    assume A: \(x \in \operatorname{dom} l 1\)
    moreover have \(t \# h=[] @ t \# h\) by simp
    ultimately have ?case
    by (rule-tac C(4)) (assumption, (simp add: SPLIT)+)
    \} moreover \{
    assume \(A\) : \(x \in \operatorname{dom} l 2\)
    from \(C(1)[O F \operatorname{SPLIT}(2) A]\) obtain \(h 1\) tt h2 l21 u21 e21 l22 u22 e22 where
        IHAPP-simp \([\operatorname{simp}]: h=h 1\) @ tt \# h2 \(\quad l 2=l 21++l 22\)
                        \(u 2=u 21 \cup u 22 \quad e 2=e 21++e 22\) and
        IHAPP: as tt = Some (l21, u21, e21)
            ash h1 || ash h2 = Some (l22, u22,e22)
                \(x \in \operatorname{dom} l 21\)
                dom \(121 \cap \operatorname{dom} 122=\{ \}\)
                dom e21 \(\cap\) dom e2R=\{\}
    from SPLIT IHAPP have
            DS: dom l1 \(\cap \operatorname{dom} l 21=\{ \} \quad\) dom e1 \(\cap \operatorname{dom}\) e21 \(=\{ \}\)
            by auto
    have \(t \# h=(t \# h 1) @ t t \# h 2 \quad l=l 21++(l 1++l 22)\)
                \(u=u 21 \cup(u 1 \cup u 22) \quad e=e 21++(e 1++e 22)\)
            by (auto simp add: map-add-comm[OF DS(1)] map-add-comm[OF DS(2)])
    moreover have ash \((t \# h 1) \|\) ash h2 \(=\) Some \((l 1++l 22, u 1 \cup u 22, e 1++e 22)\)
    proof -
        have ash (t\#h1) \| ash h2 = as \(t \|(\) ash \(h 1 \|\) ash h2) by (simp)
        also have \(\ldots=\) as-comp \((l 1, u 1, e 1)(l 22, u 22, e 22)\)
            by (simp add: \(\operatorname{IHAPP}(2) \operatorname{SPLIT}(1))\)
        also have \(\ldots=\) Some \((l 1++l 22, u 1 \cup u 22, e 1++e 22)\)
            using SPLIT IHAPP by auto
        finally show ?thesis.
    qed
    ultimately have ?case using \(\operatorname{SPLIT}(3,4) \operatorname{IHAPP}(1,3,4,5)\)
    by (rule-tac C(4)) (assumption+, auto)
    \} ultimately show ?case by blast
qed
```

This lemma determines the tree within a hedge whose acquisition history contains a specific lock.

```
lemma ash-find-e-t[consumes 2]:
    【 ash \(h=\) Some ( \(l, u, e\) ); \(x \in \operatorname{dom} e\);
        !!h1 th2 l1 u1 e1 l2 u2 e2.
            \(h=h 1 @ t \# h 2 ; l=l 1++l 2 ; u=u 1 \cup u 2 ; e=e 1++e 2 ;\)
            as \(t=\) Some (l1,u1,e1); ash h1 \|| ash h2 = Some (l2,u2,e2);
            \(x \in \operatorname{dom}\) e1; dom l1กdom l2 \(=\{ \} ;\) dom e1 \(\cap \operatorname{dom}\) e2 \(=\{ \}\)
            \(\rrbracket \Longrightarrow P\)
```

```
    | \LongrightarrowP
proof (induct h arbitrary:l u e P rule:ash.induct)
    case 1 thus ?case by fastsimp
next
    case (2th) note C=this
    from as-comp-SomeE[OF C(2)[simplified]] obtain l1 u1 e1 l2 u2 e2 where
        SPLIT-simps[simp]: l= l1 ++ l2 u= u1\cupu2 e=e1 ++ e2 and
        SPLIT: as t = Some (l1,u1, e1) ash h = Some (l2,u2, e2)
            dom l1 \cap dom l2 = {} dom e1 \cap dom e2 = {}
    from C(3) have x\indom e1 \vee x\indom e2 by auto
    moreover {
        assume A: x\indom e1
        moreover have t#h=[]@t#h by simp
        ultimately have ?case by (rule-tac C(4)) (assumption, (simp add: SPLIT)+)
    } moreover {
        assume A: x\indom e2
        from C(1)[OF SPLIT(2) A] obtain h1 tt h2 l21 u21 e21 l22 u22 e22 where
            IHAPP-simp[simp]: h=h1@ tt # h2 l2=l21++l22
                        u2=u21\cupu22 e2=e21++e22 and
        IHAPP: as tt = Some (l21, u21, e21)
                            ash h1 | ash h2 = Some (l22,u22,e22)
                    x\indom e21
                    dom l21\capdom l22={}
                    dom e21\capdom e22={}
        from SPLIT IHAPP have
            DS: dom l1 \cap dom l21 = {} dom e1 \cap dom e21 = {}
            by auto
    have t#h=(t#h1)@tt#h2 l= l21 ++ (l1++l22)
                u=u21\cup(u1\cupu22) }\quade=e21 ++(e1++e22) 
            by (auto simp add: map-add-comm[OF DS(1)] map-add-comm[OF DS(2)])
    moreover have ash (t#h1)| ash h2 = Some (l1++l22,u1\cupu22,e1++e22)
proof -
            have ash (t#h1)| ash h2 = as t| (ash h1 | ash h2) by (simp)
            also have ... = as-comp (l1,u1,e1) (l22,u22,e22)
                by (simp add: IHAPP(2) SPLIT(1))
            also have \ldots=Some (l1++l22,u1\cupu22,e1++e22)
                using SPLIT IHAPP by auto
            finally show ?thesis .
    qed
    ultimately have ?case using SPLIT(3,4) IHAPP (1,3,4,5)
            by (rule-tac C(4)) (assumption+, auto)
    } ultimately show ?case by blast
qed
```

Auxilliary lemma to split the acquisistion history of a hedge by some tree in that hedge.

```
lemma ash-split-aux:
    assumes \(A S\) : ash \(h=\) Some ( \(l, u, e\) ) and
        \(H F M T[\operatorname{simp}]: h=h 1 @ t \# h 2\) and
        C: !!l1 u1 e1 l2 u2 e2. 【
            \(l=l 1++l 2 ; u=u 1 \cup u 2 ; e=e 1++e 2 ;\) as \(t=\) Some \((l 1, u 1, e 1) ;\)
            ash h1 || ash h2 = Some (l2,u2,e2);
            dom \(l 1 \cap \operatorname{dom} 12=\{ \} ;\) dom e1 \(\cap \operatorname{dom}\) e2 \(=\{ \}\)
            \(\rrbracket \Longrightarrow P\)
    shows \(P\)
proof -
    have as \(t \|(\) ash \(h 1 \|\) ash h2) \(=\) ash \(h\) by simp
    also note \(A S\)
    finally have 1: as \(t \|\) ash \(h 1 \|\) ash \(h 2=\operatorname{Some}(l, u, e)\).
    show \(P\) by (rule as-comp-Some \(E[O F 1]\), rule \(C\) ) assumption+
qed
```

Auxilliary lemma that combines ash-split-aux and wn-h-split-aux.
lemma wn-ash-split-aux:

assumes

WN: wn-h $h \mu$ and
AS: ash $h=$ Some (l, u, e) and
HFMT[simp]: $h=h 1 @ t \# h 2$ and
$C:!!\mu 1$ xs $\mu 2$ l1 u1 e1 l2 u2 e2. 【
$\mu=\mu 1 @ x s \# \mu 2 ; l=l 1++l 2 ; u=u 1 \cup u 2 ; e=e 1++e 2$;
wn-t' $t x s$; wn-h h1 $\mu 1$; wn-h h2 $\mu 2$;
as $t=$ Some (l1, u1,e1); ash h1 \| ash h2 = Some (l2,u2,e2);
locks $-\mu \mu 1 \cap$ set $x s=\{ \} ;$ locks $-\mu \mu 1 \cap$ locks $-\mu \mu 2=\{ \} ;$
set $x s \cap$ locks- $\mu \mu 2=\{ \} ; \operatorname{dom} l 1 \cap \operatorname{dom} l 2=\{ \} ; \operatorname{dom}$ e1 $\cap \operatorname{dom} e 2=\{ \}$
$\rrbracket \Longrightarrow P$
shows P
apply (rule wn-h-split-aux[OF WN HFMT])
apply (rule ash-split-aux[OF AS HFMT])
apply (rule C)
apply assumption+
done

context $L D P N$

begin

Precision of the acqusisition structure construction, i.e. for a well-nested hedge, a consistent acquisistion history implies a schedule.
theorem acqh-precise:
fixes $h::\left({ }^{\prime} P,{ }^{\top}{ }^{\prime},{ }^{\prime} L, ' X\right)$ lex-hedge
assumes A : ash $h=\operatorname{Some}(l, u, e) \quad$ cons-as $(l, u, e)($ locks- $\mu \mu) \quad$ wn-h h μ
shows $\exists w$. lsched $h($ locks- $\mu \mu) w$

- The proof is done by induction on the size of the hedge.

Given a non-empty hedge, it constructs the first step of the schedule and shows that the acquisistion structure remains consistent.

It considers the following cases:

- If the hedge contains a root that has no effect on locks, this root is scheduled. Those steps can always be scheduled, as the acquisition structure and the set of acquired locks do not change.
- If the hedge contains a root that initially releases a lock x, it is scheduled. A release can always be scheduled, as it cannot block. The new acquisition structure remains consistent: The acqusisition history is unchanged, the release history decreases (the lock x is removed). Consistency is preserved, as the lock x does not occur in the set of acquired locks any more.
- If the hedge contains only roots that are lock acquisitions or leafs, we further distinguish whether some of the roots are usages, or there are only final acquisitions.
- If some of the roots are usages, we can find a usage where the used locks are disjoint from the domain of the release history (Due to acyclicity of the RH). Intuitively, this is a usage where the required locks are already released. This usage could be scheduled as a whole, without changing the RH, AH or set of acquired locks, and only decreasing the set of used locks. However, we chose another way here and show that scheduling only the first acquisition step of the usage also preserves consistency of the AS. We chose this approach in order to not having to formalize the scheduling of a usage. We assume that this simplifies formalization overhead (Perhaps at the cost of increased proof complexity).
- If all of the roots are leafs or final acquisitions, due to acyclicity of the AH, we can select a final acquisition that acquires a lock that is not used in the rest of the hedge. Scheduling this acquisition preserves consistency of the AS.

