Theory Uint

theory Uint
imports Word_Misc Bits_Integer
(*  Title:      Uint.thy
    Author:     Peter Lammich, TU Munich
    Author:     Andreas Lochbihler, ETH Zurich
*)

header {* Unsigned words of default size *}

theory Uint imports
  "Word_Misc"
  "Bits_Integer"
begin

text {*
  This theory provides access to words in the target languages of the code generator
  whose bit width is the default of the target language. To that end, the type @{text uint}
  models words of width @{text dflt_size}, but @{text dflt_size} is known only to be positive.

  Usage restrictions:
  Default-size words (type @{text uint}) cannot be used for evaluation, because 
  the results depend on the particular choice of word size in the target language
  and implementation. Symbolic evaluation has not yet been set up for @{text "uint"}.
*}

text {* The default size type *}
typedecl dflt_size

instantiation dflt_size :: typerep begin
definition "typerep_class.typerep ≡  λ_ :: dflt_size itself. Typerep.Typerep (STR ''Uint.dflt_size'') []"
instance ..
end

consts dflt_size_aux :: "nat"
specification (dflt_size_aux) dflt_size_aux_g0: "dflt_size_aux > 0"
  by auto

instantiation dflt_size :: len begin
definition "len_of_dflt_size (_ :: dflt_size itself) ≡ dflt_size_aux"
instance by(intro_classes)(simp add: len_of_dflt_size_def dflt_size_aux_g0)
end

abbreviation "dflt_size ≡ len_of (TYPE (dflt_size))"

context includes integer.lifting begin
lift_definition dflt_size_integer :: integer is "int dflt_size" .
declare dflt_size_integer_def[code del]
  -- "The code generator will substitute a machine-dependent value for this constant"

lemma dflt_size_by_int[code]: "dflt_size = nat_of_integer dflt_size_integer"
by transfer simp

lemma dflt_size[simp]: 
  "dflt_size > 0"
  "dflt_size ≥ Suc 0"
  "¬ dflt_size < Suc 0"
  using len_gt_0[where 'a=dflt_size]
  by (simp_all del: len_gt_0)
end

declare prod.Quotient[transfer_rule]

section {* Type definition and primitive operations *}

typedef uint = "UNIV :: dflt_size word set" .. 

setup_lifting type_definition_uint

text {* Use an abstract type for code generation to disable pattern matching on @{term Abs_uint}. *}
declare Rep_uint_inverse[code abstype]

declare Quotient_uint[transfer_rule]

instantiation uint :: "{neg_numeral, Divides.div, comm_monoid_mult, comm_ring}" begin
lift_definition zero_uint :: uint is "0 :: dflt_size word" .
lift_definition one_uint :: uint is "1" .
lift_definition plus_uint :: "uint => uint => uint" is "op + :: dflt_size word => _" .
lift_definition minus_uint :: "uint => uint => uint" is "op -" .
lift_definition uminus_uint :: "uint => uint" is uminus .
lift_definition times_uint :: "uint => uint => uint" is "op *" .
lift_definition div_uint :: "uint => uint => uint" is "op div" .
lift_definition mod_uint :: "uint => uint => uint" is "op mod" .
instance by default (transfer, simp add: algebra_simps)+
end

instantiation uint :: linorder begin
lift_definition less_uint :: "uint => uint => bool" is "op <" .
lift_definition less_eq_uint :: "uint => uint => bool" is "op ≤" .
instance by(default)(transfer, simp add: less_le_not_le linear)+
end

lemmas [code] = less_uint.rep_eq less_eq_uint.rep_eq

instantiation uint :: bitss begin
lift_definition bitNOT_uint :: "uint => uint" is bitNOT .
lift_definition bitAND_uint :: "uint => uint => uint" is bitAND .
lift_definition bitOR_uint :: "uint => uint => uint" is bitOR .
lift_definition bitXOR_uint :: "uint => uint => uint" is bitXOR .
lift_definition test_bit_uint :: "uint => nat => bool" is test_bit .
lift_definition set_bit_uint :: "uint => nat => bool => uint" is set_bit .
lift_definition set_bits_uint :: "(nat => bool) => uint" is "set_bits" .
lift_definition lsb_uint :: "uint => bool" is lsb .
lift_definition shiftl_uint :: "uint => nat => uint" is shiftl .
lift_definition shiftr_uint :: "uint => nat => uint" is shiftr .
lift_definition msb_uint :: "uint => bool" is msb .
instance ..
end

lemmas [code] = test_bit_uint.rep_eq lsb_uint.rep_eq msb_uint.rep_eq

instantiation uint :: equal begin
lift_definition equal_uint :: "uint => uint => bool" is "equal_class.equal" .
instance by default(transfer, simp add: equal_eq)
end

lemmas [code] = equal_uint.rep_eq

instantiation uint :: size begin
lift_definition size_uint :: "uint => nat" is "size" .
instance ..
end

lemmas [code] = size_uint.rep_eq

lift_definition sshiftr_uint :: "uint => nat => uint" (infixl ">>>" 55) is sshiftr .

