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Chapter 1
Introduction
Since the observation was �rst made (e.g. by Hoare [50]) that program structureis related to data structure the notion of type has pervaded many theoriesof program design, so much so that in our view such a notion has becomeindispensable. In line with its perceived importance there is now an abundanceof type theories, each drawing substance from one or more established areas ofmathematics | including category theory, intuitionism and the second orderlambda calculus. This monograph explores yet another type theory, this timebased on an axiomatic presentation of the theory of binary relations.Our reasons for embarking on this exploration involved an element of sat-isfaction and an element of dissatisfaction with current programming research.The element of satisfaction comprises, �rst, the ever-growing knowledge andunderstanding of theories of type, second, the pioneering work of Bird andMeertens on economical notations for functional programming and, third, thenow well-established literature on the calculation of imperative programs. Theelement of dissatisfaction arose from a growing frustration with the fundamen-tal limitations of the functional programming paradigm within which almost alltype theories have been developed up till now, and with the continuing disparityin scale between formal and informal program development. Let us begin withthe element of satisfaction. 1



2 CHAPTER 1. INTRODUCTION1.1 Type Theory, Category Theory and theBird-Meertens FormalismThe history of research into type structure as it pertains to programming issomething that we do not care or dare to trace. Our own understanding has,however, been substantially in
uenced from two directions: the work of the\intuitionists", in particular Martin-L�of [66], the G�oteborg group [77] and theNuPRL group [29] on a theory of types based on the notion of \propositions-as-types" (this work now being known to have strong connections to the Automathproject led by de Bruijn [25]), and the work of category theoreticians on alge-braic approaches to program speci�cation [43, 73].Martin-L�of's theory of types can be characterised as a theory of inductively-de�ned types. A major attraction of his theory is that there is an elegant schemeunderlying the de�nition of individual types that encourages and facilitates theconstruction of new types. A contribution of members of the current consortiumwas to recognise and elaborate on this scheme, leading to the publication of [8];similar ideas have also been pursued by Dybjer [38] and others.In the categorical approach to type structure so-called \unique extensionproperties" are used to characterise types as either the \initial" or \terminal"objects in a category. Hagino [45] proposed a method of type-de�nition based onthis characterisation. Most researchers would concede that the two approachesare formally equivalent but would argue that in nature they are quite distinct,the intuitionistic approach being based on the natural-deduction style of proofdevelopment whereas the categorical approach is much more equational andoften better suited to program development. On the other hand a major inno-vation of Martin-L�of's theory was the notion of dependent type, which notiondoes not seem to be so readily expressible within category theory.Quite independently of the above work Bird and Meertens have been collab-orating for many years on the development of an APL-like notation for func-tional programs which emphasises economy of expression and calculation. Theimportance of such economy to programming has been eloquently advocated byMeertens [68] and it would not do justice to his work to try to summarise thearguments here. A signi�cant outcome, however, of this collaboration has beenan impressive, albeit limited, calculus of program construction based aroundthe notion of homomorphism on a list structure. The calculus has been used toreformulate existing solutions and to develop ingenious new solutions to many



1.2. INDETERMINACY AND NOTATIONAL ISSUES 3list-programming and other problems [16, 17, 20, 18, 21].Some few years ago, research began with the aim of extending Bird andMeertens' work on lists to arbitrary, inductively-de�ned, data types. Theconjecture we made at that time and which has since been amply con�rmedwas that the basic concepts and calculational techniques propounded by Birdand Meertens would be equally relevant and powerful in a more general type-theoretic setting. In the process of conducting this research we became moreand more familiar with the categorical approach to type de�nition, and beganto appreciate and further the application of unique extension properties. Foraccounts of this work refer to [4, 62, 64].So much for the element of satisfaction. Now to the element of dissatisfac-tion.1.2 Indeterminacy and Notational IssuesAlthough endowed with many mathematical niceties, there is, we believe, oneoverriding reason why purely-functional programming can only be a passingphase in the development of computing science: that is the lack of nondeter-minism. Functions are by de�nition deterministic, but nondeterminism | theability to postpone decisions, sometimes inde�nitely, | has long been recog-nised as a vital component of any programming calculus. Indeed, the inclu-sion of nondeterminism is a major desideratum within calculi for imperativeprogramming [36]. On the other hand, notions of type within imperative pro-gramming languages are grossly impoverished relative to the same notions infunctional languages. Type theory has, until now, made the greatest advanceswithin the functional programming paradigm.In addition to our dissatisfaction with the determinism of functional pro-gramming and the type-poverty of imperative programming, we are becomingmore and more distressed with what we perceive as a severe notational 
awthat pervades the everyday practice of both imperative and functional program-ming, namely the ubiquitous use of bound variables. As a consequence formalmanipulations become long and unwieldy and can indeed obscure rather thanelucidate an argument. The minimisation of bound variables has, of course,long been advocated by category theory as well as being fundamental to theBird-Meertens formalism. However, mathematical practice and programmingpractice lag far behind theoretical argument, and we continue to �nd scope for



4 CHAPTER 1. INTRODUCTIONsubstantial economies in calculation. For more explanation and discussion ofour viewpoint see [5].So much for the element of dissatisfaction.1.3 The Need For a Relational FrameworkThe relational calculus has been explored in the past as a framework for pro-gramming, for example in [12], [14], [33] and [84]. (This list is certainly byno means exhaustive.) Recently Hoare and He [52] have strongly advocatedthe view of speci�cations as relations and the programming process as that ofre�ning a given relation into a (possibly functional) implementation. So far aswe know, however, none of this research has combined the relational calculuswith type theory.The need to admit relations, rather than functions, in programming was alsomuch in evidence at a summer school held in September, 1989. At this summerschool de Moor lectured on his work on applying a relational calculus to variousoptimisation problems [74, 76] (such problems being by nature nondeterminis-tic since unique optima are exceptional) and to program inversion [75] whilstSheeran [86] and Jones [54] reported on the use of relations to describe butter
ycircuits and the Fast Fourier Transform.\Needs", \wishes" or \wouldn't-it-be-nice lists" are all very well, but the artof doing research is to recognise out of the great multitude of outstanding issuesthose few that can be resolved elegantly and e�ectively using current knowledgeand techniques. The incentive for us to investigate a relational theory of typeswas the (re)discovery by de Bruin of the notion of \naturality" of polymorphism[26]. (As it turns out, this notion was already known to Reynolds [79] muchearlier but its full relevance to program calculation does not seem to have beenenvisaged. De Bruin's and, more or less simultaneously, Wadler's [91] observa-tion was that naturality of polymorphism explains and indeed predicts several ofthe most fundamental laws in the Bird-Meertens formalism.) In order to expressthe notion of \naturality" one is obliged to extend the de�nition of a type func-tor (a type constructor and corresponding \map" operator) to a mapping fromrelations to relations. In other words, relations are essential to meta-reasoningabout polymorphic type constructors but there seems to be no reason why theiruse should be restricted to the meta-level. One is indeed encouraged to replacethe categorical notion of \functor" by a (seemingly) stronger notion of \rela-



1.4. RELATIONAL PROGRAMMING 5tor". The ideas underlying, the goals of, and preliminary justi�cation for, atype-oriented theory of relational programming were discussed by Backhouse[1] at the above-mentioned summer school.1.4 Relational ProgrammingThe starting point for the present work is the (already-mentioned) notion of\relational programming" as put forward by Hoare and He [52]. In their view,speci�cations and implementations are binary relations on input and outputvalues. An implementation f satis�es speci�cation R iff � R(where a binary relation is regarded as a set of pairs). Programming is thus theprocess of calculating an implementation satisfying a given speci�cation.Which binary relations count as speci�cations is quite unrestricted: thewhole of the language of mathematics may be used as speci�cation language.Which binary relations count as implementations is 
uid: the more we discoverabout what can and what cannot be e�ciently automated the more \higher-level" our programming languages will become. Thus the two notions of speci-�cation and implementation are deliberately left vague in order to take accountof future developments.In spite of this vagueness there is still much that can be said about whatmight constitute a \healthy" theory of relational programming. Monotonicity,for example, of the operators in one's implementation language is desirable for\compositionality" of programming: if 
 is a binary operator, say, on relationsmonotonicity of 
 is the statement thatR
 S � U 
 V ( R � U ^ S � V :From a programming point of view this is the statement that a speci�cationwritten in the form U 
 V can be implemented by �nding an implementationR of U and | separately | an implementation S of V , and then composingthem to form R
 S.Given the foregoing preamble, it will come as no surprise to the readerto learn that our principal \healthiness" criterion is that the theory shouldsupport a theory of types that encourages and facilitates the introduction ofnew type structures. Indeed, this whole monograph is devoted to the study



6 CHAPTER 1. INTRODUCTIONof general mechanisms for de�ning polymorphic type constructors and theirassociated \catamorphisms" within an axiomatic theory of relations. The sortof type constructors that can be de�ned using such mechanisms are familiarconstructors like List and Tree; in this sense the monograph o�ers no surprises.On the other hand, we do present a whole host of mathematical propertieswhich, we argue, testify to the theory's healthiness both from a theoretical anda practical viewpoint. Moreover, we are particularly encouraged by the economyand clarity of our calculations, which is in our view of paramount importance.**** Structure of the book ******



Chapter 2PreliminariesEvery book must make certain assumptions about the knowledge and abilitiesof its readers, and this one is no exception. The basic assumptions we makeare that you have a sound knowledge of elementary predicate calculus and settheory, and that you enjoy algebraic calculations.It is possible that the notation and terminology we use di�er from thosethat you are used to. The purpose of this chapter is to summarise our ownnotational preferences and thus avoid any misunderstandings that this maycause. In the �rst section we summarise our preferred notation for writingdown predicates and name several laws that tend to occur frequently in ourcalculations. The next section is concerned with functions and some of theirprominent properties. The section following that summarises the style we usefor presenting calculations. The last section is concerned with the pointwiserelational calculus. This calculus will provide a model of the pointfree calculusthat we axiomatise in part 2.2.1 Meta-languageThe meta-language we use for conducting proofs is the predicate calculus. Weassume the reader is familiar with the predicate calculus, so we content our-selves with a short description. A more extensive account can be found in [36].For the bene�t of those who have read [36], we do not use the everywhere op-erator, denoted by square brackets. We adopt the convention |unless statedotherwise| that the formulae we give are universally quanti�ed over all free7



8 CHAPTER 2. PRELIMINARIESvariables.The predicate calculus, or the calculus of boolean structures, consists of twoboolean scalars: true and false. The predicates can be seen as boolean-valuedfunctions. In order to reason about the predicates, some operators are used.The equivalence operator (�) is used to denote boolean equality. It hasthe least binding power of all binary operators. The boolean scalar true is anidentity for the equivalence.Equivalence is both associative and transitive. This creates a dilemma as tohow to parse expressions involving repeated equivalences such as X � Y � Z.Should one parse such an expression associatively { i.e. as X � (Y � Z) or(X � Y ) � Z { or conjunctively { as (X � Y ) ^ (Y � Z). Dijkstra andScholten [36] argue convincingly for the former choice. Their arguments areexpressed, however, in a context in which the predicate calculus itself is theobject of study. In the present context, where we use the predicate calculus asmeta-language and not as object language, it is more appropriate to adopt theconjunctive interpretation of such expressions, and this is what we shall do.Disjunction (_) is used to model the boolean or, conjunction (^) models theand. Both these binary operators are symmetric, associative and idempotent.The scalar true is a zero for the disjunction and an identity for the conjunction.The scalar false acts as an identity for the disjunction and as a zero for theconjunction.The remaining two binary operators are implication ()) and follows-from((). They have equal binding power, higher than equivalence but less thandisjunction and conjunction. Implication and follows-from are formally indis-tinguishable, since Y ( X � X ) Y . Nevertheless it is vital to have bothof them available for constructing proofs. In the expression Y ( X or X ) Ywe refer to X as the antecedent and to Y as the consequent . From the truthof Y ( X � (X _ Y � Y ) , the reader can establish various properties offollows-from, and thus of implication.Follows-from is not associative but, as for equivalence, one faces a choicewhen parsing expressions of the form X ( Y ( Z. Now there are threepossibilities. One is to postulate that follows-from is right associative, so thatthe expression is parsed as X ( (Y ( Z), the second is to postulate that itis left associative, so that the expression is parsed as (X ( Y ) ( Z, and thethird | motivated by the transitivity of follows-from | is to read the formulaconjunctively as (X ( Y ) ^ (Y ( Z). We choose to adopt the last of the three



2.1. META-LANGUAGE 9choices. (And the same goes for implication.) Note, however, that, because ofthe confusion that might occur, we avoid the use of repeated equivalences,implications and follow-froms in one-line expressions, reserving their use solelyfor multi-line proofs. (See the next section for further explanation.)As a unary operator we have negation (:). It is written as a pre�x operator.We adopt the convention that unary operators have a higher binding powerthan any binary operator, including function application/composition. Thusnegation has the highest binding power. For negation we have the Law of theExcluded Middle, i.e. X _ :X for any predicate X. Of course we also havefalse � :true and X � ::X for any predicate X. When calculating withnegation, the Laws of de Morgan come in handy: :X _ :Y � :(X ^ Y ) and:X ^ :Y � :(X _ Y ) .Conjunction and disjunction are generalised in the usual way to universalquanti�cation and existential quanti�cation. We use P:x to indicate that thepredicate P might depend on x. For predicates P and Q, that might dependon x, universal quanti�cation is written 8(x : P:x : Q:x) and read \for allx such that P:x holds, Q:x holds". The existential quanti�cation is written9(x : P:x : Q:x) and read \there is an x such that P:x and Q:x". In suchformulae we refer to x as the dummy; it can be replaced by any other variablewithout changing the truth of the formulae if we replace its free occurrences inP:x and Q:x . We call P:x the range and Q:x the term. Perhaps redundantly,we mention that the predicates P and Q need not depend on x. The range truewill be omitted. For the universal quanti�cation we have, among others, thefollowing rules:� 8(x : P:x : Q:x) � 8(x :: :P:x _ Q:x) called trading,� 8(x :: 8(y :: P:x:y)) � 8(y :: 8(x :: P:x:y)) called interchangingquanti�cations,� 8(x : 9(y : P:y : Q:x:y) : R:x) � 8(y : P:y : 8(x : Q:x:y : R:x))called range disjunction,� X _ 8(x :: P:x) � 8(x :: X _ P:x) called _-^ distributivity,� 8(x :: P:x) ^ 8(x :: Q:x) � 8(x :: P:x ^Q:x) called 8-^ distribu-tivity,� 8(x :: true) � true called term true,



10 CHAPTER 2. PRELIMINARIES� 8(x : false : P:x) � true called empty range,� 8(x : x = y : P:x) � P:y called one-point rule.Rules similar to these for existential quanti�cation can be derived via de Mor-gan's law� 9(x : P:x : Q:x) � :8(x : P:x : :Q:x) .In all formulae that we write the above meta-operators have lower precedencethan operators of the object language.2.2 Functions** Very drafty **As usual we indicate function application by the lower dot \:". The lowerdot is right-associative and binds stronger than any other binary operator. Ifx is an element of type A and f a function from A |called the domain| tosome other type, we denote the unique image element of x by f:x . To indicatethat f is a function to B |called the range| from A we write f 2 B  � A .The choice for the unconventional direction of the arrow is based on the waywe denote function application (and composition) of two functions. In case offunction application, the argument of a function is placed on the right-handside of the function. Writing the type information as we do, the domain of thefunction is placed on the right-hand side of the arrow.On functions we can de�ne a binary operator, the familiar composition. Forg 2 C  � B and f 2 B  � A we de�ne the composition g � f 2 C  � A , by(f � g):x = f:g:xfor all x 2 A. The � is associative.When working with functions and using them in proofs, the rule Leibniz isused frequently. I.e. for x; y and f of the appropriate type we havex = y ) f:x = f:y :If both A and B are lattices with negation, one can de�ne a unary operatoron functions to B from A called the conjugate. If f 2 B  � A then we de�ne



2.3. PROOF FORMAT 11the conjugate f � 2 B  � A by f �:x = :(f::x) , for all x 2 A. Notice theway the latter expression is parenthesised: we adopt the convention that unaryoperators take precedence over binary operators.For other properties of functions, like injectivity and surjectivity the readeris referred to section 2.4.2.3 Proof FormatFor the presentation of equational proofs we use the style introduced by W.H.J.Feijen in [35]. That is, we writeR= f p gS= f q gT .In the above proof R,S and T are expressions containing one or more freevariables; p and q are most often semi-formal hints why (for all instantiationsof the free variables) R = S and S = T , respectively; in constructive proofs(discussed shortly) p and q have a formal status.This format emphasises the transitivity of equality: all the expressions R, Sand T are equal, but in particular the �rst and the last. We use other transitiveoperators in place of equality: � (equivalence), ( (follows from) ) (implies),w and v . In such cases the connectives are used conjunctively; for exampleR v S v T means (R v S) and (S v T ).Peculiar to our own work is that we use the same proof style for constructiveproofs. For example, we may wish to determine a condition q under which twogiven expressions R and T are equal. There are two ways we can proceed. Oneis to begin with the statementR = Tand then in a series of steps derive q. Thus the derivation would take the formR = T( f hint gsome intermediate steps



12 CHAPTER 2. PRELIMINARIES( f hint gq .Another way is to begin with R and try to transform it to T . On the way theconditions under which the transformation is possible are not given as dictatesbeforehand, but they are collected in the hints. Thus the proof takes the formR= f � q1 gS= f � q2 gT .In such a proof the hints have a truly formal status and what is proven is thestatementq1 ^ q2 ) R = T :We draw the reader's attention to such hints by marking them with a bullet(the symbol \�" used above).A particular case where such constructive proofs are used is the following. Givenare two functions f and g and an expression R. Required is to �nd x such thatf:R = g:x . I.e. we wish to prove the statement9(x :: f:R = g:x) :This we often do by a stepwise re�nement process in which, for reasons stated inthe hints, we explore assignments to x of a particular form. The proof structurethen takes a form like:By construction of x:f:R = g:x( f � x = h:y, reason why f:R = g:(h:y) ( f 0:R = g0:y gf 0:R = g0:y( f � y = T , reason why f 0:R = g0:T gtrue .



2.4. THE POINTWISE RELATIONAL CALCULUS 13Formally, such a proof establishes8(x; y : x = h:y ^ y = T : f:R = g:x) ;which is of course equivalent tof:R = g:(h:T ) :The keywords \by construction of" alert the reader to the fact that the variablesthat follow (in this case just x) will be assigned particular values during thecourse of the proof. These assignments are indicated by bullets in the hints.Most often they introduce fresh variables for which appropriate assignmentshave to be found also | such as y in the above outline.2.4 The Pointwise Relational Calculus** Extremely drafty **For the moment we take an interest in relations for granted. Since ourobjective is to study relational datatypes and the relational programming thatcomes with them, it doesn't hurt to pay a little attention to relations. In thissection we brie
y discuss the set theoretic notion of relation and the structureof the collection of relations on a given set (space) thereby introducing somenotation.A set theoretic relation between two sets X and Y , in that order, is de�nedto be a subset of the cartesian productX � Y = f(x; y) j x 2 X ^ y 2 Y g ;or, equivalently, a boolean valued function (a predicate) on X � Y .For a relation R between X and Y and x 2 X, y 2 Y we mostly write xRyinstead of (x; y) 2 R or R:(x; y) � true (or R:(x; y)).Some elementary examples of relations are: ;, X � Y and f(x; y)g, and forX and Y equal the diagonal IX = f(x; x) j x 2 Xg . Moreover every functionf 2 X  � Y induces a relation between X and Y via its graph:GR:f = f(x; y) j x = f:yg :



14 CHAPTER 2. PRELIMINARIESAs soon as functions are embedded in the relations (for example in the aboveway) a direction suggests itself: a relation R between X and Y may be inter-preted then as a mechanism to be fed with elements of the (right) domain Ywhich returns elements of the left domain (range) X.The collection of all relations between X and Y inherits the structure ofthe powerset of X � Y , so we may consider union, intersection and negation(complement) of relations (provided they have the same domains).In chapters to follow we shall axiomatise this structure via the concept of alattice. Instead of the set theoretic notations like ;, �, [ and \ we then usethe lattice operations ??, v, t, u and denote the full relation (X � Y ) by >>.Like functions, relations may be composed if the corresponding domainsmatch, so for R � X � Y and S � Y � Z de�nex(R �S)z � 9(y : y 2 Y : xRy ^ ySz) :The composition is associative and the diagonals serve as (partial) identities.For the collection of all relations on one space X (so IP (X � X)) this meansthat the composition and the diagonal make it into a monoid. This structurewill be axiomatised as such.Unlike functions, relations may be reversed: de�ne and denotey(R[)x � xRy :So R � X � Y i� R[ � Y � X, and on IP (X � X) the reverse \[" is aninversion that respects the set inclusion and \reverses" the composition. Thestirr frying pan symbol \[" is pronounced accordingly as wok, and it will beused in the axiomatisation too.An interesting bonus is the following interface:(P \ R �Q[) � (Q \ P [ �R) � P �Q \ R :which is called the Dedekind rule (exercise: prove it).Several standard properties of relations may be expressed in terms of theabove structure, for example for R � X � Y :R is total on Y� f de�nition of total g8(y : y 2 Y : 9(x : x 2 X : xRy))� f de�nition of composition g



2.4. THE POINTWISE RELATIONAL CALCULUS 158(y : y 2 Y : y(R[ �R)y)� f de�nition of IY gIY � R[ �R .Similarly one may prove� R is functional i� R �R[ � IX ,� R is injective i� R[ �R � IY ,� R is surjective i� IX � R �R[ ,and� R is a function i� R �R[ = IX .If X = Y , i.e. R � X �X, we also have� R is re
exive i� IX � R ,� R is symmetric i� R � R[ ,� R is anti-symmetric i� R \ R[ � IX ,� R is transitive i� R �R � R .The description above look a lot cleaner than the usual ones where dummiesand quanti�cations are all over the place. We therefore only seldomly refer tothe set theoretic relations, though it is our main model, but mostly calculate inthe axiomatised version. In case we do refer to the set theoretic interpretationwe adopt the usual semantics notation to stress the fact that we interpret the(statement about the) relation in the set theoretic model so [[Prop.R]] is to beread as the set theoretic interpretation of property Prop with respect to the settheoretic interpretation [[R]] of R.



16 CHAPTER 2. PRELIMINARIES



Part ILattice Theory (Elementsof, Presented Calculationally)
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19To begin a book on a theory of datatypes with a substantial part on lat-tice theory is surely asking for trouble! The reader with little or no previousknowledge is likely to regard such an introduction as a formidable hurdle, andwill question whether a textbook speci�cally devoted to the topic would notbe a better place to begin; the reader with more knowledge will be con�dentthat that is indeed the case and will be irritated by our presumption to thinkotherwise. Nevertheless we would encourage both sets of readers to spare sometime reading carefully through the main sections of this part. To avoid thetask's becoming a substantial hurdle we o�er shortly some guidance on how toapproach it dependent on one's prior knowledge.The inclusion of such a substantial introduction to lattice theory is justi�edby the part's subtitle |\presented calculationally". A major driving forcebehind our work is to reduce substantial parts of the programming processto straightforward calculation. There are two challenges here, one being toreduce programming to calculation, the other to straightforward calculation.The latter, as opposed to the former, can only be achieved by utmost concernwith the form and presentation of calculational rules. And, of course, thatconcern must begin at the very beginning | in our case with a calculationalpresentation of lattice theory and, later, of an axiomatisation of the calculus ofrelations.The presentation of lattice theory here departs from that in all texts thatwe know of in the prominence given to the notion of a \Galois connection"introduced in chapter 5. A Galois connection is a rule connecting two functionsto each other having a particularly simple and elegant shape. The recognition ofa Galois connection between two functions considerably facilitates calculationswith the functions. We shall encounter several such connections throughout thetext, amply su�cient to justify presenting the abstract notion at a very earlystage. Once mastered, the reader should have no di�culty in recognising manyother instances in other application areas.On the other hand, we do not presume to suggest that this text is a replace-ment for other texts on lattice theory. We use the quali�er \elements of" inthe part's heading as a warning that there is much more to lattice theory thanwe have time, space or ability to discuss. The selection of topics is very muchgeared to our immediate needs and you may need to consult other texts if yourneeds are di�erent from ours.
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Chapter 3Extremal Elements
3.1 IntroductionLet A be an arbitrary set. A binary relation v on A is said to be re
exive ifx v x for all x 2 A. It is said to be anti-symmetric if x = y ( x v y ^ y v x,for all x and y in A. Finally, it is said to be transitive if x v z ( x v y^y v zfor all x, y and z in A.A preorder on A is a re
exive, transitive relation on A; the pair (A;v) isthen called a pre-ordered set. A partial order onA is an anti-symmetric preorderon A; the pair (A;v) is then called a partially-ordered set or poset for short.Actually, we assume that these de�nitions are already familiar to you andyou can conjure up several examples of pre-ordered and partially-ordered setsif asked.Often, lattices would now be introduced by considering an algebra having abinary \meet" operator and a binary \join"operator both of which are idempo-tent, symmetric and associative, and which collectively obey a certain absorp-tion law. (See e.g. [24].) It is then observed that the carrier of the algebra (theset of values on which the operator is de�ned) can be ordered by a relation, de-�ned in terms of meet, that is re
exive, anti-symmetric and transitive. Latticesare in this way shown to be partially-ordered sets.We diverge from this approach. We take as our starting point partially-ordered sets, and consider the construction of a \meet" operator on sets ratherthan just pairs of elements. The \meet" of a set of elements is called its \in�-mum". A dual concept is that of \supremum". Both in�ma and suprema are21



22 CHAPTER 3. EXTREMAL ELEMENTSwhat we call extremal elements. So too are greatest and least elements.In this chapter we consider these concepts in some detail. Even if you arealready familiar with them it may still be worthwhile reading the chapter indetail because it is here that we �rst illustrate our calculational style, andwhere we introduce some fundamental calculational techniques.3.2 In�maTo begin: let (A;v) be a partially-ordered set and let S be a subset of A. Wesay that element y 2 A is a lower bound on S, or, more concisely, y is below Sif it is at most every element in S. That is,y is below S � 8(s : s 2 S : y v s) :(3.1)Typically, for any given set S there will be many elements below S. A greatestlower bound or in�mum of S is a solution of the equationx :: 8(y :: y is below S � y v x) :(3.2)Clearly, since v is re
exive, any in�mum of S is below S. I.e.x solves (3:2) ) x is below S :(3.3)Clearly also, by weakening the equivalence in (3.2) to an implication we have,for all x 2 A,x solves (3:2) ) 8(y :: y is below S ) y v x) :(3.4)The combination of (3.3) and (3.4) is the origin of the name \greatest lowerbound" for a solution of (3.2); property (3.3) states that a solution is a lowerbound and (3.4) states that a solution is greatest among such lower bounds.The converse of the conjunction of (3.3) and (3.4) is also clearly true: by thetransitivity of v and elementary predicate calculus,8(y :: y is below S ( y v x) ( x is below S :(3.5)Hence, x solves (3:2)(3.6) ( x is below S ^ 8(y :: y is below S ) y v x) :



3.2. INFIMA 23To summarise this preliminary discussion, there are two, completely equivalent,speci�cations of in�mum, the �rst being a solution to (3.2) and the second asolution tox :: x is below S ^ 8(y :: y is below S ) y v x) :(3.7)Equation (3.7) is the conventional de�nition of in�mum and as explained givesrise to the terminology \greatest lower bound". We, however, prefer (3.2) to(3.7) because the former is more compact and easier to calculate with.Equation (3.2) may not have a solution but we can assert that it has at mostone solution. To see this we observe thatu = v � 8(y :: y v u � y v v)(3.8)| which rule we call the rule of indirect equality. Next we observe that the leftside of the equivalence in (3.2) is totally independent of the dummy x. Thus,we can argue thaty v u� fu solves (3.2) gy is below S� fv solves (3.2) gy v v .That is,u and v both solve (3.2) ) 8(y :: y v u � y v v) .In combination with the rule of indirect equality (3.8) this yields the desireduniqueness of a solution of (3.2):u and v both solve (3.2) ) u = v .(The rule of indirect equality is proved by elementary predicate calculus usingthe re
exivity and anti-symmetry of the ordering relation. Its simplicity beguilesits importance. We discuss the rule in more detail shortly in connection withits extension to proving inclusions.)We denote the unique solution of (3.2) by u:S . Also, instead of writing \isbelow" we silently lift the v relation to sets. That is, for x 2 A and S � A



24 CHAPTER 3. EXTREMAL ELEMENTSwe write x v S for x is below S. Spelling out the de�nition of \is below" oncemore, that is to sayx v S � 8(s : s 2 S : x v s) :(3.9)(The device used here of \overloading" the v operator is a common one inmathematics but can lead to confusion if one does not clearly type all variables.Throughout this chapter we use the convention that small letters, like x andy, denote elements and capitals, like S and T , denote sets of elements. Do notbe tempted to instantiate a variable denoting an element with an expressiondenoting a set, or vice-versa!)Adopting this convention has the pleasant by-product that (3.2) takes on aparticularly concise form. Speci�cally, if u:S exists then, for all y 2 A,y v S � y v u:S :(3.10)A complete lattice is a partially-ordered set (A;v) in which u:S exists for allsubsets S of A. Throughout the rest of this section we assume that we aredealing with a complete lattice. The alternative is to tediously preface everystatement involving u:S for some S with \assuming u:S exists".Note that the right side of (3.10) can be trivially made true by instantiatingy to u:S . We obtain the simple but powerful propertyu:S v S :(3.11)Equation (3.10) is an instance of a very important concept called a Galois con-nection that will be discussed later. For the moment it su�ces to observe that(3.10) links the function u with universal quanti�cation (the universal quanti�-cation that is obtained by expanding the de�nition of y v S). A consequence isthat u inherits certain basic properties of universal quanti�cation. To see whatthese properties are we proceed in two steps. The �rst step is to explore the \isbelow" operator. Three elementary properties arey v fxg � y v x the one-point rule,(3.12) y v S [ T � y v S ^ y v T the range-disjunction rule,(3.13) y v ; � true the empty range rule,(3.14)



3.2. INFIMA 25where ; denotes the empty set. In combination with (3.10) these three rulestranslate into properties of u. We give the rules the same names.u:fxg = x the one-point rule,(3.15) u:(S [ T ) = (u:S) u (u:T ) the range-disjunction rule,(3.16) y v u:; the empty-range rule,(3.17)for all y 2 A. For convenience, we used in (3.16) the binary version of thesupremum operator which is de�ned asx u y = u:fx; yg :(3.18)The proofs of all these properties are very straightforward but it is neverthe-less worthwhile discussing them because the techniques are very fundamental.Note that (3.15) and (3.16) are statements of equalities whereas the speci�ca-tion of u:S (see e.g. (3.10)) involves only inclusions in which u:S appears onthe bigger side. Thus we cannot prove a statement of the form x = u:S byproving both x v u:S and u:S v x since, at this point in time, we have nomeans of proving the latter inclusion. The trick is to use the rule of indirectequality (3.8)x = u:S � 8(y :: y v x � y v u:S) ;(3.19)with u instantiated to x and v instantiated to u:S .Let's see how this works in the case of (3.12) and (3.15). First, (3.12) followsbecause y v fxg� f (3.9) g8(z : z 2 fxg : y v z)� f one-point rule of universal quanti�cation gy v x .Now combining (3.10) with (3.12) we have, for all y 2 A,y v u:fxg� f characterisation: (3.10) gy v fxg� f (3.12) gy v x .



