
Isabelle Formalization of Hedge-Constrained pre*

and DPNs with Locks

Peter Lammich

January 30, 2009

Abstract

Dynamic Pushdown Networks (DPNs) are a model for concurrent
programs with recursive procedures and thread creation. We formalize
a true-concurrency semantics for DPNs. Executions of this seman-
tics have a tree structure. We show the relation of our semantics to
the original interleavings semantics. We then show how to compute
predecessor sets of regular sets of configurations w.r.t. tree-regular
constraints on the execution.

Acquisition histories have been introduced by Kahlon et al. to
model-check parallel pushdown systems with well-nested locks , but
without thread creation. We generalize acquisistion histories to be
used with DPNs. For this purpose, our tree-based semantics can be
naturally applied. Moreover, the generalized acquisition histories en-
able us to characterize the (tree-based) executions that have a schedule
that is valid w.r.t. locks, thus obtaining an algorithm to compute lock-
sensitive predecessor sets.

Contents

1 Introduction 3

2 Labeled transition systems 5
2.1 Definitions . 6
2.2 Basic properties of transitive reflexive closure 6

2.2.1 Appending of elements to paths 7
2.2.2 Transitivity reasoning setup 8
2.2.3 Monotonicity . 8
2.2.4 Special lemmas for reasoning about states that are pairs 8
2.2.5 Invariants . 8

3 Dynamic Pushdown Networks 9
3.1 Model Definition . 9

1

4 Semantics 9
4.1 Interleaving Semantics . 9
4.2 Tree Semantics . 10

4.2.1 Scheduler . 14

5 Predecessor Sets 19
5.1 Hedge-Constrained Predecessor Sets 19

6 DPN Semantics on Lists 22
6.1 Definitions . 22
6.2 Theorems . 23

6.2.1 Representation of Single Processes 23
6.2.2 Representation of Configurations 24
6.2.3 Step Relation on List-Configurations 28

6.3 Predecessor Sets on List-Semantics 30

7 Automata for Execution Hedges 31

8 Computation of Hedge-Constrained Predecessor Sets 32
8.1 Correctness of Reduction . 34
8.2 Effectiveness of Reduction . 38

8.2.1 Definitions . 39
8.2.2 Theorems . 40

8.3 What Does This Proof Tell You ? 45

9 DPNs With Locks 45
9.1 Model . 46
9.2 Interleaving Semantics . 46
9.3 Tree Semantics . 47
9.4 Equivalence of Interleaving and Tree Semantics 48

10 Well-Nestedness of Locks 50
10.1 Well-Nestedness Condition on Paths 51
10.2 Well-Nestedness of Configurations 53

10.2.1 Auxilliary Lemmas about wn-c 53
10.3 Well-Nestedness Condition on Trees 58
10.4 Well-Nestedness of Hedges . 59

10.4.1 Auxilliary Lemmas about wn-h 59
10.4.2 Relation to Path Condition 61

10.5 Well-Nestedness and Tree Scheduling 66

11 Acquisition Structures 69
11.1 Utilities . 69

11.1.1 Combinators for option-datatype 69
11.2 Acquisition Structures . 70

2

11.2.1 Parallel Composition 70
11.2.2 Acquisition Structures of Scheduling Trees and Hedges 71

11.3 Consistency of Acquisition Structures 74
11.3.1 Minimal Elements . 79
11.3.2 Well-Nestedness and Acquisition Structures 81

11.4 Soundness of the Consistency Condition 85
11.5 Precision of the Consistency Condition 88

11.5.1 Custom Size Function 88

12 DPNs with Initial Configuration 110
12.1 DPNs with Initial Configuration 110

12.1.1 Reachable Configurations 111

13 Property Specifications 111
13.1 Specification Formulas . 112
13.2 Semantics . 112
13.3 Examples . 112

13.3.1 Conflict analysis . 113
13.3.2 Bitvector analysis . 113

14 Hedge Constraints for Acquisition Histories 114
14.1 Locks Encoded in Control State 114
14.2 Characterizing Schedulable Execution Hedges 118
14.3 Checking Specifications Using prehc ∆ Hls 120

15 Monitors (aka Block-Structured Locks) 123
15.1 Non-Trivial Instance of a Well-Nested DPN 128

16 Conclusion 130
16.1 Trusted Code Base . 131

1 Introduction

Writing parallel programs has become popular in the last decade. However,
writing correct parallel programs is notoriously difficult, as there are many
possibilities for concurrency related bugs. These are hard to find and hard
to reproduce due to the nondeterministic behaviour of the scheduler. Hence
there is a strong need for formal methods to verify parallel programs and
help find concurrency related bugs. A formal model for parallel programs,
that has been studied in the last few years, are dynamic pushdown networks
(DPNs) [2], a generalization of pushdown systems, where a rule may have
the additional side effect of creating a new process, that is then executed in
parallel. Analysis of DPNs is usually done w.r.t. to an interleaving seman-
tics, where an execution is a sequence of rule applications. The interleaving

3

semantics models the execution on a single processor, that performs one step
at a time and may switch the currently executing process after every step.
However, these interleaved executions do not have nice language theoretic
properties, what makes them difficult to reason about. For example, it is
undecidable whether there exists an execution with a given regular property.
Moreover, executions of the interleaving semantics are not suited to track
properties of specific processes, e.g. acquired locks.

In the first part of this formalization, we define a semantics that mod-
els an execution as a partially ordered set of steps, rather than a (totally
ordered) sequence of steps. This partial ordering only reflects the ordering
between steps of the same process and the causality due to process creation,
i.e. steps of a created process must be executed after the step that created
the process. However, it does not enforce any ordering between steps of pro-
cesses running in parallel. The interleaved executions can be interpreted as
topological sorts of the partial ordering. For executions of DPNs the partial
ordering has a tree shape, where thread creation steps have at most two
successors and pushdown steps have at most one successor. We formally
define these executions as list of trees (called execution hedges).

The key concept of model-checking DPNs is to compute the set of pre-
decessor configurations of a set of configurations. Configurations of DPNs
are represented as words over control- and stack- symbols, and for a regu-
lar set of configurations, the set of predecessor configurations is regular as
well and can be computed efficiently [2]. Predecessor computations can be
used for various interesting analysis, like kill/gen analysis on bitvectors [2]
and context-bounded model checking [1]. Our approach extends the prede-
cessor computation by additionally allowing tree-regular constraints on the
executions. The counterpart for the interleaving semantics, i.e. predecessor
computations with (word-)regular constraints on the interleaved executions,
is not effective.

In the second part of this formalization, we extend DPNs by adding
mutual exclusion via well-nested locks. Locks are a commonly used syn-
chronization primitive to manage shared resources between processes. A
process may acquire and release a lock, and, at any time, each lock may
be owned by at most one process. If a process wants to acquire a lock al-
ready owned by another process, it has to wait until the lock is released.
We assume that locks are used in a well-nested fashion, i.e. a process has to
release locks in the reversed order of acquisition. Note that in practice locks
are commonly used in a well-nested fashion, e.g. the synchronized-blocks of
Java guarantee well-nested lock usage. Also note that for non-well-nested
locks, even simple reachability problems are undecidable [4]. Parallel push-
down processes with well-nested locks have been analyzed using acquisition
histories [4, 3]. We generalize this technique to DPNs. Our generalization is
non-trivial, as the original technique is defined for a model where only two
parallel processes that both exist at the beginning of the execution need to

4

be considered, while we have a model with unboundedly many processes that
may be created at any point of the execution. The generalized acquisition
histories allow us to characterize the executions, that are consistent w.r.t.
lock usage, by a tree-regular set. Applying the results from the first part of
this paper yields an algorithm for computing lock-sensitive predecessor sets
with tree-regular constraints.

This formalization accompanies a paper that is currently in preparation.
Thus the proofs in this work partially depend on unpublished results that are
currently in the process of submission. The following are the most notable
results proven in this formalization:

• We present a tree-based view on DPN executions, and an efficient
predecessor computation with tree-regular constraints.

• We generalize the concept of acquisition histories to programs with
process creation.

• We characterize lock-sensitive executions by tree-regular constraints,
thus obtaining an algorithm for computing lock-sensitive predecessor
sets.

However, this formalization also has its limits. In particular, it does not
include:

• A formalization of operations on automata or tree automata, that
would allow to generate executable code.

• A formalization of the saturation algorithm for computing predecessor
sets of DPNs [2] — another prerequisite for generating executable code.
We have an unpublished formalization of this saturation algorithm,
that we will adapt to the latest version of Isabelle and publish in near
future.

• Due to the first two limitations, we cannot give a formal proof that
shows that our methods are, indeed, executable. However, we prove
some lemmas that give strong evidence that our methods are effective
and could be implemented in principle.

2 Labeled transition systems

theory LTS
imports Main
begin

Labeled transition systems (LTS) provide a model of a state transition
system with named transitions.

5

2.1 Definitions

An LTS is modeled as a ternary relation between start configuration, tran-
sition label and end configuration

types (′c, ′a) LTS = (′c × ′a × ′c) set

Transitive reflexive closure

inductive-set
trcl :: (′c, ′a) LTS ⇒ (′c, ′a list) LTS
for t
where
empty [simp]: (c,[],c) ∈ trcl t
| cons[simp]: [[(c,a,c ′) ∈ t ; (c ′,w ,c ′′) ∈ trcl t]] =⇒ (c,a#w ,c ′′) ∈ trcl t

2.2 Basic properties of transitive reflexive closure

lemma trcl-empty-cons: (c,[],c ′)∈trcl t =⇒ (c=c ′)
by (auto elim: trcl .cases)

lemma trcl-empty-simp[simp]: (c,[],c ′)∈trcl t = (c=c ′)
by (auto elim: trcl .cases intro: trcl .intros)

lemma trcl-single[simp]: ((c,[a],c ′) ∈ trcl t) = ((c,a,c ′) ∈ t)
by (auto elim: trcl .cases)

lemma trcl-uncons: (c,a#w ,c ′)∈trcl t =⇒ ∃ ch . (c,a,ch)∈t ∧ (ch,w ,c ′) ∈ trcl t
by (auto elim: trcl .cases)

lemma trcl-uncons-cases: [[
(c,e#w ,c ′)∈trcl S ;
!!ch. [[(c,e,ch)∈S ; (ch,w ,c ′)∈trcl S]] =⇒ P

]] =⇒ P
by (blast dest : trcl-uncons)

lemma trcl-one-elem: (c,e,c ′)∈t =⇒ (c,[e],c ′)∈trcl t
by auto

lemma trcl-unconsE [cases set , case-names split]: [[
(c,e#w ,c ′)∈trcl S ;
!!ch. [[(c,e,ch)∈S ; (ch,w ,c ′)∈trcl S]] =⇒ P

]] =⇒ P
by (blast dest : trcl-uncons)

lemma trcl-pair-unconsE [cases set , case-names split]: [[
((s,c),e#w ,(s ′,c ′))∈trcl S ;
!!sh ch. [[((s,c),e,(sh,ch))∈S ; ((sh,ch),w ,(s ′,c ′))∈trcl S]] =⇒ P

]] =⇒ P
by (fast dest : trcl-uncons)

lemma trcl-concat : !! c . [[(c,w1 ,c ′)∈trcl t ; (c ′,w2 ,c ′′)∈trcl t]]
=⇒ (c,w1 @w2 ,c ′′)∈trcl t

proof (induct w1)
case Nil thus ?case by (subgoal-tac c=c ′) auto

next

6

case (Cons a w) thus ?case by (auto dest : trcl-uncons)
qed

lemma trcl-unconcat : !! c . (c,w1 @w2 ,c ′)∈trcl t
=⇒ ∃ ch . (c,w1 ,ch)∈trcl t ∧ (ch,w2 ,c ′)∈trcl t

proof (induct w1)
case Nil hence (c,[],c)∈trcl t ∧ (c,w2 ,c ′)∈trcl t by auto
thus ?case by fast

next
case (Cons a w1) note IHP = this
hence (c,a#(w1 @w2),c ′)∈trcl t by simp
with trcl-uncons obtain chh where (c,a,chh)∈t ∧ (chh,w1 @w2 ,c ′)∈trcl t by

fast
moreover with IHP obtain ch where (chh,w1 ,ch)∈trcl t ∧ (ch,w2 ,c ′)∈trcl t

by fast
ultimately have (c,a#w1 ,ch)∈trcl t ∧ (ch,w2 ,c ′)∈trcl t by auto
thus ?case by fast

qed

2.2.1 Appending of elements to paths

lemma trcl-rev-cons: [[(c,w ,ch)∈trcl T ; (ch,e,c ′)∈T]] =⇒ (c,w@[e],c ′)∈trcl T
by (auto dest : trcl-concat iff add : trcl-single)

lemma trcl-rev-uncons: (c,w@[e],c ′)∈trcl T
=⇒ ∃ ch. (c,w ,ch)∈trcl T ∧ (ch,e,c ′)∈T
by (force dest : trcl-unconcat)

lemma trcl-rev-uncons-cases: [[
(c,w@[e],c ′)∈trcl T ;
!!ch. [[(c,w ,ch)∈trcl T ; (ch,e,c ′)∈T]] =⇒ P

]] =⇒ P
by (blast dest : trcl-rev-uncons)

lemma trcl-rev-induct [induct set , consumes 1 , case-names empty snoc]: !! c ′. [[
(c,w ,c ′)∈trcl S ;
!!c. P c [] c;
!!c w c ′ e c ′′. [[(c,w ,c ′)∈trcl S ; (c ′,e,c ′′)∈S ; P c w c ′]] =⇒ P c (w@[e]) c ′′

]] =⇒ P c w c ′

by (induct w rule: rev-induct) (auto dest : trcl-rev-uncons)
lemma trcl-rev-cases: !!c c ′. [[

(c,w ,c ′)∈trcl S ;
[[w=[]; c=c ′]]=⇒P ;
!!ch e wh. [[w=wh@[e]; (c,wh,ch)∈trcl S ; (ch,e,c ′)∈S]]=⇒P

]] =⇒ P
by (induct w rule: rev-induct) (simp, blast dest : trcl-rev-uncons)

lemma trcl-cons2 : [[(c,e,ch)∈T ; (ch,f ,c ′)∈T]] =⇒ (c,[e,f],c ′)∈trcl T
by auto

7

2.2.2 Transitivity reasoning setup

declare trcl-cons2 [trans] — It’s important that this is declared before trcl-concat,
because we want trcl-concat to be tried first by the transitivity reasoner

declare cons[trans]
declare trcl-concat [trans]
declare trcl-rev-cons[trans]

2.2.3 Monotonicity

lemma trcl-mono: !!A B . A ⊆ B =⇒ trcl A ⊆ trcl B
apply (clarsimp)
apply (erule trcl .induct)
apply auto

done

lemma trcl-inter-mono: x∈trcl (S∩R) =⇒ x∈trcl S x∈trcl (S∩R) =⇒ x∈trcl R
proof −

assume x∈trcl (S∩R)
with trcl-mono[of S∩R S] show x∈trcl S by auto

next
assume x∈trcl (S∩R)
with trcl-mono[of S∩R R] show x∈trcl R by auto

qed

2.2.4 Special lemmas for reasoning about states that are pairs

lemmas trcl-pair-induct = trcl .induct [of (xc1 ,xc2) xb (xa1 ,xa2), consumes
1 , split-format (complete), case-names empty cons]
lemmas trcl-rev-pair-induct = trcl-rev-induct [of (xc1 ,xc2) xb (xa1 ,xa2),
consumes 1 , split-format (complete), case-names empty snoc]

2.2.5 Invariants

lemma trcl-prop-trans[cases set , consumes 1 , case-names empty steps]: [[
(c,w ,c ′)∈trcl S ;
[[c=c ′; w=[]]] =⇒ P ;
[[c∈Domain S ; c ′∈Range (Range S)]]=⇒P

]] =⇒ P
apply (erule-tac trcl-rev-cases)
apply auto
apply (erule trcl .cases)
apply auto
done

end

8

3 Dynamic Pushdown Networks

theory DPN
imports Main common/LTS
begin declare predicate2I [HOL.rule del , Pure.rule del]

3.1 Model Definition

A Dynamic Pushdown Network (DPN) [2] is a system of pushdown rules
over states from ′Q and stack symbols from ′Γ, where each pushdown rule
may spawn additional processes. Rules are labeled by elements of type ′L

datatype (′P , ′Γ, ′L) pushdown-rule =
NOSPAWN ′P ′Γ ′L ′P ′Γ list (-,- ↪→- -,- 51) |
SPAWN ′P ′Γ ′L ′P ′Γ list ′P ′Γ list (-,- ↪→- -,-] -,- 51)

notation NOSPAWN (-,- ↪→- -,- 51)
notation SPAWN (-,- ↪→- -,-] -,- 51)

types (′Q , ′Γ, ′L) dpn = (′Q , ′Γ, ′L) pushdown-rule set

We fix the finiteness assumption of the set of rules in a locale. Note that
we do not assume the base types of states, stack symbols, or labels to be
finite. However, the finiteness assumption of the set of rules implies that
the sets of used control states, stack symbols, and labels are finite.

locale DPN =
fixes ∆ :: (′Q , ′Γ, ′L) dpn
assumes ruleset-finite[simp, intro!]: finite ∆

end

4 Semantics

theory Semantics
imports DPN RegSet-add
begin

In this theory, we define an interleaving and a tree-based semantics of
DPNs. We show the equivalence of the two semantics.

4.1 Interleaving Semantics

The interleaving semantics models the execution of a DPN on a single pro-
cessor, that makes one step at a time, and may switch the currently executed
process after each step. This is the original semantics of DPNs [2].

The interleaving semantics is formalized by means of a labeled transition
system. A single process is modeled as a pair of its control state and its stack.

9

A configuration of the DPN is modeled as a list of processes. Note that
we use lists of processes here, rather than multisets, to enable representation
of configurations as regular sets, as required by the algorithms of [2].

types
(′Q , ′Γ) pconf = ′Q × ′Γ list
(′Q , ′Γ) conf = (′Q , ′Γ) pconf list

The (single-) step relation dpntr of the interleavings semantics is defined
as the least solution of the following constraints:

inductive-set dpntr :: (′Q , ′Γ, ′L) dpn ⇒ ((′Q , ′Γ) conf × ′L × (′Q , ′Γ) conf) set
for ∆ where
— A non-spawning step modifies a single pushdown process according to a non-

spawning rule in the DPN:
dpntr-no-spawn:

(p,γ ↪→l p ′,w)∈∆ =⇒
(c1 @(p,γ#r)#c2 ,l ,c1 @(p ′,w@r)#c2) ∈ dpntr ∆ |

— A spawning step modifies a pushdown process according to a spawning rule
in the DPN and adds the spawned process immediately before the spawning
process:

dpntr-spawn:
(p,γ ↪→l ps,ws] p ′,w)∈∆ =⇒

(c1 @(p,γ#r)#c2 ,l ,c1 @(ps,ws)#(p ′,w@r)#c2) ∈ dpntr ∆

We denote the reflexive, transitive closure of the single-step relation by
dpntrc:

abbreviation dpntrc M == trcl (dpntr M)

4.2 Tree Semantics

Now we regard a true concurrency semantics, where an execution does not
contain the interleaving between independent steps. When starting at a
single process, we model such an execution as a tree, where each node cor-
responds to an applied step. A node corresponding to a non-spawning step
has one successor, a node corresponding to a spawning step has two succes-
sors. We annotate the leafs of the tree by the configuration of the reached
process.

When starting at a configuration consisting of (a list of) multiple pro-
cesses, we model the execution as a list of multiple execution trees, one for
each process.

datatype (′Q , ′Γ, ′L) ex-tree =
NLEAF (′Q , ′Γ) pconf |
NNOSPAWN ′L (′Q , ′Γ, ′L) ex-tree |
NSPAWN ′L (′Q , ′Γ, ′L) ex-tree (′Q , ′Γ, ′L) ex-tree

types (′Q , ′Γ, ′L) ex-hedge = (′Q , ′Γ, ′L) ex-tree list

inductive tsem

10

:: (′Q , ′Γ, ′L) dpn ⇒ (′Q , ′Γ) pconf ⇒ (′Q , ′Γ, ′L) ex-tree ⇒ (′Q , ′Γ) conf ⇒ bool
for ∆ where
tsem-leaf [simp, intro!]:

tsem ∆ pw (NLEAF pw) [pw] |
tsem-nospawn:

[[(p,γ ↪→l p ′,w)∈∆; tsem ∆ (p ′,w@r) t c ′]] =⇒
tsem ∆ (p,γ#r) (NNOSPAWN l t) c ′ |

tsem-spawn:
[[(p,γ ↪→l ps,ws] p ′,w)∈∆; tsem ∆ (ps,ws) ts cs; tsem ∆ (p ′,w@r) t c ′]] =⇒

tsem ∆ (p,γ#r) (NSPAWN l ts t) (cs@c ′)

inductive hsem
:: (′Q , ′Γ, ′L) dpn ⇒ (′Q , ′Γ) conf ⇒ (′Q , ′Γ, ′L) ex-hedge ⇒ (′Q , ′Γ) conf ⇒ bool
for ∆ where
hsem-empty [simp, intro!]: hsem ∆ [] [] [] |
hsem-cons: [[tsem ∆ π t cf ′; hsem ∆ c h c ′]] =⇒ hsem ∆ (π#c) (t#h) (cf ′@c ′)

In the following we show some basic facts about the tsem- and hsem-
relations.

lemma hsem-empty-h[simp]:
hsem ∆ c [] c ′←→ c=[] ∧ c ′=[]
by (auto elim: hsem.cases intro: hsem.intros)

lemma hsem-length: hsem ∆ c h c ′ =⇒ length c = length h
by (induct rule: hsem.induct) auto

The hedges and configurations of the hedge semantics can be concate-
nated.

lemmas hsem-cons-single = hsem-cons[where cf ′=[π ′], simplified , standard]

lemma hsem-conc: [[hsem ∆ c1 h1 c1 ′; hsem ∆ c2 h2 c2 ′]] =⇒
hsem ∆ (c1 @c2) (h1 @h2) (c1 ′@c2 ′)
by (induct c1 h1 c1 ′ rule: hsem.induct) (auto intro: hsem-cons)

lemmas hsem-conc-lel = hsem-conc[OF - hsem-cons]

lemmas hsem-conc-leel = hsem-conc[OF - hsem-cons[OF - hsem-cons]]

lemma tsem-not-empty [simp]: ¬ tsem ∆ π t []
by (induct t arbitrary : π) (auto elim: tsem.cases)

lemma hsem-empty-simps1 [simp]:
hsem ∆ [] h c ′←→ (h=[] ∧ c ′=[])
hsem ∆ c h [] ←→ (c=[] ∧ h=[])
by (auto elim: hsem.cases)

lemma hsem-id [simp, intro!]: hsem ∆ c (map NLEAF c) c
by (induct c) (auto intro: hsem-cons-single)

lemmas hsem-id ′[simp, intro!] = hsem-id [of - π#c, simplified , standard]

Given a partition of the starting configuration, we can construct a cor-

11

responding partition of the hedge and the final configuration.

lemma hsem-split ′:
[[hsem ∆ (c1 @c2) h c ′]] =⇒ ∃ h1 h2 c1 ′ c2 ′.

h=h1 @h2 ∧ c ′=c1 ′@c2 ′ ∧
hsem ∆ c1 h1 c1 ′ ∧ hsem ∆ c2 h2 c2 ′

proof (induct c1 arbitrary : c2 h c ′)
case Nil hence h=[]@h c ′=[]@c ′ hsem ∆ [] [] [] hsem ∆ c2 h c ′

by (auto intro: hsem.intros)
with Nil show ?case by blast

next
case (Cons p c1)
from Cons.prems[simplified] show ?case
proof (cases rule: hsem.cases)

case hsem-empty hence False by simp thus ?thesis ..
next

case (hsem-cons px t ct ′ c hx cx ′)
hence CC : h=t#hx tsem ∆ p t ct ′ hsem ∆ (c1 @c2) hx cx ′ c ′=ct ′@cx ′

by simp-all
from Cons.hyps[OF CC (3)] obtain h1 h2 c1 ′ c2 ′ where

IHAPP : hx=h1 @h2 cx ′=c1 ′@c2 ′ hsem ∆ c1 h1 c1 ′ hsem ∆ c2 h2 c2 ′

by blast
have h=(t#h1)@h2 c ′=(ct ′@c1 ′)@c2 ′ using CC IHAPP

by simp-all
with hsem.intros(2)[OF CC (2) IHAPP(3)] IHAPP(4) show ?thesis by blast

qed
qed

lemma hsem-split [consumes 1]: [[hsem ∆ (c1 @c2) h c ′;
!!h1 h2 c1 ′ c2 ′.

[[h=h1 @h2 ; c ′=c1 ′@c2 ′; hsem ∆ c1 h1 c1 ′; hsem ∆ c2 h2 c2 ′]] =⇒ P
]] =⇒ P
by (blast dest : hsem-split ′)

lemma hsem-single:
[[hsem ∆ [π] h c ′; !!t . [[h=[t]; tsem ∆ π t c ′]] =⇒ P]] =⇒ P
by (auto intro: hsem.intros elim!: hsem.cases)

lemma hsem-split-single[consumes 1]: [[hsem ∆ (π#c2) h c ′;
!!t1 h2 c1 ′ c2 ′.

[[h=t1 #h2 ; c ′=c1 ′@c2 ′; tsem ∆ π t1 c1 ′; hsem ∆ c2 h2 c2 ′]] =⇒ P
]] =⇒ P
by (fastsimp elim: hsem-split [where ?c1 .0 =[π], simplified] hsem-single)

lemma hsem-lel : [[hsem ∆ (c1 @π#c2) h c ′;
!!h1 t h2 c1 ′ ct ′ c2 ′. [[

h=h1 @t#h2 ; c ′=c1 ′@ct ′@c2 ′;
hsem ∆ c1 h1 c1 ′; tsem ∆ π t ct ′; hsem ∆ c2 h2 c2 ′

]] =⇒ P

12

]] =⇒ P
by (fastsimp elim: hsem-split hsem-split-single)

Given a partition of the hedge, we can construct a corresponding parti-
tion of the initial and final configuration.

lemma hsem-split-h ′: [[hsem ∆ c (h1 @h2) c ′]] =⇒
∃ c1 c2 c1 ′ c2 ′. c=c1 @c2 ∧ c ′=c1 ′@c2 ′ ∧

hsem ∆ c1 h1 c1 ′ ∧ hsem ∆ c2 h2 c2 ′

proof (induct h1 arbitrary : h2 c c ′)
case Nil hence c=[]@c c ′=[]@c ′ hsem ∆ [] [] [] hsem ∆ c h2 c ′

by (auto intro: hsem.intros)
with Nil show ?case by blast

next
case (Cons t h1)
from Cons.prems[simplified] show ?case proof (cases rule: hsem.cases)

case hsem-empty hence False by simp thus ?thesis ..
next

case (hsem-cons p tx ct ′ cx hx cx ′)
hence CC : c=p#cx tsem ∆ p t ct ′ hsem ∆ cx (h1 @h2) cx ′ c ′=ct ′@cx ′

by simp-all
from Cons.hyps[OF CC (3)] obtain c1 c2 c1 ′ c2 ′ where

IHAPP : cx=c1 @c2 cx ′=c1 ′@c2 ′ hsem ∆ c1 h1 c1 ′ hsem ∆ c2 h2
c2 ′

by blast
have c=(p#c1)@c2 c ′=(ct ′@c1 ′)@c2 ′ using CC IHAPP by simp-all
with hsem.intros(2)[OF CC (2), OF IHAPP(3)] IHAPP(4) show ?thesis

by blast
qed

qed

lemma hsem-split-h:
[[hsem ∆ c (h1 @h2) c ′;

!!c1 c2 c1 ′ c2 ′.
[[c=c1 @c2 ; c ′=c1 ′@c2 ′; hsem ∆ c1 h1 c1 ′; hsem ∆ c2 h2 c2 ′]] =⇒ P

]] =⇒ P
by (blast dest : hsem-split-h ′)

lemma hsem-single-h:
[[hsem ∆ c [t] c ′; !!p. [[c=[p]; tsem ∆ p t c ′]] =⇒ P]] =⇒ P
by (force intro: hsem.intros elim!: hsem.cases)

lemmas hsem-split-h-single = hsem-split-h[where ?h1 .0 =[t], simplified , standard]

lemma hsem-lel-h: [[hsem ∆ c (h1 @t#h2) c ′;
!!c1 p c2 c1 ′ ct ′ c2 ′. [[

c=c1 @p#c2 ; c ′=c1 ′@ct ′@c2 ′;
hsem ∆ c1 h1 c1 ′; tsem ∆ p t ct ′; hsem ∆ c2 h2 c2 ′

]] =⇒ P

13

]] =⇒ P
by (fastsimp elim!: hsem-split-h hsem-split-h-single hsem-single-h)

4.2.1 Scheduler

The scheduler maps execution hedges to compatible label sequences. This
is done by eating up the given hedge from the roots to the leafs, until all
non-leaf nodes have been consumed. From an ordering point of view, the
hedge represents a partial ordering on the steps, and the scheduler maps
this ordering to the set of all its topological sorts.

An execution hedge is called final if it solely consists of leaf nodes.

inductive final-t where
[simp, intro!]: final-t (NLEAF pw)

lemma [simp, intro!]:
¬final-t (NNOSPAWN l t)
¬final-t (NSPAWN l ts t)
by (auto elim: final-t .cases)

abbreviation final == list-all final-t

Final execution hedges contain no steps, hence they do not change the
configuration.

lemma final-tsem-nostep: [[final-t t ; tsem ∆ pw t c ′]] =⇒ c ′=[pw]
by (cases t) (auto elim: tsem.cases)

lemma final-hsem-nostep: [[final h; hsem ∆ c h c ′]] =⇒ c ′=c
apply (rotate-tac)
apply (induct rule: hsem.induct)
apply (auto intro: final-tsem-nostep)
done

As described above, the scheduler eats up the execution hedge from the
roots to the leafs, until there are no inner nodes remaining, i.e. the hedge
is final.

inductive sched :: (′Q , ′Γ, ′L) ex-hedge ⇒ ′L list ⇒ bool where
sched-final : final h =⇒ sched h [] |
sched-nospawn:

sched (h1 @t#h2) w =⇒ sched (h1 @(NNOSPAWN l t)#h2) (l#w) |
sched-spawn:

sched (h1 @ts#t#h2) w =⇒ sched (h1 @(NSPAWN l ts t)#h2) (l#w)

inductive-set sched-rel :: ((′Q , ′Γ, ′L) ex-hedge, ′L) LTS where
sched-rel-nospawn: ((h1 @(NNOSPAWN l t)#h2),l ,h1 @t#h2)∈sched-rel |
sched-rel-spawn: ((h1 @(NSPAWN l ts t)#h2),l ,(h1 @ts#t#h2))∈sched-rel

definition sched ′ h ll == (∃ h ′. (h,ll ,h ′)∈trcl sched-rel ∧ final h ′)

14

lemma sched-alt1 : sched h ll =⇒ sched ′ h ll
by (unfold sched ′-def , induct rule: sched .induct)

(auto intro: trcl .intros sched-rel .intros)

lemma sched-rel-alt2 : [[(h,ll ,h ′)∈trcl sched-rel ; final h ′]] =⇒ sched h ll
by (induct rule: trcl .induct) (auto intro: sched .intros elim: sched-rel .cases)

lemma sched-alt : sched ′ h ll ←→ sched h ll
by (unfold sched ′-def , auto intro: sched-alt1 [unfolded sched ′-def] sched-rel-alt2)

We now show some basic facts about the scheduler.

lemma sched-empty-seq [simp]: sched h [] ←→ final h
by (auto intro: sched-final elim: sched .cases)

lemma sched-empty-hedge[simp]: sched [] ll ←→ ll=[]
by (auto intro: sched-final elim: sched .cases)

lemma sched-empty-empty [simp, intro!]: sched [] [] by (auto intro: sched-final)

lemma sched-final-simp[simp]: final h =⇒ sched h c ←→ c=[]
by (auto elim: sched .cases)

In the following few lemmas we derive an induction scheme that reasons
about hedges in the way they are consumed by the scheduler

fun sched-ind-size where
sched-ind-size (NLEAF π) = 0 |
sched-ind-size (NNOSPAWN l t) = Suc (sched-ind-size t) |
sched-ind-size (NSPAWN l ts t) = Suc (sched-ind-size ts + sched-ind-size t)

abbreviation sched-ind-sizeh h == listsum (map sched-ind-size h)

lemma sched-ind-h-cases[consumes 1 , case-names NOSPAWN SPAWN]:
[[sched-ind-sizeh h > 0 ;

!!h1 l t h2 . h=h1 @(NNOSPAWN l t)#h2 =⇒ P ;
!!h1 ts t h2 l . h = h1 @(NSPAWN l ts t)#h2 =⇒ P

]] =⇒ P
proof (induct h)

case Nil thus ?case by auto
next

case (Cons t h)
show ?case proof (cases t)

case (NLEAF π)
with Cons.prems(1) have I : 0 < sched-ind-sizeh h by simp
show ?thesis proof (rule Cons.hyps[OF I])

fix h1 l tt h2
assume h=h1 @ NNOSPAWN l tt # h2
hence t#h = (t#h1) @ NNOSPAWN l tt # h2 by simp
with Cons.prems(2) show ?thesis by blast

15

next
fix h1 ts tt h2 l
assume h = h1 @ NSPAWN l ts tt # h2
hence t#h = (t#h1) @ NSPAWN l ts tt # h2 by simp
with Cons.prems(3) show ?thesis by blast

qed
next

case (NNOSPAWN L tt)
with Cons.prems(2)[of [], simplified] show ?thesis by auto

next
case (NSPAWN L ts tt)
with Cons.prems(3)[of [], simplified] show ?thesis by auto

qed
qed

lemma sched-ind-helper :
[[!!h. final h =⇒ P h;

!!h1 t h2 l . P (h1 @t#h2) =⇒ P (h1 @(NNOSPAWN l t)#h2);
!!h1 ts t h2 l . P (h1 @ts#t#h2) =⇒ P (h1 @(NSPAWN l ts t)#h2);
sched-ind-sizeh h = k

]] =⇒ P h
proof (induct k arbitrary : h)

case 0 note C =this from C (4) have final h
apply (induct h)
apply simp
apply (case-tac a)
apply auto
done

with C (1) show ?case by blast
next

case (Suc k) hence S : sched-ind-sizeh h > 0 by simp
thus ?case proof (cases rule: sched-ind-h-cases)

case (NOSPAWN h1 l t h2)
with Suc.prems(4) have I : sched-ind-sizeh (h1 @t#h2) = k by simp
with Suc.prems(1 ,2 ,3) NOSPAWN show ?thesis

by (drule-tac Suc.hyps) blast+
next

case (SPAWN h1 ts t h2 l)
with Suc.prems(4) have I : sched-ind-sizeh (h1 @ts#t#h2) = k by simp
with Suc.prems(1 ,2 ,3) SPAWN show ?thesis

by (drule-tac Suc.hyps) blast+
qed

qed

lemma sched-ind [case-names FINAL NOSPAWN SPAWN]:
[[!!h. final h =⇒ P h;

!!h1 t h2 l . P (h1 @t#h2) =⇒ P (h1 @(NNOSPAWN l t)#h2);
!!h1 ts t h2 l . P (h1 @ts#t#h2) =⇒ P (h1 @(NSPAWN l ts t)#h2)

]] =⇒ P h

16

using sched-ind-helper by blast

Every tree/hedge has at least one schedule. From an ordering point of
view, this is because hedge-structures are acyclic, and thus have always at
least one topological sort. However, using the inductive definition of the
scheduler, the proof of this lemma is by straightforward induction.

lemma exists-schedule: [[!!ll . sched h ll =⇒ P]] =⇒ P
by (induct h rule: sched-ind) (auto intro: sched .intros)

Next, we want to show that the true concurrency semantics corresponds
to the interleaving semantics. For this purpose, we show that we have an
execution with labeling sequence ll in the interleaving semantics if and only
if there is an execution h in the true concurrency semantics that has ll in
its set of schedules.

