header {* \isaheader{Data Refinement Heuristics} *}
theory Refine_Heuristics
imports Refine_Basic
begin
text {*
This theory contains some heuristics to automatically prove
data refinement goals that are left over by the refinement condition
generator.
*}
text {*
The theorem collection @{text "refine_hsimp"} contains additional simplifier
rules that are useful to discharge typical data refinement goals.
*}
ML {*
structure refine_heuristics_simps = Named_Thms
( val name = @{binding refine_hsimp}
val description = "Refinement Framework: " ^
"Data refinement heuristics simp rules" );
*}
setup {* refine_heuristics_simps.setup *}
subsection {* Type Based Heuristics *}
text {*
This heuristics instantiates schematic data refinement relations based
on their type. Both, the left hand side and right hand side type are
considered.
*}
text {* The heuristics works by proving goals of the form
@{text "RELATES ?R"}, thereby instantiating @{text "?R"}. *}
definition RELATES :: "('a×'b) set => bool" where "RELATES R ≡ True"
ML {*
structure Refine_dref_type = struct
structure pattern_rules = Named_Thms
( val name = @{binding refine_dref_pattern}
val description = "Refinement Framework: " ^
"Pattern rules to recognize refinement goal" );
structure RELATES_rules = Named_Thms (
val name = @{binding refine_dref_RELATES}
val description = "Refinement Framework: " ^
"Type based heuristics introduction rules"
);
val tracing =
Attrib.setup_config_bool @{binding refine_dref_tracing} (K false);
(* Check whether term contains schematic variable *)
fun
has_schematic (Var _) = true |
has_schematic (Abs (_,_,t)) = has_schematic t |
has_schematic (t1$t2) = has_schematic t1 orelse has_schematic t2 |
has_schematic _ = false;
(* Match proof states where the conclusion of some goal has the specified
shape *)
fun match_goal_shape_tac (shape:term->bool) (ctxt:Proof.context) i thm =
if Thm.nprems_of thm >= i then
let
val t = HOLogic.dest_Trueprop (Logic.concl_of_goal (Thm.prop_of thm) i);
in
(if shape t then all_tac thm else no_tac thm)
end
else
no_tac thm;
fun output_failed_msg ctxt failed_t = let
val failed_t_str = Pretty.string_of
(Syntax.pretty_term (Config.put show_types true ctxt) failed_t);
val msg = "Failed to resolve refinement goal \n " ^ failed_t_str;
(*val _ = Output.urgent_message (msg);*)
val _ = if Config.get ctxt tracing then Output.tracing msg else ();
in () end;
(* Try to apply patternI-rules, ensure that produced first subgoal
contains a schematic variable, and then solve it using
refine_dref_RELATES-rules. *)
fun type_tac ctxt =
ALL_GOALS_FWD (TRY o (
resolve_tac (pattern_rules.get ctxt) THEN'
match_goal_shape_tac has_schematic ctxt THEN'
(SOLVED' (REPEAT_ALL_NEW (resolve_tac (RELATES_rules.get ctxt)))
ORELSE' (fn i => fn st => let
val failed_t =
HOLogic.dest_Trueprop (Logic.concl_of_goal (Thm.prop_of st) i);
val _ = output_failed_msg ctxt failed_t;
in no_tac st end)
)
));
end;
*}
setup {* Refine_dref_type.RELATES_rules.setup *}
setup {* Refine_dref_type.pattern_rules.setup *}
method_setup refine_dref_type =
{* Scan.lift (Args.mode "trace" -- Args.mode "nopost")
>> (fn (tracing,nopost) =>
fn ctxt => (let
val ctxt =
if tracing then Config.put Refine_dref_type.tracing true ctxt else ctxt;
in
SIMPLE_METHOD (CHANGED (
Refine_dref_type.type_tac ctxt
THEN (if nopost then all_tac else ALLGOALS (TRY o Refine.post_tac ctxt))))
end))
*}
"Use type-based heuristics to instantiate data refinement relations"
subsection {* Patterns *}
text {*
This section defines the patterns that are recognized as data refinement
goals.
*}
lemma RELATESI_memb[refine_dref_pattern]:
"RELATES R ==> (a,b)∈R ==> (a,b)∈R" .
lemma RELATESI_refspec[refine_dref_pattern]:
"RELATES R ==> S ≤\<Down>R S' ==> S ≤\<Down>R S'" .
subsection {* Refinement Relations *}
text {*
In this section, we define some general purpose refinement relations, e.g.,
for product types and sets.
*}
lemma Id_RELATES [refine_dref_RELATES]: "RELATES Id" by (simp add: RELATES_def)
lemma prod_rel_RELATES[refine_dref_RELATES]:
"RELATES Ra ==> RELATES Rb ==> RELATES (〈Ra,Rb〉prod_rel)"
by (simp add: RELATES_def prod_rel_def)
declare prod_rel_sv[refine_hsimp]
lemma prod_rel_iff[refine_hsimp]:
"((a,b),(a',b'))∈〈A,B〉prod_rel <-> (a,a')∈A ∧ (b,b')∈B"
by (auto simp: prod_rel_def)
lemmas [refine_hsimp] = prod_rel_id_simp
lemma option_rel_RELATES[refine_dref_RELATES]:
"RELATES Ra ==> RELATES (〈Ra〉option_rel)"
by (simp add: RELATES_def option_rel_def)
declare option_rel_sv[refine_hsimp]
declare case_option_refine[refine del]
lemma case_option_refine_ext[refine]:
assumes "(v,v')∈〈Ra〉option_rel"
assumes "n ≤ \<Down> Rb n'"
assumes "!!x x'. [| v=Some x; v'=Some x'; (x, x') ∈ Ra |]
==> f x ≤ \<Down> Rb (f' x')"
shows "case_option n f v ≤\<Down>Rb (case_option n' f' v')"
using assms
by (auto split: option.split simp: option_rel_def)
lemmas [refine_hsimp] = option_rel_id_simp
lemmas [refine_hsimp] = set_rel_sv set_rel_csv
lemma set_rel_RELATES[refine_dref_RELATES]:
"RELATES R ==> RELATES (〈R〉set_rel)" by (simp add: RELATES_def)
lemma set_rel_empty_eq: "(S,S')∈〈X〉set_rel ==> S={} <-> S'={}"
by (auto simp: set_rel_def)
lemma set_rel_sngD: "({a},{b})∈〈R〉set_rel ==> (a,b)∈R"
by (auto simp: set_rel_def)
lemma Image_insert[refine_hsimp]:
"(a,b)∈R ==> single_valued R ==> R``insert a A = insert b (R``A)"
by (auto dest: single_valuedD)
lemmas [refine_hsimp] = Image_Un
lemma Image_Diff[refine_hsimp]:
"single_valued (converse R) ==> R``(A-B) = R``A - R``B"
by (auto dest: single_valuedD)
lemma Image_Inter[refine_hsimp]:
"single_valued (converse R) ==> R``(A∩B) = R``A ∩ R``B"
by (auto dest: single_valuedD)
lemma list_rel_RELATES[refine_dref_RELATES]:
"RELATES R ==> RELATES (〈R〉list_rel)" by (simp add: RELATES_def)
lemmas [refine_hsimp] = list_rel_sv_iff list_rel_simp
end