header {*\isaheader{Implementing Unique Priority Queues by Annotated Lists}*} theory PrioUniqueByAnnotatedList imports "../spec/AnnotatedListSpec" "../spec/PrioUniqueSpec" begin text {* In this theory we use annotated lists to implement unique priority queues with totally ordered elements. This theory is written as a generic adapter from the AnnotatedList interface to the unique priority queue interface. The annotated list stores a sequence of elements annotated with priorities\footnote{Technically, the annotated list elements are of unit-type, and the annotations hold both, the priority queue elements and the priorities. This is required as we defined annotated lists to only sum up the elements annotations.} The monoids operations forms the maximum over the elements and the minimum over the priorities. The sequence of pairs is ordered by ascending elements' order. The insertion point for a new element, or the priority of an existing element can be found by splitting the sequence at the point where the maximum of the elements read so far gets bigger than the element to be inserted. The minimum priority can be read out as the sum over the whole sequence. Finding the element with minimum priority is done by splitting the sequence at the point where the minimum priority of the elements read so far becomes equal to the minimum priority of the whole sequence. *} subsection "Definitions" subsubsection "Monoid" datatype ('e, 'a) LP = Infty | LP 'e 'a fun p_unwrap :: "('e,'a) LP => ('e × 'a)" where "p_unwrap (LP e a) = (e , a)" fun p_min :: "('e::linorder, 'a::linorder) LP => ('e, 'a) LP => ('e, 'a) LP" where "p_min Infty Infty = Infty"| "p_min Infty (LP e a) = LP e a"| "p_min (LP e a) Infty = LP e a"| "p_min (LP e1 a) (LP e2 b) = (LP (max e1 e2) (min a b))" fun e_less_eq :: "'e => ('e::linorder, 'a::linorder) LP => bool" where "e_less_eq e Infty = False"| "e_less_eq e (LP e' _) = (e ≤ e')" text_raw{*\paragraph{Instantiation of classes}\ \\*} lemma p_min_re_neut[simp]: "p_min a Infty = a" by (induct a) auto lemma p_min_le_neut[simp]: "p_min Infty a = a" by (induct a) auto lemma p_min_asso: "p_min (p_min a b) c = p_min a (p_min b c)" apply(induct a b rule: p_min.induct ) apply (auto) apply (induct c) apply (auto) apply (metis max.assoc) apply (metis min.assoc) done lemma lp_mono: "class.monoid_add p_min Infty" by unfold_locales (auto simp add: p_min_asso) instantiation LP :: (linorder,linorder) monoid_add begin definition zero_def: "0 == Infty" definition plus_def: "a+b == p_min a b" instance by intro_classes (auto simp add: p_min_asso zero_def plus_def) end fun p_less_eq :: "('e, 'a::linorder) LP => ('e, 'a) LP => bool" where "p_less_eq (LP e a) (LP f b) = (a ≤ b)"| "p_less_eq _ Infty = True"| "p_less_eq Infty (LP e a) = False" fun p_less :: "('e, 'a::linorder) LP => ('e, 'a) LP => bool" where "p_less (LP e a) (LP f b) = (a < b)"| "p_less (LP e a) Infty = True"| "p_less Infty _ = False" lemma p_less_le_not_le : "p_less x y <-> p_less_eq x y ∧ ¬ (p_less_eq y x)" by (induct x y rule: p_less.induct) auto lemma p_order_refl : "p_less_eq x x" by (induct x) auto lemma p_le_inf : "p_less_eq Infty x ==> x = Infty" by (induct x) auto lemma p_order_trans : "[|p_less_eq x y; p_less_eq y z|] ==> p_less_eq x z" apply (induct y z rule: p_less.induct) apply auto apply (induct x) apply auto apply (cases x) apply auto apply(induct x) apply (auto simp add: p_le_inf) apply (metis p_le_inf p_less_eq.simps(2)) done lemma p_linear2 : "p_less_eq x y ∨ p_less_eq y x" apply (induct x y rule: p_less_eq.induct) apply auto done instantiation LP :: (type, linorder) preorder begin definition plesseq_def: "less_eq = p_less_eq" definition pless_def: "less = p_less" instance apply (intro_classes) apply (simp only: p_less_le_not_le pless_def plesseq_def) apply (simp only: p_order_refl plesseq_def pless_def) apply (simp only: plesseq_def) apply (metis p_order_trans) done end subsubsection "Operations" definition aluprio_α :: "('s => (unit × ('e::linorder,'a::linorder) LP) list) => 