26 CHAPTER 3. EXTREMAL ELEMENTSApplying (3.19) we conclude that (3.15) is also true.Now we consider (3.13) and (3.16). The former follows because, for ally 2 A, y v S [ T� f (3.9) g8(z : z 2 S [ T : y v z)� f range-disjunction rule for universal quanti�cation g8(z : z 2 S : y v z) ^ 8(z : z 2 T : y v z)� f (3.9) gy v S ^ y v T .Combining (3.13) with (3.10) we have, for all y 2 A,y v u:(S [ T )� f characterisation: (3.10) gy v S [ T� f (3.13) gy v S ^ y v T� f characterisation: (3.10) gy v u:S ^ y v u:T� f range-disjunction and one-point rulesfor universal quanti�cation g8(z : z 2 fu:S;u:Tg : y v z)� f (3.9) and (3.18) gy v (u:S) u (u:T ) .Applying (3.19) we conclude that (3.16) is indeed true.This completes the discussion of (3.13) and (3.16). It remains to verify (3.14)and (3.17). By now the strategy should be familiar. We have, for all y 2 A,y v ;� f (3.9) g8(z : z 2 ; : y v z)� f empty-range rule for universal quanti�cation gtrue .This is (3.14); its counterpart (3.17) follows from



3.2. INFIMA 27y v u:;� f characterisation: (3.10) gy v ;� f (3.14) gtrue .Property (3.17) says that u:; is the biggest element in the lattice. It is so specialthat it is worth giving it a special notation: we shall henceforth denote u:; by>> and call it top. The de�ning property of top is thus (3.17): for all y 2 A,y v >> :(3.20)(A common convention is to use the symbol > for top. Whilst in printeddocuments > and T are readily distinguishable they are not so in hand-writtenform. For that reason we choose to break with convention.)An important proof technique was illustrated by the above calculations.Speci�cally, we established the equality of two poset elements x and z by estab-lishing that, for arbitrary poset element y, y v x � y v z. (See equation(3.8) and references to it.) This technique will be prevalent in the discussion ofGalois connections in chapter 5. To reinforce its importance let us give it thestatus of a named theorem. At the same time let us generalise the technique toproving inclusions as well as equalities.Theorem 3.21 (Indirect Equality and Inclusion) Let x and y be ele-ments of a poset (A;v) both satisfying predicate p. Then equivalent arex = y ,8(z : p:z : z v x � z v y) ,8(z : p:z : x v z � y v z) .We call this the rule of indirect equality. Also equivalent arex v y ,8(z : p:z : z v x ) z v y) ,8(z : p:z : x v z ( y v z) .We call this the rule of indirect inclusion.



28 CHAPTER 3. EXTREMAL ELEMENTS2The proof of this theorem | a simple exercise in the predicate calculus | isleft to the reader. In carrying out the exercise it is worth noting the mini-mum requirements on the ordering relation needed to establish the two partsindividually. Together they add up to the requirement that v is re
exive,anti-symmetric and transitive. The converse is also true! That v is re
ex-ive, anti-symmetric and transitive is equivalent to the conjunction of the tworules. (For a precise statement of this equivalence see exercise 3.28.) This is asigni�cant observation because it means that resorting to proofs of equality orinclusion by means of indirect proof does not weaken one's possibilities.Often in our use of the rules the predicate p is identically true; in suchcases we omit reference to the predicate. In some circumstances, however, it isadvantageous to instantiate p to a non-vacuous predicate. If that is the case werefer to p as the domain predicate.In the course of stating and establishing (3.16) the binary operator u wasintroduced. From its de�nition (3.18) and spelling out (3.10) we obtainz v x u y � z v x ^ z v y :(3.22)Easy consequences of this equation are:x u x = x u is idempotent,(3.23) x u (y u z) = (x u y) u z u is associative,(3.24) x u y = y u x u is symmetric.(3.25)We also have the important relationship between the partial ordering v and u,namely:x v y � x = x u y :(3.26)Let us prove (3.26) just to illustrate the generalisation to inclusions introducedin theorem 3.21.x u y = x� f indirect equality: 3.21 g8(z :: z v x u y � z v x)� f (3.22) g



3.2. INFIMA 298(z :: z v x ^ z v y � z v x)� f predicate calculus g8(z :: z v x ) z v y)� f indirect inclusion: 3.21 gx v y .Exercise 3.27 Other properties inherited by in�ma from universal quan-ti�cation area u:(x : x 2 S : f:x) u u:(x : x 2 S : g:x) = u:(x : x 2 S : f:x u g:x) ,b S 6= ; ) (a u u:S = u:(x : x 2 S : a u x)) ,c u:(x : x 2 S : >>) = >> .Prove these properties, identifying clearly the corresponding rule for universalquanti�cation.2Exercise 3.28a Show that relation R is re
exive and anti-symmetric implies8(x; y :: x = y � 8(z :: zRx � zRy)) .b Show that relation R is re
exive and transitive equivales8(x; y :: xRy � 8(z :: zRx ) zRy)) .c Show that relation R is re
exive, transitive and anti-symmetric equivales8(x; y :: x = y � 8(z :: zRx � zRy))^ 8(x; y :: xRy � 8(z :: zRx ) zRy)) .2



30 CHAPTER 3. EXTREMAL ELEMENTS3.3 SupremaWe have introduced in�ma and examined some of their properties. We now wantto introduce the dual concept | supremum or least upper bound. If (A;v) is aposet then so is (A;w) where w is the converse of v, i.e.x w y � y v xfor all x; y 2 A. The supremum operator, denoted by t, in a poset (A;v) isde�ned to be the in�mum operator in the dual poset (A;w). That is, for x 2 Aand S � A, when t:S exists it is unique and satis�esx w t:S � x w S(3.29)where x w S � 8(y : y 2 S : x w y) :(3.30)(It is suggested that you read x w S as x \is above" S.)This de�nition by duality is very powerful because we can claim at one strokethat all properties of in�ma in the previous section are dualisable to supremaby replacing u by t and v by w. Here then are the principal rules:t:S w S ;(3.31) t:fxg = x ;(3.32) t:(S [ T ) = (t:S) t (t:T ) ;(3.33) y w t:; ;(3.34) z w x t y � z w x ^ z w y ;(3.35) x t y = t:fx; yg ;(3.36) x t x = x ;(3.37) (x t y) t z = (x t y) t z ;(3.38) x t y = y t x ;(3.39) x w y � x = x t y :(3.40)The supremum of the empty set, like its in�mum, is su�ciently special to deservea special symbol. We use the symbol ?? and call it bottom. (More conventionalis to use the symbol ?, but see our remarks on the choice of the symbol >>



3.3. SUPREMA 31for a justi�cation of this divergence from established practice.) Bottom has thede�ning property that for all y 2 A,y w ?? :(3.41)There is one more rule that establishes a useful relationship between supremaand in�ma. It is that, for all subsets S of A, the supremum t:S exists providedthat the in�mum u:(y : y w S : y) exists and, in that case, they are equal.That is to say,t:S = u:(y : y w S : y)(3.42)whenever the right side of the equation exists. (The converse also holds. Seeexercise 3.46.)To show that this equation holds it su�ces to assume that the right sideexists and establish that it satis�es the speci�cation (3.29) of t:S .Let Ŝ denote the set of all elements above S. I.e.x 2 Ŝ � x w S :(3.43)The assumption is then that u:Ŝ exists and we have to show that it meets(3.29). So we have to prove, for all x 2 A,x w u:Ŝ � x w S .For the �rst time we are obliged to use a \ping-pong" argument | i.e. a proofof equivalence via mutual implication. The reason is that the characterisingproperty of in�ma only allows us to relate in�ma to elements below themselveswhereas the characterising property of suprema does the opposite. Becauseof the asymmetry in (3.42) there is an asymmetry in the \ping" and \pong"components. Follows-from is straightforward:x w S� f (3.43) gx 2 Ŝ) f (3.11) with S := Ŝ gx w u:Ŝ :To prove implication we begin by simplifying the proof obligation:



32 CHAPTER 3. EXTREMAL ELEMENTSx w u:Ŝ ) x w S� f (3.30), predicate calculus g8(s : s 2 S : x w u:Ŝ ) x w s)� f indirect inclusion: dual of theorem 3.21 g8(s : s 2 S : u:Ŝ w s) .To establish this universal quanti�cation let us assume s 2 S. Thenu:Ŝ w s� f characterisation: (3.10) gŜ w s� f de�nition of \is below": (3.9) g8(y : y 2 Ŝ : y w s)� f de�nition of Ŝ: (3.43) g8(y : y w S : y w s)� f (3.30) and predicate calculus, s 2 S gtrue .This completes the proof.The dual of (3.42) also holds of course. We haveu:S = t:(y : y v S : y)(3.44)whenever the right side exists. The most important consequence of these twoproperties is that completeness of a lattice can be de�ned either in terms ofin�ma, or of suprema, or both. Speci�cally:Theorem 3.45 The following are equivalent:� Poset (A;v) is a complete lattice.� All in�ma exist in poset (A;v) .� All suprema exist in poset (A;v) .� All in�ma and suprema exist in poset (A;v) .2Exercise 3.46



3.4. GREATEST AND LEAST ELEMENTS 33a Show that x t (x u y) = x = x u (x t y) for all x and y.b Show that if the supremum t:S exists then so does the in�mumu:(y : y w S : y) .23.4 Greatest and Least ElementsIn this section we introduce some variations on the de�nitions of in�mum andsupremum that we have been working with until now. In particular we introducelocal in�ma and suprema. Di�erent notions of locality are possible. One suchnotion is captured by the de�nitions of least and greatest element of a set:De�nition 3.47 For Y � A, x is called a least element of Y i� x 2 Y andx v Y . Dually, x is called a greatest element of Y i� x 2 Y and Y v x .2Informally, x 2 Y is a least element if it is at most any other y 2 Y . We will de-note a least element of a subset Y bymin:Y . The notationmin:(x : P:x : f:x)is also used instead of the more conventional min:ff:x j P:xg . We will de-note the greatest element of a subset Y by max:Y . Occasionally we usemax:(x : P:x : f:x) instead of max:ff:x j P:xg .The existence of least or greatest elements is of course not guaranteed. But,where they exist, uniqueness is guaranteed and there is an obvious relationshipto the in�mum and supremum of the given set:Theorem 3.48 For all Y � A and x 2 A we have the following:a x = min:Y � x 2 Y ^ x = u:Y ,b x = max:Y � x 2 Y ^ x = t:Y .2 The de�nitions of in�mum and supremum admit a slight generalisationwhereby the bound of a set is not sought within the poset but in a superset ofthat set:De�nition 3.49 For Z � A and Y � Z, we call x the in�mum of Y inZ i� x 2 Z and, for all z 2 Z,z v x � z v Y :The unique solution of this equation, if it exists, is denoted by uZ :Y .



34 CHAPTER 3. EXTREMAL ELEMENTS2 Note that uY :Y = min:Y and uA:Y = u:Y . Furthermore we have thefollowing easily veri�ed property:Property 3.50 For X � Y � Z � A we have, provided uY :X and uZ :Xexist,a uY :X v uZ :X ,b uY :X = uZ :X � uZ :X 2 Y .2Property 3.50(b) is often used in a weaker form uY :X = uZ :X ( uZ :X 2 Y .In this form it can be used to prove that a subset of a complete lattice is acomplete lattice itself with the same in�mum.Exercise 3.51 Show that if v is a total ordering then, for all non-empty,�nite subsets S, u:S exists i� min:S exists.2Exercise 3.52 Prove for (A;v) a complete lattice and S and T subsets ofA : u:S v u:T ( S � T . What is the dual property?2



Chapter 4Junctivity and ContinuityIn this chapter we look at functions on lattices and detail a hierarchy of desirableproperties of such functions. The terminology and much of the presentation isborrowed, with appropriate adjustments, from Dijkstra and Scholten [36, chap.6]. Indeed, several of the theorems presented here appear in their book, albeit ina di�erent setting. Some of their theorems have been omitted because they relyon distributivity properties that are not generally true in a lattice, or becausethey are not relevant to our current goals.4.1 Junctivity TypesThe speci�c concern of this section is a classi�cation of functions on latticesaccording to conditions under which they commute with the supremum and/orin�mum operators. The classi�cation is derived from a classi�cation of indexedbags of lattice elements which we now de�ne.To increase the compactness of a number of theorems it is useful to extendfunction application silently from elements to sets. Speci�cally, if f is a functionand S is a subset of its domain we write f:S for fs : s 2 S : f:sg . (Namingconventions with regard to variables will always be clearly stated so that thereis no doubt as to what is intended in a given formula.)In the following de�nition we assume for the sake of simplicity that we aredealing with complete lattices. Later we discuss a revised de�nition relevant tothe case that the posets are not complete.De�nition 4.1 (t-Junctivity Types) Let (A;v) and (B;v) be35



36 CHAPTER 4. JUNCTIVITY AND CONTINUITYcomplete lattices and suppose f 2 A  � B. Let S be an arbitrary subset of B.Then we say that f is S-t-junctive i�f:t:S = t:f:S :(4.2)Furthermore we say that f is universally t-junctive if f is S-t-junctive for allsubsets S, positively t-junctive if f is S-t-junctive for all non-empty subsets S,and �nitely t-junctive if f is S-t-junctive for all �nite subsets S.2 Other junctivity types (for example denumerable t-junctivity) can be addedto this list in an obvious way. We reserve the shortest term | plain t-junctive| for the most frequently occurring junctivity type, namely �nite, positive t-junctivity. With this understanding, it should be obvious that \�nite" in thede�nition of t-junctivity may be replaced by \of size two". That is, f is t-junctive if and only if for all x; y 2 B, f:(x t y) = f:x t f:y . (Formally aninductive proof over the size of the set is needed to verify this claim.)The de�nition of u-junctivity types is completely analogous and will betaken for granted.Occasionally A and B are not complete lattices in which case equation (4.2)can be meaningless. The only case we consider in which this occurs is in chapter5. There we shall use the term \existentially t-junctive" with the followingmeaning. Function f 2 A  � B is existentially t-junctive i� for all S � B,f:t:S satis�es the speci�cation of t:f:S whenever t:S exists.In de�nition 4.1 the di�erent types of junctivity are obtained by restrictingthe cardinality of the set. \Continuity" properties are obtained by another sortof restriction.De�nition 4.3 Let (A;v) be a partially-ordered set and let S be a subsetof A. Then S is said to be totally ordered or a chain i� x v y or y v x for allx; y 2 S.2De�nition 4.4 (Continuity Types) Let (A;v) and (B;v) be completelattices and suppose f 2 A  � B. Then we say that f is universally t-continuous i� f is S-t-junctive for all chains S. The terms positively t-continuous and �nitely t-continuous are de�ned as the corresponding junctivitytypes, namely by appropriately quantifying over the chains in the de�nition oft-continuous. Likewise, we de�ne u-continuous, universally u-continuous, pos-itively u-continuous and �nitely u-continuous.2



4.2. MONOTONICITY 374.2 MonotonicityIt should be obvious from the de�nitions of the various t-junctivity and t-continuity types that they form a hierarchy. Each continuity property is weakerthan its corresponding junctivity property; universal t-junctivity is the strongestproperty and �nite, positive t-continuity is the weakest. These two extremeswill be the most relevant in later chapters and only occasionally will we considera junctivity or continuity type in between.\Finite, positive t-continuity" is a bit of a mouthful, but it coincides withthe notion of monotonicity (sometimes called isotonicity) as we now show.De�nition 4.5 (Monotonicity) Let (A;v) and (B;v) be two partiallyordered sets. Function f 2 A  � B is said to be monotonic i�8(x; y :: f:x v f:y ( x v y) :2Theorem 4.6 The following are all equivalent:a f is monotonic.b f is �nitely, positively t-continuous.c f is �nitely, positively u-continuous.Proof We shall take for granted that \�nite and positive" may be replaced by\of size two" as remarked earlier. Duality considerations permit us to restrictourselves to a proof of the equivalence of a and b.f is �nitely, positively t-continuous� f de�nition, above remark g8(x; y :: f:x t f:y = f:(x t y) ( x v y)� f (3.40) g8(x; y :: f:x t f:y = f:(x t y) ( x t y = y)� f calculus g8(x; y :: f:x t f:y = f:y ( x t y = y)� f (3.40) g8(x; y :: f:x v f:y ( x v y)� f de�nition gf is monotonic .



38 CHAPTER 4. JUNCTIVITY AND CONTINUITY2 One might ask why we have seen �t to introduce such a devious notionas \�nitely, positively t- or u-continuous" when the notion can be de�ned somuch more simply. One answer is that it is now clear that a function possessingany one of the above-mentioned junctivity or continuity types is automaticallyguaranteed to be monotonic. This, on its own, is a good enough justi�cation forthe deviousness. A second answer is that we intend shortly to present a coupleof theorems that are true of all junctivity and continuity types, and thus alsoof monotonicity.Very often monotonicity of a function is obvious. If that is the case, it helpsto know that establishing S-t- or S-u-junctivity for some given S (or class ofsubsets S) involves proving only one inclusion, the other being automaticallyvalid. Speci�cally we have:Theorem 4.7 For all monotonic functions f and all subsets S of A forwhich u:S and u:f:S exist,f:u:S v u:f:S :Dually, for all subsets S of A for which t:S and t:f:S exist,f:t:S w t:f:S :Proof f:u:S v u:f:S� f characterisation: (3.10) gf:u:S v f:S� f de�nition of f:S, (3.9) g8(s : s 2 S : f:u:S v f:s)( f � f is monotonic g8(s : s 2 S : u:S v s)� f (3.11) gtrue .2 One class of functions that are simultaneously existentially t- and u-junctiveare the poset-isomorphisms.



4.3. COMPOSITION OF FUNCTIONS 39De�nition 4.8 If A and B are posets and f 2 A  � B then f is calleda poset-monomorphism i� f:x vA f:y � x vB y . A function is called aposet-isomorphism i� it is a surjective poset-monomorphism.2Theorem 4.9 If A and B are posets with f 2 A  � B thena if f is a poset-monomorphism then f is injective,b if f is a poset-isomorphism then f is existentially tA �B junctive andexistentially uA �B junctive.Proof Part a is easily proven by using anti-symmetry. We prove b only. LetX � B be such that t:X exists. We prove f:t:X solves the de�ning equationfor t:f:X . For arbitrary z 2 A we derivef:t:X v z� f � f:y = z since f is surjective gf:t:X v f:y� f f is a poset-monomorphism gt:X v y� f de�nition of supremum g8(x : x 2 X : x v y)� f � f:y = z , f is a poset-monomorphism g8(x : x 2 X : f:x v z) .2Exercise 4.10 Show thatf is monotonic � 8(S :min:S exists : f:min:S =min:f:S) .24.3 Composition of FunctionsThis section is devoted to just one theorem, a trivial theorem that is probablythe most frequently used theorem of all that we present. (Because it is used so



40 CHAPTER 4. JUNCTIVITY AND CONTINUITYfrequently we tend to take it for granted and rarely cite it explicitly.) Its proofis equally trivial.(It is worth pausing to remark that the word \trivial" has two meanings: onemeaning is \of little importance" and the other \commonplace". We shall oftendiscuss \trivial" matters but by that we do not mean that they are unimportant.Rather the opposite | they are \commonplace", i.e. are used frequently, andhence are very important.)Theorem 4.11 Let (A;v), (B;v) and (C;v) be partially-ordered sets.Suppose f 2 A  � B and g 2 B  � C. Then f � g enjoys any junctivity orcontinuity type shared by f and g.Proof We may con�ne ourselves to monotonic f and g, this being the weakestcontinuity type (see theorem 4.6).Suppose S is a subset of C. Trivially, g:S is a subset of B with the sameor smaller cardinality than that of S. Since g is, by assumption, monotonic itis also straightforward to see that g:S is totally ordered if S is totally ordered.Thus, with bound variables S ranging over subsets of C, and T ranging oversubsets of B, both having some given junctivity type and being totally orderedin the case that S is totally ordered, we have:8(S :: f:g:t:S = t:f:g:S)( f calculus g8(S :: f:g:t:S = f:t:g:S) ^ 8(S :: f:t:g:S = t:f:g:S)( f Leibniz's rule applied to the 1st conjunct,T := g:S and predicate calculus to the 2nd (taking noteof the above remarks regarding the type of T ) g8(S :: g:t:S = t:g:S) ^ 8(T :: f:t:T = t:f:T ) .24.4 Pointwise OrderingsIn this section we show how to form (complete) lattices of functions. The basicinsight is that functions on partially ordered sets can themselves be partiallyordered.



4.4. POINTWISE ORDERINGS 41De�nition 4.12 (Pointwise Ordering of Functions) For functions fand g both having type A � B, where (A;v) is a poset, we de�nef _v g � 8(x : x 2 B : f:x v g:x) .2In e�ect we \lift" the ordering on A to an ordering on functions with range A.The \point" above the inequality symbol is a reminder that the ordering is\point"wise de�ned. For pencil and paper calculations it soon becomes irritat-ing to continually write it and you may choose not to do so if you are con�dentof what you are doing. We will always include the point for greater clarity andbecause some equations can look decidedly suspect if this type information isnot present. (Once or twice we will even have to include two points!)Together with this lifting, we also lift the structure present for A.Theorem 4.13 Let (A;v) be a complete lattice and B an arbitrary set.Then the set of functions of type A  � B forms a complete lattice under thepointwise ordering of functions. More concisely, (A  � B; _v) is a completelattice.Proof Let F be a subset of A  � B . Our task is to exhibit a candidatevalue for the supremum or in�mum of F . For no particular reason at all wechoose to construct a candidate for the supremum of F . Then we have to showthat the candidate ful�lls the speci�cation of the supremum, i.e. the exhibitedcandidate is a function of type A � B and the candidate satis�es the equationh :: 8(g :: h _v g � 8(f : f 2 F : f _v g))where g and h are functions of type A � B .As candidate for the supremum we take the function F 2 A  � B de�nedby F :x = tA:(f : f 2 F : f:x) ;there being no other reasonable choice. (The dual of the candidate for thesupremum, i.e. F :x = uA:(f : f 2 F : f:x) would be an adequate candidatefor the in�mum in A  � B.) Now let us verify that F meets the speci�cationof the supremum. Assume g is a function in A  � B. Then



42 CHAPTER 4. JUNCTIVITY AND CONTINUITY8(f : f 2 F : f _v g)� f de�nition 4.12 g8(f : f 2 F : 8(x :: f:x v g:x))� f dummy interchange g8(x :: 8(f : f 2 F : f:x v g:x))� f speci�cation of supremum g8(x :: t:(f : f 2 F : f:x) v g:x)� f de�nition of F g8(x :: F:x v g:x)� f de�nition: 4.12 gF _v g .2In theorem 4.13 the set B is arbitrary. If we assume that it too is a completelattice then each junctivity or continuity type identi�es a complete sublattice ofthe lattice of functions of type A � B. This follows from the following simpleargument.Let (A;v) and (B;v) be complete lattices. Let S be a subset of B and letF be a subset of A  � B. De�ne F as before byF:x = tA:(f : f 2 F : f:x) :Then, F:t:S = t:F :S� f de�nition of F gt:(f : f 2 F : f:t:(x : x 2 S : x))= t:(x : x 2 S : t:(f : f 2 F : f:x))� f dummy interchange gt:(f : f 2 F : f:t:(x : x 2 S : x))= t:(f : f 2 F : t:(x : x 2 S : f:x))( f Leibniz g8(f : f 2 F : f:t:(x : x 2 S : x) = t:(x : x 2 S : f:x))� f de�nition g8(f : f 2 F : f:t:S = t:f:S) .We conclude the following:



4.5. SECTIONED COMPOSITIONS 43Theorem 4.14 Let (A;v) and (B;v) be complete lattices. Let T be somejunctivity or continuity type, and let F be the subset of A � B consisting ofall functions of type T . Then F forms a complete lattice under the pointwiseordering of functions.Proof Junctivity and continuity types come in two versions: the t-forms andu-forms.Let T be a t-junctive or t-continuity type. We know from theorem 4.13that the set of all functions in A  � B forms a complete lattice under thepointwise ordering. By (3.50) it thus su�ces to show that the supremum (inthe latter lattice) of any subset F of F is itself an element of F . But this isevident from the above calculation. Just quantify over all S having the giventype T .For T a u-junctive or u-continuity type, a dual reasoning can be given basedon the obvious candidate for the pointwise in�ma, the F in the proof of theorem4.132Exercise 4.15 Let (A;v) be a lattice and B be an arbitrary set. Supposef and g are both functions of type A � B. Show that for all X � Bu:f:X _v u:g:X ( f _v g .State the dual property.24.5 Sectioned CompositionsEarlier we brie
y touched on function compositions. Here we explore theirproperties with respect to the pointwise ordering of functions.We �rst observe that composition is monotonic with respect to its left ar-gument.f � h _v g � h ( f _v g :(4.16)Proof



44 CHAPTER 4. JUNCTIVITY AND CONTINUITYf � h _v g � h� f de�nition 4.12, de�nition � g8(x :: f:h:x v g:h:x)( f predicate calculus, y := h:x g8(y :: f:y v g:y)� f de�nition 4.12 gf _v g .2For the right argument, we have8(f; g :: h � f _v h � g ( f _v g) � h is monotonic :(4.17)Proof()) Instantiate f; g to the constant functions x̂; ŷ.(() h � f _v h � g� f de�nition 4.12 g8(x :: h:f:x v h:g:x)( f � h is monotonic g8(y :: f:y v g:y)� f de�nition 4.12 gf _v g .2 Properties (4.16) and (4.17) exhibit an asymmetry in the left and the rightarguments of function composition. For arbitrary f , let (�f) be de�ned as(�f):g = g � f :So (�f) maps a function to a function. A similar de�nition can be made for(f �). In this setting (4.16) expresses the monotonicity of (�h) for arbitrary h,while (4.17) says that (h�) is monotonic i� h is monotonic.The de�nitions of (�f) and (f �) employ a device called sectioning. In general,given any binary function one can �x one of its arguments to some constantvalue to obtain a unary function. The device can also be employed on non-binary functions (thus unary functions, ternary functions, quaternary functionsetc.) to obtain functions of lower arity. (Fixing the only argument of a unaryfunction to some constant gives a constant.)The function (�f) has one other property that will be useful later on.



4.5. SECTIONED COMPOSITIONS 45Theorem 4.18 If (A;v) is a complete lattice and f an endofunction on A,then (�f) is universally _t-junctive.Proof For G � A  � A and any x 2 A we derive( _t((�f):G)):x= f de�nition (�f) g( _t(G � f)):x= f de�nition _t gt(h : h 2 G � f : h:x)= f dummy change, de�nition � gt(g : g 2 G : g:f:x)= f de�nition of _t g( _tG):f:x= f calculus, de�nition of (�f) g((�f):( _tG)):x .2 The function (f �) is in general not universally _t-junctive, since in general itis not even monotonic (see (4.17)).Exercise 4.19 Let (A;v) be a complete lattice. Prove that for f anendofunction on A:f is universally t �junctive � (f �) is universally _t�junctive :2



46 CHAPTER 4. JUNCTIVITY AND CONTINUITY



Chapter 5Galois Connections
5.1 IntroductionThis chapter forms the climax to our skirmish with lattice theory. In it wede�ne and explore the notion of a Galois connection between two functions. Inlater chapters we apply the acquired knowledge in unfamiliar ways to familiarareas of lattice theory. For instance, in one of the following chapter we derivethe well-known Knaster-Tarski theorem on �xed points as a simple corollary ofa property of Galois connections.Although such applications of Galois connections are unfamiliar, the notionitself has a very long history beginning, one might argue, with the mathemati-cians of ancient Greece. The ancient Greeks were concerned with constructibil-ity problems such as: using ruler and compass alone, is it possible to trisect anangle or, construct a regular polygon with n sides for given n > 2? Anotherrelated constructibility problem is that of solving a polynomial equation usingonly \radicals" | rational operations and the extraction of roots. The solutionsto the general quadratic equation ax2+ bx+ c = 0, nowadays a compulsory ele-ment of secondary school mathematics, were known to the Babylonian scholarsaround 900 A.D. The Italian mathematicians Scipio Ferro and Niccolo Fontana(nicknamed Tartaglia because he stammered) solved the general cubic equation,their results being unscrupulously plagiarised by Girolamo Cardan in his ArsMagna published in 1545. Ferrari, a pupil of Cardan, was the �rst to solvethe general quartic equation, but almost 300 years were to pass before Abeldemonstrated in 1828 the unsolvability of the general quintic equation.47



48 CHAPTER 5. GALOIS CONNECTIONS�Evariste Galois, who died in 1832 at the age of 21 and whose work waspublished fourteen years after his death, established necessary and su�cientconditions for a polynomial equation to be solvable by radicals. He did so byrelating every extension of a �eld to a group and then studying the propertiesof �eld extensions by studying the properties of the related groups. (In thecase of solving polynomial equations using radicals the �eld is formed by therationals and the extensions are formed by adding the extraction of roots.)The revolutionary methods Galois introduced led to the development of themodern theories of groups and �elds, the relationship he established between�eld extensions and groups now being known as the Galois correspondence.We shall have nothing further to say about the Galois correspondence, ourattention being devoted to connections between functions in a much broadersetting. (Those wishing to know more about the Galois correspondence arereferred to [41] | from which together with [90] the above history has beenculled.) The essential idea to be retained from this discussion, however, andthe reason that Galois connections bear the illustrious mathematician's name,is to explore the properties of one function by relating it to a second and thenexploring that function's properties.Now, what is a Galois connection? Let's present a �rst de�nition. A Galoisconnection involves two ordered sets (A;vA) and (B;vB), a function F 2 A  �B and a function in the opposite direction G 2 B  � A. We will say (F;G) isa Galois connection i� for all x 2 B and y 2 A the following holdsF:x vA y � x vB G:y .This compact de�nition of a Galois connection was �rst introduced in [85]. Werefer to F as the lower adjoint and to G as the upper adjoint .As might be anticipated from the names given to F and G, Galois connec-tions are related to the categorical notion of an adjunction1. When consideringa set with an order as a category, Galois connections and adjunctions coincide.So we can study Galois connections by studying adjunctions. Adjunctions havebeen extensively studied, one of the most comprehensive accounts of adjunc-tions being [59], so why bother to study Galois connections separately? Thereare several reasons why Galois connections are interesting in their own right.The notion of an adjunction is an order of magnitude more complex than thenotion of a Galois connection. At best an adjunction involves two categories,1All remarks referring to category theory can be skipped if you're not familiar with it.