The next two lemmas show the two directions of this claim.

lemma sched-correct1 : (c,ll ,c ′)∈dpntrc ∆ =⇒ ∃ h. hsem ∆ c h c ′ ∧ sched h ll
proof (induct rule: trcl .induct)

case (empty c) thus ?case by (induct c) (auto intro: hsem-cons-single)
next

case (cons c l ch ll c ′)
from cons.hyps(3) obtain h where IHAPP : hsem ∆ ch h c ′ sched h ll by

blast
from cons.hyps(1) show ?case
proof (cases)

case (dpntr-no-spawn p γ la p ′ w c1 r c2)
hence

C-simp[simp]: c = c1 @ (p, γ # r) # c2 ch = c1 @ (p ′, w @ r) # c2 and

C : (p,γ ↪→l p ′,w) ∈ ∆
by auto

from hsem-lel [OF IHAPP(1)[simplified]] obtain h1 t h2 c1 ′ ct ′ c2 ′ where
[simp]: h = h1 @ t # h2 c ′ = c1 ′ @ ct ′ @ c2 ′ and
HSPLIT : hsem ∆ c1 h1 c1 ′ tsem ∆ (p ′, w @ r) t ct ′ hsem ∆ c2 h2 c2 ′

.
from tsem-nospawn[OF C HSPLIT (2)] have

ST : tsem ∆ (p,γ#r) (NNOSPAWN l t) ct ′ .
from hsem-conc-lel [OF HSPLIT (1) ST HSPLIT (3)] have

hsem ∆ c (h1 @ NNOSPAWN l t # h2) c ′

by simp
moreover from sched-nospawn[OF IHAPP(2)[simplified]] have

sched (h1 @ NNOSPAWN l t # h2) (l#ll) .
ultimately show ?thesis by blast

next
case (dpntr-spawn p γ la ps ws p ′ w c1 r c2)
hence

[simp]: c = c1 @ (p, γ # r) # c2
ch = c1 @ (ps, ws) # (p ′, w @ r) # c2 and

C : (p,γ ↪→l ps,ws] p ′,w) ∈ ∆

17

by auto
from IHAPP(1)[simplified] obtain h1 ts t h2 c1 ′ cs ′ ct ′ c2 ′ where

[simp]: h = h1 @ ts # t # h2 c ′ = c1 ′ @ cs ′ @ ct ′ @ c2 ′ and
HSPLIT : hsem ∆ c1 h1 c1 ′ tsem ∆ (ps,ws) ts cs ′

tsem ∆ (p ′, w @ r) t ct ′ hsem ∆ c2 h2 c2 ′

by (fastsimp elim: hsem-split hsem-split-single)
from tsem-spawn[OF C HSPLIT (2 ,3)] have

ST : tsem ∆ (p,γ#r) (NSPAWN l ts t) (cs ′@ct ′) .
from hsem-conc-lel [OF HSPLIT (1) ST HSPLIT (4)] have

hsem ∆ c (h1 @ NSPAWN l ts t # h2) c ′ by simp
moreover from sched-spawn[OF IHAPP(2)[simplified]] have

sched (h1 @ NSPAWN l ts t # h2) (l#ll) .
ultimately show ?thesis by blast

qed
qed

lemma sched-correct2 : [[sched h ll ; hsem ∆ c h c ′]] =⇒ (c,ll ,c ′)∈dpntrc ∆
proof (induct h ll arbitrary : c c ′ rule: sched .induct)

case (sched-final h c c ′) thus ?case by (auto dest : final-hsem-nostep)
next

case (sched-nospawn h1 t h2 ll l c c ′)
from hsem-lel-h[OF sched-nospawn.prems] obtain c1 pγr c2 c1 ′ ct ′ c2 ′ where

[simp]: c = c1 @ pγr # c2 c ′ = c1 ′ @ ct ′ @ c2 ′ and
SPLIT : hsem ∆ c1 h1 c1 ′

tsem ∆ pγr (NNOSPAWN l t) ct ′

hsem ∆ c2 h2 c2 ′

.
from SPLIT (2) obtain p γ r p ′ w where

[simp]: pγr=(p,γ#r) and
ST : (p,γ ↪→l p ′,w)∈∆ tsem ∆ (p ′,w@r) t ct ′

by (erule-tac tsem.cases) fastsimp+
from dpntr-no-spawn[OF ST (1)] have (c,l ,c1 @ (p ′, w @ r) # c2)∈dpntr ∆

by auto
also from sched-nospawn.hyps(2)[OF hsem-conc-lel [OF SPLIT (1) ST (2) SPLIT (3)]]

have
SST : (c1 @ (p ′, w @ r) # c2 , ll , c1 ′ @ ct ′ @ c2 ′) ∈ dpntrc ∆ .

finally show ?case by auto
next

case (sched-spawn h1 ts t h2 ll l c c ′)
from hsem-lel-h[OF sched-spawn.prems] obtain c1 pγr c2 c1 ′ ct ′ c2 ′ where

[simp]: c = c1 @ pγr # c2 c ′ = c1 ′ @ ct ′ @ c2 ′ and
SPLIT : hsem ∆ c1 h1 c1 ′

tsem ∆ pγr (NSPAWN l ts t) ct ′

hsem ∆ c2 h2 c2 ′

.
from SPLIT (2) obtain p γ r ps ws p ′ w cts ′ ctt ′ where

[simp]: pγr=(p,γ#r) ct ′=cts ′@ctt ′ and
ST : (p,γ ↪→l ps,ws] p ′,w)∈∆ tsem ∆ (ps,ws) ts cts ′

18

tsem ∆ (p ′,w@r) t ctt ′

by (erule-tac tsem.cases) fastsimp+
from dpntr-spawn[OF ST (1)] have

(c,l ,c1 @ (ps,ws) # (p ′, w @ r) # c2)∈dpntr ∆
by auto

also from sched-spawn.hyps(2)[OF hsem-conc-leel [OF SPLIT (1) ST (2 ,3) SPLIT (3)]]
have

SST : (c1 @ (ps,ws) # (p ′, w @ r) # c2 , ll , c ′) ∈ dpntrc ∆
by simp

finally show ?case by auto
qed

Finally, we formulate the correspondance between the interleaving and
the true concurrency semantics as a single equivalence:

theorem sched-correct : (c,ll ,c ′)∈dpntrc ∆ ←→ (∃ h. hsem ∆ c h c ′ ∧ sched h ll)
by (auto intro: sched-correct1 sched-correct2)

As any hedge has at least one schedule, we always get an interleaving
execution from a hedge execution:

lemma obtain-schedule:
[[hsem ∆ c h c ′;

!!ll . [[(c,ll ,c ′)∈dpntrc ∆; sched h ll]] =⇒ P
]] =⇒ P
apply (rule-tac h=h in exists-schedule)
apply (metis sched-correct)
done

5 Predecessor Sets

Following [2], we define the set of immediate predecessors pre ∆ C and
predecessors pre∗ ∆ C of a set of configurations C. The set of immediate
predecessors contains those configurations from that we can reach (a config-
uration in) C with exactly one step. The set of predecessors contains those
configurations from that we can reach C with an arbitrary number of steps,
including no steps at all (i.e. pre∗ is reflexive).

Computing predecessor sets is the key to model checking and analysis of
DPNs, see [2] for details.

definition pre ∆ C ′ == { c . ∃ l c ′. c ′∈C ′ ∧ (c,l ,c ′) ∈ dpntr ∆ }
definition pre-star (pre∗) where

pre∗ ∆ C ′ == { c . ∃ ll c ′. c ′∈C ′ ∧ (c,ll ,c ′) ∈ dpntrc ∆ }

5.1 Hedge-Constrained Predecessor Sets

For a set of configurations C ′ and a set of execution hedges H, we define
the hedge-constrained predecessor set of C ′ w.r.t. H as the set of those
configurations from that we can reach C ′ with an execution hedge in H.

19

definition prehc ∆ H C ′ == { c . ∃ h c ′. h∈H ∧ c ′∈C ′ ∧ hsem ∆ c h c ′ }

lemma prehcI : [[h∈H ; c ′∈C ′; hsem ∆ c h c ′]] =⇒ c∈prehc ∆ H C ′

by (unfold prehc-def) auto

lemma prehcE :
[[c∈prehc ∆ H C ′; !!h c ′. [[h∈H ; c ′∈C ′; hsem ∆ c h c ′]] =⇒ P]] =⇒ P
by (unfold prehc-def) auto

The hedge-constrained predecessor set is monotonic in the constraint

lemma prehc-mono: H⊆H ′ =⇒ prehc ∆ H C ′ ⊆ prehc ∆ H ′ C ′

by (auto simp add : prehc-def)

The hedge-constrained predecessor set without constraints is the same
as the original predecessor set.

lemma prehc-triv-is-pre-star : prehc ∆ UNIV C ′ = pre∗ ∆ C ′

apply (unfold prehc-def pre-star-def)
apply auto
apply (rule-tac h=h in exists-schedule)
apply (metis sched-correct)
apply (metis sched-correct)
done

The hedge-constrained predecessor set is always a subset of the uncon-
strained predecessor set.

lemma prehc-subset-pre-star : prehc ∆ H C ′ ⊆ pre∗ ∆ C ′

apply (unfold prehc-def pre-star-def)
apply auto
apply (rule-tac h=h in exists-schedule)
apply (metis sched-correct)
done

We can use a hedge-constraint to express immediate predecessor sets.

definition Hpre :: (′P , ′Γ, ′L) ex-hedge set where
Hpre == { hl1 @t#hl2 | hl1 t hl2 lab ts t ′.

final hl1 ∧ final hl2 ∧ final-t ts ∧ final-t t ′ ∧
(t=NNOSPAWN lab t ′ ∨ t=NSPAWN lab ts t ′) }

lemma HpreI-nospawn:
[[final h1 ; final h2 ; final-t t ′]] =⇒ h1 @NNOSPAWN lab t ′#h2 ∈ Hpre
by (unfold Hpre-def) blast

lemma HpreI-spawn:
[[final h1 ; final h2 ; final-t ts; final-t t ′]] =⇒ h1 @NSPAWN lab ts t ′#h2 ∈ Hpre
by (unfold Hpre-def) blast

lemmas HpreI = HpreI-nospawn HpreI-spawn

lemma HpreE [cases set , consumes 1 , case-names nospawn spawn]:

20

[[h∈Hpre;
!!h1 lab t ′ h2 . [[

h=h1 @NNOSPAWN lab t ′#h2 ; final h1 ; final h2 ; final-t t ′

]] =⇒ P ;
!!h1 lab ts t ′ h2 . [[

h=h1 @NSPAWN lab ts t ′#h2 ;
final h1 ; final h2 ; final-t ts; final-t t ′

]] =⇒ P
]] =⇒ P

by (unfold Hpre-def) blast

In order to show that Hpre is correct, we first show that it exactly admits
the schedules of length one.

lemma Hpre-length1 : [[h∈Hpre; sched h ll]] =⇒ length ll = 1
proof (erule HpreE)

case (goal1 h1 lab t ′ h2) note C =this — nospawn
note [simp] = C (2−)
from C (1) obtain l ll ′ where ll=l#ll ′ sched (h1 @t ′#h2) ll ′

by (erule-tac sched .cases) (auto dest !: prop-matchD [where P=final-t])
moreover have final (h1 @t ′#h2) by auto
ultimately show ?case by auto

next
case (goal2 h1 lab ts t ′ h2) note C =this — spawn
note [simp] = C (2−)
from C (1) obtain l ll ′ where ll=l#ll ′ sched (h1 @ts#t ′#h2) ll ′

by (erule-tac sched .cases) (auto dest !: prop-matchD [where P=final-t])
moreover have final (h1 @ts#t ′#h2) by auto
ultimately show ?case by auto

qed

lemma Hpre-length2 : [[sched h ll ; length ll = 1]] =⇒ h∈Hpre
by (erule sched .cases) (auto intro: HpreI)

theorem Hpre-length: sched h ll =⇒ h∈Hpre ←→ length ll = 1
using Hpre-length1 Hpre-length2 by blast

It is then straightforward to show that prehc ∆ Hpre = pre ∆

lemma Hpre-correct1 : c∈prehc ∆ Hpre C ′ =⇒ c∈pre ∆ C ′

apply (unfold prehc-def)
apply auto
apply (rule-tac h=h in exists-schedule)
apply (simp only : Hpre-length)
apply (drule (1) sched-correct2)
apply (case-tac ll)
apply simp
apply simp
apply (auto simp add : pre-def)
done

21

lemma Hpre-correct2 : c∈pre ∆ C ′ =⇒ c∈prehc ∆ Hpre C ′

apply (unfold pre-def)
apply auto
apply (drule iffD2 [OF trcl-single])
apply (drule sched-correct1)
apply auto
apply (drule Hpre-length2)
apply (auto simp add : prehc-def)
done

theorem Hpre-correct : prehc ∆ Hpre = pre ∆
using Hpre-correct1 Hpre-correct2 by (blast intro: ext)

end

6 DPN Semantics on Lists

theory ListSemantics
imports Semantics
begin

The interleaving semantics works on configurations that are lists of pro-
cess configurations.

However, in [2] a DPN configuration is represented as a sequence of
control and stack symbols. Each process starts with a control symbol, fol-
lowed by its stack symbols. The configuration is simply a concatenation of
processes. This representation allows the notion of a regular set of configu-
rations as a set of configurations accepted by a FSM.

In this theory, we adopt this representation of configurations, define a
semantics directly over this representation, and show that this representation
is isomorphic to ours for sequences starting with a control symbol. Note that
sequences starting with a stack symbol have no meaningful interpretation,
as each process’s configuration has to start with a control symbol.

6.1 Definitions

We separate stack and control symbols using a datatype with two construc-
tors:

datatype (′Q , ′Γ) cl-item = CTRL ′Q | STACK ′Γ
types (′Q , ′Γ) cl = (′Q , ′Γ) cl-item list

The mapping from configurations to list-based configurations is straight-
forward:

fun pc2cl :: (′Q , ′Γ) pconf ⇒ (′Q , ′Γ) cl where
pc2cl (p,w) = CTRL p # map STACK w

22

definition c2cl :: (′Q , ′Γ) conf ⇒ (′Q , ′Γ) cl where
c2cl c == concat (map pc2cl c)

abbreviation c2cl-abbrv :: (′Q , ′Γ) conf ⇒ (′Q , ′Γ) cl
— This abbreviation is just for convenience
where
c2cl-abbrv c == concat (map pc2cl c)

Valid single-process configurations are those that start with a control
symbol followed by a list of stack symbols:

definition pclvalid == {CTRL p#map STACK w | p w . True}

Valid configurations are those that start with a control symbol:

definition clvalid == {[]} ∪ {CTRL p#c | p c. True}

We also define the step relation directly on list representation of config-
urations:

inductive-set cltr :: (′Q , ′Γ, ′L) dpn ⇒ ((′Q , ′Γ) cl × ′L × (′Q , ′Γ) cl) set
for ∆ where
cltr-no-spawn:

[[(p,γ ↪→l p ′,w)∈∆]] =⇒
(c1 @[CTRL p, STACK γ]@c2 ,

l ,
c1 @CTRL p ′#(map STACK w)@c2

) ∈ cltr ∆ |
cltr-spawn:

[[(p,γ ↪→l ps,ws] p ′,w)∈∆]] =⇒
(c1 @[CTRL p, STACK γ]@c2 ,

l ,
c1 @CTRL ps#(map STACK ws)@CTRL p ′#(map STACK w)@c2

) ∈ cltr ∆

6.2 Theorems

lemma inj-STACK [simp, intro!]: inj STACK by (rule injI) auto

6.2.1 Representation of Single Processes

lemma pc2cl-not-empty [simp]: pc2cl π 6= [] by (cases π) auto

lemma pc2cl-inj [simp, intro!]: inj pc2cl
apply (rule injI)
apply (case-tac x , case-tac y)
apply simp
done

lemmas pc2cl-inj-simp[simp] = inj-eq [OF pc2cl-inj]

lemma pc2cl-valid [intro!,simp]: pc2cl π ∈ pclvalid

23

by (cases π) (auto simp add : pclvalid-def)

lemma pc2cl-surj : [[πl∈pclvalid ; !!π. πl=pc2cl π =⇒ P]] =⇒ P
apply (unfold pclvalid-def)
apply (cases πl)
apply simp
apply fastsimp
done

6.2.2 Representation of Configurations

We start with a bunch of simplification rules and other auxilliary lemmas:

lemma stack-no-ctrl1 [simp]:
map STACK w 6= c1 @CTRL p#c2
by (auto elim!: map-eq-concE)

lemmas stack-no-ctrl2 [simp] = stack-no-ctrl1 [symmetric]

lemma map-stack-ne-cCc1 [simp]:
map STACK w 6= c@CTRL s#c ′

apply (induct w arbitrary : c s c ′)
apply auto
apply (case-tac c)
apply auto
done

lemmas map-stack-ne-cCc2 [simp] = map-stack-ne-cCc1 [symmetric]

lemmas map-stack-ne-add-simps[simp] =
map-stack-ne-cCc1 [where c=[], simplified]
map-stack-ne-cCc1 [where c=[a], simplified , standard]

lemma map-STACK-eq-map-STACK-simp[simp]:
map STACK w @CTRL p # cl = map STACK w ′ @ CTRL p ′ # cl ′←→

w ′=w ∧ p ′=p ∧ cl ′=cl
apply (induct w arbitrary : w ′)
apply (case-tac w ′)
apply auto[2]
apply (case-tac w ′)
apply auto

done

lemma map-stack-ne-pc2cl [simp]:
map STACK w 6= c@pc2cl π@c ′

c@pc2cl π@c ′ 6= map STACK w
by (cases π, auto)+

lemmas map-stack-ne-pc2cl-add-simps[simp] =

24

map-stack-ne-pc2cl [where c=[], simplified]

lemma map-STACK-eq-map-STACK-add-simps[simp]:
map STACK w @ CTRL p#cl = map STACK w ′@pc2cl π ′@cl ′←→

w=w ′ ∧ p=fst π ′ ∧ cl=map STACK (snd π ′)@cl ′

map STACK w ′@pc2cl π ′@cl ′ = map STACK w @ CTRL p#cl ←→
w=w ′ ∧ p=fst π ′ ∧ cl=map STACK (snd π ′)@cl ′

by (cases π ′, auto)+

lemma c2cl-simps[simp]:
c2cl [] = []
c2cl (π#c) = pc2cl π @ c2cl c
c2cl (c1 @c2) = c2cl c1 @ c2cl c2
by (unfold c2cl-def) auto

lemma c2cl-empty [simp]:
c2cl c = [] ←→ c=[]
[] = c2cl c ←→ c=[]
by (cases c, auto)+

lemma c2cl-start-with-ctrl [simp]:
c2cl c 6= STACK γ#cl
STACK γ#cl 6= c2cl c
by (cases c, auto)+

lemma c2cl-start-with-ctrl-map:
w 6=[] =⇒ c2cl c 6= map STACK w
w 6=[] =⇒ map STACK w 6= c2cl c
by (cases w , auto)+

lemma map-stack-c2cl-eq-simps[simp]:
map STACK w @ c2cl c = map STACK w ′ @ c2cl c ′ ←→ w=w ′ ∧ c2cl c=c2cl

c ′

apply (rule iffI)
defer
apply simp
apply (induct w arbitrary : w ′)
apply (case-tac w ′)
apply auto
apply (case-tac w ′)
apply auto
apply (case-tac w ′)
apply auto
done

lemma c2cl-s-cl-eqE :

25

[[STACK γ # cl = map STACK w @ c2cl c;
!!wr . [[w=γ#wr ; cl = map STACK wr @ c2cl c]] =⇒ P

]] =⇒ P
by (cases w) auto

lemma c2cl-first-processE :
[[c2cl c = CTRL p#cl2 ;

!!w c2 cl2 ′. [[c=(p,w)#c2 ; cl2 =(map STACK w)@cl2 ′; c2cl c2 =cl2 ′]] =⇒ P
]] =⇒ P

apply (cases c)
apply simp
apply simp
apply (case-tac a)
apply simp
apply blast
done

lemma c2cl-find-process1 :
[[c2cl c = cl1 @CTRL p#cl2 ;

!!c1 w c2 . [[c=c1 @(p,w)#c2 ; cl2 =(map STACK w)@c2cl c2 ;
cl1 =c2cl c1

]] =⇒ P
]] =⇒ P

proof (induct cl1 arbitrary : c P rule: length-compl-induct)
case Nil thus ?case by (force elim!: c2cl-first-processE)

next
case (Cons e cl1 ′) show ?case proof (cases e)

case (STACK γ) with Cons.prems(1) have False by simp thus ?thesis ..
next

case (CTRL p ′)[simp]
from Cons.prems(1) have E : c2cl c = CTRL p ′ # (cl1 ′@CTRL p#cl2) by

simp
from c2cl-first-processE [OF E] obtain w c2 cl2 ′ where

[simp]: c = (p ′, w) # c2 and
S : cl1 ′ @ CTRL p # cl2 = map STACK w @ cl2 ′ c2cl c2 = cl2 ′

.
obtain cl1 ′2 where [simp]: cl1 ′=map STACK w @ cl1 ′2
proof −

from S (1) have take (length w) (cl1 ′@CTRL p#cl2) = map STACK w by
auto

hence map STACK w = take (length w) cl1 ′

by (cases length w − length cl1 ′) auto
hence cl1 ′=map STACK w @ drop (length w) cl1 ′ by auto
thus ?thesis using that by blast

qed
with S have

P : c2cl c2 =cl1 ′2 @CTRL p#cl2 and
LEN : length cl1 ′2 ≤ length cl1 ′ by auto

from Cons.hyps[OF LEN P] obtain c1x wx c2x where

26

IHAPP : c2 = c1x@(p,wx)#c2x
cl2 =map STACK wx @ c2cl c2x and

[simp]: cl1 ′2 = c2cl c1x
by metis

hence 1 : c=((p ′,w)#c1x)@(p,wx)#c2x by auto
show ?thesis by (rule Cons.prems(2)[OF 1 IHAPP(2)]) auto

qed
qed

Then we show that our representation mapping is injective and surjective
on valid configurations.

lemma c2cl-inj [simp, intro!]: inj c2cl
apply (rule injI)

proof −
case (goal1 c c ′)
thus ?case proof (induct c arbitrary : c ′)

case Nil thus ?case by auto
next

case (Cons π c)
thus ?case

apply (cases c ′)
apply simp
apply simp
apply (cases π)
apply (case-tac a)
apply auto
done

qed
qed

lemmas c2cl-inj-simps[simp] = inj-eq [OF c2cl-inj]
lemmas c2cl-img-Int [simp] = image-Int [OF c2cl-inj]

lemma c2cl-valid [simp,intro!]: c2cl c ∈ clvalid
by (cases c) (auto simp add : clvalid-def)

lemma c2cl-surj : [[cl∈clvalid ; !!c. cl=c2cl c =⇒ P]] =⇒ P
apply (unfold clvalid-def)
apply auto

proof −
case goal1 thus ?case proof (induct c arbitrary : p)

case Nil from Nil [of [(p,[])]] show ?case by auto
next

case (Cons s c) show ?case
apply (cases s)
apply (rule-tac p=Q in Cons.hyps)
apply (rule-tac c=(p,[])#c in Cons.prems)
apply simp
apply (rule-tac p=p in Cons.hyps)

27

apply (case-tac c)
apply simp
apply (case-tac a)
apply simp
apply (rule-tac c=(p,Γ#b)#list in Cons.prems)
apply simp
done

qed
qed

6.2.3 Step Relation on List-Configurations

lemma cltr-pres-valid : (cl ,l ,cl ′)∈cltr ∆ =⇒ cl∈clvalid ←→ cl ′∈clvalid
apply (erule cltr .cases)
apply (auto simp add : clvalid-def)
apply (case-tac c1)
apply auto
apply (case-tac c1)
apply auto
apply (case-tac c1)
apply auto
apply (case-tac c1)
apply auto
done

lemma dpntr-is-cltr : [[(c,l ,c ′)∈dpntr ∆]] =⇒ (c2cl c,l ,c2cl c ′)∈cltr ∆
apply (erule dpntr .cases)
apply (unfold c2cl-def)
apply (auto)
apply (drule-tac ?c2 .0 =map STACK r@c2cl-abbrv c2 in cltr-no-spawn)
apply simp
apply (drule-tac ?c2 .0 =map STACK r@c2cl-abbrv c2 in cltr-spawn)
apply simp

done

lemma cltr-is-dpntr : [[(c2cl c,l ,c2cl c ′)∈cltr ∆]] =⇒ (c,l ,c ′)∈dpntr ∆
apply (erule cltr .cases)
apply auto
apply (erule c2cl-find-process1)
apply (erule c2cl-find-process1)
apply auto
apply (erule c2cl-s-cl-eqE)
apply (auto simp del : map-append append-assoc

simp add : map-append [symmetric] append-assoc[symmetric]
intro: dpntr-no-spawn)

apply (erule c2cl-find-process1)
apply (erule c2cl-find-process1)
apply auto
apply (erule c2cl-s-cl-eqE)

28

apply auto
apply (case-tac c2b)
apply simp
apply (case-tac a)
apply (auto simp del : map-append append-assoc

simp add : map-append [symmetric] append-assoc[symmetric]
intro: dpntr-spawn)

done

The following theorem formulates the equivalence of the original seman-
tics and the list-based semantics.

theorem cltr-eq-dpntr : (c2cl c,l ,c2cl c ′)∈cltr ∆ ←→ (c,l ,c ′)∈dpntr ∆
by (metis cltr-is-dpntr dpntr-is-cltr)

The next two lemmas ease the derivation of executions of the original
semantics from executions of the list-based semantics.

lemma cltr2dpntr-fwd :
[[(c2cl c,l ,cl ′)∈cltr ∆;

!!c ′. [[cl ′=c2cl c ′; (c,l ,c ′)∈dpntr ∆]] =⇒ P
]] =⇒ P

proof −
assume

A: (c2cl c,l ,cl ′)∈cltr ∆ and
C : !!c ′. [[cl ′=c2cl c ′; (c,l ,c ′)∈dpntr ∆]] =⇒ P

from cltr-pres-valid [OF A] have V : cl ′∈clvalid by auto
from c2cl-surj [OF V] obtain c ′ where [simp]: cl ′=c2cl c ′ .
from A show ?thesis by (auto intro: C simp add : cltr-is-dpntr)

qed

lemma cltr2dpntr-bwd :
[[(cl ,l ,c2cl c ′)∈cltr ∆;

!!c. [[cl=c2cl c; (c,l ,c ′)∈dpntr ∆]] =⇒ P
]] =⇒ P

proof −
assume

A: (cl ,l ,c2cl c ′)∈cltr ∆ and
C : !!c. [[cl=c2cl c; (c,l ,c ′)∈dpntr ∆]] =⇒ P

from cltr-pres-valid [OF A] have V : cl∈clvalid by auto
from c2cl-surj [OF V] obtain c where [simp]: cl=c2cl c .
from A show ?thesis by (auto intro: C simp add : cltr-is-dpntr)

qed

Finally, we give some lemmas to directly reason about the transitive
closure of the step relation:

lemma cltr-is-dpntrc:
(c2cl c,l ,c2cl c ′)∈trcl (cltr ∆) =⇒ (c,l ,c ′)∈dpntrc ∆
by (induct l arbitrary : c) (auto elim!: trcl-unconsE cltr2dpntr-fwd)

lemma dpntrc-is-cltr :

29

(c,l ,c ′)∈dpntrc ∆ =⇒ (c2cl c,l ,c2cl c ′)∈trcl (cltr ∆)
by (induct rule: trcl .induct) (auto dest : dpntr-is-cltr)

theorem cltr-eq-dpntrc:
(c2cl c,l ,c2cl c ′)∈trcl (cltr ∆) ←→ (c,l ,c ′)∈dpntrc ∆
apply safe
apply (induct l arbitrary : c)
apply (auto elim!: trcl-unconsE cltr2dpntr-fwd)
apply (induct rule: trcl .induct)
apply (auto dest : dpntr-is-cltr)
done

lemma cltrc-pres-valid :
(cl ,w ,cl ′)∈trcl (cltr ∆) =⇒ cl∈clvalid ←→ cl ′∈clvalid
by (induct rule: trcl .induct) (auto simp add : cltr-pres-valid)

lemma cltr2dpntrc-fwd :
[[(c2cl c,l ,cl ′)∈trcl (cltr ∆);

!!c ′. [[cl ′=c2cl c ′; (c,l ,c ′)∈dpntrc ∆]] =⇒ P
]] =⇒ P

proof −
assume

A: (c2cl c,l ,cl ′)∈trcl (cltr ∆) and
C : !!c ′. [[cl ′=c2cl c ′; (c,l ,c ′)∈dpntrc ∆]] =⇒ P

from cltrc-pres-valid [OF A] have V : cl ′∈clvalid by auto
from c2cl-surj [OF V] obtain c ′ where [simp]: cl ′=c2cl c ′ .
from A show ?thesis by (auto intro: C simp add : cltr-is-dpntrc)

qed

lemma cltr2dpntrc-bwd :
[[(cl ,l ,c2cl c ′)∈trcl (cltr ∆);

!!c. [[cl=c2cl c; (c,l ,c ′)∈dpntrc ∆]] =⇒ P
]] =⇒ P

proof −
assume

A: (cl ,l ,c2cl c ′)∈trcl (cltr ∆) and
C : !!c. [[cl=c2cl c; (c,l ,c ′)∈dpntrc ∆]] =⇒ P

from cltrc-pres-valid [OF A] have V : cl∈clvalid by auto
from c2cl-surj [OF V] obtain c where [simp]: cl=c2cl c .
from A show ?thesis by (auto intro: C simp add : cltr-is-dpntrc)

qed

6.3 Predecessor Sets on List-Semantics

We also define predecessor sets for the list-semantics:

definition precl (precl) where
precl ∆ C ′ == { c . ∃ l c ′. c ′∈C ′ ∧ (c,l ,c ′) ∈ cltr ∆ }

definition precl-star (pre∗cl) where

30

pre∗cl ∆ C ′ == { c . ∃ ll c ′. c ′∈C ′ ∧ (c,ll ,c ′) ∈ trcl (cltr ∆) }

And show that they are equivalent to their counterparts defined over the
original semantics:

lemma precl-is-pre: precl ∆ (c2cl‘C) = c2cl‘ (pre ∆ C)
apply (unfold precl-def pre-def)
apply (auto elim!: cltr2dpntr-bwd intro: dpntr-is-cltr)
done

lemma precl-star-is-pre-star : pre∗cl ∆ (c2cl‘C) = c2cl‘ (pre∗ ∆ C)
apply (unfold precl-star-def pre-star-def)
apply (auto elim!: cltr2dpntrc-bwd intro: dpntrc-is-cltr)
done

end

7 Automata for Execution Hedges

theory HedgeAutomata
imports Main Semantics
begin

In this section we define hedge automata that accept execution hedges.
A hedge automaton consists of a set of states, an regular initial language

of state sequences and a set of transitions. Transitions are either leaf tran-
sitions that label a leaf node with a state if the configuration at the leaf
node is contained in some (regular) language, or non-spawning or spawning
transitions, that label a spawning or non-spawning node respectively with a
state depending on the states of the successor nodes.

In this formalization, we model the initial language and the regular lan-
guages at the leafs just at sets. However, if we want an executable represen-
tation, we need to model real automata there. This is planned to be done
in the future.

datatype (′S , ′P , ′Γ, ′L) ha-rule =
HAR-LEAF ′S ′P ′Γ list set |
HAR-NOSPAWN ′S ′L ′S |
HAR-SPAWN ′S ′L ′S ′S

types (′S , ′P , ′Γ, ′L) ha = ′S list set × (′S , ′P , ′Γ, ′L) ha-rule set

In order to model acceptance of a hedge, we define a relation between
trees and states with which we can label those trees. We then extend this
relation to hedges.

inductive lab

31

:: (′S , ′P , ′Γ, ′L) ha-rule set ⇒ (′P , ′Γ, ′L) ex-tree ⇒ ′S ⇒ bool
for H where
lab-leaf :

[[HAR-LEAF s p W ∈ H ; w∈W]] =⇒ lab H (NLEAF (p,w)) s |
lab-nospawn:

[[HAR-NOSPAWN s l s ′ ∈ H ; lab H t s ′]] =⇒ lab H (NNOSPAWN l t) s |
lab-spawn:

[[HAR-SPAWN s l ss s ′ ∈ H ; lab H ts ss; lab H t s ′]] =⇒
lab H (NSPAWN l ts t) s

inductive labh :: (′S , ′P , ′Γ, ′L) ha-rule set ⇒ (′P , ′Γ, ′L) ex-hedge ⇒ ′S list ⇒ bool

for H where
labh-empty [simp, intro!]: labh H [] [] |
labh-cons: [[lab H t s; labh H h σ]] =⇒ labh H (t#h) (s#σ)

lemma labh-empty [simp]:
labh H [] σ ←→ σ=[]
labh H h [] ←→ h=[]
by (auto elim: labh.cases)

lemma labh-length: labh H h σ =⇒ length h = length σ
by (induct rule: labh.induct) auto

The language of a hedge automaton consists of those hedges whose roots
can be labeled with a state sequence in the initial language.

definition langh :: (′S , ′P , ′Γ, ′L) ha ⇒ (′P , ′Γ, ′L) ex-hedge set where
langh HA == { h . ∃σ∈fst HA. labh (snd HA) h σ }

end

8 Computation of Hedge-Constrained Predeces-
sor Sets

theory CrossProd
imports ListSemantics HedgeAutomata
begin

In this section we show how to compute predecessor sets with regular
hedge constraints. The computation is done by reduction to the computation
of the unconstrained predecessor set. The reduction uses a cross-product like
approach, computing a product-DPN of the original DPN and the hedge
automaton, and a product regular set of the original regular set and the
hedge-automaton’s leaf rules.

This theory uses a list-based representation of DPN-configurations, where
the type of a configuration is a list of control- and stack-symbols. This type
is less structured than the original type of configurations, that is lists of pairs

32

of control symbol and stack. However, it admits handling configurations as
words, and sets of configurations as (regular) languages.

This theory does not use a formalization of regular languages, nor does
it generate executable code. Instead, regular sets are modeled as sets. The
effectiveness proofs show representations that only contain operations well-
known to preserve regularity. However, an implementation of those opera-
tions is not formalized.

The cross-product DPN simulates the rules of the hedge-automaton via
its transitions, the current state of the hedge automaton is stored in the
DPN’s state:

inductive-set
xdpn :: (′P , ′Γ, ′L) dpn ⇒ (′S , ′P , ′Γ, ′L) ha-rule set ⇒ (′P× ′S , ′Γ, ′L) dpn
for ∆ H where
xdpn-nospawn:

[[(p,γ ↪→l p ′,w)∈∆; HAR-NOSPAWN s l s ′∈H]] =⇒
((p,s),γ ↪→l (p ′,s ′),w) ∈ xdpn ∆ H |

xdpn-spawn:
[[(p,γ ↪→l ps,ws] p ′,w)∈∆; HAR-SPAWN s l ss s ′∈H]] =⇒

((p,s),γ ↪→l (ps,ss),ws] (p ′,s ′),w)∈xdpn ∆ H

The xdpn-nospawn-rule adds a transition rule to the cross-product DPN
for each original non-spawning transition rule and hedge automaton rule
that could be used to label the node generated by this transition rule. Anal-
ogously, the xdpn-spawn-rule adds a transition rule to the cross-product
DPN for spawning rules.

We now define operators to map configurations of the cross-product DPN
to configurations of the original DPN and sequences of states of the hedge
automaton.

abbreviation
proj-c1 :: (′P× ′S , ′Γ) conf ⇒ (′P , ′Γ) conf where
proj-c1 cx == map (λ((p,s),w). (p,w)) cx

abbreviation
proj-c2 :: (′P× ′S , ′Γ) conf ⇒ ′S list where
proj-c2 cx == map (λ((p,s),w). s) cx

We also have to define a mapping for execution hedges, because the
labeling of the leafs is different:

fun proj-t1 :: (′P× ′S , ′Γ, ′L) ex-tree ⇒ (′P , ′Γ, ′L) ex-tree where
proj-t1 (NLEAF ((p,s),w)) = NLEAF (p,w) |
proj-t1 (NNOSPAWN l t) = NNOSPAWN l (proj-t1 t) |
proj-t1 (NSPAWN l ts t) = NSPAWN l (proj-t1 ts) (proj-t1 t)

Next we define how to transform the target set, that contains the con-
figurations of that we want to compute the predecessors.

The new target set contains the configurations of the original target set
with all labelings that may be done by leaf-rules of the hedge automaton:

33

— Process labeled by a leaf-rule:
abbreviation

xdpnCLP H == { ((p,s),w). ∃W . HAR-LEAF s p W ∈ H ∧ w∈W }

— Configuration labeled by leaf-rules:
abbreviation

xdpnCL H == { cx . (∀ ((p,s),w)∈set cx . ((p,s),w) ∈ xdpnCLP H) }

— New target set:
definition

xdpnC C H == { cx . proj-c1 cx ∈ C } ∩ xdpnCL H

Finally we define how to transform the computed predecessor set in
order to get a set of configurations of the original DPN. This phase consists
of two operations: First, we have to restrict the configurations to those that
are accepted by the hedge automaton’s initial language, and then we have
to project away the hedge-automaton’s states to get a configuration of the
original DPN. In the following definition, these two steps are combined:
definition

projH :: ′S list set ⇒ (′P× ′S , ′Γ) conf set ⇒ (′P , ′Γ) conf set where
projH H0 Cx == { proj-c1 cx | cx . cx∈Cx ∧ proj-c2 cx ∈ H0 }

8.1 Correctness of Reduction

In this section we show that our reduction is correct, i.e. that we really get
the hedge-constrained predecessor set by computing the predecessor set of
the cross-product DPN and a transformed target set, and then applying the
projH -operator to the result.

We first need to introduce a combination operator that combines an
original DPN’s configuration and a list of hedge automaton states to a cross-
product DPN’s configuration.
abbreviation cxs c σ == zipf (λ(p,w) s. ((p,s),w)) c σ

lemma proj-cxs1 [simp]: length c = length σ =⇒ proj-c1 (cxs c σ) = c
by (induct rule: list-induct2) auto

lemma proj-cxs2 [simp]: length c = length σ =⇒ proj-c2 (cxs c σ) = σ
by (induct rule: list-induct2) auto

lemma cxs-proj [simp]: cxs (proj-c1 cx) (proj-c2 cx) = cx
by (induct cx) auto

lemma xdpnc-proj : cx ∈ xdpnC C H =⇒ proj-c1 cx ∈ C
by (unfold xdpnC-def) auto

We now prove the two directions of our main goal. Each direction re-
quires 2 lemmas, the first one for a single tree and the second one for a
hedge.

