Theory Refine_Util

theory Refine_Util
imports Main
header "General Utilities"
theory Refine_Util
imports Main
begin
definition conv_tag where "conv_tag n x == x" 
  -- {* Used internally for @{text "pat_conv"}-conversion *}

ML {*
  infix 0 RSm THEN_ELSE' THEN_ELSE_COMB'
  infix 1 THEN_ALL_NEW_FWD THEN_INTERVAL;
  infix 3 ->>
  infix 1 ##

  signature BASIC_REFINE_UTIL = sig
    val map_option: ('a -> 'b) -> 'a option -> 'b option

    val map_fold: ('a -> 'b -> 'c * 'b) -> 'a list -> 'b -> 'c list * 'b

    val yield_singleton2: ('a list -> 'b -> ('c * 'd list) * 'e) -> 'a -> 'b ->
      ('c * 'd) * 'e

    val ## : ('a -> 'c) * ('b -> 'd) -> ('a * 'b) -> ('c * 'd)

    val seq_is_empty: 'a Seq.seq -> bool * 'a Seq.seq

    (* Resolution with matching *)
    val RSm: thm * thm -> thm

    val is_Abs: term -> bool
    val is_Comb: term -> bool
    val has_Var: term -> bool

    val is_TFree: typ -> bool

    val is_def_thm: thm -> bool

    (* Tacticals *)
    type tactic' = int -> tactic
    type itactic = int -> int -> tactic

    val IF_EXGOAL: (int -> tactic) -> tactic'
    val COND': (term -> bool) -> tactic'
    val CONCL_COND': (term -> bool) -> tactic'
    
    val THEN_ELSE': tactic' * (tactic' * tactic') -> tactic'
    val THEN_ELSE_COMB': 
      tactic' * ((tactic'*tactic'->tactic') * tactic' * tactic') -> tactic'

    val INTERVAL_FWD: tactic' -> int -> int -> tactic
    val THEN_ALL_NEW_FWD: tactic' * tactic' -> tactic'
    val REPEAT_ALL_NEW_FWD: tactic' -> tactic'
    val REPEAT_DETERM': tactic' -> tactic'
    val REPEAT': tactic' -> tactic'
    val ALL_GOALS_FWD': tactic' -> tactic'
    val ALL_GOALS_FWD: tactic' -> tactic

    val APPEND_LIST': tactic' list -> tactic'

    val SINGLE_INTERVAL: itactic -> tactic'
    val THEN_INTERVAL: itactic * itactic -> itactic

    val CAN': tactic' -> tactic'

    val NTIMES': tactic' -> int -> tactic'


    (* Tactics *)
    val fo_rtac: thm -> Proof.context -> tactic'
    val fo_resolve_tac: thm list -> Proof.context -> tactic'
    val rprems_tac: Proof.context -> tactic'
    val rprem_tac: int -> Proof.context -> tactic'
    val elim_all_tac: thm list -> tactic

    val prefer_tac: int -> tactic

    val insert_subgoal_tac: cterm -> tactic'
    val insert_subgoals_tac: cterm list -> tactic'

    val eqsubst_inst_tac: Proof.context -> bool -> int list 
      -> (indexname * string) list -> thm -> int -> tactic

    val eqsubst_inst_meth: (Proof.context -> Proof.method) context_parser

    (* Parsing *)
    val ->> : 'a context_parser *('a * Context.generic -> 'b * Context.generic)
      -> 'b context_parser

  end

  signature REFINE_UTIL = sig
    include BASIC_REFINE_UTIL

    val order_by: ('a * 'a -> order) -> ('b -> 'a) -> 'b list -> 'b list
    val build_res_net: thm list -> (int * thm) Net.net