```
proof -
    \{
    fix \(h::\left({ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L, ' X\right)\) lex-hedge and \(l u\) e \(\mu s\)
    assume \(A\) : ash \(h=\) Some ( \(l, u, e\) ) cons-as \((l, u, e)(l o c k s-\mu \mu) \quad\) wn-h \(h \mu\)
                hedge-size \(h=s\)
    from \(A\) have \(\exists w\). lsched \(h\) (locks- \(\mu \mu\) ) \(w\)
    proof (induct s arbitrary: hlue rule: nat-compl-induct')
        case 0 - Empty hedge, the proposition is trivial
        thus ?case by (rule-tac \(x=[]\) in exI) (auto intro: lsched.intros)
    next
        case (Suc s)
            - Non-empty hedge. Make the case-distinction depicted above
        show ?case
        proof (cases rule: \(h\)-cases \([o f ~ h]\) )
            case final - The hedge only contains leafs. The proposition is also trivial
        then, as the empty path is a valid schedule.
            thus ?thesis by (rule-tac \(x=[]\) in exI) (auto intro: lsched.intros)
        next
```

case (spawn h1 lab ts th2)[simp] — The hedge contains a spawn step. By assumption, spawn steps have no effect on locks. hence, scheduling the spawn step does not affect the consistency criteria.
from Suc.prems(3)[simplified] obtain nlab where
[simp]: lab=LNone nlab
by (auto elim: wn-h-spawn-imp-LNoneE)
have SIZE: hedge-size ($h 1 @ t s \# t \# h 2) \leq s$ using Suc.prems(4) by simp
from $w n$-h-preserve-spawn[of μ LNone nlab locks- $\mu \mu$,

> OF - Suc.prems(3)[simplified]]
obtain μ^{\prime} where
[simp]: locks $-\mu \mu^{\prime}=$ locks $-\mu \mu$ and
$W N H: w n-h(h 1 @ t s \# t \# h 2) \mu^{\prime}$
by auto
from Suc.hyps[OF SIZE - WNH] Suc.prems $(1,2)$ obtain w where
$L S: l s c h e d ~(h 1 @ t s \# t \# h 2)\left(l o c k s-\mu \mu^{\prime}\right) w$
by fastsimp
from lsched-spawn[OF LS, of locks- $\mu \mu \quad$ LNone nlab] show ?thesis by auto

next

case (none h1 t nlab h2) [simp] - The hedge contains a non-spawning step with no effects on locks. Scheduling this step does not affect the consistency criteria.
have SIZE: hedge-size (h1@t\#h2) $\leq s$ using Suc.prems(4) by simp
from $w n$-h-preserve-nospawn[of μ LNone nlab locks- $\mu \mu$, OF - Suc.prems(3)[simplified]]
obtain μ^{\prime} where
[simp]: locks- $\mu \mu^{\prime}=$ locks $-\mu \mu$ and
$W N H: w n-h(h 1 @ t \# h 2) \mu^{\prime}$
by auto
from Suc.hyps $[O F$ SIZE - WNH] Suc.prems $(1,2)$ obtain w where
LS: lsched (h1@t\#h2) (locks- $\mu \mu^{\prime}$) w
by fastsimp
from lsched-nospawn[OF LS, of locks- $\mu \mu \quad$ LNone nlab] show ?thesis by auto
next
case (release $h 1 \times t h 2)[s i m p]$ - We have at least one release step. Scheduling a release step is always possible and will not make the release history inconsistent, as its effect is to remove an entry from the release history

```
have SIZE: hedge-size (h1@t\#h2) \(\leq s\) using Suc.prems(4) by simp
from Suc.prems(3)[simplified] obtain \(\mu 1\) xs \(\mu 2\) where
    [simp]: \(\mu=\mu 1 @ x s \# \mu 2\) and
        WN-SPLIT: wn-h h1 \(\mu 1 \quad w n-t^{\prime}(\) NNOSPAWN (LRel x) t) \(x s\)
                wn-h h2 \(\mu 2\) and
            WN-DISJ: locks \(-\mu \mu 1 \cap\) set \(x s=\{ \} \quad\) locks \(-\mu \mu 1 \cap\) locks \(-\mu \mu 2=\{ \}\)
                set \(x s \cap\) locks \(-\mu \mu 2=\{ \}\)
    by (fastsimp elim: wn-h-prepend-h wn-h-append-h)
from \(W N-S P L I T(2)\) obtain \(x s h\) where
            [simp]: \(x s=x \# x s h\) and
```

$$
X S-S P L I T: x \notin \text { set } x s h \quad w n-t^{\prime} t x s h
$$

by auto
from $W N-S P L I T$ WN-DISJ XS-SPLIT have
$W N H: w n-h(h 1 @ t \# h 2)(\mu 1 @ x s h \# \mu 2)$ and
$W N H^{\prime}: w n-h(h 1 @ h 2)(\mu 1 @ \mu 2)$
by (auto intro!: wn-h-appendI wn-h-prependI)
have $\operatorname{ash}(h 1 @(N N O S P A W N(L R e l x) t) \# h 2)=$ as (NNOSPAWN (LRel x) t) \| ash (h1@h2)
by auto
with Suc.prems(1) have
as (NNOSPAWN (LRel x) t) \| ash (h1@h2) = Some (l,u,e)
by simp
then obtain lt ut et l2 u2 e2 where
ASS-simps: as (NNOSPAWN (LRel x) t) $=$ Some $(l t, u t, e t)$

$$
\text { ash }(h 1 @ h 2)=\text { Some (l2,u2,e2) }
$$

$$
l=l t++l 2 \quad u=u t \cup u 2 \quad e=e t++e 2 \text { and }
$$

ASS: dom lt $\cap \operatorname{dom} 12=\{ \} \quad$ dom et $\cap \operatorname{dom}$ e2 $=\{ \}$
by (erule-tac as-comp-SomeE) blast
from $A S S-\operatorname{simps}(1)$ have $X I D L T: x \in d o m$ lt by (auto split: eahl-splits)
from wn-h-dom-l-lower- $\mu\left[O F W N H^{\prime}\right.$, simplified $] W N-D I S J[$ simplified $]$

from $A S S$-simps (1) have $A S$-T: as $t=$ Some (l-remove lt x, ut, et)
apply (auto split: option.split-asm prod.split-asm)
apply (drule-tac wn-t-dom-l-lower- $\mu[$ OF XS-SPLIT(2)])
apply (force simp add: l-remove-def intro!: ext iff add: XS-SPLIT(1)) done
have ash (h1@t\#h2) = as $t \|$ ash (h1@h2) by simp
also from $X N I D L 2 A S S$
have as $t \|$ ash $(h 1 @ h 2)=$ Some (l-remove l $x, u, e)$
apply (simp only: $A S-T A S S-\operatorname{simps}(2))$
apply (simp add: ASS-simps)
apply (auto simp add: l-remove-def map-add-comm)
apply (force intro!: ext simp add: map-add-def split: option.split)
done
finally have G1: ash (h1@t\#h2) = Some (l-remove lx,u,e).
from Suc.prems(2) have
G2: cons-as (l-remove l $x, u, e)($ locks- $\mu(\mu 1 @ x s h \# \mu 2))$
using XIDLT WN-DISJ[simplified] XS-SPLIT(1)
by simp (blast 5 intro!: cons-h-remove)
from Suc.hyps $[O F$ SIZE G1 G2 WNH] obtain w where
IHAPP: lsched (h1 @ t \# h2) (locks- $\mu(\mu 1$ @ $x s h \# \mu 2)) w$ by blast
moreover have lock-valid (locks- $\mu \mu)(L R e l x)(\operatorname{locks}-\mu(\mu 1 @ x s h \# \mu 2))$
using $W N-D I S J X S-S P L I T(1)$ by simp
ultimately have lsched $(h)($ locks $-\mu \mu)((L R e l) \# w)$
by (auto intro: lsched.intros)
thus ?thesis by blast
next
case acquire - All the trees start either with acquisitions or are leafs. This
case is the complex part of the proof.
We first distinguish whether there is a usage or all acquisitions are final acquisitions.
$\{$
assume $C: \exists X u . \exists t \in$ set h. closing ${ }^{\prime} t=$ Some $X u$ - There is a usage

- Find a tree that starts with a usage, where the used locks are disjoint from the release history.
obtain $x X u t$ where
USE: NNOSPAWN $(L A c q x) t \in \operatorname{set} h \quad$ closing $x t=$ Some $X u$
insert $x X u \cap \operatorname{dom} l=\{ \}$
proof (cases dom $l=\{ \}$)
case True $[\operatorname{simp}]$ - Simple case: Domain of RH is empty, hence we can take any tree in h
from C obtain $X u t$ where $1: t \in \operatorname{set} h \quad \operatorname{closing}^{\prime} t=\operatorname{Some} X u$ by blast
then obtain $x t^{\prime}$ where
[simp]: $t=N N O S P A W N(L A c q x) t^{\prime}$ and
$C L:$ closing $x t^{\prime}=$ Some $X u$
by (cases t rule: closing'.cases) auto
with 1 show ?thesis by (rule-tac that) simp-all
next
case False - Complex case: Domain of RH is not empty, we have to take tree that contains minimal element of RH
with Suc.prems(2) obtain x where MIN: rh-min l x
by (force dest: cons-h-ex-rh-min)
hence $M I D L: x \in d o m ~ l$ by (auto split: option.split-asm)
from ash-find-l-t[OF Suc.prems(1) MIDL]
obtain h1 th2 l1 u1 e1 l2 u2 e2 where
$F T$-simps $[\operatorname{simp}]: h=h 1 @ t \# h 2 \quad l=l 1++l 2$
$u=u 1 \cup u 2 \quad e=e 1++e 2$ and
$F T:$ as $t=$ Some (l1, u1, e1)
ash h1 || ash h2 = Some (l2, u2, e2) and
MIDL1: $x \in \operatorname{dom} l 1$ and
$F T$-DISJ: dom l1 $\cap \operatorname{dom} l 2=\{ \} \quad \operatorname{dom}$ e $1 \cap \operatorname{dom}$ e2 $=\{ \}$.
obtain $x^{\prime} t^{\prime}$ where $T F M T[\operatorname{simp}]: t=N N O S P A W N\left(L A c q x^{\prime}\right) t^{\prime}$
using $F T(1) M I D L 1$
by (subgoal-tac $t \in$ set h)
(erule acquire(1), auto split: option.split-asm)
have G1: NNOSPAWN (LAcq $\left.x^{\prime}\right) t^{\prime} \in$ set h by simp
from Suc.prems(3) obtain $\mu 1$ xs $\mu 2$ where
$[\operatorname{simp}]: \mu=\mu 1 @ x s \# \mu 2$ and
WN-SPLIT: wn-h h1 $\mu 1 \quad w n-t^{\prime} t x s \quad w n-h h 2 \mu 2$ and
$W N-D I S J:$ locks $-\mu \mu 1 \cap$ set $x s=\{ \} \quad$ locks $-\mu \mu 1 \cap$ locks $-\mu \mu 2=\{ \}$ set $x s \cap$ locks- $\mu \mu 2=\{ \}$
by (fastsimp elim: wn-h-append-h wn-h-prepend- h)
from $W N-S P L I T(2)$ have $W N^{\prime}: w n-t^{\prime} t^{\prime}\left(x^{\prime} \# x s\right)$ by simp
from $F T(1)$ obtain $l 1^{\prime} u 1^{\prime} e 1^{\prime}$ where
$A S:$ as $t^{\prime}=\operatorname{Some}\left(l 1^{\prime}, u 1^{\prime}, e 1^{\prime}\right)$ and

```
    UU:dom l1\subseteqdom l1' }\mp@subsup{x}{}{\prime}\not\in\operatorname{dom}l
    by (force split: eahl-splits)
    from UU MIDL1 have MIDL': x\indom l1' by auto
    from MIDL1 UU have MNE: }x\not=\mp@subsup{x}{}{\prime}\mathrm{ by auto
    from wn-t-dom-l-stack'[OF WN' AS MIDL']
    obtain xs1 xs2 where
    x'#xs = xs1@x#xs2 set xs1\subseteqdom l1'
```