lift_definition uint_of_int :: "int => uint" is "word_of_int" .

lemma of_bool_integer_transfer [transfer_rule]:
  "(rel_fun op = pcr_integer) of_bool of_bool"
by(auto simp add: integer.pcr_cr_eq cr_integer_def split: bit.split)

text {* Use pretty numerals from integer for pretty printing *}

context includes integer.lifting begin

lift_definition Uint :: "integer => uint" is "word_of_int" .

lemma Rep_uint_numeral [simp]: "Rep_uint (numeral n) = numeral n"
by(induction n)(simp_all add: one_uint_def Abs_uint_inverse numeral.simps plus_uint_def)

lemma numeral_uint_transfer [transfer_rule]:
  "(rel_fun op = cr_uint) numeral numeral"
by(auto simp add: cr_uint_def)

lemma numeral_uint [code_unfold]: "numeral n = Uint (numeral n)"
by transfer simp

lemma Rep_uint_neg_numeral [simp]: "Rep_uint (- numeral n) = - numeral n"
by(simp only: uminus_uint_def)(simp add: Abs_uint_inverse)

lemma neg_numeral_uint [code_unfold]: "- numeral n = Uint (- numeral n)"
by transfer(simp add: cr_uint_def)

end

lemma Abs_uint_numeral [code_post]: "Abs_uint (numeral n) = numeral n"
by(induction n)(simp_all add: one_uint_def numeral.simps plus_uint_def Abs_uint_inverse)

lemma Abs_uint_0 [code_post]: "Abs_uint 0 = 0"
by(simp add: zero_uint_def)

lemma Abs_uint_1 [code_post]: "Abs_uint 1 = 1"
by(simp add: one_uint_def)

section {* Code setup *}

code_printing code_module Uint \<rightharpoonup> (SML)
{*
structure Uint : sig
  val set_bit : Word.word -> IntInf.int -> bool -> Word.word
  val shiftl : Word.word -> IntInf.int -> Word.word
  val shiftr : Word.word -> IntInf.int -> Word.word
  val shiftr_signed : Word.word -> IntInf.int -> Word.word
  val test_bit : Word.word -> IntInf.int -> bool
end = struct

fun set_bit x n b =
  let val mask = Word.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))
  in if b then Word.orb (x, mask)
     else Word.andb (x, Word.notb mask)
  end

fun shiftl x n =
  Word.<< (x, Word.fromLargeInt (IntInf.toLarge n))

fun shiftr x n =
  Word.>> (x, Word.fromLargeInt (IntInf.toLarge n))

fun shiftr_signed x n =
  Word.~>> (x, Word.fromLargeInt (IntInf.toLarge n))

fun test_bit x n =
  Word.andb (x, Word.<< (0wx1, Word.fromLargeInt (IntInf.toLarge n))) <> Word.fromInt 0

end; (* struct Uint *)*}
code_reserved SML Uint

code_printing code_module Uint \<rightharpoonup> (Haskell)
{*
import qualified Data.Word;
import qualified Data.Int;
import qualified Data.Bits;

type Int = Data.Int.Int;

type Word = Data.Word.Word;

dflt_size :: Integer;
dflt_size = Prelude.toInteger (bitSize_aux (0::Word))
  where {
    bitSize_aux :: (Data.Bits.Bits a, Bounded a) => a -> Uint.Int;
    bitSize_aux = Data.Bits.bitSize
  };

*}
  and (Haskell_Quickcheck)
{*
import qualified Data.Word;
import qualified Data.Int;
import qualified Data.Bits;

type Int = Data.Int.Int;

type Word = Data.Word.Word;

dflt_size :: Prelude.Int;
dflt_size = bitSize_aux (0::Word)
  where {
    bitSize_aux :: (Data.Bits.Bits a, Bounded a) => a -> Prelude.Int;
    bitSize_aux = Data.Bits.bitSize
  };
*}
code_reserved Haskell Uint dflt_size

text {*
  OCaml and Scala provide only signed bit numbers, so we use these and 
  implement sign-sensitive operations like comparisons manually.
*}

code_printing code_module "Uint" \<rightharpoonup> (OCaml)
{*module Uint : sig
  type t = int
  val dflt_size : Big_int.big_int
  val less : t -> t -> bool
  val less_eq : t -> t -> bool
  val set_bit : t -> Big_int.big_int -> bool -> t
  val shiftl : t -> Big_int.big_int -> t
  val shiftr : t -> Big_int.big_int -> t
  val shiftr_signed : t -> Big_int.big_int -> t
  val test_bit : t -> Big_int.big_int -> bool
end = struct

type t = int

let dflt_size = Big_int.big_int_of_int (
  let rec f n = if n=0 then 0 else f (n / 2) + 1 in f min_int);;