5.2. ELEMENTARY EXAMPLES 49two functors and two functions between the hom-sets. Other de�nitions requiretwo natural transformations instead of the functions between hom-sets, or onenatural transformation and a universality property. To call a Galois connectionan adjunction is just mathematical overkill!Galois connections have excellent calculational properties due in no smallmeasure to the simplicity and elegance of the de�nition. Calculations with ad-junctions are much harder. Moreover, there are properties of Galois connectionsthat are not valid for adjunctions in general.Conditions a function has to satisfy in order to ensure existence of an (upperor lower) adjoint are easily stated for Galois connections. So one can readilyspecify a function by stating that it is the Galois adjoint of a known functionand derive properties of the speci�ed function without the need to give a closedformula. This approach can be very fruitful since often the closed formula turnsout to be complicated or clumsy to work with.This is not to say that the categorical notion of an adjunction does nothave its place. The class of functions that can be de�ned by the categoricalnotion is much broader and includes many functions of daily use in computingscience that cannot be de�ned via a Galois connection. Nevertheless the classof functions that can be so de�ned is su�ciently large to be interesting andworthy of study. Moreover, it is our view that a proper understanding of thecategorical notion of adjunction is best gained by viewing it as a \constructiveversion" of the notion of a Galois connection. (We will explain this assertion inmore detail later.) An indispensable prerequisite for a study of the categoricalnotion of adjunction is thus a thorough understanding of the notion of a Galoisconnection.5.2 Elementary ExamplesGalois connections occur in various parts of mathematics and computing sci-ence, but they are not often recognised as such. Even where the existenceof a Galois connection is recognised that fact is rarely exploited. As a conse-quence, proofs we have encountered are either complicated or unnecessarily long,whereas exploitation of the Galois connection can immediately suggest compactand straightforward proofs. In this section we give some elementary examplesof Galois connections and their use in constructing elegant calculations.The examples in this section give a �rst impression of how to calculate with



50 CHAPTER 5. GALOIS CONNECTIONSGalois connections. They also give a �rst hint as to what properties are commonto Galois connections. They have been chosen for the appeal of familiarity andare not used further in the text. In later sections we give an overview of theproperties of Galois connections. We make no claim to originality but we dotry to establish each property in a convincing, calculational style.5.2.1 Floor and ceilingOur �rst example of a Galois connection is in the realm of number theory. Inmost mathematical texts the function 
oor from reals to integers is de�ned asfollows: for all real x we take bxc to be the greatest integer at most x. Likewisethe ceiling , denoted dxe, is de�ned for all real x as the least integer at least x.With these de�nitions various properties of the two functions can be veri�ed,but it is di�cult to actually calculate with them. A possible way to improvethis is to give the de�nition as a Galois connection. Let's �rst consider the
oor-function.bxc is de�ned as the greatest integer satisfying some property. To be precise,it has the property that it is at most x. Hence if we have another integer n thatsatis�es the same property |i.e. n � x|, n cannot be greater than bxc, sincebxc is de�ned to be the greatest such integer. This gives the following Galoisconnection as de�nition:De�nition 5.1 For all real x, bxc is an integer such that for all integers nn � bxc � n � x .2In a similar way we �nd a Galois connection for the ceiling-function.De�nition 5.2 For all real x, dxe is an integer such that for all integers ndxe � n � x � n .2 One might complain that de�nitions 5.1 and 5.2 are not genuine Galoisconnections, since they involve only one function, namely the 
oor, respectivelyceiling, function from reals to integers. A Galois connection should involve twofunctions in opposite directions. But in both speci�cations there is a second,invisible, function present that maps integers to reals. In this case that is a very



5.2. ELEMENTARY EXAMPLES 51trivial function, since integers can be embedded in a straightforward way in thereals. If we take U to be that embedding, we can reformulate de�nition 5.1 asn � bxc � U:n � x .(5.3)A similar rewriting can be done for de�nition 5.2. As long as we note that n isan integer, we can safely omit the U .Embedding functions o�er a good example of \trivial" meaning \common-place" rather than \of little importance". Some of the central results to followare obtained by observing that an embedding function or some equally \trivial"function has an adjoint.The speci�cations of 
oor and ceiling have been given in the shape of aGalois connection elsewhere, for example in [44] and [82], but that shape is notused in any calculation. Even worse, in [44] the authors don't consider it usefulat all to recognise a Galois connection since they have di�culty rememberingit! In order to show the usefulness of the given Galois connection, let's calculatesome properties.A complaint that might, with some justi�cation, be made about 5.1 and5.2 is that it is not immediately evident that, viewed as equations in bxc anddxe, respectively, they do indeed have solutions. To see that this is so we willconduct a small calculation.Replacing dxe in (5.2) by the dummy m (ranging over integers) we wish toshow that the equationm :: 8(n :: m � n � x � n)(5.4)has exactly one solution. (Sincem is an integer, one can not use indirect equalityto conclude x = m from (5.4).)It is evident that it has at most one solution | since the right side of theequivalence in (5.4) does not depend on m | so it su�ces to show that it hasat least one solution. We do this by eliminating the universal quanti�cation asfollows: 8(n :: m�n � x�n)� f predicate calculus g8(n :: m�n ) x�n) ^ 8(n :: m�n ( x�n)( f transitivity of at-most, integer arithmetic gx�m ^ 8(n :: m�1 < n ( x�n)



52 CHAPTER 5. GALOIS CONNECTIONS( f arithmetic gx�m ^ m�1 < x� f arithmetic gx�m<x+1 .Since there is exactly one integer that is at least x and smaller than x + 1 thisshows that dxe is well de�ned.For our second calculation we shall establish the following property men-tioned in [44].�qbxc� = jpxk(5.5)for all x, 0 � x.Proof For any integer n we deriven � jqbxck� f n is an integer, de�nition 5.1 gn � qbxc� f arithmetic gn2 � bxc _ n < 0� f n2 is an integer, de�nition 5.1 gn2 � x _ n < 0� f arithmetic gn � px� f n is an integer, de�nition 5.1 gn � bpxc .The property now follows by the rule of indirect equality2 Note that the decision on how to prove the theorem, i.e. the introduction ofthe integer n, is entirely inspired by the shape of de�nition 5.1. The only waywe can calculate something about the 
oor-function is to use its speci�cation.That speci�cation allows one to rewrite the 
oor-function only when it is insome special shape. In this case: it is on the greater side of the � and on thesmaller side there is an integer. So the only way one can hope to be able toprove something from its speci�cation is to manipulate the demonstrandum insuch a way that the speci�cation can be used.



5.2. ELEMENTARY EXAMPLES 53You are cordially invited to compare the above proof of (5.5) with theproof given in [44]. You may also wish to prove bx +mc = bxc + m, andbxc min byc = bxmin yc for all real x and y, and integer m, or bx=mc =bbxc =mc for all real x and positive integer m in the same calculational style.You should observe a pattern and be able to formulate it as a general theorem.5.2.2 Sums and Di�erentialsIf two functions are inverses of each other then they are Galois connected.Suppose the inverse functions are � and �. Then we have, for all x in thedomain of �, and y in the domain of �,�:x = y � x = �:y :(5.6)Just like giving Galois connections as examples of adjunctions it would normallybe pure overkill to give inverse functions as examples of Galois connections! Thetwo poset orderings needed to establish the connection are the trivial orderingswhereby the only ordered elements are equal elements, and little can be gainedby instantiating general theorems about Galois connections that is not predictedby much simpler, direct calculations using the fact that a composition of theone function followed by the other is an identity function. The main bene�tthat is gained from the observation is that it can suggest properties that onemight investigate of Galois-connected functions. For example, inverse functionshave \inverse" algebraic properties. The exponential function, for instance, hasas its inverse the logarithmic function, andexp (�x) = 1exp x and exp (x+ y) = exp x � exp ywhereas� lnx = ln (1x) and lnx+ ln y = ln (x � y) :In general, if � and � are inverse functions then, for any functions f and g ofappropriate type,8(x :: �:f:x = g:�:x) � 8(y :: f:�:y = �:g:y) :More generally, and expressed at function level, if (�0; �0) and (�1; �1) are pairsof inverse functions, then for all functions f and g of appropriate type,�0 � f = g � �1 � f � �1 = �0 � g :(5.7)



54 CHAPTER 5. GALOIS CONNECTIONS(You are invited to discover instances of this theorem. A suggested startingpoint is the identity sin2x = 1 � cos2x.) Knowing this, one is encouraged toinvestigate whether Galois-connected functions have similar \inverse" algebraicproperties, but one would be foolhardy to believe that any investigation of Ga-lois connections would uncover new facts about inverse functions. Nevertheless,the characterisation (5.6) of inversality can sometimes be useful. In this sectionwe consider an example to do with summing polynomial functions. Like theexample of the ceiling function this application was suggested to us by read-ing the book Concrete Mathematics by Graham, Knuth and Patashnik [44], inparticular the section on \�nite calculus".Let f and g denote functions from naturals to reals. Assume that f:0 = 0.De�ne the operators � and � by(�f):x = f:(x + 1)� f:x(�g):x = �(y : 0 � y < x : g:y)for all numbers x. Then we have the Galois connection:f = �g � �f = g :(5.8)The proof of this identity involves very elementary quanti�er calculus and istherefore omitted.Let us suppose our goal is to develop a body of rules that enable one to �nde�cient ways of evaluating �nite sums �g for given function g. This goal maybe approached by tackling the easier problem of developing a body of rules tocompute di�erentials �f and then using the Galois connection (5.8) to convertthe rules to rules about �.To illustrate this idea let us restrict g to the class of polynomial functions.Our goal is thus to develop a little theory that will enable us to compute �nitesums of polynomials such as �(y : 0 � y < x : y2 + 3y + 1).We begin our theory development by exploring the di�erentials of polynomi-als. Since a polynomial function of x is either a constant function, the identityfunction, the sum of two polynomial functions or the product of two polynomialfunctions, table 5.1 su�ces to rewrite (�f):x as a polynomial in x for any givenpolynomial f:x satisfying the assumption f:0 = 0. (In the table c denotes anarbitrary constant. Veri�cation of all four statements is straightforward.) Weobserve that a table of di�erentials in the �nite calculus looks like a table ofdi�erentials in the in�nite calculus. In particular taking derivatives reduces thedegree of a polynomial by exactly one.



5.2. ELEMENTARY EXAMPLES 55f:x (�f):x0 0cx cf:x + g:x (�f):x + (�g):xf:x� g:x f:x� (�g):x+ (�f):x� g:(x+ 1)Table 5.1: Table of Di�erentialsIdeally we would now like to construct a similar table for �. Four entrieswould be required, one for constants, one for the identity function, one for a sumand one for a product of two polynomials. The unfortunate occurrence of \+1"in the � entry for products frustrates this particular goal but nevertheless analgorithm for expressing the sum of a polynomial function as a polynomial func-tion can be derived that exploits the above table of di�erentials. We illustratethe algorithm by considering the � entry for the identity function.Since taking derivatives reduces the degree of a polynomial by one we con-jecture that the sum of the identity function is a quadratic polynomial. Thecoe�cients of that polynomial are calculated as follows:By construction of a and b:8(x :: ax + bx2 = �(y : 0 � y < x : y))� f Galois connection: (5.8) with g the identity g8(y :: �(x 7! ax + bx2):y = y)� f di�erential calculus: table 5.1 g8(y :: a+ by + b(y + 1) = y)� f arithmetic ga+ b = 0 ^ 2b = 1� f arithmetic ga = � 12 ^ b = 12 .We have thus established the identity�(y : 0 � y < x : y) = � 12x+ 12x2 .Extrapolating from this four step calculation one can easily see that it em-bodies an algorithm to express �g as a polynomial function for any given poly-nomial function g. The steps in the algorithm are: postulate that �g is apolynomial function f with degree one higher than g. Compute (symbolically)



56 CHAPTER 5. GALOIS CONNECTIONSthe coe�cients of �f using the table of di�erentials. Equate the expressionsobtained for the coe�cients of f to the corresponding given coe�cients of g. Inthis way one obtains a system of simultaneous equations which is then solvedto obtain the coe�cients of f . Try it out for yourself on the squaring function.The point of this little example is to show how one can predict the be-haviour of a relatively complicated operator | in this case � | by studyingthe behaviour of its inverse | in this case �.5.2.3 A short bibliographyWe will see several additional examples of Galois connections later in the textbut for the moment the ones we have given will have to su�ce. It is time totake a more formal approach.The theory to be presented is not new. Just like the proverbial wheel thenotion of a Galois connection has been discovered and rediscovered in various�elds, it has a variety of guises and is known under a variety of di�erent names.One of the earliest theoretical contributions (that we are aware of) was madeby G. Birkho� with the introduction of so-called \polarities" [24]. C.J. Everettsubsequently proved that every Galois connection between powersets arises froma polarity [40]. The actual generalisation to the Galois connections as we usethem here was done by O. Ore [78]. J. Schmidt introduced a concise formulafor describing a Galois connection [85], that formula being the one used here asthe de�nition of a Galois connection in preference to the one proposed by Ore.The importance of the notion was recognised at a very early stage in math-ematically-oriented computing science literature. As long ago as 1964 Hart-manis and Stearns [47] developed an alternative, but entirely equivalent, for-mulation of Galois connections called \pair algebras" which they applied toa data-re�nement problem { the state assignment problem in sequential ma-chines. (Although they did not use the term in the original paper describingtheir theory Hartmanis and Stearns brie
y acknowledge the relevance of Galoisconnections in a footnote in their textbook [48] in which they said: \For re-lated mathematical concepts see the discussion of Galois connections betweenpartially ordered sets in [23]." Simons [87] formally establishes the equivalencebetween Galois connections and pair algebras.) Seven years later, Conway [30]published a book on �nite-state machines in which a very important (but sadlyalmost totally ignored) element was the chapter on so-called \factor theory" andits subsequent application to the construction and analysis of so-called \bireg-



5.3. ABSTRACT PROPERTIES 57ulators". Conway did not refer to the work of Hartmanis and Stearns, nor toGalois connections, but there are clearly recognisable, formally establishable,parallels between his \L-R factorisations" of a regular language and Hartmanisand Stearns' \m-M decompositions" of a �nite-state machine.More recent references to computing science applications of Galois connec-tions are [49, 71, 67]. In [49] there are four kinds of \Galois connections"introduced, ranging from polarities to a restricted form of adjunctions. A com-prehensive overview of the theory of Galois connections can be found in [42].At the end of this chapter we review some of the earlier applications of Galoisconnections and some applications that may appeal to computing scientists.5.3 Abstract propertiesIn what follows we take (A;vA) and (B;vB) to be partially-ordered sets. Welet F be a function to A from B and G a function in the opposite direction, soF 2 A  � B and G 2 B  � A. For such an F and G we recall the followingde�nition.De�nition 5.9 (Galois Connection) (F;G) is a Galois connection i� forall x 2 B and y 2 AF:x vA y � x vB G:y .2In order to make the formulae more readable, we will drop the subscripts fromthe orderings. This will not lead to confusion, since it can always be deducedwhich ordering is meant from type considerations. On occasion, when express-ing the junctivity type of a function, we will tag the supremum and in�mumoperator with the typing of the involved function, in order to assist the readerin keeping the type deduction process manageble. Hence when we call F uni-versally tA �B junctive, this means that F preserves all suprema form B toA .Recall also that F is referred to as the lower adjoint, since it is on the lowerside of an ordering, and G as the upper adjoint, since it is on the upper side ofan ordering.In category theory the names left and right adjoint are more common, butwe �nd it di�cult to remember which is which, and often mix them up. On the



58 CHAPTER 5. GALOIS CONNECTIONSother hand the names lower and upper adjoint are also easily mixed up, sincethe lower adjoint is the upper adjoint in the dual ordering! Formally:Theorem 5.10 (F;G) is a Galois connection i� (G;F ) is a Galois connection,where the orderings of A and B are reversed.Proof We have for any x 2 A and y 2 B:G:y w x� f dual order gx v G:y� f (F;G) is a Galois connection gF:x v y� f dual order gy w F:x .2 A result of this is that all statements about one of the adjoints of a Galoisconnection have a dual statement for the other adjoint. That is, any theoremconcerning a lower adjoint gives rise to a theorem about the upper adjoint, sincethat one is the lower adjoint when we reverse the ordering. So with one proof,we get two theorems. In general we state the dual of a theorem, but we don'tprove it.An overview of the following subsections is as follows. We will �rst derivesome so-called \cancellation laws". These are simple calculational rules thatenable one to \cancel" (i.e. eliminate), or vice-versa introduce, the functions ina Galois connection under certain circumstances. Next we formulate a numberof equivalent de�nitions of a Galois connection. Knowing that a concept can bede�ned in several di�erent ways is an indicator of its importance as well as help-ing one to recognise it in other applications. Then we consider the uniqueness ofadjoints, and necessary and su�cient conditions for their existence. Typicallythe existence conditions are hedged with assumptions about the existence ofin�ma and/or suprema so in the �nal subsection we consider the properties ofGalois connections given that the posets in question form complete lattices.5.3.1 Cancellation lawsIn this section we consider some direct and elementary consequences of thede�nition of a Galois connection. Apart from the de�ning equation, the �rst



5.3. ABSTRACT PROPERTIES 59theorem is probably the law that is most frequently used when calculating withGalois connections, as will be seen throughout this chapter. Thus, although werefer to most of the theorems in this section collectively as \cancellation laws",this one is \the" cancellation law.Theorem 5.11 (cancellation) If (F;G) is a Galois connection, then wehavea x v G:F:x for all x 2 B,b F:G:y v y for all y 2 A.Proof Since a and b are dual, only a is proven.x v G:F:x� f (F;G) is a Galois connection gF:x v F:x� f re
exivity gtrue .2With this theorem it is straightforward to prove the following:Corollary 5.12 If (F;G) is a Galois connection, then both F and G aremonotonic.Proof For monotonicity of F we observeF:x v F:z� f (F;G) is a Galois connection gx v G:F:z( f cancellation, transitivity gx v z .Monotonicity of G follows by duality.2 What is particularly attractive about the form of the de�nition of a Galoisconnection is that it expresses an equivalence between two predicates. Some-times in calculations, however, its form is inappropriate, preventing its beingused directly. For greater 
exibility one would like to have equivalences betweena broader class of expressions. That is the content of the next few theorems.



60 CHAPTER 5. GALOIS CONNECTIONSTheorem 5.13 If (F;G) is a Galois connection then the following areequivalent:a x v G:y ,b F:x v F:G:y ,c F:x v y ,d G:F:x v G:y .Proof The proof is by cyclic implication.x v G:y) f F is monotonic gF:x v F:G:y) f cancellation, transitivity gF:x v y) f G is monotonic gG:F:x v G:y) f cancellation, transitivity gx v G:y .2Observe from the proof of theorem 5.13 that the cancellation laws and mono-tonicity su�ce to prove the existence of a Galois connection.By instantiating x := G:x in theorem 5.13, and abandoning part d, weobtain:Corollary 5.14 If (F;G) is a Galois connection then the following areequivalent:a G:x v G:y ,b F:G:x v F:G:y ,c F:G:x v y .2Dualising corollary 5.14 leads to:



5.3. ABSTRACT PROPERTIES 61Corollary 5.15 If (F;G) is a Galois connection then the following areequivalent:a F:x v F:y ,b G:F:x v G:F:y ,c x v G:F:y .2 These last two corollaries tell us something about the two adjoints whenthey are restricted to F:B and G:A . In particular:Theorem 5.16 If (F;G) is a Galois connection thena F 2 A  � G:A is a poset-monomorphism,b G 2 B  � F:B is a poset-monomorphism.Proof Assume (F;G) is a Galois connection. For part a we have to provethat F:u v F:v � u v v for all u; v 2 G:A . This follows directly from theequivalence of b and a in corollary 5.14.Part b is the dual of part a.2We shall shortly strengthen this result (see theorem 5.22).So far no use has been made of the anti-symmetry of the given orderingrelations. We might just as well have restricted our attention to preordersrather than to posets. Taking anti-symmetry into account permits one to deduceequivalences between genuine equalities. For instance, by using the symmetrypresent in the �rst two clauses of corollary 5.14 and corollary 5.15 together withanti-symmetry of the ordering relations, we deduce:Corollary 5.17 If (F;G) is a Galois connection then F and G are injectiveon the images of G respectively F , i.e.a G:x = G:y � F:G:x = F:G:y ,b F:x = F:y � G:F:x = G:F:y .2 The functions of a Galois connection are not only each other's duals, butthey are also in a way inverse to each other. Sometimes, this property is referredto by calling F and G each other's semi-inverse or quasi-inverse. We adopt theformer name.



62 CHAPTER 5. GALOIS CONNECTIONSTheorem 5.18 (semi-inverse) If (F;G) is a Galois connection thena F = F �G � F ,b G = G � F �G .Proof We only prove a, the statement b being the dual.F:x = F:G:F:x� f anti-symmetry gF:x v F:G:F:x ^ F:G:F:x v F:x( f cancellation with y := F:x gF:x v F:G:F:x� f 5.13(b) and d with y := F:x gG:F:x v G:F:x( f re
exivity gtrue .2Corollary 5.19 If (F;G) is a Galois connection then F �G and G � F areidempotent.Proof Follows directly from semi-inverse and the use of Leibniz with F ,respectively G .2 We now work towards a strengthening of 5.16.Theorem 5.20 If (F;G) is a Galois connection thena G:F:x = x � x 2 G:A ,b F:G:y = y � y 2 F:B .Proof Again only a is proven, since b is its dual. We prove a by mutualimplicationFor the ): this is trivial, since F:x 2 A.For the (: since x 2 G:A we have x = G:y for some y 2 A.



5.3. ABSTRACT PROPERTIES 63x = G:F:x� f x = G:y gG:y = G:F:G:y� f calculus, semi-inverse gtrue .2Theorem 5.20 states that the �xed points of G � F are exactly the elements ofG:A (a �xed point of an endofunction f being, by de�nition, an element x suchthat f:x = x). But the theorem is mostly used in the opposite direction. Itprovides an alternative expression for an element of G:A, respectively F:B ,that lends itself better for calculations. For an element of G:A we can freelyintroduce or remove an application of G � F . A dual property holds for theelements of F:B . These properties can also be viewed as cancellation properties.For a Galois connection we have the cancellation laws x v G:F:x for anyx 2 B and F:G:y v y for any y 2 A . Using this we obtain from theorem5.20 the followingCorollary 5.21 If (F;G) is a Galois connection thena G:F:x v x � x 2 G:A ,b y v F:G:y � y 2 F:B .2 Corollary 5.21 is more useful than theorem 5.20 when the equivalences areused as left-to-right implications.Now we can strengthen 5.16 as promised.Theorem 5.22 If (F;G) is a Galois connection thena F 2 F:B  � G:A is a poset-isomorphism,b G 2 G:A � F:B is a poset-isomorphism.Hence G:A and F:B are isomorphic posets.Proof (Part a only.) By the de�nition of a poset isomorphism (a surjectiveposet monomorphism) we have only to supplement 5.16 by a proof that F 2F:B  � G:A is surjective. I.e. for each y 2 F:B we have to exhibit an x 2 G:A



64 CHAPTER 5. GALOIS CONNECTIONSsuch that y = F:x . Since y = F:G:y, by theorem 5.20(b), and y 2 A, x = G:yis a solution.2 As an immediate corollary we have (see property 4.9(b))Corollary 5.23 If (F;G) is a Galois connection thena F is existentially tF:B �G:A junctive and existentially uF:B �G:A junctive,b G is existentially tG:A �F:B junctive and existentially uG:A �F:B junctive.25.3.2 Alternative de�nitionsWith the tools we now have, let us look at some equivalent formulations of aGalois connection.The earliest de�nition of a Galois connection is the one introduced by O. Orein [78]. (He called them Galois \connexions" but his peculiar spelling of the word\connection" never caught on.) Slightly di�erently formulated Ore's de�nitionis captured by the next theorem.Theorem 5.24 (F;G) is a Galois connection i� the following two clauseshold:a x v G:F:x and F:G:y v y .b F and G are monotonic.Proof The proof is by mutual implication.The) part follows immediately from theorem 5.11 (cancellation) and corollary5.12.The ( part has already been proven, see the remark following theorem 5.13.2 De�nition 5.9, proposed by J. Schmidt [85], and Ore's de�nition, containedin theorem 5.24, both have their merits. Schmidt's is easy to remember sinceit contains only one clause, and lends itself to compact calculation. It is a formof \shunting rule": the game that one plays with it is to shunt occurrences offunction F in an expression out of the way in order to expose the function'sargument. After performing some manipulations on the argument F is shunted



5.3. ABSTRACT PROPERTIES 65back into the picture. (Or, of course, the other way around: function G isshunted temporarily out of the way.) It's an attractive strategy, requiring littlecreativity, that is particularly useful in inductive proofs. We will see plenty ofexamples later.Ore's de�nition is most useful when expressed at function level. Eliminatingthe dummies x and y in 5.24(a) we obtainIB _v G � F and F �G _v IA :(5.25)In an order-enriched category monotonic arrows F and G satisfying (5.25) aresometimes called \maps" and \co-maps", respectively.Schmidt's de�nition can also be lifted to function level and, in combinationwith (5.25), can be used to construct elegant theorems. Speci�cally, we have:Theorem 5.26 (F;G) is a Galois connection i�, for all functions h and kwith the same domain and range respectively B and A,F � h _v k � h _v G � k :2 The proof is so straightforward that we choose to omit it.An example of a calculation most neatly expressed using these forms of thede�nition is as follows. Suppose, for i = 0; 1, (Ai;vAi) and (Bi;vBi) areposets and (Fi 2 Ai  Bi; Gi 2 Bi  Ai) are Galois-connected pairs offunctions. Thus F0, F1, G0 and G1 are all monotonic and, for i = 0; 1,IBi _v Gi � Fi and Fi �Gi _v IAi :(5.27)Let h 2 B0  B1 and k 2 A0  A1 be arbitrary functions. ThenF0 � h _v k � F1 � h �G1 _v G0 � k :(5.28)(On a �rst reading of the theorem and its proof you are recommended to ig-nore the subscripts. The theorem generalises property (5.7) of inverse functionsmentioned in section 5.2.2. The extra complication of the subscripts has beenintroduced because we want to kill several birds with one stone: in particular,in section 5.4 we return to this theorem and use it to observe a central propertyof adjoint formation.)The proof is by mutual implication but only one implication is given sincethe other is entirely dual.



66 CHAPTER 5. GALOIS CONNECTIONSF0 � h _v k � F1� f theorem 5.26 gh _v G0 � k � F1) f monotonicity: (4.16) gh �G1 _v G0 � k � F1 �G1) f (5.25), monotonicity: (4.16), and transitivity gh �G1 _v G0 � k .For the moment we continue with pointwise calculations. The reader maywish to explore what some of our calculations would look like if they wereexpressed in point-free form.There is also a sort of mixed form of de�nition 5.9 and theorem 5.24 thatde�nes a Galois connection.Theorem 5.29 (F;G) is a Galois connection i� the following three clauseshold� F is monotonic,� F:G:y v y ,� F:x v y ) x v G:y .Proof The proof is by mutual implication.The) part is a direct result of theorem 5.11(b), corollary 5.12 and the de�nitionof a Galois connection.For the ( part we prove that F and G satisfy de�nition 5.9. We only have toprove F:x v y ( x v G:y .x v G:y) f F is monotonic gF:x v F:G:y) f F:G:y v y gF:x v y .2And its dualTheorem 5.30 (F;G) is a Galois connection i� the following three clauseshold



5.3. ABSTRACT PROPERTIES 67a G is monotonic,b x v G:F:x ,c F:x v y ( x v G:y .2The interest in 5.29 and 5.30 is that they are the de�nitions most suited to averbal summary. Theorem 5.29, for example, states that F and G are Galoisconnected i� F is monotonic and, for each y, G:y is the greatest element x suchthat F:x v y. For this reason they are often favoured | they correspond to thede�nition in category theory of an adjunction via a so-called (co-)universal map-ping property [59, pages 55{59,80{82] | even though for calculational purposesthey are the least suitable of all the de�nitions.5.3.3 Uniqueness and ExistenceIn this section we explore necessary and su�cient conditions for the existenceof an upper or lower adjoint of a known function. First, we note that if (F0; G0)and (F1; G1) are Galois connections between the same posets, then F0=F1 �G0=G1 . This follows from (5.28) by instantiating h and k to the identityfunctions and using the symmetry in the subscripts together with the anti-symmetry of the ordering relation. Thus, we have:Theorem 5.31 Each adjoint in a Galois connection uniquely determinesthe other adjoint.2From this theorem one might anticipate that each adjoint is expressible in termsof the other. That will be the concern of the current section.Let's give a �rst formulation of a Galois connection in which one adjoint isexpressed in terms of the other.Theorem 5.32 The following are equivalent:a (F;G) is a Galois connection,b F is monotonic and G:y = max:(x : F:x v y : x) ,c G is monotonic and F:x = min:(y : x v G:y : y) .



68 CHAPTER 5. GALOIS CONNECTIONSProof The fact that a equivales b is just a reformulation of theorem 5.29.For a equivales c use theorem 5.30.2Since being a least element is a stronger property than being an in�mum, weobtain the followingCorollary 5.33 If (F;G) is a Galois connection thena G:y = t:(x : F:x v y : x) ,b F:x = u:(y : x v G:y : y) .2From theorem 5.32 one can extract necessary and su�cient conditions for afunction to have an upper, respectively lower, adjoint.Theorem 5.34 Function F 2 A  � B has an upper adjoint i� F ismonotonic and for every y 2 A the equation x :: F:x v y has a greatestsolution.Proof The proof is by mutual implication.The ) part follows directly from theorem 5.32; the greatest solution of x ::F:x v y is given by G:y for every y 2 A .For the ( part de�ne G:y, for every y 2 A, to be the greatest solution ofx :: F:x v y , i.e. G:y = max:(x : F:x v y : x) . Since F is monotonic,the result follows from theorem 5.32.2As a dual we have:Theorem 5.35 FunctionG 2 B  � A has a lower adjoint i�G is monotonicand for every x 2 B the equation y :: x v G:y has a least solution.2 These theorems provide one answer to the question of when a function hasa lower, respectively upper adjoint. But requiring that a subset of a poset has aleast or greatest element is quite a strong requirement. In fact, if we require thatevery non-empty subset of a poset has a least (or greatest) element, it meansthat the poset is totally ordered | a requirement that is much too strong. Welook instead for characterisations in terms of in�ma and suprema rather thanleast and greatest elements.



5.3. ABSTRACT PROPERTIES 69From corollary 5.33 we know that an upper adjoint can be expressed as asupremum of a set. In order to extract some kind of existence theorem usingin�ma and suprema, we �rst observe the following. From theorem 5.32 we seethat a function has an upper adjoint if it is monotonic and some particularset has a greatest element. If a function is monotonic, it preserves greatestelements. And conversely, if a function preserves greatest elements then it ismonotonic.If we want to give an existence theorem for an upper adjoint, using suprema,it might be worthwhile to �rst focus on the preservation of suprema by the func-tion . In other words, we want to establish the junctivity type of the functionsinvolved in a Galois connection. From corollary 5.23 we know something aboutthe type of junctivity with respect to G:A and F:B , but this says nothing aboutthe elements outside those sets. We need something stronger for that.Lemma 5.36 If (F;G) is a Galois connection thena F is existentially tA �B junctive,b G is existentially uB �A junctive.Proof We only prove a, since b is its dual. Take any X � B and assumetB:X exists. We have to show that F: tB :X solves the de�ning equation oftA:(F:X) . For any y 2 A we derive:F: tB :X v y� f (F;G) is a Galois connection gtB:X v G:y� f G:y 2 B , de�nition supremum g8(x : x 2 X : x v G:y)� f (F;G) is a Galois connection g8(x : x 2 X : F:x v y)� f calculus g8(z : z 2 F:X : z v y) .2 Now we are in a position to express a Galois connection in terms of supremaand in�ma.Theorem 5.37 The following three are equivalent:



70 CHAPTER 5. GALOIS CONNECTIONSa (F;G) is a Galois connection,b F is existentially tA �B junctive and G:y = t:(x : F:x v y : x) ,c G is existentially uB �A junctive and F:x = u:(y : x v G:y : y) .Proof We only prove a equivales b. The equivalence of a and c follows byduality. The proof is by mutual implication.a)b: This is the conjunction of corollary 5.33(a) and lemma 5.36(a).a(b: From G:y = t:(x : F:x v y : x) we deduce that the supremum offx j F:x v yg for every y 2 A exists. We prove F:z v y � z v G:y by aping-pong argument.F:z v y) f S v t:S for all sets S gz v t:(x : F:x v y : x)) f F is monotonic gF:z v F:t:(x : F:x v y : x)� f F is existentially tA �B junctive gF:z v t:(x : F:x v y : F:x)) f t:(x : F:x v y : F:x) v y, v is transitive gF:z v y .2 This enables us to formulate an alternative existence theorem for a lower,respectively upper, adjoint.Theorem 5.38 A function F 2 A  � B has an upper adjoint i� F isexistentially tA �B junctive and the set fx j F:x v yg has a supremum forevery y 2 A.Proof The proof is by mutual implication.The ) part follows directly from theorem 5.37.For the ( part: de�ne for all y 2 A , G:y as t:(x : F:x v y : x) . Thissupremum is well de�ned, by assumption. The rest follows from theorem 5.37.2As a dual we haveTheorem 5.39 A function G 2 B  � A has a lower adjoint i� G isexistentially uB �A junctive and the set fy j x v G:yg has an in�mum forevery x 2 B.



5.3. ABSTRACT PROPERTIES 712The theorems in this section are used to establish the existence of an adjoint,and thus a Galois connection, without giving an explicit formula for the adjoint.Yet it is possible to give an expression for the adjoint, in terms of an extremalelement. In general that expression is not amenable to manipulation, so it ishardly ever used.Exercise 5.40 (Perfect Connections) Suppose (F;G) is a Galois con-nection. It is possible that all elements of B are �xed points of G � F . Orewould say: the Galois connection is perfect in B. In [71] this is called a Galoisinsertion from B to A. There are several ways to express this property:a 8(x : x 2 B : F:x = min:(y : x = G:y : y)) ,b 8(x : x 2 B : G:F:x = x) ,c G is surjective,d F is a poset-monomorphism,e F is injective.Prove that all these expressions are equivalent. Further, prove that any one ofthe above implies� 8(x : x 2 B : F:x = u:(y : x = G:y : y)) .What is the dual of this theorem?2 So much for Galois connections for partial orders. The theorems encounteredso far form a substantial part of the known, or rather documented, theoremsabout Galois connections. In particular we have introduced most of the theo-rems that are useful for calculational purposes.Some of the theorems depend on the existence of suprema or in�ma. If wehave a structure where the existence of those extremal elements is trivial, onemight be able to improve some of the results stated in this section.