's => ('e::linorder \<rightharpoonup> 'a::linorder)" where "aluprio_α α ft == (map_of (map p_unwrap (map snd (α ft))))" definition aluprio_invar :: "('s => (unit × ('c::linorder, 'd::linorder) LP) list) => ('s => bool) => 's => bool" where "aluprio_invar α invar ft == invar ft ∧ (∀ x∈set (α ft). snd x≠Infty) ∧ sorted (map fst (map p_unwrap (map snd (α ft)))) ∧ distinct (map fst (map p_unwrap (map snd (α ft)))) " definition aluprio_empty where "aluprio_empty empt = empt" definition aluprio_isEmpty where "aluprio_isEmpty isEmpty = isEmpty" definition aluprio_insert :: "((('e::linorder,'a::linorder) LP => bool) => ('e,'a) LP => 's => ('s × (unit × ('e,'a) LP) × 's)) => ('s => ('e,'a) LP) => ('s => bool) => ('s => 's => 's) => ('s => unit => ('e,'a) LP => 's) => 's => 'e => 'a => 's" where " aluprio_insert splits annot isEmpty app consr s e a = (if e_less_eq e (annot s) ∧ ¬ isEmpty s then (let (l, (_,lp) , r) = splits (e_less_eq e) Infty s in (if e < fst (p_unwrap lp) then app (consr (consr l () (LP e a)) () lp) r else app (consr l () (LP e a)) r )) else consr s () (LP e a)) " definition aluprio_pop :: "((('e::linorder,'a::linorder) LP => bool) => ('e,'a) LP => 's => ('s × (unit × ('e,'a) LP) × 's)) => ('s => ('e,'a) LP) => ('s => 's => 's) => 's => 'e ×'a ×'s" where "aluprio_pop splits annot app s = (let (l, (_,lp) , r) = splits (λ x. x ≤ (annot s)) Infty s in (case lp of (LP e a) => (e, a, app l r) ))" definition aluprio_prio :: "((('e::linorder,'a::linorder) LP => bool) => ('e,'a) LP => 's => ('s × (unit × ('e,'a) LP) × 's)) => ('s => ('e,'a) LP) => ('s => bool) => 's => 'e => 'a option" where " aluprio_prio splits annot isEmpty s e = (if e_less_eq e (annot s) ∧ ¬ isEmpty s then (let (l, (_,lp) , r) = splits (e_less_eq e) Infty s in (if e = fst (p_unwrap lp) then Some (snd (p_unwrap lp)) else None)) else None) " lemmas aluprio_defs = aluprio_invar_def aluprio_α_def aluprio_empty_def aluprio_isEmpty_def aluprio_insert_def aluprio_pop_def aluprio_prio_def subsection "Correctness" subsubsection "Auxiliary Lemmas" lemma p_linear: "(x::('e, 'a::linorder) LP) ≤ y ∨ y ≤ x" by (unfold plesseq_def) (simp only: p_linear2) lemma e_less_eq_mon1: "e_less_eq e x ==> e_less_eq e (x + y)" apply (cases x) apply (auto simp add: plus_def) apply (cases y) apply (auto simp add: max.coboundedI1) done lemma e_less_eq_mon2: "e_less_eq e y ==> e_less_eq e (x + y)" apply (cases x) apply (auto simp add: plus_def) apply (cases y) apply (auto simp add: max.coboundedI2) done lemmas e_less_eq_mon = e_less_eq_mon1 e_less_eq_mon2 lemma p_less_eq_mon: "(x::('e::linorder,'a::linorder) LP) ≤ z ==> (x + y) ≤ z" apply(cases y) apply(auto simp add: plus_def) apply (cases x) apply (cases z) apply (auto simp add: plesseq_def) apply (cases z) apply (auto simp add: min.coboundedI1) done lemma p_less_eq_lem1: "[|¬ (x::('e::linorder,'a::linorder) LP) ≤ z; (x + y) ≤ z|] ==> y ≤ z " apply (cases x,auto simp add: plus_def) apply (cases y, auto) apply (cases z, auto simp add: plesseq_def) apply (metis min_le_iff_disj) done lemma infadd: "x ≠ Infty ==>x + y ≠ Infty" apply (unfold plus_def) apply (induct x y rule: p_min.induct) apply auto done lemma e_less_eq_listsum: "[|¬ e_less_eq e (listsum xs)|] ==> ∀x ∈ set xs. ¬ e_less_eq e x" proof (induct xs) case Nil thus ?case by simp next case (Cons a xs) hence "¬ e_less_eq e (listsum xs)" by (auto simp add: e_less_eq_mon) hence v1: "∀x∈set xs. ¬ e_less_eq e x" using Cons.hyps by simp from Cons.prems have "¬ e_less_eq e a" by (auto simp add: e_less_eq_mon) with v1 show "∀x∈set (a#xs). ¬ e_less_eq e x" by simp qed lemma e_less_eq_p_unwrap: "[|x ≠ Infty;¬ e_less_eq e x|] ==> fst (p_unwrap x) < e" by (cases x) auto lemma e_less_eq_refl : "b ≠ Infty ==> e_less_eq (fst (p_unwrap b)) b" by (cases b) auto lemma e_less_eq_listsum2: assumes "∀x∈set (αs). snd x ≠ Infty" "((), b) ∈ set (αs)" shows "e_less_eq (fst (p_unwrap b)) (listsum (map snd (αs)))" apply(insert assms) apply (induct "αs") apply (auto simp add: zero_def e_less_eq_mon e_less_eq_refl) done lemma e_less_eq_lem1: "[|¬ e_less_eq e a;e_less_eq e (a + b)|] ==> e_less_eq e b" apply (auto simp add: plus_def) apply (cases a) apply auto apply (cases b) apply auto apply (metis le_max_iff_disj) done lemma p_unwrap_less_sum: "snd (p_unwrap ((LP e aa) + b)) ≤ aa" apply (cases b) apply (auto simp add: plus_def) done lemma listsum_less_elems: "∀x∈set xs. snd x ≠ Infty ==> ∀y∈set (map snd (map p_unwrap (map snd xs))). snd (p_unwrap (listsum (map snd xs))) ≤ y" proof (induct xs) case Nil thus ?case by simp next case (Cons a as) thus ?case apply auto apply (cases "(snd a)" rule: p_unwrap.cases) apply auto apply (cases "listsum (map snd as)") apply auto apply (metis linorder_linear p_min_re_neut p_unwrap.simps plus_def[abs_def] snd_eqD) apply (auto simp add: p_unwrap_less_sum) apply (unfold plus_def) apply (cases "(snd a, listsum (map snd as))" rule: p_min.cases) apply auto apply (cases "map snd as") apply (auto simp add: infadd) apply (metis min.coboundedI2 snd_conv) done qed lemma distinct_sortet_list_app: "[|sorted xs; distinct xs; xs = as @ b # cs|] ==> ∀ x∈ set cs. b < x" by (metis distinct.simps(2) distinct_append linorder_antisym_conv2 sorted_Cons sorted_append) lemma distinct_sorted_list_lem1: assumes "sorted xs" "sorted ys" "distinct xs" "distinct ys" " ∀ x ∈ set xs. x < e" " ∀ y ∈ set ys. e < y" shows "sorted (xs @ e # ys)" "distinct (xs @ e # ys)" proof - from assms (5,6) have "∀x∈set xs. ∀y∈set ys. x ≤ y" by force thus "sorted (xs @ e # ys)" using assms by (auto simp add: sorted_append sorted_Cons) have "set xs ∩ set ys = {}" using assms (5,6) by force thus "distinct (xs @ e # ys)" using assms by (auto simp add: distinct_append) qed lemma distinct_sorted_list_lem2: assumes "sorted xs" "sorted ys" "distinct xs" "distinct ys" "e < e'" " ∀ x ∈ set xs. x < e" " ∀ y ∈ set ys. e' < y" shows "sorted (xs @ e # e' # ys)" "distinct (xs @ e # e' # ys)" proof - have "sorted (e' # ys)" "distinct (e' # ys)" "∀ y ∈ set (e' # ys). e < y" using assms(2,4,5,7) by (auto simp add: sorted_Cons) thus "sorted (xs @ e # e' # ys)" "distinct (xs @ e # e' # ys)" using assms(1,3,6) distinct_sorted_list_lem1[of xs "e' # ys" e] by auto qed lemma map_of_distinct_upd: "x ∉ set (map fst xs) ==> [x \<mapsto> y] ++ map_of xs = (map_of xs) (x \<mapsto> y)" by (induct xs) (auto simp add: fun_upd_twist) lemma map_of_distinct_upd2: assumes "x ∉ set(map fst xs)" "x ∉ set (map fst ys)" shows "map_of (xs @ (x,y) # ys) = (map_of (xs @ ys))(x \<mapsto> y)" apply(insert assms) apply(induct xs) apply (auto intro: ext) done lemma map_of_distinct_upd3: assumes "x ∉ set(map fst xs)" "x ∉ set (map fst ys)" shows "map_of (xs @ (x,y) # ys) = (map_of (xs @ (x,y') # ys))(x \<mapsto> y)" apply(insert assms) apply(induct xs) apply (auto intro: ext) done lemma map_of_distinct_upd4: assumes "x ∉ set(map fst xs)" "x ∉ set (map fst ys)" shows "map_of (xs @ ys) = (map_of (xs @ (x,y) # ys))(x := None)" apply(insert assms) apply(induct xs) apply clarsimp apply (metis dom_map_of_conv_image_fst fun_upd_None_restrict restrict_complement_singleton_eq restrict_map_self) apply (auto simp add: map_of_eq_None_iff) [] done lemma map_of_distinct_lookup: assumes "x ∉ set(map fst xs)" "x ∉ set (map fst ys)" shows "map_of (xs @ (x,y) # ys) x = Some y" proof - have "map_of (xs @ (x,y) # ys) = (map_of (xs @ ys)) (x \<mapsto> y)" using assms map_of_distinct_upd2 by simp thus ?thesis by simp qed lemma ran_distinct: assumes dist: "distinct (map fst al)" shows "ran (map_of al) = snd ` set al" using assms proof (induct al) case Nil then show ?case by simp next case (Cons kv al) then have "ran (map_of al) = snd ` set al" by simp moreover from Cons.prems have "map_of al (fst kv) = None" by (simp add: map_of_eq_None_iff) ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp qed subsubsection "Finite" lemma aluprio_finite_correct: "uprio_finite (aluprio_α α) (aluprio_invar α invar)" by(unfold_locales) (simp add: aluprio_defs finite_dom_map_of) subsubsection "Empty" lemma aluprio_empty_correct: assumes "al_empty α invar empt" shows "uprio_empty (aluprio_α α) (aluprio_invar α invar) (aluprio_empty empt)" proof - interpret al_empty α invar empt by fact show ?thesis apply (unfold_locales) apply (auto simp add: empty_correct aluprio_defs) done qed subsubsection "Is Empty" lemma aluprio_isEmpty_correct: assumes "al_isEmpty α invar isEmpty" shows "uprio_isEmpty (aluprio_α α) (aluprio_invar α invar) (aluprio_isEmpty isEmpty)" proof - interpret al_isEmpty α invar isEmpty by fact show ?thesis apply (unfold_locales) apply (auto simp add: aluprio_defs isEmpty_correct) done qed subsubsection "Insert" lemma annot_inf: assumes A: "invar s" "∀x∈set (α s). snd x ≠ Infty" "al_annot α invar annot" shows "annot s = Infty <-> α s = [] " proof - from A have invs: "invar s" by (simp add: aluprio_defs) interpret al_annot α invar annot by fact show "annot s = Infty <-> α s = []" proof (cases "α s = []") case True hence "map snd (α s) = []" by simp hence "listsum (map snd (α s)) = Infty" by (auto simp add: zero_def) with invs have "annot s = Infty" by (auto simp add: annot_correct) with True show ?thesis by simp next case False hence " ∃x xs. (α s) = x # xs" by (cases "α s") auto from this obtain x xs where [simp]: "(α s) = x # xs" by blast from this assms(2) have "snd x ≠ Infty" by (auto simp add: aluprio_defs) hence "listsum (map snd (α s)) ≠ Infty" by (auto simp add: infadd) thus ?thesis using annot_correct invs False by simp qed qed lemma e_less_eq_annot: assumes "al_annot α invar annot" "invar s" "∀x∈set (α s). snd x ≠ Infty" "¬ e_less_eq e (annot s)" shows "∀x ∈ set (map (fst o (p_unwrap o snd)) (α s)). x < e" proof - interpret al_annot α invar annot by fact from assms(2) have "annot s = listsum (map snd (α s))" by (auto simp add: annot_correct) with assms(4) have "∀x ∈ set (map snd (α s)). ¬ e_less_eq e x" by (metis e_less_eq_listsum) with assms(3) show ?thesis by (auto simp add: e_less_eq_p_unwrap) qed lemma aluprio_insert_correct: assumes "al_splits α invar splits" "al_annot α invar annot" "al_isEmpty α invar isEmpty" "al_app α invar app" "al_consr α invar consr" shows "uprio_insert (aluprio_α α) (aluprio_invar α invar) (aluprio_insert splits annot isEmpty app consr)" proof - interpret al_splits α invar splits by fact interpret al_annot α invar annot by fact interpret al_isEmpty α invar isEmpty by fact interpret al_app α invar app by fact interpret al_consr α invar consr by fact show ?thesis proof (unfold_locales,unfold aluprio_defs) case goal1 note g1asms = this thus ?case proof (cases "e_less_eq e (annot s) ∧ ¬ isEmpty s") case False with g1asms show ?thesis apply (auto simp add: consr_correct ) proof - case goal1 with assms(2) have "∀x ∈ set (map (fst o (p_unwrap o snd)) (α s)). x < e" by (simp add: e_less_eq_annot) with goal1(3) show ?case by(auto simp add: sorted_append) next case goal2 hence "annot s = listsum (map snd (α s))" by (simp add: annot_correct) with goal2 show ?case by (auto simp add: e_less_eq_listsum2) next case goal3 hence "α s = []" by (auto simp add: isEmpty_correct) thus ?case by simp next case goal4 hence "α s = []" by (auto simp add: isEmpty_correct) with goal4 show ?case by simp qed next case True note T1 = this obtain l uu lp r where l_lp_r: "(splits (e_less_eq e) Infty s) = (l, ((), lp), r) " by (cases "splits (e_less_eq e) Infty s", auto) note v2 = splits_correct[of s "e_less_eq e" Infty l "()" lp r] have v3: "invar s" "¬ e_less_eq e Infty" "e_less_eq e (Infty + listsum (map snd (α s)))" using T1 g1asms annot_correct by (auto simp add: plus_def) have v4: "α s = α l @ ((), lp) # α r" "¬ e_less_eq e (Infty + listsum (map snd (α l)))" "e_less_eq e (Infty + listsum (map snd (α l)) + lp)" "invar l" "invar r" using v2[OF v3(1) _ v3(2) v3(3) l_lp_r] e_less_eq_mon(1) by auto hence v5: "e_less_eq e lp" by (metis e_less_eq_lem1) hence v6: "e ≤ (fst (p_unwrap lp))" by (cases lp) auto have "(Infty + listsum (map snd (α l))) = (annot l)" by (metis add_0_left annot_correct