    (* Terms *)
    val fo_matchp: theory -> cterm -> term -> term list option
    val fo_matches: theory -> cterm -> term -> bool

    val anorm_typ: typ -> typ
    val anorm_term: term -> term

    val import_cterms: bool -> cterm list -> Proof.context -> 
      cterm list * Proof.context

    val cterm_instantiate': cterm option list -> thm -> thm

    val subsume_sort: ('a -> term) -> theory -> 'a list -> 'a list
    val subsume_sort_gen: ('a -> term) -> Context.generic 
      -> 'a list -> 'a list

    (* Rules *)
    val abs_def: Proof.context -> thm -> thm

    (* Conversion *)
    val trace_conv: conv
    val monitor_conv: string -> conv -> conv
    val monitor_conv': string -> (Proof.context -> conv) -> Proof.context -> conv

    val fixup_vars: cterm -> thm -> thm
    val fixup_vars_conv: conv -> conv
    val fixup_vars_conv': (Proof.context -> conv) -> Proof.context -> conv

    val pat_conv': cterm -> (string -> Proof.context -> conv) -> Proof.context
      -> conv
    val pat_conv: cterm -> (Proof.context -> conv) -> Proof.context -> conv

    val HOL_concl_conv: (Proof.context -> conv) -> Proof.context -> conv

    val import_conv: (Proof.context -> conv) -> Proof.context -> conv

    val fix_conv: conv -> conv
    val ite_conv: conv -> conv -> conv -> conv

    val cfg_trace_f_tac_conv: bool Config.T
    val f_tac_conv: Proof.context -> (term -> term) -> tactic -> conv

    (* Parsing *)
    val parse_bool_config: string -> bool Config.T -> bool context_parser
    val parse_paren_list: 'a context_parser -> 'a list context_parser
    val parse_paren_lists: 'a context_parser -> 'a list list context_parser

    (* Setup *)

    val setup: theory -> theory

  end


  structure Refine_Util: REFINE_UTIL = struct

    fun map_option _ NONE = NONE
      | map_option f (SOME x) = SOME (f x)

    fun map_fold _ [] s = ([],s)
      | map_fold f (x::xs) s = 
        let 
          val (x',s') = f x s
          val (xs',s') = map_fold f xs s'
        in
          (x'::xs',s')
        end

    fun yield_singleton2 f x y = case f [x] y of
      ((r1,[r2]),r3) => ((r1,r2),r3)
    | _ => error "INTERNAL: yield_singleton2"

    fun (f ## g) (a,b) = (f a, g b)
  
    fun seq_is_empty seq = case Seq.pull seq of
      NONE => (true, seq)
    | SOME (a,seq) => (false, Seq.cons a seq)

    fun (thA RSm thB) = let
      val thy = Context.merge (pairself theory_of_thm (thA,thB))
      val ctxt = Proof_Context.init_global thy
      val octxt = ctxt
      val ctxt = Variable.declare_thm thA ctxt
      val ctxt = Variable.declare_thm thB ctxt
      val (thA,ctxt) = 
        yield_singleton (apfst snd oo Variable.import true) thA ctxt
      val thm = thA RS thB
      val thm = singleton (Variable.export ctxt octxt) thm
      |> Drule.zero_var_indexes
    in 
      thm
    end

    fun is_Abs (Abs _) = true | is_Abs _ = false
    fun is_Comb (_$_) = true | is_Comb _ = false

    fun has_Var (Var _) = true
      | has_Var (Abs (_,_,t)) = has_Var t
      | has_Var (t1$t2) = has_Var t1 orelse has_Var t2
      | has_Var _ = false

    fun is_TFree (TFree _) = true
      | is_TFree _ = false

    fun is_def_thm thm = case thm |> prop_of of
      Const (@{const_name "Pure.eq"},_)$_$_ => true | _ => false


    type tactic' = int -> tactic
    type itactic = int -> int -> tactic

    (* Fail if subgoal does not exist *)
    fun IF_EXGOAL tac i st = if i <= nprems_of st then
      tac i st
    else no_tac st;

    fun COND' P = IF_EXGOAL (fn i => fn st => 
      (if P (prop_of st |> curry Logic.nth_prem i) then
      all_tac st else no_tac st) 
      handle TERM _ => no_tac st
      | Pattern.MATCH => no_tac st
    )