```
    by blast
then obtain Xu where L1'X':l1' x'= Some Xu Some Xu\leql1'x
    using MNE by (cases xs1) auto
    from dom-l-closing[OF AS WN',OF L1'X'(1)] have
    G2: closing \mp@subsup{x}{}{\prime}\mp@subsup{t}{}{\prime}=Some Xu.
    from L1'X'(1) FT(1) AS have
        L1FMT[simp]:l1 = l-add-use (l-remove l1' }x\mathrm{ ') {x'} and
        X'IU: x'\inu
        by (auto split: eahl-splits)
    from MNE MIDL' have
        l1'}x\leql1x\mathrm{ and
        X'IL1X: x' \in the (l1 x)
        by (auto simp add:l-add-use-def split:option.split)
    with L1'X' have Some Xu\leql1 x by auto
    with FT-DISJ MIDL1 have
        XULE: Some Xu \leqlx
        by (auto simp del: L1FMT simp add: map-add-def split: option.split)
    with MIN have the ( l x) \cap dom l={} by auto
    moreover from XULE MIDL have Xu\subseteq the (l x)
        by (auto simp add:le-option-def split: option.split-asm)
    moreover from X'IL1X FT-DISJ MIDL1 have x'\inthe (l x)
    by (auto simp add: map-add-def split: option.split)
    ultimately have G3: insert }\mp@subsup{x}{}{\prime}Xu\cap\operatorname{dom}l={}\mathrm{ by auto
    from that[OF G1 G2 G3] show ?thesis .
qed
- Split h (This duplicates some work done in the complex case of the proof above)
from in-set-list-format[OF USE (1)] obtain h1 h2 where
HFMT[simp]: \(h=h 1 @(N N O S P A W N(L A c q x) t) \# h 2\).
from Suc.prems(3) obtain \(\mu 1\) xs \(\mu 2\) where
[simp]: \(\mu=\mu 1 @ x s \# \mu 2\) and
WN-SPLIT: wn-h h1 \(\mu 1 \quad w n-t^{\prime}(N N O S P A W N(L A c q x) t) x s\) wn-h h2 \(\mu 2\) and
\(W N-D I S J:\) locks \(-\mu \mu 1 \cap\) set \(x s=\{ \} \quad\) locks \(-\mu \mu 1 \cap\) locks \(-\mu \mu 2=\{ \}\) set \(x s \cap\) locks \(-\mu \mu 2=\{ \}\)
by (fastsimp elim: wn-h-append-h wn-h-prepend-h)
from \(W N-S P L I T(2)\) have \(W N^{\prime}: w n-t^{\prime} t(x \# x s)\) by simp
- Split acquisition structure according to splitting of h
from Suc.prems(1) obtain l1 u1 e1 l2 u2 e2 where
```

```
    AS-SPLIT: as (NNOSPAWN (LAcq x) t) = Some (l1,u1,e1)
            ash h1 | ash h2 = Some (l2,u2,e2) and
    [simp]: l=l1++l2 }\quadu=u1\cupu2 e=e1++e2 and
    AS-DISJ: dom l1 \cap dom l2 = {} dom e1 \cap dom e2 = {}
proof -
    have as (NNOSPAWN (LAcq x) t)|(ash h1 | ash h2) = ash h
        by auto
    also have ... = Some (l,u,e) using Suc.prems(1).
    finally show ?thesis by (erule-tac as-comp-SomeE) (blast intro!: that)
qed
- Obtain facts about new tree's acquisition structure
from wn-closing-as-fmt[OF WN-SPLIT(2) AS-SPLIT(1) USE(2)]
obtain l1'u1' where
    S: as t = Some (l1', u1', e1) ll1'\leql1(x\mapstoXu)
        u1 = insert x u1' dom l1' = insert x (dom l1).
from USE(3) have XNIDL: x\not\indom l by simp
from S(3) XNIDL Suc.prems(2) have XNILM: x\not\inlocks- }\mu\mu\mathrm{ by auto
- Construct new hedge's acquisition structure
have ash(h1@t#h2) = as t| (ash h1 || ash h2) by simp
also have ... = as-comp (l1',u1',e1) (l2,u2,e2)
    by (simp add: S(1) AS-SPLIT(2))
also have ... = Some (l1'++l2,u1'\cupu2, e)
    using XNIDL S(4) AS-DISJ by auto
finally have
    ASH':ash (h1 @ t # h2 ) = Some (l\mp@subsup{1}{}{\prime}++l2,u\mp@subsup{1}{}{\prime}\cupu2,e).
- Collect facts for induction hypothesis
from XNILM WN-DISJ WN-SPLIT WN' have
    WNH':wn-h(h1@t#h2)(\mu1@(x#xs)#\mu2)
    by (auto intro!: wn-h-appendI wn-h-prependI)
have CONS': cons-as (l1'++l2,u1'\cupu2, e) (locks- }\mu(\mu1@(x#xs)#\mu2)
proof -
    have CONSL': cons-h (l1'++l2) proof -
        from S(2) have LLE:l1'++l2 \leql(x\mapstoXu)
            using XNIDL by (rule-tac le-funI, drule-tac x=xa in le-funD)
                                    (auto simp add: map-add-def split: option.split)
        from Suc.prems(2) have CL: cons-h l by simp
        from wn-closing-ni[where ? \mu1.0=[], simplified,OF WN' USE(2)]
        have }x\not\inXu\mathrm{ .
        with cons-h-update[OF CL, of Xu x] USE(3)
        have cons-h (l(x\mapstoXu)) by auto
        with cons-h-antimono[OF LLE] show ?thesis by simp
    qed
```

```
from Suc.prems(2) have 1: (locks- \(\mu \mu-\operatorname{dom} l) \cap(u \cup \operatorname{dom} e)=\{ \}\)
    by auto
    from \(S(4)\) have
        2: (locks- \(\mu \mu-\operatorname{dom} l) \supseteq\)
                \(\left(\right.\) locks \(-\mu(\mu 1 @(x \# x s) \# \mu 2)-\operatorname{dom}\left(l 1^{\prime}++\right.\) l2 \(\left.)\right)\)
        by auto
        from \(S(3)\) have 3: \((u \cup \operatorname{dom} e) \supseteq u 1^{\prime} \cup u 2 \cup\) dom \(e\) by auto
        from disjoint-mono[OF 231 1] have
            \(\left(\right.\) locks \(\left.-\mu(\mu 1 @(x \# x s) \# \mu 2)-\operatorname{dom}\left(l 1^{\prime}++l 2\right)\right) \cap\)
            \(\left(u 1^{\prime} \cup u 2 \cup \operatorname{dom} e\right)=\{ \}\).
        moreover from Suc.prems(2) have cons-h e by auto
        moreover note CONSL'
        ultimately show ?thesis by (auto)
qed
have SIZE: hedge-size (h1@t\#h2) \(\leq s\) using Suc.prems(4) by simp
- Apply induction hypothesis
from Suc.hyps [OF SIZE ASH' CONS' WNH \(]\) obtain \(w\) where IHAPP: lsched (h1 @ \(t\) \# h2) (locks- \(\mu(\mu 1\) @ \((x \# x s) \# \mu 2)) w\) by blast
- Show that we can schedule the first step
have \(L V\) :
lock-valid (locks- \(\mu \mu)(\) LAcq \(x)(\) locks- \(\mu(\mu 1 @(x \# x s) \# \mu 2))\)
using XNILM by simp
from lsched-nospawn[OF IHAPP LV] have ?thesis by auto
\} moreover \{
assume \(C: \forall t \in\) set \(h\). closing \({ }^{\prime} t=\) None
- All the acquisitions at the roots of the hedge are final.
- The release history is empty, and any used lock occurs after a final acquisition
have \(l=\) empty \(\wedge u=\bigcup\) ran \(e \wedge\)
\(\bigcup\) ran \(\left(\left.e\right|^{\prime}\right.\) rootlocks \(\left.h\right)=\bigcup\) ran e \(\wedge\) rootlocks \(h \subseteq \operatorname{dom} e\)
by (blast intro!: ncl-as-fmt[OF Suc.prems(3,1)-C] intro: acquire(1))
hence
[simp]: \(l=e m p t y\) and
\(N C L: u=\bigcup\) ran \(e\) and
XMS: Џran \(\left(\left.e\right|^{\prime}\right.\) rootlocks \(\left.h\right)=\bigcup\) ran \(e \quad\) rootlocks \(h \subseteq\) dom \(e\)
by auto
- There is at least one tree starting with an acquisition, thus the acquisition history is not empty
have \(R L N E\) : rootlocks \(h \neq\{ \}\) and ENE: e \(\neq\) empty proof obtain \(t^{\prime} x\) h1 h2 where
HFMT[simp]: \(h=h 1 @\left(N N O S P A W N(L A c q x) t^{\prime}\right) \# h 2\)
by (blast intro: acquire(2) elim: in-set-list-format)
thus rootlocks \(h \neq\{ \}\) by auto
```

```
    with XMS(2) show efempty by auto
qed
```

- We can obtain a minimal lock that is acquired at a root of some tree obtain x where XIR: $x \in$ rootlocks h and MIN: ah-min e x proof -
have 1: e |' rootlocks $h \neq$ empty using XMS(2) RLNE
by (subgoal-tac dom (e |' rootlocks h) $\neq\{ \}$) fastsimp +
from cons-h-ex-ah-min[OF 1 cons-h-antimono[of e|'rootlocks $h e]]$ Suc.prems(2)
obtain x where ah-min ($\left.e\right|^{\prime}$ rootlocks h) x
by auto
with $X M S(1)$ show ?thesis by (auto intro!: that)
qed
- Find the tree with x at the root
from rootlocks-split[OF XIR] obtain h1 th2 where HFMT[simp]: $h=h 1 @ N N O S P A W N(L A c q x) t \# h 2$.
- Split lock-stacks and acquisistion structures
from wn-ash-split-aux [OF Suc.prems $(3,1)$ HFMT]
obtain $\mu 1$ xs $\mu 2$ l1 u1 e1 l2 u2 e2 where
SPLIT-simps $[\operatorname{simp}]: ~ \mu=\mu 1$ @ $x s \# \mu 2 \quad u=u 1 \cup u 2$
$e=e 1++e 2$ and
WNS: wn-t' (NNOSPAWN (LAcq x) t) xs wn-h h1 $\mu 1$
wn-h h2 $\mu 2$ and
ASS: as (NNOSPAWN (LAcq x) t) =Some (l1, u1, e1)
ash h1 || ash h2 = Some (l2, u2, e2) and
DISJ: locks $-\mu \mu 1 \cap$ set $x s=\{ \} \quad$ locks $-\mu \mu 1 \cap$ locks $-\mu \mu 2=\{ \}$
set $x s \cap$ locks $-\mu \mu 2=\{ \} \quad \operatorname{dom} l 1 \cap \operatorname{dom} l 2=\{ \}$
dom e1 $\cap \operatorname{dom}$ e2 $=\{ \}$ and
$L L: l=l 1++l 2$
from $L L$ have $[$ simp $]: l 1=$ empty $\quad l 2=$ empty by auto
- Get acquisition structure of t
obtain $e 1^{\prime}$ where
$A S^{\prime}:$ as $t=$ Some (empty,u1,e1') e1=e1'(xけu1) $\quad x \notin \operatorname{dome} e 1^{\prime}$ by (rule-tac
ncl-as-fmt-single'[OF WNS(1)
$C[$ rule-format, of NNOSPAWN $(\operatorname{LAcq} x) t]$ $A S S(1)]$
)
(simp)
- Get acqusition structure of new hedge
have $A S H^{\prime}:$ ash (h1@t\#h2) $=$ Some (empty,u,e1'++e2) proof from $A S^{\prime}(2,3) D I S J$ have D^{\prime} : dom e1' \cap dom $e 2=\{ \}$ by simp have ash (h1@t\#h2) = as $t \|($ ash h1 \| ash h2) by simp
also from $D I S J D^{\prime} A S^{\prime} A S S$ (2) have $\ldots=$ Some (empty,u,e1'++e2)