34

lemmas tsem-induct-x =
tsem.induct [where ?x1 .0 = ((p,s),w), split-format (complete),

consumes 1 , case-names tsem-leaf tsem-nospawn tsem-spawn
]

lemmas tsem-induct-p =
tsem.induct [where ?x1 .0 = (p,w), split-format (complete),

consumes 1 , case-names tsem-leaf tsem-nospawn tsem-spawn
]

lemma xdpn-correct1-t :
[[tsem (xdpn ∆ H) ((p,s),w) t c ′; c ′∈xdpnCL H]] =⇒

tsem ∆ (p,w) (proj-t1 t) (proj-c1 c ′) ∧ lab H (proj-t1 t) s
proof (induct arbitrary : C rule: tsem-induct-x)

case (tsem-leaf p s w) thus ?case by (auto intro: lab.intros)
next

case (tsem-nospawn p s γ l p ′ s ′ w r t c ′) thus ?case
by (auto elim: xdpn.cases intro: lab.intros tsem.intros)

next
case (tsem-spawn p s γ l ps ss ws p ′ s ′ w ts cs r t c ′) thus ?case

by (auto elim: xdpn.cases intro: lab.intros tsem.intros)
qed

lemma xdpn-correct1 :
[[hsem (xdpn ∆ H) c h c ′; c ′∈xdpnCL H]] =⇒

hsem ∆ (proj-c1 c) (map proj-t1 h) (proj-c1 c ′) ∧
labh H (map proj-t1 h) (proj-c2 c)

proof (induct arbitrary : C ′ rule: hsem.induct)
case hsem-empty thus ?case by auto

next
case (hsem-cons π t cf ′ c h c ′)
obtain p s w where [simp]: π=((p,s),w) by (cases π) auto
from hsem-cons.prems have CLHS : cf ′∈xdpnCL H c ′∈xdpnCL H by auto
from xdpn-correct1-t [OF hsem-cons.hyps(1)[simplified] CLHS (1)]

hsem-cons.hyps(3)[OF CLHS (2)]
show ?case by (auto intro: labh.intros hsem.intros)

qed

lemma xdpn-correct2-t :
[[tsem ∆ (p,w) t c ′; lab H t s]] =⇒
∃ tx cx ′. tsem (xdpn ∆ H) ((p,s),w) tx cx ′ ∧

cx ′∈xdpnCL H ∧ proj-t1 tx = t ∧
proj-c1 cx ′ = c ′

proof (induct arbitrary : s rule: tsem-induct-p)
case (tsem-leaf p w s) thus ?case

apply (rule-tac x=NLEAF ((p,s),w) in exI)
apply (rule-tac x=[((p,s),w)] in exI)
by (auto elim: lab.cases)

next

35

case (tsem-nospawn p γ l p ′ w r t c ′ s)
from tsem-nospawn.prems obtain s ′ where

HRULE : HAR-NOSPAWN s l s ′∈H lab H t s ′

by (auto elim: lab.cases)
from tsem-nospawn.hyps(3)[OF HRULE (2)] obtain tx cx ′ where

IHAPP : tsem (xdpn ∆ H) ((p ′, s ′), w @ r) tx cx ′

cx ′ ∈ xdpnCL H proj-t1 tx = t proj-c1 cx ′ = c ′

by blast
from tsem.intros(2)[OF xdpn-nospawn[OF tsem-nospawn.hyps(1) HRULE (1)]

IHAPP(1)]
have tsem (xdpn ∆ H) ((p, s), γ # r) (NNOSPAWN l tx) cx ′ .
thus ?case using IHAPP(2 ,3 ,4) by fastsimp

next
case (tsem-spawn p γ l ps ws p ′ w ts cs r t c ′ s)
from tsem-spawn.prems obtain ss s ′ where

HRULE : HAR-SPAWN s l ss s ′∈H lab H ts ss lab H t s ′

by (auto elim: lab.cases)
from tsem-spawn.hyps(3)[OF HRULE (2)] tsem-spawn.hyps(5)[OF HRULE (3)]

obtain txs cxs tx cx ′ where
IHAPPS : tsem (xdpn ∆ H) ((ps, ss), ws) txs cxs

cxs ∈ xdpnCL H proj-t1 txs = ts proj-c1 cxs = cs and
IHAPP : tsem (xdpn ∆ H) ((p ′, s ′), w @ r) tx cx ′ cx ′ ∈ xdpnCL H

proj-t1 tx = t proj-c1 cx ′ = c ′

by blast
from tsem.intros(3)[OF xdpn-spawn[OF tsem-spawn.hyps(1) HRULE (1)]

IHAPPS (1) IHAPP(1)]
have tsem (xdpn ∆ H) ((p, s), γ # r) (NSPAWN l txs tx) (cxs @ cx ′) .
thus ?case using IHAPPS (2 ,3 ,4) IHAPP(2 ,3 ,4) by fastsimp

qed

lemma xdpn-correct2 :
[[hsem ∆ c h c ′; labh H h σ]] =⇒
∃ hx cx ′. hsem (xdpn ∆ H) (cxs c σ) hx cx ′ ∧

cx ′∈xdpnCL H ∧
(map proj-t1 hx) = h ∧
proj-c1 cx ′ = c ′

proof (induct arbitrary : σ rule: hsem.induct)
case hsem-empty thus ?case by (auto)

next
case (hsem-cons π t cf ′ c h c ′ σ)
from hsem-cons.prems obtain s σs where

[simp]: σ=s#σs and
LS : lab H t s labh H h σs

by (fastsimp elim: labh.cases)
from hsem-cons.hyps(3)[OF LS (2)] obtain hx cx ′ where

IHAPP : hsem (xdpn ∆ H) (cxs c σs) hx cx ′

cx ′ ∈ xdpnCL H

36

map proj-t1 hx = h
proj-c1 cx ′ = c ′

by blast
moreover obtain p w where [simp]: π=(p,w) by (cases π) auto
from xdpn-correct2-t [OF hsem-cons.hyps(1)[simplified] LS (1)]
obtain tx cfx ′ where

tsem (xdpn ∆ H) ((p, s), w) tx cfx ′

cfx ′ ∈ xdpnCL H
proj-t1 tx = t
proj-c1 cfx ′ = cf ′

by blast
ultimately show ?case

apply (rule-tac x=tx#hx in exI)
apply (rule-tac x=cfx ′@cx ′ in exI)
by (auto intro: hsem.intros)

qed

Finally we use the lemmas proven above to show our main goal, i.e. a
representation of the hedge-constrained predecessor set w.r.t. the language
of a hedge automaton by means of the sequential pre∗-operator and the
cross-product construction.

theorem xdpn-correct :
prehc ∆ (langh (H0 ,H)) C ′ = projH H0 (pre∗ (xdpn ∆ H) (xdpnC C ′ H))

proof (intro equalityI subsetI)
fix c
assume A: c ∈ prehc ∆ (langh (H0 , H)) C ′

then obtain c ′ h where
D : c ′∈C ′ hsem ∆ c h c ′ h∈langh (H0 ,H)
by (unfold prehc-def) auto

then obtain σ where DD : σ∈H0 labh H h σ by (unfold langh-def) auto

— We need the following later in order to reason about the (underdefined)
cxs-operator:

from hsem-length[OF D(2)] labh-length[OF DD(2)] have
[simp]: length c = length σ
by simp

from xdpn-correct2 [OF D(2) DD(2)] obtain hx cx ′ where
M : hsem (xdpn ∆ H) (cxs c σ) hx cx ′

cx ′ ∈ xdpnCL H
map proj-t1 hx = h
proj-c1 cx ′ = c ′

by blast
from M (2 ,4) D(1) have cx ′∈xdpnC C ′ H by (unfold xdpnC-def) auto
hence cxs c σ ∈ pre∗ (xdpn ∆ H) (xdpnC C ′ H)

by (rule-tac obtain-schedule[OF M (1)]) (auto simp add : pre-star-def)
with DD(1) show c ∈ projH H0 (pre∗ (xdpn ∆ H) (xdpnC C ′ H))

apply (unfold projH-def)
apply auto
apply (rule-tac x=cxs c σ in exI)

37

apply auto
done

next
fix c
assume A: c ∈ projH H0 (pre∗ (xdpn ∆ H) (xdpnC C ′ H))
then obtain cx where

D : c=proj-c1 cx proj-c2 cx ∈ H0 cx∈pre∗ (xdpn ∆ H) (xdpnC C ′ H)
by (unfold projH-def) auto

then obtain ll cx ′ where
DD : cx ′∈(xdpnC C ′ H) (cx , ll , cx ′)∈dpntrc (xdpn ∆ H)
by (unfold pre-star-def) auto

then obtain hx where DDH : hsem (xdpn ∆ H) cx hx cx ′

by (auto simp add : sched-correct)
from DD(1) have CL: cx ′∈xdpnCL H proj-c1 cx ′ ∈ C ′

by (unfold xdpnC-def) auto
from xdpn-correct1 [OF DDH CL(1)] have

M : hsem ∆ (proj-c1 cx) (map proj-t1 hx) (proj-c1 cx ′)
labh H (map proj-t1 hx) (proj-c2 cx)

by auto
from D(2) M (2) have (map proj-t1 hx)∈langh (H0 ,H)

by (unfold langh-def) auto
with M (1) D(1) CL(2) show c ∈ prehc ∆ (langh (H0 , H)) C ′

by (unfold prehc-def) auto
qed

8.2 Effectiveness of Reduction

In this section we give indication that the cross-product construction is
computable for regular target sets.

The new set of rules xdpn can be computed if the set of dpn rules and the
set of hedge automaton transitions are finite, as the definition of xdpn is not
recursive and each LHS depends on only one element of each set. However,
as said above, we do not provide executable code here.

In [2], a configuration is represented as a sequence of control and stack
symbols, each process starting with a control symbol followed by its stack.
For sequences that start with a control symbol, this representation is iso-
morphic to our representation (cf. Section 6.2.3). As regular sets of con-
figurations are best defined on this list-based semantics, we also show the
effectiveness of our construction on the list-based semantics.

This section, especially the proofs of the Theorems, are rather technical.
The theorems itself show how to compute the new target configuration and
the projection from the computed predecessor set using only operations well-
known to preserve regularity (in this case intersection, union, concatenation,
star, and substitution) as well as some sets that are obviously regular. How-
ever, no formal proof of regularity or effectiveness is given.

38

8.2.1 Definitions

This function defines the projection operator from the extended to the orig-
inal configuration:

fun fp-cl1 where
fp-cl1 (CTRL (p,s)) = CTRL p |
fp-cl1 (STACK γ) = STACK γ

This function maps a hedge-automaton state to the regular set of all
process configurations labeled with that state. Note that the sets {[CTRL
(p, s)] |p. True} and {[STACK γ] |γ. True} are obviously regular.

definition fp-inv-subst2 where
fp-inv-subst2 s = conc { [CTRL (p,s)] | p. True } (star {[STACK γ] | γ. True})

The projection operator can be written using substitution, projection (a
special form of substitution), and intersection.

The intuitive idea is, that subst fp-inv-subst2 H0 is the set of all con-
figurations with a hedge-automaton labeling sequence that is accepted by
H0.

definition projH-cl :: ′S list set ⇒ (′Q× ′S , ′Γ) cl set ⇒ (′Q , ′Γ) cl set where
projH-cl H0 Clx = lang-proj fp-cl1 (subst fp-inv-subst2 H0 ∩ (Clx))

The derivation of the new target set is done by first characterizing all sets
of cross-product configurations whose leafs are labeled correctly according
to the leaf rules of the hedge automaton. Note that there are only finitely
many leaf-rules, hence the union below is over a finite set. Moreover, the
language W at a leaf rule is regular by default, the operation map STACK ‘
- is a projection and the operation op # (CTRL (p,s)) ‘ - is a concatenation.
Hence all the operations below are effective.

definition xdpnCL-cl :: (′S , ′P , ′Γ, ′L) ha-rule set ⇒ (′P× ′S , ′Γ) cl set where
xdpnCL-cl H = star (

⋃
{ op # (CTRL (p,s)) ‘ (map STACK ‘ W) |

s p W . HAR-LEAF s p W ∈ H }
)

Having characterized all configurations that are correctly labeled, one
gets the new target set by intersecting them with all configurations that
correspond to the old target set:

definition xdpnC-cl
:: (′P , ′Γ) cl set ⇒ (′S , ′P , ′Γ, ′L) ha-rule set ⇒ (′P× ′S , ′Γ) cl set
where
xdpnC-cl Cl H = lang-inv-proj fp-cl1 Cl ∩ xdpnCL-cl H

In order to compute prehc ∆ (langh (H0 , H)) C ′, we map C’ to its
corresponding regular set of list-based configurations c2cl ‘ C ′ and apply
the list-based operations for cross-product, predecessor set and projection
on it:

definition prehc-cl

39

:: (′Q , ′Γ, ′L) dpn ⇒ (′S , ′Q , ′Γ, ′L) ha ⇒ (′Q , ′Γ) cl set ⇒ (′Q , ′Γ) cl set
where
prehc-cl ∆ HA Cl ′ =

projH-cl (fst HA) (pre∗cl (xdpn ∆ (snd HA)) (xdpnC-cl Cl ′ (snd HA)))

8.2.2 Theorems

lemma fp-cl1-map-stack-id [simp]: map fp-cl1 (map STACK w) = map STACK w
by (induct w) auto

lemma fp-cl1-stack-id [simp]: fp-cl1 s = STACK γ ←→ s=STACK γ
by (cases s) auto

lemma fp-cl1-eq-map-stack [simp]:
map fp-cl1 la = map STACK w ←→ la=map STACK w
apply (induct w arbitrary : la)
apply simp
apply (case-tac la)
apply auto
done

lemma star-STACK [simplified ,simp]:
star {[STACK γ] | γ. True} = {map STACK w | w . True}
apply auto

proof −
case goal1 thus ?case

apply (induct rule: star .induct)
apply auto
apply (rule-tac x=γ#w in exI)
apply simp
done

next
case goal2 thus ?case

apply (induct w)
apply (auto intro: star .ConsI [of [a], simplified , standard])
done

qed

lemma proj-c1-effective: c2cl (proj-c1 c) = map fp-cl1 (c2cl c)
by (induct c) auto

lemma fp-inv-subst2I [intro!, simp]:
CTRL (p,s)#map STACK w ∈ fp-inv-subst2 s

proof −
have 1 : [CTRL (p,s)] ∈ { [CTRL (p,s)] | p. True } by auto
have 2 : map STACK w ∈ (star {[STACK γ] | γ. True}) by auto
from concI [OF 1 2] show ?thesis by (auto simp add : fp-inv-subst2-def)

40

qed

lemma fp-inv-subst2E :
[[cl∈fp-inv-subst2 s; !!p w . cl=CTRL (p,s)#map STACK w =⇒ P]] =⇒ P
apply (unfold fp-inv-subst2-def)
apply (erule concE)
apply fastsimp
done

Idea of the operation on the original representations of configurations:

lemma projH-effective ′:
projH H0 Cx = lang-proj (λ((p,s),w). (p,w))

(lang-inv-proj (λ((p,s),w). s) H0 ∩ Cx)
by (unfold projH-def lang-proj-def lang-inv-proj-def) auto

Correctness of the list-level operation:

theorem projH-effective: c2cl ‘ projH H0 Cx = projH-cl H0 (c2cl ‘ Cx)
apply (unfold projH-effective ′ lang-proj-def lang-inv-proj-def projH-cl-def)
apply auto

proof −
case (goal1 cx) thus ?case proof (induct cx arbitrary : Cx H0)

case Nil thus ?case
by (force simp add : subst-def subst-word-def)

next
case (Cons πx cx)
obtain p s w where [simp]: πx=((p,s),w) by (cases πx) auto
from Cons.prems[simplified] have

P : cx∈{ cx ′ . ((p,s),w)#cx ′∈Cx } proj-c2 cx ∈ { ss . s#ss∈H0 }
by auto

from Cons.hyps[OF P] show ?case
apply auto

proof −
case goal1
from imageI [OF goal1 (3), of c2cl , simplified] have

CTRL (p, s) # map STACK w @ c2cl xa ∈ c2cl ‘ Cx .
moreover from goal1 (2) have

CTRL (p, s) # map STACK w @ c2cl xa ∈ subst fp-inv-subst2 H0
apply (auto simp add : subst-def subst-word-def)
apply (rule-tac x=s#x in bexI)
apply auto
apply (simp only : append .simps(2)[symmetric])
apply (rule concI)
apply auto
done

ultimately have
CTRL (p, s) # map STACK w @ c2cl xa ∈

subst fp-inv-subst2 H0 ∩ c2cl ‘ Cx
by blast

from imageI [OF this, of map fp-cl1] show ?case by simp

41

qed
qed

next
case (goal2 cx) thus ?case
proof (induct cx arbitrary : Cx H0)

case Nil thus ?case
apply (auto simp add : subst-def subst-word-def fp-inv-subst2-def)
apply (case-tac x)
apply (auto simp add : conc-def)
done

next
case (Cons πx cx Cx H0)
obtain p s w where [simp]: πx=((p,s),w) by (cases πx) auto
from Cons.prems[simplified] have

CTRL (p, s) # map STACK w @ c2cl cx ∈ subst fp-inv-subst2 H0
((p, s), w) # cx ∈ Cx
by auto

hence
P : c2cl cx ∈
{ cl . CTRL (p, s) # map STACK w @ cl ∈ subst fp-inv-subst2 H0 }

cx ∈ { cx . ((p,s),w)#cx∈Cx }
by auto

from P(1) have P ′: c2cl cx ∈ subst fp-inv-subst2 { ss . s#ss∈H0 }
apply (auto simp add : subst-def subst-word-def)
apply (case-tac x)
apply simp
apply simp
apply (erule concE)
apply auto
apply (erule fp-inv-subst2E)
apply auto
apply (rule-tac x=list in exI)
apply auto

proof −
case (goal1 list b wa) hence wa=w ∧ b=c2cl cx

apply (cases list)
apply simp
apply (cases cx)
apply simp-all
apply (erule concE)
apply auto
apply (erule fp-inv-subst2E)
apply simp
apply (cases cx)
apply simp-all
apply (erule fp-inv-subst2E)
apply simp
apply (cases cx)
apply auto

42

done
thus c2cl cx ∈ conc-list (map fp-inv-subst2 list) using goal1 (2) by simp

qed
from Cons.hyps[OF P ′ P(2)] show ?case by force

qed
qed

lemma c2cl-empty-rev : [] = c2cl [] by simp

theorem xdpnCL-effective: c2cl ‘ (xdpnCL H) = xdpnCL-cl H
apply (unfold c2cl-def-raw xdpnCL-cl-def)
apply safe

proof −
case goal1 thus ?case proof (induct c)

case Nil thus ?case by simp
next

case (Cons π c)
from Cons have

IHAPP : c2cl-abbrv c ∈
RegSet .star (

⋃
{op # (CTRL (p, s)) ‘ map STACK ‘ W |

s p W . HAR-LEAF s p W ∈ H }
)

by auto
moreover from Cons.prems have

pc2cl π ∈ (
⋃
{op # (CTRL (p, s)) ‘ map STACK ‘ W |
s p W . HAR-LEAF s p W ∈ H }

)
by (auto) (auto simp add : split-paired-all)

ultimately show ?case by auto
qed

next
case goal2 thus ?case proof (induct rule: star .induct)

case NilI have []∈xdpnCL H by auto
thus ?case by (blast intro: c2cl-empty-rev [unfolded c2cl-def])

next
case (ConsI πl cl)
from ConsI .hyps(1) obtain p s w W where

[simp]: πl = CTRL (p,s)# map STACK w and
P : w∈W HAR-LEAF s p W ∈ H

by auto
hence

[simp]: πl=pc2cl ((p,s),w) and
C1 : [((p,s),w)]∈xdpnCL H

by auto
from ConsI .hyps(3) obtain c where

[simp]: cl = c2cl-abbrv c and

43

C2 : c∈xdpnCL H
by auto

from C1 C2 have ((p,s),w)#c∈xdpnCL H by auto
moreover have πl@cl = c2cl-abbrv (((p,s),w)#c) by auto
ultimately show ?case by blast

qed
qed

lemma inv-proj-c1-effective:
c2cl ‘ { cx . proj-c1 cx ∈ C } = lang-inv-proj fp-cl1 (c2cl ‘ C)
apply (unfold c2cl-def-raw)
apply safe

proof −
case goal1
thus ?case proof (induct c arbitrary : C)

case Nil hence []∈C by auto
thus ?case

by (auto simp add : lang-inv-proj-def)
(blast intro: c2cl-empty-rev [unfolded c2cl-def])

next
case (Cons π c)
then obtain p s w where [simp]: π=((p,s),w) by (cases π) auto
from Cons.prems have P : proj-c1 c ∈ { c1 . (p,w)#c1 ∈ C } by auto
from Cons.hyps[OF P] show ?case

apply (auto simp add : lang-inv-proj-def)
apply (drule-tac f =c2cl-abbrv in imageI)
apply simp
done

qed
next

case (goal2 cl) thus ?case
apply (auto simp add : lang-inv-proj-def)

proof −
case goal1 thus ?thesis
proof (induct c arbitrary : C cl)

case Nil hence [simp]: cl=[] by (cases cl) auto
from Nil(2) have []∈{cx . proj-c1 cx ∈ C} by simp
thus ?case by (drule-tac f =c2cl-abbrv in imageI) simp

next
case (Cons π c)
obtain p w where [simp]: π=(p,w) by (cases π) auto
from Cons.prems have P1 : c∈{ c . π#c ∈ C } by simp
from Cons.prems(1)[simplified] obtain s cl ′ where

[simp]: cl=CTRL (p,s) # map STACK w @ cl ′ and
P2 : map fp-cl1 cl ′ = c2cl-abbrv c

apply −
apply (elim map-eq-consE map-eq-concE)
apply (case-tac a)

44

apply fastsimp
apply simp
done

from Cons.hyps[OF P2 P1] show ?case
apply auto

proof −
case (goal1 cx) hence ((p,s),w)#cx ∈ {cx . proj-c1 cx ∈ C} by auto
thus ?case by (drule-tac f =c2cl-abbrv in imageI) auto

qed
qed

qed
qed

theorem xdpnC-effective: c2cl ‘ (xdpnC C H) = xdpnC-cl (c2cl ‘ C) H
apply (unfold xdpnC-def xdpnC-cl-def)
apply (simp only : c2cl-img-Int)
apply (simp only : inv-proj-c1-effective xdpnCL-effective)
done

theorem prehc-effective:
c2cl ‘ prehc ∆ (langh (H0 ,H)) C ′ = prehc-cl ∆ (H0 ,H) (c2cl ‘ C ′)
apply (simp add : xdpn-correct prehc-cl-def)
apply (simp add : xdpnC-effective[symmetric] precl-star-is-pre-star projH-effective)
done

8.3 What Does This Proof Tell You ?

In order to believe that our construction is effective, you have to believe
that the RHS of Theorem prehc-effective is really effective.

The effectiveness of the pre∗ - computation is shown in [2], and we have
also an unpublished formal proof of the algorithm presented there. We are
planning to adapt this proof to our model definition and the latest Isabelle
version in near future, and then publish it.

The effectiveness of the involved automata computations is well-known.
In a future version of this formalization, we plan to formalize or adopt an
automata library and use it to generate executable code.

end

9 DPNs With Locks

theory LockSem
imports DPN Semantics
begin

In this theory, we define an extension of DPNs, where synchronization
of the processes via a finite set of locks is allowed.

45

For this purpose, we assume that the rules are labeled with lock opera-
tions.

9.1 Model

— If a label has either no effect on locks, we allow it to be labeled by some other
generic type ′L. Otherwise, the label indicates either the acquisition or the
release of a lock:

datatype (′L, ′X) lockstep = LNone ′L | LAcq ′X | LRel ′X

— Abbreviation for the datatype of a DPN with locks:
types (′P , ′Γ, ′L, ′X) ldpn = (′P , ′Γ,(′L, ′X) lockstep) dpn

We encode DPNs with locks in a locale.
To save some case distinctions in proofs, we assume that only non-

spawning rules are labeled with lock operations.

locale LDPN = DPN +
constrains

∆ :: (′P , ′Γ, ′L, ′X ::finite) ldpn
assumes

spawn-no-locks: [[(p,γ ↪→a ps,ws] p ′,w) ∈ ∆; !!l . a=LNone l =⇒ P]] =⇒ P
begin

lemma snl-simps[simp, intro!]:
(p,γ ↪→LAcq x ps,ws] p ′,w) /∈ ∆
(p,γ ↪→LRel x ps,ws] p ′,w) /∈ ∆
by (auto elim: spawn-no-locks)

lemma X-finite: finite (UNIV :: ′X set) by simp
end

9.2 Interleaving Semantics

The following predicate models the step-relation on the set of allocated locks:

inductive lock-valid :: ′X set ⇒ (′L, ′X) lockstep ⇒ ′X set ⇒ bool where
— A LNone-step does not change the set of allocated locks:
lv-none: lock-valid X (LNone l) X |
— A LAcq-step adds the acquired lock to the set of locks. It is only executable

if the lock was not allocated before:
lv-acquire: lock-valid (X−{x}) (LAcq x) (insert x X) |
— A LRel -step removes the released lock from the set of locks. It is only
executable if the lock was allocated before:

lv-release: lock-valid (insert x X) (LRel x) (X−{x})

lemma lock-valid-simps[simp]:
lock-valid X (LNone l) X ′←→ X =X ′

lock-valid X (LAcq x) X ′←→ X ′=insert x X ∧ x /∈X
lock-valid X (LRel x) X ′←→ X =insert x X ′ ∧ x /∈X ′

apply (auto elim: lock-valid .cases intro: lock-valid .intros)

46

apply (subst set-minus-singleton-eq [symmetric], assumption)
apply (rule lock-valid .intros)
apply (subst (3) set-minus-singleton-eq [symmetric], assumption)
apply (rule lock-valid .intros)
done

Configurations of the lock-sensitive step-relation consists of the list of
processes and the set of currently acquired locks. Note that, at this point in
the formalization, we do not make any assumptions on which process may
release a lock, or on well-nestedness of locks.

That is, we allow a process releasing a lock that it has not acquired
before, or locks being used in non-well-nestedness fashion.

However, in Section 10, we formalize such assumptions.
The lock-sensitive step-relation is the intersection of the original step-

relation and the step-relation on allocated locks.

definition ldpntr
:: (′P , ′Γ, ′L, ′X) ldpn ⇒ ((′P , ′Γ) conf × ′X set , (′L, ′X) lockstep) LTS
where
ldpntr ∆ = { ((c,X),l ,(c ′,X ′)) . (c,l ,c ′) ∈ dpntr ∆ ∧ lock-valid X l X ′}

abbreviation ldpntrc ∆ == trcl (ldpntr ∆)

lemma ldpntr-subset : ((c,X),w ,(c ′,X ′))∈ldpntr ∆ =⇒ (c,w ,c ′)∈dpntr ∆
by (auto simp add : ldpntr-def)

lemma ldpntrc-subset : ((c,X),w ,(c ′,X ′))∈ldpntrc ∆ =⇒ (c,w ,c ′)∈dpntrc ∆
by (induct rule: trcl-pair-induct) (auto dest : ldpntr-subset)

9.3 Tree Semantics

For the tree semantics, we only need to redefine the scheduler, such that it
keeps track of the allocated locks.

— Abbreviation for type of execution trees and hedges with locks:
types (′Q , ′Γ, ′L, ′X) lex-tree = (′Q , ′Γ,(′L, ′X) lockstep) ex-tree
types (′Q , ′Γ, ′L, ′X) lex-hedge = (′Q , ′Γ,(′L, ′X) lockstep) ex-hedge

— The definition of the lock-sensitive scheduler is straightforward:
inductive lsched

:: (′Q , ′Γ, ′L, ′X) lex-hedge ⇒ ′X set ⇒ (′L, ′X) lockstep list ⇒ bool
where
lsched-final : final h =⇒ lsched h X [] |
lsched-nospawn:

[[lsched (h1 @t#h2) X ′ w ; lock-valid X l X ′]] =⇒
lsched (h1 @(NNOSPAWN l t)#h2) X (l#w) |

lsched-spawn:
[[lsched (h1 @ts#t#h2) X ′ w ; lock-valid X l X ′]] =⇒

lsched (h1 @(NSPAWN l ts t)#h2) X (l#w)

47

— Obviously, a lock-sensitive schedule is also a schedule of the original scheduler:

lemma lsched-is-sched : lsched h X ll =⇒ sched h ll
by (induct rule: lsched .induct) (auto intro: sched .intros)

9.4 Equivalence of Interleaving and Tree Semantics

— Straightforward adoption of proof of sched-correct1
lemma lsched-correct1 :

((c,X),ll ,(c ′,X ′))∈ldpntrc ∆ =⇒ ∃ h. hsem ∆ c h c ′ ∧ lsched h X ll
proof (induct rule: trcl-pair-induct)

case (empty c X)
thus ?case

by (induct c)
(fastsimp intro!: hsem-cons-single lsched-final elim: lsched .cases)+

next
case (cons c X l ch Xh ll c ′ X ′)
from cons.hyps(3) obtain h where

IHAPP : hsem ∆ ch h c ′ lsched h Xh ll
by blast

from cons.hyps(1) have
(c,l ,ch)∈dpntr ∆ and
LV : lock-valid X l Xh
by (unfold ldpntr-def) auto

thus ?case proof (cases)
case (dpntr-no-spawn p γ la p ′ w c1 r c2)
hence

C-simp[simp]: c = c1 @ (p, γ # r) # c2
ch = c1 @ (p ′, w @ r) # c2 and

C : (p,γ ↪→l p ′,w) ∈ ∆
by auto

from hsem-lel [OF IHAPP(1)[simplified]] obtain h1 t h2 c1 ′ ct ′ c2 ′ where
[simp]: h = h1 @ t # h2 c ′ = c1 ′ @ ct ′ @ c2 ′ and
HSPLIT : hsem ∆ c1 h1 c1 ′ tsem ∆ (p ′, w @ r) t ct ′

hsem ∆ c2 h2 c2 ′

.
from tsem-nospawn[OF C HSPLIT (2)] have

ST : tsem ∆ (p,γ#r) (NNOSPAWN l t) ct ′ .
from hsem-conc-lel [OF HSPLIT (1) ST HSPLIT (3)] have

hsem ∆ c (h1 @ NNOSPAWN l t # h2) c ′

by simp
moreover from lsched-nospawn[OF IHAPP(2)[simplified] LV] have

lsched (h1 @ NNOSPAWN l t # h2) X (l#ll) .
ultimately show ?thesis by blast

next
case (dpntr-spawn p γ la ps ws p ′ w c1 r c2)
hence

[simp]: c = c1 @ (p, γ # r) # c2
ch = c1 @ (ps, ws) # (p ′, w @ r) # c2 and

48

C : (p,γ ↪→l ps,ws] p ′,w) ∈ ∆
by auto

from IHAPP(1)[simplified] obtain h1 ts t h2 c1 ′ cs ′ ct ′ c2 ′ where
[simp]: h = h1 @ ts # t # h2 c ′ = c1 ′ @ cs ′ @ ct ′ @ c2 ′ and
HSPLIT : hsem ∆ c1 h1 c1 ′ tsem ∆ (ps,ws) ts cs ′

tsem ∆ (p ′, w @ r) t ct ′ hsem ∆ c2 h2 c2 ′

by (fastsimp elim: hsem-split hsem-split-single)
from tsem-spawn[OF C HSPLIT (2 ,3)] have

ST : tsem ∆ (p,γ#r) (NSPAWN l ts t) (cs ′@ct ′) .
from hsem-conc-lel [OF HSPLIT (1) ST HSPLIT (4)] have

hsem ∆ c (h1 @ NSPAWN l ts t # h2) c ′

by simp
moreover from lsched-spawn[OF IHAPP(2)[simplified] LV] have

lsched (h1 @ NSPAWN l ts t # h2) X (l#ll) .
ultimately show ?thesis by blast

qed
qed

— Straightforward adoption of proof of sched-correct2
lemma lsched-correct2 :

[[lsched h X ll ; hsem ∆ c h c ′]] =⇒ ∃X ′. ((c,X),ll ,(c ′,X ′))∈ldpntrc ∆
proof (induct h X ll arbitrary : c c ′ rule: lsched .induct)

case (lsched-final h X c c ′) thus ?case by (auto dest : final-hsem-nostep)
next

case (lsched-nospawn h1 t h2 Xh ll X l c c ′)
from hsem-lel-h[OF lsched-nospawn.prems] obtain c1 pγr c2 c1 ′ ct ′ c2 ′where

[simp]: c = c1 @ pγr # c2 c ′ = c1 ′ @ ct ′ @ c2 ′ and
SPLIT : hsem ∆ c1 h1 c1 ′ tsem ∆ pγr (NNOSPAWN l t) ct ′

hsem ∆ c2 h2 c2 ′

.
from SPLIT (2) obtain p γ r p ′ w where

[simp]: pγr=(p,γ#r) and
ST : (p,γ ↪→l p ′,w)∈∆ tsem ∆ (p ′,w@r) t ct ′

by (erule-tac tsem.cases) fastsimp+
from dpntr-no-spawn[OF ST (1)] have (c,l ,c1 @ (p ′, w @ r) # c2)∈dpntr ∆

by auto
with lsched-nospawn.hyps(3) have

((c,X),l ,(c1 @ (p ′, w @ r) # c2 ,Xh))∈ldpntr ∆
by (unfold ldpntr-def) auto

also
from lsched-nospawn.hyps(2)[OF hsem-conc-lel [OF SPLIT (1) ST (2) SPLIT (3)]]

obtain X ′ where
SST : ((c1 @ (p ′, w @ r) # c2 ,Xh), ll , (c1 ′ @ ct ′ @ c2 ′,X ′)) ∈ ldpntrc ∆
by blast

finally show ?case by auto
next

case (lsched-spawn h1 ts t h2 Xh ll X l c c ′)
from hsem-lel-h[OF lsched-spawn.prems] obtain c1 pγr c2 c1 ′ ct ′ c2 ′ where

49

[simp]: c = c1 @ pγr # c2 c ′ = c1 ′ @ ct ′ @ c2 ′ and
SPLIT : hsem ∆ c1 h1 c1 ′ tsem ∆ pγr (NSPAWN l ts t) ct ′

hsem ∆ c2 h2 c2 ′

.
from SPLIT (2) obtain p γ r ps ws p ′ w cts ′ ctt ′ where

[simp]: pγr=(p,γ#r) ct ′=cts ′@ctt ′ and
ST : (p,γ ↪→l ps,ws] p ′,w)∈∆ tsem ∆ (ps,ws) ts cts ′

tsem ∆ (p ′,w@r) t ctt ′

by (erule-tac tsem.cases) fastsimp+
from dpntr-spawn[OF ST (1)] have

(c,l ,c1 @ (ps,ws) # (p ′, w @ r) # c2)∈dpntr ∆
by auto

with lsched-spawn.hyps(3) have
((c,X),l ,(c1 @ (ps,ws)#(p ′, w @ r) # c2 ,Xh))∈ldpntr ∆
by (unfold ldpntr-def) auto

also from
lsched-spawn.hyps(2)[OF hsem-conc-leel [OF SPLIT (1) ST (2 ,3) SPLIT (3)]]

obtain X ′ where
SST : ((c1 @ (ps,ws) # (p ′, w @ r) # c2 ,Xh), ll , (c ′,X ′)) ∈ ldpntrc ∆
by fastsimp

finally show ?case by auto
qed

theorem lsched-correct :
(∃X ′. ((c,X),ll ,(c ′,X ′))∈ldpntrc ∆) ←→ (∃ h. hsem ∆ c h c ′ ∧ lsched h X ll)
by (auto intro: lsched-correct1 lsched-correct2)

end

10 Well-Nestedness of Locks

theory WellNested
imports DPN Semantics LockSem
begin

Well-nestedness of locks is the property that no locks are re-acquired
by the same process and a released locks is always the last one that was
acquired and not yet released by the releasing process. Usually, these two
properties are called non-reentrance and well-nestedness.

In this theory, we formulate a sufficient condition for well-nestedness,
that regards every possible lock-insensitive run of the DPN from some initial
configuration. We then define an equivalent condition on execution hedges.

Note that our condition may rule out DPNs where some non-well-nested
runs are blocked by deadlocks or other lock-induced effects. However, im-
portant classes of programs, in particular programs that use locks in a block-
structured way (like synchronized-blocks in Java), always satisfy our condi-

50

tion.
Further work required at this point is to formalize a program analysis or

some sufficient conditions (like block-structured lock-acquisition [monitors])
for well-nestedness. We would then be able to prove some non-trivial DPNs
to have well-nested configurations, thus giving a stronger indication that
the well-nestedness assumption is correct. In the current state, we have no
formal proof that the well-nestedness assumption is correct, i.e. an uncorrect
well-nestedness assumption, e.g. a too strict one, would affect the scope of
all our proofs that use this assumption. In the worst case, there would be
no well-nested DPNs at all (or only trivial ones).