v4(4) zero_def) hence v7:"¬ e_less_eq e (annot l)" using v4(2) by simp have "∀x∈set (α l). snd x ≠ Infty" using g1asms v4(1) by simp hence v7: "∀x ∈ set (map (fst o (p_unwrap o snd)) (α l)). x < e" using v4(4) v7 assms(2) by(simp add: e_less_eq_annot) have v8:"map fst (map p_unwrap (map snd (α s))) = map fst (map p_unwrap (map snd (α l))) @ fst(p_unwrap lp) # map fst (map p_unwrap (map snd (α r)))" using v4(1) by simp note distinct_sortet_list_app[of "map fst (map p_unwrap (map snd (α s)))" "map fst (map p_unwrap (map snd (α l)))" "fst(p_unwrap lp)" "map fst (map p_unwrap (map snd (α r)))"] hence v9: "∀ x∈set (map (fst o (p_unwrap o snd)) (α r)). fst(p_unwrap lp) < x" using v4(1) g1asms v8 by auto have v10: "sorted (map fst (map p_unwrap (map snd (α l))))" "distinct (map fst (map p_unwrap (map snd (α l))))" "sorted (map fst (map p_unwrap (map snd (α r))))" "distinct (map fst (map p_unwrap (map snd (α l))))" using g1asms v8 by (auto simp add: sorted_append sorted_Cons) from l_lp_r T1 g1asms show ?thesis proof (fold aluprio_insert_def, cases "e < fst (p_unwrap lp)") case True hence v11: "aluprio_insert splits annot isEmpty app consr s e a = app (consr (consr l () (LP e a)) () lp) r" using l_lp_r T1 by (auto simp add: aluprio_defs) have v12: "invar (app (consr (consr l () (LP e a)) () lp) r)" using v4(4,5) by (auto simp add: app_correct consr_correct) have v13: "α (app (consr (consr l () (LP e a)) () lp) r) = α l @ ((),(LP e a)) # ((), lp) # α r" using v4(4,5) by (auto simp add: app_correct consr_correct) hence v14: "(∀x∈set (α (app (consr (consr l () (LP e a)) () lp) r)). snd x ≠ Infty)" using g1asms v4(1) by auto have v15: "e = fst(p_unwrap (LP e a))" by simp hence v16: "sorted (map fst (map p_unwrap (map snd (α l @ ((),(LP e a)) # ((), lp) # α r))))" "distinct (map fst (map p_unwrap (map snd (α l @ ((),(LP e a)) # ((), lp) # α r))))" using v10(1,3) v7 True v9 v4(1) g1asms distinct_sorted_list_lem2 by (auto simp add: sorted_append sorted_Cons) thus "invar (aluprio_insert splits annot isEmpty app consr s e a) ∧ (∀x∈set (α (aluprio_insert splits annot isEmpty app consr s e a)). snd x ≠ Infty) ∧ sorted (map fst (map p_unwrap (map snd (α (aluprio_insert splits annot isEmpty app consr s e a))))) ∧ distinct (map fst (map p_unwrap (map snd (α (aluprio_insert splits annot isEmpty app consr s e a)))))" using v11 v12 v13 v14 by simp next case False hence v11: "aluprio_insert splits annot isEmpty app consr s e a = app (consr l () (LP e a)) r" using l_lp_r T1 by (auto simp add: aluprio_defs) have v12: "invar (app (consr l () (LP e a)) r)" using v4(4,5) by (auto simp add: app_correct consr_correct) have v13: "α (app (consr l () (LP e a)) r) = α l @ ((),(LP e a)) # α r" using v4(4,5) by (auto simp add: app_correct consr_correct) hence v14: "(∀x∈set (α (app (consr l () (LP e a)) r)). snd x ≠ Infty)" using g1asms v4(1) by auto have v15: "e = fst(p_unwrap (LP e a))" by simp have v16: "e = fst(p_unwrap lp)" using False v5 by (cases lp) auto hence v17: "sorted (map fst (map p_unwrap (map snd (α l @ ((),(LP e a)) # α r))))" "distinct (map fst (map p_unwrap (map snd (α l @ ((),(LP e a)) # α r))))" using v16 v15 v10(1,3) v7 True v9 v4(1) g1asms distinct_sorted_list_lem1 by (auto simp add: sorted_append sorted_Cons) thus "invar (aluprio_insert splits annot isEmpty app consr s e a) ∧ (∀x∈set (α (aluprio_insert splits annot isEmpty app consr s e a)). snd x ≠ Infty) ∧ sorted (map fst (map p_unwrap (map snd (α (aluprio_insert splits annot isEmpty app consr s e a))))) ∧ distinct (map fst (map p_unwrap (map snd (α (aluprio_insert splits annot isEmpty app consr s e a)))))" using v11 v12 v13 v14 by simp qed qed next case goal2 note g1asms = this thus ?case proof (cases "e_less_eq e (annot s) ∧ ¬ isEmpty s") case False with g1asms show ?thesis apply (auto simp add: consr_correct) proof - case goal1 with assms(2) have "∀x ∈ set (map (fst o (p_unwrap o snd)) (α s)). x < e" by (simp add: e_less_eq_annot) hence "e ∉ set (map fst ((map (p_unwrap o snd)) (α