```
                by simp
                    finally show ?thesis.
        qed
            - The new hedge is well-nested
            from AS'(2) Suc.prems(2) have XNILM: x\not\inlocks- }\mu\mu\mathrm{ by auto
            have WN':wn-h(h1@t#h2)( }\mu1@(x#xs)#\mu2
            using WNS DISJ XNILM by (auto intro!: wn-h-appendI wn-h-prependI)
            - The new acquisition history is consistent
            have CONS': cons-as (empty,u,e1'++e2) (locks-\mu (\mu1@(x#xs)#\mu2))
            proof -
                have cons-h (e1'++e2) proof -
                    from }A\mp@subsup{S}{}{\prime}(2,3) have e1'\leqe1 by (simp add:le-fun-def dom-def
                    hence 1: e1'++e2 \leqe by (auto intro!: map-add-first-le)
                    from cons-h-antimono[OF 1] Suc.prems(2) show ?thesis by auto
                    qed
            moreover
            have insert x (locks- }\mu\mu)\cap(\operatorname{dom}(e\mp@subsup{1}{}{\prime}++e2)\cupu)={} proof -
                    from AS' have DEF: dom e = insert x (dom (e1'++e2)) by auto
                    from Suc.prems(2) have DJO:locks- }\mu\mu\cap(\mathrm{ dom e Uu)={}
                    by auto
                    have 1:(dom (e\mp@subsup{1}{}{\prime}++e\mathcal{Z})\cupu)\subseteqdom e\cupu using DEF by auto
                    from disjoint-mono[of locks- }\mu \mu locks- \mu \mu,OF - 1 DJO] hav
                        locks-\mu \mu\cap(dom (e1' ++e2) \cupu)={}
                by simp
                    moreover from AS' DISJ have x\not\indom (e1'++e2) by auto
                    moreover from MIN NCL have x\not\inu by simp
                    ultimately show ?thesis by simp
                    qed
                    ultimately show ?thesis by fastsimp
            qed
            - Now we can apply the induction hypothesis and finnish the proof
            have SIZE: hedge-size (h1@t#h2) \leqs using Suc.prems(4) by simp
            from Suc.hyps[OF SIZE ASH' CONS' WN] obtain w where
                    IHAPP:lsched (h1 @ t # h2) (locks- }\mu(\mu1\mathrm{ @ (x#xs) # m2))w
                by blast
    moreover have lock-valid (locks- }\mu\mu)(LAcq x)(locks- \mu ( \mu1@(x#xs)#\mu2))
                using XNILM by simp
            ultimately have lsched (h) (locks-\mu \mu) ((LAcq x)#w)
                by (auto intro:lsched.intros)
            hence ?thesis by blast
        } ultimately show ?thesis by force
    qed
    qed
}
with A show ?thesis by blast
```


qed

The following is the main theorem of this section. It states the correctness of the acquisition structure construction. For all non-empty hedges that are well-nested w.r.t. a list of lock-stacks with locks X, the existence of a schedule starting with locks X is equivalent to the conistency of the hedge's acquisition history w.r.t. X.

```
lemma acqh-correct':
    fixes h::('P,'\Gamma,'L,'X) lex-hedge
    shows \llbracketwn-h h \mu\rrbracket\Longrightarrow
    ( }\exists\mathrm{ w. lsched h (locks- }\mu\mu)w)
        (\existsl u e. ash h = Some (l, u, e) ^ cons-as (l, u,e) (locks- }\mu\mu
    )
    using acqh-sound acqh-precise by blast
theorem acqh-correct:
    fixes h::('P,'\Gamma,'L,'X) lex-hedge
    assumes WN: wn-h h \mu
    shows }(\existsw.lsched h (locks- - \mu) w) \longleftrightarrow cons (ash h) (locks- \mu \mu
    using WN
    apply (simp only: acqh-correct')
    apply (cases ash h)
    apply simp
    apply (case-tac a)
    apply (case-tac b)
    apply simp
    done
end
end
```


12 DPNs with Initial Configuration

theory $D P N-c 0$
imports WellNested
begin

12.1 DPNs with Initial Configuration

In the following locale, we fix a DPN with an initial configuration, and a list of lock-stacks. We assume that the initial configuration is well-nested w.r.t. the list of lock-stacks.

This is the model we are able to analyze with our acquisition history based techniques, that assume well-nestedness.

Note that we - up to now - do not show that there exists a non-trivial instance of this locale. Such a proof would support the trust in that the model we formalize here is really the intended model.

```
locale \(L D P N-c 0=L D P N+\)
    constrains \(\Delta::\left({ }^{\prime} P,{ }^{\prime} \Gamma,{ }^{\prime} L,{ }^{\prime} X::\right.\) finite) ldpn
    fixes \(c 0::\left({ }^{\prime} P, \Gamma\right)\) conf - Initial configuration
    fixes \(\mu 0\) :: ' \(X\) list list - Locks held at the start configuration
    assumes wellnested: wn-c \(\Delta c 0 \mu 0\) - Start configuration must be well-nested
begin
```


12.1.1 Reachable Configurations

```
definition reachable =={c.\existsw.(c0,w,c)\indpntrc \Delta }
definition reachablels =={(c,X).\existsw.((c0,locks- }\mu\mu0),w,(c,X))\inldpntrc \Delta 
lemma reachablels-subset: (c,X)\inreachablels \Longrightarrowc\inreachable
    by (auto simp add: reachablels-def reachable-def intro: ldpntrc-subset)
lemma reachable-wn:
    \llbracket(c,X)\in\mathrm{ reachablels;!! . «wn-c }\Delta\mathrm{ c }\mu;X=\mathrm{ locks- }\mu\mu\rrbracket\LongrightarrowP\rrbracket\LongrightarrowP
    apply (unfold reachablels-def)
    apply simp
    apply (erule exE)
    apply (erule wnc-preserve)
    apply (rule wellnested)
    apply blast
    done
```

lemma reachablels-triv $[$ simp $]:(c 0$, locks- $\mu \mu 0) \in$ reachablels
by (unfold reachablels-def) (auto intro: exI[of - []])
end
end

13 Property Specifications

theory Specification
imports DPN-c0 Semantics LockSem common/SublistOrder begin

We develop a formalism that allows a concise and readable notation for a class of properties that are checkable via cascaded predecessor computations.

A specification consists of a list of atoms, where each atom either restricts the current configuration or describes some step.

13.1 Specification Formulas

The base element of a property is an atom, that describes a step or restricts the current configuration

```
datatype ('Q,'\Gamma,'L,'X) spec-atom =
    - Restrict current configuration to be in a specified set
    SPEC-RESTRICT ('Q,'\Gamma) conf set |
    - Go forward one step, using a rule with labels from a specified set
    SPEC-STEP ('L,'X) lockstep set |
    - Go forward any number of steps, using rules with labels from a specified
    set
    SPEC-STEPS ('L,'X) lockstep set
```

A property is a list of atoms
types $\left({ }^{\prime} Q,{ }^{\prime} \Gamma,{ }^{\prime} L,{ }^{\prime} X\right)$ spec $=\left({ }^{\prime} Q,{ }^{\prime} \Gamma,{ }^{\prime} L, ' X\right)$ spec-atom list

13.2 Semantics

The semantics of a property specification Φ w.r.t. the current DPN is modelled by a transition relation spec-tr Φ, that contains all pairs $\left(c, c^{\prime}\right)$ of configurations, such that there is a path between c and c^{\prime} satisfying the property.

```
context LDPN
begin
    fun spec-tr where
        spec-tr [] = Id |
        spec-tr (SPEC-RESTRICT C # \Phi) ={(c,\mp@subsup{c}{}{\prime}).(c,\mp@subsup{c}{}{\prime})\in\mathrm{ spec-tr }\Phi\wedgefstc\inC}|
        spec-tr (SPEC-STEP L # \Phi) =
            {(c,\mp@subsup{c}{}{\prime}).\existsl\inL.\exists ch. (c,l,ch)\inldpntr \Delta^(ch,\mp@subsup{c}{}{\prime})\in\mathrm{ spec-tr }\Phi}|
        spec-tr (SPEC-STEPS L # \Phi) =
            {(c,\mp@subsup{c}{}{\prime}).\existsll\inlists L. \exists ch. (c,ll,ch)\inldpntrc \Delta ^(ch,c')\inspec-tr \Phi}
end
context LDPN-c0
begin
```

In most cases, it suffices to check whether there is a path matching the specification from the initial configuration.

```
definition model-check-ref }\Phi==(c0,\mathrm{ locks- }\mu\mu0)\in\mathrm{ Domain (spec-tr }\Phi
```

end

13.3 Examples

In this section, we present two short examples to justify the usefulness of our property specifications.

13.3.1 Conflict analysis

Given two stack symbols $u, v \in \Gamma$, conflict analysis asks whether a configuration c is reachable that has a conflict between u and v.

A configuration has a conflict between u and v, iff it contains a process with top stack symbol u and another (different) process with top stack symbol v.

```
context LDPN-c0
begin
at \(U V u v\) is the set of configurations that have a conflict between \(u\) and \(v\).
definition atUV-ordered \(u v==\left\{c . \exists q r q^{\prime} r^{\prime} .\left[(q, u \# r),\left(q^{\prime}, v \# r^{\prime}\right)\right] \leq c\right\}\)
definition \(a t U V u v==(\) atUV-ordered \(u v) \cup(\) atUV-ordered \(v u)\)
```

The following property specification describes all executions reaching a conflict:
definition conflict-spec $u v==$
[SPEC-STEPS UNIV, SPEC-RESTRICT (atUV u v)]
The following definition is a direct definition of a conflict between u and v being reachable from an initial configuration [(qmain, [γ main $])$]:
definition has-conflict-ref $u v==\exists(c, X) \in$ reachablels. $c \in$ at $U V u v$
The next lemma shows that the direct definition of a conflict matches the property specification:

```
lemma has-conflict-ref \(u v \longleftrightarrow\) model-check-ref (conflict-spec \(u v\) )
    by (unfold model-check-ref-def conflict-spec-def has-conflict-ref-def
        Domain-def reachablels-def)
        auto
end
```


13.3.2 Bitvector analysis

Given a set of generator labels $G:^{\prime} L$ set, a set of killer labels $K::^{\prime} L$ set and a stack symbol $u:: \Gamma$, bitvector analysis asks whether there is a path to a configuration that has process being at u, such that the path executes a generator rule, and after that no killer rule is executed.

```
context LDPN-c0
begin
```

For a stack symbol, $u \in \Gamma$, the set at $U u$ is the set of all configurations that have a process with u at the top of the stack.
definition $a t U u==\{c \cdot \exists q r .(q, u \# r) \in$ set $c\}$
The following property specification describes all paths that lead to u and have the bit set:

```
definition bitvector-fwd-spec GKu==
    SPEC-STEPS UNIV,
        SPEC-STEP G,
        SPEC-STEPS (UNIV-K),
        SPEC-RESTRICT (atU u)
    ]
```

The following is the direct definition of bitvector analysis:

```
definition bitvector-fwd-ref \(G K u==\)
    \(\exists \mathrm{c} 1\) X1 lg c2 X2 ll c3 X3 q r.
        \((c 1, X 1) \in\) reachablels \(\wedge\)
        \(((c 1, X 1), l g,(c 2, X 2)) \in l d p n t r \Delta \wedge\)
        \(l g \in G \wedge\)
        \(((c 2, X 2), l l,(c 3, X 3)) \in l d p n t r c \Delta \wedge\)
        ll \(\in\) lists \((U N I V-K) \wedge\)
        \((q, u \# r) \in\) set \(c 3\)
```

This lemma shows that the direct definition matches the property specification:
lemma bitvector-fwd-ref $G K u \longleftrightarrow$
model-check-ref (bitvector-fwd-spec G K u)
by (unfold model-check-ref-def bitvector-fwd-spec-def
bitvector-fwd-ref-def Domain-def atU-def reachablels-def) fastsimp
end
end

14 Hedge Constraints for Acquisition Histories

theory $A s$ - $h c$
imports Acqh WellNested DPN-c0 Specification
begin

This theory formulates the set of execution hedges that have a locksensitive schedule, and shows how to use hedge-constrained predecessor set computations to compute property specifications based on cascaded predecessor sets.

14.1 Locks Encoded in Control State

For this section, we make the assumption that the set of locks is encoded in the control state of the DPN. We formalize this by means of a locale.