72 CHAPTER 5. GALOIS CONNECTIONS5.3.4 Complete latticesThere are two orderings that play a rôle in a Galois connection. If we want toadhere to the symmetry between these orderings and the theorems, it would beadvantageous to take both orderings to be complete lattices. However, that isquite a strong requirement. We will only assume |unless stated otherwise |that just one of the orderings is a complete lattice. When we give the dual of atheorem, we will have to require that the other ordering is a complete lattice.In this section we merely improve on some of the theorems already men-tioned.Assume that B is a complete lattice. We can now characterise the functionsthat have an upper adjoint in the following concise way.Theorem 5.41 A function F 2 A  � B has an upper adjoint i� F isuniversally tA �B junctive.Proof Since B is a complete lattice, we know the set fx j F:x v yg has asupremum in B for every y 2 A . From theorem 5.38 we deduce that F has anupper adjoint i� F is existentially tA �B junctive. With B being a completelattice, this is equivalent to F being universally tA �B junctive which completesthe proof.2For the dual, assume A is a complete lattice. We then obtain the following:Theorem 5.42 A function G 2 B  � A has a lower adjoint i� G isuniversally uB �A junctive.2The previous two theorems can be used in two di�erent ways. If one wants toprove that a function is universally t-junctive, one only has to prove that thefunction has an upper adjoint. On the other hand, if one wants to establishthat a function has an upper adjoint, it is su�cient to prove that the functionis universally t-junctive. This gives a nice existence theorem which will beexploited extensively later.We now focus our attention on the image sets of F and G. We already knowthat they are isomorphic posets. With B being a complete lattice, we can dobetter.



5.3. ABSTRACT PROPERTIES 73Theorem 5.43 If B is a complete lattice, the poset G:A is a completelattice. Moreover the in�ma in G:A coincide with the in�ma of B.Proof To show that G:A is a complete lattice, it is su�cient to show allin�ma exist. Take any X � G:A. We have to show that uG:A:X exist. We dothat by demonstrating it is equal to uB:X , which exists. By property 3.50(b)it is su�cient to show that uB:X 2 G:A .uB:X 2 G:A� f corollary 5.21(a) gG:F: uB :X v uB:X( f G:F is monotonic, hence G:F: uB :X v uB:G:F:X guB:G:F:X v uB:X� f X � G:A theorem 5.20(a) guB:X v uB:X� f calculus gtrue .2 Given the fact that B is a complete lattice, we now know that G:A is acomplete lattice and the in�ma in G:A coincide with the in�ma in B . We alsoknow the suprema in G:A always exist. Alas, the suprema in G:A do not, ingeneral, coincide with the suprema of B.Theorem 5.44 If B is a complete lattice, then for any X � G:A thesupremum in G:A, tG:A:X, is G:F: tB :X .Proof Take any X � G:A . We prove that G:F:tB :X = tG:A:X by mutualcontainment.tG:A:Xv f X = G:F:X v G:F: tB :X since G:F monotonic gG:F: tB :Xv f G:F monotonic, tB:X v tG:A:X gG:F: tG:A :X= f tG:A:X 2 G:A theorem 5.20(a) gtG:A:X .2As a dual to theorem 5.43 and theorem 5.44 we have the following



74 CHAPTER 5. GALOIS CONNECTIONSTheorem 5.45 If A is a complete lattice, the poset F:B is a complete lattice.The suprema in F:B coincide with the suprema in A, and for any Y � F:B thein�mum in F:B, i.e. uF:B:Y , is given by F:G: uA :Y .2 So far we have proved that if B is a complete lattice then so is G:A . Adual result holds for A and F:B . Now is the time to claim that when B andA are complete lattices then so are F:B and G:A. In fact they are isomorphiccomplete lattices, since F 2 F:B  � G:A and G 2 G:A  � F:B are bothposet-isomorphisms; see also corollary 5.23.But we can do better. For F:B being a complete lattice it is not necessarythat A is a complete lattice. By using corollary 5.23, we can construct supremaand in�ma of F:B even when A is not a complete lattice.Theorem 5.46 If B is a complete lattice, then F:B is a complete lattice.The supremum and in�mum operators in F:B are given by:a tF:B:Y = F: tG:A :G:Y = F: tB :G:Y ,b uF:B:Y = F: uG:A :G:Y = F: uB :G:Y .Proof For any Y � F:B we observeF: tB :G:Y= f semi-inverse gF:G:F: tB :G:Y= f theorem 5.44 gF: tG:A :G:Y= f corollary 5.23(a) gtF:B:F:G:Y= f Y � F:B, theorem 5.20(a) gtF:B:Y .And F: uB :G:Y= f theorem 5.43 gF: uG:A :G:Y= f corollary 5.23(a) guF:B:F:G:Y= f Y � F:B, theorem 5.20(a) guF:B:Y .



5.4. SHARP AND FLAT 752As a dual we haveTheorem 5.47 If A is a complete lattice, then G:A is a complete lattice.The supremum and in�mum operators in G:A are given by:a tG:A:X = G: tF:B :F:X = G: tA :F:X ,b uG:A:X = G: uF:B :F:X = G: uA :F:X .2 So we have the following result.Theorem 5.48 If A or B is a complete lattice then F:B and G:A areisomorphic complete lattices.2This theorem is rarely cited in the literature. Only [72] mentions this result.5.4 Sharp and FlatWe now know a great deal about Galois connections. In particular we knowthat for complete lattices A and B there is a (1-1) correspondence betweenuniversally t-junctive functions in A B and universally u-junctive functionsin B  A. Since we also know that these two sets of functions form completelattices (see (4.13)) a natural question to ask is whether the two lattices areisomorphic. Indeed they are as we will now show.Let F 2 A  B be universally t-junctive. Denote its upper adjoint byF ]. Let G 2 B  A be universally u-junctive. Denote its lower adjoint byG[. (Note: we do not assume that the pair (F;G) forms a Galois connection.)Then, by de�nition,F:x v y � x v F ]:y ;(5.49)and G[:x v y � x v G:y :(5.50)Moreover, F ] is universally u-junctive and G[ is universally t-junctive.Remark You may wish to pronounce F ] as \F upper" and G[ as \G lower".We, ourselves, tend to pronounce operators according to the name of the symbol



76 CHAPTER 5. GALOIS CONNECTIONSused to denote them. So we pronounce F ] as \F sharp" and G[ as \G 
at". Thishas the advantage that when calculating with the operators we oblige ourselvesto consult their algebraic properties rather being (mis)guided by any intuitionwe have about the \meaning" of the operators. (End of Remark)The functions ] and [ form the (1-1) correspondence mentioned above since,by making the substitutions G := F ] in (5.50) and F := G[ in (5.49),F ][:x v y � x v F ]:y ;(5.51)and G[:x v y � x v G[]:y :(5.52)(These substitutions are permitted because of the junctivity properties of F ]and G[.) So, by the unicity of adjoints,F ][ = F and G = G[] :(5.53)With this notation the cancellation laws are now expressed by two pairs ofinclusions F � F ] _v IA and IB _v F ] � F ;(5.54) G[ �G _v IA and IB _v G �G[ :(5.55)It is now straightforward to show that ] and [ form an order isomorphism. We�rst observe that they are themselves adjoints in a \perfect" Galois connection(see exercise 5.40):F ] _v G � F _w G[ :(5.56)(Note the reversal of the orderings.) This follows immediately from (5.28) bymaking the substitutions F0 := G[, G0 := G, F1 := F , G1 := F ], h := IBand k := IA . The fact that it is a perfect connection follows from (5.53),which expresses that both [ and ] are surjective.Having the surjectivity present, it remains to prove that [ or ] is a posetmonomorphism. Combining (5.56) with (5.53) we obtain, for all universallyt-junctive functions F0 and F1,F ]0 _v F ]1� f (5.56) gF0 _w F ][1� f (5.53) gF0 _w F1 ,which establishes the claimed (contravariant) poset isomorphism.



5.5. HISTORICAL EXAMPLES 775.5 Historical ExamplesIn this �nal section we present several examples of Galois connections drawnfrom the computing science literature. The approach taken here is conventionalso that the examples can easily be recognised. We return to several of theexamples later in the text but when we do we approach them di�erently. Nofurther use will be made of the examples here, so that, apart from their historicalinterest, they may safely be omitted.5.5.1 Relations and Set-Valued FunctionsAs a preliminary to our �rst two examples we record �rst two well-known bi-jections between binary relations and set-valued functions.De�nition 5.57 For R � X �Y, a function to IP (X ) from Y is de�ned bytaking for every y 2 Y :R:y = fx j xRyg .2By elementary set calculus, we observe that x 2 R:y � xRy .In the same vein we make the following de�nition.De�nition 5.58 For R � X � Y we de�ne a function to IP (Y) from X byde�ning for every x 2 X :x:R = fy j xRyg .2Note that a relation is fully determined by either one of these functions. Fur-thermore we observe the following connectionx:R 3 y � x 2 R:y ,for every x 2 X and y 2 Y. When we view x:R as a predicate on Y and R:y asa predicate on X , this connection translates intoxRy = (x:R):y = x:(R:y) ,for all x 2 X and y 2 Y.A similar description, but with di�erent notation, can also be found in [85].



78 CHAPTER 5. GALOIS CONNECTIONS5.5.2 PolaritiesOur �rst example is by now a classic. It was �rst introduced by G. Birkho� in1940 and can be viewed as a starting point for the interest in Galois connections.The description given here is based upon the description given in [24].Let R be a relation between sets X and Y . The functions x:R and R:y canbe lifted to functions to IP (Y) from IP (X ), respectively to IP (X ) from IP (Y).These functions are called polars in [24].De�nition 5.59 For every X 2 IP (X ) de�ne the right polar asjhXjiR = \:(x : x 2 X : x:R) .For every Y 2 IP (Y) de�ne the left polar asRjhY ji = \:(y : y 2 Y : R:y) .2If we take x 2 X then jhfxgjiR = x:R . A similar property holds for the leftpolar. Hence a relation is fully determined by either one of its polars.These two polars are connected. Indeed, they are Galois connected. ForR � X � Y , X 2 IP (X ) and Y 2 IP (Y) we haveTheorem 5.60 jhXjiR � Y � X � Y � R � X � RjhY ji .Proof X � RjhY ji� f calculus g8(x : x 2 X : x 2 RjhY ji)� f de�nition 5.59 g8(x : x 2 X : 8(y : y 2 Y : xRy))� f de�nition � gX � Y � R� f de�nition � g8(y : y 2 Y : 8(x : x 2 X : xRy))� f de�nition 5.59 g8(y : y 2 Y : jhXjiR 3 y)� f calculus gjhXjiR � Y .



5.5. HISTORICAL EXAMPLES 792 Most of the formal properties of polars can easily be deduced by instantiatingthe general properties of the Galois connections, see section 5.3. For moreproperties, especially the applicability of polars to other examples, in the �eldof geometry, theory of rings and groups, the reader is referred to [24].Recently, the polars have acquired a new jacket. They popped up in the�eld of formal concept analysis [31]. Let's give a brief description to see theconnection with polars.A context is a triple (G;M; R), where G, called the objects, and M, calledthe attributes, are sets and R � G�M. Hence R relates objects and attributes.For G � G , jhGjiR is the set of attributes common to all objects in G . Similarlyfor M � M , RjhM ji is the set of objects possessing all the attributes in M .In this context, a concept is a pair (G;M) with G = RjhM ji and M = jhGjiR .The set of all concepts in a context (G;M; R) is denoted B(G;M; R) . On thisset one can de�ne an ordering � as follows:(g0; m0) � (g1; m1) � g0 � g1 .It is easy to show that g0 � g1 is equivalent to m1 � m0 . With this ordering,the set B(G;M; R) forms a complete lattice: the concept lattice. Without goinginto further details, all the properties of formal concepts are easily proven byusing general properties of Galois connections, speci�cally by the properties ofthe polars. This was also noted in [31].The polars arise in another important disguise. They form a pointwise basisfor factors. Factors will be discussed after the next example, the weakest liberalprecondition.5.5.3 The weakest liberal preconditionThere is another way of lifting a relation S on X � Y into a function to IP (Y)from IP (X ), or to IP (X ) from IP (Y). Like the previous example, the func-tions x:S and S:y can be lifted but in a di�erent way. For lack of standardnomenclature, these functions will be called image functions.De�nition 5.61 For X 2 IP (X ) de�ne the right image of the relationS � X � Y by[X]S = [:(x : x 2 X : x:S) ,



80 CHAPTER 5. GALOIS CONNECTIONS2De�nition 5.62 For Y 2 IP (Y) de�ne the left image of the relation S �X � Y byS[Y ] = [:(y : y 2 Y : S:y) .2For functions, the notion of an image is well known. When we consider afunction as a relation, the left image of that relation is the image of the function.That is the reason for the name \image function".As is the case for polar functions, any one of these image functions fullydetermines the relation, since for any x 2 X : [fxg]S = x:S . A dual equalityholds for the left image function.Knowing the Galois connection for polars, one might anticipate a similarresult for the image functions. There is indeed a connection between the imagefunctions, even a Galois connection.Theorem 5.63 For all X 2 IP (X ) and Y 2 IP (Y):[X]S � Y � X � S�[Y ] ;where S�[ ] denotes the conjugate of S[ ].Proof Since [X]S � Y is equivalent to 8(x : x 2 X : x:S � Y ), it issu�cient to prove x:S � Y � x 2 S�[Y ] . We derive for any x 2 Xx 2 S�[Y ]� f de�nition left image, calculus gx 62 [:(y : y 62 Y : S:y)� f calculus g8(y : y 62 Y : x 62 S:y)� f calculus g8(y : y 62 Y : :(x:S:y))� f trading g8(y : x:S:y : y 2 Y )� f calculus gx:S � Y .



5.5. HISTORICAL EXAMPLES 812 By instantiatingX; Y := :X; :Y in theorem 5.63 and some simpli�cationsof the resulting expression, we �ndCorollary 5.64 X � S[Y ] � [X]S� � Y .2 The function S�[ ] is well studied in computing science, albeit in a somewhatnarrower setting and, of course, under a di�erent name.Let's call X the statespace. Take ?62 X and de�ne for any X 2 IP (X ) :X? = X [ f?g. A program S can be modelled by a relation S � X � X?.The ? is used to represent a nonterminating computation. Hence a programmaps states from X onto states in X?. This means it either terminates in somestate of X , or it doesn't terminate, which is modelled by ?. Note that, sinceS is a relation and not necessarily a function, non-determinancy can easily bedealt with in this framework.A well-established method in showing the correctness of programs is by wayof so-called Hoare-triples. For P; Q � X this means showing the validity offPgS fQg; i.e. show that the program S, when started in a state belonging toP , either terminates in a state belonging to Q or doesn't terminate at all. Inthe relational setting this amounts to the validity of [P ]S � Q? . Using theGalois connection theorem 5.63 this is equivalent to P � S�[Q?] .In computing science one writes wlp:S:Q instead of S�[Q?] . So the connec-tion between the weakest liberal precondition and Hoare triplesP � wlp:S:Q � fPgS fQgis a Galois connection. It was noted in [36] that wlp:S:Q is an extremal solutionof an equation involving a Hoare triple. To be precise, it is the greatest |or inthe terminology used in [36]; the weakest| solution of X :: fXgS fQg .5.5.4 FactorsOne very �ne example of a Galois connection is provided by the factors. They�rst appeared in [37] under the name residuals. They are used under the samename in [24]. The name factor is used by [30] in the context of regular lan-guages and �nite machines. They also, more recently, were used in programspeci�cation [52] under the names weakest pre- and postspeci�cations. We alsomake much use of them later.



82 CHAPTER 5. GALOIS CONNECTIONSThe approach to factors given in this section is based on the polarities. Thismeans that we discuss the factors in a speci�c model. The factors will be de�nedin terms of their elements. It is very well possible to de�ne factors without usingelements, as is done in [52] and later in this monograph. The advantage of usingpolarities to de�ne factors, and hence the reason for introducing the notion inthis way, is that it may help in recognising a factor in a pointwise de�nition. Onecannot recognise a factor in an expression involving elements if one is unawareof the pointwise de�nition of factors.The notation used in this section is that introduced in section 5.5.1. All therelations used here are subsets of X � X .De�nition 5.65 For R and S relations, de�ne the right factor RnS byx:(RnS) = jhR:xjiS ,for all x 2 X . For relations T and S the left factor S=T is de�ned by(S=T ):y = Sjhy:T ji ,for all y 2 X .2 Since there is a Galois connection between the polars, one might anticipatea Galois connection for the factors. Indeed, one can prove:Theorem 5.66 R � S=T � RnS � T .Proof R � S=T� f calculus g8(z :: R:z � (S=T ):z)� f de�nition 5.65 g8(z :: R:z � Sjhz:T ji)� f Galois connection for polars, theorem 5.60 g8(z :: jhR:zjiS � z:T )� f de�nition 5.65, calculus gRnS � T .



5.5. HISTORICAL EXAMPLES 832 This Galois connection is not the only one that can be given for factors.There is a more interesting one. Before embarking on that one, let's �rst givea lemma that is interesting in its own right.Lemma 5.67 For R; S and T relations:a x(RnS)y � R:x � S:y ,b x(S=T )y � x:S � y:T .Proof Only a is proven; b can be proven likewise.x(RnS)y� f de�nition 5.65 gjhR:xjiS 3 y� f calculus gjhR:xjiS � fyg� f Galois connection for polars, theorem 5.60 gR:x � Sjhfygji� f de�nition polar gR:x � S:y .2In [52] it is observed that for factors the following holdsx(RnS)y � 8(z :: zRx) zSy) .Our notation eliminates the dummy z.Now let's give a more interesting Galois connection for factors.Theorem 5.68 For R; S and T relationsR �S � T � R � T=S .Proof R �S � T� f calculus g8(x :: x:(R �S) � x:T )



84 CHAPTER 5. GALOIS CONNECTIONS� f calculus g8(x; y : x:R:y : y:S � x:T )� f lemma 5.67(b) g8(x; y : x:R:y : x:(T=S):y)� f calculus gR � T=S .2Combining theorem 5.66 and theorem 5.68 leads to:Theorem 5.69 For R; S and T relationsR �S � T � S � RnT .2 Theorem 5.68 is used in [52] as the de�nition of the weakest prespeci�cationalthough there they write PnR instead of R=P . The reason for preferring thelatter is that factors |like any component of a Galois connection| enjoy acancellation property. Taking R := T=S in theorem 5.68 gives the cancellationproperty:(T=S) �S � T .In this expression the two adjacent occurrences of S cancel one another. Usingthe notation suggested in [52], this property would read as:(SnT ) �S � T ,in which the two occurrences of S that cancel are not adjacent. This makes itmore di�cult to remember the property or to see that cancellation is applicable,especially when S or T is a long formula. The choice for the notation of thefactors is based upon economy of calculation. A similar argument can be givenagainst the notation used in [24].So much for the factors in a relational setting. The factors also appear inanother setting: the theory of regular languages. In [30] they were introduced asa tool for expressing a regular expression E as a regular function of F1; F2; : : :with the Fi to be determined. We will de�ne factors for regular languages inthe same vein as is done for relations. Notice the analogy with factors in a



5.5. HISTORICAL EXAMPLES 85relational setting. The reader is urged to translate the theorems about factorsfor regular languages into a relational setting.It is tacitly assumed that the reader has some knowledge of the theory ofregular languages. The symbol � will be used to denote the concatenation-operator, [ stands for set union and the � is the complete lattice ordering onregular languages, to be precise: F � E � E = E [ F . We will notdistinguish between a one-element language and a word, as is common practice.One of the standard operations for regular languages is the derivative.De�nition 5.70 For a regular language E and a word w, the word-derivativeEw is de�ned by Ew = fv j w � v 2 Eg .2Observe that for a regular language E and a word w we have:Ew = (:E)w ;(5.71)since for any word v we derivev 2 (:E)w� f de�nition 5.70 gw � v 2 :E� f calculus gw � v 62 E� f de�nition 5.70 gv 62 Ew� f calculus gv 2 :(Ew) .Another frequently appearing notation for the word-derivative Ew is @wE.The word-derivative can be seen as a function which maps a word onto a regularlanguage. This function can be generalised in order to obtain a function thatmaps a regular language onto a regular language.De�nition 5.72 For regular languages E and F we de�ne the derivative by@FE = [:(w : w 2 F : Ew) .2



86 CHAPTER 5. GALOIS CONNECTIONSBy taking F = fwg one easily sees that the derivative is indeed a generalisa-tion of the word-derivative. A more familiar, but completely equivalent way ofde�ning the derivative is by@FE = fv j F�v \ E 6= ;g :(5.73)Although the notation for the derivative suggests that it is a function of E, itcan also be seen as a function of F . These functions are very useful for regularlanguages. They are for example used to e�ciently construct a �nite machinethat accepts a given regular language.The word-derivative can be generalised in another way.De�nition 5.74 For regular languages E and F , the right factor is de�nedby FnE = \:(w : w 2 F : Ew) .2 Even for those who are familiar with regular languages, it might be the �rsttime they have come across factors.As was the case for relations, there is a Galois connection for the right factor.Theorem 5.75 For E; F and G regular languages we have F � G � E �G � FnE .Proof G � FnE� f de�nition 5.74 gG � \:(w : w 2 F : Ew)� f calculus g8(w : w 2 F : G � Ew)� f de�nition 5.70 g8(w : w 2 F : w �G � E)� f calculus gF � G � E .2 There is an intimate relation between the right factor and the derivative.The derivative and the right factor are each other's conjugates.Theorem 5.76 For regular languages E and F :(@F )�E = FnE .



5.5. HISTORICAL EXAMPLES 87Proof :(FnE)� f de�nition 5.74, de Morgan g[:(w : w 2 F : :(Ew))� f (5.71) and de�nition 5.72 g@F (:E) .2 Hence right factors and derivatives are in a one to one correspondence. Theproperties of the one can immediately be transcribed into properties of theother. So, formally it doesn't matter which one of the two is studied. In mostof the literature concerning regular languages the derivative is de�ned as isdone above, i.e. by explicitly stating its elements. The factor is most easilyexpressed in the form of the Galois connection, see de�nition 5.75. This meansthat proofs involving the derivative will be in terms of elements, while proofsinvolving factors will be element-free |although it can be done using elements,see the beginning of this section|.There is also a left factor. The conjugate of the left factor is called theantiderivative. The properties of that one are dual to the properties of thederivative, since properties of the left factor are dual to the properties of theright factor.



88 CHAPTER 5. GALOIS CONNECTIONS



Chapter 6More Structure in LatticesThe manipulative elegance, exempli�ed by the Galois connections, and the in-herent higher-order possibilities of lattice theory make lattices extremely wellsuited for a �rst description of the prominent domain of our interest: the settheoretical relations. A necessary condition is that those relations may be char-acterised in terms of (properties of) lattices. A �rst hurdle is the characterisa-tion of powersets.In this chapter we concentrate on three important lattice properties satis�ed bypowersets and we present several lattice theoretic characterisations of powersets.The main properties to be discussed are: distributivity, complementation andatomicity. As in the former chapters the chosen treatment is strongly in
uencedby manipulativity requirements, but the results are completely standard; it isnot a study on the frontiers of lattice theory, but merely a rendering of thoseparts that we foresee to be important in later chapters, in a way that we deem�t for the applications to be expected.The three mentioned properties are studied but not automatically assumedto hold for the lattices in the sequel. We intend to admit other models than thestandard relations, so we want- to pro�t from a certain degree of generality- to pinpoint exactly the reasons why certain rules are valid, useful or neces-sary.In particular, we try to avoid complementation as much as possible (in thecategorical theory of datatypes it occurs only under heavy topoi assumptions)and we try to refrain from atomicity in order to see to what extent point-freemanipulation is possible and useful. We do, however, assume some distributiv-89



90 CHAPTER 6. MORE STRUCTURE IN LATTICESity of the lattices in the following chapters (especially universal distributivity)because of its elementary and indispensable manipulative power.6.1 DistributivitySuprema and in�ma are dual notions and, with the exception of (3.42) theyare independent. In many lattices (�nite) suprema and in�ma are linked bydistributivity, for example the predicate calculus in section 2.1.De�nition 6.1 A lattice (A;v) is said to be distributive if for all x; y; z 2 Ax u (y t z) = (x u y) t (x u z) :2Or, to put it di�erently and with less dummies, a lattice is called distributiveif for every x 2 A the section (xu) is t-junctive. One might wonder about a\dual" notion of distributivity. In fact the formula in de�nition 6.1 is equivalentto its dual (see exercise 6.9). Hence in a distributive lattice we have for allx; y; z 2 Ax t (y u z) = (x t y) u (x t z) :(6.2)From exercise 3.27(b) we know that (xu) is positively u-junctive for every x 2A. Together with its dual this establishes the following alternative formulationof distribitivity.Theorem 6.3 A lattice (A;v) is called distributive i� (xu) and (xt) are bothu-junctive and t-junctive for all x 2 A.2 There are many characterisations of distributivity: exercises 6.8 and 6.9provide a few of them. The de�nition of distributivity via properties of sectionedsuprema and/or in�ma as presented in theorem 6.3 leads to some immediategeneralisations.De�nition 6.4 A lattice (A;v) is called chain distributive i� (xu) and (xt)are both positively t- and u-continuous for all x 2 A.2De�nition 6.5 A lattice (A;v) is called universally distributive i� (xu) isuniversally t-junctive and (xt) is universally u-junctive for all x 2 A.



6.1. DISTRIBUTIVITY 912As noted earlier, the sections (xt) and (xu) are positively t- respectively u-junctive for every x 2 A. Since (xu) is bottom strict and (xt) is top strict itfollows that 6.5 may be given in the same vein as 6.4 and 6.3.Theorem 6.6 A lattice (A;v) is universally distributive i� (xu) and (xt) areboth positively t- and u-junctive for all x 2 A.2 A last form of distributivity | that we `sort of' consider | cannot be givenin terms of properties of sectioned t and u .De�nition 6.7 A lattice (A;v) is called completely distributive i� for allsets J and K and all functions f 2 A  � J �K the following equality and itsdual hold u:(j : j 2 J : t:(k : k 2 K : f:(j; k))) =t:(g : g 2 K  � J : u:(j : j 2 J : f:(j; g:j))) :2 The de�nitions given thus far do not assume a complete lattice, the formulain de�nition 6.7 should be read as: \if the left hand side exists, then the righthand side exists and they are equal".Several variations on the above de�nitions are possible, depending on therequirements on the chains, sets and subsets (mostly related to cardinality).For our purposes universal distributivity su�ces, which implies distributivity,but is weaker than complete distributivity (for a counter example consider theregular open algebra of the open unit interval. For more details, the interestedreader is referred to [46]). Moreover, our domain of interest is the completelattices, so existence of u and t for arbitrary sets is guaranteed.Exercise 6.8 Show that the following properties of a lattice are equivalenta x u (y t z) v (x u y) t z ,b x u (y t z) = (x u y) t (x u z) ,c x t (y u z) = (x t y) u (x t z) ,d (x u y) t (y u z) t (z u x) = (x t y) u (y t z) u (z t x) .



92 CHAPTER 6. MORE STRUCTURE IN LATTICES2Exercise 6.9 Show that a lattice is distributive i� for every x; y and z theimplication x u z v y ^ x v z t y ) x v y holds.2Exercise 6.10 Assume (A;v) is a distributive and complete lattice. Show,under assumption of the axiom of choice, that chain distributivity and universaldistributivity coincideHint: The axiom of choice allows a well-ordering of any subset S of A, sayS = fS� j � ordinal; � < �g . De�ne �� = t:(� : � < � : S�), thenf�� j � � �g is a chain. Trans�nite induction does the job.26.2 ComplementsFrom the chapter on Galois connections, it may be clear that de�nition 6.5 ofuniversal distributivity has promising consequences. By using theorem 5.41 and5.42 we can de�ne universal distributivity in another way.Theorem 6.11 A lattice (A;v) is universally distributive i� (xu)] and(xt)[ exist for all x 2 A2Thus for (A;v) a universally distributive lattice we have for all x; y; z 2 Ax u y v z � y v (xu)]:z(xt)[:y v z � y v x t zThese equations are generalisations of the equations in the de�nition of pseudo-complements and pseudo-supplements below.De�nition 6.12 In a lattice (A;v) we say x has pseudo-complement pc:xi� for all y 2 A we havex u y = ?? � y v pc:x :(6.13)Dually, we call ps:x the pseudo-supplement of x i� for all y 2 Aps:x v z � >> = x t z ;(6.14)holds.



6.2. COMPLEMENTS 932Clearly, by indirect equality, pseudo-complements and pseudo-supplements areunique if they exist. From theorem 6.11 it follows that they do indeed exist(uniquely) in the case of a universally distributive lattice. To be precisepc:x = (xu)]:?? and ps:x = (xt)[:>>As an example calculation, we show that a pseudo-complement is at most thepseudo-supplement in a universally distributive lattice. I.e. we show for everyx 2 A (xu)]:?? v (xt)[:>> :(6.15) (xu)]:??= f from (6.14): >> = x t (xt)[:>> g((xt)[:>> t x) u (xu)]:??v f distribution, calculus g(xt)[:>> t (x u (xu)]:??)= f form (6.13): x u (xu)]:?? = ?? g(xt)[:>> .If the pseudo-complement and the pseudo-supplement of x coincide, then xhas a complement. Complements can be de�ned in any bounded lattice, i.e. alattice having a ?? and >>.De�nition 6.16 For a bounded lattice (A;v) we call x0 a complement of xif x u x0 = ?? and x t x0 = >> :A lattice (A;v) is said to be complemented if every x 2 A has a complement.2Unlike the situation with pseudo-complements one cannot deduce the unicityof complements from their de�nition; however, in a distributive lattice they areunique (see exercise 6.30).From now on distributivity of the lattices under consideration will be as-sumed, hence complements | when they exist | are unique.Whenever the complement of x exists, it will be denoted, as usual, by :x ;in that case the complement of :x exists too and ::x = x .



94 CHAPTER 6. MORE STRUCTURE IN LATTICESIf the (distributive) lattice is complemented, the complements are just thepseudo-complements and the pseudo-supplements. In such a lattice, a strongertype of distributivity holds .Theorem 6.17 A complemented distributive lattice is universally distribu-tive. In particular (xu)]:?? = ((:x)t) and (xt)[:>> = ((:x)u) .Proof By theorem 6.11 it is su�cient to show that x u y v z � y v:x t z for all x; y and z, together with its dual.x u y v z) f ((:x)t) is monotonic g:x t (x u y) v :x t z� f distribution g(:x t x) u (:x t y) v :x t z� f :x t x = >> g:x t y v :x t z� f suprema gy v :x t z) f (xu) is monotonic gx u y v :x u (x t z)� f similar to the above steps gx u y v z .The proof of the dual is left to the reader.2Corollary 6.18 A universally distributive lattice (A;v) is complementedi� (xt)[:>> v (xu)]:?? for every x 2 A .Proof If the lattice is complemented then, by theorem 6.17, (xu)]:?? = :xt?? = :x = :x u >> = (xt)[:>> .Conversely, assume (xt)[:>> v (xu)]:?? for every x 2 A. Then, by (6.15),the two are equal, say x0 = (xu)]:?? = (xt)[:>> , andx u x0 = x u (xu)]:?? v ?? ;x t x0 = x t (xt)[:>> w ?? :So x0 = :x .



6.2. COMPLEMENTS 952 In fact, the proof of theorem 6.17 gives the so-called shunting rule, the majormanipulative tool in complemented distributive lattices,x u y v z � y v :x t z ;(6.19)and, since ::x = x , this equivales:x u y v z � y v x t z :(6.20)Each of the two forms of the shunting rule will occur in calculations wherecomplementation is essential.As mentioned, : is its own inverse; but shunting shows even more::x v y � x w :y :(6.21)So : is its own adjoint in a Galois connection with one ordering reversed.Since the supremum is the in�mum in the reversed ordering and vice-versa,this together with the junctivity type for upper and lower adjoints immediatelyestablishes the \De Morgan" lawsTheorem 6.22 For a complemented distributive lattice (A;v), we have forall S � A:(u:S) = t::S and :(t:S) = u::S :2 Note that : is monotonic from v to w (also called anti monotonic). Theorder reversal leads to a second 1-1 correspondence between u-junctive and t-junctive endofunctions after the Galois connection: the conjugate. De�ne forany endofunction f on a complemented lattice its conjugate f � byf �:x = :(f::x) or f � = : � f � :(6.23)A few properties of the conjugate aref �� = f(6.24) f � _v g � f _w g�(6.25) f is S-t-junctive � f � is (:S)-u-junctive(6.26)It may be seen from (6.26) that the negation gives a 1-1 correspondence forfunctions of any type of u- or t-junctivity, and not only for functions that areuniversally u- or t-junctivity (as is the case for Galois connections).