    (* FIXME: Subtle difference between Logic.concl_of_goal and this:
         concl_of_goal converts loose bounds to frees!
    *)
    fun CONCL_COND' P = COND' (strip_all_body #> Logic.strip_imp_concl #> P)

    fun (tac1 THEN_ELSE' (tac2,tac3)) x = tac1 x THEN_ELSE (tac2 x,tac3 x);  

    (* If first tactic succeeds, combine its effect with "comb tac2", 
      otherwise use tac_else. Example: 
        tac1 THEN_ELSE_COMB (op THEN_ALL_NEW,tac2,tac_else)  *)
    fun (tac1 THEN_ELSE_COMB' (comb,tac2,tac_else)) i st = let
      val rseq = tac1 i st
    in
      case seq_is_empty rseq of
        (true,_) => tac_else i st
      | (false,rseq) => comb (K(K( rseq )), tac2) i st

    end

    (* Apply tactic to subgoals in interval, in a forward manner, skipping over
      emerging subgoals *)
    fun INTERVAL_FWD tac l u st =
      if l>u then all_tac st 
      else (tac l THEN (fn st' => let
          val ofs = nprems_of st' - nprems_of st;
        in
          if ofs < ~1 then raise THM (
            "INTERVAL_FWD: Tac solved more than one goal",~1,[st,st'])
          else INTERVAL_FWD tac (l+1+ofs) (u+ofs) st'
        end)) st;

    (* Apply tac2 to all subgoals emerged from tac1, in forward manner. *)
    fun (tac1 THEN_ALL_NEW_FWD tac2) i st =
      (tac1 i 
        THEN (fn st' => INTERVAL_FWD tac2 i (i+nprems_of st'-nprems_of st) st')
      ) st;

    fun REPEAT_ALL_NEW_FWD tac =
      tac THEN_ALL_NEW_FWD (TRY o (fn i => REPEAT_ALL_NEW_FWD tac i));

    (* Repeat tac on subgoal. Determinize each step. 
       Stop if tac fails or subgoal is solved. *)
    fun REPEAT_DETERM' tac i st = let
      val n = nprems_of st 
    in
      REPEAT_DETERM (COND (has_fewer_prems n) no_tac (tac i)) st
    end

    fun REPEAT' tac i st = let
      val n = nprems_of st 
    in
      REPEAT (COND (has_fewer_prems n) no_tac (tac i)) st
    end

    (* Apply tactic to all goals in a forward manner.
      Newly generated goals are ignored.
    *)
    fun ALL_GOALS_FWD' tac i st =
      (tac i THEN (fn st' => 
        let
          val i' = i + nprems_of st' + 1 - nprems_of st;
        in
          if i' <= nprems_of st' then
            ALL_GOALS_FWD' tac i' st'
          else
            all_tac st'
        end
      )) st;

    fun ALL_GOALS_FWD tac = ALL_GOALS_FWD' tac 1;

    fun APPEND_LIST' tacs = fold_rev (curry op APPEND') tacs (K no_tac);

    fun SINGLE_INTERVAL tac i = tac i i

    fun ((tac1:itactic) THEN_INTERVAL (tac2:itactic)) = 
      (fn i => fn j => fn st =>
        ( tac1 i j
          THEN (fn st' => tac2 i (j + nprems_of st' - nprems_of st) st')
        ) st
      ):itactic

    (* Fail if tac fails, otherwise do nothing *)
    fun CAN' tac i st = 
      case tac i st |> Seq.pull of
        NONE => Seq.empty
      | SOME _ => Seq.single st