```
locale EncodedLDPN = LDPN +
    - The states of the DPN are tuples of some states 'P and sets of locks:
    constrains }\Delta::('P\times'X set, '\Gamma,'L,'X::finite) ldp
```

constrains $c 0::\left({ }^{\prime} P \times{ }^{\prime} X\right.$ set,$\left.{ }^{\prime} \Gamma\right)$ conf
constrains $\mu 0$:: ' X list list

- A step of the DPN transforms the locks as expected:
assumes encoding-correct-nospawn:

$$
\left((p, X), \gamma \hookrightarrow_{l}\left(p^{\prime}, X^{\prime}\right), w\right) \in \Delta \Longrightarrow \text { lock-valid } X l X^{\prime}
$$

assumes encoding-correct-spawn1:

$$
\left((p, X), \gamma \hookrightarrow_{l}(p s, X s), w s \sharp\left(p^{\prime}, X^{\prime}\right), w\right) \in \Delta \Longrightarrow \text { lock-valid } X l X^{\prime}
$$

- A freshly spawned process initially owns no locks:
assumes encoding-correct-spawn2:

$$
\left((p, X), \gamma \hookrightarrow_{l}(p s, X s), w s \sharp\left(p^{\prime}, X^{\prime}\right), w\right) \in \Delta \Longrightarrow X s=\{ \}
$$

begin
lemmas encoding-correct-spawn = encoding-correct-spawn1 encoding-correct-spawn2
lemmas encoding-correct $=$ encoding-correct-nospawn encoding-correct-spawn
lemma encoding-correct-nospawn':
$\left(p, \gamma \hookrightarrow_{l} p^{\prime}, w\right) \in \Delta \Longrightarrow$ lock-valid (snd p) $l\left(\right.$ snd $\left.p^{\prime}\right)$
by (cases p, cases p^{\prime}) (auto intro: encoding-correct-nospawn)
lemma encoding-correct-spawn':
assumes $A:\left(p, \gamma \hookrightarrow_{l} p s, w s \sharp p^{\prime}, w\right) \in \Delta$
shows lock-valid $($ snd $p) l\left(s n d p^{\prime}\right) \quad$ snd $p s=\{ \}$
using A encoding-correct-spawn by (cases p, cases p^{\prime}, cases ps, force)+
lemma encoding-correct-spawn2 ':
$\left(p, \gamma \hookrightarrow_{l} p s, w s \sharp p^{\prime}, w\right) \in \Delta \Longrightarrow$ snd $p s=\{ \}$
using encoding-correct-spawn by (cases p, cases p^{\prime}, cases ps, force) +
lemma ec-preserve-singlestep:

assumes

$$
\begin{aligned}
& \text { A: }\left((c, \text { locks- } \mu \mu), l,\left(c^{\prime}, X^{\prime}\right)\right) \in \text { ldpntr } \Delta \quad \text { wn-c } \Delta c \mu \\
& \text { map }(\text { sndofst }) c=\text { map set } \mu \text { and } \\
& C:!!\mu^{\prime} . \llbracket \text { wn-c } \Delta c^{\prime} \mu^{\prime} ; X^{\prime}=\text { locks- } \mu \mu^{\prime} ; \\
& \quad \text { map }(\text { sndofst }) c^{\prime}=\text { map set } \mu^{\prime} \\
& \quad \rrbracket P P
\end{aligned}
$$

shows P
proof -
from A have
$T R:\left(c, l, c^{\prime}\right) \in d p n t r \Delta$ and
$L V$: lock-valid (locks- $\mu \mu) l X^{\prime}$
by (auto simp add: ldpntr-def)
from $T R$ show ?thesis proof (cases rule: dpntr.cases)
case (dpntr-no-spawn $\left.p \gamma-p^{\prime} w c 1 r c 2\right)$ hence
$F M T[\operatorname{simp}]: c=c 1 @(p, \gamma \# r) \# c 2 \quad c^{\prime}=c 1 @\left(p^{\prime}, w @ r\right) \# c 2$ and $R:\left(p, \gamma \hookrightarrow l{ }^{\prime} p^{\prime}, w\right) \in \Delta$
by auto

```
from wn-c-split-aux[OF A(2) FMT(1)] obtain \mu1 xs \mu2 where
    [simp]: }\mu=\mu1\mathrm{ @ xs # <2 and
        WNS:wn-\pi \Delta (p,\gamma#r) xs wn-c \Delta c1 \mu1 wn-c \Delta c2 \mu2 and
        DISJ: locks-\mu \mu1\cap set xs ={} locks- }\mu\mu1\cap\mathrm{ locks- }\mu\mu2={
                set xs \cap locks- }\mu\mu2={
    from A(3) wn-c-length[OF WNS(2)] wn-c-length[OF WNS(3)] have
    ECS: map (snd\circfst) c1 = map set }\mu1\quad\mathrm{ snd p = set xs
        map (snd\circfst) c2 = map set \mu2
    by auto
obtain xs' where
    wn-\pi \Delta ( p',w@r) xs' }\quad\mp@subsup{X}{}{\prime}=(locks-\mu( ( 1@x\mp@subsup{s}{}{\prime}#\mu2)
    locks-\mu \mu1\cap set xs' = {} set x\mp@subsup{s}{}{\prime}\cap\mathrm{ locks- }\mu\mu\mathcal{Z}={} snd p' = set xs'
proof (cases l)
    case LNone[simp]
    from DISJ LV encoding-correct-nospawn'[OF R] ECS(2) show ?thesis
        by (rule-tac that[OF wn-\pi-none[OF R[simplified] WNS(1)]]) simp-all
next
    case (LAcq x)[simp]
    from that[OF wn-\pi-acq[OF R[simplified] WNS(1)]] LV DISJ
        encoding-correct-nospawn'[OF R] ECS(2)
    show ?thesis by auto
next
    case (LRel x)[simp]
    from wn-\pi-rel[OF R[simplified] WNS(1)] obtain xs' where
        [simp]:xs=x#x\mp@subsup{s}{}{\prime}}\mathrm{ and
            1:x\not\inset xs' and
            2:wn-\pi \Delta ( }\mp@subsup{p}{}{\prime},w@r)x\mp@subsup{s}{}{\prime
        from 1 LV DISJ encoding-correct-nospawn'[OF R] ECS(2) show ?thesis
        by (rule-tac that[OF 2]) auto
    qed
    with WNS(2,3) DISJ(2) ECS(1,3) show P
    by (rule-tac \mp@subsup{\mu}{}{\prime}=\mu1@xs'#\mu2 in C) (auto intro!: wn-c-appendI wn-c-prependI)
next
    case (dpntr-spawn p \gamma-ps ws p' w c1 rc\mathcal{) hence}
        FMT[simp]:c=c1 @ (p,\gamma# r) # c2
            c' = c1@ @ ps,ws) # ( p',w@ @) # c2 and
        R: (p,\gamma \hookrightarrowl ps,ws # p',w) \in\Delta
    by auto
    from R obtain nlab where [simp]: l=LNone nlab by (cases l) auto
from wn-c-split-aux[OF A(2) FMT(1)] obtain \mu1 xs \mu2 where
    [simp]: }\mu=\mu1@ xs # \mu2 and
        WNS:wn-\pi \Delta (p,\gamma # r) xs wn-c \Delta c1 \mu1 wn-c \Delta c2 \mu2 and
        DISJ: locks- }\mu\textrm{\mu}\cap\mathrm{ \et xs = {} locks- }\mu\mu1\cap\mathrm{ locks- }\mu\mu2={
                set xs \cap locks- }\mu\mu2={
from A(3) wn-c-length[OF WNS(2)] wn-c-length[OF WNS(3)] have
    ECS: map (snd\circfst) c1 = map set }\mu1\quad\mathrm{ snd p = set xs
```

```
                map (sndofst) c2 = map set \mu2
        by auto
    from wn-\pi-spawn1[OF R WNS(1)] wn-\pi-spawn2[OF R WNS(1)]
        WNS(2,3) DISJ
    have wn-c \Delta c'(\mu1@[]#xs#\mu2)
        by (auto intro!: wn-c-appendI wn-c-prependI)
    thus ?thesis
        using LV encoding-correct-spawn'[OF R] ECS
        by (rule-tac }\mp@subsup{\mu}{}{\prime}=\mu1@[]#xs#\mu2 in C) auto
    qed
qed
lemma ec-preserve:
    assumes
        A: ((c,locks- }\mu\mu),ll,(\mp@subsup{c}{}{\prime},\mp@subsup{X}{}{\prime}))\inldpntrc \Delta wn-c \Delta c \mu
            map (sndofst) c = map set }\mu\mathrm{ and
```



```
    shows P
proof -
    {
        fix c X \mu ll c' X'P
        assume
            A:((c,X),ll,( (c', X'))\inldpntrc \Delta wn-c\Delta c\mu
                    map (snd\circfst) c= map set }\mu\quadX=locks-\mu \mu and
            C: !! }\mp@subsup{\mu}{}{\prime}.\llbracket\mp@subsup{X}{}{\prime}=locks-\mu \mp@subsup{\mu}{}{\prime};\mathrm{ wn-c }\Delta\mp@subsup{c}{}{\prime}\mp@subsup{\mu}{}{\prime}
                    map (snd\circfst) c' = map set }\mp@subsup{\mu}{}{\prime
                    \ P
    hence P
    proof (induct arbitrary: }\mu\mathrm{ P rule: trcl-pair-induct)
            case empty thus ?case by auto
        next
            case (cons c x l ch Xh ll c' X' }\muP\mathrm{ ) note [simp]=\x=locks- }\mu\mu
            from ec-preserve-singlestep[OF cons.hyps(1)[simplified] cons.prems(1,2)]
            obtain }\mp@subsup{\mu}{}{\prime}\mathrm{ where
                    P:wn-c \Delta ch \mp@subsup{\mu}{}{\prime}}\quad\operatorname{map}(\mathrm{ snd ofst) ch = map set }\mp@subsup{\mu}{}{\prime}\quadXh=locks-\mu \mu'
            from cons.hyps(3)[OF P] cons.prems(4) show ?case by blast
        qed
    } with A C show ?thesis by blast
qed
```

The following abbreviates the locks owned by a configuration:
abbreviation locks-c $c==$ list-collect-set (sndofst) c
lemma locks- μ-mapset: locks- $\mu \mu=\bigcup$ set (map set μ)
by (auto simp add: list-collect-set-as-map)
lemma locks-c-mapset: locks-c $c=\bigcup$ set (map (sndofst) c)
by (auto simp add: list-collect-set-as-map)
locale EncodedLDPN-c0 = EncodedLDPN $+L D P N-c 0+$
— The states of the DPN are tuples of some states ' P and sets of locks:
constrains $\Delta::\left({ }^{\prime} P \times{ }^{\prime} X\right.$ set $\left.,{ }^{\top} \Gamma,{ }^{\prime} L,{ }^{\prime} X:: f i n i t e\right) ~ l d p n$
constrains $c 0::\left({ }^{\prime} P \times{ }^{\prime} X\right.$ set, ${ }^{\prime} \Gamma$) conf
constrains $\mu 0$:: ' X list list

- The locks encoded in the initial configuration correspond to the locks in the initial list of lock-stacks:
assumes encoding-correct-start:
map $($ snd $\circ f s t) c 0=$ map set $\mu 0$
begin
Reachable configurations are well-nested w.r.t. a lock-stack corresponding to the locks encoded in the control states of the processes

```
lemma reachable-ec:
    \(\llbracket(c, X) \in\) reachablels;
        \(!!\mu\). \(\llbracket w n-c \Delta\) с \(\mu ; X=\) locks \(-\mu \mu ;\) map (sndofst) \(c=\operatorname{map}\) set \(\mu \rrbracket \Longrightarrow P\)
    \(\rrbracket \Longrightarrow P\)
    apply (unfold reachablels-def)
    apply simp
    apply (erule exE)
    apply (erule ec-preserve)
    apply (rule wellnested)
    apply (rule encoding-correct-start)
    apply blast
    done
```

Due to our assumptions, a reachable configuration always encodes the locks that are also used by the lock-sensitive semantics.