96 CHAPTER 6. MORE STRUCTURE IN LATTICESThe link between conjugates and Galois adjoints is given byf �] = f [� for universally u-junctive functions f ;(6.27) f ]� = f �[ for universally t-junctive functions f :(6.28)We only prove (6.27). First note that for universally u-junctive f , f � is univer-sally t-junctive so f [ and f �] exist. The equality f �] = f [� follows by unicityof adjoints from the following derivation.f �:x v y� f (6.23) and (6.21) gf::x w :y� f f is universally u-junctive g:x w f [::y� f (6.21) and (6.23) gx v f [�:y .Which proves that f [� is the upper adjoint of f � .If (A;v) is a complete complemented lattices, the adjoints of the u and tsections are conjugates. I.e. for every x; y 2 A we have(xu)] = (xu)� and (xt)[ = (xt)�(6.29)Some Examples A powerset is a complete, completely distributive and com-plemented lattice.The equivalence relations on a set form a complete lattice whose in�ma arejust the in�ma in the powerset lattice of the square of the set; the supremahowever di�er (in general) from the suprema in the lattice of all relations. Wewill denote the suprema and in�ma in the lattice of equivalence relations by_ , respectively ^ .The complete lattice of all equivalence relations on X is not distributive:Let A be a proper subset of X (which means that A is non-empty and di�ersfrom X ). Take two distinct elements of A, say a0 and a1, and two distinctelements outside the set A, say b0 and b1 . Then de�neE = A� A t :A� :A ;F = I t f(a0; b0); (b0; a0)g ;G = I t f(a1; b1); (b1; a1)g :Hence, we have E _ F = X � X = E _ G and F ^ G = I . And



6.2. COMPLEMENTS 97E _ (F ^ G)= f F ^ G = I gE _ I= f de�nition of E gE ,while (E _ F ) ^ (E _ G) = X � X 6= E .Since the suprema of chains are the suprema in the lattice of all relations,on half of the chain distributivity is satis�ed: for any equivalence relation E onX and any chain C we have E u (_C) = _ (E ^ C) . The other half failswith a counter example in the same vein as above.Every �nite lattice is complete and chain distributive, but there are non-distributive �nite complemented lattices.Every complete chain is universally distributive but there are non-complementedcomplete chains (see also exercise 6.31).Let L be a complete chain such that >> = t:(Lnf>>g) and let k 62 L .De�ne K = L [ fkg and vK = vL [f(??; k); (k;>>); (k; k)g . Then K isdistributive, but not chain distributive for k u t:(Lnf>>g) = k and t:(k u(Lnf>>g)) = ?? .Exercise 6.30 Show that complements in a distributive lattice are unique.2Exercise 6.31 Show that IN [ f1g with the usual ordering is pseudo-complemented and pseudo-supplemented, but not complemented.2Exercise 6.32 Show that conjugation dualises the junctivity type, i.e. prove(6.26).2Exercise 6.33 Let (A;v) be a universally distributive lattice. Prove for allx; y; z 2 Aa (xt)[:y v y v (xu)]:y ,b (xu)]:y = y t (xt)[:(xu)]:y ,c (xu)]:y u (zu)]:y = ((x t z)u)]:y .(Hint for part b: use part a to generalise the proof of (6.15).)2



98 CHAPTER 6. MORE STRUCTURE IN LATTICES6.3 AtomsThe prominent model in this study is the lattice of all relations on some universe.It is to be expected that eventually all properties of that lattice will be needed.To that end a complete characterisation of powerset lattices is required, not onlyto be able to use that full structure, but also to pinpoint exactly the reason why.The only feature of powerset lattices that has not yet been discussed is the factthat the lattice members are built up from points (or elements). The latticetheoretic concept that corresponds to a point is the notion of an atom.De�nition 6.34 For a lattice (A;v) we call a 2 A an atom if it has noproper subelement, i.e. for every x 2 Ax v a � x = a _ x = ?? :A lattice is called atomic if every proper lattice element contains a proper atom.2 Atoms may or may not exist in bounded lattices. Since we are mainly (andfor the calculational model only) interested in complete universally distributivelattices, we discuss atoms only in that realm. Complementation is not required,but it will pop up!For the remainder of this section, let (A;v) be a complete and universallydistributive lattice. The atoms will be denoted by lowercase letters from thebeginning of the alphabet. The set of atoms is denoted by IA.Clearly ?? 2 IA, but that may be the only one, see for instance (IN [f1g;�). This trivial atom is often excluded from the atoms, but we won't.Instead we refer to non-trivial atoms or proper atoms to exclude ?? from ourconsiderations.The two most prominent properties of atoms are that they are disjointa = b _ a u b = ?? ;(6.35)and irreduciblea v x t y � a v x _ a v y :(6.36)Irreducible elements of a lattice do not need to be atoms, e.g. every element of(IN [ f1g;�) is irreducible. However, if a lattice is complemented, atoms andirreducible elements coincide, see exercise 6.46.We can express atomicity of a lattice in another way.



6.3. ATOMS 99Theorem 6.37 A lattice (A;v) is atomic i� for every x 2 At:IA u x = ?? � x = ?? :Proof First observe that9:(a : a 6= ?? : a v x) � t:(a : a v x : a) 6= ?? ;and t:(a : a v x : a)= f a u x = a _ a u x = ?? gt:(a :: a u x)= f the lattice is universally distributive gt:IA u x .So x 6= ?? ) 9:(a : q 6= ?? : a v x)� f above gx 6= ?? ) t:IA u x 6= ??� f calculus gx = ?? � t:IA u x = ?? .2This second \de�nition" of atomicity may be rephrased, suppressing the dummyx, in terms of adjoints as follows:Corollary 6.38 A lattice is atomic i� (t:IAu)] is bottom-strict.Proof First, note that the assumptions on the lattice guarantee the existenceof (t:IAu)] .t:IA u x = ?? � x = ??� f (6.13), calculus gx v (t:IAu)]:?? � x v ??� f indirect equality g(t:IAu)]:?? = ?? .



100 CHAPTER 6. MORE STRUCTURE IN LATTICES2 Atomicity of a lattice does not su�ciently capture a powerset-like behaviourwith respect to \points", e.g. (IN [ f1g;�) is atomic with atoms f0; 1g. For apowerset structure it would be desirable if every lattice element is built up bythe atoms it contains.De�nition 6.39 A lattice (A;v) is called saturated i� for every x 2 Ax = t:(a : a v x : a) .2Again we can give an equivalent formulation.Theorem 6.40 A lattice (A;v) is saturated i� for every x 2 A we havex = t:IA u x .Proof For any x 2 A we derivet:IA u x= f A is universally distributive gt:(a :: a u x)= f a u x = a _ a u x = ?? gt:(a : a v x : a) .2 Using indirect equality (6.40) may be reformulated ast:IA u x v y � x v y ;or in terms of adjoints(t:IAu)] = IA(6.41)There are various equivalent formulations of saturation, some of them aregiven in the next lemma (the proof can be found as exercise 6.47).Lemma 6.42 Equivalent area A is saturated,b t:IA = >> ,c x v y � 8(a : a v x : a v y) .



6.3. ATOMS 1012 In some treatments atomicity is de�ned as \our" saturation. In case thelattice is complemented, there is no di�erence (see theorem 6.43); but withoutcomplementation there are examples of non-saturated atomic lattices (e.g. (IN[f1g;�)). The full power of saturation may be seen fromTheorem 6.43 For A a complete universally distributive lattice, the followingare equivalenta A is saturated,b A is atomic and complemented,c A is isomorphic to a powerset.Proofa) c: De�ne ' 2 IPIA � A by':x = fa j a v xg :Then ' is surjective, for B v IA we observe':t:B= f de�nition ' gfa j a v t:Bg= f (6.35) gB .With the use of lemma 6.42(c) we conclude that ' is an order isomorphism.c) b: Immediate.b) a: t:IA = >>� f complements g::t:IA = ??� f atomicity, (6.37) gt:IA u ::t:IA = ??� f complements gtrue .



102 CHAPTER 6. MORE STRUCTURE IN LATTICESBy lemma 6.42(b) it follows that A is saturated.2 Knowing that saturation implies complementation raises the question whethersome additional property, not in terms of atoms, may be found to guarantee sat-uration for complemented (complete) lattices. Indeed, complete distributivitydoes the job.Theorem 6.44 A complete complemented distributive lattice is saturatedi� it is completely distributive.Proof): From theorem 6.17 the lattice is universally distributive. So by theorem6.43 it is isomorphic to a powerset, which is completely distributive.(: De�ne f 2 A  � A� 2 byf:(x; 0) = x and f:(x; 1) = :x ;and for " 2 2  � A de�ne a" bya" = u:(x : x 2 A : f:(x; ":x)) :Then a" is an atom for every ", sincey v a") f de�nition a" gy v f:(y; ":y) u f:(:y; "::y)) f calculus, de�nition of f gy v :y _ (":y = 0 ^ "::y = 1)) f y v :y ) y = ??, de�nition a" gy = ?? _ a" v y .Finally t:IAw f a" 2 IA gt:(" : " 2 2  � A : u:(x : x 2 A : f:(x; ":x)))= f (6.7) gu:(x : x 2 A : t:(k : k 2 2 : f:(x; k)))= f f:(x; 0) t f:(x; 1) = >> gu:(x : x 2 A : >>)= f calculus g>> .



6.3. ATOMS 1032 Complete distributivity is not of any use in the sequel, the notion and the-orem 6.44 are only mentioned here for completeness.Exercise 6.45 Let p 2 A  � A be such that p:x = x _ p:x = (xu)]:?? .Show that u:(x : x 2 A : p:x) is an atom.Don't cheat by copying a part of the proof of theorem 6.44!2Exercise 6.46a p 2 IA ,b p is irreducible,c p = x t y ) p = x _ p = y .Show that b and c are equivalent and that the are implied by a. Furthermore,show that the three are equivalent if the lattice is complemented.2Exercise 6.47 Prove lemma 6.42.2



104 CHAPTER 6. MORE STRUCTURE IN LATTICES



Chapter 7Closure Operators and FixedPointsSo-called \closure operators" form an extremely important class of functionsin mathematics and computing science since many problems can be expressedin terms of such operators. So-called \�xed points" of functions are just asimportant. Not surprisingly, since there is a close relationship between �xedpoints and closure operators allowing problems expressed in terms of the onealways to be reformulated in terms of the other! In this chapter we lay bare theconnection and explore its rami�cations.We do not know to whom the theory to be presented in this section shouldbe credited. Probably to either Albert Tarski or to S.C. Kleene. The materialpresented di�ers from that typically to be found in computing science texts inthat we do not assume a so-called \cpo" structure, nor that the functions weconsider are continuous. Instead we assume monotonicity only of our functionsand a complete lattice structure.We begin with the de�nition and a short discussion of closure operators.Then we need to digress awhile to introduce so-called \pre�x points", a keyelement in a famous �xed-point theorem due to Tarski. This digression thenallows us to observe a rather special Galois connection de�ning a closure op-erator for each monotonic function as well as the function's least �xed points.Applications of these results are considered later in the monograph.Dualisation of the theorems presented here to so-called \interior operators"and greatest �xed points is not explicitly discussed but will be made use oflater. (We assume that by now the reader has become completely familiar with105



106 CHAPTER 7. CLOSURE OPERATORS AND FIXED POINTSthe process of dualisation.)In the course of the previous chapters we have been preparing the readerfor a switch to point-free proofs in preference to pointwise proofs (i.e. proofs atthe level of function compositions rather than function applications). In thischapter we take the bull by the horns and conduct all proofs at the point-freelevel.There are two advantages in doing so. One is that the proofs are often morecompact. (This is not always the case, however.) The other is that in laterchapters we will be able to abstract from the calculations in this chapter to\compositions" that are not necessarily function compositions. (In fact some ofthe models we consider in later chapters have a binary \composition" that hasnothing whatsoever to do with function composition.)In order that the switch should not come as a profound shock let us brie
ysummarise some calculation rules that will be most prominent in the followingpages.Suppose (A;v) is a complete lattice. Our primary concern will be thecomplete lattice of monotonic endofunctions on A ordered by the relation _v.Recal from de�nition 4.12, for f; g 2 A  � A,f _v g � 8(x :: f:x v g:x) :We call this lattice MONO.A . It forms a monoid (MONO.A; � ; IA) where �denotes function composition and IA is the identity function onA. Moreover, foreach function f , the function (�f) is universally t-junctive (see 4.18) and so hasan upper adjoint (�f)]. The existence of an upper adjoint will not be exploitedin the text of this chapter, although you will �nd it vital to answering some ofthe exercises. A consequence of its existence will, however, be used extensively,namely that (�f) is monotonic with respect to the pointwise ordering _v (see(4.16)). Another monotonicity property that will be used extensively is that forall monotonic endofunctions f; g and hf � g _v f � h ( g _v h :(See (4.17).) Recall, however, that (f �) is not universally _t -junctive, in general.7.1 Closure OperatorsDe�nition 7.1 For f an endofunction on a poset (A;v), we call f a closure



7.1. CLOSURE OPERATORS 107operator i� g _v f � h � f � g _v f � h , for all functions g and h with rangeA.2With this de�nition one can quickly establish some properties of closure oper-ators.Corollary 7.2 For f a closure operator we havea f is re
exive, i.e. IA _v f ,b f is idempotent, i.e. f = f � f ,c f is monotonic, i.e. g _v h ) f � g _v f � h , for all functions g and hwith range A .Proof Part a is obtained by instantiating both g and h to IA in de�nition7.1.Part b is proven by mutual containment. The containment f _v f � f followsdirectly from de�nition 7.1 with g and h both instantiated to f . The othercontainment, f � f _v f , is then obtained by instantiating g to f and h to IAin the de�nition.For part c we observe the followingf � g _v f � h� f de�nition 7.1 gg _v f � h( f a, monotonicity (4.16), transitivity gg _v h .2As a dual to the closure operators, we have the followingDe�nition 7.3 For f an endofunction on a poset (A;v), we call f a co-closure or an interior operator i� f � g _v h � f � g _v f � h , for all functionsg and h with range A.2In [42] an interior operator is called a kernel . For f a closure or an interioroperator, we call an element z closed i� f:z = z . It is common practice torefer to the closed elements of interior operators as open elements. We don't



108 CHAPTER 7. CLOSURE OPERATORS AND FIXED POINTSadhere to existing practice, because the closed and open elements are de�nedby the same equation.The ceiling function, see section 5.2.1, can be seen as a closure operator.Consider the ceiling function as a function from reals to reals. We then havex � dye � dxe � dye, which is the pointwise version of de�nition 7.1 withf instantiated to the ceiling function. The closed elements in this case areprecisely the integers. The 
oor function can in the same way be seen as aco-closure operator.In fact, every Galois connection gives rise to a closure and an interior oper-ator.Theorem 7.4 If (F;G) is a Galois connection thena G � F is a closure operator,b F �G is an interior operator.Proof Part a follows directly from the equivalence of corollary 5.15(b) and5.15(c). Part b is the dual.2This gives a constructive way of de�ning a closure or co-closure operator whichwill be used shortly to construct a closure operator for every monotonic functionand subsequently its least �xed point.Exercise 7.5 Prove the converse of corollary 7.2, namely that if f satis�es7.2(a), (b) and (c) then f is a closure operator.2Exercise 7.6 Let f be an arbitrary closure operator over the poset (A;v).Give a Galois connection such that f = G � F .Hint : de�ne a Galois connection between A and the closed elements of theclosure operator.2



7.2. PREFIX POINTS 1097.2 Pre�x PointsTarski's �xed point theorem [89] |exercise 7.26 in this chapter| is a mainstayof programming language semantics. How the theorem was actually discoveredis not for us to say, but we can speculate on a scenario that might have beenthe inspiration for the discovery of the theorem.Apart from his work on �xed points, Tarski is also well known for his workon the calculus of relations [88] where closure operators (transitive closure,symmetric closure etc.) play a prominent rôle. The identi�cation of an abstractnotion of closure operator and of closed elements will therefore have been one ofthe earliest endeavours in developing the calculus. What is also likely to havebeen observed at an early stage is that the closed elements in the examples wehave quoted form complete lattices in which the in�ma coincide with the in�main the parent lattice. So, for example, the closed elements of the transitiveclosure operator are the transitive relations (in the calculus of relations) andthe in�mum of a set of transitive relations is transitive. One is led to speculatethat the closed elements of a given closure operator form a complete lattice forall closure operators. (This might even be regarded as a healthiness requirementon the combined notions of closure operator and closed element.) Indeed thisis the case. If one proceeds to prove this theorem a surprise is in store! If thegiven closure operator is f then the only fact that is needed in the proof aboutthe closed elements is that closed element x satis�es the inclusion f:x v x andf is monotonic. Other properties of f do not enter the picture. This suggests afurther abstraction. Consider, for arbitrary monotonic endofunction f (thus notnecessarily a closure operator) the set of elements x such that f:x v x. Theseare known as the pre�x points of f . Is this class worthy of study, and if so whatare its characteristic properties? Indeed it is, as witnessed by this chapter.The �rst fact about pre�x points is the one that may have been stumbledon when trying to prove that closed elements form a complete lattice. We callit the pre�x lemma.Lemma 7.7 (Pre�x lemma) Let (A;v) be a complete lattice and letf 2 A  � A be a monotonic endofunction on A. Let F denote the set ofpre�x points of f , i.e. the subset of A consisting of all those elements x suchthat f:x v x. Then (F ;v) is a complete lattice such that uF = uA.Proof It su�ces to show that, for all X � F , uA:X 2 F (see 3.50(b)).



110 CHAPTER 7. CLOSURE OPERATORS AND FIXED POINTSuA:X 2 F� f de�nition of F gf:uA:X v uA:X( f monotonicity of f : (4.7), transitivity guA:f:X v uA:X( f monotonicity: (4.15) g8(x : x 2 X : f:x v x)� f de�nition of F gX � F .2 The reader may wish to pause and investigate how this lemma can be ex-ploited to prove the theorem mentioned above (the set of closed elements ofclosure operator f forms a complete lattice). We, ourselves, postpone thatdiscussion to later.7.3 Construction of Closure OperatorsSimple as it may seem the pre�x lemma, combined with what we already knowabout Galois connections, unleashes a 
ood of properties and constructions.For the remainder of this section take (A;v) to be a complete lattice and f amonotonic endofunction on A. Let F denote the collection of pre�x points off , hence F � A. Let �F 2 A  � F denote the embedding of F in A. Notethat �F is injective. Furthermore we havef � �F _v �F ;(7.8)which expresses that all elements of F are pre�x points of f , andf � h _v h ) �F � h = h ;(7.9)which says that, with the given antecedent, the range of h is contained in F .From the pre�x lemma we know that F is a complete lattice. But we canextract more from the pre�x lemma.Theorem 7.10 (Closure Operators) For (A;v) a complete lattice and fa monotonic endofunction on A, there is a unique function f ? 2 A  � A suchthat



7.3. CONSTRUCTION OF CLOSURE OPERATORS 111a f � f ? _v f ? ,b (f ? � g _v h � g _v h) ( f � h _v h .Moreover, f ? is a closure operator.Proof Let F be the set of f -pre�x points of A. By the pre�x lemma (lemma7.7) the in�ma in (A;v) and (F ;v) coincide. That is the same as saying that�F (the function embedding elements of F in A) is universally uA F -junctive,or phrased di�erently, that �F has a lower adjoint �[F . De�ne f ? as �F � �[F , henceby theorem 7.4(a) f ? is a closure operator. So f ? satis�es:g _v f ? � h � f ? � g _v f ? � h ;(7.11)for all functions g and h with range A. It remains to prove that f ? thus de�nedhas the properties stated in part a and b.For part a we havef � f ? _v f ?� f de�nition f ? gf � �F � �[F _v �F � �[F( f (7.8); monotonicity (4.16), transitivity gtrue .For part b assume f � h _v h, hence by (7.9) we have �F � h = h, thenf ? � h = h� f assumption gf ? � �F � h = �F � h� f de�nition f ? and semi-inverse: f ? � �F = �F gtrue .Instantiating f ? � h = h in (7.11) proves part b. That clauses a and b de�nea unique function, f ?, is straightforward.2 The form of 7.10(b) is delightfully attractive and amenable to straightfor-ward calculation. Here is a �rst batch of properties that it predicts. Note thatin part g we use f i to denote the i-fold composition of f with itself. Thus f 0 isthe identity function and f i+1 = f � f i .



112 CHAPTER 7. CLOSURE OPERATORS AND FIXED POINTSCorollary 7.12a g _v f ? � h � f ? � g _v f ? � h ,b IA _v f ? ,c f ? � f ? = f ? ,d f ? is monotonic ,e f ? � g _v h ( g _v h ^ f � h _v h ,f f ? = IA _t f � f ? ,g 8(i : 0 � i : f i _v f ?) ,h h = f ? � h � f � h _v h ,i f ? = f � f is a closure operator ,j (f ?)? = f ? ,k ? is monotonic ,l ? is a closure operator, i.e. f _v g? � f ? _v g? .ProofPart a says that f ? is a closure operator and follows immediately from itsde�nition, theorem 7.10. Parts b, c and d follow from a with the aid of corollary7.2. Part e is just a weaker form of theorem 7.10(b) in which the equivalencehas been weakened to a follows-from. We often use theorem 7.10(b) in thisweaker form, and for this reason have stated it explicitly.Part f has the following proof:f ? = IA _t f � f ?� f b and theorem 7.10(a) gf ? _v IA _t f � f ?( f e with g; h := IA; IA _t f � f ? gf � (IA _t f � f ?) _v IA _t f � f ?( f IA _t f � f ? _v f ?, see �rst step gf � f ? _v IA _t f � f ?� f calculus gtrue .



7.3. CONSTRUCTION OF CLOSURE OPERATORS 113Part g is easily proven by induction on i. Part b is the case i = 0 and wehave f i+1 _v f ?( f theorem 7.10(a), transitivity gf i+1 _v f � f ?( f f is monotonic gf i _v f ? .Part h has already been proven in the course of proving theorem 7.10 (butthe reader is invited to �nd an alternative proof).The proof of part i is by mutual implication. If f ? = f then f is a closureoperator by de�nition, theorem 7.10. Now assume f is a closure operator. Thenf ? exists since f is monotonic and we have to prove that f ? = f .f ? = f� f g: f _v f ? gf ? _v f( f e gIA _v f ^ f � f _v f� f f is a closure operator gtrue .Part j is an immediate consequence of i since f ? is a closure operator.To prove monotonicity of ? we have to prove f ? _v g? ( f _v g .f ? _v g?( f e with g; h := IA; g gIA _v g? ^ f � g? _v g?( f b; g � g? _v g? gf � g? _v g � g?( f monotonicity 4.16 gf _v g ,which proves part k.Part l is proven byf ? _v g?) f g: f _v f ?, transitivity g



114 CHAPTER 7. CLOSURE OPERATORS AND FIXED POINTSf _v g?) f k gf ? _v (g?)?� f j gf ? _v g? .2 From corollary 7.12(h), with h instantiated to the constant function bx forsome x, and the pre�x lemma we infer that the closed elements of a closureoperator form a complete lattice | the property that we speculated may haveled to the discovery of Tarski's �xpoint theorem.We have deliberately chosen to use the symbol \?" to suggest a connectionwith the so-called \Kleene star" introduced by S.C.Kleene in a famous paper onregular algebra [55]. The two operators are not the same since Kleene de�nesf � for continuous function f to be t:(i : 0 � i : f i) whereas the latter is onlya lower bound on f ? (see 7.12(g)). (The assumption here is that i ranges overthe natural numbers. If i is allowed to range over all ordinals then the two canindeed be proved to be equal.) We consider the Kleene star operator in detailin chapter 8.Although Kleene's star and our closure operator do not necessarily coincidethe most vital properties of the Kleene star are enjoyed by closure operators,most having already been listed in corollary 7.12. The following decompositionrule is particularly vital. Its proof also provides a good illustration of ourconstructive approach to calculation. The goal of the calculation is to �nd adecomposition of (f _t g)? into an expression involving f ?. The right side of thetheorem, thus, has to be discovered; we do this by beginning with a dummyright side and then working towards a substitution that �lls in all its details.Theorem 7.13 (Closure Decomposition) For monotonic endofunctionsf; g 2 A  � A,(f _t g)? = f ? � (g � f ?)? :Proof In the �rst part of the proof we derive the right side:By the construction of h:(f _t g)? _v h



7.3. CONSTRUCTION OF CLOSURE OPERATORS 115( f corollary 7.12(e), suprema gIA _v h ^ f � h _v h ^ g � h _v h� f corollary 7.12(h) gIA _v h ^ h = f ? � h ^ g � h _v h� f � h = f ? � e , corollary 7.12(c) gIA _v f ? � e ^ g � f ? � e _v f ? � e( f corollary 7.12(b), transitivity gIA _v e ^ g � f ? � e _v e� f theorem 7.10(b) with f := g � f ? g(g � f ?)? _v e ^ g � f ? � e _v e( f theorem 7.10(a) ge = (g � f ?)? .From this calculation it follows that (f _t g)? _v f ? � (g � f ?)? . The oppositeinequality is easier to verify:f ? � (g � f ?)?_v f monotonicity (4.16), (4.17) and of ? g(f _t g)? � ((f _t g) � (f _t g)?)?_v f theorem 7.10(a), monotonicity (4.17) g(f _t g)? � ((f _t g)?)?= f corollary 7.12(j), corollary 7.12(c) g(f _t g)? .Although the proof is short, the reader should be aware that each of thesteps uses the stated properties (in particular monotonicity) several times over.2 The combination of corollary 7.12(i) and 7.12(l) is intriguing. On the onehand 7.12(i) says that every closure operator has the form f ? for some f ; onthe other hand 7.12(l) says that ? itself is a closure operator. So a solutionto the equation � :: ? = � _? exists. (Note that the dot above the star onthe right of this equation is demanded by type considerations. If ? has typeT = (A � A)  � (A � A) then _? has type T  � T and we seek � 2 T .)The question is, can we give an explicit formula? Indeed we can, the main cluebeing provided by corollary 7.2: ? is the re
exive, transitive closure operator.Speci�cally, let sq denote the function f 7! f � f for arbitrary endofunction f .We then have



116 CHAPTER 7. CLOSURE OPERATORS AND FIXED POINTSTheorem 7.14 For f a monotonic endofunction on Af ? = (cIA �t sq) _?:f :Note that _? in the latter formula is the lifted version of ? .Proof As a shorthand we de�ne f � = (cIA �t sq) _?:f . Since _? is the liftedversion of ?, all the porperties derived for ? thus far will be used for _?. Thelifting of these properties will be implicit. We trust the reader can verify theseproperties, if he wishes to do so.The proof will be by mutual containment. For one side we havef � _v f ?( f corollary 7.12(e) gf _v f ? ^ (cIA �t sq):f ? _v f ?� f corollary 7.12(g), application, de�nition of sq gIA _t f ? � f ? _v f ?� f corollary 7.12(b) and 7.12(c) gtrue .For the other containment, we �rst observe that theorem 7.10(a) gives (withf := cIA �t sq)true� f theorem 7.10(a) g(cIA �t sq):(cIA �t sq) _?:f _v (cIA �t sq) _?:f� f de�nition f � g(cIA �t sq):f � _v f �� f application gIA _t sq:(f �) _v f �� f de�nition _t and sq gIA _v f � ^ f � � f � _v f � .We can now prove the other containment as followsf ? _v f �( f corollary 7.12(e) gIA _v f � ^ f � f � _v f �( f see above g



7.3. CONSTRUCTION OF CLOSURE OPERATORS 117f _v f �� f corollary 7.12(b) gtrue .Which completes the (non-trivial) proof.2 Note that theorem 7.14 reinforces the similarity between our closure operator? and the Kleene star.Before moving on to discuss �xed points let us document the relationshipbetween the suprema and in�ma in the lattice of pre�x points vis-�a-vis thesuprema and in�ma in the parent lattice.Theorem 7.15a f ? � tA = f ? � tA � f ? ,b uA � f ? = f ? � uA � f ? ,c �F � tF = f ? � tA � �F .Proof Part a is proven byf ? � tA= f de�nition of f ? g�F � �[F � tA= f lower adjoints are universally t-junctive, semi-inverse g�F � tF � �[F � �F � �[F= f lower adjoints are universally t-junctive, de�nition of f ? gf ? � tA � f ? .Part b is proven in the same vein:uA � f ?= f de�nition f ? guA � �F � �[F= f �F is universally u-junctive, semi-inverse g�F � �[F � �F � uF � �[F= f �F is universally u-junctive, de�nition f ? gf ? � uA � f ? .



118 CHAPTER 7. CLOSURE OPERATORS AND FIXED POINTSFor part c, observe that tF = �[F � tA � �F (follows from theorem 5.46(a)with the obvious instantiations). Using Leibniz with �F� and the de�nition off ? gives the desired result.2Exercise 7.16 Let f be a monotonic endofunction. We call ' an f -closurei� ' is a closure operator and f � ' _v ' . Prove that f ? is the least f -closure.2Exercise 7.17 In theorem 7.14 we observed a lifting of various propertiesderived earlier. This exercise goes one step further. Prove that for a monotonicendofunction f on A we have (f �) _? = (f ?)� .Hint : You might want to recall that (�g) has an upper adjoint (�g)] for arbitraryg.27.4 Fixed PointsThe pre�x points of monotonic endofunction f form a complete lattice, buthow do we know that the lattice is non-trivial (containing, say, only the topelement of the parent lattice)? The following remarkable theorem, commonlyknown as the Knaster-Tarski theorem, says that not only is the lattice of pre�xpoints non-empty but the least element x in the lattice is also one in whichthe inclusion f:x v x can be strengthened to an equality. A point x suchthat f:x = x is called a �xed point of f . The theorem thus states that, forall monotonic endofunctions f , there is a least �xed point of f which coincideswith the least pre�x point of f .Theorem 7.18 (Knaster-Tarski) If f is a monotonic endofunction oncomplete lattice A then the equationx :: x = f:x(7.19)has a unique least solution, denoted �f , with the characteristic properties�f = f:�f ;(7.20) �f v y ( f:y v y :(7.21)



7.4. FIXED POINTS 119Proof Applying corollary 7.12(f) to ?? givesf ?:?? = f:f ?:?? :I.e. equation (7.19) does indeed have a solution, namely x = f ?:?? . Thepointwise interpretation of corollary 7.12(e) givesf ?:x v y ( x v y ^ f:y v y ;which gives, taking x := ??,f ?:?? v y ( f:y v y :Thus we may de�ne �f to be f ?:?? and, by so doing, we satisfy (7.20) and(7.21). That (7.20) and (7.21) uniquely de�ne �f is straightforward, as is thefact the �f is the least solution.2 In this chapter we have taken the unconventional approach of deriving theKnaster-Tarski theorem as a corollary to a property of Galois connections.Thus, for monotonic function f , the least �xed point of f , �f , equals f ?:??where f ? is the canonical closure operator induced by f . It would have beenentirely possible to have taken the reverse approach, namely to have establishedthe Knaster-Tarski theorem and then used it to characterise f ?. That is part cof exercise 7.24.Exercise 7.22 Suppose � 2 A  � A � A is a binary function that ismonotonic in both its arguments. Show that the function (y 7! x � y)? is amonotonic function. De�ne the functions f , g and h bya f = (x 7! (y 7! x� y)?:x) ,b g = (x 7! x� x) andc h = (x 7! �(y 7! x� y)) .Prove the following:d f ? = g? ,e �f = �h ,



120 CHAPTER 7. CLOSURE OPERATORS AND FIXED POINTSf �g = �h .2Exercise 7.23 For f and g monotonic endofunctions on complete lattice(A;v) prove the following so-called �xed point fusion law:f:�(g � f) = �(f � g) :2Exercise 7.24 The �xpoint operator (the �) maps a monotonic endofunctionon A to an element of A. This operator can be lifted to an operator _� that mapsa monotonic endofunction over the lattice of monotonic endofunctions on A (i.e.a function of type (A � A) � (A � A) ) to a monotonic endofunction onA (hence of type A  � A). If f is a monotonic endofunction on A, then (f �)is of type (A  � A) � (A � A).For f and g monotonic endofunctions on A, prove the following properties:a _�( bf ) = f ,b _�(f �) = c�f ,c f ? � g = _�(bg �t (f �)) .2Exercise 7.25 An alternative proof of the closure decomposition theoremcan be constructed using exercises 7.22(f), (7.23) and 7.24(c). Unlike the proofgiven in section 7.3 it is not necessary to prove mutual inclusion; equality canbe proved directly. Construct such a proof. (Hint: use exercise 7.24(c) in theform f ? � g = _�(h 7! g _t f � h)so that you are in a position to apply 7.22(f).)2Exercise 7.26 [Tarski's theorem [89]] For (A;v) a complete lattice and fa monotonic endofunction on A, prove that the collection of �xed points of fforms a complete lattice. Give an expression for the suprema or in�ma in thatlattice.2



7.5. TWO EXAMPLE CLOSURE OPERATORS 1217.5 Two Example Closure OperatorsProviding non-trivial examples of closures is impossible without assuming extrastructure in the underlying lattice. Two trivial examples can be given nonethe-less and are well worth documenting. The �rst of these is the identity functionon the given lattice.(IA)? = IA :(7.27)Proof (IA)? = IA� f corollary 7.12(b) g(IA)? _v IA( f corollary 7.12(e) with f; g; h := IA; IA; IA gIA _v IA .2Moreover,f ? = (IA _t f)? :(7.28)The proof is a straightforward use of closure-decomposition with f; g := IA; fcombined with (7.27).The second example is the class of constant functions. Suppose a 2 A. Letba denote the constant function (x 7! a) always returning a. Then,ba? = (at) :(7.29)Proof ba?= f corollary 7.12(f) gIA _t ba � ba?= f ba � f = ba for all f gIA _t ba= f calculus g(at) .