    (* Repeat tactic n times *)
    fun NTIMES' _ 0 _ st = Seq.single st
      | NTIMES' tac n i st = (tac THEN' NTIMES' tac (n-1)) i st

    (* Resolve with rule. Use first-order unification.
      From cookbook, added exception handling *)
    fun fo_rtac thm = Subgoal.FOCUS (fn {concl, ...} => 
    let
      val concl_pat = Drule.strip_imp_concl (cprop_of thm)
      val insts = Thm.first_order_match (concl_pat, concl)
    in
      rtac (Drule.instantiate_normalize insts thm) 1
    end handle Pattern.MATCH => no_tac )

    fun fo_resolve_tac thms ctxt = 
      FIRST' (map (fn thm => fo_rtac thm ctxt) thms);

    (* Resolve with premises. Copied and adjusted from Goal.assume_rule_tac. *)
    fun rprems_tac ctxt = Goal.norm_hhf_tac ctxt THEN' CSUBGOAL (fn (goal, i) =>
      let
        fun non_atomic (Const (@{const_name Pure.imp}, _) $ _ $ _) = true
          | non_atomic (Const (@{const_name Pure.all}, _) $ _) = true
          | non_atomic _ = false;

        val ((_, goal'), ctxt') = Variable.focus_cterm goal ctxt;
        val goal'' = Drule.cterm_rule 
          (singleton (Variable.export ctxt' ctxt)) goal';
        val Rs = filter (non_atomic o Thm.term_of) 
          (Drule.strip_imp_prems goal'');

        val ethms = Rs |> map (fn R =>
          (Simplifier.norm_hhf ctxt (Thm.trivial R)));
      in eresolve_tac ethms i end
      );

    (* Resolve with premise. Copied and adjusted from Goal.assume_rule_tac. *)
    fun rprem_tac n ctxt = Goal.norm_hhf_tac ctxt THEN' CSUBGOAL (fn (goal, i) =>
      let
        val ((_, goal'), ctxt') = Variable.focus_cterm goal ctxt;
        val goal'' = Drule.cterm_rule 
          (singleton (Variable.export ctxt' ctxt)) goal';

        val R = nth (Drule.strip_imp_prems goal'') (n - 1)
        val rl = Simplifier.norm_hhf ctxt (Thm.trivial R)
      in
        etac rl i
      end
      );

    fun elim_all_tac thms = ALLGOALS (REPEAT_ALL_NEW (ematch_tac thms))

    fun prefer_tac i = defer_tac i THEN PRIMITIVE (Thm.permute_prems 0 ~1)

    fun order_by ord f = sort (ord o pairself f)

    (* CLONE from tactic.ML *)
    local
      (*insert one tagged rl into the net*)
      fun insert_krl (krl as (_,th)) =
        Net.insert_term (K false) (concl_of th, krl);
    in
      (*build a net of rules for resolution*)
      fun build_res_net rls =
        fold_rev insert_krl (tag_list 1 rls) Net.empty;
    end

    fun insert_subgoals_tac cts i = PRIMITIVE (
      Thm.permute_prems 0 (i - 1)
      #> fold_rev Thm.implies_intr cts
      #> Thm.permute_prems 0 (~i + 1)
    )

    fun insert_subgoal_tac ct i = insert_subgoals_tac [ct] i

  local
    (* Substitution with dynamic instantiation of parameters.
       By Lars Noschinski. *)
    fun eqsubst_tac' ctxt asm =
      if asm then EqSubst.eqsubst_asm_tac ctxt else EqSubst.eqsubst_tac ctxt