```
theorem reachable-locks: (c,X)\inreachablels \Longrightarrowlocks-c c = X
    by (erule reachable-ec) (auto simp add: locks-\mu-mapset locks-c-mapset)
```


14.2 Characterizing Schedulable Execution Hedges

In order to characterize schedulable execution hedges, we have to first characterize the locks allocated at the roots of an execution hedge. This can be done by deriving the locks at the roots from the control states annotated at the leafs.

```
fun lock-eff :: ('L,'X) lockstep }=>\mp@subsup{}{}{\prime}X\mathrm{ set }=>\mp@subsup{}{}{\prime}X\mathrm{ set where
    lock-eff (LNone nlab) X = X |
    lock-eff (LAcq x) X = insert x X |
    lock-eff (LRel x) X = X - {x}
```

```
fun lock-eff-inv :: ('L,'X) lockstep }\mp@subsup{=>}{}{\prime}\mathrm{ 'X set }\mp@subsup{|}{}{\prime}X\mathrm{ set where
    lock-eff-inv (LNone nlab) X = X |
    lock-eff-inv (LAcq x) X = X - {x}
    lock-eff-inv(LRel x) X = insert x X
fun rlocks-t :: ('P>'X set,'\Gamma,'L,'X) lex-tree }=>\mp@subsup{|}{}{\prime}X set wher
    rlocks-t (NLEAF \pi) = (case \pi of (( }p,X),w)=>X)
    rlocks-t (NNOSPAWN l t) = lock-eff-inv l (rlocks-t t)|
    rlocks-t (NSPAWN l ts t) = lock-eff-inv l (rlocks-t t)
```

abbreviation rlocks-h :: ('P>'X set, $\left.{ }^{\prime} \Gamma,{ }^{\prime} L,{ }^{\prime} X\right)$ lex-hedge $\Rightarrow{ }^{\prime} X$ set list where rlocks- $h \mathrm{~h}==$ map rlocks- $\mathrm{t} h$
lemma tsem-locks: tsem $\Delta \pi t c^{\prime} \Longrightarrow$ snd $(f s t \pi)=$ rlocks- $t t$
apply (induct rule: tsem.induct)
apply auto [1]
apply (drule encoding-correct-nospawn')
apply (case-tac l)
apply (auto) [3]
apply (drule encoding-correct-spawn')
apply (case-tac l)
apply (auto) [3]
done
lemma hsem-locks: hsem $\Delta c h c^{\prime} \Longrightarrow$ map (sndofst) $c=$ rlocks-h h
by (induct rule: hsem.induct) (auto dest: tsem-locks)
Next, we have to characterize the execution hedges with consistent acquisition histories w.r.t. the set of allocated locks.

```
definition Hls \(h==\) cons \((\) ash \(h)(\bigcup\) set \((\) rlocks-h h))
theorem reachable-hls-char:
    assumes \(A:(c, X) \in\) reachablels hsem \(\Delta c h c^{\prime}\)
    shows \((\exists w\). lsched \(h X w) \longleftrightarrow\) Hls \(h\)
proof -
    from reachable-ec \([O F A(1)]\) obtain \(\mu\) where
        [simp]: \(X=\) locks \(-\mu \mu\) and
            \(E C: w n-c \Delta\) c \(\mu \quad \operatorname{map}(\) snd \(\circ f s t) c=\operatorname{map}\) set \(\mu\)
    from \(E C(1) A(2)\) have \(W N H: w n-h h \mu\)
        by (auto simp add: wnc-eq-wnch wn-c-h-def)
    have \((\exists w\). lsched \(h X w) \longleftrightarrow(\exists w\). lsched \(h(\) locks \(-\mu \mu) w)\) by simp
    also from acqh-correct \([O F W N H]\) have \(\ldots=\) cons (ash h) \((\) locks- \(\mu \mu)\).
    also have (locks- \(\mu \mu)=\bigcup\) set (rlocks-h h)
        by (simp only: hsem-locks[OF A(2)] locks- \(\mu\)-mapset EC(2)[symmetric])
    finally show ?thesis by (unfold Hls-def)
qed
```

Now we can put it all together and show correctness of lock-sensitive predecessor computation

```
lemma lsprestar1:
    assumes
    \(R E A C H:(c, X) \in\) reachablels and
    PRE: c \(\in\) prehc \(\Delta H l s C^{\prime}\)
    shows \(\exists c^{\prime} \in C^{\prime} . \exists l l X^{\prime} .\left((c, X), l l,\left(c^{\prime}, X^{\prime}\right)\right) \in l d p n t r c \Delta\)
proof -
    from PRE obtain \(h c^{\prime}\) where \(A: c^{\prime} \in C^{\prime} \quad h \in H l s \quad h s e m \Delta c h c^{\prime}\)
        by (auto elim: prehcE)
    from reachable-hls-char[OF REACH A(3)] A(2) obtain \(l l\) where
        B: lsched h X ll
        by (auto simp add: mem-def)
    from lsched-correct2[OF \(B A(3)] A(1)\) show ?thesis by blast
qed
lemma lsprestar2:
    assumes
    REACH: \((c, X) \in\) reachablels and
    MEM: \(c^{\prime} \in C^{\prime}\) and
    PATH: \(\left((c, X), l l,\left(c^{\prime}, X^{\prime}\right)\right) \in l d p n t r c \Delta\)
    shows \(c \in\) prehc \(\Delta H l s C^{\prime}\)
proof -
    from lsched-correct1[OF PATH] obtain \(h\) where
            A: hsem \(\Delta c h c^{\prime} \quad\) lsched \(h X l l\)
            by blast
    from reachable-hls-char[OF REACH A(1)] A(2) have B: Hls \(h\) by blast
    from prehcI[OF - MEM \(A(1)] B\) show ?thesis by (auto simp add: mem-def)
qed
theorem lsprestar:
    assumes \(R E A C H:(c, X) \in\) reachablels
    shows \(c \in\) prehc \(\Delta H l s C^{\prime} \longleftrightarrow\left(\exists c^{\prime} \in C^{\prime} . \exists l l X^{\prime} .\left((c, X), l l,\left(c^{\prime}, X^{\prime}\right)\right) \in l d p n t r c \Delta\right)\)
    using REACH lsprestar1 lsprestar2 by blast
```


14.3 Checking Specifications Using prehc $\Delta H l s$

We now show that we can use our construction to check for property specifications (cf. Specification.thy).

We first have to construct a hedge-constraint for execution hedges that contain a restricted set of labels.

```
fun isLab :: (' \(\left.L,{ }^{\prime} X\right)\) lockstep set \(\Rightarrow\left({ }^{\prime} Q,{ }^{\prime} \Gamma,{ }^{\prime} L,{ }^{\prime} X\right)\) lex-tree \(\Rightarrow\) bool where
    isLab \(L(\) NLEAF \(\pi) \longleftrightarrow\) True \(\mid\)
    isLab \(L\) (NNOSPAWN \(l t) \longleftrightarrow l \in L \wedge i s L a b L t \mid\)
    isLab \(L(N S P A W N l t s t) \longleftrightarrow l \in L \wedge i s L a b L t s \wedge i s L a b L t\)
abbreviation \(H L a b L==\{h\). list-all (isLab \(L) h\}\)
```

```
lemma final-h-is-lab[simp]: final h \Longrightarrow list-all (isLab L) h
    apply (induct h)
    apply simp
    apply (case-tac a)
    apply auto
    done
```

lemma HLab-correct: sched $h l l \Longrightarrow h \in H L a b L \longleftrightarrow l l \in l i s t s L$
by (induct rule: sched.induct) (auto simp add: lists.Nil)
lemmas HLab-correct' $=$ HLab-correct[OF lsched-is-sched]

Then we can show how to check property specifications using prehc.

```
fun \(m c\)-pre :: ( \(P \times \times^{\prime} X\) set, \(\left.{ }^{\prime} \Gamma,{ }^{\prime} L,{ }^{\prime} X\right)\) spec \(\Rightarrow\left({ }^{\prime} P \times{ }^{\prime} X\right.\) set, \(\left.{ }^{\prime} \Gamma\right)\) conf set where
    \(m c\)-pre [] \(=\) UNIV \(\mid\)
    mc-pre (SPEC-RESTRICT C \(\# \Phi)=C \cap\) mc-pre \(\Phi \mid\)
    \(m c-\) pre \((S P E C-S T E P L \# \Phi)=\) prehc \(\Delta(H l s \cap\) Hpre \(\cap H L a b L)(m c-p r e \Phi) \mid\)
    mc-pre \((S P E C-S T E P S L \# \Phi)=\) prehc \(\Delta(H l s \cap H L a b L)(m c\)-pre \(\Phi)\)
```

lemma mc-pre-correct-aux:
$(c, X) \in$ reachablels $\Longrightarrow c \in m c-$ pre $\Phi \longleftrightarrow(c, X) \in$ Domain $($ spec-tr $\Phi)$
proof (induct Φ arbitrary: c X)
case Nil thus ?case by auto
next
case (Cons A Φ)
show ?case proof (cases A)
case (SPEC-RESTRICT C) with Cons show ?thesis by auto
next
case (SPEC-STEP L) [simp]
show ?thesis proof (auto simp add: prehc-def)
case (goal1 h c')
from reachable-hls-char[OF Cons.prems goal1 (5)] goal1(1) obtain w where
LS: lsched $h X w$ by (fastsimp simp add: mem-def)
from Hpre-length1[OF goal1(2) lsched-is-sched[OF LS]] have
$L E N:$ length $w=1$.
from HLab-correct ${ }^{\prime}[$ OF LS $]$ goal1 (3) have $I L:$ w lists L by simp
from lsched-correct2[OF LS goal1(5)] obtain X^{\prime} where
$P:\left((c, X), w,\left(c^{\prime}, X^{\prime}\right)\right) \in$ ldpntrc Δ
with $L E N I L$ obtain a where
$[$ simp $]: w=[a]$ and
P1: $a \in L \quad\left((c, X), a,\left(c^{\prime}, X^{\prime}\right)\right) \in l d p n t r \Delta$
by (cases w) auto
from P Cons.prems have P2: $\left(c^{\prime}, X^{\prime}\right) \in$ reachablels
by (unfold reachablels-def) (auto dest: trcl-concat trcl-one-elem)
from Cons.hyps[OF P2] goal1 (4) have
$\left(c^{\prime}, X^{\prime}\right) \in$ Domain $(L D P N . s p e c-t r \Delta \Phi)$