122 CHAPTER 7. CLOSURE OPERATORS AND FIXED POINTS2 Just as for the identity function, the use of the closure-decomposition ruleenables one to simplify a closure term when one of its components is a constantfunction (which is quite a commonplace occurrence).(ba _t f)? = f ? � (at) = (ba _t f)? � (at) :(7.30)Proof We note that(ba � f ?)?= f ba � g = ba , for all g g(ba)?= f (7.29) g(at) .So, by the closure-decomposition rule, (ba _t f)? = f ? � (at) . The secondequality follows trivially from the observation that (at) = (at) � (at) .2



Chapter 8Regular AlgebraIn chapter 7 we considered closure operators in general. In this chapter we aregoing to study one in particular, the re
exive, transitive closure operator.We already have one very good reason for wanting to study it: as we saw intheorem 7.14, every closure operator is the re
exive, transitive closure of somemonotonic function. That, however, is a very abstract reason; there are severalconcrete reasons why such a study is justi�ed. One such is that, in many areasof mathematics, ordering relations are commonly introduced by considering there
exive, transitive closure of a primitive relation. For example, the at-mostrelation on natural numbers is the re
exive, transitive closure of the successorfunction. This, indeed, is the area from which the terminology (\re
exive",\transitive") is borrowed. It may help if you keep the relational model in mindto interpret the theorems we present (but, of course, not individual calculationsteps!). We, ourselves, continue to pitch the discussion at an abstract, axiomaticlevel thus admitting more models (some of which will be introduced later).In order to de�ne a re
exive, transitive closure operator a modicum of al-gebraic structure in the underlying lattice is essential. In order that such anoperator be mathematically interesting, more algebraic structure is desirable.Just how much will become apparent in the course of this chapter. From thepoint of view of the models that are prevalent in many application areas yetmore structure is usually assumed | in particular the structure of what we willcall a \regular algebra". A regular algebra is quite a rich structure so, in orderto make clear the rôle of each of its elements, we break it down into a hierarchyof structures. In this hierarchy the algebras that we dub semi-regular play theleading rôle. 123



124 CHAPTER 8. REGULAR ALGEBRAParticularly interesting about re
exive, transitive closures is that there areseveral ways of de�ning them. The most direct way is as the least re
exive,transitive lattice element that includes the given primitive element. Other de�-nitions are less direct but more suited to some sorts of calculation. We considerthree di�erent de�nitions | the direct one and two indirect de�nitions | andwe establish their equivalence. We also look at the relationship between transi-tive closures and re
exive, transitive closures.8.1 FactorsSo that the reader may have a clear idea of where we are heading we introducethe de�nition of a regular algebra in this section even though we do not makeuse of all elements of the de�nition until section 8.4. The most unusual elementsof the de�nition are the dual notions of \left" and \right factor".De�nition 8.1 (Regular Algebra) A regular algebra consists of a set Awith the following algebraic structure.� An ordering relation v is de�ned on A such that (A;v) is a completelattice. As usual we will denote the supremum operator in A by t.� The set A contains a distinguished element I and is closed under a binaryoperator � such that (A; �; I) is a monoid. (I.e. I is a unit of �, and� is associative.) The operator � will be referred to as the compositionoperator.� For all x in A, the functions (x�) and (�x) are universally t-junctive.2On account of the last requirement, the composition operator in a regular al-gebra is monotonic in both its arguments. Moreover, exploiting the monoidstructure to extend composition to an arbitrary number of arguments (thecomposition of zero lattice elements being I) it is also the case that an n-foldcomposition is monotonic in all n arguments.The last requirement is equivalent to the functions (x�) and (�x) havingupper adjoints (for each lattice element x). We denote these adjoint functions



8.1. FACTORS 125by (xn) and (=x) respectively. Thus, in a regular algebra two binary factoringoperators are automatically de�ned by the Galois connections:x � y v z � y v xnz(8.2) x � y v z � x v z=y :(8.3)A term of the form xnz is called a right factor of z, and a term of the form z=yis called a left factor of z.We encountered factors earlier in this monograph. In section 5.5.4 factorswere examined in two speci�c settings, the relations over a universe and inthe realm of regular languages. These are not the only �elds in which factorsare used. The interested reader can �nd some bibliographic references at thebeginning of section 5.5.4.The reason that we call these two operators \factoring" operators is thatif one draws an analogy between composition and multiplication then the op-erators n and = behave somewhat like division in that we have the followingcancellation properties.x � xny v y(8.4) x=y � y v x :(8.5)(The analogy should not be stretched any further. Composition is not assumedto be commutative and arguments of composition and factoring may only becancelled when they are adjacent as in the equations above.)A model of a regular algebra, of particular interest to computing scientists,occurs in language theory. Suppose T is some �nite, non-empty set of \sym-bols". De�ne T � to be the set of all strings of symbols (including the emptystring), and let (A;v) be the set of all subsets of T � ordered by set inclusion.De�ne the binary operator � byL �M = [:(x; y : x 2 L ^ y 2M : xy)for all L;M � T �. Also de�ne I to be the set containing just the empty string.Then, with these de�nitions, we have constructed a regular algebra. (This,indeed, is the model in which the name \regular algebra" �rst appeared.)We often summarise the existence of left and right factors | perhaps some-what sloppily | by saying \composition is universally t-junctive". But, it isimportant to note that the property entails two separate axioms. One is that,for all x, the function (�x) is universally t-junctive and so has an upper adjoint.



126 CHAPTER 8. REGULAR ALGEBRAThe other is that, for all x, the function (x�) is universally t-junctive and so hasan upper adjoint. A model that satisi�es the �rst axiom but not the second isthe monoid MONO.A formed by the monotonic endofunctions, ordered point-wise, on a complete lattice A. (See the discussion at the beginning of chapter7 for a de�nition of MONO.A.) In this chapter we derive several properties bycombining properties obtained by assuming universal t-junctivity of (�x), forsome x, with the dual properties obtained by assuming universal t-junctivityof (x�). The �rst set of properties remains valid in MONO.A (and thus thischapter extends the study of f ? begun in chapter 7) but their duals are typicallynot valid in MONO.A. (See for example exercise 8.45).In order to distinguish more clearly between those properties that rely onboth t-junctivity properties from those that rely on just one we propose theintroduction of the term \semi-regular" algebra. By a semi-regular algebra wemean a complete lattice (A;v) exhibiting a monoid structure (A; �; I) suchthat the operator � is monotonic in its second argument and, for all x, thefunction (�x) is universally t-junctive. The composition operator in a semi-regular algebra is thus monotonic in both its arguments but, unlike a regularalgebra, t-junctive in only one.Our axiomatisation of a regular algebra is not the only one that has beenproposed. Conway [30] discusses several alternatives, although none of his ax-iom systems concides with ours. Ironically, although Conway introduced andexploited factors he never saw �t to base an axiomatisation of regular algebraon their existence!Other axiomatisations of regular algebra typically postulate the existenceof a unary operator | the so-called \Kleene star" | with certain propertiesincluding a decomposition rule similar to the closure decomposition rule inchapter 7. It will be our goal in this chapter to show how the Kleene star canbe de�ned in a regular algebra in such a way that it automatically satis�essuch a decomposition rule. Our discussion is organised roughly according tothe four requirements on a regular algebra. To begin with we assume only that(A;v) is a complete lattice containing a distingushed element I, and on which isde�ned a binary operator � that is monotonic in both its arguments. No furtherassumptions will be made until section 8.3. Then we consider the consequencesof admitting a semi-regular algebra, and �nally we consider regular algebras.



8.2. THE KLEENE STAR 1278.2 The Kleene Star8.2.1 Direct De�nitionThroughout the remainder of this section we assume that (A;v) is a completelattice containing a distingushed element I, and on which is de�ned a binaryoperator � that is monotonic in both its arguments.Let x be an element of A. We call x re
exive if I v x. We call x transitiveif x � x v x.The de�nitions of re
exive and transitive correspond in the relational modelto what we normally understand by re
exivity and transitivity of a relation.For [[R is re
exive]]� f de�nition g[[I v R]]� f interpretations of I and v in the relational model g8(x; y :: x = y ) x[[R]]y)� f one-point rule g8(x :: x[[R]]x) ,and [[R is transitive]]� f de�nition g[[R �R v R]]� f interpretation of v in the relational model g8(x; z :: x[[R �R]]z ) x[[R]]z)� f interpretation of � , range disjunction g8(x; y; z :: x[[R]]y ^ y[[R]]z ) x[[R]]z) .The transitive closure of x is conventionally denoted x+, and the re
exive,transitive closure x�. The operator � is often referred to as the Kleene star [55].We stick to these conventions in order to give the formulae we derive a familiarappearance.The transitive closure of x is the least transitive lattice element that includesx. Letting sq denote the function (x 7! x � x) we therefore de�nex+ = sq?:x :(8.6)



128 CHAPTER 8. REGULAR ALGEBRAThe re
exive, transitive closure of x is the least re
exive, transitive latticeelement that includes x. Letting Î denote the constant function (x 7! I) wetherefore de�nex� = (Î _t sq)?:x :(8.7)Note that these equations are literal translations of the English descriptions.From the de�nition of closure operators (theorem 7.10) and corollary 7.12(b)we have:x+ � x+ = sq:sq?:x v sq?:x = x+ ;(8.8) x v x+ ;(8.9)and, (x v y � x+ v y) ( y � y v y :(8.10)Thus x+ is transitive | (8.8) |, includes x | (8.9) | and is least among suchvalues | (8.10) . Similarly,I v x� ^ x� � x� v x� ;(8.11) x v x� ;(8.12)and (x v y � x� v y) ( (I v y ^ y � y v y) :(8.13)By instantiating the properties of closure operators discussed in the last sec-tion we obtain several properties of the transitive closure and the re
exive andtransitive closure. Some of these are: from 7.12(a)x v y+ � x+ v y+ and x v y� � x� v y� ;(8.14)from 7.12(h)x = x+ � x � x v x and x = x� � I v x ^ x � x v x ;(8.15)from 7.12(c)x+ = (x+)+ and x� = (x�)� ;(8.16)



8.2. THE KLEENE STAR 129from 7.12(k) (since sq _v Î _t sq)x+ v x� :(8.17)From 7.15(b)x+ u y+ = (x+ u y+)+ and x� u y� = (x� u y�)� :(8.18)Finally, from (7.30) we obtainx� = (I t x)+ = (I t x)� :(8.19)Exercise 8.20 Note that none of these properties depends in any way on thefact that composition is universally t-junctive, or on the fact that (A; �; I) isa monoid. Only the existence of I, and the existence and monotonicity of abinary composition operator are needed. The challenge is thus to discover whatconsequences this extra structure has on the properties of the two operatorsindividually, and on their relationship to each other. In this exercise we considersome of these consequences. Speci�cally:??� = I+ = I� = I ;(8.21) x� = I t x+ ;(8.22)and x� = x� � x� :(8.23)Prove these properties.28.2.2 Indirect De�nitionYet more properties of the star operator can be derived by establishing itsequality to two other closure operators. Speci�cally, let a be an element of aregular algebra and consider the two closure operators (a�)? and (�a)?. Then,we claim,a� = (a�)?:I = (�a)?:I :(8.24)



130 CHAPTER 8. REGULAR ALGEBRANote that the assumption we have just made is that a is an element of a regularalgebra. Both (a�)? and (�a)? are well de�ned at the level of the primitivealgebraic structure we are now considering but there is very little to say abouttheir properties at this level (and absolutely nothing about their relationshipto the Kleene star)! Shortly, therefore, we move on to consider semi-regularalgebras. In a semi-regular algebra we will be able to establish the equality ofthe �rst two terms. Then, in a regular algebra, we can dualise all equations ina semi-regular algebra by just turning all the compositions around. In this waywe establish equality between the �rst and third terms.For future reference we state the characteristic properties of (a�)?.a � (a�)?:x v (a�)?:x ;(8.25)and ((a�)?:x v y � x v y) ( a � y v y :(8.26)8.3 Semi-regular AlgebrasThe time has come to assume the structure o�ered by a semi-regular alge-bra. Recall that a semi-regular algebra is a complete lattice (A;v) exhibitinga monoid structure (A; �; I) such that the operator � is monotonic in its sec-ond argument and, for all x, the function (�x) is universally t-junctive. Thecomposition operator in a semi-regular algebra is thus monotonic in both itsarguments but, unlike a regular algebra, t-junctive in only one. In particularthe factoring operator = de�ned by equation 8.3 exists but its counterpart nneed not.The next two subsections consider a� and (a�)? separately. In the third sub-section we put the results we have obtained together to obtain the relationshipbetween the two claimed in (8.24).8.3.1 A Leapfrog RuleThe �rst property we prove we call a leapfrog rule. We give it this name becauseit gives a condition under which an element x may \leapfrog" from one side tothe other of a star term.a� � x v x � b� ( a � x v x � b :(8.27)



8.3. SEMI-REGULAR ALGEBRAS 131Proof a� � x v x � b�� f factors: (8.3) ga� v (x � b�) = x� f We apply (8.13) postponing temporarily the proof that(x � b�)=x is re
exive and transitive ga v (x � b�)=x� f factors: (8.3) ga � x v x � b�( f by (8.12), b v b� ;composition is monotonic in its 2nd argument ga � x v x � b .The postponed second step is derived as follows:I v (x � b�)=x� f factors: (8.3), I is a unit gx v x � b�� f by (8.11), I v b� gtrue ,and (x � b�)=x � (x � b�)=x v (x � b�)=x� f factors: (8.3) g(x � b�)=x � (x � b�)=x � x v x � b�( f cancellation: (8.5), and monotonicity g(x � b�)=x � x � b� v x � b�( f cancellation: (8.5), and monotonicity gx � b� � b� v x � b�� f by (8.11), b� is transitive gtrue .2



132 CHAPTER 8. REGULAR ALGEBRA8.3.2 Closure FusionNow we turn to (a�)?. Here the �rst property we observe can be summarisedin words by: the function (a�)? is completely determined by its value at I. In aformula, and in more detail:(a�)?:b = (a�)?:I � b ;(8.28)our second example of a fusion property. (Recall the �xed point fusion propertyin exercise 7.23.) Note that an immediate consequence of the fusion propertyis that for all b and c we have(a�)?:b � c = (a�)?:(b � c) :(8.29)Thus a composition of a term of the form (a�)?:b and some other term canalways be \fused together" to form a term of the �rst form.The proof of (8.28) is delightfully straightforward. For a change we shallappeal to the unicity of adjoints in a Galois connection rather than the ruleof indirect equality. (A proof using the latter rule is almost identical to theone we give but requires a couple of extra steps.) The function (a�)? is byde�nition the lower adjoint of the function embedding lattice elements y satis-fying a � y v y in the lattice A. It su�ces therefore to show that the function(b 7! (a�)?:I � b) , �rstly, maps elements of A into such lattice elements and,secondly, has the same embedding function as its upper adjoint.The �rst proof obligation is soon dismissed. By (8.25) with x instantiatedto I, a � (a�)?:I v (a�)?:I :(8.30)So, by the monotonicity of composition,a � (a�)?:I � b v (a�)?:I � b :(8.31)The second proof obligation amounts to proving the equivalence(a�)?:I � b v y � b v y(8.32)for all y such that a � y v y . Let us make that assumption of y. Then,



8.3. SEMI-REGULAR ALGEBRAS 133(a�)?:I � b v y� f factors: (8.3) g(a�)?:I v y=b� f We aim to use (8.26). Now,a � y=b v y=b� f factors: (8.3) ga � y=b � b v y( f cancellation: (8.5) ga � y v y� f � a � y v y gtrue .Thus (8.26) can indeed be applied. gI v y=b� f I � b = b, factors: (8.3) gb v y .8.3.3 Coincidence of the Direct and Indirect De�nitionsIn this section we prove the identity:a� = (a�)?:I :(8.33)The key to the proof is the closure fusion property (8.28). For, instantiatingb to (a�)?:I, we readily see that (a�)?:I is transitive:(a�)?:I= f corollary 7.12(c) g(a�)? : (a�)? : I= f (8.28) g(a�)?:I � (a�)?:I .The proof of (8.33) is now a piece of cake:a� v (a�)?:I( f (8.13) ga v (a�)?:I ^ (a�)?:I � (a�)?:I v (a�)?:I ^ I v (a�)?:I� f (8.25) and 7.12(b); above; 7.12(b) gtrue ,



134 CHAPTER 8. REGULAR ALGEBRAand (a�)?:I v a�( f (8.26) gI v a� ^ a � a� v a�( f (8.11) and monotonicity of � ga v a�� f (8.12) gtrue .Useful though it may be, the form of (8.33) is, to our taste, somewhatunpleasant making it di�cult to memorize. A slight modi�cation lifting theproperty from element level to the level of functions makes a world of di�erence.Speci�cally,(a�)� = (a�)? ;(8.34)since for all elements ba� � b= f (8.33) g(a�)?:I � b= f (8.28) g(a�)?:b .Exercise 8.35 Prove that in a semi-regular algebra x+ = (x�)?:x .2Exercise 8.36 By combining (8.27) and (8.33) it is straightforward to provethe identity:(a�)?:x v x � (b�)?:I ( a � x v x � b :Give a direct proof of this identity using, instead of (8.27), the Galois connectionde�ning (a�)?, namely:((a�)?:x v y � x v y) ( a � y v y :2



8.3. SEMI-REGULAR ALGEBRAS 1358.3.4 Star DecompositionIn chapter 7 we claimed that the closure-decomposition rule is vitally importantalthough seldom recognised as such. Some examples of its use have already beengiven but the next calculation stands out.What we show is that in a semi-regular algebra the Kleene star operatorobeys exactly the same decomposition rule as the closure operator. Speci�cally,for all a and b,(at b)� = a� � (b � a�)� :(8.37)The indirect de�nition of re
exive transitive closure motivates a search forthe existence of such a property. The question that naturally arises is how thefamily of functions (x�)?, where x is taken to range over all lattice elements,behaves with respect to the underlying lattice structure. In other words, isit possible to express the function ((a t b)�)? in terms of the functions (a�)?and (b�)? ? Given this question and equation (8.34) one is thus led to seek adecomposition of the element (a t b)� in terms of the elements a� and b�.The closure decomposition rule is the obvious tool to use to pursue suchan investigation, and indeed its use is very straightforward | so long as oneis comfortable with working at the level of functions rather than at the levelof functions applied to arguments! Since typically that is not the case somepreliminary remarks are required before we embark on the calculation.We note �rst that the associativity of composition can be expressed as anequation between functions of the form (x�). By omitting the (implicitly uni-versally quanti�ed) argument z in the equation(x � y) � z = x � (y � z) ;(8.38)we get the equation(x � y)� = (x�) � (y�) :(8.39)(The principal operator on the right of this equation is indeed function compo-sition | there is no typographical error!) Second we note that the fact that forall z the function (�z) distributes through t can also be expressed without theneed for the argument z. Speci�cally,(x t y) � z = (x � z) t (y � z)(8.40)



136 CHAPTER 8. REGULAR ALGEBRAconverts to(x t y)� = (x�) _t (y�) :(8.41)With these preliminaries we now proceed to investigate the function ((a tb)�)?. We have((a t b)�)?= f (8.41) g((a�) _t (b�))?= f closure decomposition, theorem 7.13 g(a�)? � ((b�) � (a�)?)?= f (8.34) applied twice g(a�)� � ((b�) � (a�)�)?= f (8.39)) g(a�)� � ((b � a�)�)?= f (8.34), (8.39) g(a� � (b � a�)�)� .Hence, (a t b)�= f I is unit of composition g(a t b)� � I= f (8.34) g((a t b)�)?:I= f above ga� � (b � a�)� � I= f I is unit of composition ga� � (b � a�)� .8.4 Regular AlgebrasIn a semi-regular algebra there is an asymmetry between composition on the leftand composition on the right. In a regular algebra this asymmetry completelydisappears. Any property proved in a semi-regular algebra can thus be dualisedin a regular algebra by turning all compositions around. In particular, in aregular algebra the dual of (8.27) is also true.x � a� v b� � x ( x � a v b � x :(8.42)



8.4. REGULAR ALGEBRAS 137Interchanging a and b in (8.27) and combining it with (8.42) we thus obtain:x � a� = b� � x ( x � a = b � x :(8.43)The antecedent in this equation can be made true if a is substituted for x, b � ais substituted for a, and b is instantiated to a � b. We thus obtain the leapfrogrule: a � (b � a)� = (a � b)� � a :(8.44)The star-decomposition rule has already been proved in section 8.3.4. Wethink it is su�ciently important however to prove it yet again directly from thedirect de�nition of re
exive and transitive closure.To prove the rule we exploit the rule of indirect equality with the domainpredicate p de�ned by p:y equivales y is both re
exive and transitive. That is,we show that for all re
exive and transitive y,(at b)� v y � a� � (b � a�)� v yfollowing which we verify that a� � (b � a�)� is re
exive and transitive. (Byde�nition (at b)� is re
exive and transitive.)Proof (at b)� v y� f � y is re
exive and transitive, (8.13) gat b v y� f suprema ga v y ^ b v y� f � y is re
exive and transitive, (8.13) ga� v y ^ b v y� f ()) � y � y v y(() � I v a� ga� v y ^ b � a� v y� f � y is re
exive and transitive, (8.13) ga� v y ^ (b � a�)� v y� f ()) � y � y v y(() � I v a� ga� � (b � a�)� v y .



138 CHAPTER 8. REGULAR ALGEBRAIt remains to prove that a� � (b � a�)� is re
exive and transitive. At a glance itis re
exive. For transitivity we have:a� � (b � a�)� � a� � (b � a�)� = a� � (b � a�)�( f (8.23) with x := b � a�, Leibniz ga� � (b � a�)� � a� = a� � (b � a�)�� f leapfrog rule: (8.44), with a := a� g(a� � b)� � a� � a� = a� � (b � a�)�� f (8.23) with x := a g(a� � b)� � a� = a� � (b � a�)�� f leapfrog rule: (8.44), with a := a� gtrue .2 Note that all elements of the structure of a regular algebra are used in thisproof of star-decomposition.One reason that the leapfrog rule (8.44) and the star decomposition rule(8.37) are so important | particularly in computing science | is that a num-ber of common programming problems �t into the abstract framework of aregular algebra, and their solution is readily formulated using the two rules.Examples of such problems are several path-�nding problems [7, 27, 10], buttheir discussion is beyond the scope of this text.Exercise 8.45 One might speculate whether the leapfrog rule holds withthe closure star replacing the Kleene star. That is, is it the case that, for allmonotonic functions f and g,(f � g)? � f = f � (g � f)? ?(8.46)Also, if one combines the star-decomposition rule with the leapfrog rule oneobtains an alternative form of the star-decomposition rule, namely:(a t b)� = (a� � b)� � a� ;(8.47)and one might speculate whether this rule remains valid when the Kleene staris replaced by the closure star, i.e. whether or not, for all monotonic functionsf and g,(f _t g)? = (f ? � g)? � f ? :(8.48)



8.4. REGULAR ALGEBRAS 139Investigate whether (8.46) and/or (8.48) is valid. (Note that if a counterexampleto (8.48) can be constructed then both are false, but the falsehood of (8.46) doesnot necessarily imply that (8.48) is false.)2Exercise 8.49 (Conway's Factor Matrix) J.H. Conway [30] was the �rstto introduce factors in the context of regular languages. The chapter on factorsin his book introduces the notion of the \factor matrix" of a language and showshow it can be used to approximate a language by other languages. In the follow-ing chapter he also uses factors in combination with so-called \biregulators" toprove that various operations on languages preserve the property of being regu-lar. Conway's style of proof in the chapter on factors is very wordy and certainlynot calculational. This is recti�ed somewhat in the chapter on biregulators (analgebra of transducers) where his techniques for proving regularity-preservingproperties are particularly e�ective.This exercise enables you to reconstruct, in a calculational style, the mainproperties of Conway's factor matrix. Some preparatory de�nitions are neces-sary.Conventionally a matrix has a �nite number of elements. This is also the casefor Conway's factor matrix since he restricted his attention to regular languages.We do not want to make that restriction and since, in the current circumstances,there is no reason to restrict matrices to a �nite number of elements we shallnot do that either.The de�nition we use here of a square matrix over A indexed by a (non-empty) index set I is simply a function M 2 A  � I � I. If i and j areelements of I then the application of M to (i; j) is denoted iM j and is calledthe (i; j)th element of M.Now suppose (A;v; �; I) is a regular algebra. (So (A;v) is a complete latticeand (A; �; I) is a monoid.)Note that associativity of composition is equivalent toXn(Y=Z) = (XnY )=Z ;(8.50)for all X, Y and Z 2 A. Moreover, that I is a left unit of composition isequivalent toInX = X(8.51)



140 CHAPTER 8. REGULAR ALGEBRAfor all X 2 A, and that it is a right unit toX=I = X(8.52)for all X 2 A. Property (8.50) permits one to drop the parentheses and writeXnY=Z, which we do from now on. (Note however that (X=Y )nZ 6= X=(Y nZ)in general!)Let I be a non-empty set and consider the set of all square matrices over Awith index set I. It is easy to show that this set forms a regular algebra withthe following de�nitions (whereby i, j and k range over I):M v N � 8(i; j :: iM j v iN j)i(M � N)k = t:(j : j 2 I : iM j � j N k) ; andi I j = I if i = j?? otherwise :(The veri�cation of this assertion you may regard as part 0 of this exercise.)In this algebra, we say that matrix M is re
exive if I v M and transitiveif M �M v M . This is, of course, the standard de�nition of re
exivity andtransitivity.Now let E denote a �xed element of A. (We use \E" as did Conway tohelp the reader to relate the properties stated here to those in Conway's book.)Conway de�nes a factor of E to be any element ofA that can be expressed in theform XnE=Y for some X and Y . He calls an element of A a left factor of E ifit can be expressed in the form E=Y for some Y and a right factor of E if it canbe expressed in the form XnE for some X. The function (X; Y 7�! XnE=Y ),where X and Y range over all elements of A, thus forms a matrix of factorswith index set A but this matrix is not Conway's factor matrix. Conway's factormatrix is a matrix indexed by the left factors (or equally the right factors) of E,this index set being �nite in the case that E is a regular language (as opposedto A which is in�nite). In more detail, his theorem states that the factors ofE organise themselves into a re
exive, transitive matrix indexed by the left (orright) factors of E. Moreover, E itself and all left and right factors of E areelements of the matrix.In this exercise we lead you step-by-step to a proof of this theorem.Step 1. According to our de�nition of a matrix, the binary operators n and=, with domains restricted to I �I for arbitrary set I, I � A , are both squarematrices over A.



8.4. REGULAR ALGEBRAS 141Show that, for arbitrary index set I, both n and = are re
exive andtransitive matrices.The clue we obtain from this step to the construction of the factor matrixis that it su�ces to construct a suitable index set for the matrix n (or for thematrix = ).Step 2. De�ne the functions / and . byX/ = E=X ;(8.53) X. = XnE :(8.54)By de�nition, the range of / is the set of left factors of E and the range of . isthe set of right factors of E.Observe a Galois connection between / and . and hence prove the following:X/./ = X/ ;(8.55) X./. = X. ;(8.56) E/. = E = E./ :(8.57)This step records a (1-1) correspondence between left and right factors of E.Thus any matrix indexed by left factors can be mapped directly into a matrixindexed by right factors, and vice-versa. Moreover | property (8.57) | E isboth a left and right factor of itself.Let L denote the set of left factors of E. The conclusion from steps 1 and2 is that there are only two reasonable candidates for Conway's factor matrix,the matrix n indexed by L and the matrix = also indexed by L. After amoment's thought it is obvious that the latter matrix is uninteresting, so weconsider the former.Step 3. De�ne the factor matrix of E to be the binary operator n restrictedto L � L. Thus entries in the matrix take the form L0nL1 where L0 and L1are left factors of E. By step 1 this is a re
exive, transitive matrix. Also, byde�nition of a left factor and a factor, all entries in the matrix are factors of E.Suppose that F is a factor, L is a left factor, and R is a right factor of E.Construct left factors L0, L1, L2, L3, L4 and L5 such thatF = L0nL1 ;(8.58) L = L2nL3 ; and(8.59) R = L4nL5 :(8.60)



142 CHAPTER 8. REGULAR ALGEBRA(Hint: observe that (8.50) with Y instantiated to E gives the identityXn(Z/) = (X.)=Z :(8.61)Combine this with (8.55), (8.56) and (8.57).)From your constructions of L2{L5 satisfying (8.59) and (8.60) you shouldobserve that L2 is independent of L and L5 is independent of R. Prove thatE = L2nL5 ;(8.62)and show that, for all X,X is a left factor of E(8.63) � 9(L : L is a left factor of E : X = L2nL) ;and X is a right factor of E(8.64) � 9(L : L is a left factor of E : X = LnL5) :This completes the proof of Conway's theorem. A matrix has been exhibitedcontaining all factors and only the factors of E, indexed by left factors of E,that is re
exive and transitive. The import of (8.63) and (8.64) is that a \row"of the matrix (a set of entries all having the same �rst index) contains all (andonly) the left factors of E, and a \column" of the matrix (a set of entries allhaving the same second index) all (and only) the right factors of E. In addition,from (8.62) we see that E is the matrix entry at the intersection of this row andcolumn. (Note, however, that factors and left and right factors of E, includingE itself, may appear repeatedly in the matrix. Conway's wordy theorems andproofs are confusing on this point and there is one unfortunate misprint thatclaims exactly the opposite!)The factor matrix crops up surprisingly often. In [2] it was shown that,in the context of language theory (speci�cally, where elements of A are setsof words on which is de�ned a length function), there exists a unique leastmatrix, dubbed the factor graph, whose re
ective, transitive closure is the factormatrix of a given language E. Further, in [9] it was shown that several pattern-matching algorithms, including the well-known Knuth-Morris-Pratt algorithm[56], boil down to constructing the factor graph of a language de�ned by thegiven patterns.



8.5. CONCLUDING REMARKS 1432Exercise 8.65 The route taken in exercise 8.49 to the construction of thefactor matrix is a direct one but there are several detours that one take on theway. This exercise records a couple.From the Galois connection between / and . constructed in exercise 8.49you will have observed that both /. and ./ are closure operators. This willhelp you to solve the following question.Show that, for all X and Y ,X � Y v E � X./ � Y /. v E :(8.66)Using this (or otherwise) prove that:(X � Y ). = (X./ � Y ). :(8.67)The dual of (8.67) is(X � Y )/ = (X � Y /.)/ :(8.68)These two formulae are slightly more general than (8.55) and (8.56): the formeris obtained by instantating Y to I in (8.67) and the latter by instantiating Xto I in (8.68).28.5 Concluding RemarksThe principal results in this section | that (a�)?:I is the re
exive, transitiveclosure of a, and the star-decomposition and leapfrog rules | are standard, butour approach to them is not. (The standard way of de�ning (a�)?:b is as theleast �xed point of the function (x 7! b t a � x). That is,(a�)?:b = b t a � (a�)?:b(8.69)and (a�)?:b v y ( b t a � y v y :)(8.70)Why, one is entitled to ask, should we pay so much attention to well-knownfacts, and what is the justi�cation for such idiosyncracy?