    fun subst_method inst_tac tac =
      Args.goal_spec --
      Scan.lift (Args.mode "asm" -- Scan.optional (Args.parens (Scan.repeat Parse.nat)) [0]) --
      Scan.optional (Scan.lift
        (Parse.and_list1 
          (Args.var -- (Args.$$$ "=" |-- Parse.!!! Args.name_inner_syntax)) --|
          Args.$$$ "in")) [] --
      Attrib.thms >>
      (fn (((quant, (asm, occL)), insts), thms) => fn ctxt => METHOD 
        (fn facts =>
          if null insts then 
            quant (Method.insert_tac facts THEN' tac ctxt asm occL thms)
          else
            (case thms of
              [thm] => quant (
                Method.insert_tac facts THEN' inst_tac ctxt asm occL insts thm)
            | _ => error "Cannot have instantiations with multiple rules")));

  in
    fun eqsubst_inst_tac ctxt asm occL insts thm = 
      Subgoal.FOCUS (
        fn {context=ctxt,...} => let
          val ctxt' = ctxt |> Proof_Context.set_mode Proof_Context.mode_schematic  (* FIXME !? *)
          val thm' = thm |> Rule_Insts.read_instantiate ctxt' insts []
        in eqsubst_tac' ctxt asm occL [thm'] 1 end
      ) ctxt


    val eqsubst_inst_meth = subst_method eqsubst_inst_tac eqsubst_tac'
  end

    (* Match pattern against term, and return list of values for non-dummy
      variables. A variable is considered dummy if its name starts with 
      an underscore (_)*)
    fun fo_matchp thy cpat t = let
      fun ignore (Var ((name,_),_)) = String.isPrefix "_" name
        | ignore _ = true;

      val pat = term_of cpat;
      val pvars = fold_aterms (
        fn t => fn l => if is_Var t andalso not (ignore t)
          then t::l else l
      ) pat [] |> rev
      val inst = Pattern.first_order_match thy (pat,t) 
        (Vartab.empty,Vartab.empty);
    in SOME (map (Envir.subst_term inst) pvars) end 
    handle Pattern.MATCH => NONE;

    val fo_matches = is_some ooo fo_matchp


    fun anorm_typ ty = let
      val instT = Term.add_tvarsT ty []
      |> map_index (fn (i,(n,s)) => (n,TVar (("t"^string_of_int i,0),s)))
      val ty = Term.typ_subst_TVars instT ty;
    in ty end;

    fun anorm_term t = let
      val instT = Term.add_tvars t []
      |> map_index (fn (i,(n,s)) => (n,TVar (("t"^string_of_int i,0),s)))
      val t = Term.subst_TVars instT t;
      val inst = Term.add_vars t []
      |> map_index (fn (i,(n,s)) => (n,Var (("v"^string_of_int i,0),s)))
      val t = Term.subst_Vars inst t;
    in t end;

    fun import_cterms is_open cts ctxt = let
      val ts = map term_of cts
      val (ts',ctxt') = Variable.import_terms is_open ts ctxt
      val cts' = cts~~ts' |> map (fn (ct,t') => cterm_of (theory_of_cterm ct) t')
    in (cts',ctxt') end


    (*
      Instantiate variables by left-to-right order of occurence, 
      inferring type instantiations
    *)
    fun cterm_instantiate' instl thm = let
      fun err msg =
        raise TERM ("instantiate': " ^ msg,
          map_filter (map_option Thm.term_of) instl);

      fun inst_of (v, ct) =
        (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
          handle TYPE (msg, _, _) => err msg;

      fun zip_vars xs ys =
        zip_options xs ys handle ListPair.UnequalLengths =>
          err "more instantiations than variables in thm";

      val vars = rev (Thm.fold_terms Term.add_vars thm [])
      val insts = zip_vars vars instl |> map inst_of

      val thm' = cterm_instantiate insts thm
    in 
      thm' 
    end


    (* Order a list of items such that more specific items come
       before less specific ones. The term to be compared is
       extracted by a function that is given as parameter.
    *)
    fun subsume_sort f thy items = let
      val rhss = map (Envir.beta_eta_contract o f) items
      fun freqf thy net rhs = Net.match_term net rhs 
        |> filter (fn p => Pattern.matches thy (p,rhs))
        |> length