10.1 Well-Nestedness Condition on Paths

We first define the set of all paths that may occur from a process. We collect
local paths and environment paths.

ppairs (q ,w) False l means that there is a local path l from process (q ,w).

ppairs (q ,w) True l means that we can reach a spawn step from process
(q ,w) that spawns a process having path ”l”.

inductive ppairs
:: (′P , ′Γ, ′L, ′X) ldpn ⇒ (′P , ′Γ) pconf ⇒ bool ⇒ (′L, ′X) lockstep list ⇒ bool
for ∆ where
ppairs-empty : ppairs ∆ (q ,w) False [] |
ppairs-prepend1 :
[[(q ,γ ↪→a q ′,w) ∈ ∆; ppairs ∆ (q ′,w@r) False l]] =⇒

ppairs ∆ (q ,γ#r) False (a#l) |
ppairs-mvenv1 :
[[(q ,γ ↪→a q ′,w) ∈ ∆; ppairs ∆ (q ′,w@r) True l]] =⇒

ppairs ∆ (q ,γ#r) True l |
ppairs-prepend2 :
[[(q ,γ ↪→a qs,ws] q ′,w) ∈ ∆; ppairs ∆ (q ′,w@r) False l]] =⇒

ppairs ∆ (q ,γ#r) False (a#l) |
ppairs-mvenv2 : [[(q ,γ ↪→a qs,ws] q ′,w) ∈ ∆; ppairs ∆ (q ′,w@r) True l]] =⇒

ppairs ∆ (q ,γ#r) True l |
ppairs-genenv : [[(q ,γ ↪→a qs,ws] q ′,w) ∈ ∆; ppairs ∆ (qs,ws) x l]] =⇒

ppairs ∆ (q ,γ#r) True l

This function checks whether a path is well-nested by using a lock stack.

fun wn-p :: (′L, ′X) lockstep list ⇒ ′X list ⇒ bool where
wn-p [] µ = distinct µ |
wn-p (LAcq x#l) µ ←→ wn-p l (x#µ) |
wn-p (LRel x#l) µ ←→ (∃µ ′. µ=x#µ ′ ∧ x /∈set µ ′ ∧ wn-p l µ ′) |
wn-p (-#l) µ ←→ wn-p l µ

A process π is defined to be well-nested w.r.t. some initial lock stack µ
if all reachable path – local paths and environment paths – are well-nested.

51

definition wn-π ∆ π µ ==
case π of (p,w) ⇒
∀ l . (ppairs ∆ (p,w) False l −→ wn-p l µ) ∧

(ppairs ∆ (p,w) True l −→ wn-p l [])

Introduction and elimination rules for wn-π

lemma wn-πI :
[[

!!l . ppairs ∆ (q ,w) False l =⇒ wn-p l µ;
!!l . ppairs ∆ (q ,w) True l =⇒ wn-p l []

]] =⇒ wn-π ∆ (q ,w) µ
by (unfold wn-π-def) auto

lemma wn-πE :
[[wn-π ∆ (q ,w) µ;

[[
!!l . ppairs ∆ (q ,w) False l =⇒ wn-p l µ;
!!l . ppairs ∆ (q ,w) True l =⇒ wn-p l []

]] =⇒ P
]] =⇒ P
by (unfold wn-π-def) auto

We have set up the definitions such that well-nestedness w.r.t a lock
stack implies distinctness of this lock stack.

lemma wn-p-distinct : wn-p l µ =⇒ distinct µ
by (induct rule: wn-p.induct) auto

lemma wn-π-distinct : wn-π ∆ π µ =⇒ distinct µ
using ppairs.intros(1)
apply (unfold wn-π-def)
apply (simp split : prod .split-asm)
apply (rule wn-p-distinct)
apply (fast)
done

Well-nestedness is preserved by steps:

lemma wn-π-none:
[[(q ,γ ↪→(LNone l) q ′,w)∈∆; wn-π ∆ (q ,γ#r) µ]] =⇒ wn-π ∆ (q ′,w@r) µ
by (unfold wn-π-def) (auto intro: ppairs.intros)

lemma (in LDPN) wn-π-spawn1 :
[[(q ,γ ↪→a qs,ws] q ′,w)∈∆; wn-π ∆ (q ,γ#r) µ]] =⇒ wn-π ∆ (q ′,w@r) µ
by (cases a, unfold wn-π-def) (auto intro: ppairs.intros)

lemma wn-π-spawn2 :
[[(q ,γ ↪→a qs,ws] q ′,w)∈∆; wn-π ∆ (q ,γ#r) µ]] =⇒ wn-π ∆ (qs,ws) []
by (cases a, unfold wn-π-def) (auto intro: ppairs.intros)

lemma wn-π-acq :
[[(q ,γ ↪→LAcq x q ′,w)∈∆; wn-π ∆ (q ,γ#r) µ]] =⇒ wn-π ∆ (q ′,w@r) (x#µ)
by (unfold wn-π-def) (auto intro: ppairs.intros)

lemma wn-π-rel :

52

assumes A: (q ,γ ↪→LRel x q ′,w)∈∆ wn-π ∆ (q ,γ#r) µ and
C : !!µ ′. [[µ=x#µ ′; x /∈set µ ′; wn-π ∆ (q ′,w@r) µ ′]] =⇒ P

shows P
proof −

from wn-πE [OF A(2)] have X : !!l . ppairs ∆ (q , γ # r) False l =⇒ wn-p l µ
by blast

from X [OF ppairs-prepend1 [OF A(1) ppairs-empty],simplified] obtain µ ′where
[simp]: µ=x#µ ′ x /∈set µ ′

by blast
moreover from A have wn-π ∆ (q ′,w@r) µ ′

by (unfold wn-π-def) (auto intro: ppairs.intros)
ultimately show P by (rule C)

qed

lemma (in LDPN) wn-π-preserve:
[[(q ,γ ↪→l q ′,w)∈∆; wn-π ∆ (q ,γ#r) xs;

!!xs ′. wn-π ∆ (q ′,w@r) xs ′ =⇒ P
]] =⇒ P

[[(q ,γ ↪→l qs,ws] q ′,w)∈∆; wn-π ∆ (q ,γ#r) xs;
!!xs ′. [[wn-π ∆ (q ′,w@r) xs ′; wn-π ∆ (qs,ws) []]] =⇒ P

]] =⇒ P
apply (cases l)
apply (auto dest !: wn-π-none wn-π-acq elim!: wn-π-rel) [3]
apply (frule (1) wn-π-spawn1)
apply (auto dest !: wn-π-spawn2)

done

10.2 Well-Nestedness of Configurations

The locks of a list of lock stacks

abbreviation locks-µ :: ′X list list ⇒ ′X set where
locks-µ µ == list-collect-set set µ

A configuration c=π1. . .πn is well-nested w.r.t. a list µ=s1. . .sn of lock
stacks (wn-h h µ), iff all πi are well-nested w.r.t. stack s i and µ is consistent,
i.e. contains no duplicate locks.

fun wn-c where
wn-c ∆ [] [] ←→ True |
wn-c ∆ (π#c) (xs#µ) ←→

wn-c ∆ c µ ∧ set xs ∩ locks-µ µ = {} ∧ wn-π ∆ π xs |
wn-c ∆ - - ←→ False

10.2.1 Auxilliary Lemmas about wn-c

lemma wn-c-simps[simp]:
wn-c ∆ c [] ←→ c=[]
wn-c ∆ [] µ ←→ µ=[]
apply (induct c)

53

apply auto
apply (induct µ)
apply auto
done

lemma wn-c-length: wn-c ∆ c µ =⇒ length c = length µ
by (induct ∆ c µ rule: wn-c.induct) auto

lemma wn-c-prepend-c:
[[wn-c ∆ (π#c) µ;

!!xs µ ′. [[µ=xs#µ ′; wn-c ∆ c µ ′;
set xs ∩ locks-µ µ ′ = {}; wn-π ∆ π xs

]] =⇒ P
]] =⇒ P

by (induct µ arbitrary : π c) fastsimp+

lemma wn-c-prepend-µ:
[[wn-c ∆ c (xs#µ);

!!π c ′. [[c=π#c ′; wn-c ∆ c ′ µ;
set xs ∩ locks-µ µ = {}; wn-π ∆ π xs

]] =⇒ P
]] =⇒ P

by (induct c arbitrary : µ) auto

lemma wn-c-append-c-helper :
assumes

A: wn-c ∆ c µ c1 @c2 =c and
C : !!µ1 µ2 . [[µ=µ1 @µ2 ∧ wn-c ∆ c1 µ1 ∧ wn-c ∆ c2 µ2 ∧

locks-µ µ1 ∩ locks-µ µ2 = {}
]] =⇒ P

shows P
using A C
apply (induct ∆ c µ arbitrary : c1 c2 P rule: wn-c.induct)
apply auto
apply fastsimp
apply (case-tac c1)
apply fastsimp
apply auto

proof −
case goal1
show P

apply (rule goal1 (1))
apply simp
apply (rule-tac ?µ1 .0 = xs#µ1 and ?µ2 .0 = µ2 in goal1 (2))
apply (insert goal1 (3−))
apply auto
done

qed

54

lemma wn-c-append-c:
[[wn-c ∆ (c1 @c2) µ;

!!µ1 µ2 . [[µ=µ1 @µ2 ∧ wn-c ∆ c1 µ1 ∧ wn-c ∆ c2 µ2 ∧
locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒ P

]] =⇒ P
using wn-c-append-c-helper
by blast

lemma wn-c-append-µ-helper :
assumes

A: wn-c ∆ c µ µ1 @µ2 =µ and
C : !!c1 c2 . [[c=c1 @c2 ∧ wn-c ∆ c1 µ1 ∧ wn-c ∆ c2 µ2 ∧

locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒ P
shows P
using A C
apply (induct ∆ c µ arbitrary : µ1 µ2 P rule: wn-c.induct)
apply auto
apply (case-tac µ1)
apply fastsimp
apply auto

proof −
case goal1
show P

apply (rule goal1 (1))
apply simp
apply (rule-tac ?c1 .0 = (a,b)#c1 and ?c2 .0 = c2 in goal1 (2))
apply (insert goal1 (3−))
apply auto
done

qed

lemma wn-c-append-µ:
[[wn-c ∆ c (µ1 @µ2);

!!c1 c2 . [[c=c1 @c2 ∧ wn-c ∆ c1 µ1 ∧ wn-c ∆ c2 µ2 ∧
locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒ P

]] =⇒ P
using wn-c-append-µ-helper
by blast

lemma wn-c-appendI :
[[wn-c ∆ c1 µ1 ; wn-c ∆ c2 µ2 ; locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒

wn-c ∆ (c1 @c2) (µ1 @µ2)
by (induct ∆ c1 µ1 arbitrary : c2 µ2 rule: wn-c.induct) auto

lemma wn-c-prependI :
[[wn-π ∆ π xs; wn-c ∆ c µ; set xs ∩ locks-µ µ = {}]] =⇒ wn-c ∆ (π#c) (xs#µ)
by auto

lemma wn-c-singlecE : [[wn-c ∆ [π] µ; !!xs. [[µ=[xs]; wn-π ∆ π xs]] =⇒ P]] =⇒ P

55

by (cases µ) auto

lemma wn-c-split-aux :
assumes

WN : wn-c ∆ c µ and
HFMT [simp]: c=c1 @π#c2 and
C : !!µ1 xs µ2 . [[µ=µ1 @xs#µ2 ; wn-π ∆ π xs; wn-c ∆ c1 µ1 ; wn-c ∆ c2 µ2 ;

locks-µ µ1 ∩ set xs = {}; locks-µ µ1 ∩ locks-µ µ2 = {};
set xs ∩ locks-µ µ2 = {}

]] =⇒ P
shows P
using WN [simplified]
apply (elim wn-c-append-c wn-c-prepend-c conjE)
apply (rule C)
apply (auto)
done

Well-nestedness of configurations is preserved by lock-sensitive steps.

lemma (in LDPN) wnc-preserve-singlestep:
assumes

A: ((c,locks-µ µ),l ,(c ′,X ′))∈ldpntr ∆ wn-c ∆ c µ and
C : !!µ ′. [[X ′=locks-µ µ ′; wn-c ∆ c ′ µ ′]] =⇒ P

shows P
proof −

from A have TR: (c,l ,c ′)∈dpntr ∆ and LV : lock-valid (locks-µ µ) l X ′

by (auto simp add : ldpntr-def)
from TR show ?thesis proof (cases rule: dpntr .cases)

case (dpntr-no-spawn p γ - p ′ w c1 r c2)
hence

FMT [simp]: c = c1 @ (p, γ # r) # c2 c ′ = c1 @ (p ′, w @ r) # c2 and
R: (p,γ ↪→l p ′,w) ∈ ∆
by auto

from wn-c-split-aux [OF A(2) FMT (1)] obtain µ1 xs µ2 where
[simp]: µ = µ1 @ xs # µ2 and
WNS : wn-π ∆ (p, γ # r) xs wn-c ∆ c1 µ1 wn-c ∆ c2 µ2 and
DISJ : locks-µ µ1 ∩ set xs = {} locks-µ µ1 ∩ locks-µ µ2 = {}

set xs ∩ locks-µ µ2 = {}
.

obtain xs ′ where
wn-π ∆ (p ′,w@r) xs ′ X ′=(locks-µ (µ1 @xs ′#µ2))
locks-µ µ1 ∩ set xs ′ = {} set xs ′ ∩ locks-µ µ2 = {}

proof (cases l)
case LNone[simp]
from that [OF wn-π-none[OF R[simplified] WNS (1)]] DISJ LV show ?thesis

by simp
next

case (LAcq x)[simp]
from that [OF wn-π-acq [OF R[simplified] WNS (1)]] LV DISJ show ?thesis

by simp

56

next
case (LRel x)[simp]
from wn-π-rel [OF R[simplified] WNS (1)] obtain xs ′ where

[simp]: xs=x#xs ′ and
1 : x /∈set xs ′ and
2 : wn-π ∆ (p ′,w@r) xs ′

.
from 1 LV DISJ show ?thesis by (rule-tac that [OF 2]) auto

qed
with WNS (2 ,3) DISJ (2) show P
by (rule-tac µ ′=µ1 @xs ′#µ2 in C) (auto intro!: wn-c-appendI wn-c-prependI)

next
case (dpntr-spawn p γ - ps ws p ′ w c1 r c2)
hence

FMT [simp]: c = c1 @ (p, γ # r) # c2
c ′ = c1 @ (ps, ws) # (p ′, w @ r) # c2 and

R: (p,γ ↪→l ps,ws] p ′,w) ∈ ∆
by auto

from R obtain ll where [simp]: l=LNone ll by (cases l) auto
from wn-c-split-aux [OF A(2) FMT (1)] obtain µ1 xs µ2 where

[simp]: µ = µ1 @ xs # µ2 and
WNS : wn-π ∆ (p, γ # r) xs wn-c ∆ c1 µ1 wn-c ∆ c2 µ2 and
DISJ : locks-µ µ1 ∩ set xs = {} locks-µ µ1 ∩ locks-µ µ2 = {}

set xs ∩ locks-µ µ2 = {}
.

from wn-π-spawn1 [OF R WNS (1)] wn-π-spawn2 [OF R WNS (1)]
WNS (2 ,3) DISJ

have wn-c ∆ c ′ (µ1 @[]#xs#µ2)
by (auto intro!: wn-c-appendI wn-c-prependI)

thus ?thesis using LV by (rule-tac µ ′=µ1 @[]#xs#µ2 in C) auto
qed

qed

lemma (in LDPN) wnc-preserve:
assumes A: ((c,locks-µ µ),ll ,(c ′,X ′))∈ldpntrc ∆ wn-c ∆ c µ and

C : !!µ ′. [[X ′=locks-µ µ ′; wn-c ∆ c ′ µ ′]] =⇒ P
shows P

proof −
{

fix c X µ ll c ′ X ′ P
assume A: ((c,X),ll ,(c ′,X ′))∈ldpntrc ∆ wn-c ∆ c µ X =locks-µ µ and

C : !!µ ′. [[X ′=locks-µ µ ′; wn-c ∆ c ′ µ ′]] =⇒ P
hence P
proof (induct arbitrary : µ P rule: trcl-pair-induct)

case empty thus ?case by auto
next

case (cons c x l ch Xh ll c ′ X ′ µ P) note [simp]=〈x=locks-µ µ〉

from wnc-preserve-singlestep[OF cons.hyps(1)[simplified] cons.prems(1)]
obtain µ ′ where P : wn-c ∆ ch µ ′ Xh=locks-µ µ ′ .

57

from cons.hyps(3)[OF P] cons.prems(3) show ?case by blast
qed

} with A C show ?thesis by blast
qed

10.3 Well-Nestedness Condition on Trees

Now we define well-nestedness on scheduling trees. Note that scheduling
trees that contain spawn steps with locks interaction are not well-nested.

We define two equivalent formulations of well-nestedness of a tree:

fun wn-t ′ :: (′P , ′Γ, ′L, ′X) lex-tree ⇒ ′X list ⇒ bool where
wn-t ′ (NLEAF π) µ ←→ distinct µ |
wn-t ′ (NNOSPAWN (LNone l) t) µ ←→ wn-t ′ t µ |
wn-t ′ (NSPAWN (LNone l) ts t) µ ←→ wn-t ′ t µ ∧ wn-t ′ ts [] |
wn-t ′ (NNOSPAWN (LAcq x) t) µ ←→ wn-t ′ t (x#µ) ∧ x /∈set µ |
wn-t ′ (NNOSPAWN (LRel x) t) µ ←→

(∃µ ′. µ=x#µ ′ ∧ wn-t ′ t µ ′ ∧ x /∈set µ ′) |
wn-t ′ - - ←→ False

inductive wn-t :: (′P , ′Γ, ′L, ′X) lex-tree ⇒ ′X list ⇒ bool where
distinct µ =⇒ wn-t (NLEAF π) µ |
wn-t t µ =⇒ wn-t (NNOSPAWN (LNone l) t) µ |
[[wn-t t µ; wn-t ts []]] =⇒ wn-t (NSPAWN (LNone l) ts t) µ |
[[wn-t t (x#µ); x /∈set µ]] =⇒ wn-t (NNOSPAWN (LAcq x) t) µ |
[[wn-t t µ; x /∈set µ]] =⇒ wn-t (NNOSPAWN (LRel x) t) (x#µ)

inductive lock-valid-xs where
distinct xs =⇒ lock-valid-xs (LNone l) xs xs |
[[distinct xs; x /∈set xs]] =⇒ lock-valid-xs (LRel x) (x#xs) xs |
[[distinct xs; x /∈set xs]] =⇒ lock-valid-xs (LAcq x) xs (x#xs)

The two formulations of well-nestedness of trees are, indeed, equivalent:

lemma wnt-eq-wnt ′: wn-t t µ = wn-t ′ t µ
apply safe
apply (induct rule: wn-t .induct)
apply auto
apply (induct rule: wn-t ′.induct)
apply (auto intro: wn-t .intros)
done

Well-nestedness of trees also implies distinctness of the lock stacks

lemma wnt-distinct : wn-t t µ =⇒ distinct µ
by (induct rule: wn-t .induct) auto

lemma wnt-distinct ′: wn-t ′ t ms =⇒ distinct ms
using wnt-distinct wnt-eq-wnt ′ by auto

lemma all-t-wnt-distinct : ∀ t c ′. tsem ∆ (q ,w) t c ′ −→ wn-t t µ =⇒ distinct µ
by (auto intro: wn-t .intros wnt-distinct)

58

10.4 Well-Nestedness of Hedges

The well-nestedness property of a hedge expresses that each tree is well-
nested, and the allocated locks of the trees are consistent.

Consistency of a list of lock stacks. µ=s1. . .sn is consistent, iff all s i are
distinct and ∀ i j . i 6=j −→ set s i ∩ set sj = {}.
fun cons-µ :: ′X list list ⇒ bool where

cons-µ [] ←→ True |
cons-µ (xs#µ) ←→ cons-µ µ ∧ distinct xs ∧ set xs ∩ locks-µ µ = {}

A hedge h=t1. . .tn is well-nested w.r.t. a list µ=s1. . .sn of lock stacks
(wn-h h µ), iff all t i are well-nested w.r.t. stack s i and µ is consistent.

fun wn-h where
wn-h [] [] ←→ True |
wn-h (t#h) (xs#µ) ←→ wn-h h µ ∧ set xs ∩ locks-µ µ = {} ∧ wn-t ′ t xs |
wn-h - - ←→ False

lemma cons-µ-append [simp]:
cons-µ (µ1 @µ2) ←→ cons-µ µ1 ∧ cons-µ µ2 ∧ locks-µ µ1 ∩ locks-µ µ2 = {}
by (induct µ1 arbitrary : µ2) auto

10.4.1 Auxilliary Lemmas about wn-h

lemma wn-h-simps[simp]:
wn-h h [] ←→ h=[]
wn-h [] µ ←→ µ=[]
apply (induct h)
apply auto
apply (induct µ)
apply auto
done

lemma wn-h-length: wn-h h µ =⇒ length h = length µ
by (induct h µ rule: wn-h.induct) auto

lemma wn-h-prepend-h:
[[wn-h (t#h) µ;

!!xs µ ′. [[µ=xs#µ ′; wn-h h µ ′; set xs ∩ locks-µ µ ′ = {}; wn-t ′ t xs]] =⇒ P
]] =⇒ P
by (induct µ arbitrary : t h) auto

lemma wn-h-prepend-µ:
[[wn-h h (xs#µ);

!!t h ′. [[h=t#h ′; wn-h h ′ µ; set xs ∩ locks-µ µ = {}; wn-t ′ t xs]] =⇒ P
]] =⇒ P
by (induct h arbitrary : s µ) auto

lemma wn-h-append-h-helper :

59

assumes
A: wn-h h µ h1 @h2 =h and
C : !!µ1 µ2 . [[µ=µ1 @µ2 ∧ wn-h h1 µ1 ∧ wn-h h2 µ2 ∧

locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒ P
shows P
using A C
apply (induct h µ arbitrary : h1 h2 P rule: wn-h.induct)
apply auto
apply fastsimp
apply (case-tac h1)
apply fastsimp
apply auto

proof −
case goal1
show P

apply (rule goal1 (1))
apply simp
apply (rule-tac ?µ1 .0 = xs#µ1 and ?µ2 .0 = µ2 in goal1 (2))
apply (insert goal1 (3−))
apply auto
done

qed

lemma wn-h-append-h:
[[wn-h (h1 @h2) µ;

!!µ1 µ2 . [[µ=µ1 @µ2 ∧ wn-h h1 µ1 ∧ wn-h h2 µ2 ∧
locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒ P

]] =⇒ P
using wn-h-append-h-helper
by blast

lemma wn-h-append-µ-helper :
assumes
A: wn-h h µ µ1 @µ2 =µ and
C : !!h1 h2 . [[h=h1 @h2 ∧ wn-h h1 µ1 ∧ wn-h h2 µ2 ∧

locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒ P
shows P
using A C
apply (induct h µ arbitrary : µ1 µ2 P rule: wn-h.induct)
apply auto
apply (case-tac µ1)
apply fastsimp
apply auto

proof −
case goal1
show P

apply (rule goal1 (1))
apply simp
apply (rule-tac ?h1 .0 = t#h1 and ?h2 .0 = h2 in goal1 (2))

60

apply (insert goal1 (3−))
apply auto
done

qed

lemma wn-h-append-µ:
[[wn-h h (µ1 @µ2);

!!h1 h2 . [[h=h1 @h2 ∧ wn-h h1 µ1 ∧ wn-h h2 µ2 ∧
locks-µ µ1 ∩ locks-µ µ2 = {}

]] =⇒ P
]] =⇒ P

using wn-h-append-µ-helper by blast

lemma wn-h-appendI :
[[wn-h h1 µ1 ; wn-h h2 µ2 ; locks-µ µ1 ∩ locks-µ µ2 = {}]] =⇒

wn-h (h1 @h2) (µ1 @µ2)
by (induct h1 µ1 arbitrary : h2 µ2 rule: wn-h.induct) auto

lemma wn-h-prependI :
[[wn-t ′ t xs; wn-h h µ; set xs ∩ locks-µ µ = {}]] =⇒ wn-h (t#h) (xs#µ)
by auto

lemma wn-h-singlehE : [[wn-h [t] µ; !!xs. [[µ=[xs]; wn-t ′ t xs]] =⇒ P]] =⇒ P
by (cases µ) auto

Auxilliary lemma to split the list of lock-stacks w.r.t. to that a hedge is
well-nested by some tree in that hedge.

lemma wn-h-split-aux :
assumes
WN : wn-h h µ and
HFMT [simp]: h=h1 @t#h2 and
C : !!µ1 xs µ2 . [[

µ=µ1 @xs#µ2 ;
wn-t ′ t xs; wn-h h1 µ1 ; wn-h h2 µ2 ;
locks-µ µ1 ∩ set xs = {}; locks-µ µ1 ∩ locks-µ µ2 = {};
set xs ∩ locks-µ µ2 = {}

]] =⇒ P
shows P
using WN [simplified]
apply (elim wn-h-append-h wn-h-prepend-h conjE)
apply (rule C)
apply (auto)
done

10.4.2 Relation to Path Condition

We show that the notion of well-nestedness on paths and trees are equivalent,
i.e. a configuration is well-nested w.r.t. a lock stack µ if and only if all trees
from that configuration are well-nested w.r.t. µ.

61

A process π is well-nested w.r.t. some stack of locks µ, if all its execution
trees are well-nested w.r.t. µ:

definition wn-π-t ∆ π xs == (∀ t c ′. tsem ∆ π t c ′ −→ wn-t t xs)

definition wn-c-h ∆ c µ == (∀ h c ′. hsem ∆ c h c ′ −→ wn-h h µ)

lemma wn-π-tI [intro?]: [[!!t c ′. tsem ∆ π t c ′ =⇒ wn-t t xs]] =⇒ wn-π-t ∆ π xs
by (auto simp add : wn-π-t-def)

lemma wn-c-hI [intro?]: [[!!h c ′. hsem ∆ c h c ′ =⇒ wn-h h µ]] =⇒ wn-c-h ∆ c µ
by (auto simp add : wn-c-h-def)

lemma wn-π-t-distinct : wn-π-t ∆ π µ =⇒ distinct µ
apply (cases π)
apply (unfold wn-π-t-def)
by (auto intro: wn-t .intros wnt-distinct)

lemma wn-c-h-prepend1 : assumes A: wn-c-h ∆ (π#c) (xs#µ)
shows wn-π-t ∆ π xs wn-c-h ∆ c µ set xs ∩ locks-µ µ = {}

proof −
from A have A ′: !!h c ′. hsem ∆ (π#c) h c ′ =⇒ wn-h h (xs#µ)

by (auto simp add : wn-c-h-def)
from A ′[of map NLEAF (π#c) π#c, simplified]
show set xs ∩ locks-µ µ = {}

by auto
show wn-π-t ∆ π xs proof

fix t c ′ assume A: tsem ∆ π t c ′

from A ′[OF hsem-cons[OF A hsem-id]] show wn-t t xs
by (auto simp add : wnt-eq-wnt ′)

qed

show wn-c-h ∆ c µ proof
fix h c ′ assume A: hsem ∆ c h c ′

from A ′[OF hsem-cons[OF tsem-leaf A]] show wn-h h µ by auto
qed

qed

lemma wn-c-h-prepend2 :
[[wn-π-t ∆ π xs; wn-c-h ∆ c µ; set xs ∩ locks-µ µ = {}]] =⇒

wn-c-h ∆ (π#c) (xs#µ)
apply (auto simp add : wn-c-h-def wn-π-t-def)
apply (erule hsem-split-single)
apply (auto simp add : wnt-eq-wnt ′)
done

lemma wn-c-h-prepend [simp]:
wn-c-h ∆ (π#c) (xs#µ) ←→

wn-π-t ∆ π xs ∧ wn-c-h ∆ c µ ∧ set xs ∩ locks-µ µ = {}
using wn-c-h-prepend1 wn-c-h-prepend2 by fast

62

lemma wn-c-h-empty [simp]: wn-c-h ∆ c []←→ (c=[]) by (auto simp add : wn-c-h-def)

lemma wn-c-h-prepend-c:
[[wn-c-h ∆ (π#c) µ;

!!xs µ ′. [[µ=xs#µ ′; wn-π-t ∆ π xs; wn-c-h ∆ c µ ′;
set xs ∩ locks-µ µ ′ = {}]] =⇒ P

]] =⇒ P
by (cases µ) (auto)

lemma wn-c-h-simps[simp]: wn-c-h ∆ [] µ ←→ (µ=[])
by (unfold wn-c-h-def) (auto)

lemma (in LDPN) wnπ2wnt : [[tsem ∆ (q ,w) t c ′; wn-π ∆ (q ,w) µ]] =⇒ wn-t t µ
proof (induct arbitrary : µ rule: tsem.induct)

case tsem-leaf thus ?case by (auto intro: wn-t .intros dest : wn-π-distinct)
next

case (tsem-nospawn q γ l q ′ w r t ct ′ µ) note C =this
show ?case proof (cases l)

case LNone[simp]
from C have wn-t t µ

by (rule-tac C) (auto intro: ppairs.intros C simp add : wn-π-def)
thus ?thesis by (auto intro: wn-t .intros)

next
case (LAcq x)[simp]
from C have wn-t t (x#µ)

by (rule-tac C) (auto intro: ppairs.intros C simp add : wn-π-def)
moreover hence x /∈set µ by (auto dest : wnt-distinct)
ultimately show ?thesis by (auto intro: wn-t .intros)

next
case (LRel x)[simp]
from wn-π-rel [OF tsem-nospawn.hyps(1)[simplified] tsem-nospawn.prems]
obtain µ ′ where [simp]: µ = x # µ ′ x /∈ set µ ′ .
from C have wn-t t µ ′

by (rule-tac C) (auto intro: ppairs.intros C simp add : wn-π-def)
thus ?thesis by (auto intro: wn-t .intros)

qed
next

case (tsem-spawn q γ l qs ws q ′ w ts cs ′ r t ct ′ µ) note C =this
then obtain ll where [simp]: l=LNone ll by (cases l) auto
from C have wn-t t µ

apply simp-all
apply (rule-tac C)
apply (auto intro: ppairs.intros C simp add : wn-π-def)
done

moreover from tsem-spawn.hyps(1 ,3) tsem-spawn.prems[rule-format]
have wn-t ts [] by (auto intro: wn-π-spawn2)
ultimately show ?case by (auto intro: wn-t .intros)

qed

63

lemma (in LDPN) wnt2wnp:
[[ppairs ∆ (q ,w) en l ; ∀ t c ′. tsem ∆ (q ,w) t c ′ −→ wn-t t µ]] =⇒

(¬en −→ wn-p l µ) ∧ (en −→ wn-p l [])
proof (induct arbitrary : µ rule: ppairs.induct)

case ppairs-empty thus ?case by (auto intro: all-t-wnt-distinct)
next

case (ppairs-genenv q γ a qs ws q ′ w en l r µ)
have ∀ t c ′. tsem ∆ (qs, ws) t c ′ −→ wn-t t [] proof (intro allI impI)

fix t c ′

assume A: tsem ∆ (qs, ws) t c ′

from ppairs-genenv .prems[rule-format ,
OF tsem-spawn[OF ppairs-genenv .hyps(1) A tsem-leaf]

]
show wn-t t [] by (auto elim: wn-t .cases)

qed
from ppairs-genenv .hyps(3)[OF this] show ?case by blast

next
case (ppairs-mvenv1 q γ a q ′ w r l µ)[simplified] show ?case
proof (simp, cases a)

case LNone[simp]
from ppairs-mvenv1 .prems have ∀ t c ′. tsem ∆ (q ′, w @ r) t c ′ −→ wn-t t µ
by auto (drule tsem-nospawn[OF ppairs-mvenv1 .hyps(1)], auto elim: wn-t .cases)
with ppairs-mvenv1 .hyps(3) show wn-p l [] by auto

next
case (LAcq x)
with tsem-nospawn[OF ppairs-mvenv1 .hyps(1)] ppairs-mvenv1 .prems
show wn-p l []

by (fastsimp intro: ppairs-mvenv1 .hyps(3)[rule-format] elim: wn-t .cases)
next

case (LRel x) note [simp]=this
from tsem-nospawn[OF ppairs-mvenv1 .hyps(1)[simplified] tsem-leaf]
have T : Ex (tsem ∆

(q , γ # r)
(NNOSPAWN (LRel x) (NLEAF (q ′, w @ r)))

)
by blast

obtain µ ′ where [simp]: µ=x#µ ′ x /∈set µ ′

apply (rule wn-t .cases[OF ppairs-mvenv1 .prems[rule-format , OF T]])
by simp-all

from tsem-nospawn[OF ppairs-mvenv1 .hyps(1)] ppairs-mvenv1 .prems
show wn-p l []

by (fastsimp intro: ppairs-mvenv1 .hyps(3)[rule-format] elim: wn-t .cases)

qed
next

case (ppairs-mvenv2 q γ a qs ws q ′ w r l µ)[simplified]
show ?case

64

using tsem-spawn[OF ppairs-mvenv2 .hyps(1)] ppairs-mvenv2 .prems
ppairs-mvenv2 .hyps(1)

apply (cases a)
apply (blast intro: ppairs-mvenv2 .hyps(3)[rule-format] elim: wn-t .cases)
apply auto
done

next
case (ppairs-prepend1 q γ a q ′ w r l µ)[simplified] show ?case
proof (simp, cases a)

case LNone
with tsem-nospawn[OF ppairs-prepend1 .hyps(1)] ppairs-prepend1 .prems
show wn-p (a#l) µ

by (fastsimp intro: ppairs-prepend1 .hyps(3)[rule-format] elim: wn-t .cases)
next

case (LAcq x)
with tsem-nospawn[OF ppairs-prepend1 .hyps(1)] ppairs-prepend1 .prems
show wn-p (a#l) µ

by (fastsimp intro: ppairs-prepend1 .hyps(3)[rule-format] elim: wn-t .cases)
next

case (LRel x) note [simp]=this
from tsem-nospawn[OF ppairs-prepend1 .hyps(1)[simplified] tsem-leaf] have

T : Ex (tsem ∆ (q , γ # r) (NNOSPAWN (LRel x) (NLEAF (q ′, w @ r))))
by blast

obtain µ ′ where [simp]: µ=x#µ ′ x /∈set µ ′

apply (rule wn-t .cases[OF ppairs-prepend1 .prems[rule-format , OF T]])
by simp-all

from tsem-nospawn[OF ppairs-prepend1 .hyps(1)] ppairs-prepend1 .prems
show wn-p (a#l) µ

by (fastsimp intro: ppairs-prepend1 .hyps(3)[rule-format] elim: wn-t .cases)

qed
next

case (ppairs-prepend2 q γ a qs ws q ′ w r l µ)[simplified]
from ppairs-prepend2 .prems[rule-format] have

H : !!c t . tsem ∆ (q , γ # r) t c =⇒ wn-t t µ by blast
show ?case using ppairs-prepend2 .hyps(1)

by (cases a)
(auto intro: ppairs-prepend2 .hyps(3)[rule-format]

dest : tsem-spawn[OF ppairs-prepend2 .hyps(1) tsem-leaf] H
elim: wn-t .cases

)
qed

theorem (in LDPN) wnπ-eq-wnπt : wn-π ∆ π µ←→ wn-π-t ∆ π µ using wnt2wnp
by (auto intro: wnπ2wnt simp add : wn-π-def wn-π-t-def)

theorem (in LDPN) wnc-eq-wnch: wn-c ∆ c µ ←→ wn-c-h ∆ c µ

65

apply rule
apply (induct c arbitrary : µ)
apply simp
apply (erule wn-c-prepend-c)
apply (simp add : wnπ-eq-wnπt)
apply (induct c arbitrary : µ)
apply (auto simp add : wn-c-h-def) [1]
apply (erule wn-c-h-prepend-c)
apply (simp add : wnπ-eq-wnπt)
done

10.5 Well-Nestedness and Tree Scheduling

In this section we show that well-nestedness is invariant under the tree
scheduling relation. This is important, as it shows that we cannot reach
non-well-nested trees from well-nested ones.

lemma wnt-preserve-nospawn:
[[lock-valid (set xs) l X ′; wn-t ′ (NNOSPAWN l t) xs]] =⇒
∃ xs ′. X ′=set xs ′ ∧ lock-valid-xs l xs xs ′ ∧ wn-t ′ t xs ′

apply (cases l)
apply (rule-tac x=xs in exI)
apply (force intro: lock-valid-xs.intros dest : wnt-distinct ′)
apply (rule-tac x=(X #xs) in exI)
apply (force intro: lock-valid-xs.intros dest : wnt-distinct ′)
apply (rule-tac x=tl xs in exI)
apply (force simp add : insert-ident intro: lock-valid-xs.intros dest : wnt-distinct ′)
done

lemma wn-h-preserve-nospawn:
[[lock-valid (locks-µ µ) l X ′; wn-h (h1 @(NNOSPAWN l t)#h2) µ]] =⇒
∃µ ′. X ′=locks-µ µ ′ ∧ wn-h (h1 @t#h2) µ ′

apply (cases l)
apply (auto elim!: wn-h-prepend-h wn-h-append-h)
apply (rule-tac x=µ1 @xs#µ ′ in exI)
apply (force intro!: wn-h-appendI)
apply (rule-tac x=µ1 @(X #xs)#µ ′ in exI)
apply (force intro!: wn-h-appendI)
apply (rule-tac x=µ1 @(µ ′a)#µ ′ in exI)
apply (rule conjI)
apply (rule iffD1 [OF insert-ident])
apply assumption
apply (auto intro!: wn-h-appendI)
done

All-in-one lemma for reasoning about a non-spawning step on a well-
nested hedge. In words: If we make a non-speaining step on a well-nested
hedge:

• We can split the list of lock stacks according to the tree that made the

66

step,

• The lock stack of the tree that made the step changes according to the
label (cf. lock-valid-xs),