144 CHAPTER 8. REGULAR ALGEBRAThe answer to these questions cannot be given completely at this stage andthe reader must exercise some patience. We can however hint at some reasons.The Kleene star is often used to denote the list constructor. Thus if a denotesa type then a� denotes all lists with elements drawn from a. The choice of thesame symbol to denote the re
exive, transitive closure operator on relations andthe list type constructor is not accidental but motivated by agreements betweentheir properties. In particular, just as there are three distinct ways to de�nethe re
exive, transitive closure operator, there are three distinct ways to de�nelists. One is to de�ne the so-called \cons" lists, another is to de�ne \snoc" listsand a third is to de�ne \join" lists. Cons lists are constructed from the emptylist by appending (\consing") elements to the head of a list, whilst snoc lists areconstructed from the empty list by appending (\snocing") elements to the tailof a list. Join lists consist of the empty list, singleton lists (i.e. lists of lengthone), or are formed by appending (\joining") two lists to each other, the joinoperation being by de�nition associative and having the empty list as unit.These three list constructors are isomorphic in the sense that there are bi-jections mapping join lists to snoc lists and cons lists. The informal descriptionswe have just given of the three type constructors also bear a strong resemblanceto the three di�erent ways we have presented of de�ning the re
exive transitiveclosure a� | if one reads \�" as \append". The description of join lists has theappearance of the direct de�nition, whilst the description of cons and snoc listsis suggestive of the two indirect de�nitions, cons lists corresponding to (a�)?:Iand snoc lists to (�a)?:I .The question arises whether the proofs of the equality of a�, (a�)?:I and(�a)?:I can be somehow adapted to constructions of the bijections between join,snoc and cons lists. Other questions also suggest themselves: can we give aconstructive interpretation to the star-decomposition rule and to the leapfrogrule (for example), and if so can the proofs we have given be adapted to theconstruction of interesting and useful programs. More generally, can we givethe theory of closure operators a constructive interpretation that enables us toderive useful and interesting programs on type structures other than lists.As we shall see, the answer is yes. For example, the constructive interpre-tation of the star-decomposition rule is a problem known as the \lines-unlinesproblem" [22] (the problem of splitting a paragraph of text into several linesand separator symbols). The two di�erent proofs discussed here lead to twodi�erent solutions to the lines-unlines problem. The step from these proofsto constructive proofs coincides with the step from Galois connections to the



8.5. CONCLUDING REMARKS 145categorical notion of an \adjunction". But, at this stage in the presentation,insu�cient theory has been developed to permit us to make that step.Note At the time of writing (August 1992) the above remarks should be re-garded as an objective rather than an accomplished fact. We have done su�cientwork to convince us that the objective is attainable but that work is as yet notproperly documented and incomplete.
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Chapter 9The Algebraic FrameworkA major component of our endeavour is the development of a calculus of pro-gramming that permits and, indeed, encourages clear and economical calcula-tion. For this we need an elegant algebraic setting. Although from the math-ematical point of view, there is nothing wrong with a standard set-theoreticapproach nor with the algebraically more attractive predicate calculus, we aredissatis�ed with the persistent appearance of arguments and dummies in thosesystems. This invites us to look for a setting one abstraction level higher that�ts our manipulative needs.In order to choose such an abstract setting (\syntax" for short) several designcriteria should be established. Here some of ours are mentioned, not as dictatesbut just for the sake of clarifying our point of view.� The syntax should re
ect the structure of the everyday mathematical viewof relations as tightly as possible (excluding historical oddities, inelegan-cies and prejudice).� The syntax should be built up in layers. If possible, those layers shouldbe well-known syntactical unities with proven \elegance".� The meta-language used for juggling with the syntax is the predicatecalculus.� There should be a clear distinction between terms in the meta-languageand terms in the syntax. 149



150 CHAPTER 9. THE ALGEBRAIC FRAMEWORKFortunately we don't have to start from scratch. The road towards an\axiomatic theory of relations" is already paved with the pioneering work ofTarski [88]. Besides, the above point of view is apparent in most of the curriculanowadays, be it not always explicit. Without further ado we present the mostbasic part of the syntax. In section 12 this syntax is supplemented by axiomsfor elementary data types.9.1 The Setting9.1.1 Plat Calculus and the Knaster-Tarski TheoremLet A be a set, the elements of which are to be called specs. On A we imposethe structure of a complete, completely distributive, complemented lattice(A; u; t; :; >>; ??)where \u" and \t" are associative and idempotent, binary in�x operators withunit elements \>>" and \??", respectively, and \:" is the unary pre�x operatordenoting complement (or negation). We assume familiarity with the standardde�nition of a lattice given, for example, by Birkho� [23]. By \complete lattice"we mean that the extremumst(R : R 2 V : R)and u(R : R 2 V : R)exist for all bags of specs V. \Completely distributive lattice" means thatR u t (S : S 2 V : S) = t (S : S 2 V : R u S)and R t u (S : S 2 V : S) = u (S : S 2 V : R t S)for all specs R and all bags of specs V. Finally, \complemented lattice" meansthat :R exists for all specs R and obeys de Morgan's laws and the doublenegation rule. (Note: the de�nition of a Boolean algebra requires only theexistence of �nite extremums and distributivity over such �nite extremums.Our requirements are thus stronger.) The ordering relation induced by thelattice structure will be denoted by \w".This structure is well known from the predicate calculus: for \u" and \t"read conjunction and disjunction, respectively, for \>>" and \??" read true



9.1. THE SETTING 151and false, and for \w" read \(". We call such a structure a plat , the \p"standing for power set and \lat" standing for lattice. Since the structure is sowell known and well documented we shall assume a high degree of familiaritywith it.Among the more signi�cant properties of such a structure is the (well-known)\Knaster-Tarski �xpoint theorem". Since we shall use the theorem frequentlywe summarise it here (to the extent and in the form appropriate to our ownneeds). Speci�cally, it says that, for arbitrary monotonic function �, the equa-tion X :: X = �:Xhas a smallest solution, which henceforth we denote by ��, characterised by thetwo properties:�� = �:��and, for all X,X w �� ( X w �:XMoreover, such an equation also has a largest solution, which henceforth wedenote by ��, characterised by the properties:�� = �:��and, for all X,X v �� ( X v �:XFor an excellent account of plat calculus (although that name is not used!),including a modern proof of the Knaster-Tarski theorem and a clear and carefulexposition of its implications, we would recommend the reader to refer to [36].9.1.2 Composition and FactorsThe second layer is the monoid structure for composition:(A; � ; I)where � is an associative binary in�x operator with unit element I.



152 CHAPTER 9. THE ALGEBRAIC FRAMEWORKThe interface between these two layers is: composition is universally cup-distributive. I.e. for bags of specs V;W � A,(tV) � (tW) = t (P;Q : P 2 V ^ Q 2 W : P �Q)In particular,� ?? is a left and right zero for �,� � is monotonic with respect to w.� >> �>> = >>.Another, less immediate and somewhat unfamiliar consequence of this in-terface, is the existence of so-called \left" and \right factors" de�ned as follows.De�nition 9.1 For specs R and S we de�ne the right factor RnS by(a) RnS w X � S w R � Xand the left factor S=R by(b) S=R w X � S w X � R2 Left and right factors are thus de�ned to be the largest solutions to inequa-tions in a variable X (the inequation to the right of the equivalence in their re-spective de�nitions). Although we shall have no use for it here we mention thatthe operators \n" and \=" associate with each other (i.e. Pn(Q=R) = (PnQ)=R),thus justifying writing PnQ=R and that such is a factor of Q.Equations (9.1a) and (9.1b) are instances of what are known as \Galoisconnections". (See the appendix for further discussion.) Our use of the word\factor" is intended to suggest an analogy between composition and multipli-cation, and between factoring and division. This analogy is further reinforcedby the following easily derived cancellation properties of factors.Lemma 9.2 (Factor Cancellation)



9.1. THE SETTING 153(a) S w R � (RnS)(b) R w (R=S) � S(c) Rn(R �S) w S(d) (R �S)=S w R(e) R � Rn(R �S) = R � S(f) (R �S)=S � S = R � S(g) Rn(R � RnS) = RnS(h) (R=S � S)=S = R=S2 Evidence for the claim that de�nitions (9.1a) and (9.1b) and, in particular,the calculational possibilities they admit are important but not well known isthe fact that they have surfaced in various guises and under various names overthe last �fty years beginning, to our knowledge, with [37] (under the namesleft and right \residuals") and involving diverse application areas such as thestructure of natural language [57], regularity properties of generalised-sequentialmachines [30] (under the name used here of left and right \factors"), the well-known Knuth-Morris-Pratt string searching algorithm [9], and program speci�-cation [52] (under the names \weakest pre- and post-speci�cation"). We preferConway's [30] more anonymous terminology to that used by Hoare and He[52]. The term \residual", which is also used by Birkho� [23], would have beenequally acceptable. Note, however, that of the above-referenced works, Hoareand He's calculational formulation of the properties of \factors" is the singlemost signi�cant contribution to the present work.Remark In addition to the use of di�erent terminology our choice of notation isexactly opposite to Hoare and He's: they would write S=R where we write RnS,and vice-versa RnS where we write S=R. Our own choice of notation is justi�edby the | for us very important | property that in the use of lemma 9.2 the\cancelled" expressions are adjacent. We reject outright the notation adoptedby Birkho� [23] as unsystematic and inappropriate to compact calculation. Endof Remark9.1.3 ReverseThe third layer is the \reverse structure",(A; [)



154 CHAPTER 9. THE ALGEBRAIC FRAMEWORKwhere \[" is a unary post�x operator such that it is its own inverse.The interface with the �rst layer is that \[" is an isomorphism of plats. I.e.for all P;Q 2 A,P w Q � P [ w Q[Consequently, for all P;Q 2 A,:(P [) = (:P )[(P t Q)[ = P [ t Q[(P u Q)[ = P [ u Q[>>[ = >>??[ = ??Remark As a rule we shall write the names of unary functions as pre�xes totheir arguments. A partial justi�cation for making an exception of \[" is thatit commutes with \:", thus permitting us to write the syntactically ambiguous\:R[". Later we shall see that \[" also commutes (by de�nition) with so-called\relators". The latter is the main reason for this choice of notation.(We are not alone in purposefully adopting a syntactically ambiguous no-tation, although the practice is sometimes frowned on. DeMorgan [32] is anoutstanding precedent. He writes \not-L-verse" where we write :L[. See [61]for detailed references and citations from DeMorgan's work.)End of RemarkThe interface with the second layer is given by the two equations:(R � S)[ = S[ � R[and I[ = I9.1.4 Operator precedenceSome remarks on operator precedence are necessary to enable the reader toparse our formulae. First, as always, operators in the metalanguage have lowerprecedence than operators in the object language. The principle meta-operatorswe use are equivalence (\�"), implication (\)") and follows-from (\(") |these all having equal precedence | , together with conjunction (\^") and dis-junction (\_") | which have equal precedence higher than that of the other



9.1. THE SETTING 155meta-operators. The precedence of the operators in the plat structure followsthe same pattern. That is, \=", \w" and \v" all have equal precedence; so do\t" and \u"; and, the former is lower than the latter. Composition (\ � ") hasa yet higher precedence than all of the operators mentioned thus far, whilst thetwo factoring operators (\=" and \n") have the highest precedence of all thebinary operators. Finally, all unary operators in the object language, whetherpre�x or post�x, have the same precedence which is the highest of all. Paren-theses will be used to disambiguate expressions where this is necessary.9.1.5 The Exchange and Rotation RulesTo the above axioms we now add an axiom that acts as an interface betweenall three layers.The Middle Exchange Rule:Y w P � :X � Q � X w P [ � Y � Q[The rule is so named because the middle term on the right side is exchangedwith the left side of the inequality.There are several variations on the rule. The \left" and \right" exchangerules are obtained by instantiating, respectively, P and Q to I and simplifying.The Left Exchange Rule:Y w :X � Q � X w Y � Q[The Right Exchange Rule:Y w P � :X � X w P [ � YThe \rotation rule" is obtained by making the substitutions Y := R[, P := S,X := :T and Q := I and again simplifying.Rotation Rule:R[ w S � T � :T [ w R � SNote how the variables R, S and T are rotated in going from the left to theright side of the rule.



156 CHAPTER 9. THE ALGEBRAIC FRAMEWORKIt is our experience that the middle exchange rule can meet with consider-able resistance for one of two reasons. First, for calculational purposes, a rulewith four free variables is (rightly) regarded as approaching, if not outwith, thelimits of useability. Second, for those already familiar with the relational cal-culus, there is resistance to the fact that we have chosen to replace the betterknown \Schr�oder" rule which states that the following three statements are allequivalent.T w R � S:S w R[ � :T:R w :T � S[To counter these arguments we would point out that the middle exchange ruleis more compact than the Schr�oder rule (two statements are equivalent ratherthan three) and, more importantly, has a clean syntactic form that makes iteasy to remember and to apply. The rotation rule shares these advantages aswell as involving only three free variables, but su�ers the disadvantage that insome calculations two successive uses are required where only one use of themiddle exchange rule is necessary. In combination with other laws both rulesare equivalent to the Schr�oder rule. (The Schr�oder rule can also be reduced tothe equivalence of just two statements, making our �rst argument void, but thenit would su�er the same disadvantage as the rotation rule, which is probably thereason why it is always stated in the way that it is.) An alternative axiomati-sation is also possible using a rule relating factors, reverse and the complementoperator. This alternative is discussed further in the appendix.(In point of fact, Maddux [61] observes that the so-called \Schr�oder" rulewas stated much earlier by De Morgan. Schr�oder subsequenty elaborated on therule, listing all possible variations on the rule with three variables and extendingit to \relative addition", R y S, de�ned by R y S = :(:R � :S).)9.2 ModelsVarious models of the above axioms are discussed in the appendix with regardto the following questions:(a) Are the layers and axioms independent?(b) Are the successive extensions conservative?



9.2. MODELS 157(c) Does the axiomatisation characterise the set-theoretic relationscompletely?Here we shall content ourselves with a summary of the conclusions, namely:the set-theoretic relations do indeed form a model of the axiom system but theaxiom system is not complete for this model; the middle exchange rule and thecone rule (discussed in section 12.1.1) are independent of the other axioms butthe reverse structure is not.A �nal comment with regard to the idiosyncracies of our naming conventions.The following sections must serve a dual purpose. The technical aim is to buildup a theory of types based upon the above syntax. To do this in a way that isevidently free from logical inconsistencies necessitates making a clear distinctionbetween the theory itself and the metalanguage. For this reason we have chosento call elements of A \specs" rather than \relations" and to use the symbols\u" and \t" etc. rather than \\" and \[" etc. To serve the second purpose weintersperse the development with references to the relational model. The readermay prefer to construct their own proofs of the various lemmas, theorems etc.in this one interpretation, but they do so at their own peril.
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Chapter 10FoundationsThe purpose of this section is to build up a vocabulary for our later discussionof polynomial relators and relational catamorphisms. In order to avoid possibleconfusion with existing terminology we make a complete reappraisal of what ismeant by \type", \function", \type constructor" etc. Nevertheless, it should beemphasised that | with the important exception of the notion of \relator" |the concepts de�ned in this section, and their properties, are amply documentedin the mathematical literature and we make no claim to originality.10.1 MonotypesThe notion of a guard as a primitive entity in a programming language was�rst introduced in Dijkstra's guarded command language [34]. It is a usefulnotion since it is more 
exible than the older, more conventional notion of aconditional statement. Its particular merit is that it introduces partiality intoprograms and at the same time facilitates the introduction of indeterminacythereby streamlining the derivation of programs.A guard acts as a �lter on the domain of execution of a statement. Oper-ationally it can be viewed as a partial skip. Mathematically, a guard is just adevice that enables sets | subsets of the set of all states | to be incorporatedinto program statements.In the spec calculus there are two mechanisms for viewing sets as specs,and thus modelling guards, each of which has its own merits. The �rst is viaso-called \monotypes", the second via \conditions". Axiomatically, these have159



160 CHAPTER 10. FOUNDATIONSthe following de�nitions. First: we say that spec A is a monotype i� I w A.Second: we say that spec p is a right condition i� p = >> � p. The dual notionof left condition is obtained by reversing the positions of >> and p in the leftside of the de�ning equation.In the relational model we may assume, for example, that the universe Ucontains two unequal values true and false. The monotype boolean is thende�ned to be the relationf(true, true), (false, false)gThe right condition boolean is the relationf(x, true), (x, false) j x 2 UgIt is clear that for any given universe U there is a one-to-one correspondencebetween the subsets of U and the monotypes. Speci�cally, the set A is repre-sented by the monotype A where xAy � x = y 2 A. Equally clear is theexistence of a one-to-one correspondence between the subsets of U and the rightconditions on U . That is, if A is some set then the right condition de�ned byA is that relation Ar such that for all x and y, xAry � y 2 A. Similarly, theleft condition corresponding to A is that relation Al such that for all x and y,xAly � x 2 A.Using monotypes to represent subsets of U as specs a guard on a spec ismodelled by composition of the spec, either on the left or on the right, withsuch a monotype. Thus, if R and S are specs and A is a monotype then A �Rand S � A are both specs, the �rst being spec R after restricting elements inits left domain to those in A, and the second being the spec S after restrictingelements in its right domain to those in A. Using conditions a guard on the leftdomain of spec R is modelled by the intersection of R with a left condition, anda guard on the right domain of R by its intersection with a right condition. Inprinciple, this poses a dilemma in the choice of representation of guards in thespec calculus. Should one choose monotypes or conditions?We choose monotypes | there being several reasons for doing so. Oneis the simple fact that guarding both on the left and on the right of a spec isaccomplished in one go with monotypes whereas demands two sorts of conditions(left and right conditions). Moreover, they have very simple and convenientproperties. Speci�cally, for all monotypes A and BA = I u A = A[ = A � A(10.1) A � B = B � A = A u B(10.2)



10.1. MONOTYPES 161and for all bags of monotypes B,>> � uB = u(>> � B)(10.3)The most compelling reason, however, for choosing to represent sets by mono-types is the dominant position occupied by composition among programmingprimitives. Introducing a guard in the middle of a sequential composition ofspecs is a frequent activity that is easy to express in terms of monotypes butdi�cult to express with conditions.Nevertheless conditions do have their place from time to time. They toohave attractive calculational properties. From the above it is clear that thereis a one-to-one correspondence between monotypes and both types of condition(documented formally below). Exploitation of this correspondence is central tomany calculations in the spec calculus.Monotypes are obviously closed under t. They are not, however, closedunder u or :. (A non-empty intersection of monotypes is a monotype butthe empty intersection is, by de�nition, >> which is not a monotype. Thecomplement of a monotype is never a monotype.) Nevertheless, with suitablyadapted u and : operators the monotypes do form a complete, completelydistributive lattice, albeit not a sub-lattice of the spec lattice. The clue to itsconstruction lies in the fact that the conditions do form a sub-lattice of the specand are in one-to-one correspondence with the monotypes.Right conditions are closed under negation: for all specs p,:p = >> � :p� f :p v >> � :p g:p w >> � :p� f right-exchange rule gp w >>[ � p� f >>[ = >>, p v >> � p gp = >> � pThey are closed under cup: for all sets of right conditions PtP= f � P is a set of conditions: de�nition of condition gt(>> � P)= f universal t-junctivity of composition g>> � tP



162 CHAPTER 10. FOUNDATIONSand under cap: for all sets of right conditions P ,uPv f I v >> g>> � uPv f monotonicity gu(>> � P)= f � P is a set of conditions: de�nition of conditionguPIn summary, the right conditions form a power set lattice with top and bottom>> and ??, respectively, and meet, join and complement operators the standardspec operators u, t and : .Henceforth we shall always denote monotypes by the capital letters A, B orC. Conditions will be denoted by the lower case letters p, q or r.10.2 Left and Right DomainsWe need to refer to the \domain" and \co-domain" (or \range") of a spec. In or-der to avoid unhelpful operational interpretations we use the terms left-domainand right-domain instead. These are denoted by \<" and \>", respectively, andde�ned by �rst, domains of specs are monotypes: for all specs R,monotype:R< and monotype:R>(10.4)(Note that the in�x dot denotes function application and that unary operatorsalways take precedence in our formulae over binary operators. Thus you shouldparse \monotype:R<" as \monotype:(R<)".) Second, the domain operators arede�ned by a Galois connection between the lattice of all specs and the sublatticeof the monotypes: For all specs R and monotypes A,A w R> � >> � A w R(10.5)and A w R< � A �>> w R(10.6)



10.2. LEFT AND RIGHT DOMAINS 163According to a general theorem on Galois connections it follows that the domainoperators are universally t-junctive. In particular, for all specs R and S,(R t S)< = R< t S<(10.7) (R t S)> = R> t S>(10.8)An additional consequence is that \<" and \>" are monotonic.Consequences of the speci�c form of (10.5) and (10.6) are the one-to-onecorespondences between monotypes and left and right conditions mentionedseveral times earlier: for all specs R,>> �R> = >> � R and (>> �R)> = R>(10.9) R< �>> = R �>> and (R �>>)< = R<(10.10)In particular, for all right conditions p and monotypes A,>> � p> = p and (>> � A)> = A(10.11)Relational calculus yields the following alternative de�nitions de�ning R<and R> as the smallest monotypes satisfying the equations in A, A �R = R andR � A = R, respectively. For all monotypes A and all specs R,A �R = R � A w R<(10.12) R � A = R � A w R>(10.13)The following properties of \<" also prove to be very useful. For all specs Rand S, R< = (R[)>(10.14) R< � S = R �>> u S(10.15) (R � S)< = (R � S<)<(10.16) R< w (R � S)<(10.17) (R u S � T )< = (R � T [ u S)<(10.18)For convenience we also list the dual properties of \>".R> = (R[)<(10.19) S �R> = >> �R u S(10.20) (R � S)> = (R> � S)>(10.21) S> w (R � S)>(10.22) (R u S � T )> = (S[ �R u T )>(10.23)



164 CHAPTER 10. FOUNDATIONSOf these �ve pairs of properties, four are evident when specs are interpretedas relations. One pair, properties (10.15) and (10.20), is less so. Nevertheless,it is worth drawing attention to them because they �gure frequently in some ofour calculations. The alternative expressions I u R �>> and I u >> �R forR< and R>, respectively, are obtained from them by instantiating S to I andsimplifying.We sometimes writeR 2 S�Tas a synonym forS � R = R = R � T(10.24)It is immediate from (10.12) and (10.13) thatR< �R = R = R �R>(10.25)Indeed this law is used so frequently that, after a while, we hardly bother tomention it. Using the notation we have just introduced (10.25) can be rephrasedin the formR 2 R<�R>Note that (10.24) de�nes S�T to be a subset of A. Typically S and T willbe monotypes, but we prefer not to complicate the de�nition by making such arestriction.It follows immediately from (10.2) with B instantiated to A that, for allmonotypes A,A 2 A�A(10.26)and, more speci�cally,A< = A = A>(10.27)Properties (10.14), (10.19) and (10.27) together with the properties of re-verse (in particular, that it is its own inverse) have the important notationalconsequence that any sequence of applications of the left-/right- domain oper-ators and/or the reverse operator can be reduced to the application of at mostone of these operators. Such simpli�cations will be made automatically in our



10.3. IMPS AND CO-IMPS 165proofs except in one or two places where we judge that, in combination with theapplication of some other rule, the proof step has become too large for humanconsumption.Finally, note that once again we choose to use a post�x notation for functionapplication. On this occasion, however, it is not the case that complement and\<" (or \>") commute. That is :(R<) 6= (:R)<, in general. As we shall see,however, \<" and \>" do commute with relators and that is the reason for ourchoice.10.3 Imps and Co-impsIn this subsection we de�ne \imps" and \co-imps" as special classes of specs.In the relational model an \imp" is a function.De�nition 10.28(a) A spec f is said to be an imp if and only if I w f � f[.(b) A spec f is said to be a co-imp if and only if f[ is an imp.(c) A spec is said to be a bijection if and only if it is both animp and a co-imp.2 We shall say that f is a bijection to A from B if it is a bijection and f< = Aand f> = B. Note that if this is the case then both A and B are monotypes andA = f � f[ and B = f[ � f . The notation \A �= B" (read as A is isomorphicto B) signi�es the existence of a bijection to A from B.Theorem 10.29 Composition preserves imps, co-imps and bijections.Proof Straightforward.2 The intended interpretation is that an \imp" is an \imp"lementation. Onthe other hand, it is not the intention that all implementations are \imps".Apart from their interpretation imps have an important distributive propertynot enjoyed by arbitrary specs, namely:



166 CHAPTER 10. FOUNDATIONSTheorem 10.30 If f is an imp then, for all non-empty sets of specs V,u(P : P 2 V : P ) � f = u (P : P 2 V : P � f)In particular, for all specs R and S,(R u S) � f = (R � f) u (S � f)2Dually we have:Theorem 10.31 If f is a co-imp then, for all non-empty sets of specs V,f � u (P : P 2 V : P ) = u (P : P 2 V : f � P )In particular, for all specs R and S,f � (R u S) = (f � R) u (f � S)2 Monotypes are examples of bijections. In the relational model a monotypeis the identity function on that type. More generally, the requirement of beinga function is the requirement of being single-valued on some subset of U, theso-called \domain" of the function. The domain and range are made explicit inthe following.De�nition 10.32 For monotypes A and B we de�ne the set A �B by f 2A �B whenever(a) A w f � f[ and(b) f> = BThe nomenclature \f 2 A �B" is verbalised by saying that \f is an imp to Afrom B".2



10.3. IMPS AND CO-IMPS 167In terms of the relational model, property (10.32a) expresses the statementthat f is zero- or single-valued , i.e. for each x there is at most one y such thaty hfi x, and has range A. Property (10.32b) expresses the statement that f istotal on domain B, i.e. for each x 2 B there is at least one y such that y hfi x.Their combination justi�es writing \f:x", for each x 2 B, denoting the uniqueobject y in A such that y hfi x.By including the above de�nition and not simultaneously including a dualnotion for co-imps we have introduced an asymmetry into our theory that untilnow has been totally absent. This expresses a slight bias with an eye to theextension of the theory with cartesian product and disjoint sum later in thissection. We hasten to add, nonetheless, that there is no such asymmetry in thetheory at this instant and every property we state for imps alone has a dualproperty for co-imps.It is easy to show that,A�B � A � Band, for imp f ,f 2 f< � f>as one would expect from the intended interpretations of these operators.Note also that, for monotypes A, B and C,f 2 A �B ) f � C 2 A �(B u C)In the case that B w C, the imp f � C is the restriction of f to domain C. Amajor advantage of viewing monotypes as specs is that type considerations canbe readily incorporated into the calculations in this way. (For some examplessee [63].)We should stress that the two set-forming operations \�" and \ �" do notform an essential part of our theory but are included in order that the readermay relate their existing knowledge of type structures to the present theory. Inthe sequel we shall often state properties of the domain-forming operations \<"and \>" and immediately transcribe them into properties of \�" and/or \ �".We prefer the statements about the domains for two reasons: they o�er a betterseparation of concerns and are thus calculationally more useful, and they canbe stated with fewer dummies (and indeed in some cases with no dummies,although we don't go that far).



168 CHAPTER 10. FOUNDATIONSTo avoid repeating assumptions and to assist the reader's understanding wecontinue to use the conventions that capital letters A;B;C; : : : at the beginningof the alphabet denote monotypes, small letters f; g; h; : : : denote imps or co-imps, and capital letters R; S; T; : : : at the end of the alphabet denote arbitraryspecs.The operators � and� are the �rst examples of several typing operatorsintroduced throughout the paper. All such operators are indicated by some sortof arrow and/or wavy line. (Other examples are :<� and <�>.) These are alwaysused independently of the inclusion operators in the plat calculus and have thesame precedence.Finally, let us remark that the unconventional direction of the arrow in thestatement \f 2 A �B" is entirely dictated by the choice to denote functionapplication with the function name to the left of its argument. (We owe thesuggestion to deviate from convention to Meertens [69].)10.4 RelatorsIn categorical approaches to type theory a parallel is drawn between the notionof type constructor and the categorical notion of \functor", thereby emphasisingthat a type constructor is not just a function from types to types but also comesequipped with a function that maps arrows to arrows. For an informativeaccount of this parallel see, for example, [65]. In this subsection we propose amodest extension to the notion of functor to which we give the name \relator".By rights, now is the time at which we should attempt to motivate thisextension. This we shall not do, however, since the whole paper itself is themotivation for the proposed extension! Su�ce it to say at this point that ourde�nition arose by distilling the minimum additional requirements needed toguarantee that a functor be \naturally polymorphic" according to the de�ni-tion given in section 11.2 of this paper. This was followed by a (successful)painstaking investigation | reported here | of whether those requirementswere su�cient to enable us to verify a substantial number of other propertiesthat we deemed desirable.De�nition 10.33 A relator is a function, F , from specs to specs such that(a) I w F:I(b) F:R w F:S ( R w S



10.4. RELATORS 169(c) F:(R � S) = F:R � F:S(d) F:(R[) = (F:R)[2In view of (10.33d) we take the liberty of writing simply \F:R[" without paren-theses, thus avoiding explicit use of the property.The above ostensibly de�nes an endorelator, i.e. a unary relator from agiven spec algebra A to itself. But we also wish to allow it to serve as thede�nition of a relator mapping specs of one spec algebra, A say, into another,B say. In particular we wish to use exactly the same de�nition for relatorsthat map an m-ary vector of specs into an n-ary vector of specs, for somenatural numbers m and n. (This is necessary in order to allow the theory toencompass what are variously called \mutually recursive type de�nitions" and\many-sorted algebras". More generally, there is no reason why \m" and \n"may not be some �xed but nevertheless arbitrary index sets. However, sucha generalisation would complicate the current discussion more than we deemjusti�ed.) The mechanism by which we can do this is to assume that all theconstants appearing in the de�nition (\=", \w", \I", \ � " and \[") are silently\lifted" to operate on vectors. For example, if F maps m-ary vectors into n-aryvectors, property (10.33c) would be written out in the form(F:(R1 � S1; : : : ; Rm � Sm))j = (F:(R1; : : : ; Rm))j � (F:(S1; : : : ; Sm))jfor all j, 1 � j � n, whereby the use of subscripts denotes projection of a vectoronto one of its components. It is, however, just such clumsy expressions thatwe want to avoid.One case that we make particular use of is when F maps a pair of specsinto a spec. (Both argument specs and the result spec are assumed, for thetime being, to be in the same spec algebra.) We refer to such relators as binaryrelators and choose to denote them by in�x operators. Thus, if 
 denotes abinary relator, its de�ning properties would be spelt out as follows.(a) I w I 
 I(b) R
 U w S 
 V ( R w S ^ U w V(c) (R � S)
 (U � V ) = (R
 U) � (S 
 V )(d) (R[)
 (S[) = (R
 S)[



170 CHAPTER 10. FOUNDATIONSThe notational advantage of writing \[" as a post�x to its argument is, ofcourse, lost in this case.A property such as (c) we call an \abide" law; we also often refer to thislaw by saying that binary relators \abide" with composition. The name wascoined by Richard Bird (in a di�erent context). His motivation for the namewas that it is short for \above/beside" re
ecting the following two-dimensionalformulation of the law in which the relator and composition are either above orbeside each other.R � S R S
 = 
 � 
U � V U V(To our knowledge there is no universally accepted name for what we have calledan \abide" law even though examples are not di�cult to �nd. A very familiarexample is provided by multiplication and division in real arithmetic. Using adot to denote multiplication and a horizontal bar to denote division we have:u � vx � y = ux � vyAnother elementary example is furnished by addition and subtraction. We have(u + v)� (x + y) = (u � x) + (v � y). (Somewhat tongue in cheek, this leadsus to wonder whether this is the reason that both subtraction and divisionare denoted by a horizontal bar!) Hoare [51] depicts several abide laws in thepredicate calculus in the same way, and we shall encounter others later in thetext. In the category theory literature the term \interchange" rule (or law) isused.)As already announced relators commute with the domain operators.Theorem 10.34 If F is a relator then(a) F:(R>) = (F:R)>(b) F:(R<) = (F:R)<2For the proof of this theorem see the appendix.In view of theorem 10.34 we write \F:R<" and \F:R>" without parentheses,again in order to avoid explicit mention of the properties.