(* negative numbers have their highest bit set, 
   so they are greater than positive ones *)
let less x y =
  if x<0 then
    y<0 && x<y
  else y < 0 || x < y;;

let less_eq x y =
  if x < 0 then
    y < 0 &&  x <= y
  else y < 0 || x <= y;;

let set_bit x n b =
  let mask = 1 lsl (Big_int.int_of_big_int n)
  in if b then x lor mask
     else x land (lnot mask);;

let shiftl x n = x lsl (Big_int.int_of_big_int n);;

let shiftr x n = x lsr (Big_int.int_of_big_int n);;

let shiftr_signed x n = x asr (Big_int.int_of_big_int n);;

let test_bit x n = x land (1 lsl (Big_int.int_of_big_int n)) <> 0;;

end;; (*struct Uint*)*}
code_reserved OCaml Uint

code_printing code_module Uint \<rightharpoonup> (Scala)
{*object Uint {
def dflt_size : BigInt = BigInt(32)

def less(x: Int, y: Int) : Boolean =
  if (x < 0) y < 0 && x < y
  else y < 0 || x < y

def less_eq(x: Int, y: Int) : Boolean =
  if (x < 0) y < 0 && x <= y
  else y < 0 || x <= y

def set_bit(x: Int, n: BigInt, b: Boolean) : Int =
  if (b)
    x | (1 << n.intValue)
  else
    x & (1 << n.intValue).unary_~

def shiftl(x: Int, n: BigInt) : Int = x << n.intValue

def shiftr(x: Int, n: BigInt) : Int = x >>> n.intValue

def shiftr_signed(x: Int, n: BigInt) : Int = x >> n.intValue

def test_bit(x: Int, n: BigInt) : Boolean =
  (x & (1 << n.intValue)) != 0

} /* object Uint */*}
code_reserved Scala Uint


text {*
  OCaml's conversion from Big\_int to int demands that the value fits int a signed integer.
  The following justifies the implementation.
*}

context includes integer.lifting begin
definition wivs_mask :: int where "wivs_mask == (2^(dflt_size) - 1)"
lift_definition wivs_mask_integer :: integer is wivs_mask .
lemma [code]: "wivs_mask_integer = (2^dflt_size) - 1"
  by transfer (simp add: wivs_mask_def)

definition wivs_shift :: int where "wivs_shift == (2^(dflt_size))"
lift_definition wivs_shift_integer :: integer is wivs_shift .
lemma [code]: "wivs_shift_integer = (2^dflt_size)"
  by transfer (simp add: wivs_shift_def)

definition wivs_index :: nat where "wivs_index == dflt_size - 1"
lift_definition wivs_index_integer :: integer is "int wivs_index".
lemma wivs_index_integer_code[code]: "wivs_index_integer = dflt_size_integer - 1"
  apply transfer apply (simp add: wivs_index_def)
  by (metis One_nat_def add_diff_cancel2 dflt_size(1) diff_Suc_1 
    less_nat_zero_code nat.exhaust of_nat_Suc)

definition wivs_overflow :: int where "wivs_overflow == (2^(dflt_size - 1))"
lift_definition wivs_overflow_integer :: integer is wivs_overflow .
lemma [code]: "wivs_overflow_integer = (2^(dflt_size - 1))"
  by transfer (simp add: wivs_overflow_def)

definition wivs_least :: int where "wivs_least == - wivs_overflow"
lift_definition wivs_least_integer :: integer is wivs_least .
lemma [code]: "wivs_least_integer = - (2^(dflt_size - 1))"
  by transfer (simp add: wivs_overflow_def wivs_least_def)

definition Uint_signed :: "integer => uint" 
where "Uint_signed i = (if i < wivs_least_integer 
  ∨ wivs_overflow_integer ≤ i then undefined Uint i else Uint i)"

lemma Uint_code [code]:
  "Uint i = 
  (let i' = i AND wivs_mask_integer
   in 
     if i' !! wivs_index then 
       Uint_signed (i' - wivs_shift_integer) 
     else Uint_signed i')"
  including undefined_transfer 
  unfolding Uint_signed_def
  apply transfer
  apply (rule word_of_int_via_signed)
  by (simp_all add: wivs_mask_def wivs_shift_def wivs_index_def wivs_overflow_def 
    wivs_least_def bin_mask_conv_pow2 shiftl_int_def)

lemma Uint_signed_code [code abstract]:
  "Rep_uint (Uint_signed i) = 
  (if i < wivs_least_integer ∨ i ≥ wivs_overflow_integer then Rep_uint (undefined Uint i) else word_of_int (int_of_integer_symbolic i))"
  unfolding Uint_signed_def Uint_def int_of_integer_symbolic_def word_of_integer_def
  by(simp add: Abs_uint_inverse)
end

text {* 
  Avoid @{term Abs_uint} in generated code, use @{term Rep_uint'} instead. 
  The symbolic implementations for code\_simp use @{term Rep_uint}.