• And the resulting hedge is well-nested w.r.t. the new locks, too.

lemma wn-h-split-nospawn:
assumes
A: lock-valid (locks-µ µ) l Xh wn-h (h1 @(NNOSPAWN l t)#h2) µ and
C : !!µ1 xs µ2 xsh. [[
µ=µ1 @xs#µ2 ;
Xh=locks-µ µ1 ∪ set xsh ∪ locks-µ µ2 ;
lock-valid-xs l xs xsh;
wn-t ′ (NNOSPAWN l t) xs;
wn-t ′ t xsh;
wn-h h1 µ1 ;
wn-h h2 µ2 ;
wn-h (h1 @t#h2) (µ1 @xsh#µ2);
locks-µ µ1 ∩ set xs = {};
locks-µ µ1 ∩ set xsh = {};
locks-µ µ1 ∩ locks-µ µ2 = {};
locks-µ µ2 ∩ set xs = {};
locks-µ µ2 ∩ set xsh = {}

]] =⇒ P
shows P

proof −
from A(2) obtain µ1 xs µ2 where

SPLIT-simp[simp]: µ=µ1 @xs#µ2 and
SPLIT : wn-h h1 µ1 wn-t ′ (NNOSPAWN l t) xs wn-h h2 µ2

locks-µ µ1 ∩ set xs = {} locks-µ µ1 ∩ locks-µ µ2 = {}
set xs ∩ locks-µ µ2 = {}

by (fastsimp elim: wn-h-prepend-h wn-h-append-h)
show ?thesis proof (cases l)

case LNone[simp]
from SPLIT (2) have wn-t ′ t xs lock-valid-xs l xs xs

by (auto intro: lock-valid-xs.intros dest : wnt-distinct ′)
moreover with SPLIT have wn-h (h1 @t#h2) (µ1 @xs#µ2)

by (auto intro!: wn-h-appendI wn-h-prependI)
ultimately show ?thesis using A(1)[simplified] SPLIT SPLIT-simp

by (blast intro!: C)
next

case (LRel x)[simp]
from SPLIT (2) obtain xsh where

[simp]: xs=x#xsh and
WN ′: wn-t ′ t xsh x /∈set xsh

by auto
moreover with SPLIT have wn-h (h1 @t#h2) (µ1 @xsh#µ2)

by (auto intro!: wn-h-appendI wn-h-prependI)
moreover from wnt-distinct ′[OF WN ′(1)] WN ′(2) have

67

lock-valid-xs l xs xsh
by (auto intro: lock-valid-xs.intros)

ultimately show ?thesis
using A(1)[simplified] WN ′ SPLIT SPLIT-simp by (fastsimp intro!: C)

next
case (LAcq x)[simp]
from SPLIT (2) have wn-t ′ t (x#xs) lock-valid-xs l xs (x#xs)

by (auto intro: lock-valid-xs.intros dest !: wnt-distinct ′)
moreover with SPLIT A(1)[simplified] have wn-h (h1 @t#h2) (µ1 @(x#xs)#µ2)

by (auto intro!: wn-h-appendI wn-h-prependI)
ultimately show ?thesis

using A(1)[simplified] SPLIT SPLIT-simp
apply (rule-tac C)
apply assumption+
defer
apply assumption+
apply auto
done

qed
qed

lemma wn-h-preserve-spawn:
[[lock-valid (locks-µ µ) l X ′; wn-h (h1 @(NSPAWN l ts t)#h2) µ]] =⇒
∃µ ′. X ′=locks-µ µ ′ ∧ wn-h (h1 @ts#t#h2) µ ′

apply (cases l)
apply (auto elim!: wn-h-prepend-h wn-h-append-h)
apply (rule-tac x=µ1 @[]#xs#µ ′ in exI)
apply (auto intro!: wn-h-appendI)
done

lemma wn-h-preserve-spawn ′:
[[lock-valid (locks-µ µ) l X ′; wn-h (h1 @(NSPAWN l ts t)#h2) µ]] =⇒
∃µ1 xs µ2 . µ=µ1 @xs#µ2 ∧ X ′=locks-µ µ1 ∪ set xs ∪ locks-µ µ2 ∧

wn-h (h1 @ts#t#h2) (µ1 @[]#xs#µ2)
apply (cases l)
apply (auto elim!: wn-h-prepend-h wn-h-append-h)
apply (rule-tac x=µ1 in exI)
apply (rule-tac x=xs in exI)
apply (rule-tac x=µ ′ in exI)
apply (auto intro!: wn-h-appendI)
done

lemma wn-h-preserve-rel :
[[(h,l ,h ′)∈sched-rel ; lock-valid (locks-µ µ) l X ′; wn-h h µ;

!!µ ′. [[X ′=locks-µ µ ′; wn-h h ′ µ ′]] =⇒ P
]] =⇒ P

by (auto elim!: sched-rel .cases dest : wn-h-preserve-spawn wn-h-preserve-nospawn)

lemma wn-h-spawn-simps[simp]:

68

¬wn-h (h @ (NSPAWN (LAcq x) ts t) # h ′) µ
¬wn-h (h @ (NSPAWN (LRel x) ts t) # h ′) µ
by (auto elim!: wn-h-prepend-h wn-h-append-h)

lemmas wn-h-spawn-simps-add [simp] =
wn-h-spawn-simps[where h=[], simplified]
wn-h-spawn-simps[where h=[tx], simplified , standard]

lemma wn-h-spawn-imp-LNoneE :
[[wn-h (h @ (NSPAWN l ts t) # h ′) µ; !!ll . l=LNone ll =⇒ P]] =⇒ P
by (cases l) auto

end

11 Acquisition Structures

theory Acqh
imports Main Semantics WellNested SpecialLemmas
begin

11.1 Utilities

11.1.1 Combinators for option-datatype

Extending a function to option datatype, where None indicates failure

fun opt-ext1 :: (′a ⇒ ′b option) ⇒ ′a option ⇒ ′b option where
opt-ext1 f None = None |
opt-ext1 f (Some x) = f x

fun opt-ext2 :: (′a ⇒ ′b ⇒ ′c option) ⇒ ′a option ⇒ ′b option ⇒ ′c option
where
opt-ext2 f None - = None |
opt-ext2 f - None = None |
opt-ext2 f (Some x) (Some y) = f x y

lemma opt-ext2-simps[simp]:
opt-ext2 f x None = None by (cases x) auto

lemma opt-ext2-alt :
opt-ext2 f x y = (

case x of
None ⇒ None |
Some xx ⇒ (case y of

None ⇒ None |

69

Some yy ⇒ f xx yy
)

)
by (cases (f ,x ,y) rule: opt-ext2 .cases) auto

11.2 Acquisition Structures

Acquisition structures are an abstraction of scheduling trees, that are suf-
ficient to decide whether a tree is schedulable. The basic concept of acqui-
sition structures was invented by Kahlon et al. [4, 3] as abstraction of a
linear execution of a single pushdown system. We extend this concept here
to scheduling trees of DPNs.

An acquisition or release history is a partial map from locks to set of
locks. This is the same representation as in [3]. Another, equivalent repre-
sentation is as a set of locks and a graph on locks.

An acquisition structure is a triple of a release history, a set of locks and
an acquisition history.

types
′X ah = ′X ⇒ ′X set option
′X as = ′X ah × ′X set × ′X ah

This is a collection of the common split-lemmas required when reasoning
about acquisition histories

lemmas eahl-splits = option.split-asm list .split-asm prod .split-asm split-if-asm

11.2.1 Parallel Composition

fun as-comp :: ′X as ⇒ ′X as ⇒ ′X as option where
as-comp (l ,u,e) (l ′,u ′,e ′) = (

if dom l ∩ dom l ′ = {} ∧ dom e ∩ dom e ′ = {} then
Some (l++l ′,u∪u ′,e++e ′)

else
None

)

definition as-comp-op
:: ′X as option ⇒ ′X as option ⇒ ′X as option (infixr ‖ 56) where
op ‖ == opt-ext2 as-comp

lemma as-comp-op-simps[simp]:
None ‖ x = None
x ‖ None = None
Some a ‖ Some b = as-comp a b
by (unfold as-comp-op-def) auto

lemma as-comp-assoc-helper :
(Some x ‖ Some y) ‖ Some z = Some x ‖ Some y ‖ Some z

70

by (cases x , cases y , cases z) auto

lemma as-comp-assoc: (x‖y)‖z = x‖y‖z
apply (cases x , simp)
apply (cases y , simp)
apply (cases z , simp)
apply (simp only : as-comp-assoc-helper)
done

interpretation as-comp-acz : ACIZ [op ‖ Some (empty ,{},empty) None]
apply (unfold-locales)
apply (auto simp add : as-comp-assoc)
apply (case-tac (as-comp,x ,y) rule: opt-ext2 .cases)
apply (auto simp add : map-add-comm)
apply auto
apply (case-tac x)
apply simp-all
apply (case-tac a, case-tac b)
apply simp
done

lemma as-comp-SomeE :
[[h1 ‖ h2 = Some (l ,u,e);

!!l1 u1 e1 l2 u2 e2 . [[h1 =Some (l1 ,u1 ,e1); h2 =Some (l2 ,u2 ,e2);
dom l1 ∩ dom l2 = {}; dom e1 ∩ dom e2 = {};
l=l1 ++l2 ; u=u1∪u2 ; e=e1 ++e2

]] =⇒ P
]] =⇒ P

apply (unfold as-comp-op-def)
apply (cases h1 , cases h2 , simp-all)
apply (cases h2 , simp-all)
apply (case-tac (a,aa) rule: as-comp.cases)
apply (simp split : split-if-asm)
apply blast
done

11.2.2 Acquisition Structures of Scheduling Trees and Hedges

This function adds a set of locks to every entry in a release history. On graph
interpretation, this corresponds to adding edges from any initially released
lock to any lock in X.
definition l-add-use :: ′X ah ⇒ ′X set ⇒ ′X ah where

l-add-use l X == λx . case l x of None ⇒ None | Some Y ⇒ Some (Y∪X)

This function removes an initially released lock x from the release history.
On graph interpretation, this corresponds to removing the node x from the
graph.
definition l-remove :: ′X ah ⇒ ′X ⇒ ′X ah where

71

l-remove l x == λy . if y=x then None else l y

The acquisition history of a tree is defined inductively over the tree
structure. Note that we assume that spawn steps have no lock operation. For
spawn steps with an operation on locks, the acquisition structure is defined
to be None. We further assume that a tree contains no two initial releases
of the same lock. In this case, its acquisition structure has no meaning any
more. However, if an execution tree contains two final acquisitions of the
same lock, its acquisition structure is defined to be None.

Intuitively, the release history maps all locks that are initially released
to the set of locks that have to be used before the initial release. The set of
used locks contains the locks that are used by the execution tree (But not
the locks that are only initially released or finally acquired). The acquisition
history maps all locks that are finally acquired to the set of locks that have
to be used after the final acquisition.

fun as :: (′P , ′Γ, ′L, ′X) lex-tree ⇒ ′X as option where
as (NLEAF π) = Some (empty ,{},empty) |
as (NNOSPAWN (LNone l) t) = as t |
as (NSPAWN (LNone l) ts t) = as ts ‖ as t |
as (NNOSPAWN (LAcq x) t) = (

case as t of
None ⇒ None |
Some (l ,u,e) ⇒

if x∈dom l then
Some (l-add-use (l-remove l x) {x},insert x u,e)

else if x /∈dom e then
Some (l ,u, e(x 7→u))

else
None

) |
as (NNOSPAWN (LRel x) t) = (

case as t of
None ⇒ None |
Some (l ,u,e) ⇒ Some (l(x 7→{}),u,e)

) |
as - = None

The aquisition structure of a hedge is the parallel composition of the
acquisition structures of its trees. The acquisition structure of the empty
hedge is the identity acquisition structure Some (empty , {}, empty).

fun ash :: (′P , ′Γ, ′L, ′X) lex-hedge ⇒ ′X as option where
ash [] = Some (empty ,{},empty) |
ash (t#h) = as t ‖ ash h

lemma l-add-use-dom[simp]: dom (l-add-use l X) = dom l
by (unfold l-add-use-def) (auto split : option.split-asm)

lemma l-add-use-empty [simp]: l-add-use empty X = empty

72

by (rule ext) (auto simp add : l-add-use-def split : option.split)

lemma l-add-use-eq-empty [simp]: l-add-use f X = empty ←→ f =empty
apply (auto)
apply (rule ext)
apply (drule-tac x=x in fun-cong)
apply (simp add : l-add-use-def split : option.split-asm)
done

lemma l-add-use-add [simp]:
l-add-use (l++l ′) X = l-add-use l X ++ l-add-use l ′ X
apply (unfold l-add-use-def)
apply (rule ext)
by (auto split : option.split simp add : map-add-def)

lemma l-add-use-le: l ≤ l-add-use l X
apply (auto simp add : l-add-use-def intro!: le-funI)
apply (case-tac l x)
apply auto
done

lemma l-remove-add [simp]: l-remove (l1 ++l2) m = l-remove l1 m ++ l-remove
l2 m

by (unfold l-remove-def map-add-def) (auto intro: ext)

lemma l-remove-no-eff [simp]: x /∈dom l =⇒ l-remove l x = l
by (unfold l-remove-def) (auto intro: ext)

lemma l-remove-dom[simp]: dom (l-remove l x) = dom l − {x}
by (unfold l-remove-def) (auto split : split-if-asm)

lemma l-remove-app[simp]:
l-remove l x x = None
x 6=x ′ =⇒ l-remove l x x ′ = l x ′

by (unfold l-remove-def) auto

lemma l-remove-eq-empty : l-remove l x = empty =⇒ dom l ⊆ {x}
by (fastsimp simp add : l-remove-def dest : fun-cong split : split-if-asm)

lemma l-remove-le-l [simp]: l-remove l x ≤ l
by (auto simp add : l-remove-def intro: le-funI)

lemma as-ran-e-le-u: as t = Some (l ,u,e) =⇒
⋃

ran e ⊆ u
apply (induct t arbitrary : l u e)
apply fastsimp
apply (case-tac L)
apply (simp-all split : eahl-splits)
apply fastsimp
apply fastsimp

73

apply (case-tac L)
apply (simp-all)
apply (fastsimp elim: as-comp-SomeE)
done

lemma ash-le-u: ash h = Some (l ,u,e) =⇒
⋃

ran e ⊆ u
proof (induct h arbitrary : l u e rule: ash.induct)

case 1 thus ?case by auto
next

case 2 thus ?case
apply simp
apply (erule as-comp-SomeE)
apply (fastsimp dest !: as-ran-e-le-u)
done

qed

lemma ash-final [simp]: final h =⇒ ash h=Some (empty ,{},empty)
apply (induct h)
apply auto
apply (case-tac a)
apply simp-all
done

lemma ash-append [simp]: ash (h1 @h2) = ash h1 ‖ ash h2
by (induct h1 arbitrary : h2) (auto simp add : as-comp-acz .simps)

lemma ash-LNone-simps[simp]:
ash (h1 @NSPAWN (LNone l) ts t#h2) = ash (h1 @ts#t#h2)
ash (h1 @NNOSPAWN (LNone l) t#h2) = ash (h1 @t#h2)
by (simp-all add : as-comp-acz .simps)

11.3 Consistency of Acquisition Structures

The consistency criterium of an acquisition structure decides whether the
corresponding hedge can be scheduled. Note that we currently do not check
this criterium during construction of the acquisition structure, but only at
the end, for the completely constructed acquisition structure.

The consistency criterium has two parts. The first part is a generalization
of the ¬∃m1,m2. m1∈h1(m2) ∧ m2∈h2(m1)-condition of [4]. There, the
condition was checked for two separate acquisition histories h1 and h2 that
resulted from executions of two independent pushdown systems. Here, we
have one execution described as a tree. This criterium can be interpreted
as checking acyclicity of a graph defined by the acquisition histories. In [4],
every possible cycle has length two, hence their condition is sufficient. In
our setting, a cycle may have arbitrary length (bounded only by the number
of locks), hence we use a general cyclicity check.

The acquisition and release histories encode a graph between locks. For

74

an acquisition history e, the graph contains an edge (x , x ′) if x has to be
finally acquired before x ′ is used, that is if x ∈ dom e ∧ x ′ ∈ the (e x)

For a release history l, the graph contains an edge (x , x ′) if x has to be
used before x ′ is initially released, that is if x ′ ∈ dom l ∧ x ∈ the (l x ′)

definition agraph :: ′X ah ⇒ (′X× ′X) set where
agraph e == { (x ,x ′) . x∈dom e ∧ x ′∈the (e x) }

definition rgraph :: ′X ah ⇒ (′X× ′X) set where
rgraph l == { (x ,x ′) . x ′∈dom l ∧ x∈the (l x ′) }

lemma agraph-alt : agraph e = { (x ,x ′) . ∃X ′. e x = Some X ′ ∧ x ′∈X ′}
by (unfold agraph-def) auto

lemma rgraph-alt : rgraph l = { (x ,x ′) . ∃X . l x ′ = Some X ∧ x∈X }
by (unfold rgraph-def) auto

For the same map, the acquisition graph is the converse of the release
graph. This lemma makes reasoning simpler at some points, as acquisition
and release histories have the same type, and cyclicity is equivalent for a
graph and its converse.

lemma agraph-rgraph-converse: agraph h = (rgraph h)−1

by (unfold agraph-def rgraph-def) auto

lemma agraph-add-union:
[[dom e ∩ dom e ′ = {}]] =⇒ agraph (e++e ′) = agraph e ∪ agraph e ′

by (unfold agraph-def) (auto simp add : map-add-def split : option.split-asm)

lemma rgraph-add-union:
[[dom l ∩ dom l ′ = {}]] =⇒ rgraph (l++l ′) = rgraph l ∪ rgraph l ′

by (unfold rgraph-def) (auto simp add : map-add-def split : option.split-asm)

lemma agraph-domain-simp[simp]:
Domain (agraph h) = dom h − { x . h x = Some {} }
by (unfold agraph-def) auto

lemma agraph-range-simp[simp]: Range (agraph h) =
⋃

ran h
by (unfold agraph-def) (auto simp add : ran-def)

lemma rgraph-domain-simp[simp]: Domain (rgraph h) =
⋃

ran h
by (unfold rgraph-def) (auto simp add : ran-def)

lemma rgraph-range-simp[simp]:
Range (rgraph h) = dom h − { x . h x = Some {} }
by (unfold rgraph-def) auto

lemma graph-empty [simp]:
agraph empty = {}
rgraph empty = {}
by (auto simp add : agraph-def rgraph-def)

75

lemma rgraph-add-use: rgraph (l-add-use l X) = rgraph l ∪ X×dom l
by (unfold rgraph-def l-add-use-def) (auto split : option.split-asm)

lemma rgraph-remove: rgraph (l-remove l x) = rgraph l − UNIV×{x}
by (unfold rgraph-def l-remove-def) (auto split : option.split-asm)

lemma rgraph-upd : x /∈dom l =⇒ rgraph (l(x 7→X)) = rgraph l ∪ X×{x}
by (unfold rgraph-def) auto

lemmas rgraph-ops = rgraph-add-use rgraph-remove rgraph-upd

lemma agraph-upd : x /∈dom e =⇒ agraph (e(x 7→X)) = agraph e ∪ {x}×X
by (unfold agraph-def) (auto split : split-if-asm)

lemmas agraph-ops = agraph-upd

lemma rgraph-mono: l≤l ′ =⇒ rgraph l ⊆ rgraph l ′

apply (unfold rgraph-alt)
apply auto
apply (drule-tac x=b in le-funD)
apply (auto elim: le-optE)
done

lemma agraph-mono: e≤e ′ =⇒ agraph e ⊆ agraph e ′

by (simp add : agraph-rgraph-converse rgraph-mono)

An acquisition or release history is consistent, iff its graph is acyclic.

abbreviation cons-rh :: ′X ah ⇒ bool where cons-rh h == acyclic (rgraph h)
abbreviation cons-ah :: ′X ah ⇒ bool where cons-ah h == acyclic (agraph h)
abbreviation cons-h == cons-rh

As noted above, the cyclicity criterion is equivalent for a graph and
its converse, such that we can use cons-h for both, acquisition and release
histories.

lemma cons-ah-rh-eq :
cons-ah e = cons-h e
cons-rh r = cons-h r
by (simp-all add : agraph-rgraph-converse)

lemma cons-h-empty [simp]: cons-h empty
apply (unfold rgraph-def)
apply auto
apply (metis Collect-def wfP-acyclicP wfP-empty)
done

lemma cons-h-add :
[[dom h ∩ dom h ′ = {}; cons-h (h++h ′)]] =⇒ cons-h h
[[dom h ∩ dom h ′ = {}; cons-h (h++h ′)]] =⇒ cons-h h ′

by (auto dest : acyclic-union simp add : rgraph-add-union)

76

lemma cons-h-antimono: [[l≤l ′; cons-h l ′]] =⇒ cons-h l
using acyclic-subset [OF - rgraph-mono] .

lemma cons-h-update:
assumes A: cons-h h X∩insert x (dom h) = {}
shows cons-h (h(x 7→X))

proof −
have l-remove h x ≤ h (is ?h ≤ -) by auto
with cons-h-antimono A(1) have CONS : cons-h ?h by blast
have MND [simp]: x /∈dom ?h by auto
have [simp]: h(x 7→X) = ?h(x 7→X) by (auto simp add : l-remove-def intro: ext)
have cons-h (?h(x 7→X)) proof (rule ccontr , erule cyclicE)

fix y assume (y ,y)∈ (rgraph (l-remove h x (x 7→ X)))+

hence (y , y) ∈ (rgraph (l-remove h x) ∪ X×{x})+ by (simp add : rgraph-ops)
thus False proof (cases rule: trancl-multi-insert)

case orig with CONS show False by (auto simp add : acyclic-def)
next

case (via x ′) hence C : (x ,x ′)∈(rgraph ?h)∗ by auto
show False using C proof (cases rule: rtrancl .cases)

case rtrancl-refl with A(2) via(1) show False by auto
next

case (rtrancl-into-rtrancl - b) hence (b,x ′)∈rgraph ?h by auto
hence x ′∈dom ?h by (auto simp add : rgraph-def l-remove-def)
hence x ′∈dom h by (auto simp add : l-remove-def split : split-if-asm)
with A(2) via(1) show False by auto

qed
qed

qed
thus ?thesis by simp

qed

lemma cons-h-update2 :
assumes A: cons-h h x /∈dom h x /∈X x /∈

⋃
ran h

shows cons-h (h(x 7→X))
proof −
from A(1) have A ′: acyclic (agraph h) by (simp add : agraph-rgraph-converse)
from A(4) have XNIR: x /∈Range (agraph h) by simp
hence [simp]: !!y . ¬ (y ,x)∈(agraph h) by blast
have agraph (h(x 7→X)) = agraph h ∪ {x}×X

by (simp add : agraph-ops[OF A(2)])
moreover have acyclic (agraph h ∪ {x}×X)

apply (rule ccontr)
apply (erule cyclicE)

proof −
fix xa assume (xa, xa) ∈ (agraph h ∪ {x} × X)+

thus False proof (cases rule: trancl-multi-insert2)
case orig thus False using A ′ by (unfold acyclic-def) auto

77

next
case (via xb) hence (xb,x)∈(agraph h)∗ by auto
thus False proof (cases rule: rtrancl .cases)

case rtrancl-refl
with via(1) A(3) show False by auto

next
case (rtrancl-into-rtrancl a b c)
hence (b,x)∈agraph h by simp
thus False by simp

qed
qed

qed
ultimately have acyclic (agraph (h(x 7→X))) by simp
thus ?thesis by (simp add : agraph-rgraph-converse)

qed

lemma cons-h-remove: cons-h l =⇒ cons-h (l-remove l m)
by (auto simp add : rgraph-ops intro: acyclic-subset)

lemma cons-h-add-use: [[m /∈dom l ; cons-h l]] =⇒ cons-h (l-add-use l {m})
apply (rule ccontr)
apply (erule cyclicE)

proof −
fix x
assume A: m /∈ dom l cons-h l (x , x) ∈ (rgraph (l-add-use l {m}))+
from A(3) have (x ,x)∈(rgraph l ∪ {m}×dom l)+ by (simp add : rgraph-ops)
thus False
proof (cases rule: trancl-multi-insert2)

case orig
with A(2) show False by (auto simp add : acyclic-def)

next
case (via xh) from via(2) show False
proof (cases rule: rtrancl .cases)

case rtrancl-refl
hence [simp]: x=m by blast
from via(3)[simplified] show False
proof (cases rule: rtrancl .cases)

case rtrancl-refl
hence xh=m by blast
with A(1) via(1) show False by simp

next
case rtrancl-into-rtrancl
hence m∈dom l by (auto simp add : rgraph-def)
with A(1) via(1) show False by simp

qed
next

case rtrancl-into-rtrancl
hence m∈dom l by (auto simp add : rgraph-def)
with A(1) via(1) show False by simp

78

qed
qed

qed

lemma cons-h-add-remove: cons-h l =⇒ cons-h (l-add-use (l-remove l m) {m})
by (auto intro: cons-h-add-use cons-h-remove)

lemma cons-h-add-remove-partial :
[[m /∈dom l1 ; cons-h (l1 ++l2)]] =⇒

cons-h (l1 ++ l-add-use (l-remove l2 m) {m})
proof −

assume A: m /∈dom l1
hence

LE : l1 ++ l-add-use (l-remove l2 m) {m} ≤
l-add-use (l-remove (l1 ++l2) m) {m}

apply simp
apply (rule map-add-first-le)
apply (simp add : l-add-use-le)
done

assume cons-h (l1 ++l2)
hence cons-h (l-add-use (l-remove (l1 ++l2) m) {m})

by (blast intro: cons-h-add-remove)
with cons-h-antimono[OF LE] show ?thesis by blast

qed

The consistency condition for acquisition structures checks available locks
in addition to consistency of the acquisition and release histories.

fun cons-as :: ′X as ⇒ ′X set ⇒ bool where
cons-as (l ,u,e) ξ ←→

u∩(ξ−dom l) = {} ∧ dom e ∩ (ξ−dom l) = {} ∧ cons-h l ∧ cons-h e

lemma cons-as-antimono: [[cons-as h ξ; ξ ′⊆ξ]] =⇒ cons-as h ξ ′

by (cases h) auto

fun cons where
cons None X = False |
cons (Some (l ,u,e)) X = cons-as (l ,u,e) X

11.3.1 Minimal Elements

lemma finite-acyclic-wf : [[finite r ; acyclic r]] =⇒ wf r
apply (simp only : finite-wf-eq-wf-converse[symmetric])
apply (blast intro: finite-acyclic-wf-converse)
done

The minimal elements of acquisition and release histories corresponds
to those final acquisitions or initial releases that can safely be scheduled as
next step — for an acquisition history without blocking any further locks
usage and for a release history without requiring usage of already acquired
locks.

79

abbreviation rh-min l m == m∈dom l ∧ dom l ∩ the (l m) = {}
abbreviation ah-min e m == m∈dom e ∧ m /∈

⋃
ran e

lemma rh-min-alt :
rh-min l m = (case l m of None ⇒ False | Some M ⇒ dom l ∩ M = {})
by (fastsimp split : option.split-asm)

There exists a minimal element in a consistent release history. Note that
this lemma depends on the set of locks being finite, as assumed by the LDPN
locale.

theorem (in LDPN) cons-h-ex-rh-min:
fixes l :: ′X ah
assumes A: l 6=empty cons-h l
shows ∃m. rh-min l m

proof −
{

fix M and mx :: ′X and k
assume ∀m. ¬rh-min l m
hence B : !!m lm. l m = Some lm =⇒ dom l ∩ lm 6= {}

by (unfold rh-min-alt) (auto split : option.split-asm)
have [[card (UNIV :: ′X set) − card M = k ; mx /∈M ; mx∈dom l ;

!!m. m∈M =⇒ (mx ,m)∈(rgraph l)+

]] =⇒ False
proof (induct k arbitrary : M mx)

case 0 hence M =UNIV by auto
with 0 have False by simp
thus ?case ..

next
case (Suc n)
then obtain lmx where LMX : l mx = Some lmx by auto
with B obtain m ′ where M ′: m ′∈dom l m ′∈lmx by blast
with LMX have G : (m ′,mx)∈rgraph l by (unfold rgraph-def) auto
{

assume m ′∈M
with Suc.prems have (mx ,m ′)∈(rgraph l)+ by auto
also note r-into-trancl [OF G]
finally have False using A(2) by (unfold acyclic-def) auto

} moreover {
assume C : m ′/∈M m ′6=mx hence C ′: m ′/∈M∪{mx} by auto
with Suc.prems(4) G have 1 : !!m. m∈M∪{mx} =⇒ (m ′,m)∈(rgraph l)+

by (auto intro: r-into-trancl trancl-trans)
from Suc.prems(1 ,2) have

2 : card (UNIV :: ′X set) − card (M∪{mx}) = n
by (simp)

from Suc.hyps[OF 2 C ′ M ′(1) 1] have False .
} moreover {

assume m ′=mx
with r-into-trancl [OF G] have False using A(2)

80

by (unfold acyclic-def) auto
} ultimately show False by blast

qed
} note X =this
from A obtain m where m∈dom l by (subgoal-tac dom l 6= {}) (blast , auto)
with X [of {} - m] A show ?thesis by − (rule ccontr , auto)

qed

There exists a minimal element in a consistent acquisition history.
Note that this lemma depends on the set of locks being finite, as con-

strained by the LDPN locale.

theorem (in LDPN) cons-h-ex-ah-min:
fixes e :: ′X ah
assumes A: e 6=empty cons-h e
shows ∃m. ah-min e m

proof (cases agraph e = {})
case True from A(1) obtain m where m∈dom e by (blast elim: nempty-dom)
moreover with True have m /∈

⋃
ran e by (auto simp add : agraph-def ran-def)

ultimately show ?thesis by blast
next

case False
from A(2) cons-ah-rh-eq(1)[symmetric, of e] have cons-ah e by simp
hence WF : wf (agraph e) by (auto intro: finite-acyclic-wf)
from wf-min[of agraph e, OF WF False] obtain m where

m ∈ Domain (agraph e) − Range (agraph e) .
hence m∈dom e m /∈

⋃
ran e by (auto simp add : agraph-def ran-def)

thus ?thesis by blast
qed

11.3.2 Well-Nestedness and Acquisition Structures

Only locks that are on the lock-stack can be initially released:

lemma wn-t-dom-l-lower-µ:
[[wn-t ′ t µ; as t = Some (l , u, e)]] =⇒ dom l ⊆ set µ
apply (induct t arbitrary : µ l u e)
apply fastsimp
apply (case-tac L)
apply fastsimp
apply (auto split : option.split-asm list .split-asm split-if-asm

simp add : l-remove-def l-add-use-def)
apply (fastsimp)
apply (fastsimp)
apply (fastsimp)
apply (case-tac L)
apply (fastsimp elim: as-comp-SomeE)+
done

lemmas wn-dom-l-empty = wn-t-dom-l-lower-µ[of - [], simplified]

81

lemma wn-h-dom-l-lower-µ:
[[wn-h h µ; ash h = Some (l ,u,e)]] =⇒ dom l ⊆ locks-µ µ
apply (induct h µ arbitrary : l u e rule: wn-h.induct)
apply auto
apply (force dest : wn-t-dom-l-lower-µ elim!: as-comp-SomeE)
done

Due to well-nestedness, if a lock x is left, all locks that are above this
lock on the stack are left, too. This lemma expresses leaving a lock by means
of the domain of the release-history. Moreover, the release histories of the
locks released before are smaller or equal than the release history of x, and
do not contain x.

lemma wn-t-dom-l-stack : [[wn-t ′ t µ; as t = Some (l ,u,e); x∈dom l]] =⇒
∃µ1 µ2 . µ=µ1 @x#µ2 ∧ set µ1 ⊆ dom l ∧

(∀ x ′∈set µ1 . l x ′ ≤ l x ∧
(case l x ′ of None ⇒ True | Some lx ′⇒ x /∈lx ′ ∧ x ′/∈lx ′)

)
proof (induct t arbitrary : µ l u e x)

case NLEAF thus ?case by fastsimp
next

case (NSPAWN lab ts t)
from NSPAWN .prems(1) obtain nlab where [simp]: lab=LNone nlab

by (cases lab, simp-all)
from NSPAWN .prems(1) have WN : wn-t ′ ts [] wn-t ′ t µ by auto
from NSPAWN .prems(2) have as ts ‖ as t = Some (l ,u,e) by simp
then obtain l1 u1 e1 l2 u2 e2 where

[simp]: l=l1 ++l2 u=u1∪u2 e=e1 ++e2 and
SPLIT : as ts = Some (l1 ,u1 ,e1) as t = Some (l2 ,u2 ,e2)

dom l1 ∩ dom l2 = {} dom e1 ∩ dom e2 = {}
by (blast elim!: as-comp-SomeE)

have [simp]: l1 = empty proof −
{

fix x assume A: x∈dom l1
from NSPAWN .hyps(1)[OF WN (1) SPLIT (1) A] have False by blast

}
thus ?thesis by force

qed
from 〈x∈dom l 〉 have A: x∈dom l2 by auto
from NSPAWN .hyps(2)[OF WN (2) SPLIT (2) A] obtain µ1 µ2 where
µ=µ1 @x#µ2 set µ1 ⊆ dom l
∀ x ′∈set µ1 . l x ′ ≤ l x ∧

(case l x ′ of None ⇒ True | Some lx ′⇒ x /∈ lx ′ ∧ x ′/∈lx ′)
by auto

thus ?case by blast
next

case (NNOSPAWN lab t)
show ?case proof (cases lab)

case (LNone nlab) with NNOSPAWN show ?thesis by simp blast
next

82

case (LAcq x ′)[simp]
from NNOSPAWN .prems(2) obtain l ′ u ′ e ′ where

HTFMT : as t = Some (l ′,u ′,e ′)
by (auto split : option.split-asm list .split-asm split-if-asm prod .split-asm)

with NNOSPAWN .prems(2 ,3) have MNE : x 6=x ′

by (auto split : split-if-asm simp add : l-remove-def l-add-use-def)
from NNOSPAWN .prems(1) have WN : wn-t ′ t (x ′#µ) by simp
{

assume x ′∈dom l ′

with NNOSPAWN .prems(2) HTFMT have
[simp]: l=l-add-use (l-remove l ′ x ′) {x ′} u = insert x ′ u ′ e ′=e
by (auto split : option.split-asm list .split-asm split-if-asm prod .split-asm)

with MNE NNOSPAWN .prems(3) have MID : x∈dom l ′ by auto
from NNOSPAWN .hyps[OF WN HTFMT MID] obtain µ1 µ2 where

IHAPP : x ′#µ = µ1 @x#µ2 set µ1 ⊆ dom l ′

∀ x ′∈set µ1 . l ′ x ′ ≤ l ′ x ∧
(case l ′ x ′ of None ⇒ True | Some lx ′⇒ x /∈ lx ′ ∧ x ′/∈lx ′)

by blast
from IHAPP(3) MNE have

IHAPP3 ′: ∀ x ′∈set µ1 . l x ′ ≤ l x ∧
(case l x ′ of None ⇒ True | Some lx ′⇒ x /∈ lx ′ ∧ x ′/∈lx ′)

apply safe
apply (case-tac x ′=x ′a)
apply (simp add : l-add-use-def)
apply (subgoal-tac l ′ x ′a ≤ l ′ x)
apply (erule le-optE)
apply (simp add : l-add-use-def split : option.split)
apply (auto simp add : l-add-use-def split : option.split) [1]
apply simp
apply (simp add : l-add-use-def l-remove-def)
apply (split option.split-asm option.split)+
apply meson
apply fast+
done

from IHAPP(2) MNE have IHAPP2 ′: l ′ x ≤ l x
by (auto simp add : l-add-use-def split : option.split)

from wnt-eq-wnt ′ WN wnt-distinct have distinct (x ′#µ) by blast
with MNE IHAPP IHAPP3 ′ obtain µ1 ′ where
µ=µ1 ′@x#µ2 set µ1 ′ ⊆ dom l
∀ x ′∈set µ1 ′. l x ′ ≤ l x ∧

(case l x ′ of None ⇒ True | Some lx ′⇒ x /∈ lx ′ ∧ x ′/∈lx ′)
by (cases µ1) auto

hence ?thesis by blast
} moreover {

assume A: x ′/∈dom l ′

with NNOSPAWN .prems(2) HTFMT have [simp]: l=l ′

by (auto split : split-if-asm)
from NNOSPAWN .hyps[OF WN HTFMT NNOSPAWN .prems(3)[simplified]]

83

obtain µ1 µ2 where IHAPP : x ′#µ = µ1 @x#µ2 set µ1 ⊆ dom l ′

by blast
with MNE have x ′∈dom l ′ by (cases µ1) auto
with A have False ..