      val net = fold 
        (fn rhs => Net.insert_term_safe (op =) (rhs,rhs)) rhss Net.empty 

      val freqs = map (freqf thy net) rhss

      val res = freqs ~~ items 
        |> sort (rev_order o int_ord o pairself fst)
        |> map snd
  
    in res end

    fun subsume_sort_gen f = subsume_sort f o Context.theory_of


    fun abs_def ctxt = Local_Defs.meta_rewrite_rule ctxt #> Drule.abs_def

    fun trace_conv ct = (tracing (PolyML.makestring ct); Conv.all_conv ct);

    fun monitor_conv msg conv ct = let
      val _ = tracing (msg ^ " (gets): " ^ PolyML.makestring ct);
      val res = conv ct 
        handle exc => (tracing (msg ^ " (raises): " ^ PolyML.makestring exc);
          reraise exc)
      val _ = tracing (msg ^ " (yields): " ^ PolyML.makestring res);
    in res end

    fun monitor_conv' msg conv ctxt ct = monitor_conv msg (conv ctxt) ct

    fun fixup_vars ct thm = let
      val lhs = Thm.lhs_of thm
      val inst = Thm.first_order_match (lhs,ct)
      val thm' = Thm.instantiate inst thm
    in thm' end

    fun fixup_vars_conv conv ct = fixup_vars ct (conv ct)

    fun fixup_vars_conv' conv ctxt = fixup_vars_conv (conv ctxt)

    local
      fun mk_equals_ct (ct,ct') = let
        val thy = Context.merge (theory_of_cterm ct, theory_of_cterm ct');
      in
        Logic.mk_equals (term_of ct, term_of ct') |> cterm_of thy
      end

      fun tag_ct name ct = let
        val thy = theory_of_cterm ct;
        val t = term_of ct;
        val ty = fastype_of t;
        val t' = Const (@{const_name conv_tag},@{typ unit}-->ty-->ty)
          $Free (name,@{typ unit})$t;
        val ct' = cterm_of thy t';
      in ct' end

      fun mpat_conv pat ctxt ct = let
        val (tym,tm) = Thm.first_order_match (pat,ct);
        val tm' = map (fn (pt,ot) =>
          case term_of pt of
            (Var ((name,_),_)) => (pt,tag_ct name ot)
          | _ => (pt,ot)
        ) tm;
        val ct' = Thm.instantiate_cterm (tym,tm') pat;

        val rthm = Goal.prove_internal ctxt [] (mk_equals_ct (ct,ct'))
          (K (simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms conv_tag_def}) 1))
        |> Goal.norm_result ctxt
      in 
        fixup_vars ct rthm 
      end handle Pattern.MATCH 
        => raise (CTERM ("mpat_conv: No match",[pat,ct]));

      fun tag_conv cnv ctxt ct = case term_of ct of
        Const (@{const_name conv_tag},_)$Free(name,_)$_ => (
          (Conv.rewr_conv (@{thm conv_tag_def}) then_conv (cnv name) ctxt) ct)
      | _ => Conv.all_conv ct;

      fun all_tag_conv cnv = Conv.bottom_conv (tag_conv cnv);
    in 
      (* Match against pattern, and apply parameter conversion to matches of
         variables prefixed by hole_prefix.
      *)
      fun pat_conv' cpat cnv ctxt = 
        mpat_conv cpat ctxt
        then_conv (all_tag_conv cnv ctxt);

      fun pat_conv cpat conv = pat_conv' cpat 
        (fn name => case name of "HOLE" => conv | _ => K Conv.all_conv);
    end

    fun HOL_concl_conv cnv = Conv.params_conv ~1 
      (fn ctxt => Conv.concl_conv ~1 (
        HOLogic.Trueprop_conv (cnv ctxt)));