  The new destructor @{term Rep_uint'} is executable.
  As the simplifier is given the [code abstract] equations literally, 
  we cannot implement @{term Rep_uint} directly, because that makes code\_simp loop.

  If code generation raises Match, some equation probably contains @{term Rep_uint} 
  ([code abstract] equations for @{typ uint} may use @{term Rep_uint} because
  these instances will be folded away.)
*}

definition Rep_uint' where [simp]: "Rep_uint' = Rep_uint"

lemma Rep_uint'_code [code]: "Rep_uint' x = (BITS n. x !! n)"
unfolding Rep_uint'_def by transfer simp

lemma [code, code del]: "term_of_class.term_of = (term_of_class.term_of :: uint => _)" ..

lemma term_of_uint_code [code]:
  defines "TR ≡ typerep.Typerep" and "bit0 ≡ STR ''Numeral_Type.bit0''" 
  shows
  "term_of_class.term_of x = 
   Code_Evaluation.App (Code_Evaluation.Const (STR ''Uint.Abs_uint'') (TR (STR ''fun'') [TR (STR ''Word.word'')  [TR (STR ''Uint.dflt_size'') []], TR (STR ''Uint.uint'') []]))
       (term_of_class.term_of (Rep_uint' x))"
  by(simp add: term_of_anything)

text {* Important:
  We must prevent the reflection oracle (eval-tac) to 
  use our machine-dependent type.
 *}

code_printing
  type_constructor uint \<rightharpoonup>
  (SML) "Word.word" and
  (Haskell) "Uint.Word" and
  (OCaml) "Uint.t" and
  (Scala) "Int" and
  (Eval) "*** \"Error: Machine dependent type\" ***" and
  (Quickcheck) "Word.word" 
| constant dflt_size_integer \<rightharpoonup>
  (SML) "Word.wordSize" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.wordSize" and
  (Haskell) "Uint.dflt'_size" and
  (OCaml) "Uint.dflt'_size" and
  (Scala) "Uint.dflt'_size"
| constant Uint \<rightharpoonup>
  (SML) "Word.fromInt" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.fromInt" and
  (Haskell) "(Prelude.fromInteger _ :: Uint.Word)" and
  (Haskell_Quickcheck) "(Prelude.fromInteger (Prelude.toInteger _) :: Uint.Word)" and
  (Scala) "_.intValue"
| constant Uint_signed \<rightharpoonup>
  (OCaml) "Big'_int.int'_of'_big'_int"
| constant "0 :: uint" \<rightharpoonup>
  (SML) "(Word.fromInt 0)" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "(Word.fromInt 0)" and
  (Haskell) "(0 :: Uint.Word)" and
  (OCaml) "0" and
  (Scala) "0"
| constant "1 :: uint" \<rightharpoonup>
  (SML) "(Word.fromInt 1)" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "(Word.fromInt 1)" and
  (Haskell) "(1 :: Uint.Word)" and
  (OCaml) "1" and
  (Scala) "1"
| constant "plus :: uint => _ " \<rightharpoonup>
  (SML) "Word.+ ((_), (_))" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.+ ((_), (_))" and
  (Haskell) infixl 6 "+" and
  (OCaml) "Pervasives.(+)" and
  (Scala) infixl 7 "+"
| constant "uminus :: uint => _" \<rightharpoonup>
  (SML) "Word.~" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.~" and
  (Haskell) "negate" and
  (OCaml) "Pervasives.(~-)" and
  (Scala) "!(- _)"
| constant "minus :: uint => _" \<rightharpoonup>
  (SML) "Word.- ((_), (_))" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.- ((_), (_))" and
  (Haskell) infixl 6 "-" and
  (OCaml) "Pervasives.(-)" and
  (Scala) infixl 7 "-"
| constant "times :: uint => _ => _" \<rightharpoonup>
  (SML) "Word.* ((_), (_))" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.* ((_), (_))" and
  (Haskell) infixl 7 "*" and
  (OCaml) "Pervasives.( * )" and
  (Scala) infixl 8 "*"
| constant "HOL.equal :: uint => _ => bool" \<rightharpoonup>
  (SML) "!((_ : Word.word) = _)" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "!((_ : Word.word) = _)" and
  (Haskell) infix 4 "==" and
  (OCaml) "(Pervasives.(=):Uint.t -> Uint.t -> bool)" and
  (Scala) infixl 5 "=="
| class_instance uint :: equal \<rightharpoonup>
  (Haskell) -
| constant "less_eq :: uint => _ => bool" \<rightharpoonup>
  (SML) "Word.<= ((_), (_))" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.<= ((_), (_))" and
  (Haskell) infix 4 "<=" and
  (OCaml) "Uint.less'_eq" and
  (Scala) "Uint.less'_eq"
| constant "less :: uint => _ => bool" \<rightharpoonup>
  (SML) "Word.< ((_), (_))" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.< ((_), (_))" and
  (Haskell) infix 4 "<" and
  (OCaml) "Uint.less" and
  (Scala) "Uint.less"
| constant "bitNOT :: uint => _" \<rightharpoonup>
  (SML) "Word.notb" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.notb" and
  (Haskell) "Data'_Bits.complement" and
  (OCaml) "Pervasives.lnot" and
  (Scala) "_.unary'_~"
| constant "bitAND :: uint => _" \<rightharpoonup>
  (SML) "Word.andb ((_),/ (_))" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.andb ((_),/ (_))" and
  (Haskell) infixl 7 "Data_Bits..&." and
  (OCaml) "Pervasives.(land)" and
  (Scala) infixl 3 "&"
| constant "bitOR :: uint => _" \<rightharpoonup>
  (SML) "Word.orb ((_),/ (_))" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.orb ((_),/ (_))" and
  (Haskell) infixl 5 "Data_Bits..|." and
  (OCaml) "Pervasives.(lor)" and
  (Scala) infixl 1 "|"
| constant "bitXOR :: uint => _" \<rightharpoonup>
  (SML) "Word.xorb ((_),/ (_))" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.xorb ((_),/ (_))" and
  (Haskell) "Data'_Bits.xor" and
  (OCaml) "Pervasives.(lxor)" and
  (Scala) infixl 2 "^"