```
        by simp
    thus ?case using P1 by force
    next
    case (goal2 c' X' l ch Xh)
    from goal2(2) Cons.prems have REACH: (ch,Xh)\inreachablels
        by (unfold reachablels-def) (auto dest: trcl-concat trcl-one-elem)
    from Cons.hyps[OF REACH] goal2(3) have IHAPP: ch\inmc-pre \Phi by auto
    from lsched-correct1[OF trcl-one-elem[OF goal2(2)]] obtain h where
        H: hsem \Delta ch ch lsched h X [l]
        by blast
    from Hpre-length2[OF lsched-is-sched[OF H(2)]] have
        HPRE: h\inHpre
        by simp
    from reachable-hls-char[OF Cons.prems H(1)] H(2) have
        HLS: h\inHls
        by (auto simp add: mem-def)
    from HLab-correct'[OF H(2), of L] goal2(1) have
        list-all (isLab L) h
        by auto
    with HLS HPRE IHAPP H(1) show ?case by blast
    qed
next
    case (SPEC-STEPS L)[simp]
    show ?thesis proof (auto simp add: prehc-def)
        case (goal1 h c')
    from reachable-hls-char[OF Cons.prems goal1 (4)] goal1 (1) obtain w where
        LS: lsched h X w
        by (fastsimp simp add: mem-def)
    from HLab-correct'[OF LS] goal1 (2) have IL:w\inlists L by simp
    from lsched-correct2[OF LS goal1(4)] obtain X' where
        P:((c,X),w,(c', X')) \in ldpntrc \Delta ..
    from P Cons.prems have P2: ( }\mp@subsup{c}{}{\prime},\mp@subsup{X}{}{\prime})\in\mathrm{ reachablels
        by (unfold reachablels-def) (auto dest: trcl-concat)
    from Cons.hyps[OF P2] goal1(3)
    have ( }\mp@subsup{c}{}{\prime},\mp@subsup{X}{}{\prime})\in\mathrm{ Domain (LDPN.spec-tr }\Delta\Phi)\mathrm{ by simp
    thus ?case using IL P by force
next
    case (goal2 c' X' ll ch Xh)
    from goal2(2) Cons.prems have REACH: (ch,Xh)\inreachablels
        by (unfold reachablels-def) (auto dest: trcl-concat)
    from Cons.hyps[OF REACH] goal2(3) have IHAPP: ch\inmc-pre \Phi by auto
    from lsched-correct1[OF goal2(2)] obtain }h\mathrm{ where
        H: hsem \Delta ch ch lsched h X ll
        by blast
    from reachable-hls-char[OF Cons.prems H(1)] H(2) have HLS: h\inHls
        by (auto simp add: mem-def)
    from HLab-correct'[OF H(2), of L] goal2(1)
    have list-all (isLab L) h by auto
```

```
            with HLS IHAPP H(1) show ?case by blast
        qed
    qed
qed
```

theorem mc-pre-correct: c0 0 mc-pre $\Phi \longleftrightarrow$ model-check-ref Φ
using mc-pre-correct-aux[of c0 locks- $\mu \mu 0 \Phi$, simplified]
by (unfold model-check-ref-def)
end
end

15 Monitors (aka Block-Structured Locks)

theory Monitors
imports LockSem WellNested As-hc
begin

We model monitors by binding locks to stack symbols, and making some restrictions on rules:

- A rule labeled by LNone must not change the allocated locks, nor must it push or pop stack symbols associated with locks.
- An acquisition rule must be a rule that pushes a stack-symbol with the acquired lock, and does not change the locks of the stacl-symbol at the bottom.
- A release rule must be a rule that pops a stack-symbol with the released lock.

One purpose of this theory is, that it gives strong evidence that our model is not too restrictive. This is done by defining an introduction rule for encoded DPNs with initial configurations that only depends on local properties of the rules and the initial configuration.

- Lock-stack encoded into stack
definition lstackm-s :: $\left(\Gamma{ }^{\prime} X\right) \Rightarrow \top \Rightarrow{ }^{\prime} X$ list where lstackm-s mon $\gamma=($ case mon γ of None $\Rightarrow[] \mid$ Some $x \Rightarrow[x])$
lemma lstackm-s-simps[simp]:
mon $\gamma=$ None \Longrightarrow lstackm-s mon $\gamma=[]$
mon $\gamma=$ Some $x \Longrightarrow$ lstackm-s mon $\gamma=[x]$
by (auto simp add: lstackm-s-def)

```
fun lstackm :: (' }\mp@subsup{\rightharpoonup}{}{\prime}X)=>'\Gamma list 质'X list where
    lstackm mon [] = [] |
    lstackm mon (\gamma#s) = lstackm-s mon \gamma @ lstackm mon s
lemma lstackm-conc[simp]:
    lstackm mon (s@s')= lstackm mon s @ lstackm mon s'
    by (induct s) auto
lemma lstack-spawn-empty[simp]:
    \llbracket (\forall\gammas\inset w. mon \gammas=None) \rrbracket\Longrightarrow lstackm mon w = []
    by (induct w) (auto)
locale MDPN = EncodedLDPN +
    constrains
        \Delta:: ('P\times'X set, T,'L,'X::finite) ldpn
    fixes mon :: ' }\=\mp@subsup{}{}{\prime}X\mathrm{ option - Maps stack symbols to associated monitors
    assumes
        locks-lnone-pop-nospawn:
            (p,\gamma\hookrightarrowLNone a }\mp@subsup{p}{}{\prime},[])\in\Delta\Longrightarrow mon \gamma = None and
        locks-lnone-pop-spawn:
            ( p,\gamma \hookrightarrowl ps,ws \sharp p
locks-lnone-nospawn:
                (p,\gamma\hookrightarrowLNone a }\mp@subsup{p}{}{\prime},w@[\gamma])\in\Delta\Longrightarrow mon \mp@subsup{\gamma}{}{\prime}=mon \gamma ^
                            ( }\forall\gammas\in\mathrm{ set w. mon }\gammas=None) an
        locks-lnone-spawn:
            (p,\gamma \hookrightarrowl ps,ws \sharp p
                                    ( }\forall\gammas\inset w. mon \gammas=None) an
    locks-spawn:
            (p,\gamma \hookrightarrowll ps,ws \sharp # '},w)\in\Delta\Longrightarrow(\forall\gammas\inset ws. mon \gammas=None) and
    locks-acquire:
            \llbracket(p,\gamma \hookrightarrowLAcq x }\mp@subsup{p}{}{\prime},w)\in\Delta
                !! w' \gamma2 \gamma1. \llbracket w =w'@[\gamma1,\gamma2]; mon \gamma2 = mon \gamma; mon }\gamma1=\mathrm{ Some x;
                                    (\forall\gammas\inset w'. mon \gammas=None)
                                    \Longrightarrow P
            \LongrightarrowP and
    locks-release:
            (p,\gamma\hookrightarrow LRel x }\mp@subsup{p}{}{\prime},w)\in\Delta\Longrightarroww=[]^ mon \gamma=Some x
```


begin

abbreviation lstack-s $==$ lstackm-s mon
abbreviation lstack $==$ lstackm mon
lemma lstack-lnone-nospawn:
$\llbracket\left(p, \gamma \hookrightarrow\right.$ LNone a $\left.p^{\prime}, w\right) \in \Delta \rrbracket \Longrightarrow$ lstack $(\gamma \# r)=$ lstack $(w @ r)$
apply (cases w rule: rev-cases)
apply simp

```
apply (drule locks-lnone-pop-nospawn)
apply (simp)
apply (simp)
apply (drule locks-lnone-nospawn)
apply (cases mon \gamma)
apply (simp-all)
done
```

lemma lstack-lnone-spawn:
$\llbracket\left(p, \gamma \hookrightarrow a p s, w s \sharp p^{\prime}, w\right) \in \Delta \rrbracket \Longrightarrow$ lstack $(\gamma \# r)=$ lstack $(w @ r)$
apply (cases w rule: rev-cases)
apply simp
apply (drule locks-lnone-pop-spawn)
apply (simp)
apply ($\operatorname{simp\text {)}}$
apply (drule locks-lnone-spawn)
apply (cases mon γ)
apply (simp-all)
done
lemma well-nested-t:
assumes CONS: distinct (lstack (snd π))
assumes H : tsem $\Delta \pi t c^{\prime}$
assumes COINC: snd $($ fst $\pi)=\operatorname{set}(\operatorname{lstack}($ snd $\pi))$
shows wn-t' t (lstack (snd π))
using H CONS COINC
proof (induct rule: tsem.induct)
case tsem-leaf thus?case by (auto intro: wn-t.intros)
next
case (tsem-spawn $p \gamma l$ ps ws $p^{\prime} w$ ts cs $r t c^{\prime}$)
from spawn-no-locks[OF tsem-spawn.hyps(1)] obtain la where
[simp]: l=LNone la
by auto
from locks-spawn[OF tsem-spawn.hyps(1)] have
[simp]: lstack ws $=[]$
by (simp add: lstack-spawn-empty)
from encoding-correct-spawn2' $[$ OF tsem-spawn.hyps(1)] have
[simp]: snd ps $=\{ \}$.
from tsem-spawn.hyps(3) have
IHAPP1: wn-t' ts (lstack (snd (ps,ws)))
by simp
moreover
from lstack-lnone-spawn[OF tsem-spawn.hyps(1)] have
$L S F[$ simplified, simp $]$: lstack $(\gamma \# r)=$ lstack $(w @ r)$.
moreover from encoding-correct-spawn' $[$ OF tsem-spawn.hyps(1)] have
[simp]: snd $p=$ snd p^{\prime}
by simp
from tsem-spawn.prems tsem-spawn.hyps(5) LSF have

```
        IHAPP2:wn-t't(lstack (w@r))
    by simp
    ultimately show ?case by simp
next
    case (tsem-nospawn p \gamma l p'w rt c')
    show ?case
    proof (cases l)
    case (LNone la)[simp]
    from lstack-lnone-nospawn tsem-nospawn.hyps(1) have
        [simplified, simp]:lstack ( }\gamma#r)=lstack (w@r
        by simp
moreover from encoding-correct-nospawn'[OF tsem-nospawn.hyps(1)] have
    [simp]: snd p = snd p'
    by simp
    from tsem-nospawn.prems tsem-nospawn.hyps(3) have
        IHAPP:wn-t' t (lstack (w@r))
        by simp
    thus ?thesis by simp
next
    case (LAcq x)[simp]
    from tsem-nospawn.hyps(1)[simplified] show ?thesis
    proof (cases rule: locks-acquire[consumes 1, case-names C])
        case (C w' \gamma2 \gamma1)
        note [simp]=C(1)
        from C(4) have [simp]: lstack w' = [] by simp
        from C(3) have [simp]: lstack-s \gamma1 = [x] by simp
        from C(2) have [simp]: lstack-s \gamma2 = lstack-s \gamma
            by (cases mon \gamma) simp-all
        from encoding-correct-nospawn'[OF tsem-nospawn.hyps(1)] have
            XNSP: x\not\insnd p and
            SP'F[simp]: snd p' = insert x (snd p)
            by auto
        from tsem-nospawn.prems(2) XNSP have
            XNIS: x\not\inset (lstack (\gamma#r))
            by simp
            from XNIS[simplified] tsem-nospawn.prems(1)[simplified] have
            P1: distinct (lstack (w@r))
            by (simp)
            from tsem-nospawn.prems(2)[simplified] tsem-nospawn.hyps P1 have
            IHAPP:wn-t' t (lstack (w@r))
            by simp
        thus ?thesis using XNIS by simp
    qed
next
    case (LRel x)[simp]
    from tsem-nospawn.hyps(1)[simplified] locks-release have
        [simp]:w=[] mon \gamma = Some x
        by auto
```