s)))" by auto thus ?case by (auto simp add: map_of_distinct_upd) next case goal2 hence "α s = []" by (auto simp add: isEmpty_correct) thus ?case by simp qed next case True note T1 = this obtain l uu lp r where l_lp_r: "(splits (e_less_eq e) Infty s) = (l, ((), lp), r) " by (cases "splits (e_less_eq e) Infty s", auto) note v2 = splits_correct[of s "e_less_eq e" Infty l "()" lp r] have v3: "invar s" "¬ e_less_eq e Infty" "e_less_eq e (Infty + listsum (map snd (α s)))" using T1 g1asms annot_correct by (auto simp add: plus_def) have v4: "α s = α l @ ((), lp) # α r" "¬ e_less_eq e (Infty + listsum (map snd (α l)))" "e_less_eq e (Infty + listsum (map snd (α l)) + lp)" "invar l" "invar r" using v2[OF v3(1) _ v3(2) v3(3) l_lp_r] e_less_eq_mon(1) by auto hence v5: "e_less_eq e lp" by (metis e_less_eq_lem1) hence v6: "e ≤ (fst (p_unwrap lp))" by (cases lp) auto have "(Infty + listsum (map snd (α l))) = (annot l)" by (metis add_0_left annot_correct v4(4) zero_def) hence v7:"¬ e_less_eq e (annot l)" using v4(2) by simp have "∀x∈set (α l). snd x ≠ Infty" using g1asms v4(1) by simp hence v7: "∀x ∈ set (map (fst o (p_unwrap o snd)) (α l)). x < e" using v4(4) v7 assms(2) by(simp add: e_less_eq_annot) have v8:"map fst (map p_unwrap (map snd (α s))) = map fst (map p_unwrap (map snd (α l))) @ fst(p_unwrap lp) # map fst (map p_unwrap (map snd (α r)))" using v4(1) by simp note distinct_sortet_list_app[of "map fst (map p_unwrap (map snd (α s)))" "map fst (map p_unwrap (map snd (α l)))" "fst(p_unwrap lp)" "map fst (map p_unwrap (map snd (α r)))"] hence v9: " ∀ x∈set (map (fst o (p_unwrap o snd)) (α r)). fst(p_unwrap lp) < x" using v4(1) g1asms v8 by auto hence v10: " ∀ x∈set (map (fst o (p_unwrap o snd)) (α r)). e < x" using v6 by auto have v11: "e ∉ set (map fst (map p_unwrap (map snd (α l))))" "e ∉ set (map fst (map p_unwrap (map snd (α r))))" using v7 v10 v8 g1asms by auto from l_lp_r T1 g1asms show ?thesis proof (fold aluprio_insert_def, cases "e < fst (p_unwrap lp)") case True hence v12: "aluprio_insert splits annot isEmpty app consr s e a = app (consr (consr l () (LP e a)) () lp) r" using l_lp_r T1 by (auto simp add: aluprio_defs) have v13: "α (app (consr (consr l () (LP e a)) () lp) r) = α l @ ((),(LP e a)) # ((), lp) # α r" using v4(4,5) by (auto simp add: app_correct consr_correct) have v14: "e = fst(p_unwrap (LP e a))" by simp have v15: "e ∉ set (map fst (map p_unwrap (map snd(((),lp)#α r))))" using v11(2) True by auto note map_of_distinct_upd2[OF v11(1) v15] thus "map_of (map p_unwrap (map snd (α (aluprio_insert splits annot isEmpty app consr s e a)))) = map_of (map p_unwrap (map snd (α s)))(e \<mapsto> a)" using v12 v13 v4(1) by simp next case False hence v12: "aluprio_insert splits annot isEmpty app consr s e a = app (consr l () (LP e a)) r" using l_lp_r T1 by (auto simp add: aluprio_defs) have v13: "α (app (consr l () (LP e a)) r) = α l @ ((),(LP e a)) # α r" using v4(4,5) by (auto simp add: app_correct consr_correct) have v14: "e = fst(p_unwrap lp)" using False v5 by (cases lp) auto note v15 = map_of_distinct_upd3[OF v11(1) v11(2)] have v16:"(map p_unwrap (map snd (α s))) = (map p_unwrap (map snd (α l))) @ (e,snd(p_unwrap lp)) # (map p_unwrap (map snd (α r)))" using v4(1) v14 by simp note v15[of a "snd(p_unwrap lp)"] thus "map_of (map p_unwrap (map snd (α (aluprio_insert splits annot isEmpty app consr s e a)))) = map_of (map p_unwrap (map snd (α s)))(e \<mapsto> a)" using v12 v13 v16 by simp qed qed qed qed subsubsection "Prio" lemma aluprio_prio_correct: assumes "al_splits α invar splits" "al_annot α invar annot" "al_isEmpty α invar isEmpty" shows "uprio_prio (aluprio_α α) (aluprio_invar α invar) (aluprio_prio splits annot isEmpty)" proof - interpret al_splits α invar splits by fact interpret al_annot α invar annot by fact interpret al_isEmpty α invar isEmpty by fact show ?thesis proof (unfold_locales) fix s e assume inv1: "aluprio_invar α invar s" hence sinv: "invar s" "(∀ x∈set (α s). snd x≠Infty)" "sorted (map fst (map