definition uint_divmod :: "uint => uint => uint × uint" where
  "uint_divmod x y = 
  (if y = 0 then (undefined (op div :: uint => _) x (0 :: uint), undefined (op mod :: uint => _) x (0 :: uint)) 
  else (x div y, x mod y))"

definition uint_div :: "uint => uint => uint" 
where "uint_div x y = fst (uint_divmod x y)"

definition uint_mod :: "uint => uint => uint" 
where "uint_mod x y = snd (uint_divmod x y)"

lemma div_uint_code [code]: "x div y = (if y = 0 then 0 else uint_div x y)"
including undefined_transfer unfolding uint_divmod_def uint_div_def
by transfer(simp add: word_div_def)

lemma mod_uint_code [code]: "x mod y = (if y = 0 then x else uint_mod x y)"
including undefined_transfer unfolding uint_mod_def uint_divmod_def
by transfer(simp add: word_mod_def)

definition uint_sdiv :: "uint => uint => uint"
where [code del]:
  "uint_sdiv x y =
   (if y = 0 then undefined (op div :: uint => _) x (0 :: uint)
    else Abs_uint (Rep_uint x sdiv Rep_uint y))"

definition div0_uint :: "uint => uint"
where [code del]: "div0_uint x = undefined (op div :: uint => _) x (0 :: uint)"
declare [[code abort: div0_uint]]

definition mod0_uint :: "uint => uint"
where [code del]: "mod0_uint x = undefined (op mod :: uint => _) x (0 :: uint)"
declare [[code abort: mod0_uint]]

definition wivs_overflow_uint :: uint 
  where "wivs_overflow_uint ≡ 1 << (dflt_size - 1)"

(* TODO: Move to Word *)
lemma dflt_size_word_pow_ne_zero[simp]:
  "(2::('a::len) word) ^ (len_of TYPE('a) - Suc (0::nat)) ≠ 0"
proof -
  have "len_of (TYPE('a)::'a itself) - Numeral1 ≠ len_of (TYPE('a)::'a itself)"
    by (metis Suc_pred len_gt_0 n_not_Suc_n numeral_1_eq_Suc_0)
  thus "2 ^ (len_of (TYPE('a)::'a itself) - Suc 0) ≠ (0::'a word)"
    by (metis diff_less_Suc nat_neq_iff not_less_eq numeral_1_eq_Suc_0 
      power_eq_0_iff unat_0 unat_p2 zero_neq_numeral)
qed

lemma uint_divmod_code [code]:
  "uint_divmod x y =
  (if wivs_overflow_uint ≤ y then if x < y then (0, x) else (1, x - y)
   else if y = 0 then (div0_uint x, mod0_uint x)
   else let q = (uint_sdiv (x >> 1) y) << 1;
            r = x - q * y
        in if r ≥ y then (q + 1, r - y) else (q, r))"
  including undefined_transfer 
  unfolding uint_divmod_def uint_sdiv_def div0_uint_def mod0_uint_def
    wivs_overflow_uint_def
  by transfer (simp add: divmod_via_sdivmod)