} ultimately show ?thesis by blast
next

case (LRel x ′) [simp]
from NNOSPAWN .prems(1) obtain µ ′ where WN : µ=x ′#µ ′ wn-t ′ t µ ′

by auto
from NNOSPAWN .prems(2) obtain l ′ u ′ where

HTFMT : as t = Some (l ′,u ′,e) and
[simp]: l=l ′(x ′7→{}) u=u ′

by (auto split : option.split-asm prod .split-asm list .split-asm)
{

assume x=x ′

with WN (1) have µ=[]@x#µ ′ set [] ⊆ dom l
(∀ x ′∈set []. l x ′ ≤ l x ∧

(case l x ′ of None ⇒ True | Some lx ′⇒ x /∈ lx ′ ∧ x ′/∈lx ′))
by auto

hence ?thesis by blast
} moreover {

assume MNE : x 6=x ′

with NNOSPAWN .prems(3) have MIDL ′: x∈dom l ′

by (auto simp add : l-add-use-def split : option.split-asm)
with NNOSPAWN .hyps[OF WN (2) HTFMT] obtain µ1 µ2 where

IHAPP : µ ′=µ1 @x#µ2 set µ1 ⊆ dom l ′

(∀ x ′∈set µ1 . l ′ x ′ ≤ l ′ x ∧
(case l ′ x ′ of None ⇒ True | Some lx ′⇒ x /∈ lx ′ ∧ x ′/∈lx ′))

by blast
with WN (1) have µ=(x ′#µ1)@x#µ2 by simp
moreover from IHAPP(2) NNOSPAWN .prems(3) have

set (x ′#µ1) ⊆ dom l
by auto

moreover from IHAPP(3) MNE MIDL ′ have
(∀ x ′∈set (x ′#µ1). l x ′ ≤ l x ∧

(case l x ′ of None ⇒ True | Some lx ′⇒ x /∈ lx ′ ∧ x ′/∈lx ′))
by (fastsimp simp add : l-add-use-def split : option.split)

ultimately have ?thesis by blast
} ultimately show ?thesis by blast

qed
qed

lemma wn-t-dom-l-stack ′: [[wn-t ′ t µ; as t = Some (l ,u,e); x∈dom l]] =⇒
∃µ1 µ2 . µ=µ1 @x#µ2 ∧ set µ1 ⊆ dom l ∧

(∀ x ′∈set µ1 . l x ′ ≤ l x ∧ x /∈the (l x ′) ∧ x ′/∈the (l x ′))
apply (drule (2) wn-t-dom-l-stack)
apply (elim exE)

84

apply (rule-tac x=µ1 in exI)
apply (rule-tac x=µ2 in exI)
apply (force)
done

11.4 Soundness of the Consistency Condition

context LDPN
begin

The consistency condition for acquisition structures is sound, i.e. if a
hedge h is schedulable with initial locks X, and is well-nested w.r.t. a lock
stack list µ containing the locks from X, then the acquisition structure of h
is consistent w.r.t. X.

theorem acqh-sound :
[[lsched h X w ; wn-h h µ; X =locks-µ µ]] =⇒
∃ l u e. ash h = Some (l ,u,e) ∧ cons-as (l ,u,e) (locks-µ µ)

— The proof works by induction over the schedule, in each induction step
prepending a step to teh schedele.

For steps that have perform operation on locks, the proof is straightforward.
If the first step of the execution is a release of a lock, the acquisition history of the
new hedge (with prepended release step at one tree) remains consistent. Acyclicity
is preserved, as the release-step is the first step of the execution. Consistency w.r.t.
used locks is also preserved.
If the first step of the execution is an acquisition step, we further have to distinguish

whether it is a usage or a final acquisition.
proof (induct arbitrary : µ rule: lsched .induct)

case lsched-final thus ?case by (auto simp add : ash-final)
next

case (lsched-spawn h1 ts t h2 Xh w X lab µ)
note [simp] = lsched-spawn.prems(2)
from lsched-spawn.prems obtain nlab where [simp]: lab=LNone nlab

by (auto elim: wn-h-spawn-imp-LNoneE)
from lsched-spawn.hyps(3) have [simp]: Xh=X by auto
from wn-h-preserve-spawn[OF - lsched-spawn.prems(1), of X , simplified]
obtain µ ′ where [simp]: locks-µ µ = locks-µ µ ′ wn-h (h1 @ts#t#h2) µ ′

by blast
from lsched-spawn.hyps(2)[of µ ′, simplified] obtain l u e where

ash (h1 @ts#t#h2) = Some (l ,u,e) cons-as (l ,u,e) (locks-µ µ)
by auto

moreover hence ash (h1 @NSPAWN lab ts t#h2) = Some (l ,u,e) by simp
ultimately show ?case by auto

next
case (lsched-nospawn h1 t h2 Xh w X lab µ) note lsched-nospawn.prems(2)[simp]
from wn-h-split-nospawn[OF lsched-nospawn.hyps(3)[simplified]

lsched-nospawn.prems(1)] obtain µ1 xs µ2 xsh where
[simp]: µ = µ1 @ xs # µ2 Xh = locks-µ µ1 ∪ set xsh ∪ locks-µ µ2 and

LVX : lock-valid-xs lab xs xsh and
WNSPLIT : wn-t ′ (NNOSPAWN lab t) xs wn-t ′ t xsh

85

wn-h h1 µ1 wn-h h2 µ2 and
LDIST : locks-µ µ1 ∩ set xs = {} locks-µ µ1 ∩ set xsh = {}

locks-µ µ1 ∩ locks-µ µ2 = {} locks-µ µ2 ∩ set xs = {}
locks-µ µ2 ∩ set xsh = {} and

WNH : wn-h (h1 @ t # h2) (µ1 @ xsh # µ2)
.

have WNHR: wn-h (h1 @h2) (µ1 @µ2) using WNSPLIT LDIST
by (auto intro: wn-h-appendI)

from lsched-nospawn.hyps(2)[OF WNH] obtain l u e where
IHAPP : ash h1 ‖ as t ‖ ash h2 = Some (l ,u,e)

cons-as (l ,u,e) (locks-µ µ1 ∪ set xsh ∪ locks-µ µ2) and
IHAPP ′: ash (h1 @ t # h2) = Some (l , u, e)
by (auto simp add : Un-ac)

then obtain lt ut et l2 u2 e2 where
[simp]: as t = Some (lt ,ut ,et) (ash h1 ‖ ash h2) = Some (l2 ,u2 ,e2)

l=lt++l2 u=ut∪u2 e=et++e2 and
ASS : dom lt ∩ dom l2 = {} dom et ∩ dom e2 = {}

proof −
from IHAPP have as t ‖ ash h1 ‖ ash h2 = Some (l ,u,e) by simp
thus ?thesis by (erule-tac as-comp-SomeE) (rule that)

qed
from wn-h-dom-l-lower-µ[OF WNHR] have

DOML2 : dom l2 ⊆ locks-µ µ1 ∪ locks-µ µ2
by fastsimp

from wn-t-dom-l-lower-µ[OF WNSPLIT (2)] have
DOMLT : dom lt ⊆ set xsh
by fastsimp

have DOMDISJ : dom lt ∩ dom l2 = {}
proof −

from LDIST have set xsh ∩ (locks-µ µ1 ∪ locks-µ µ2) = {} by blast
with DOMLT DOML2 show ?thesis by blast

qed
show ?case proof (cases lab)

case (LNone nlab)[simp] from LVX have [simp]: set xsh = set xs
by (auto elim: lock-valid-xs.cases)

from IHAPP show ?thesis by auto
next

case (LRel x)[simp]
from LVX have [simp]: xs=x#xsh by (auto elim: lock-valid-xs.cases)
have ash (h1 @(NNOSPAWN lab t)#h2) =

as (NNOSPAWN lab t) ‖ Some (l2 ,u2 ,e2)
apply (simp del : LRel)
apply (subst as-comp-acz .assoc[symmetric])
by (simp)

also from IHAPP have as (NNOSPAWN lab t) = Some (lt(x 7→{}),ut ,et)
by simp

hence as (NNOSPAWN lab t) ‖ Some (l2 ,u2 ,e2) = Some (l(x 7→{}),u,e)
using ASS DOML2 LDIST by (auto simp add : map-add-comm)

86

finally have
G1 : ash (h1 @(NNOSPAWN lab t)#h2) = Some (l(x 7→{}),u,e) .

moreover from IHAPP(2) have G2 : cons-as (l(x 7→{}),u,e) (locks-µ µ)
by simp (blast intro: cons-h-update[where X ={}, simplified])

ultimately show ?thesis by blast
next

case (LAcq x)[simp]
from LVX have

[simp]: xsh=x#xs and
XNIXS : x /∈set xs

by (auto elim: lock-valid-xs.cases)
from DOML2 have XNIDL2 : x /∈dom l2 using LDIST by auto
show ?thesis proof (cases x∈dom lt)

case True — The first step enters a lock that is left again, thus converting
an initial release to a use step

— The consistency of the acquisition structure is preserved, as a use-step of
a lock is added that is not initially released (any more)

have ash (h1 @(NNOSPAWN lab t)#h2) =
as (NNOSPAWN lab t) ‖ Some (l2 ,u2 ,e2)

apply (simp del : LAcq)
apply (subst as-comp-acz .assoc[symmetric])
by (simp)

also from True have
as (NNOSPAWN lab t) =

Some (l-add-use (l-remove lt x) {x},insert x ut ,et)
by simp

hence as (NNOSPAWN lab t) ‖ Some (l2 ,u2 ,e2) =
Some (l2 ++ l-add-use (l-remove lt x) {x},insert x u,e)

using ASS DOML2 LDIST
by (auto simp add : map-add-comm)

finally have G1 : ash (h1 @(NNOSPAWN lab t)#h2) =
Some (l2 ++ l-add-use (l-remove lt x) {x},insert x u,e) .

moreover
have G2 : cons-as (l2 ++ l-add-use (l-remove lt x) {x},insert x u,e)

(locks-µ µ)
proof −

from IHAPP(2) have cons-h (l2 ++ l-add-use (l-remove lt x) {x})
using cons-h-add-remove-partial [OF XNIDL2 , of lt]
by (simp add : map-add-comm[OF DOMDISJ])

moreover have
insert x u ∩

(locks-µ µ − dom (l2 ++ l-add-use (l-remove lt x) {x})) = {}
using XNIXS LDIST [simplified] IHAPP(2) by simp blast

moreover have
dom e ∩ (locks-µ µ − dom (l2 ++ l-add-use (l-remove lt x) {x})) = {}
using XNIXS LDIST [simplified] IHAPP(2) by simp blast

moreover from IHAPP(2) have cons-h e by simp
ultimately show ?thesis by simp

qed

87

ultimately show ?thesis by blast
next

case False — The first step finally enters a lock
from False XNIDL2 IHAPP(2) have XNIUE : x /∈u x /∈dom e by auto
— The consistency of the acquisition structure is preserved, as no cycles are

added by insertion of the final acquisition.
have ash (h1 @(NNOSPAWN lab t)#h2) =

as (NNOSPAWN lab t) ‖ Some (l2 ,u2 ,e2)
apply (simp del : LAcq)
apply (subst as-comp-acz .assoc[symmetric])
by (simp)

also from False have as (NNOSPAWN lab t) = Some (lt ,ut ,et(x 7→ut))
using XNIUE by simp

hence as (NNOSPAWN lab t) ‖ Some (l2 ,u2 ,e2) = Some (l ,u,e(x 7→ut))
using ASS XNIUE
by (auto simp add : map-add-comm)

finally have
G1 : ash (h1 @(NNOSPAWN lab t)#h2) = Some (l ,u,e(x 7→ut)) .

moreover
from cons-h-update2 [of e x ut] IHAPP(2) ash-le-u[OF IHAPP ′] XNIUE
have cons-h (e(x 7→ut)) by auto
with IHAPP(2) have cons-as (l ,u,e(x 7→ut)) (locks-µ µ)

using LDIST XNIXS by simp blast
ultimately show ?thesis by blast

qed
qed

qed
end

11.5 Precision of the Consistency Condition

11.5.1 Custom Size Function

In the following we construct a custom size function for hedges that is suited
to do induction over hedges. This size function decreases on any step done
on the hedge.

fun list-size ′ where
list-size ′ f [] = (0 ::nat) |
list-size ′ f (a#l) = f a + list-size ′ f l

fun size-t where
size-t (NLEAF π) = Suc 0 |
size-t (NNOSPAWN lab t) = Suc (size-t t) |
size-t (NSPAWN lab ts t) = Suc (size-t ts + size-t t)

lemma list-size ′-conc[simp]: list-size ′ f (a@b) = list-size ′ f a + list-size ′ f b
by (induct a) auto

abbreviation hedge-size :: (′P , ′Γ, ′L, ′X) lex-hedge ⇒ nat where

88

hedge-size h == list-size ′ size-t h

lemma hedge-size-zero[simp]: hedge-size h = 0 ←→ h=[]
apply (cases h)
apply auto
apply (case-tac a)
apply simp-all

done

This function checks whether a lock is released in the current execution
tree, and returns the set of locks that are acquired before this lock is released.
Note that this function ignores the lock-effect of labels of spawn-nodes, as
we assume that spawn-nodes have no lock-operation.

fun closing :: ′X ⇒ (′P , ′Γ, ′L, ′X) lex-tree ⇒ ′X set option where
closing x (NLEAF π) = None |
closing x (NSPAWN lab ts t) = closing x t |
closing x (NNOSPAWN (LNone nlab) t) = closing x t |
closing x (NNOSPAWN (LAcq x ′) t) = (

case closing x t of None ⇒ None |
Some X ⇒ Some (insert x ′ X)

) |
closing x (NNOSPAWN (LRel x ′) t) = (if x=x ′ then Some {} else closing x t)

Function that checks whether a tree starts with the acquisition of a lock
that is used (i.e. not finally acquired) and returns all the locks that are used
from the acquisition to to the release of that lock:

fun closing ′ where
closing ′ (NNOSPAWN (LAcq x) t) = closing x t |
closing ′ - = None

The following functions define the set of locks that are acquired at the
roots of a tree/hedge. This function is used in the case of the precision
proof, where all the roots of the hedge are either leafs or final acquisitions.

fun rootlocks-t where
rootlocks-t (NNOSPAWN (LAcq x) t) = {x} |
rootlocks-t - = {}

fun rootlocks where
rootlocks [] = {} |
rootlocks (t # h) = rootlocks-t t ∪ rootlocks h

lemma rootlocks-conc[simp]: rootlocks (h1 @h2) = rootlocks h1 ∪ rootlocks h2
by (induct h1) auto

lemma rootlocks-split :
[[x∈rootlocks h; !!h1 t h2 . h=h1 @NNOSPAWN (LAcq x) t#h2 =⇒ P]] =⇒ P

proof (induct h arbitrary : P)
case Nil thus ?case by simp

next

89

case (Cons tp h) from Cons.prems(1)[simplified] show ?case proof
assume x∈rootlocks-t tp
with Cons.prems(2)[of [], simplified] show ?thesis

by (cases tp rule: rootlocks-t .cases) auto
next

assume A: x∈rootlocks h from Cons.hyps[OF A] obtain h1 t h2 where
h = h1 @ NNOSPAWN (LAcq x) t # h2 .

hence tp#h = (tp#h1)@NNOSPAWN (LAcq x) t # h2 by simp
thus ?thesis by (blast intro!: Cons.prems(2))

qed
qed

If a lock x is closed (before it is acquired), the value of the release history
for x is precisely the set of used locks before x is closed. Closing x before it
is acquired is expressed by well-nestedness w.r.t. a lock-stack that contains
x.

lemma closing-dom-l :
[[wn-t ′ t (xs1 @x#xs2); closing x t = Some Xu; as t = Some (l ,u,e)]] =⇒

l x = Some Xu
proof (induct t arbitrary : xs1 l u e Xu)

case NLEAF thus ?case by auto
next

case (NSPAWN lab ts t)
then obtain nlab where [simp]: lab=LNone nlab by (cases lab) auto
from NSPAWN show ?case by (fastsimp elim: as-comp-SomeE dest : wn-dom-l-empty)

next
case (NNOSPAWN lab t) show ?case proof (cases lab)

case (LNone nlab) with NNOSPAWN show ?thesis by auto
next

case (LAcq x ′)[simp]
from NNOSPAWN .prems obtain Xu ′ where

HP1 : wn-t ′ t ((x ′#xs1)@x#xs2) closing x t = Some Xu ′ and
[simp]: Xu=insert x ′ Xu ′

by (auto split : option.split-asm)
from NNOSPAWN .prems obtain l ′ u ′ e ′ where

HP2 : as t = Some (l ′,u ′,e ′)
by (auto split : eahl-splits)

from NNOSPAWN .hyps[OF HP1 HP2] have IHAPP : l ′ x = Some Xu ′ .

from wn-t-dom-l-stack [OF HP1 (1) HP2 , of x]
IHAPP distinct-match[OF wnt-distinct ′[OF HP1 (1)]] have

set (x ′#xs1) ⊆ dom l ′

by fastsimp
hence X ′IDL ′: x ′∈dom l ′ by simp
with NNOSPAWN .prems(3) HP2 IHAPP
have l = l-add-use (l-remove l ′ x ′) {x ′} by (simp split : eahl-splits)
moreover from wnt-distinct ′[OF HP1 (1)] have MNE : x ′6=x by (auto)

ultimately show l x = Some Xu using IHAPP by (auto simp add : l-add-use-def)
next

90

case (LRel x ′)[simp]
show ?thesis proof (cases x=x ′)

case True with NNOSPAWN .prems have l x = Some {} Xu={}
by (auto split : eahl-splits)

thus ?thesis by blast
next

case False with NNOSPAWN .prems obtain xs1 ′ where
[simp]: xs1 =x ′#xs1 ′ and

HP1 : wn-t ′ t (xs1 ′@x#xs2) closing x t = Some Xu
by (cases xs1) auto

from NNOSPAWN .prems obtain l ′ u ′ e ′ where
HP2 : as t = Some (l ′,u ′,e ′) and
[simp]: l=l ′(x ′7→{})
by (auto split : eahl-splits)

from NNOSPAWN .hyps[OF HP1 HP2 (1)] have l ′ x = Some Xu .
with False show l x = Some Xu by auto

qed
qed

qed

A lock must not be used before it is closed.

lemma wn-closing-ni : [[wn-t ′ t (µ1 @x#µ2); closing x t = Some Xu]] =⇒ x /∈Xu
proof (induct t arbitrary : µ1 Xu)

case NLEAF thus ?case by auto
next

case (NSPAWN lab ts t)
then obtain nlab where [simp]: lab=LNone nlab by (cases lab) auto
from NSPAWN show ?case by auto

next
case (NNOSPAWN lab t)
show ?case proof (cases lab)

case (LNone nlab) thus ?thesis using NNOSPAWN by auto
next

case (LAcq x ′)[simp]
from NNOSPAWN .prems(1) have WN : wn-t ′ t ((x ′#µ1)@x#µ2) by auto
from NNOSPAWN .prems(2) obtain Xu ′ where

CL: closing x t = Some Xu ′ Xu = insert x ′ Xu ′

by (auto split : option.split-asm)
from NNOSPAWN .hyps[OF WN CL(1)] have x /∈Xu ′ .
moreover from wnt-distinct ′[OF WN] have x ′6=x by auto
ultimately show ?thesis by (auto simp add : CL(2))

next
case (LRel x ′)
thus ?thesis

using NNOSPAWN by (cases µ1) (auto split : split-if-asm)
qed

qed

This lemma gives porperties of the acquisition structure after an acqui-
sition step of a lock usage. It is used in the case when there is a tree starting

91

with a usage, to reason about the acquisition structure after the root node
of this tree has been scheduled.

lemma wn-closing-as-fmt :
assumes A: wn-t ′ (NNOSPAWN (LAcq x) t) µ

as (NNOSPAWN (LAcq x) t) = Some (l ,u,e)
closing x t = Some Xu

assumes C : !!l ′ u ′. [[as t = Some (l ′,u ′,e); l ′ ≤ l(x 7→Xu);
u=insert x u ′; dom l ′ = insert x (dom l)

]] =⇒ P
shows P

proof −
from A(1) have WN : wn-t ′ t ([]@x#µ) by auto
from A(2) obtain l ′ u ′ e ′ where AS ′: as t = Some (l ′,u ′,e ′)

by (auto split : eahl-splits)
from closing-dom-l [OF WN A(3) AS ′] have L ′X : l ′ x = Some Xu .
with A(2) AS ′ have

LFMT : l = l-add-use (l-remove l ′ x) {x} and
[simp]: u=insert x u ′ e ′=e
by (auto split : eahl-splits)

from LFMT L ′X have G2 : l ′ ≤ l(x 7→Xu)
by (rule-tac le-funI) (auto simp add : l-add-use-def split : option.split)

from LFMT L ′X have G3 : dom l ′ = insert x (dom l) by auto
from C [OF - G2 - G3] show P by (simp add : AS ′)

qed

A lock that occurs in the release history is closed in the execution tree,
using the locks as described in the RH.

lemma dom-l-closing :
[[as t = Some (l ,u,e); wn-t ′ t µ; l x = Some Xu]] =⇒ closing x t = Some Xu

proof (induct t µ arbitrary : l u e Xu rule: wn-t ′.induct)
case (1 ms) thus ?case by auto

next
case 2 thus ?case by force

next
case 3 thus ?case by (fastsimp elim!: as-comp-SomeE dest !: wn-dom-l-empty)

next
case (4 xa t µ) note C =this

from C (3) have WN : wn-t ′ t (xa#µ) by auto
from C (2) obtain l ′ u ′ e ′ where AS : as t = Some (l ′,u ′,e ′)

by (auto split : eahl-splits)
from C (2 ,4) have XNE : xa 6=x by (auto split : eahl-splits simp add : l-add-use-def)
with AS C (2 ,4) obtain Xu ′ where P : l ′ x = Some Xu ′

by (auto split : eahl-splits simp add : l-add-use-def)
from C (1)[OF AS WN , OF P] have IHAPP : closing x t = Some Xu ′ .
from wn-t-dom-l-stack ′[OF WN AS , of x] P obtain µ1 µ2 where

xa#µ = µ1 @x#µ2 set µ1 ⊆ dom l ′

by blast
with XNE have xa∈dom l ′ by (cases µ1) auto

92

with AS C (2 ,4) have l = l-add-use (l-remove l ′ xa) {xa}
by (auto split : eahl-splits)

with XNE P C (4) have Xu = (insert xa Xu ′) by (auto simp add : l-add-use-def)
moreover from IHAPP
have closing x (NNOSPAWN (LAcq xa) t) = Some (insert xa Xu ′)

by auto
ultimately show ?case by blast

next
case 5 thus ?case by (fastsimp split : eahl-splits)

qed auto

If a tree starts with a final acquisition of x, its release history is empty
and the acquisition history of x contains all the used locks.

With Lemma as-ran-e-le-u we then also have that the ranges of the
acquisition histories contain precisely the used locks.

lemma ncl-as-fmt-single:
assumes A: wn-t ′ (NNOSPAWN (LAcq x) t) µ

closing ′ (NNOSPAWN (LAcq x) t) = None
as (NNOSPAWN (LAcq x) t) = Some (l ,u,e)

shows u=
⋃

ran e l=empty e x = Some u
proof −

from A(1) have WN : wn-t ′ t (x#µ) by auto
from A(2) have NC : closing x t = None by auto
from A(3) obtain l ′ u ′ e ′ where AS : as t = Some (l ′,u ′,e ′)

by (auto split : eahl-splits)
from dom-l-closing [OF AS WN] NC have XNIDL ′: ¬x∈dom l ′ by auto
with AS A(3) have

EFMT : e=e ′(x 7→u) x /∈dom e ′ and
[simp]: l=l ′

by (auto split : eahl-splits)
from EFMT (1) show e x = Some u by auto
with EFMT have u ⊆

⋃
ran e by auto

with as-ran-e-le-u[OF A(3)] show u=
⋃

ran e by simp
{

fix x ′

assume CONTR: x ′∈dom l ′

with XNIDL ′ have XNE : x ′6=x by auto
from wn-t-dom-l-stack ′[OF WN AS CONTR] obtain µ1 µ2 where

DS : x#µ = µ1 @x ′#µ2 set µ1 ⊆ dom l ′

by blast
with XNE have x∈dom l ′ by (cases µ1) auto
with XNIDL ′ have False ..

} thus l=empty
by (auto simp add : dom-empty-simp[symmetric] simp del : dom-empty-simp)

qed

This lemma describes properties of the acquisition structure of a tree
after a final acquisition has been scheduled.

lemma ncl-as-fmt-single ′:

93

assumes A: wn-t ′ (NNOSPAWN (LAcq x) t) µ
closing ′ (NNOSPAWN (LAcq x) t) = None
as (NNOSPAWN (LAcq x) t) = Some (l ,u,e)

assumes C : !!e ′. [[as t = Some (empty , u, e ′);
u=

⋃
ran e; l=empty ;

e = e ′(x 7→u); x /∈dom e ′

]] =⇒ P
shows P

proof −
from A(1) have WN : wn-t ′ t (x#µ) by auto
from A(2) have NC : closing x t = None by auto
from A(3) obtain l ′ u ′ e ′ where AS : as t = Some (l ′,u ′,e ′)

by (auto split : eahl-splits)
from dom-l-closing [OF AS WN] NC have XNIDL ′: ¬x∈dom l ′ by auto
with AS A(3) have

EFMT : e=e ′(x 7→u) x /∈dom e ′ and
[simp]: l ′=l u ′=u
by (auto split : eahl-splits)

with EFMT have u ⊆
⋃

ran e by auto
with as-ran-e-le-u[OF A(3)] have UFMT : u=

⋃
ran e by simp

{
fix x ′

assume CONTR: x ′∈dom l ′

with XNIDL ′ have XNE : x ′6=x by auto
from wn-t-dom-l-stack ′[OF WN AS CONTR] obtain µ1 µ2 where

DS : x#µ = µ1 @x ′#µ2 set µ1 ⊆ dom l ′

by blast
with XNE have x∈dom l ′ by (cases µ1) auto
with XNIDL ′ have False ..

} hence LFMT [simp]: l=empty
by (auto simp add : dom-empty-simp[symmetric] simp del : dom-empty-simp)

from C [OF - UFMT LFMT EFMT] AS show P by simp
qed

The acquisition structure of a hedge whose trees start with final acqui-
sitions or are leafs has a special structure:

• The release history is empty.

• The ranges of the acquisition histories contain precisely the used locks.

• The acquisition histories for the locks at the roots of the hedge contain
precisely the used locks.

• The acquisistion histories are defined for the locks at the roots of the
hedge.

The first proposition follows because an initial release cannot come after
a final acquisition due to well-nestedness. The second and third propositions
follow as the roots of the hedge preceed every other node in the hedge. The

94

forth proposition follows directly from the assumption that every root node
that acquired a lock is a final acquisistion.

lemma ncl-as-fmt :
[[

wn-h h µ; ash h = Some (l ,u,e);
!!Q t . [[t∈set h; !!x t ′. t=NNOSPAWN (LAcq x) t ′ =⇒ Q ;

!!p w . t=NLEAF (p,w) =⇒ Q
]] =⇒ Q ;

∀ t∈set h. closing ′ t = None
]] =⇒ l=empty ∧ u=

⋃
ran e ∧⋃

ran (e |‘ rootlocks h) =
⋃

ran e ∧
rootlocks h ⊆ dom e

proof (induct h arbitrary : µ l u e)
case Nil thus ?case by auto

next
case (Cons t h)
from Cons.prems(1) obtain xs µ ′ where

[simp]: µ=xs#µ ′ and
WN-SPLIT : wn-t ′ t xs wn-h h µ ′ and
WN-DISJ : set xs ∩ locks-µ µ ′ = {}

by (auto elim!: wn-h-prepend-h)
from Cons.prems(2) obtain l1 u1 e1 l2 u2 e2 where

[simp]: l=l1 ++l2 u=u1∪u2 e=e1 ++e2 and
AS-SPLIT : as t = Some (l1 ,u1 ,e1) ash h = Some (l2 ,u2 ,e2) and
AS-DISJ : dom l1 ∩ dom l2 = {} dom e1 ∩ dom e2 = {}

by (fastsimp elim!: as-comp-SomeE)
have l2 =empty ∧ u2 =

⋃
ran e2 ∧⋃

ran (e2 |‘ rootlocks h) =
⋃

ran e2 ∧ rootlocks h ⊆ dom e2
apply (rule-tac Cons.hyps[OF WN-SPLIT (2) AS-SPLIT (2)])
apply (rule-tac t=t in Cons.prems(3))
apply auto
apply (rule-tac Cons.prems(4)[rule-format])
apply simp
done

hence IHAPP : l2 =empty
u2 =

⋃
ran e2⋃

ran (e2 |‘ rootlocks h) =
⋃

ran e2
rootlocks h ⊆ dom e2

by auto
have t∈set (t#h) by simp
thus ?case proof (cases rule: Cons.prems(3)[cases set , case-names acquire leaf])
case leaf [simp] with AS-SPLIT (1) have [simp]: l1 =empty u1 ={} e1 =empty

by auto
from IHAPP show ?thesis by simp

next
case (acquire x t ′)[simp]
from ncl-as-fmt-single[of x t ′ xs l1 u1 e1] WN-SPLIT (1) AS-SPLIT (1)

Cons.prems(4)[rule-format , of t] have
P : l1 =empty u1 =

⋃
ran e1 e1 x = Some u1

95

by auto
from P IHAPP AS-DISJ have G1 : l=empty ∧ u=

⋃
ran e by auto

from P(3) have G2-1 : rootlocks-t t ⊆ dom e1 by auto
from P(2 ,3) have G3-1 :

⋃
ran (e1 |‘ rootlocks-t t) =

⋃
ran e1

by (auto simp add : restrict-map-def ran-def)
from G2-1 IHAPP(4) AS-DISJ have⋃

ran ((e1 ++ e2) |‘ (rootlocks-t t ∪ rootlocks h)) =
⋃

ran e1 ∪
⋃

ran e2
by (rule-tac union-ran-add-aux [OF G3-1 IHAPP(3)]) auto

hence G3 :
⋃

ran (e|‘ rootlocks (t#h)) =
⋃

ran e using AS-DISJ by auto
show ?thesis using G1 G2-1 IHAPP(4) G3 by auto

qed
qed

This lemma makes explicit the case-distinction along which the precision
proof is done. The cases are:

final All trees are leaf nodes.

spawn There is a tree starting with a NSPAWN x - node.

none There is a tree starting with a NNOSPAWN LNone - node.

release There is a tree starting with a NNOSPAWN (LRel x)-node.

acquire All trees start with a NNOSPAWN (LAcq x)-node or are leafs. At
least one tree is no leaf.

lemma h-cases[case-names final spawn none release acquire]:
assumes C :
final h =⇒ P
!!h1 lab ts t h2 . h=h1 @NSPAWN lab ts t#h2 =⇒ P
!!h1 t nlab h2 . h=h1 @NNOSPAWN (LNone nlab) t#h2 =⇒ P
!!h1 x t h2 . h=h1 @NNOSPAWN (LRel x) t#h2 =⇒ P
[[!!Q t . [[t∈set h; !!x t ′. t=NNOSPAWN (LAcq x) t ′ =⇒ Q ;

!!p w . t=NLEAF (p,w) =⇒ Q
]] =⇒ Q ;

!!Q . [[!!t ′ x . NNOSPAWN (LAcq x) t ′ ∈ set h =⇒ Q]] =⇒ Q
]] =⇒ P

shows P
proof (cases h=[])

case True with C (1) show P by simp
next

case False hence set h 6= {} by simp
{

assume ∃ t nlab. NNOSPAWN (LNone nlab) t∈set h
with C (3) have P by (blast elim: in-set-list-format)

} moreover {
assume ∃ t x . NNOSPAWN (LRel x) t∈set h
with C (4) have P by (blast elim: in-set-list-format)

} moreover {

96

assume ∃ lab ts t . NSPAWN lab ts t∈set h
with C (2) have P by (blast elim: in-set-list-format)

} moreover {
assume ∀ t∈set h. ¬(∃ lab t . NNOSPAWN lab t∈set h) ∧

¬ (∃ lab ts t . NSPAWN lab ts t∈set h)
hence ∀ t∈set h. final-t t

apply safe
apply (case-tac t)
apply auto
done

with C (1) have P by (auto simp add : list-all-iff)
} moreover {

assume A: ¬(∃ t nlab. NNOSPAWN (LNone nlab) t∈set h)
¬(∃ t x . NNOSPAWN (LRel x) t∈set h)
¬(∃ lab ts t . NSPAWN lab ts t∈set h)
(∃ lab t . NNOSPAWN lab t∈set h)

hence (∃ t x . NNOSPAWN (LAcq x) t∈set h)
apply auto
apply (case-tac lab)
by auto

with A(1 ,2 ,3) have P apply auto
apply (rule-tac C (5))
apply auto
apply (case-tac ta)
apply auto
apply fast
apply (case-tac L)
apply auto
apply fast
done

} ultimately show ?thesis by blast
qed

This lemma determines the tree within a hedge whose release history
contains a specific lock.

lemma ash-find-l-t [consumes 2]:
[[ash h = Some (l ,u,e); x∈dom l ;

!!h1 t h2 l1 u1 e1 l2 u2 e2 . [[
h=h1 @t#h2 ; l=l1 ++l2 ; u=u1∪u2 ; e=e1 ++e2 ;
as t = Some (l1 ,u1 ,e1); ash h1 ‖ ash h2 = Some (l2 ,u2 ,e2);
x∈dom l1 ; dom l1∩dom l2 = {}; dom e1∩dom e2 = {}

]] =⇒ P
]] =⇒ P

proof (induct h arbitrary : l u e P rule: ash.induct)
case 1 thus ?case by fastsimp

next
case (2 t h) note C =this
from as-comp-SomeE [OF C (2)[simplified]] obtain l1 u1 e1 l2 u2 e2 where

SPLIT-simps[simp]: l = l1 ++ l2 u = u1 ∪ u2 e = e1 ++ e2 and

97

SPLIT : as t = Some (l1 , u1 , e1) ash h = Some (l2 , u2 , e2)
dom l1 ∩ dom l2 = {} dom e1 ∩ dom e2 = {}

.
from C (3) have x∈dom l1 ∨ x∈dom l2 by auto
moreover {

assume A: x∈dom l1
moreover have t#h = []@t#h by simp
ultimately have ?case

by (rule-tac C (4)) (assumption, (simp add : SPLIT)+)
} moreover {

assume A: x∈dom l2
from C (1)[OF SPLIT (2) A] obtain h1 tt h2 l21 u21 e21 l22 u22 e22 where

IHAPP-simp[simp]: h = h1 @ tt # h2 l2 =l21 ++l22
u2 =u21∪u22 e2 =e21 ++e22 and

IHAPP : as tt = Some (l21 , u21 , e21)
ash h1 ‖ ash h2 = Some (l22 ,u22 ,e22)
x∈dom l21
dom l21∩dom l22 ={}
dom e21∩dom e22 ={}

.
from SPLIT IHAPP have

DS : dom l1 ∩ dom l21 = {} dom e1 ∩ dom e21 = {}
by auto

have t#h=(t#h1)@tt#h2 l = l21 ++ (l1 ++l22)
u=u21∪(u1∪u22) e=e21 ++ (e1 ++e22)

by (auto simp add : map-add-comm[OF DS (1)] map-add-comm[OF DS (2)])
moreover have ash (t#h1) ‖ ash h2 = Some (l1 ++l22 ,u1∪u22 ,e1 ++e22)
proof −

have ash (t#h1) ‖ ash h2 = as t ‖ (ash h1 ‖ ash h2) by (simp)
also have . . . = as-comp (l1 ,u1 ,e1) (l22 ,u22 ,e22)

by (simp add : IHAPP(2) SPLIT (1))
also have . . . = Some (l1 ++l22 ,u1∪u22 ,e1 ++e22)

using SPLIT IHAPP by auto
finally show ?thesis .

qed
ultimately have ?case using SPLIT (3 ,4) IHAPP(1 ,3 ,4 ,5)

by (rule-tac C (4)) (assumption+, auto)
} ultimately show ?case by blast

qed

This lemma determines the tree within a hedge whose acquisition history
contains a specific lock.

lemma ash-find-e-t [consumes 2]:
[[ash h = Some (l ,u,e); x∈dom e;

!!h1 t h2 l1 u1 e1 l2 u2 e2 . [[
h=h1 @t#h2 ; l=l1 ++l2 ; u=u1∪u2 ; e=e1 ++e2 ;
as t = Some (l1 ,u1 ,e1); ash h1 ‖ ash h2 = Some (l2 ,u2 ,e2);
x∈dom e1 ; dom l1∩dom l2 = {}; dom e1∩dom e2 = {}

]] =⇒ P

98

]] =⇒ P
proof (induct h arbitrary : l u e P rule: ash.induct)

case 1 thus ?case by fastsimp
next

case (2 t h) note C =this
from as-comp-SomeE [OF C (2)[simplified]] obtain l1 u1 e1 l2 u2 e2 where

SPLIT-simps[simp]: l = l1 ++ l2 u = u1 ∪ u2 e = e1 ++ e2 and
SPLIT : as t = Some (l1 , u1 , e1) ash h = Some (l2 , u2 , e2)

dom l1 ∩ dom l2 = {} dom e1 ∩ dom e2 = {}
.

from C (3) have x∈dom e1 ∨ x∈dom e2 by auto
moreover {

assume A: x∈dom e1
moreover have t#h = []@t#h by simp
ultimately have ?case by (rule-tac C (4)) (assumption, (simp add : SPLIT)+)

} moreover {
assume A: x∈dom e2
from C (1)[OF SPLIT (2) A] obtain h1 tt h2 l21 u21 e21 l22 u22 e22 where

IHAPP-simp[simp]: h = h1 @ tt # h2 l2 =l21 ++l22
u2 =u21∪u22 e2 =e21 ++e22 and

IHAPP : as tt = Some (l21 , u21 , e21)
ash h1 ‖ ash h2 = Some (l22 ,u22 ,e22)
x∈dom e21
dom l21∩dom l22 ={}
dom e21∩dom e22 ={}

.
from SPLIT IHAPP have

DS : dom l1 ∩ dom l21 = {} dom e1 ∩ dom e21 = {}
by auto

have t#h=(t#h1)@tt#h2 l = l21 ++ (l1 ++l22)
u=u21∪(u1∪u22) e=e21 ++ (e1 ++e22)

by (auto simp add : map-add-comm[OF DS (1)] map-add-comm[OF DS (2)])
moreover have ash (t#h1) ‖ ash h2 = Some (l1 ++l22 ,u1∪u22 ,e1 ++e22)

proof −
have ash (t#h1) ‖ ash h2 = as t ‖ (ash h1 ‖ ash h2) by (simp)
also have . . . = as-comp (l1 ,u1 ,e1) (l22 ,u22 ,e22)

by (simp add : IHAPP(2) SPLIT (1))
also have . . . = Some (l1 ++l22 ,u1∪u22 ,e1 ++e22)

using SPLIT IHAPP by auto
finally show ?thesis .

qed
ultimately have ?case using SPLIT (3 ,4) IHAPP(1 ,3 ,4 ,5)

by (rule-tac C (4)) (assumption+, auto)
} ultimately show ?case by blast

qed

Auxilliary lemma to split the acquisistion history of a hedge by some
tree in that hedge.