p_unwrap (map snd (α s))))" "distinct (map fst (map p_unwrap (map snd (α s))))" by (auto simp add: aluprio_defs) show "aluprio_prio splits annot isEmpty s e = aluprio_α α s e" proof(cases "e_less_eq e (annot s) ∧ ¬ isEmpty s") case False note F1 = this thus ?thesis proof(cases "isEmpty s") case True hence "α s = []" using sinv isEmpty_correct by simp hence "aluprio_α α s = empty" by (simp add:aluprio_defs) hence "aluprio_α α s e = None" by simp thus "aluprio_prio splits annot isEmpty s e = aluprio_α α s e" using F1 by (auto simp add: aluprio_defs) next case False hence v3:"¬ e_less_eq e (annot s)" using F1 by simp note v4=e_less_eq_annot[OF assms(2)] note v4[OF sinv(1) sinv(2) v3] hence v5:"e∉set (map (fst o (p_unwrap o snd)) (α s))" by auto hence "map_of (map (p_unwrap o snd) (α s)) e = None" using map_of_eq_None_iff by (metis map_map map_of_eq_None_iff set_map v5) thus "aluprio_prio splits annot isEmpty s e = aluprio_α α s e" using F1 by (auto simp add: aluprio_defs) qed next case True note T1 = this obtain l uu lp r where l_lp_r: "(splits (e_less_eq e) Infty s) = (l, ((), lp), r) " by (cases "splits (e_less_eq e) Infty s", auto) note v2 = splits_correct[of s "e_less_eq e" Infty l "()" lp r] have v3: "invar s" "¬ e_less_eq e Infty" "e_less_eq e (Infty + listsum (map snd (α s)))" using T1 sinv annot_correct by (auto simp add: plus_def) have v4: "α s = α l @ ((), lp) # α r" "¬ e_less_eq e (Infty + listsum (map snd (α l)))" "e_less_eq e (Infty + listsum (map snd (α l)) + lp)" "invar l" "invar r" using v2[OF v3(1) _ v3(2) v3(3) l_lp_r] e_less_eq_mon(1) by auto hence v5: "e_less_eq e lp" by (metis e_less_eq_lem1) hence v6: "e ≤ (fst (p_unwrap lp))" by (cases lp) auto have "(Infty + listsum (map snd (α l))) = (annot l)" by (metis add_0_left annot_correct v4(4) zero_def) hence v7:"¬ e_less_eq e (annot l)" using v4(2) by simp have "∀x∈set (α l). snd x ≠ Infty" using sinv v4(1) by simp hence v7: "∀x ∈ set (map (fst o (p_unwrap o snd)) (α l)). x < e" using v4(4) v7 assms(2) by(simp add: e_less_eq_annot) have v8:"map fst (map p_unwrap (map snd (α s))) = map fst (map p_unwrap (map snd (α l))) @ fst(p_unwrap lp) # map fst (map p_unwrap (map snd (α r)))" using v4(1) by simp note distinct_sortet_list_app[of "map fst (map p_unwrap (map snd (α s)))" "map fst (map p_unwrap (map snd (α l)))" "fst(p_unwrap lp)" "map fst (map p_unwrap (map snd (α r)))"] hence v9: "∀ x∈set (map (fst o (p_unwrap o snd)) (α r)). fst(p_unwrap lp) < x" using v4(1) sinv v8 by auto hence v10: " ∀ x∈set (map (fst o (p_unwrap o snd)) (α r)). e < x" using v6 by auto have v11: "e ∉ set (map fst (map p_unwrap (map snd (α l))))" "e ∉ set (map fst (map p_unwrap (map snd (α r))))" using v7 v10 v8 sinv by auto from l_lp_r T1 sinv show ?thesis proof (cases "e = fst (p_unwrap lp)") case False have v12: "e ∉ set (map fst (map p_unwrap (map snd(α s))))" using v11 False v4(1) by auto hence "map_of (map (p_unwrap o snd) (α s)) e = None" using map_of_eq_None_iff by (metis map_map map_of_eq_None_iff set_map v12) thus ?thesis using T1 False l_lp_r by (auto simp add: aluprio_defs) next case True have v12: "map (p_unwrap o snd) (α s) = map p_unwrap (map snd (α l)) @ (e,snd (p_unwrap lp)) # map p_unwrap (map snd (α r))" using v4(1) True by simp note map_of_distinct_lookup[OF v11] hence "map_of (map (p_unwrap o snd) (α s)) e = Some (snd (p_unwrap lp))" using v12 by simp thus ?thesis using T1 True l_lp_r by (auto simp add: aluprio_defs) qed qed qed qed subsubsection "Pop" lemma aluprio_pop_correct: assumes "al_splits α invar splits" "al_annot α invar annot" "al_app α invar app" shows "uprio_pop (aluprio_α α) (aluprio_invar α invar) (aluprio_pop splits annot app)" proof - interpret al_splits α invar splits by fact interpret al_annot α invar annot by fact interpret al_app α invar app by fact show ?thesis proof (unfold_locales) fix s e a s' assume A: "aluprio_invar α invar s" "aluprio_α α s ≠ empty" "aluprio_pop splits annot app s = (e, a, s')" hence v1: "α s ≠ []" by (auto simp add: aluprio_defs) obtain l lp r where l_lp_r: "splits (λ x. x≤annot s) Infty s = (l,((),lp),r)" by (cases "splits (λ x. x≤annot s) Infty s", auto) have invs: "invar s" "(∀x∈set (α s). snd x ≠ Infty)" "sorted (map fst (map p_unwrap (map snd (α s))))" "distinct (map fst (map p_unwrap (map snd (α s))))" using A by (auto simp add:aluprio_defs) note a1 = annot_inf[of invar s α annot] note a1[OF invs(1) invs(2) assms(2)] hence v2: "annot s ≠ Infty" using v1 by simp hence v3: "¬ Infty ≤ annot s" by(cases "annot s") (auto simp add: plesseq_def) have v4: "annot s = listsum (map snd (α s))" by (auto simp add: annot_correct invs(1)) hence v5: "(Infty + listsum (map snd (α s))) ≤ annot s" by (auto simp add: plus_def) note p_mon = p_less_eq_mon[of _ "annot s"] note v6 = splits_correct[OF invs(1)] note v7 = v6[of "λ x. x ≤ annot s"] note v7[OF _ v3 v5 l_lp_r] p_mon hence v8: " α s = α l @ ((), lp) # α r" "¬ Infty + listsum (map snd (α l)) ≤ annot s" "Infty + listsum (map snd (α l)) + lp ≤ annot s" "invar l" "invar r" by auto hence v9: "lp ≠ Infty" using invs(2) by auto hence v10: "s' = app l r" "(e,a) = p_unwrap lp" using l_lp_r A(3) apply (auto simp add: aluprio_defs) apply (cases lp) apply auto apply (cases lp) apply auto done have "lp ≤ annot s" using v8(2,3) p_less_eq_lem1 by auto hence v11: "a ≤ snd (p_unwrap (annot s))" using v10(2) v2 v9 apply (cases "annot s") apply auto apply (cases lp) apply (auto simp add: plesseq_def) done note listsum_less_elems[OF invs(2)] hence v12: "∀y∈set (map snd (map p_unwrap (map snd (α s)))). a ≤ y" using v4 v11 by auto have "ran (aluprio_α α s) = set (map snd (map p_unwrap (map snd (α s))))" using ran_distinct[OF invs(4)] apply (unfold aluprio_defs) apply (simp only: set_map) done hence ziel1: "∀y∈ran (aluprio_α α s). a ≤ y" using v12 by simp have v13: "map p_unwrap (map snd (α s)) = map p_unwrap (map snd (α l)) @ (e,a) # map p_unwrap (map snd (α r))" using v8(1) v10 by auto hence v14: "map fst (map p_unwrap (map snd (α s))) = map fst (map p_unwrap (map snd (α l))) @ e # map fst (map p_unwrap (map snd (α r)))" by auto hence v15: "e ∉ set (map fst (map p_unwrap (map snd (α l))))" "e ∉ set (map fst (map p_unwrap (map snd (α r))))" using invs(4) by auto note map_of_distinct_lookup[OF v15] note this[of a] hence ziel2: "aluprio_α α s e = Some a" using v13 by (unfold aluprio_defs, auto) have v16: "α s' = α l @ α r" "invar s'" using v8(4,5) app_correct v10 by auto note map_of_distinct_upd4[OF v15] note this[of a] hence ziel3: "aluprio_α α s' = (aluprio_α α s)(e := None)" unfolding aluprio_defs using v16(1) v13 by auto have ziel4: "aluprio_invar α invar s'" using v16 v8(1) invs(2,3,4) unfolding aluprio_defs by (auto simp add: sorted_Cons sorted_append) show "aluprio_invar α invar s' ∧ aluprio_α α s' = (aluprio_α α s)(e := None) ∧ aluprio_α α s e = Some a ∧ (∀y∈ran (aluprio_α α s). a ≤ y)" using ziel1 ziel2 ziel3 ziel4 by simp qed qed lemmas aluprio_correct = aluprio_finite_correct aluprio_empty_correct aluprio_isEmpty_correct aluprio_insert_correct aluprio_pop_correct aluprio_prio_correct locale aluprio_defs = StdALDefs ops for ops :: "(unit,('e::linorder,'a::linorder) LP,'s) alist_ops" begin definition [icf_rec_def]: "aluprio_ops ≡ (| upr_α = aluprio_α α, upr_invar = aluprio_invar α invar, upr_empty = aluprio_empty empty, upr_isEmpty = aluprio_isEmpty isEmpty, upr_insert = aluprio_insert splits annot isEmpty app consr, upr_pop = aluprio_pop splits annot app, upr_prio = aluprio_prio splits annot isEmpty |))," end locale aluprio = aluprio_defs ops + StdAL ops for ops :: "(unit,('e::linorder,'a::linorder) LP,'s) alist_ops" begin lemma aluprio_ops_impl: "StdUprio aluprio_ops" apply (rule StdUprio.intro) apply (simp_all add: icf_rec_unf) apply (rule aluprio_correct) apply (rule aluprio_correct, unfold_locales) [] apply (rule aluprio_correct, unfold_locales) [] apply (rule aluprio_correct, unfold_locales) [] apply (rule aluprio_correct, unfold_locales) [] apply (rule aluprio_correct, unfold_locales) [] done end end