lemma uint_sdiv_code [code abstract]:
  "Rep_uint (uint_sdiv x y) =
   (if y = 0 then Rep_uint (undefined (op div :: uint => _) x (0 :: uint))
    else Rep_uint x sdiv Rep_uint y)"
unfolding uint_sdiv_def by(simp add: Abs_uint_inverse)

text {* 
  Note that we only need a translation for signed division, but not for the remainder
  because @{thm uint_divmod_code} computes both with division only.
*}

code_printing
  constant uint_div \<rightharpoonup>
  (SML) "Word.div ((_), (_))" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.div ((_), (_))" and
  (Haskell) "Prelude.div"
| constant uint_mod \<rightharpoonup>
  (SML) "Word.mod ((_), (_))" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Word.mod ((_), (_))" and
  (Haskell) "Prelude.mod"
| constant uint_divmod \<rightharpoonup>
  (Haskell) "divmod"
| constant uint_sdiv \<rightharpoonup>
  (OCaml) "Pervasives.('/)" and
  (Scala) "_ '/ _"

definition uint_test_bit :: "uint => integer => bool"
where [code del]:
  "uint_test_bit x n =
  (if n < 0 ∨ dflt_size_integer ≤ n then undefined (test_bit :: uint => _) x n
   else x !! (nat_of_integer n))"

lemma test_bit_uint_code [code]:
  "test_bit x n <-> n < dflt_size ∧ uint_test_bit x (integer_of_nat n)"
  including undefined_transfer integer.lifting unfolding uint_test_bit_def
  by transfer (auto cong: conj_cong dest: test_bit_size simp add: word_size)

lemma uint_test_bit_code [code]:
  "uint_test_bit w n =
  (if n < 0 ∨ dflt_size_integer ≤ n then undefined (test_bit :: uint => _) w n else Rep_uint w !! nat_of_integer n)"
unfolding uint_test_bit_def
by(simp add: test_bit_uint.rep_eq)

code_printing constant uint_test_bit \<rightharpoonup>
  (SML) "Uint.test'_bit" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Uint.test'_bit" and
  (Haskell) "Data'_Bits.testBitBounded" and
  (OCaml) "Uint.test'_bit" and
  (Scala) "Uint.test'_bit"

definition uint_set_bit :: "uint => integer => bool => uint"
where [code del]:
  "uint_set_bit x n b =
  (if n < 0 ∨ dflt_size_integer ≤ n then undefined (set_bit :: uint => _) x n b
   else set_bit x (nat_of_integer n) b)"

lemma set_bit_uint_code [code]:
  "set_bit x n b = (if n < dflt_size then uint_set_bit x (integer_of_nat n) b else x)"
  including undefined_transfer integer.lifting unfolding uint_set_bit_def
  by (transfer) (auto cong: conj_cong simp add: not_less set_bit_beyond word_size)

lemma uint_set_bit_code [code abstract]:
  "Rep_uint (uint_set_bit w n b) = 
  (if n < 0 ∨ dflt_size_integer ≤ n then Rep_uint (undefined (set_bit :: uint => _) w n b)
   else set_bit (Rep_uint w) (nat_of_integer n) b)"
including undefined_transfer integer.lifting unfolding uint_set_bit_def by transfer simp

code_printing constant uint_set_bit \<rightharpoonup>
  (SML) "Uint.set'_bit" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Uint.set'_bit" and
  (Haskell) "Data'_Bits.setBitBounded" and
  (OCaml) "Uint.set'_bit" and
  (Scala) "Uint.set'_bit"

lift_definition uint_set_bits :: "(nat => bool) => uint => nat => uint" is set_bits_aux .

lemma uint_set_bits_code [code]:
  "uint_set_bits f w n =
  (if n = 0 then w 
   else let n' = n - 1 in uint_set_bits f ((w << 1) OR (if f n' then 1 else 0)) n')"
by(transfer fixing: n)(cases n, simp_all)

lemma set_bits_uint [code]:
  "(BITS n. f n) = uint_set_bits f 0 dflt_size"
  by transfer (simp add: set_bits_conv_set_bits_aux)

lemma lsb_code [code]: fixes x :: uint shows "lsb x = x !! 0"
by transfer(simp add: word_lsb_def word_test_bit_def)

definition uint_shiftl :: "uint => integer => uint"
where [code del]:
  "uint_shiftl x n = (if n < 0 ∨ dflt_size_integer ≤ n then undefined (shiftl :: uint => _) x n else x << (nat_of_integer n))"

lemma shiftl_uint_code [code]: "x << n = (if n < dflt_size then uint_shiftl x (integer_of_nat n) else 0)"
including undefined_transfer integer.lifting unfolding uint_shiftl_def
by transfer(simp add: not_less shiftl_zero_size word_size)