99

lemma ash-split-aux :
assumes AS : ash h = Some (l ,u,e) and

HFMT [simp]: h=h1 @t#h2 and
C : !!l1 u1 e1 l2 u2 e2 . [[

l=l1 ++l2 ; u=u1∪u2 ; e=e1 ++e2 ; as t = Some (l1 ,u1 ,e1);
ash h1 ‖ ash h2 = Some (l2 ,u2 ,e2);
dom l1 ∩ dom l2 = {}; dom e1 ∩ dom e2 = {}

]] =⇒ P
shows P

proof −
have as t ‖ (ash h1 ‖ ash h2) = ash h by simp
also note AS
finally have 1 : as t ‖ ash h1 ‖ ash h2 = Some (l , u, e) .
show P by (rule as-comp-SomeE [OF 1], rule C) assumption+

qed

Auxilliary lemma that combines ash-split-aux and wn-h-split-aux.

lemma wn-ash-split-aux :
assumes

WN : wn-h h µ and
AS : ash h = Some (l ,u,e) and
HFMT [simp]: h=h1 @t#h2 and
C : !!µ1 xs µ2 l1 u1 e1 l2 u2 e2 . [[

µ=µ1 @xs#µ2 ; l=l1 ++l2 ; u=u1∪u2 ; e=e1 ++e2 ;
wn-t ′ t xs; wn-h h1 µ1 ; wn-h h2 µ2 ;
as t = Some (l1 ,u1 ,e1); ash h1 ‖ ash h2 = Some (l2 ,u2 ,e2);
locks-µ µ1 ∩ set xs = {}; locks-µ µ1 ∩ locks-µ µ2 = {};
set xs ∩ locks-µ µ2 = {}; dom l1 ∩ dom l2 = {}; dom e1 ∩ dom e2 = {}

]] =⇒ P
shows P
apply (rule wn-h-split-aux [OF WN HFMT])
apply (rule ash-split-aux [OF AS HFMT])
apply (rule C)
apply assumption+
done

context LDPN
begin

Precision of the acqusisition structure construction, i.e. for a well-nested
hedge, a consistent acquisistion history implies a schedule.

theorem acqh-precise:
fixes h::(′P , ′Γ, ′L, ′X) lex-hedge
assumes A: ash h=Some (l ,u,e) cons-as (l ,u,e) (locks-µ µ) wn-h h µ
shows ∃w . lsched h (locks-µ µ) w
— The proof is done by induction on the size of the hedge.

Given a non-empty hedge, it constructs the first step of the schedule and shows
that the acquisistion structure remains consistent.

100

It considers the following cases:

• If the hedge contains a root that has no effect on locks, this root is scheduled.
Those steps can always be scheduled, as the acquisition structure and the set
of acquired locks do not change.

• If the hedge contains a root that initially releases a lock x, it is scheduled.
A release can always be scheduled, as it cannot block. The new acquisition
structure remains consistent: The acqusisition history is unchanged, the re-
lease history decreases (the lock x is removed). Consistency is preserved, as
the lock x does not occur in the set of acquired locks any more.

• If the hedge contains only roots that are lock acquisitions or leafs, we further
distinguish whether some of the roots are usages, or there are only final
acquisitions.

– If some of the roots are usages, we can find a usage where the used locks
are disjoint from the domain of the release history (Due to acyclicity of
the RH). Intuitively, this is a usage where the required locks are already
released. This usage could be scheduled as a whole, without changing
the RH, AH or set of acquired locks, and only decreasing the set of used
locks. However, we chose another way here and show that scheduling
only the first acquisition step of the usage also preserves consistency
of the AS. We chose this approach in order to not having to formalize
the scheduling of a usage. We assume that this simplifies formalization
overhead (Perhaps at the cost of increased proof complexity).

– If all of the roots are leafs or final acquisitions, due to acyclicity of
the AH, we can select a final acquisition that acquires a lock that is
not used in the rest of the hedge. Scheduling this acquisition preserves
consistency of the AS.

proof −
{

fix h::(′P , ′Γ, ′L, ′X) lex-hedge and l u e µ s
assume A: ash h=Some (l ,u,e) cons-as (l ,u,e) (locks-µ µ) wn-h h µ

hedge-size h = s
from A have ∃w . lsched h (locks-µ µ) w
proof (induct s arbitrary : h l u e µ rule: nat-compl-induct ′)

case 0 — Empty hedge, the proposition is trivial
thus ?case by (rule-tac x=[] in exI) (auto intro: lsched .intros)

next
case (Suc s)

— Non-empty hedge. Make the case-distinction depicted above
show ?case
proof (cases rule: h-cases[of h])
case final — The hedge only contains leafs. The proposition is also trivial

then, as the empty path is a valid schedule.
thus ?thesis by (rule-tac x=[] in exI) (auto intro: lsched .intros)

next

101

case (spawn h1 lab ts t h2)[simp] — The hedge contains a spawn step. By
assumption, spawn steps have no effect on locks. hence, scheduling the spawn
step does not affect the consistency criteria.

from Suc.prems(3)[simplified] obtain nlab where
[simp]: lab=LNone nlab
by (auto elim: wn-h-spawn-imp-LNoneE)

have SIZE : hedge-size (h1 @ts#t#h2) ≤ s using Suc.prems(4) by simp
from wn-h-preserve-spawn[of µ LNone nlab locks-µ µ,

OF - Suc.prems(3)[simplified]]
obtain µ ′ where

[simp]: locks-µ µ ′=locks-µ µ and
WNH : wn-h (h1 @ts#t#h2) µ ′

by auto
from Suc.hyps[OF SIZE - - WNH] Suc.prems(1 ,2) obtain w where

LS : lsched (h1 @ts#t#h2) (locks-µ µ ′) w
by fastsimp

from lsched-spawn[OF LS , of locks-µ µ LNone nlab] show ?thesis
by auto

next
case (none h1 t nlab h2)[simp] — The hedge contains a non-spawning step

with no effects on locks. Scheduling this step does not affect the consistency
criteria.

have SIZE : hedge-size (h1 @t#h2) ≤ s using Suc.prems(4) by simp
from wn-h-preserve-nospawn[of µ LNone nlab locks-µ µ,

OF - Suc.prems(3)[simplified]]
obtain µ ′ where

[simp]: locks-µ µ ′=locks-µ µ and
WNH : wn-h (h1 @t#h2) µ ′

by auto
from Suc.hyps[OF SIZE - - WNH] Suc.prems(1 ,2) obtain w where

LS : lsched (h1 @t#h2) (locks-µ µ ′) w
by fastsimp

from lsched-nospawn[OF LS , of locks-µ µ LNone nlab] show ?thesis
by auto

next
case (release h1 x t h2)[simp] — We have at least one release step.

Scheduling a release step is always possible and will not make the release
history inconsistent, as its effect is to remove an entry from the release history

have SIZE : hedge-size (h1 @t#h2) ≤ s using Suc.prems(4) by simp
from Suc.prems(3)[simplified] obtain µ1 xs µ2 where

[simp]: µ=µ1 @xs#µ2 and
WN-SPLIT : wn-h h1 µ1 wn-t ′ (NNOSPAWN (LRel x) t) xs

wn-h h2 µ2 and
WN-DISJ : locks-µ µ1 ∩ set xs = {} locks-µ µ1 ∩ locks-µ µ2 = {}

set xs ∩ locks-µ µ2 = {}
by (fastsimp elim: wn-h-prepend-h wn-h-append-h)

from WN-SPLIT (2) obtain xsh where
[simp]: xs=x#xsh and

102

XS-SPLIT : x /∈set xsh wn-t ′ t xsh
by auto

from WN-SPLIT WN-DISJ XS-SPLIT have
WNH : wn-h (h1 @t#h2) (µ1 @xsh#µ2) and
WNH ′: wn-h (h1 @h2) (µ1 @µ2)
by (auto intro!: wn-h-appendI wn-h-prependI)

have ash (h1 @(NNOSPAWN (LRel x) t)#h2) =
as (NNOSPAWN (LRel x) t) ‖ ash (h1 @h2)

by auto
with Suc.prems(1) have

as (NNOSPAWN (LRel x) t) ‖ ash (h1 @h2) = Some (l ,u,e)
by simp

then obtain lt ut et l2 u2 e2 where
ASS-simps: as (NNOSPAWN (LRel x) t) = Some (lt ,ut ,et)

ash (h1 @h2) = Some (l2 ,u2 ,e2)
l=lt++l2 u=ut∪u2 e=et++e2 and

ASS : dom lt ∩ dom l2 = {} dom et ∩ dom e2 = {}
by (erule-tac as-comp-SomeE) blast

from ASS-simps(1) have XIDLT : x∈dom lt by (auto split : eahl-splits)
from wn-h-dom-l-lower-µ[OF WNH ′, simplified] WN-DISJ [simplified]
have XNIDL2 : x /∈dom l2 by (simp add : ASS-simps[simplified]) blast
from ASS-simps(1) have AS-T : as t = Some (l-remove lt x , ut , et)

apply (auto split : option.split-asm prod .split-asm)
apply (drule-tac wn-t-dom-l-lower-µ[OF XS-SPLIT (2)])
apply (force simp add : l-remove-def intro!: ext iff add : XS-SPLIT (1))
done

have ash (h1 @t#h2) = as t ‖ ash (h1 @h2) by simp
also from XNIDL2 ASS
have as t ‖ ash (h1 @h2) = Some (l-remove l x , u, e)

apply (simp only : AS-T ASS-simps(2))
apply (simp add : ASS-simps)
apply (auto simp add : l-remove-def map-add-comm)
apply (force intro!: ext simp add : map-add-def split : option.split)
done

finally have G1 : ash (h1 @t#h2) = Some (l-remove l x , u, e) .
from Suc.prems(2) have

G2 : cons-as (l-remove l x , u, e) (locks-µ (µ1 @xsh#µ2))
using XIDLT WN-DISJ [simplified] XS-SPLIT (1)
by simp (blast 5 intro!: cons-h-remove)

from Suc.hyps[OF SIZE G1 G2 WNH] obtain w where
IHAPP : lsched (h1 @ t # h2) (locks-µ (µ1 @ xsh # µ2)) w
by blast

moreover have lock-valid (locks-µ µ) (LRel x) (locks-µ (µ1 @xsh#µ2))
using WN-DISJ XS-SPLIT (1) by simp

ultimately have lsched (h) (locks-µ µ) ((LRel x)#w)
by (auto intro: lsched .intros)

thus ?thesis by blast
next
case acquire — All the trees start either with acquisitions or are leafs. This

103

case is the complex part of the proof.
We first distinguish whether there is a usage or all acquisitions are final acquisitions.

{
assume C : ∃Xu. ∃ t∈set h. closing ′ t = Some Xu — There is a usage
— Find a tree that starts with a usage, where the used locks are disjoint

from the release history.
obtain x Xu t where

USE : NNOSPAWN (LAcq x) t ∈ set h closing x t = Some Xu
insert x Xu ∩ dom l = {}

proof (cases dom l = {})
case True[simp] — Simple case: Domain of RH is empty, hence we can

take any tree in h
from C obtain Xu t where 1 : t∈set h closing ′ t = Some Xu

by blast
then obtain x t ′ where

[simp]: t=NNOSPAWN (LAcq x) t ′ and
CL: closing x t ′ = Some Xu

by (cases t rule: closing ′.cases) auto
with 1 show ?thesis by (rule-tac that) simp-all

next
case False — Complex case: Domain of RH is not empty, we have to

take tree that contains minimal element of RH
with Suc.prems(2) obtain x where MIN : rh-min l x

by (force dest : cons-h-ex-rh-min)
hence MIDL: x∈dom l by (auto split : option.split-asm)
from ash-find-l-t [OF Suc.prems(1) MIDL]
obtain h1 t h2 l1 u1 e1 l2 u2 e2 where

FT-simps[simp]: h = h1 @ t # h2 l = l1 ++ l2
u = u1 ∪ u2 e = e1 ++ e2 and

FT : as t = Some (l1 , u1 , e1)
ash h1 ‖ ash h2 = Some (l2 , u2 , e2) and

MIDL1 : x ∈ dom l1 and
FT-DISJ : dom l1 ∩ dom l2 = {} dom e1 ∩ dom e2 = {} .

obtain x ′ t ′ where TFMT [simp]: t=NNOSPAWN (LAcq x ′) t ′

using FT (1) MIDL1
by (subgoal-tac t∈set h)

(erule acquire(1), auto split : option.split-asm)
have G1 : NNOSPAWN (LAcq x ′) t ′ ∈ set h by simp
from Suc.prems(3) obtain µ1 xs µ2 where

[simp]: µ=µ1 @xs#µ2 and
WN-SPLIT : wn-h h1 µ1 wn-t ′ t xs wn-h h2 µ2 and

WN-DISJ : locks-µ µ1 ∩ set xs = {} locks-µ µ1 ∩ locks-µ µ2 = {}
set xs ∩ locks-µ µ2 = {}

by (fastsimp elim: wn-h-append-h wn-h-prepend-h)
from WN-SPLIT (2) have WN ′: wn-t ′ t ′ (x ′#xs) by simp

from FT (1) obtain l1 ′ u1 ′ e1 ′ where
AS : as t ′ = Some(l1 ′,u1 ′,e1 ′) and

104

UU : dom l1 ⊆ dom l1 ′ x ′/∈dom l1
by (force split : eahl-splits)

from UU MIDL1 have MIDL ′: x∈dom l1 ′ by auto
from MIDL1 UU have MNE : x 6=x ′ by auto
from wn-t-dom-l-stack ′[OF WN ′ AS MIDL ′]
obtain xs1 xs2 where

x ′#xs = xs1 @x#xs2 set xs1 ⊆ dom l1 ′

∀ x ′∈set xs1 . l1 ′ x ′ ≤ l1 ′ x ∧ x /∈ the (l1 ′ x ′) ∧ x ′ /∈ the (l1 ′ x ′)
by blast

then obtain Xu where L1 ′X ′: l1 ′ x ′ = Some Xu Some Xu ≤ l1 ′ x
using MNE by (cases xs1) auto

from dom-l-closing [OF AS WN ′, OF L1 ′X ′(1)] have
G2 : closing x ′ t ′ = Some Xu .

from L1 ′X ′(1) FT (1) AS have
L1FMT [simp]: l1 = l-add-use (l-remove l1 ′ x ′) {x ′} and
X ′IU : x ′∈u
by (auto split : eahl-splits)

from MNE MIDL ′ have
l1 ′ x ≤ l1 x and
X ′IL1X : x ′ ∈ the (l1 x)
by (auto simp add : l-add-use-def split : option.split)

with L1 ′X ′ have Some Xu ≤ l1 x by auto
with FT-DISJ MIDL1 have

XULE : Some Xu ≤ l x
by (auto simp del : L1FMT simp add : map-add-def split : option.split)

with MIN have the (l x) ∩ dom l = {} by auto
moreover from XULE MIDL have Xu ⊆ the (l x)

by (auto simp add : le-option-def split : option.split-asm)
moreover from X ′IL1X FT-DISJ MIDL1 have x ′∈the (l x)

by (auto simp add : map-add-def split : option.split)
ultimately have G3 : insert x ′ Xu ∩ dom l = {} by auto
from that [OF G1 G2 G3] show ?thesis .

qed

— Split h (This duplicates some work done in the complex case of the
proof above)

from in-set-list-format [OF USE (1)] obtain h1 h2 where
HFMT [simp]: h=h1 @(NNOSPAWN (LAcq x) t)#h2 .

from Suc.prems(3) obtain µ1 xs µ2 where
[simp]: µ=µ1 @xs#µ2 and

WN-SPLIT : wn-h h1 µ1 wn-t ′ (NNOSPAWN (LAcq x) t) xs
wn-h h2 µ2 and

WN-DISJ : locks-µ µ1 ∩ set xs = {} locks-µ µ1 ∩ locks-µ µ2 = {}
set xs ∩ locks-µ µ2 = {}

by (fastsimp elim: wn-h-append-h wn-h-prepend-h)
from WN-SPLIT (2) have WN ′: wn-t ′ t (x#xs) by simp

— Split acquisition structure according to splitting of h
from Suc.prems(1) obtain l1 u1 e1 l2 u2 e2 where

105

AS-SPLIT : as (NNOSPAWN (LAcq x) t) = Some (l1 ,u1 ,e1)
ash h1 ‖ ash h2 = Some (l2 ,u2 ,e2) and

[simp]: l=l1 ++l2 u=u1∪u2 e=e1 ++e2 and
AS-DISJ : dom l1 ∩ dom l2 = {} dom e1 ∩ dom e2 = {}

proof −
have as (NNOSPAWN (LAcq x) t) ‖ (ash h1 ‖ ash h2) = ash h

by auto
also have . . . = Some (l ,u,e) using Suc.prems(1) .

finally show ?thesis by (erule-tac as-comp-SomeE) (blast intro!: that)
qed

— Obtain facts about new tree’s acquisition structure
from wn-closing-as-fmt [OF WN-SPLIT (2) AS-SPLIT (1) USE (2)]
obtain l1 ′ u1 ′ where

S : as t = Some (l1 ′, u1 ′, e1) l1 ′ ≤ l1 (x 7→ Xu)
u1 = insert x u1 ′ dom l1 ′ = insert x (dom l1) .

from USE (3) have XNIDL: x /∈dom l by simp
from S (3) XNIDL Suc.prems(2) have XNILM : x /∈locks-µ µ by auto

— Construct new hedge’s acquisition structure
have ash (h1 @t#h2) = as t ‖ (ash h1 ‖ ash h2) by simp
also have . . . = as-comp (l1 ′,u1 ′,e1) (l2 ,u2 ,e2)

by (simp add : S (1) AS-SPLIT (2))
also have . . . = Some (l1 ′++l2 ,u1 ′∪u2 , e)

using XNIDL S (4) AS-DISJ by auto
finally have

ASH ′: ash (h1 @ t # h2) = Some (l1 ′ ++ l2 , u1 ′ ∪ u2 , e) .

— Collect facts for induction hypothesis
from XNILM WN-DISJ WN-SPLIT WN ′ have

WNH ′: wn-h (h1 @t#h2) (µ1 @(x#xs)#µ2)
by (auto intro!: wn-h-appendI wn-h-prependI)

have CONS ′: cons-as (l1 ′++ l2 , u1 ′ ∪ u2 , e) (locks-µ (µ1 @(x#xs)#µ2))

proof −
have CONSL ′: cons-h (l1 ′++l2) proof −

from S (2) have LLE : l1 ′++l2 ≤ l(x 7→ Xu)
using XNIDL by (rule-tac le-funI , drule-tac x=xa in le-funD)

(auto simp add : map-add-def split : option.split)
from Suc.prems(2) have CL: cons-h l by simp
from wn-closing-ni [where ?µ1 .0 =[], simplified , OF WN ′ USE (2)]
have x /∈Xu .
with cons-h-update[OF CL, of Xu x] USE (3)
have cons-h (l(x 7→Xu)) by auto
with cons-h-antimono[OF LLE] show ?thesis by simp

qed

106

from Suc.prems(2) have 1 : (locks-µ µ − dom l) ∩ (u∪dom e) = {}
by auto

from S (4) have
2 : (locks-µ µ − dom l) ⊇

(locks-µ (µ1 @(x#xs)#µ2) − dom (l1 ′ ++ l2))
by auto

from S (3) have 3 : (u∪dom e) ⊇ u1 ′ ∪ u2 ∪ dom e by auto
from disjoint-mono[OF 2 3 1] have

(locks-µ (µ1 @(x#xs)#µ2) − dom (l1 ′ ++ l2)) ∩
(u1 ′ ∪ u2 ∪ dom e) = {} .

moreover from Suc.prems(2) have cons-h e by auto
moreover note CONSL ′

ultimately show ?thesis by (auto)
qed

have SIZE : hedge-size (h1 @t#h2) ≤ s using Suc.prems(4) by simp

— Apply induction hypothesis
from Suc.hyps[OF SIZE ASH ′ CONS ′ WNH ′] obtain w where

IHAPP : lsched (h1 @ t # h2) (locks-µ (µ1 @ (x # xs) # µ2)) w
by blast

— Show that we can schedule the first step
have LV :

lock-valid (locks-µ µ) (LAcq x) (locks-µ (µ1 @(x#xs)#µ2))
using XNILM by simp

from lsched-nospawn[OF IHAPP LV] have ?thesis by auto
} moreover {

assume C : ∀ t∈set h. closing ′ t = None
— All the acquisitions at the roots of the hedge are final.

— The release history is empty, and any used lock occurs after a final
acquisition

have l=empty ∧ u=
⋃

ran e ∧⋃
ran (e |‘ rootlocks h) =

⋃
ran e ∧ rootlocks h ⊆ dom e

by (blast intro!: ncl-as-fmt [OF Suc.prems(3 ,1) - C] intro: acquire(1))
hence

[simp]: l=empty and
NCL: u=

⋃
ran e and

XMS :
⋃

ran (e |‘ rootlocks h) =
⋃

ran e rootlocks h ⊆ dom e
by auto

— There is at least one tree starting with an acquisition, thus the
acquisition history is not empty

have RLNE : rootlocks h 6= {} and ENE : e 6=empty proof −
obtain t ′ x h1 h2 where

HFMT [simp]: h=h1 @(NNOSPAWN (LAcq x) t ′)#h2
by (blast intro: acquire(2) elim: in-set-list-format)

thus rootlocks h 6= {} by auto

107

with XMS (2) show e 6=empty by auto
qed

— We can obtain a minimal lock that is acquired at a root of some tree
obtain x where XIR: x∈rootlocks h and MIN : ah-min e x proof −

have 1 : e |‘ rootlocks h 6= empty using XMS (2) RLNE
by (subgoal-tac dom (e |‘ rootlocks h) 6= {}) fastsimp+

from cons-h-ex-ah-min[OF 1 cons-h-antimono[of e|‘rootlocks h e]]
Suc.prems(2)

obtain x where ah-min (e |‘ rootlocks h) x
by auto

with XMS (1) show ?thesis by (auto intro!: that)
qed

— Find the tree with x at the root
from rootlocks-split [OF XIR] obtain h1 t h2 where

HFMT [simp]: h=h1 @NNOSPAWN (LAcq x) t#h2 .
— Split lock-stacks and acquisistion structures
from wn-ash-split-aux [OF Suc.prems(3 ,1) HFMT]
obtain µ1 xs µ2 l1 u1 e1 l2 u2 e2 where

SPLIT-simps[simp]: µ = µ1 @ xs # µ2 u = u1 ∪ u2
e = e1 ++ e2 and

WNS : wn-t ′ (NNOSPAWN (LAcq x) t) xs wn-h h1 µ1
wn-h h2 µ2 and

ASS : as (NNOSPAWN (LAcq x) t) = Some (l1 , u1 , e1)
ash h1 ‖ ash h2 = Some (l2 , u2 , e2) and

DISJ : locks-µ µ1 ∩ set xs = {} locks-µ µ1 ∩ locks-µ µ2 = {}
set xs ∩ locks-µ µ2 = {} dom l1 ∩ dom l2 = {}
dom e1 ∩ dom e2 = {} and

LL: l = l1 ++ l2
.

from LL have [simp]: l1 =empty l2 =empty by auto

— Get acquisition structure of t
obtain e1 ′ where
AS ′: as t = Some (empty ,u1 ,e1 ′) e1 = e1 ′(x 7→ u1) x /∈ dom e1 ′

by (rule-tac
ncl-as-fmt-single ′[OF WNS (1)

C [rule-format , of NNOSPAWN (LAcq x) t]
ASS (1)]

)
(simp)

— Get acqusition structure of new hedge
have ASH ′: ash (h1 @t#h2) = Some (empty ,u,e1 ′++e2) proof −

from AS ′(2 ,3) DISJ have D ′: dom e1 ′ ∩ dom e2 = {} by simp
have ash (h1 @t#h2) = as t ‖ (ash h1 ‖ ash h2) by simp

also from DISJ D ′ AS ′ ASS (2) have . . . = Some (empty ,u,e1 ′++e2)

108

by simp
finally show ?thesis .

qed

— The new hedge is well-nested
from AS ′(2) Suc.prems(2) have XNILM : x /∈locks-µ µ by auto
have WN ′: wn-h (h1 @t#h2) (µ1 @(x#xs)#µ2)
using WNS DISJ XNILM by (auto intro!: wn-h-appendI wn-h-prependI)

— The new acquisition history is consistent
have CONS ′: cons-as (empty ,u,e1 ′++e2) (locks-µ (µ1 @(x#xs)#µ2))
proof −

have cons-h (e1 ′++e2) proof −
from AS ′(2 ,3) have e1 ′ ≤ e1 by (simp add : le-fun-def dom-def)
hence 1 : e1 ′++e2 ≤ e by (auto intro!: map-add-first-le)
from cons-h-antimono[OF 1] Suc.prems(2) show ?thesis by auto

qed
moreover
have insert x (locks-µ µ) ∩ (dom (e1 ′++e2) ∪ u) = {} proof −
from AS ′ have DEF : dom e = insert x (dom (e1 ′ ++ e2)) by auto
from Suc.prems(2) have DJO : locks-µ µ ∩ (dom e ∪ u) = {}

by auto
have 1 : (dom (e1 ′ ++ e2) ∪ u) ⊆ dom e ∪ u using DEF by auto
from disjoint-mono[of locks-µ µ locks-µ µ, OF - 1 DJO] have

locks-µ µ ∩ (dom (e1 ′ ++ e2) ∪ u) = {}
by simp

moreover from AS ′ DISJ have x /∈dom (e1 ′++e2) by auto
moreover from MIN NCL have x /∈u by simp
ultimately show ?thesis by simp

qed
ultimately show ?thesis by fastsimp

qed

— Now we can apply the induction hypothesis and finnish the proof
have SIZE : hedge-size (h1 @t#h2) ≤ s using Suc.prems(4) by simp

from Suc.hyps[OF SIZE ASH ′ CONS ′ WN ′] obtain w where
IHAPP : lsched (h1 @ t # h2) (locks-µ (µ1 @ (x#xs) # µ2)) w
by blast

moreover have lock-valid (locks-µ µ) (LAcq x) (locks-µ (µ1 @(x#xs)#µ2))
using XNILM by simp

ultimately have lsched (h) (locks-µ µ) ((LAcq x)#w)
by (auto intro: lsched .intros)

hence ?thesis by blast
} ultimately show ?thesis by force

qed
qed

}
with A show ?thesis by blast

109

qed

The following is the main theorem of this section. It states the correct-
ness of the acquisition structure construction. For all non-empty hedges
that are well-nested w.r.t. a list of lock-stacks with locks X, the existence
of a schedule starting with locks X is equivalent to the conistency of the
hedge’s acquisition history w.r.t. X.

lemma acqh-correct ′:
fixes h::(′P , ′Γ, ′L, ′X) lex-hedge
shows [[wn-h h µ]] =⇒
(∃w . lsched h (locks-µ µ) w) ←→

(∃ l u e. ash h = Some (l , u, e) ∧ cons-as (l , u, e) (locks-µ µ)
)
using acqh-sound acqh-precise by blast

theorem acqh-correct :
fixes h::(′P , ′Γ, ′L, ′X) lex-hedge
assumes WN : wn-h h µ
shows (∃w . lsched h (locks-µ µ) w) ←→ cons (ash h) (locks-µ µ)
using WN

apply (simp only : acqh-correct ′)
apply (cases ash h)
apply simp
apply (case-tac a)
apply (case-tac b)
apply simp
done

end

end

12 DPNs with Initial Configuration

theory DPN-c0
imports WellNested
begin

12.1 DPNs with Initial Configuration

In the following locale, we fix a DPN with an initial configuration, and a list
of lock-stacks. We assume that the initial configuration is well-nested w.r.t.
the list of lock-stacks.

This is the model we are able to analyze with our acquisition history
based techniques, that assume well-nestedness.

110

Note that we – up to now – do not show that there exists a non-trivial
instance of this locale. Such a proof would support the trust in that the
model we formalize here is really the intended model.

locale LDPN-c0 = LDPN +
constrains ∆ :: (′P , ′Γ, ′L, ′X ::finite) ldpn
fixes c0 :: (′P , ′Γ) conf — Initial configuration
fixes µ0 :: ′X list list — Locks held at the start configuration
assumes wellnested : wn-c ∆ c0 µ0 — Start configuration must be well-nested

begin

12.1.1 Reachable Configurations

definition reachable == { c . ∃w . (c0 ,w ,c)∈dpntrc ∆ }
definition reachablels == { (c,X) . ∃w . ((c0 ,locks-µ µ0),w ,(c,X))∈ldpntrc ∆ }

lemma reachablels-subset : (c,X)∈reachablels =⇒ c∈reachable
by (auto simp add : reachablels-def reachable-def intro: ldpntrc-subset)

lemma reachable-wn:
[[(c,X)∈reachablels; !!µ. [[wn-c ∆ c µ; X =locks-µ µ]] =⇒ P]] =⇒ P
apply (unfold reachablels-def)
apply simp
apply (erule exE)
apply (erule wnc-preserve)
apply (rule wellnested)
apply blast
done

lemma reachablels-triv [simp]: (c0 , locks-µ µ0)∈reachablels
by (unfold reachablels-def) (auto intro: exI [of - []])

end

end

13 Property Specifications

theory Specification
imports DPN-c0 Semantics LockSem common/SublistOrder
begin

We develop a formalism that allows a concise and readable notation for a
class of properties that are checkable via cascaded predecessor computations.

A specification consists of a list of atoms, where each atom either restricts
the current configuration or describes some step.

111

13.1 Specification Formulas

The base element of a property is an atom, that describes a step or restricts
the current configuration

datatype (′Q , ′Γ, ′L, ′X) spec-atom =
— Restrict current configuration to be in a specified set
SPEC-RESTRICT (′Q , ′Γ) conf set |
— Go forward one step, using a rule with labels from a specified set
SPEC-STEP (′L, ′X) lockstep set |
— Go forward any number of steps, using rules with labels from a specified
set
SPEC-STEPS (′L, ′X) lockstep set

A property is a list of atoms

types (′Q , ′Γ, ′L, ′X) spec = (′Q , ′Γ, ′L, ′X) spec-atom list

13.2 Semantics

The semantics of a property specification Φ w.r.t. the current DPN is mod-
elled by a transition relation spec-tr Φ, that contains all pairs (c,c ′) of
configurations, such that there is a path between c and c ′ satisfying the
property.

context LDPN
begin

fun spec-tr where
spec-tr [] = Id |
spec-tr (SPEC-RESTRICT C # Φ) = {(c,c ′) . (c,c ′)∈spec-tr Φ ∧ fst c∈C} |
spec-tr (SPEC-STEP L # Φ) =
{(c,c ′) . ∃ l∈L. ∃ ch. (c,l ,ch)∈ldpntr ∆ ∧ (ch,c ′)∈spec-tr Φ} |

spec-tr (SPEC-STEPS L # Φ) =
{(c,c ′) . ∃ ll∈lists L. ∃ ch. (c,ll ,ch)∈ldpntrc ∆ ∧ (ch,c ′)∈spec-tr Φ}

end

context LDPN-c0
begin

In most cases, it suffices to check whether there is a path matching the
specification from the initial configuration.

definition model-check-ref Φ == (c0 ,locks-µ µ0)∈Domain (spec-tr Φ)
end

13.3 Examples

In this section, we present two short examples to justify the usefulness of
our property specifications.

112

13.3.1 Conflict analysis

Given two stack symbols u,v∈Γ, conflict analysis asks whether a configura-
tion c is reachable that has a conflict between u and v.

A configuration has a conflict between u and v, iff it contains a process
with top stack symbol u and another (different) process with top stack
symbol v.

context LDPN-c0
begin

atUV u v is the set of configurations that have a conflict between u and
v.

definition atUV-ordered u v == { c. ∃ q r q ′ r ′. [(q ,u#r),(q ′,v#r ′)] ≤ c }
definition atUV u v == (atUV-ordered u v) ∪ (atUV-ordered v u)

The following property specification describes all executions reaching a
conflict:

definition conflict-spec u v ==
[SPEC-STEPS UNIV , SPEC-RESTRICT (atUV u v)]

The following definition is a direct definition of a conflict between u and
v being reachable from an initial configuration [(qmain,[γmain])]:

definition has-conflict-ref u v == ∃ (c,X)∈reachablels. c ∈ atUV u v

The next lemma shows that the direct definition of a conflict matches
the property specification:

lemma has-conflict-ref u v ←→ model-check-ref (conflict-spec u v)
by (unfold model-check-ref-def conflict-spec-def has-conflict-ref-def

Domain-def reachablels-def)
auto

end

13.3.2 Bitvector analysis

Given a set of generator labels G :: ′L set, a set of killer labels K :: ′L set and
a stack symbol u:: ′Γ, bitvector analysis asks whether there is a path to a
configuration that has process being at u, such that the path executes a
generator rule, and after that no killer rule is executed.

context LDPN-c0
begin

For a stack symbol, u∈Γ, the set atU u is the set of all configurations
that have a process with u at the top of the stack.

definition atU u == { c . ∃ q r . (q ,u#r)∈set c }

The following property specification describes all paths that lead to u
and have the bit set:

113

definition bitvector-fwd-spec G K u ==
[SPEC-STEPS UNIV ,

SPEC-STEP G ,
SPEC-STEPS (UNIV−K),
SPEC-RESTRICT (atU u)

]

The following is the direct definition of bitvector analysis:

definition bitvector-fwd-ref G K u ==
∃ c1 X1 lg c2 X2 ll c3 X3 q r .

(c1 ,X1)∈reachablels ∧
((c1 ,X1),lg ,(c2 ,X2))∈ldpntr ∆ ∧
lg∈G ∧
((c2 ,X2),ll ,(c3 ,X3))∈ldpntrc ∆ ∧
ll∈lists (UNIV−K) ∧
(q ,u#r)∈set c3

This lemma shows that the direct definition matches the property spec-
ification:

lemma bitvector-fwd-ref G K u ←→
model-check-ref (bitvector-fwd-spec G K u)

by (unfold model-check-ref-def bitvector-fwd-spec-def
bitvector-fwd-ref-def Domain-def atU-def reachablels-def)

fastsimp

end
end

14 Hedge Constraints for Acquisition Histories

theory As-hc
imports Acqh WellNested DPN-c0 Specification
begin

This theory formulates the set of execution hedges that have a lock-
sensitive schedule, and shows how to use hedge-constrained predecessor set
computations to compute property specifications based on cascaded prede-
cessor sets.