    fun import_conv conv ctxt ct = let
      val (ct',ctxt') = yield_singleton (import_cterms true) ct ctxt
      val res = conv ctxt' ct'
      val res' = singleton (Variable.export ctxt' ctxt) res |> fixup_vars ct
    in res' end


    fun fix_conv conv ct = let
      val thm = conv ct
      val eq = Logic.mk_equals (term_of ct, term_of ct) |> head_of
    in if (term_of (Thm.lhs_of thm) aconv term_of ct)
      then thm
      else thm RS Thm.trivial
        (Thm.mk_binop (cterm_of (theory_of_cterm ct) eq) ct (Thm.rhs_of thm)) 
    end

    fun ite_conv cv cv1 cv2 ct =
      let 
        val eq1 = SOME (cv ct) 
          handle THM _ => NONE
            | CTERM _ => NONE
            | TERM _ => NONE
            | TYPE _ => NONE;
        val res = case eq1 of
          NONE => cv2 ct
        | SOME eq1 => let val eq2 = cv1 (Thm.rhs_of eq1) in 
            if Thm.is_reflexive eq1 then eq2
            else if Thm.is_reflexive eq2 then eq1
            else Thm.transitive eq1 eq2
          end
      in res end

      val cfg_trace_f_tac_conv = 
        Attrib.setup_config_bool @{binding trace_f_tac_conv} (K false)

      (* Transform term and prove equality to original by tactic *)
      fun f_tac_conv ctxt f tac ct = let
        val t = term_of ct
        val t' = f t
        val goal = Logic.mk_equals (t,t')
        val _ = if Config.get ctxt cfg_trace_f_tac_conv then
          tracing (Syntax.string_of_term ctxt goal)
        else ()

        val goal = cterm_of (Proof_Context.theory_of ctxt) goal

        val thm = Goal.prove_internal ctxt [] goal (K tac)
      in
        thm
      end

    (* Apply function to result and context *)
    fun (p->>f) ctks = let
      val (res,(context,tks)) = p ctks
      val (res,context) = f (res, context)
    in
      (res,(context,tks))
    end

    fun parse_bool_config name cfg = (
      Scan.lift (Args.$$$ name)
        ->> (apsnd (Config.put_generic cfg true) #>> K true)
      || 
      Scan.lift (Args.$$$ ("no_"^name))
        ->> (apsnd (Config.put_generic cfg false) #>> K false)
      )

    fun parse_paren_list p = 
      Scan.lift (
        Args.$$$ "(") |-- Parse.enum1' "," p --| Scan.lift (Args.$$$ ")"
      )

    fun parse_paren_lists p = Scan.repeat (parse_paren_list p)

    val setup = 
      Method.setup @{binding fo_rule} 
        (Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD' (
          fo_resolve_tac thms ctxt))) 
        "Resolve using first-order matching"
     #>
      Method.setup @{binding rprems} 
        (Scan.lift (Scan.option Parse.nat) >> (fn i => fn ctxt => 
          SIMPLE_METHOD' (
            case i of
              NONE => rprems_tac ctxt
            | SOME i => rprem_tac i ctxt
          ))
        ) 
        "Resolve with premises"
      #> Method.setup @{binding elim_all}
         (Attrib.thms >> (fn thms => fn _ => SIMPLE_METHOD (elim_all_tac thms)))
         "repeteadly apply elimination rules to all subgoals"
      #> Method.setup @{binding subst_tac} eqsubst_inst_meth
           "single-step substitution (dynamic instantiation)"
      #> Method.setup @{binding clarsimp_all} (
           let open Clasimp in
             Method.sections clasimp_modifiers >> K (fn ctxt => SIMPLE_METHOD (
               CHANGED_PROP (ALLGOALS (clarsimp_tac ctxt))))
            end
         ) "Simplify and clarify all subgoals"

  end

  structure Basic_Refine_Util: BASIC_REFINE_UTIL = Refine_Util
  open Basic_Refine_Util

*}

setup Refine_Util.setup


end