lemma uint_shiftl_code [code abstract]:
  "Rep_uint (uint_shiftl w n) =
  (if n < 0 ∨ dflt_size_integer ≤ n then Rep_uint (undefined (shiftl :: uint => _) w n) else Rep_uint w << (nat_of_integer n))"
including undefined_transfer integer.lifting unfolding uint_shiftl_def by transfer simp

code_printing constant uint_shiftl \<rightharpoonup>
  (SML) "Uint.shiftl" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Uint.shiftl" and
  (Haskell) "Data'_Bits.shiftlBounded" and
  (OCaml) "Uint.shiftl" and
  (Scala) "Uint.shiftl"

definition uint_shiftr :: "uint => integer => uint"
where [code del]:
  "uint_shiftr x n = (if n < 0 ∨ dflt_size_integer ≤ n then undefined (shiftr :: uint => _) x n else x >> (nat_of_integer n))"

lemma shiftr_uint_code [code]: "x >> n = (if n < dflt_size then uint_shiftr x (integer_of_nat n) else 0)"
including undefined_transfer integer.lifting unfolding uint_shiftr_def
by transfer(simp add: not_less shiftr_zero_size word_size)

lemma uint_shiftr_code [code abstract]:
  "Rep_uint (uint_shiftr w n) =
  (if n < 0 ∨ dflt_size_integer ≤ n then Rep_uint (undefined (shiftr :: uint => _) w n) else Rep_uint w >> nat_of_integer n)"
including undefined_transfer unfolding uint_shiftr_def by transfer simp

code_printing constant uint_shiftr \<rightharpoonup>
  (SML) "Uint.shiftr" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Uint.shiftr" and
  (Haskell) "Data'_Bits.shiftrBounded" and
  (OCaml) "Uint.shiftr" and
  (Scala) "Uint.shiftr"

definition uint_sshiftr :: "uint => integer => uint"
where [code del]:
  "uint_sshiftr x n =
  (if n < 0 ∨ dflt_size_integer ≤ n then undefined sshiftr_uint x n else sshiftr_uint x (nat_of_integer n))"

lemma sshiftr_beyond: fixes x :: "'a :: len word" shows
  "size x ≤ n ==> x >>> n = (if x !! (size x - 1) then -1 else 0)"
by(rule word_eqI)(simp add: nth_sshiftr word_size)

lemma sshiftr_uint_code [code]:
  "x >>> n = 
  (if n < dflt_size then uint_sshiftr x (integer_of_nat n) else 
    if x !! wivs_index then -1 else 0)"
including undefined_transfer integer.lifting unfolding uint_sshiftr_def
by transfer(simp add: not_less sshiftr_beyond word_size wivs_index_def)

lemma uint_sshiftr_code [code abstract]:
  "Rep_uint (uint_sshiftr w n) =
  (if n < 0 ∨ dflt_size_integer ≤ n then Rep_uint (undefined sshiftr_uint w n) else Rep_uint w >>> (nat_of_integer n))"
including undefined_transfer unfolding uint_sshiftr_def by transfer simp

code_printing constant uint_sshiftr \<rightharpoonup>
  (SML) "Uint.shiftr'_signed" and
  (Eval) "(raise (Fail \"Machine dependent code\"))" and
  (Quickcheck) "Uint.shiftr'_signed" and
  (Haskell) 
    "(Prelude.fromInteger (Prelude.toInteger (Data'_Bits.shiftrBounded (Prelude.fromInteger (Prelude.toInteger _) :: Uint.Int) _)) :: Uint.Word)" and
  (OCaml) "Uint.shiftr'_signed" and
  (Scala) "Uint.shiftr'_signed"

lemma uint_msb_test_bit: "msb x <-> (x :: uint) !! wivs_index"
by transfer(simp add: msb_nth wivs_index_def)

lemma msb_uint_code [code]: "msb x <-> uint_test_bit x wivs_index_integer"
  apply(simp add: uint_test_bit_def uint_msb_test_bit 
  wivs_index_integer_code dflt_size_integer_def wivs_index_def)
  by (metis (full_types) One_nat_def dflt_size(2) less_iff_diff_less_0 
    nat_of_integer_of_nat of_nat_1 of_nat_diff of_nat_less_0_iff wivs_index_def)

lemma uint_of_int_code [code]: "uint_of_int i = (BITS n. i !! n)"
by transfer(simp add: word_of_int_conv_set_bits test_bit_int_def[abs_def])

section {* Quickcheck setup *}

definition uint_of_natural :: "natural => uint"
where "uint_of_natural x ≡ Uint (integer_of_natural x)"

instantiation uint :: "{random, exhaustive, full_exhaustive}" begin
definition "random_uint ≡ qc_random_cnv uint_of_natural"
definition "exhaustive_uint ≡ qc_exhaustive_cnv uint_of_natural"
definition "full_exhaustive_uint ≡ qc_full_exhaustive_cnv uint_of_natural"
instance ..
end

instantiation uint :: narrowing begin

interpretation quickcheck_narrowing_samples
  "λi. (Uint i, Uint (- i))" "0"
  "Typerep.Typerep (STR ''Uint.uint'') []" .