```
        from encoding-correct-nospawn'[OF tsem-nospawn.hyps(1)] have
            XNSP: x\not\insnd p' and SPF[simp]: snd p' = snd p-{x}
            by auto
        from tsem-nospawn.prems(1)[simplified] have
            P1: distinct (lstack (w@r))
            by (simp)
            from tsem-nospawn.prems have P2: snd p'= set (lstack (w@ r)) by simp
            from tsem-nospawn.hyps P1 P2 have IHAPP:wn-t't (lstack (w@r)) by
simp
            thus ?thesis using tsem-nospawn.prems(1) by simp
    qed
qed
lemma well-nested-h:
    assumes CONS: cons-\mu (map (lstack ○ snd) c)
    assumes H: hsem \Delta ch c'
    assumes COINC: map (sndofst) c = map (setolstackosnd) c
    shows wn-h h (map (lstack ○ snd) c)
    using H CONS COINC
    by (induct rule: hsem.induct) (auto intro: well-nested-t)
```

theorem well-nested:
assumes CONS: cons- μ (map (lstack \circ snd) c)
assumes COINC: map (snd $\circ f s t$) $c=$ map (setolstackosnd) c
shows wn-c $\Delta c($ map (lstack \circ snd) c)
apply (simp add: wnc-eq-wnch)
apply (unfold wn-c-h-def)
apply (blast intro: well-nested-h[OF CONS - COINC])
done

This theorem can be used to show that an MDPN along with a consistent start configuration is a DPN with well-nested lock usage, as described by the locale EncodedLDPN-c0.

```
theorem EncodedLDPN-c0-intro[intro?]:
    assumes start-config-cons: cons- }\mu\mu
    assumes start-config-coinc: map (sndofst) c0 = map set \mu0
    assumes start-config-match: map (lstack o snd) c0 = \mu0
    shows EncodedLDPN-c0 \Delta c0 \mu0
proof
    from start-config-coinc start-config-match[symmetric] have
        map (snd\circfst) c0 = map set (map (lstack ○ snd) c0)
        by simp
    also have ... = map (set \circ lstack \circ snd) c0 by (simp add: map-compose)
    finally show wn-c \Delta c0 \mu0
        using start-config-cons start-config-match by (blast intro: well-nested)
qed (rule start-config-coinc)
```

end

```
theorem EncodedLDPN-c0-intro-external:
    assumes MDPN: MDPN \Delta mon
    assumes start-config-cons: cons- }\mu\mu
    assumes start-config-coinc: map (sndofst) c0 = map set \mu0
    assumes start-config-match: map (lstackm mon ○ snd) c0 = \mu0
    shows EncodedLDPN-c0 \Delta c0 \mu0
proof -
    interpret MDPN[\triangle mon] using MDPN .
    from EncodedLDPN-c0-intro[OF start-config-cons start-config-coinc
                                    start-config-match]
    show ?thesis .
qed
```


15.1 Non-Trivial Instance of a Well-Nested DPN

In this section, we define a non-trivial Well-nested DPN by hand. This gives strong evidence that our model assumptions are not too restrictive.

We start by introducing some finite set of locks that we can use in our programs:

```
typedef \(t\)-my-locks \(=\{1 . .6:: n a t\}\) by auto
instance \(t\)-my-locks::finite
proof (intro-classes)
    have Rep-t-my-locks' UNIV \(\subseteq\) t-my-locks using Rep-t-my-locks by auto
    moreover have finite t-my-locks by (unfold t-my-locks-def) auto
    ultimately show finite (UNIV::t-my-locks set)
        apply (rule-tac \(f=\) Rep-t-my-locks in finite-imageD)
        apply (drule finite-subset)
        apply assumption+
    apply (rule injI)
    apply (simp add: Rep-t-my-locks-inject)
    done
qed
definition \(l 1::\) t-my-locks where \(l 1=\) Abs-t-my-locks (1::nat)
definition \(12:: t\)-my-locks where \(l 2=\) Abs-t-my-locks (2::nat)
lemma [simp, intro!]: \(l 1 \neq l 2 \quad l 2 \neq l 1\)
    apply (unfold l1-def l2-def)
    apply (auto simp add: Abs-t-my-locks-inject t-my-locks-def)
    done
```

The following rules correspond to a by-hand translation of the (nonsense) program:

```
procedure p1:
    sync l1 {
```

```
        sync 12 {
            spawn p1
            spawn p2
        }
    }
procedure p2:
    if ? then
            spawn p2
            call p2
    else
            sync 12 {
            sync l1 {
                spawn p1
            }
        }
```

definition my $\Delta::(n a t \times t$-my-locks set,nat,unit,t-my-locks) ldpn where
$m y \Delta=\{$
$\left((0,\{ \}), 1 \hookrightarrow_{L A c q} l 1(0,\{l 1\}),[2,3]\right)$,
$\left((0,\{l 1\}), 2 \hookrightarrow\right.$ LAcq $\left.l_{2}(0,\{l 1, l 2\}),[4,5]\right)$,
$\left((0,\{l 1, l 2\}), 4 \hookrightarrow_{\text {LNone }}()(0,\{ \}),[1] \sharp(0,\{l 1, l 2\}),[6]\right)$,
$((0,\{l 1, l 2\}), 6 \hookrightarrow$ LNone () $(0,\{ \}),[11] \sharp(0,\{l 1, l 2\}),[7])$,
$\left((0,\{l 1, l 2\}), 7 \hookrightarrow_{\text {LRel l2 }}(0,\{l 1\}),[]\right)$,
$((0,\{l 1\}), 5 \hookrightarrow$ LRel $l 1(0,\{ \}),[])$,
$((0,\{ \}), 3 \hookrightarrow$ LNone () $(0,\{ \}),[])$,
$((0,\{ \}), 11 \hookrightarrow$ LNone () $(0,\{ \}),[11] \sharp(0,\{ \}),[12])$,
$((0,\{ \}), 12 \hookrightarrow$ LNone () $(0,\{ \}),[11,13])$,
$\left((0,\{ \}), 11 \hookrightarrow_{\text {LAcq l2 }}(0,\{l 2\}),[14,13]\right)$,
$((0,\{l 2\}), 14 \hookrightarrow$ LAcq $l 1(0,\{l 1, l 2\}),[16,17])$,
$\left((0,\{l 1, l 2\}), 16 \hookrightarrow_{\text {LNone (}}(0,\{ \}),[1] \sharp(0,\{l 1, l 2\}),[18]\right)$,
$\left((0,\{l 1, l 2\}), 18 \hookrightarrow_{\text {LRel } l 1}(0,\{l 2\}),[]\right)$,
$((0,\{l 2\}), 17 \hookrightarrow$ LRel $12(0,\{ \}),[])$,
$((0,\{ \}), 13 \hookrightarrow$ LNone () $(0,\{ \}),[])$
\}
definition my-mon :: nat \Rightarrow t-my-locks option where
my-mon $s=($
if $s=1$ then None
else if $s=2$ then Some 11
else if $s=3$ then None
else if $s=4$ then Some 12
else if $s=5$ then Some l1

```
    else if s=6 then Some l2
    else if s=7 then Some 12
    else if s=11 then None
    else if s=12 then None
    else if s=13 then None
    else if s=14 then Some 12
    else if s=15 then None
    else if s=16 then Some l1
    else if s=17 then Some l2
    else if s=18 then Some l1
    else None
)
```

It is straightforward to show that this is an MDPN

```
interpretation MDPN[my\Delta my-mon]
    apply (unfold-locales)
    apply (unfold my\Delta-def)
    apply auto
    apply (unfold my-mon-def)
    apply simp-all
    apply blast+
    done
```

And with the stuff proven above, we also get that this program is a wellnested LDPN w.r.t. the start configuration $\left[\left(\left(0::^{\prime} a,\{ \}\right),[1:: ' c]\right)\right]$, which corresponds to starting with procedure p1.

```
interpretation EncodedLDPN-c0[my\Delta [((0,{}),[1])] [[]]]
    apply rule
    apply auto
    apply (unfold lstackm-s-def my-mon-def)
    apply simp
    done
```

end

16 Conclusion

We formalized a tree-based semantics for DPNs, where executions are modeled as hedges, that reflect the ordering of steps of each process and the causality due to process creation, but enforce no ordering between steps of processes running in parallel. We have shown how to efficiently compute predecessor sets of regular sets of configurations with tree-regular constraints on the execution hedges, by encoding a hedge-automaton into the DPN, thus reducing the problem to unconstrained predecessor set computation.

We have then formalized a generalization of acquisition histories to DPNs, and have shown its correctness. We have demonstrated how to use the gen-
eralized acquisistion histories to describe the set of execution hedges, that have a lock-sensitive schedule, as a regular set. Thus we could use the techniques for hedge-constrained predecessor set computation to also compute lock-sensitive, hedge-constrained predecessor sets. Finally, we have defined a class of properties that can be computed using cascaded predecessor computations, and have applied our techniques to decide those properties for DPNs.

16.1 Trusted Code Base

In this section we shortly characterize on what our formal proof depends, i.e. how to interpret the information contained in this formal proof and the fact that it is accepted by Isabelle.

First of all, you have to trust the theorem prover and its axiomatization of HOL, the ML-platform, the operating system software and the hardware it runs on. All this components are able to cause false theorems to be proven.

Next, most of the theorems proven here have some implicit and explicit assumptions. The most critical assumptions are the assumptions of the locales, namely $D P N, L D P N, L D P N _c 0$, and encoded $L D P N$. It is not formally provebn that these assumptions make sense, and the locales really admit useful models. In Section 15 we give an example for a non-trivial DPN and formally prove that it satisfies our assumptions. This gives some evidence that our assumptions are not too restrictive.

The next crucial point - already discussed in the introduction - is, that we at some points claim that our methods are executable. However, we do not derive any executable code, and even if we did, the Isabelle codegenerator can only guarantee partial correctness, i.e. correctness under the assumption of termination. At this point, the belief in the existence of executable methods depends on the belief in that the model-checking functions, i.e. the function $m c$-pre in $A s$-hc.thy is effective for regular sets, and the result is a regular set again, such that we can check $c_{0} \in \mathrm{mc}-\mathrm{pre} \Phi$ as required by Theorem mc-pre-correct, using the saturation algorithm of [2].

However, we prove some theorems that support this belief by showing how the required operations can be decomposed to operations that are wellknown to be effective and to preserve regularity.

References

[1] A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability analysis of multithreaded software with asynchronous communication. In Proc. of FSTTCS'05, pages 348-359. Springer, 2005.
[2] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic networks of pushdown systems. In Proc. of CONCUR'05. Springer, 2005.
[3] V. Kahlon and A. Gupta. An automata-theoretic approach for model checking threads for LTL properties. In Proc. of LICS 2006, pages 101110. IEEE Computer Society, 2006.
[4] V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating via locks. In Proc. of CAV 2005, pages 505-518. Springer, 2005.