14.1 Locks Encoded in Control State

For this section, we make the assumption that the set of locks is encoded in
the control state of the DPN. We formalize this by means of a locale.

locale EncodedLDPN = LDPN +
— The states of the DPN are tuples of some states ′P and sets of locks:
constrains ∆ :: (′P× ′X set , ′Γ, ′L, ′X ::finite) ldpn

114

constrains c0 :: (′P× ′X set , ′Γ) conf
constrains µ0 :: ′X list list
— A step of the DPN transforms the locks as expected:
assumes encoding-correct-nospawn:

((p,X),γ ↪→l (p ′,X ′),w)∈∆ =⇒ lock-valid X l X ′

assumes encoding-correct-spawn1 :
((p,X),γ ↪→l (ps,Xs),ws] (p ′,X ′),w) ∈ ∆ =⇒ lock-valid X l X ′

— A freshly spawned process initially owns no locks:
assumes encoding-correct-spawn2 :

((p,X),γ ↪→l (ps,Xs),ws] (p ′,X ′),w) ∈ ∆ =⇒ Xs={}
begin

lemmas encoding-correct-spawn = encoding-correct-spawn1 encoding-correct-spawn2
lemmas encoding-correct = encoding-correct-nospawn encoding-correct-spawn

lemma encoding-correct-nospawn ′:
(p,γ ↪→l p ′,w)∈∆ =⇒ lock-valid (snd p) l (snd p ′)
by (cases p, cases p ′) (auto intro: encoding-correct-nospawn)

lemma encoding-correct-spawn ′:
assumes A: (p,γ ↪→l ps,ws] p ′,w) ∈ ∆
shows lock-valid (snd p) l (snd p ′) snd ps={}
using A encoding-correct-spawn by (cases p, cases p ′, cases ps, force)+

lemma encoding-correct-spawn2 ′:
(p,γ ↪→l ps,ws] p ′,w) ∈ ∆ =⇒ snd ps = {}
using encoding-correct-spawn by (cases p, cases p ′, cases ps, force)+

lemma ec-preserve-singlestep:
assumes

A: ((c,locks-µ µ),l ,(c ′,X ′))∈ldpntr ∆ wn-c ∆ c µ
map (snd◦fst) c = map set µ and

C : !!µ ′. [[wn-c ∆ c ′ µ ′; X ′=locks-µ µ ′;
map (snd◦fst) c ′ = map set µ ′

]] =⇒ P
shows P

proof −
from A have

TR: (c,l ,c ′)∈dpntr ∆ and
LV : lock-valid (locks-µ µ) l X ′

by (auto simp add : ldpntr-def)
from TR show ?thesis proof (cases rule: dpntr .cases)

case (dpntr-no-spawn p γ - p ′ w c1 r c2)
hence
FMT [simp]: c = c1 @ (p, γ # r) # c2 c ′ = c1 @ (p ′, w @ r) # c2 and
R: (p,γ ↪→l p ′,w) ∈ ∆
by auto

115

from wn-c-split-aux [OF A(2) FMT (1)] obtain µ1 xs µ2 where
[simp]: µ = µ1 @ xs # µ2 and

WNS : wn-π ∆ (p, γ # r) xs wn-c ∆ c1 µ1 wn-c ∆ c2 µ2 and
DISJ : locks-µ µ1 ∩ set xs = {} locks-µ µ1 ∩ locks-µ µ2 = {}

set xs ∩ locks-µ µ2 = {}
.

from A(3) wn-c-length[OF WNS (2)] wn-c-length[OF WNS (3)] have
ECS : map (snd◦fst) c1 = map set µ1 snd p = set xs

map (snd◦fst) c2 = map set µ2
by auto

obtain xs ′ where
wn-π ∆ (p ′,w@r) xs ′ X ′=(locks-µ (µ1 @xs ′#µ2))
locks-µ µ1 ∩ set xs ′ = {} set xs ′ ∩ locks-µ µ2 = {} snd p ′ = set xs ′

proof (cases l)
case LNone[simp]
from DISJ LV encoding-correct-nospawn ′[OF R] ECS (2) show ?thesis

by (rule-tac that [OF wn-π-none[OF R[simplified] WNS (1)]]) simp-all
next

case (LAcq x)[simp]
from that [OF wn-π-acq [OF R[simplified] WNS (1)]] LV DISJ

encoding-correct-nospawn ′[OF R] ECS (2)
show ?thesis by auto

next
case (LRel x)[simp]
from wn-π-rel [OF R[simplified] WNS (1)] obtain xs ′ where

[simp]: xs=x#xs ′ and
1 : x /∈set xs ′ and
2 : wn-π ∆ (p ′,w@r) xs ′

.
from 1 LV DISJ encoding-correct-nospawn ′[OF R] ECS (2) show ?thesis

by (rule-tac that [OF 2]) auto
qed
with WNS (2 ,3) DISJ (2) ECS (1 ,3) show P
by (rule-tac µ ′=µ1 @xs ′#µ2 in C) (auto intro!: wn-c-appendI wn-c-prependI)

next
case (dpntr-spawn p γ - ps ws p ′ w c1 r c2) hence

FMT [simp]: c = c1 @ (p, γ # r) # c2
c ′ = c1 @ (ps, ws) # (p ′, w @ r) # c2 and

R: (p,γ ↪→l ps,ws] p ′,w) ∈ ∆
by auto

from R obtain nlab where [simp]: l=LNone nlab by (cases l) auto
from wn-c-split-aux [OF A(2) FMT (1)] obtain µ1 xs µ2 where

[simp]: µ = µ1 @ xs # µ2 and
WNS : wn-π ∆ (p, γ # r) xs wn-c ∆ c1 µ1 wn-c ∆ c2 µ2 and
DISJ : locks-µ µ1 ∩ set xs = {} locks-µ µ1 ∩ locks-µ µ2 = {}

set xs ∩ locks-µ µ2 = {}
.

from A(3) wn-c-length[OF WNS (2)] wn-c-length[OF WNS (3)] have
ECS : map (snd◦fst) c1 = map set µ1 snd p = set xs

116

map (snd◦fst) c2 = map set µ2
by auto

from wn-π-spawn1 [OF R WNS (1)] wn-π-spawn2 [OF R WNS (1)]
WNS (2 ,3) DISJ

have wn-c ∆ c ′ (µ1 @[]#xs#µ2)
by (auto intro!: wn-c-appendI wn-c-prependI)

thus ?thesis
using LV encoding-correct-spawn ′[OF R] ECS
by (rule-tac µ ′=µ1 @[]#xs#µ2 in C) auto

qed
qed

lemma ec-preserve:
assumes

A: ((c,locks-µ µ),ll ,(c ′,X ′))∈ldpntrc ∆ wn-c ∆ c µ
map (snd◦fst) c = map set µ and

C : !!µ ′. [[X ′=locks-µ µ ′; wn-c ∆ c ′ µ ′; map (snd◦fst) c ′ = map set µ ′]] =⇒ P
shows P

proof −
{

fix c X µ ll c ′ X ′ P
assume

A: ((c,X),ll ,(c ′,X ′))∈ldpntrc ∆ wn-c ∆ c µ
map (snd◦fst) c = map set µ X =locks-µ µ and

C : !!µ ′. [[X ′=locks-µ µ ′; wn-c ∆ c ′ µ ′;
map (snd◦fst) c ′ = map set µ ′

]] =⇒ P
hence P
proof (induct arbitrary : µ P rule: trcl-pair-induct)

case empty thus ?case by auto
next

case (cons c x l ch Xh ll c ′ X ′ µ P) note [simp]=〈x=locks-µ µ〉

from ec-preserve-singlestep[OF cons.hyps(1)[simplified] cons.prems(1 ,2)]
obtain µ ′ where

P : wn-c ∆ ch µ ′ map (snd ◦ fst) ch = map set µ ′ Xh=locks-µ µ ′

.
from cons.hyps(3)[OF P] cons.prems(4) show ?case by blast

qed
} with A C show ?thesis by blast

qed

The following abbreviates the locks owned by a configuration:

abbreviation locks-c c == list-collect-set (snd◦fst) c

lemma locks-µ-mapset : locks-µ µ =
⋃

set (map set µ)
by (auto simp add : list-collect-set-as-map)

lemma locks-c-mapset : locks-c c =
⋃

set (map (snd◦fst) c)
by (auto simp add : list-collect-set-as-map)

117

end

locale EncodedLDPN-c0 = EncodedLDPN + LDPN-c0 +
— The states of the DPN are tuples of some states ′P and sets of locks:
constrains ∆ :: (′P× ′X set , ′Γ, ′L, ′X ::finite) ldpn
constrains c0 :: (′P× ′X set , ′Γ) conf
constrains µ0 :: ′X list list

— The locks encoded in the initial configuration correspond to the locks in the
initial list of lock-stacks:

assumes encoding-correct-start :
map (snd◦fst) c0 = map set µ0

begin

Reachable configurations are well-nested w.r.t. a lock-stack correspond-
ing to the locks encoded in the control states of the processes

lemma reachable-ec:
[[(c,X)∈reachablels;

!!µ. [[wn-c ∆ c µ; X =locks-µ µ; map (snd◦fst) c = map set µ]] =⇒ P
]] =⇒ P

apply (unfold reachablels-def)
apply simp
apply (erule exE)
apply (erule ec-preserve)
apply (rule wellnested)
apply (rule encoding-correct-start)
apply blast
done

Due to our assumptions, a reachable configuration always encodes the
locks that are also used by the lock-sensitive semantics.

theorem reachable-locks: (c,X)∈reachablels =⇒ locks-c c = X
by (erule reachable-ec) (auto simp add : locks-µ-mapset locks-c-mapset)

14.2 Characterizing Schedulable Execution Hedges

In order to characterize schedulable execution hedges, we have to first char-
acterize the locks allocated at the roots of an execution hedge. This can be
done by deriving the locks at the roots from the control states annotated at
the leafs.

fun lock-eff :: (′L, ′X) lockstep ⇒ ′X set ⇒ ′X set where
lock-eff (LNone nlab) X = X |
lock-eff (LAcq x) X = insert x X |
lock-eff (LRel x) X = X − {x}

118

fun lock-eff-inv :: (′L, ′X) lockstep ⇒ ′X set ⇒ ′X set where
lock-eff-inv (LNone nlab) X = X |
lock-eff-inv (LAcq x) X = X − {x} |
lock-eff-inv (LRel x) X = insert x X

fun rlocks-t :: (′P× ′X set , ′Γ, ′L, ′X) lex-tree ⇒ ′X set where
rlocks-t (NLEAF π) = (case π of ((p,X),w) ⇒ X) |
rlocks-t (NNOSPAWN l t) = lock-eff-inv l (rlocks-t t) |
rlocks-t (NSPAWN l ts t) = lock-eff-inv l (rlocks-t t)

abbreviation rlocks-h :: (′P× ′X set , ′Γ, ′L, ′X) lex-hedge ⇒ ′X set list where
rlocks-h h == map rlocks-t h

lemma tsem-locks: tsem ∆ π t c ′ =⇒ snd (fst π) = rlocks-t t
apply (induct rule: tsem.induct)
apply auto [1]
apply (drule encoding-correct-nospawn ′)
apply (case-tac l)
apply (auto) [3]
apply (drule encoding-correct-spawn ′)
apply (case-tac l)
apply (auto) [3]
done

lemma hsem-locks: hsem ∆ c h c ′ =⇒ map (snd◦fst) c = rlocks-h h
by (induct rule: hsem.induct) (auto dest : tsem-locks)

Next, we have to characterize the execution hedges with consistent ac-
quisition histories w.r.t. the set of allocated locks.

definition Hls h == cons (ash h) (
⋃

set (rlocks-h h))

theorem reachable-hls-char :
assumes A: (c,X)∈reachablels hsem ∆ c h c ′

shows (∃w . lsched h X w) ←→ Hls h
proof −

from reachable-ec[OF A(1)] obtain µ where
[simp]: X = locks-µ µ and

EC : wn-c ∆ c µ map (snd ◦ fst) c = map set µ
.

from EC (1) A(2) have WNH : wn-h h µ
by (auto simp add : wnc-eq-wnch wn-c-h-def)

have (∃w . lsched h X w) ←→ (∃w . lsched h (locks-µ µ) w) by simp
also from acqh-correct [OF WNH] have . . . = cons (ash h) (locks-µ µ) .
also have (locks-µ µ) =

⋃
set (rlocks-h h)

by (simp only : hsem-locks[OF A(2)] locks-µ-mapset EC (2)[symmetric])
finally show ?thesis by (unfold Hls-def)

qed

119

Now we can put it all together and show correctness of lock-sensitive
predecessor computation

lemma lsprestar1 :
assumes
REACH :(c,X)∈reachablels and
PRE : c∈prehc ∆ Hls C ′

shows ∃ c ′∈C ′. ∃ ll X ′. ((c,X),ll ,(c ′,X ′))∈ldpntrc ∆
proof −

from PRE obtain h c ′ where A: c ′∈C ′ h∈Hls hsem ∆ c h c ′

by (auto elim: prehcE)
from reachable-hls-char [OF REACH A(3)] A(2) obtain ll where

B : lsched h X ll
by (auto simp add : mem-def)

from lsched-correct2 [OF B A(3)] A(1) show ?thesis by blast
qed

lemma lsprestar2 :
assumes
REACH :(c,X)∈reachablels and
MEM : c ′∈C ′ and
PATH : ((c,X),ll ,(c ′,X ′))∈ldpntrc ∆
shows c∈prehc ∆ Hls C ′

proof −
from lsched-correct1 [OF PATH] obtain h where

A: hsem ∆ c h c ′ lsched h X ll
by blast

from reachable-hls-char [OF REACH A(1)] A(2) have B : Hls h by blast
from prehcI [OF - MEM A(1)] B show ?thesis by (auto simp add : mem-def)

qed

theorem lsprestar :
assumes REACH :(c,X)∈reachablels
shows c∈prehc ∆ Hls C ′←→ (∃ c ′∈C ′. ∃ ll X ′. ((c,X),ll ,(c ′,X ′))∈ldpntrc ∆)
using REACH lsprestar1 lsprestar2 by blast

14.3 Checking Specifications Using prehc ∆ Hls

We now show that we can use our construction to check for property speci-
fications (cf. Specification.thy).

We first have to construct a hedge-constraint for execution hedges that
contain a restricted set of labels.

fun isLab :: (′L, ′X) lockstep set ⇒ (′Q , ′Γ, ′L, ′X) lex-tree ⇒ bool where
isLab L (NLEAF π) ←→ True |
isLab L (NNOSPAWN l t) ←→ l∈L ∧ isLab L t |
isLab L (NSPAWN l ts t) ←→ l∈L ∧ isLab L ts ∧ isLab L t

abbreviation HLab L == { h . list-all (isLab L) h}

120

lemma final-h-is-lab[simp]: final h =⇒ list-all (isLab L) h
apply (induct h)
apply simp
apply (case-tac a)
apply auto
done

lemma HLab-correct : sched h ll =⇒ h∈HLab L ←→ ll∈lists L
by (induct rule: sched .induct) (auto simp add : lists.Nil)

lemmas HLab-correct ′ = HLab-correct [OF lsched-is-sched]

Then we can show how to check property specifications using prehc.

fun mc-pre :: (′P× ′X set , ′Γ, ′L, ′X) spec ⇒ (′P× ′X set , ′Γ) conf set where
mc-pre [] = UNIV |
mc-pre (SPEC-RESTRICT C # Φ) = C ∩ mc-pre Φ |
mc-pre (SPEC-STEP L # Φ) = prehc ∆ (Hls ∩ Hpre ∩ HLab L) (mc-pre Φ) |
mc-pre (SPEC-STEPS L # Φ) = prehc ∆ (Hls ∩ HLab L) (mc-pre Φ)

lemma mc-pre-correct-aux :
(c,X)∈reachablels =⇒ c∈mc-pre Φ ←→ (c,X)∈Domain (spec-tr Φ)

proof (induct Φ arbitrary : c X)
case Nil thus ?case by auto

next
case (Cons A Φ)
show ?case proof (cases A)

case (SPEC-RESTRICT C) with Cons show ?thesis by auto
next

case (SPEC-STEP L)[simp]
show ?thesis proof (auto simp add : prehc-def)

case (goal1 h c ′)
from reachable-hls-char [OF Cons.prems goal1 (5)] goal1 (1) obtain w where

LS : lsched h X w by (fastsimp simp add : mem-def)
from Hpre-length1 [OF goal1 (2) lsched-is-sched [OF LS]] have

LEN : length w = 1 .
from HLab-correct ′[OF LS] goal1 (3) have IL: w∈lists L by simp
from lsched-correct2 [OF LS goal1 (5)] obtain X ′ where

P : ((c, X), w , (c ′, X ′)) ∈ ldpntrc ∆
..

with LEN IL obtain a where
[simp]: w=[a] and

P1 : a∈L ((c, X), a, (c ′, X ′)) ∈ ldpntr ∆
by (cases w) auto

from P Cons.prems have P2 : (c ′,X ′)∈reachablels
by (unfold reachablels-def) (auto dest : trcl-concat trcl-one-elem)

from Cons.hyps[OF P2] goal1 (4) have
(c ′, X ′) ∈ Domain (LDPN .spec-tr ∆ Φ)

121

by simp
thus ?case using P1 by force

next
case (goal2 c ′ X ′ l ch Xh)
from goal2 (2) Cons.prems have REACH : (ch,Xh)∈reachablels

by (unfold reachablels-def) (auto dest : trcl-concat trcl-one-elem)
from Cons.hyps[OF REACH] goal2 (3) have IHAPP : ch∈mc-pre Φ by auto
from lsched-correct1 [OF trcl-one-elem[OF goal2 (2)]] obtain h where

H : hsem ∆ c h ch lsched h X [l]
by blast

from Hpre-length2 [OF lsched-is-sched [OF H (2)]] have
HPRE : h∈Hpre
by simp

from reachable-hls-char [OF Cons.prems H (1)] H (2) have
HLS : h∈Hls
by (auto simp add : mem-def)

from HLab-correct ′[OF H (2), of L] goal2 (1) have
list-all (isLab L) h
by auto

with HLS HPRE IHAPP H (1) show ?case by blast
qed

next
case (SPEC-STEPS L)[simp]
show ?thesis proof (auto simp add : prehc-def)

case (goal1 h c ′)
from reachable-hls-char [OF Cons.prems goal1 (4)] goal1 (1) obtain w where

LS : lsched h X w
by (fastsimp simp add : mem-def)

from HLab-correct ′[OF LS] goal1 (2) have IL: w∈lists L by simp
from lsched-correct2 [OF LS goal1 (4)] obtain X ′ where

P : ((c, X), w , (c ′, X ′)) ∈ ldpntrc ∆ ..
from P Cons.prems have P2 : (c ′,X ′)∈reachablels

by (unfold reachablels-def) (auto dest : trcl-concat)
from Cons.hyps[OF P2] goal1 (3)
have (c ′, X ′) ∈ Domain (LDPN .spec-tr ∆ Φ) by simp
thus ?case using IL P by force

next
case (goal2 c ′ X ′ ll ch Xh)
from goal2 (2) Cons.prems have REACH : (ch,Xh)∈reachablels

by (unfold reachablels-def) (auto dest : trcl-concat)
from Cons.hyps[OF REACH] goal2 (3) have IHAPP : ch∈mc-pre Φ by auto
from lsched-correct1 [OF goal2 (2)] obtain h where

H : hsem ∆ c h ch lsched h X ll
by blast

from reachable-hls-char [OF Cons.prems H (1)] H (2) have HLS : h∈Hls
by (auto simp add : mem-def)

from HLab-correct ′[OF H (2), of L] goal2 (1)
have list-all (isLab L) h by auto

122

with HLS IHAPP H (1) show ?case by blast
qed

qed
qed

theorem mc-pre-correct : c0∈mc-pre Φ ←→ model-check-ref Φ
using mc-pre-correct-aux [of c0 locks-µ µ0 Φ, simplified]
by (unfold model-check-ref-def)

end

end

15 Monitors (aka Block-Structured Locks)

theory Monitors
imports LockSem WellNested As-hc
begin

We model monitors by binding locks to stack symbols, and making some
restrictions on rules:

• A rule labeled by LNone must not change the allocated locks, nor
must it push or pop stack symbols associated with locks.

• An acquisition rule must be a rule that pushes a stack-symbol with
the acquired lock, and does not change the locks of the stacl-symbol
at the bottom.

• A release rule must be a rule that pops a stack-symbol with the released
lock.

One purpose of this theory is, that it gives strong evidence that our
model is not too restrictive. This is done by defining an introduction rule
for encoded DPNs with initial configurations that only depends on local
properties of the rules and the initial configuration.

— Lock-stack encoded into stack
definition lstackm-s :: (′Γ ⇀ ′X) ⇒ ′Γ ⇒ ′X list where

lstackm-s mon γ = (case mon γ of None ⇒ [] | Some x ⇒ [x])

lemma lstackm-s-simps[simp]:
mon γ = None =⇒ lstackm-s mon γ = []
mon γ = Some x =⇒ lstackm-s mon γ = [x]
by (auto simp add : lstackm-s-def)

123

fun lstackm :: (′Γ ⇀ ′X) ⇒ ′Γ list ⇒ ′X list where
lstackm mon [] = [] |
lstackm mon (γ#s) = lstackm-s mon γ @ lstackm mon s

lemma lstackm-conc[simp]:
lstackm mon (s@s ′) = lstackm mon s @ lstackm mon s ′

by (induct s) auto

lemma lstack-spawn-empty [simp]:
[[(∀ γs∈set w . mon γs=None)]] =⇒ lstackm mon w = []
by (induct w) (auto)

locale MDPN = EncodedLDPN +
constrains

∆ :: (′P× ′X set , ′Γ, ′L, ′X ::finite) ldpn
fixes mon :: ′Γ ⇒ ′X option — Maps stack symbols to associated monitors

assumes
locks-lnone-pop-nospawn:

(p,γ ↪→LNone a p ′,[])∈∆ =⇒ mon γ = None and
locks-lnone-pop-spawn:

(p,γ ↪→l ps,ws] p ′,[])∈∆ =⇒ mon γ = None and
locks-lnone-nospawn:

(p,γ ↪→LNone a p ′,w@[γ ′])∈∆ =⇒ mon γ ′ = mon γ ∧
(∀ γs∈set w . mon γs=None) and

locks-lnone-spawn:
(p,γ ↪→l ps,ws] p ′,w@[γ ′])∈∆ =⇒ mon γ ′ = mon γ ∧

(∀ γs∈set w . mon γs=None) and
locks-spawn:

(p,γ ↪→l ps,ws] p ′,w)∈∆ =⇒ (∀ γs∈set ws. mon γs=None) and
locks-acquire:

[[(p,γ ↪→LAcq x p ′,w)∈∆;
!!w ′ γ2 γ1 . [[w=w ′@[γ1 ,γ2]; mon γ2 = mon γ; mon γ1 = Some x ;

(∀ γs∈set w ′. mon γs=None)
]] =⇒ P

]] =⇒ P and
locks-release:

(p,γ ↪→LRel x p ′,w)∈∆ =⇒ w=[] ∧ mon γ = Some x

begin

abbreviation lstack-s == lstackm-s mon
abbreviation lstack == lstackm mon

lemma lstack-lnone-nospawn:
[[(p,γ ↪→LNone a p ′,w)∈∆]] =⇒ lstack (γ#r) = lstack (w@r)
apply (cases w rule: rev-cases)
apply simp

124

apply (drule locks-lnone-pop-nospawn)
apply (simp)
apply (simp)
apply (drule locks-lnone-nospawn)
apply (cases mon γ)
apply (simp-all)
done

lemma lstack-lnone-spawn:
[[(p,γ ↪→a ps,ws] p ′,w)∈∆]] =⇒ lstack (γ#r) = lstack (w@r)
apply (cases w rule: rev-cases)
apply simp
apply (drule locks-lnone-pop-spawn)
apply (simp)
apply (simp)
apply (drule locks-lnone-spawn)
apply (cases mon γ)
apply (simp-all)
done

lemma well-nested-t :
assumes CONS : distinct (lstack (snd π))
assumes H : tsem ∆ π t c ′

assumes COINC : snd (fst π) = set (lstack (snd π))
shows wn-t ′ t (lstack (snd π))
using H CONS COINC

proof (induct rule: tsem.induct)
case tsem-leaf thus ?case by (auto intro: wn-t .intros)

next
case (tsem-spawn p γ l ps ws p ′ w ts cs r t c ′)
from spawn-no-locks[OF tsem-spawn.hyps(1)] obtain la where

[simp]: l=LNone la
by auto

from locks-spawn[OF tsem-spawn.hyps(1)] have
[simp]: lstack ws = []
by (simp add : lstack-spawn-empty)

from encoding-correct-spawn2 ′[OF tsem-spawn.hyps(1)] have
[simp]: snd ps = {} .

from tsem-spawn.hyps(3) have
IHAPP1 : wn-t ′ ts (lstack (snd (ps, ws)))
by simp

moreover
from lstack-lnone-spawn[OF tsem-spawn.hyps(1)] have

LSF [simplified , simp]: lstack (γ # r) = lstack (w @ r) .
moreover from encoding-correct-spawn ′[OF tsem-spawn.hyps(1)] have

[simp]: snd p = snd p ′

by simp
from tsem-spawn.prems tsem-spawn.hyps(5) LSF have

125

IHAPP2 : wn-t ′ t (lstack (w@r))
by simp

ultimately show ?case by simp
next

case (tsem-nospawn p γ l p ′ w r t c ′)
show ?case
proof (cases l)

case (LNone la)[simp]
from lstack-lnone-nospawn tsem-nospawn.hyps(1) have

[simplified , simp]: lstack (γ#r) = lstack (w@r)
by simp

moreover from encoding-correct-nospawn ′[OF tsem-nospawn.hyps(1)] have
[simp]: snd p = snd p ′

by simp
from tsem-nospawn.prems tsem-nospawn.hyps(3) have

IHAPP : wn-t ′ t (lstack (w@r))
by simp

thus ?thesis by simp
next

case (LAcq x)[simp]
from tsem-nospawn.hyps(1)[simplified] show ?thesis
proof (cases rule: locks-acquire[consumes 1 , case-names C])

case (C w ′ γ2 γ1)
note [simp] = C (1)
from C (4) have [simp]: lstack w ′ = [] by simp
from C (3) have [simp]: lstack-s γ1 = [x] by simp
from C (2) have [simp]: lstack-s γ2 = lstack-s γ

by (cases mon γ) simp-all

from encoding-correct-nospawn ′[OF tsem-nospawn.hyps(1)] have
XNSP : x /∈snd p and
SP ′F [simp]: snd p ′ = insert x (snd p)
by auto

from tsem-nospawn.prems(2) XNSP have
XNIS : x /∈set (lstack (γ#r))
by simp

from XNIS [simplified] tsem-nospawn.prems(1)[simplified] have
P1 : distinct (lstack (w@r))
by (simp)

from tsem-nospawn.prems(2)[simplified] tsem-nospawn.hyps P1 have
IHAPP : wn-t ′ t (lstack (w@r))
by simp

thus ?thesis using XNIS by simp
qed

next
case (LRel x)[simp]
from tsem-nospawn.hyps(1)[simplified] locks-release have

[simp]: w=[] mon γ = Some x
by auto

126

from encoding-correct-nospawn ′[OF tsem-nospawn.hyps(1)] have
XNSP : x /∈snd p ′ and SPF [simp]: snd p ′ = snd p − {x}
by auto

from tsem-nospawn.prems(1)[simplified] have
P1 : distinct (lstack (w@r))
by (simp)

from tsem-nospawn.prems have P2 : snd p ′ = set (lstack (w @ r)) by simp
from tsem-nospawn.hyps P1 P2 have IHAPP : wn-t ′ t (lstack (w@r)) by

simp
thus ?thesis using tsem-nospawn.prems(1) by simp

qed
qed

lemma well-nested-h:
assumes CONS : cons-µ (map (lstack ◦ snd) c)
assumes H : hsem ∆ c h c ′

assumes COINC : map (snd◦fst) c = map (set◦lstack◦snd) c
shows wn-h h (map (lstack ◦ snd) c)
using H CONS COINC
by (induct rule: hsem.induct) (auto intro: well-nested-t)

theorem well-nested :
assumes CONS : cons-µ (map (lstack ◦ snd) c)
assumes COINC : map (snd◦fst) c = map (set◦lstack◦snd) c
shows wn-c ∆ c (map (lstack ◦ snd) c)
apply (simp add : wnc-eq-wnch)
apply (unfold wn-c-h-def)
apply (blast intro: well-nested-h[OF CONS - COINC])
done

This theorem can be used to show that an MDPN along with a consistent
start configuration is a DPN with well-nested lock usage, as described by
the locale EncodedLDPN-c0.

theorem EncodedLDPN-c0-intro[intro?]:
assumes start-config-cons: cons-µ µ0
assumes start-config-coinc: map (snd◦fst) c0 = map set µ0
assumes start-config-match: map (lstack ◦ snd) c0 = µ0
shows EncodedLDPN-c0 ∆ c0 µ0

proof
from start-config-coinc start-config-match[symmetric] have

map (snd◦fst) c0 = map set (map (lstack ◦ snd) c0)
by simp

also have . . . = map (set ◦ lstack ◦ snd) c0 by (simp add : map-compose)
finally show wn-c ∆ c0 µ0

using start-config-cons start-config-match by (blast intro: well-nested)
qed (rule start-config-coinc)

end

127

theorem EncodedLDPN-c0-intro-external :
assumes MDPN : MDPN ∆ mon
assumes start-config-cons: cons-µ µ0
assumes start-config-coinc: map (snd◦fst) c0 = map set µ0
assumes start-config-match: map (lstackm mon ◦ snd) c0 = µ0
shows EncodedLDPN-c0 ∆ c0 µ0

proof −
interpret MDPN [∆ mon] using MDPN .
from EncodedLDPN-c0-intro[OF start-config-cons start-config-coinc

start-config-match]
show ?thesis .

qed

15.1 Non-Trivial Instance of a Well-Nested DPN

In this section, we define a non-trivial Well-nested DPN by hand. This gives
strong evidence that our model assumptions are not too restrictive.

We start by introducing some finite set of locks that we can use in our
programs:

typedef t-my-locks = {1 ..6 ::nat} by auto

instance t-my-locks::finite
proof (intro-classes)

have Rep-t-my-locks ‘ UNIV ⊆ t-my-locks using Rep-t-my-locks by auto
moreover have finite t-my-locks by (unfold t-my-locks-def) auto
ultimately show finite (UNIV ::t-my-locks set)

apply (rule-tac f =Rep-t-my-locks in finite-imageD)
apply (drule finite-subset)
apply assumption+
apply (rule injI)
apply (simp add : Rep-t-my-locks-inject)
done

qed

definition l1 :: t-my-locks where l1 = Abs-t-my-locks (1 ::nat)
definition l2 :: t-my-locks where l2 = Abs-t-my-locks (2 ::nat)

lemma [simp, intro!]: l1 6=l2 l2 6=l1
apply (unfold l1-def l2-def)
apply (auto simp add : Abs-t-my-locks-inject t-my-locks-def)
done

The following rules correspond to a by-hand translation of the (nonsense)
program:

procedure p1:
sync l1 {

128

sync l2 {
spawn p1
spawn p2

}
}

procedure p2:
if ? then

spawn p2
call p2

else
sync l2 {
sync l1 {

spawn p1
}

}

definition my∆ :: (nat × t-my-locks set ,nat ,unit ,t-my-locks) ldpn where
my∆ = {

((0 ,{}),1 ↪→LAcq l1 (0 ,{l1}),[2 ,3]),
((0 ,{l1}),2 ↪→LAcq l2 (0 ,{l1 ,l2}),[4 ,5]),
((0 ,{l1 ,l2}),4 ↪→LNone () (0 ,{}),[1]](0 ,{l1 ,l2}),[6]),
((0 ,{l1 ,l2}),6 ↪→LNone () (0 ,{}),[11]](0 ,{l1 ,l2}),[7]),
((0 ,{l1 ,l2}),7 ↪→LRel l2 (0 ,{l1}),[]),
((0 ,{l1}),5 ↪→LRel l1 (0 ,{}),[]),
((0 ,{}),3 ↪→LNone () (0 ,{}),[]),

((0 ,{}),11 ↪→LNone () (0 ,{}),[11]](0 ,{}),[12]),
((0 ,{}),12 ↪→LNone () (0 ,{}),[11 ,13]),
((0 ,{}),11 ↪→LAcq l2 (0 ,{l2}),[14 ,13]),
((0 ,{l2}),14 ↪→LAcq l1 (0 ,{l1 ,l2}),[16 ,17]),
((0 ,{l1 ,l2}),16 ↪→LNone () (0 ,{}),[1]](0 ,{l1 ,l2}),[18]),
((0 ,{l1 ,l2}),18 ↪→LRel l1 (0 ,{l2}),[]),
((0 ,{l2}),17 ↪→LRel l2 (0 ,{}),[]),
((0 ,{}),13 ↪→LNone () (0 ,{}),[])
}

definition my-mon :: nat ⇒ t-my-locks option where
my-mon s = (

if s=1 then None
else if s=2 then Some l1
else if s=3 then None
else if s=4 then Some l2
else if s=5 then Some l1

129

else if s=6 then Some l2
else if s=7 then Some l2
else if s=11 then None
else if s=12 then None
else if s=13 then None
else if s=14 then Some l2
else if s=15 then None
else if s=16 then Some l1
else if s=17 then Some l2
else if s=18 then Some l1
else None

)

It is straightforward to show that this is an MDPN

interpretation MDPN [my∆ my-mon]
apply (unfold-locales)
apply (unfold my∆-def)
apply auto
apply (unfold my-mon-def)
apply simp-all
apply blast+
done

And with the stuff proven above, we also get that this program is a well-
nested LDPN w.r.t. the start configuration [((0 :: ′a, {}), [1 :: ′c])], which
corresponds to starting with procedure p1.

interpretation EncodedLDPN-c0 [my∆ [((0 ,{}),[1])] [[]]]
apply rule
apply auto
apply (unfold lstackm-s-def my-mon-def)
apply simp
done

end

16 Conclusion

We formalized a tree-based semantics for DPNs, where executions are mod-
eled as hedges, that reflect the ordering of steps of each process and the
causality due to process creation, but enforce no ordering between steps of
processes running in parallel. We have shown how to efficiently compute pre-
decessor sets of regular sets of configurations with tree-regular constraints
on the execution hedges, by encoding a hedge-automaton into the DPN,
thus reducing the problem to unconstrained predecessor set computation.

We have then formalized a generalization of acquisition histories to DPNs,
and have shown its correctness. We have demonstrated how to use the gen-

130

eralized acquisistion histories to describe the set of execution hedges, that
have a lock-sensitive schedule, as a regular set. Thus we could use the tech-
niques for hedge-constrained predecessor set computation to also compute
lock-sensitive, hedge-constrained predecessor sets. Finally, we have defined
a class of properties that can be computed using cascaded predecessor com-
putations, and have applied our techniques to decide those properties for
DPNs.

16.1 Trusted Code Base

In this section we shortly characterize on what our formal proof depends,
i.e. how to interpret the information contained in this formal proof and the
fact that it is accepted by Isabelle.

First of all, you have to trust the theorem prover and its axiomatization
of HOL, the ML-platform, the operating system software and the hardware
it runs on. All this components are able to cause false theorems to be proven.

Next, most of the theorems proven here have some implicit and explicit
assumptions. The most critical assumptions are the assumptions of the lo-
cales, namely DPN, LDPN, LDPN c0, and encodedLDPN. It is not formally
provebn that these assumptions make sense, and the locales really admit
useful models. In Section 15 we give an example for a non-trivial DPN and
formally prove that it satisfies our assumptions. This gives some evidence
that our assumptions are not too restrictive.

The next crucial point – already discussed in the introduction – is, that
we at some points claim that our methods are executable. However, we
do not derive any executable code, and even if we did, the Isabelle code-
generator can only guarantee partial correctness, i.e. correctness under the
assumption of termination. At this point, the belief in the existence of exe-
cutable methods depends on the belief in that the model-checking functions,
i.e. the function mc-pre in As-hc.thy is effective for regular sets, and the re-
sult is a regular set again, such that we can check c0 ∈ mc− preΦ as required
by Theorem mc-pre-correct, using the saturation algorithm of [2].

However, we prove some theorems that support this belief by showing
how the required operations can be decomposed to operations that are well-
known to be effective and to preserve regularity.

References

[1] A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability
analysis of multithreaded software with asynchronous communication.
In Proc. of FSTTCS’05, pages 348–359. Springer, 2005.

131

[2] A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis
of dynamic networks of pushdown systems. In Proc. of CONCUR’05.
Springer, 2005.

[3] V. Kahlon and A. Gupta. An automata-theoretic approach for model
checking threads for LTL properties. In Proc. of LICS 2006, pages 101–
110. IEEE Computer Society, 2006.

[4] V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads com-
municating via locks. In Proc. of CAV 2005, pages 505–518. Springer,
2005.

132

	Introduction
	Labeled transition systems
	Definitions
	Basic properties of transitive reflexive closure
	Appending of elements to paths
	Transitivity reasoning setup
	Monotonicity
	Special lemmas for reasoning about states that are pairs
	Invariants

	Dynamic Pushdown Networks
	Model Definition

	Semantics
	Interleaving Semantics
	Tree Semantics
	Scheduler

	Predecessor Sets
	Hedge-Constrained Predecessor Sets

	DPN Semantics on Lists
	Definitions
	Theorems
	Representation of Single Processes
	Representation of Configurations
	Step Relation on List-Configurations

	Predecessor Sets on List-Semantics

	Automata for Execution Hedges
	Computation of Hedge-Constrained Predecessor Sets
	Correctness of Reduction
	Effectiveness of Reduction
	Definitions
	Theorems

	What Does This Proof Tell You ?

	DPNs With Locks
	Model
	Interleaving Semantics
	Tree Semantics
	Equivalence of Interleaving and Tree Semantics

	Well-Nestedness of Locks
	Well-Nestedness Condition on Paths
	Well-Nestedness of Configurations
	Auxilliary Lemmas about wn-c

	Well-Nestedness Condition on Trees
	Well-Nestedness of Hedges
	Auxilliary Lemmas about wn-h
	Relation to Path Condition

	Well-Nestedness and Tree Scheduling

	Acquisition Structures
	Utilities
	Combinators for option-datatype

	Acquisition Structures
	Parallel Composition
	Acquisition Structures of Scheduling Trees and Hedges

	Consistency of Acquisition Structures
	Minimal Elements
	Well-Nestedness and Acquisition Structures

	Soundness of the Consistency Condition
	Precision of the Consistency Condition
	Custom Size Function

	DPNs with Initial Configuration
	DPNs with Initial Configuration
	Reachable Configurations

	Property Specifications
	Specification Formulas
	Semantics
	Examples
	Conflict analysis
	Bitvector analysis

	Hedge Constraints for Acquisition Histories
	Locks Encoded in Control State
	Characterizing Schedulable Execution Hedges
	Checking Specifications Using prehc Hls

	Monitors (aka Block-Structured Locks)
	Non-Trivial Instance of a Well-Nested DPN

	Conclusion
	Trusted Code Base