definition "narrowing_uint d = qc_narrowing_drawn_from (narrowing_samples d) d"
declare [[code drop: "partial_term_of :: uint itself => _"]]
lemmas partial_term_of_uint [code] = partial_term_of_code

instance ..
end

section {* Tests *}
definition "test_uint ≡ let 
  test_list1 = (let
      HS = uint_of_int ((2^(dflt_size - 1)))
    in
      ([ HS+HS+1, -1, -HS - HS + 5, HS + (HS - 1), 0x12
      , 0x5A AND 0x36
      , 0x5A OR 0x36
      , 0x5A XOR 0x36
      , NOT 0x5A
      , 5 + 6, -5 + 6, -6 + 5, -5 + -6, HS + (HS - 1) + 1
      , 5 - 3, 3 - 5
      , 5 * 3, -5 * 3, -5 * -4, 0x12345678 * 0x87654321]
    @ (if dflt_size > 4 then
      [ 5 div 3, -5 div 3, -5 div -3, 5 div -3
      , 5 mod 3, -5 mod 3, -5 mod -3, 5 mod -3
      , set_bit 5 4 True, set_bit -5 2 True, set_bit 5 0 False, set_bit -5 1 False
      , set_bit 5 dflt_size True, set_bit 5 dflt_size False, set_bit -5 dflt_size True, set_bit -5 dflt_size False
      , 1 << 2, -1 << 3, 1 << dflt_size, 1 << 0
      , 31 >> 3, -1 >> 3, 31 >> dflt_size, -1 >> dflt_size
      , 15 >>> 2, -1 >>> 3, 15 >>> dflt_size, -1 >>> dflt_size]
    else []) :: uint list));
  
  test_list2 = (let 
      S=wivs_shift 
    in 
      ([ 1, -1, -S + 5, S - 1, 0x12
      , 0x5A AND 0x36
      , 0x5A OR 0x36
      , 0x5A XOR 0x36
      , NOT 0x5A
      , 5 + 6, -5 + 6, -6 + 5, -5 + -6, 0
      , 5 - 3, 3 - 5
      , 5 * 3, -5 * 3, -5 * -4, 0x12345678 * 0x87654321]
    @ (if dflt_size > 4 then
      [ 5 div 3, (S - 5) div 3, (S - 5) div (S - 3), 5 div (S - 3)
      , 5 mod 3, (S - 5) mod 3, (S - 5) mod (S - 3), 5 mod (S - 3)
      , set_bit 5 4 True, -1, set_bit 5 0 False, -7
      , 5, 5, -5, -5
      , 4, -8, 0, 1
      , 3, (S >> 3) - 1, 0, 0
      , 3, (S>>1) + (S >> 1) - 1, 0, -1] 
    else []) :: int list));


  test_list_c1 = (let
      HS = uint_of_int ((2^(dflt_size - 1)))
    in
  [  (0x5 :: uint) = 0x5, (0x5 :: uint) = 0x6
   , (0x5 :: uint) < 0x5, (0x5 :: uint) < 0x6, (-5 :: uint) < 6, (6 :: uint) < -5
   , (0x5 :: uint) ≤ 0x5, (0x5 :: uint) ≤ 0x4, (-5 :: uint) ≤ 6, (6 :: uint) ≤ -5 
   , (HS - 1) < HS, (HS + HS - 1) < 0, HS < HS - 1
   , (HS - 1) !! 0, (HS - 1 :: uint) !! (dflt_size - 1), (HS :: uint) !! (dflt_size - 1), (HS :: uint) !! dflt_size
   ]);

  test_list_c2 =
   [ True, False
   , False, dflt_size≥2, dflt_size=3, dflt_size≠3
   , True, False, dflt_size=3, dflt_size≠3
   , True, False, False
   , dflt_size≠1, False, True, False
   ]
in
  test_list1 = map uint_of_int test_list2
∧ test_list_c1 = test_list_c2

"

export_code test_uint checking SML Haskell? OCaml? Scala

lemma "test_uint"
quickcheck[exhaustive, expect=no_counterexample]
oops -- "FIXME: prove correctness of test by reflective means (not yet supported)"

lemma "x AND y = x OR (y :: uint)"
quickcheck[random, expect=counterexample]
quickcheck[exhaustive, expect=counterexample]
oops

lemma "(x :: uint) AND x = x OR x"
quickcheck[narrowing, expect=no_counterexample]
by transfer simp

lemma "(f :: uint => unit) = g"
quickcheck[narrowing, size=3, expect=no_counterexample]
by(simp add: fun_eq_iff)

hide_const test_uint
hide_fact test_uint_def
no_notation sshiftr_uint (infixl ">>>" 55)

end