10.5. u-AND t-JUNCTIVITY 171The following theorem allows a comparison to be made with our de�nitionof \relator" and the de�nition of \functor" (in the category of sets).Theorem 10.35 If F is a relator then(a) A is a monotype ) F:A is a monotype(b) f is an imp ) F:f is an imp(c) f is a co-imp ) F:f is a co-imp(d) f 2 A �B ) F:f 2 F:A �F:B(e) R 2 A�B ) F:R 2 F:A�F:BProofStraightforward instantiation of the de�nitions of "monotype", \imp", \co-imp", " �" and "�" combined with the de�nition of a relator and, in thecase of part (b), theorem 10.34.210.5 u-and t-JunctivityIn addition to the four de�ning properties of a relator one might ask the questionwhether it distributes over the cup and/or the cap operator. Such a propertywe call a \�nite junctivity" property. More generally, one might ask whetherthe relator distributes over some class of quanti�cations with respect to the cupand/or cap operator. In order to make the latter notion precise we introducethe following de�nition.De�nition 10.36 Suppose I is a set. We use i and j to denote elements ofI. An I-bag is a (total) spec-valued function with domain I. If R is an I-bagthen R:i denotes the spec obtained by applying R to i 2 I. Also tIR is usedto denote t(i : i 2 I : R:i).An I-bag, R, is linear if for all i; j 2 I one has either R:i w R:j orR:j w R:i.We call a function G from specs to specs I-t-junctive if for all I-bags, R,G:(tIR) = tI(G � R)(10.37)(Note: \ � " denotes composition of functions.)



172 CHAPTER 10. FOUNDATIONSI-u-junctivity is de�ned similarly.The function G is said to be I-t-continuous if (10.37) holds for all non-empty, linear bags R. The notion of I-u-continuity is similarly de�ned.2 Using the word \junctive" to stand for both \u-junctive" and \t-junctive",and \continuous" to stand for \u-continuous" and \t-continuous" we may iden-tify the following properties:� universally junctive, i.e. junctive over all I.� positively junctive, i.e. junctive over all non-empty I.� denumerably junctive, i.e. junctive over all non-empty I with denumerablymany elements.� �nitely junctive, i.e. junctive over all non-empty, �nite I.� continuous, i.e. junctive over all non-empty, linear I.� monotonic, i.e. junctive over all non-empty, �nite, linear, I.Finally, the omission of any quali�cation on the word junctive means �nitelyjunctive. (We reserve the shortest term for this case because it is the mostcommonly occurring and most important case.)The relationship between these various types of junctivity properties is dis-cussed in some depth by Dijkstra and Scholten [36] (in the context of a platcalculus) from where our de�nitions are borrowed.As examples of the use of this terminology, we would say that the functions(R�) and (�R) are (by postulate) universally t-junctive for all specs R. Moreover(see theorems 10.30 and 10.31), (f �) is positively u-junctive for all co-imps f ,and (�f) is positively u-junctive for all imps f .Just as we did for relators we shall apply de�nition 10.36 to functions Gthat are not necessarily unary. When applied to non-unary functions there isa subtle nuance in the de�nition that may not be immediately evident. Toclarify the matter let us spell out the de�nition in the case of a binary operator:I-u-junctivity for a binary operator 
 is that for each pair of I-bags R and S,u(i : i 2 I : R:i)
 u(i : i 2 I : S:i) = u(i : i 2 I : R:i
 S:i)



10.5. u-AND t-JUNCTIVITY 173Written without dummies this is the statementuIR
 uIS = uI(
 � hR;Si )A similar statement holds for I-t-junctivity.Note that �nite, positive t-junctivity of 
 is the same as saying that 
abides with cup.The nuance that we alluded to resides in the di�erence between \junctivity"and \distributivity" properties. In the case that a function is unary the twoclasses are indistinguishable. The examples just quoted are a case in point:we could equally well say, for example, that (�f) is positively u-distributive forall imps f . The meaning is just the same. For functions of higher arity, inparticular binary operators, there is a di�erence. To illustrate this consider theaddition, division and multiplication operators in real arithmetic. We say thatmultiplication \distributes over" addition to express in words the law(u+ v) � (x + y) = (u � x) + (v � x) + (u � y) + (v � y)On the other hand, multiplication abides with division. I.e.(u � v)=(x � y) = (u=x) � (v=x)In the terminology we have just introduced we would say that the binary divisionoperator is multiplication-junctive, but is not multiplication-distributive. Incontrast, the binary multiplication operator is addition-distributive but notaddition-junctive. The notion of junctivity is more primitive because we mayalways de�ne distributivity as coordinatewise junctivity. (A possible cause ofconfusion is that it is common to talk about a binary operator distributing overanother when what is meant is that a unary operator formed by �xing oneargument of a binary operator distributes over another binary operator. Forexample, it is common to summarise the law(x+ y)=z = (x=z) + (y=z)for non-zero z by saying that division distributes over addition. What is actu-ally meant is that for each non-zero z the unary operator (=z) distributes overaddition. The binary division operator is neither +-junctive nor +-distributive.)We trust that it is evident why we are interested in properties such as con-tinuity.
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Chapter 11Natural PolymorphismAny discussion of a theory of datatypes would be incomplete without a dis-cussion of polymorphism. This is particularly true here because our theory isprincipally a theory of two sets of polymorphic functions | the relators and thecatamorphisms to be introduced in section 13. Relators are polymorphic in thesense that they may be applied to arbitrary specs irrespective of the domains ofthe argument spec. Such a statement is, however, somewhat banal since it saysnothing about the mathematical nature of the claimed polymorphism. In thissection we shall argue that relators are \naturally polymorphic". The latternotion is an adaptation and extension of the notion of \natural transforma-tion" in category theory; the de�nition that we use is based on the work of deBruin [26] which work was anticipated by Reynolds [79]. Identifying de�nitionsof \relator" and \catamorphism" that would guarantee their naturality was amajor design goal of our work.11.1 Higher-Order Spec AlgebrasExpressing the natural polymorphism of relators (and other functions or rela-tions) requires the notion of higher-order spec algebra which we now de�ne.Let SPEC = (A; w; I; �; [) be a spec-algebra. Then the algebra of binaryrelations on specs SPEC is de�ned to be (A; w; I; �; [) whereA = P(A �A)w = � 175



176 CHAPTER 11. NATURAL POLYMORPHISMand, using the notation x hRi y instead of (x; y) 2 R,x hIi y � x = yx hR � Si z � 9(y :: x hRi y ^ y hSi z)x hR[i y � y hRi xfor all R; S 2 A and all x; y and z 2 A. As discussed in the appendix, SPEC is,with these de�nitions, also a spec algebra. We call SPEC a higher-order specalgebra.The imps of SPEC are (partial) functions to A from A. Speci�cally, thefunction f from A to A is identi�ed with the relation f on A�A wherex hfi y � x = f:yfor all x; y 2 A. Examples of imps in SPEC are the relators of SPEC. Notethat relators are total imps. I.e. for each relator F we haveF [ � F w IThe monotypes of SPEC can be identi�ed with the subsets of A. That is,a binary relation A in A is a monotype if and only if there is an element A ofP(A) such that8(x; y :: x hAi y � x = y ^ x 2 A)(11.1)The operators \�" and \ �" were de�ned in section 10.3 as set-forming oper-ators. Using (11.1) to identify monotypes of SPEC with subsets of A, we mayidentify \�" and \ �" with elements of A, speci�cally with binary relationson elements of A that are subsets of the identity relation I. To reinforce thisidenti�cation we corrupt the normal usage of the belongs-to symbol \2" by thefollowing de�nition. For spec R and relation S we de�neR 2 S � R hSiROf course, SPEC can itself serve as the basis for the construction of a secondalgebra of binary relations SPEC, and in this way one can construct an in�nitehierarchy of spec algebras. The relators and catamorphism constructors ofone algebra are then total imps in the next higher order algebra; similarly,the expressions \A � B" and \A  � B" of one algebra may be identi�ed



11.1. HIGHER-ORDER SPEC ALGEBRAS 177with monotypes in the next higher order algebra. Maintaining the distinctionbetween the levels has been one reason why we have continually distinguishedbetween \specs" and \relations", and between \imps" and \functions".In this section we de�ne three more relations which we call the naturalityoperators. The operators will be used at various levels in the hierarchy ofSPEC algebras but we do not bother to decorate the di�erent uses with a barto indicate the level of use. Similarly, we use the undecorated symbols \ �", \�", \�", \[" etc. at all levels in the hierarchy. The de�nitions of the barredoperators given earlier will be important to reducing statements at one levelto statements at the next lower level. Their use is, of course, only permittedwithin higher-order algebras.As an example of this overloading of notation and in order to provide areference point for our later discussion let us note the following properties:Theorem 11.2 Let F be a relator. Then, for all monotypes A and B,(a) F � (A � B) 2 (F:A � F:B) � (A � B)(b) F � (A � B) 2 (F:A � F:B) � (A � B)2To understand these statements one must understand at what level each of theoperators is being used. Theorem 11.2(a) is exemplary. Reintroducing the barnotation it states thatF � (A � B) 2 (F:A � F:B)  � (A � B)Thus all operators are higher-order but for the \�" operators. Note thatF � (A � B) is the restriction of relator F to elements of A � B. A moreconventional (but calculationally less convenient) notation might be FA�B (orFA;B) indicating that relators are families of functions indexed by pairs of mono-types. Statement (b) is interpreted similarly; all operators are higher-order butfor the �rst, second and fourth occurrences of \ �".Armed with this insight we may verify part (a) as follows.F � (A � B) 2 (F:A � F:B)  � (A � B)� f de�nition of  � gP1 ^ P2



178 CHAPTER 11. NATURAL POLYMORPHISMwhere P1 � (F:A � F:B) w F � (A � B) � (A � B)[ � F [P2 � (F � (A � B))> = A � BProperty P1 is veri�ed as follows:F:A � F:B w F � (A � B) � (A � B)[ � F [� f de�nition of w at higher order g8(R; S : RhF � (A � B) � (A � B)[ � F [iS: RhF:A � F:BiS)� f de�nition of higher order operators,monotype.(A � B) g8(R; S : 9(T : T 2 A � B : R = F:T ^ S = F:T ): RhF:A � F:BiS)� f calculus, de�nition of A � B g8(T : A �T = T = T �B: 8(R; S : R = F:T ^ S = F:T :R=S ^ F:A � R = R = R �B))� f predicate calculus g8(T : A �T = T = T �B: F:A � F:T = F:T = F:T � B)� f F is a relator and so distributes over composition gtrueSecondly, property P2 is veri�ed as follows:(F � (A � B))>= f domains: (10.21) g(F> � (A � B))>� f F is total. I.e. F> = I g(A � B)>� f A � B is a monotype by de�nition, (10.27) gA � B



11.2. THE NATURALITY OPERATORS 17911.2 The Naturality OperatorsSaving one bound variable is hardly justi�cation for such a spate of de�nitions.The motivation for presenting theorem 11.2 was to be able to compare it totheorem 11.5 below. First, yet three more de�nitions.De�nition 11.3 (The Naturality Operators) Let R and S be specs. Thenwe de�ne the relations R :<� S, R :�> S and R :<�> S by(a) U hR :<� SiV � R � V w U � S(b) U hR :�> SiV � R � V v U � S(c) U hR :<�> SiV � R � V = U � S2 The above de�nition of the :<� operator was introduced in [6]; it is related bypart (a) of the following theorem to de�nitions introduced variously by deBruin[26], Reynolds [79] and Wadler [91].Theorem 11.4(a) If R and S are relations and f and g are total functions thenf hR :<� Si g � 8(u; v :: f:u hRi g:v ( u hSi v)(b) If R and S are relations and f[ and g[ are total functions thenf hR :�> Si g � 8(u; v :: u hRi v ) f[:u hSi g[:v)(c) If R and S are relations and f and g are total, surjective bijections thenf hR :<�> Si g � 8(u; v :: f:u hRi g:v � u hSi v)Proof We prove part (a) only. We begin by transforming the right side ofthe claimed equivalence to a dummy-free form.8(u; v :: f:uhRig:v ( uhSiv)� f one-point rule g8(u; v :: 9(s; t : s = f:u ^ t = g:v : shRit) ( uhSiv)� f de�nition of higher order specs g8(u; v :: 9(s; t : uhf[is ^ thgiv : shRit) ( uhSiv)� f de�nition of composition at higher order g8(u; v :: uhf[ � R � giv ( uhSiv)� f de�nition of w gf[ � R � g w S



180 CHAPTER 11. NATURAL POLYMORPHISMNow we show that this is equivalent to f hR :<� Si g.f[ � R � g w S) f monotonicity gf � f[ � R � g w f �S) f f is a function, Thus f � f[ v I gR � g w f �S) f monotonicity gf[ � R � g w f[ � f � S) f f is total, thus f[ � f w I gf[ � R � g w SThe theorem now follows from the de�nition of R :<� S.2 Several other more evident properties of these operators will be assumed inthe sequel, an example being that :<� is anti-monotonic in its second argument.11.3 Naturality of Relators, Reverse and Com-positionThe reader is invited to compare the following theorem with theorem 11.2.Theorem 11.5 (Naturality of Relators) If F is a relator then for all specsR and S(a) F 2 (F:R :<� F:S) :<� (R :<� S)(b) F 2 (F:R :�> F:S) :<� (R :�> S)(c) F 2 (F:R :<�> F:S) :<� (R :<�> S)Proof The proof of part (a) proceeds as follows.F 2 (F:R :<� F:S) :<� (R :<� S)� f de�nition of 2 gF h(F:R :<� F:S) :<� (R :<� S)iF� f theorem 11.4, relators are total functions g8(U; V :: F:U hF:R :<� F:SiF:V ( U hR :<� SiV )� f de�nition 11.3(a) g



11.3. NATURALITY OF RELATORS, REVERSE AND COMPOSITION1818(U; V :: F:R � F:V w F:U � F:S ( R � V w U � S)� f relators distribute through composition and are monotonic gtrueThe proofs of parts (b) and (c) are identical but for the replacement of theinclusion symbol by, respectively, the containment symbol and the equalitysymbol in the penultimate step.2Nowhere in this document do we hazard a de�nition of \natural polymorphism".Theorem 11.5 does, however, express precisely what we intend by the infor-mal statement that relators are \naturally polymorphic". Similar theorems areproved later about the basic constituents of cartesian products and disjointsums, and about catamorphisms. In each case the theorem involves a universalquanti�cation over specs, and it is in this sense that the spec in question is\polymorphic". The adjective \naturally" is added to suggest the link with\natural transformation" in category theory and to avoid confusion of our no-tion of polymorphism with existing notions.There is, of course, much more to be said about the naturality operators.Statements such as theorem 11.5 express something about the \type" of specs,but along with a notion of type one would normally expect a notion of typeinference. A �rst step to formulating such a type inference algorithm is theobservation that composition is also naturally polymorphic. Speci�cally wehave.Theorem 11.6 (Naturality of Composition)For all :� 2 f :<�; :�>; :<�>g and all specs P1, P2, Q1, Q2, R, S, T ,P1 �Q1 hR :� T iP2 �Q2 ( P1 hR :� SiP2 ^ Q1 hS :� T iQ2In particular,P �Q 2 R :� T ( P 2 R :� S ^ Q 2 S :� TProof Suppose :� 2 f :<�; :�>; :<�>g. Let � denote w, v or = depending onthe value of :�. Then we have:P1 hR :� SiP2 ^ Q1 hS :� T iQ2� f de�nition of :� gR � P2 � P1 � S ^ S �Q2 � Q1 � T



182 CHAPTER 11. NATURAL POLYMORPHISM) f composition is monotonic with respect to � gR � P2 �Q2 � P1 � S �Q2 ^ P1 � S �Q2 � P1 �Q1 � T) f transitivity of � gR � P2 �Q2 � P1 �Q1 � T� f de�nition of :� gP1 �Q1 hR :� T iP2 �Q2The corollary is obtained by instantiating P1 and P2 to P and Q1 and Q2 toQ.2Remark We shall often use :� as a (universally quanti�ed) variable ranging overf :<�; :�>; :<�>g and � as a variable ranging over fw; =; vg. Sometimes we usethem both simultaneously, as above, in which case they correspond (i.e. if :� is:<� then � is w, if :� is :<�> then � is =, and if :� is :�> then � is v.) At othertimes they are used singly. In addition we sometimes use � in the rôle of avariable (always in combination with � ) in which case it designates the reverseof the relation designated by � . End of RemarkTo this we add the \naturally polymorphic type" of reverse. Unfortunately,our notation does not permit this to be done in a single statement. Instead,three are needed. Note the interchange of left- and right-pointing arrows in the�rst two.Theorem 11.7 (Naturality of Reverse) For all specs R and S,(a) [ 2 (R[ :<� S[) :<�> (S :�> R)[(b) [ 2 (R[ :�> S[) :<�> (S :<� R)[(c) [ 2 (R[ :<�> S[) :<�> (S :<�> R)[Proof We prove (a) as an example.[ 2 (R[ :<� S[) :<�> (S :�> R)[� f theorem 11.4(c), reverse is an isomorphism g8(U; V :: U[ hR[ :<� S[iV [ � U h(S :�> R)[iV )� f de�nition 11.3(a), reverse and de�nition 11.3(b) g8(U; V :: R[ � V [ w U[ � S[ � S � U v V �R)� f reverse gtrue2



11.4. NATURAL SIMULATIONS AND NATURAL ISOMORPHISMS 18311.4 Natural Simulations and Natural Isomor-phismsIn this section we brie
y introduce two concepts vital to the development ofa theory of data re�nement (or rei�cation, as it is sometimes called), namely,natural simulations and natural isomorphisms. Elsewhere in the report wereturn to the topic, giving examples and establishing properties of simulationsand isomorphisms.De�nition 11.8 (Natural Formations) We say that spec 
 is a naturaltransformation to relator F from relator G and write 
 2 F<�>G if and only if,for all specs R, 
 2 F:R :<�> G:R.We say that spec 
 is a natural down-formation to relator F from relator Gand write 
 2 F<� G if and only if, for all specs R, 
 2 F:R :<� G:R.Finally, we say that spec 
 is a natural up-formation to relator F fromrelator G and write 
 2 F �>G if and only if, for all specs R, 
 2 F:R :<� G:R.2 Expanding the de�nition of <�> one obtains the identity:
 2 F<�>G � 8(R :: F:R � 
 = 
 �G:R)(11.9)It is this form of the de�nition that we use most frequently. The correspondingidentities for down- and up-formations are also frequently used.Warning In the following discussion we will be particulary concerned with thecomposition of relators. To facilitate the calculations we assume that functionapplication associates to the right. For example, F:G:X should be read asF:(G:X). We denote the composition of relators F andG by F � G. This choiceof notation is akin to that in category theory (where both application of functorsto their arguments and composition of functors are denoted by juxtaposition)but completely opposite to the convention in the lambda calculus. Su�ce it tosay that we have no use of curried functions as they are used in the lambdacalculus, and, hence, there is no advantage to us of letting function applicationassociate to the left. End of WarningDe�nition 11.10 (Natural Simulation) Relator F is said to (naturally)simulate relator G if and only if there exists a spec 
 such that



184 CHAPTER 11. NATURAL POLYMORPHISM(a) 
 2 F<�>G(b) F:I w 
 � 
[(c) 
[ � 
 = G:IThe spec 
 itself is called the witness to the simulation.2 We denote the fact that 
 witnesses a simulation of relator G by relator Fby 
 2 F >� G. When the existence of a witness is known but not directlyrelevant we write F >� G.More insight is gained into the de�nition of a simulation by considering thefollowing equivalent de�nition.Theorem 11.11 For relators F and G and spec 
, 
 2 F >� G equivalesthe conjunction of the three conditions:(a) 
 2 F<�>G(b) 
 is a bijection(c) F:I w 
< and G:I = 
>2 The proof is very routine and so has been omitted. (Two implications haveto be proven. In one direction the main observation is that both F:I and G:Iare monotypes. In the other direction (10.18) must be applied.)De�nition 11.12 (Natural Isomorphism) Relators F and G are said tobe (naturally) isomorphic if and only if there exists a spec 
 such that(a) 
 2 F<�>G(b) 
 � 
[ = F:I(c) 
[ � 
 = G:IThe spec 
 itself is called the witness to the isomorphism.2Again there is an equivalent de�nition that adds extra insight.Theorem 11.13 For relators F and G and spec 
, 
 2 F �= G equivalesthe conjunction of the three conditions:



11.4. NATURAL SIMULATIONS AND NATURAL ISOMORPHISMS 185(a) 
 2 F<�>G(b) 
 is a bijection(c) F:I = 
< and G:I = 
>2Note that the conjunction of (b) and (c) is just the statement that 
 is a bijectionto F:I from G:I.We denote the fact that 
 witnesses an isomorphism between relators F andG by 
 2 F �= G. (Note that the order of F and G is relevant.) When theexistence of a witness is known but not directly relevant we write F �= G. (Inthis case the order is not irrelevant.)Remark We have to admit that, at this stage in our research, we are not surewhether it is desirable to weaken condition (a) by replacing <�> by <�. Westick to the above de�nition at this point in time because we do not know anyexamples of natural simulations according to this weaker de�nition that arenot also natural simulations according to the stronger de�nition. A simulationsatisfying the weaker de�nition is referred to below as an up-simulation. Endof RemarkThe �rst examples of natural simulations and natural isomorphisms appearin section 12.5. In this section we limit ourselves to a few abstract propertiesof natural isomorphisms.Suppose F is a relator and 
 is a bijection with 
< = F:I. De�ne F 
 byF 
:R = 
[ � F:R � 
(11.14)Then we have:Theorem 11.15(a) 
> = F 
:I(b) F 
 is a relator.(c) F F:I = F(d) For all relators G,
 2 F �= G � G = F 
and G = F 
 � G
[ = F(e) If � is a bijection such that �< = 
> then(F 
)� = F 
 � �(f) For all relators G,



186 CHAPTER 11. NATURAL POLYMORPHISM(G � F )G:
 = G � F 
and (F � G)(F:G:I � 
) = F 
 � G2Proof Properties (a) and (b) are trivial. (They have been included becausethey are a necessary preliminary to the remaining parts of the theorem.) So is(c). The �rst part of (d) consists, in fact, of two implications that have to beproved independently. The �rst is 
 2 F �=F 
 which is quite simple to prove:
 2 F �=F 
� f de�nition gbijection:
 ^ 
< = F:I ^ 
> = F 
:I� f assumption g
> = F 
:I� f (a) gtrueThe second is 
 2 F �= G ) G = F 
. This is also quite simple to prove.We have, for all specs X,G:X = F 
:X� f de�nition gG:X = 
[ � F:X � 
( f assumption: 
[ � 
 = G:I g
 � G:X = F:X � 
� f assumption: 
 2 F<�>G gtrueA similar proof is needed for the second part of (d).For (e) one must �rst check that G:
< = G:F:I. This is immediate fromtheorem 10.34 and the assumption that 
< = F:I. One must also check thatG:
 is a bijection, which it is by theorem 10.35(b) and (c). The remainder ofthe proof | checking that, for all specs X,(G � F )G:
:X = G:F 
:X| is a straightforward application of the fact that relators distribute throughcomposition and commute with reverse.Property (f) involves a similar set of proof obligations, and is just as straight-forward.2



11.4. NATURAL SIMULATIONS AND NATURAL ISOMORPHISMS 187Corollary 11.16 \Naturally isomorphic" is an equivalence relation on re-lators. Moreover, for all relators F , G and H,F �= G ) F �H �= G �H ^ H � F �= H �G2 We leave this proof as an instructive exercise to the reader. As a hintwe would remark that the properties of re
exivity, symmetry and transitivitycorrespond to theorem 11.15(c), (d) and (e), respectively. Preservation undercomposition is captured by (f).To conclude this section we summarise several properties of the naturalityoperators in four inference rules. Note that (b) and (c) are instances of (d).Theorem 11.17 (Poly Rules) For :� 2 f<�; <�>; >�;�=g(a) 
 2 F :� G ^ � 2 G :� H ) 
 � � 2 F :� H(b) 
 2 F :� G ) H:
 2 H � F :� H �G(c) 
 2 F :� G ) 
 �G:H:I 2 F �H :� G �H(d) 
 2 F :� G ^ � 2 H :� K ) 
 �G:� 2 F �H :� G �K2
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Chapter 12Polynomial Data Types andRelatorsIn order that our theory be of any use we need to ensure that we can indeed de-�ne some non-trivial monotypes and relators. There are just three componentsneeded to build a signi�cant theory of datatypes, namely a unit type, a disjointsum operator and a cartesian product operator. In this section we present anaxiomatisation of these three components.12.1 The Unit TypeThe unit type corresponds to a set with only one element; not a particularlyinteresting type, but nevertheless useful as a building block for constructingmore complex data structures. The theory presented so far doesn't provide avocabulary for talking about elements, only for talking about specs: this is notunintentional since a goal of our work has always been to minimise the incidenceof point-wise arguments. In keeping with this goal, we adopt a rather abstractview of data types, and take a roundabout route to characterise the unit type.12.1.1 The Cone RuleWe begin by postulating an axiom dubbed \the cone rule". This axiom couldequally well have been included in section 9.1. It has been included here becauseit is only within the axiomatisation of the unit type that we make any use of189



190 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORSthe rule. Elsewhere (e.g. [83]) the cone rule is called \Tarski's rule."The Cone Rule>> � R � >> = >> � R 6= ??As a partial motivation for the cone rule we ask the reader to compare itwith the following consequence of the middle exchange rule.Lemma 12.1 For all specs R, the following statements are all equivalent:(a) ?? = R(b) ?? = R �>>(c) ?? = >> � R(d) ?? = >> � R �>>(e) ?? = R<(f) ?? = R>Proof Suppose R is an arbitrary spec. Then, it is obvious that (a) impliesboth (b) and (c) (since ?? is a zero of composition). By the same token, eachof (b) and (c) imply (d). That (d) implies (a) follows by the following simpleargument:?? = >> � R � >>� f calculus g?? w >> � R � >>) f plat calculus g?? w I � R � I� f calculus g?? = RFinally, (e) is equivalent to (b), and (f) to (c), on account of (10.15) and (10.20).2 One consequence of the cone rule is that >> and ?? are di�erent. Moresigni�cantly, by combining the cone rule and lemma 12.1, one sees that thespec >> �R �>> is always either >> or ?? whatever the value of spec R. Wesay that the function mapping R to >> � R �>> is boolean-valued; the conerule itself is an abstract and concise way of expressing the proposition that,considered as a set of pairs, spec R either contains no elements or contains atleast one element.Another consequence of the cone rule, that we mention for later use, is thefollowing:



12.1. THE UNIT TYPE 191Lemma 12.2 ?? = R � >> � S � ?? = R _ ?? = SProof Follows from is clearly trivial. Implication admits a simple and elegantproof. ?? = R �>> �S� f cone rule g>> 6= >> �R �>> �S �>>� f >> = >> � >> g>> 6= >> �R �>> �>> �S �>>) f >> = >> � >> g>> 6= >> �R �>> _ >> 6= >> �S �>>� f cone rule g??=R _ ??=S212.1.2 The AxiomsIn order to capture the notion of a unit type we need to express a sort of dualto the cone rule, namely that there is a non-empty spec which, when viewedas a set of pairs, consists of at most one pair the two components of which areidentical. Speci�cally, we posit the existence of a spec, denoted 11, such that?? 6= 11(12.3)and I w 11 � >> � 11(12.4)There are several ways to convince oneself that axioms (12.3) and (12.4) areindeed what we seek. One is to interpret the axioms in the relational model;another is to explore the consequences of the axioms within the theory itself.We would not discourage the reader from doing the former, but prefer ourselfto emphasise the latter. We verify, �rst, that the unit type is an \atomic"monotype (\atomic" to be de�ned shortly) and, second, that it is a \terminalobject" in the sense of category theory. Finally, we summarise certain basicproperties of the unit type.



192 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS12.1.3 An Atomic MonotypeWe begin by verifying that the unit type is a monotype.Theorem 12.5 11 is a monotype.Proof Iw f (12.4) g11 � >> � 11w f domains: (10.18), monotonicity g11< � 11= f domains: (10.25) g112We now de�ne an atom to be a spec R such that, for every spec X,R w X ) ?? = X _ R = XClearly, ?? is an atom. In general, the relational interpretation of an atom isa set of pairs containing at most one element.Theorem 12.6 11 is an atom.Proof Let X be a spec such that 11 w X. Then, by the de�nition of anatom, we must prove that ?? = X _ 11 = X. Assume X 6= ??. Then, by thecone rule, >> = >> �X �>> . Aiming at the use of this property we calculateas follows:11 v X� f (�>>) is an order isomorphism on monotypes g11 �>> v X �>>( f (12.4) g11 �>> v 11 �>> � 11 �X �>>( f monotonicity g>> v >> � 11 �X �>>( f >> = >> �X �>> , monotonicity g11 �X = X( f monotypes: 10.2 gX v 112



12.1. THE UNIT TYPE 193Properties (12.3), (12.5) and (12.6) express, respectively, that 11 is non-empty, and is a monotype corresponding to a set containing at most one element.12.1.4 TerminalityThe abstractness in the de�nition of the unit type consists, in part, of thefact that the unit type characterises any one-element set (or, if you prefer, ismodelled by any one-element set); the identity of the element is irrelevant. Incategory theory a unit type is characterised by the following so-called \terminal-ity" property: for each set A, there is one, and only one, function | commonlydenoted by !A | in 11 � A. Introducing the de�nition! = 11 �>>(12.7)this characterisation of the unit type is mimicked in our theory by the followingtwo consequences of axioms (12.3) and (12.4). For all monotypes A,! � A 2 11 � A(12.8) R 2 11 � A ^ R> = A � R = ! � A(12.9)Thus the categorical function !A is rendered by the imp ! � A.Equivalent, more succinct, and more fundamental, renderings of (12.8) and(12.9) are! is an imp; and(12.10) 11 = 11 � >> � 11(12.11)from which follows11 w R< � R = ! � R>(12.12)(Note: the equivalence of (12.8) and (12.9) to (12.10) and (12.12) involves anon-trivial proof but is nonetheless left to the reader.) Here are their proofs.Proof of (12.10)! is an imp� f de�nition, reverse gI w 11 � >> � >>[ � 11[� f 11 is a monotype, (10.1), properties of >> g



194 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORSI w 11 � >> � 11� f 12.4 gtrue2Proof of (12.11)11 � >> � 11w f >> w I g11 � 11= f 11 is a monotype, (10.1) g11w f (12.4), monotonicity of composition g11 � 11 � >> � 11= f 11 is a monotype, (10.1) g11 � >> � 112Proof of (12.12)11 w R<� f (10.12) gR = 11 �R� f (12.11) gR = 11 �>> � 11 � R ^ R = 11 � R� f (10.1), 11 is a monotype gR = 11 �>> � R� f (10.20) with R; S := S;>> gR = 11 �>> � R>2It is also clear from these properties that 11 is unique up to isomorphism: if 110is also a unit type then 11 �>> � 110 is a bijection to 11 from 110.12.1.5 A Summary of Basic PropertiesThe \foundations" that were laid in sections 10 and 11 were not without pur-pose. In this and later sections we shall continually ask a number of standard



12.1. THE UNIT TYPE 195questions about the specs and/or operators that have been newly introduced,the questions falling under headings such as \left and right domains", \impsand co-imps", and \natural polymorphism". Two such questions have alreadybeen answered for the unit type: it is a monotype and the spec ! is an imp.To these we might also add that the function from specs to specs that alwaysreturns 11 is a relator (because 11 is a monotype). This seemingly trivial remarkwill prove to be quite important. There are two \standard questions" yet tobe answered: what are the left and right domains of ! and in what sense is itnaturally polymorphic? Here is the answer to the �rst of these.Theorem 12.13(a) !< = 11(b) !> = I2 Veri�cation of both of these is straightforward and is left to the reader. (Forpart (a) make use of (12.11). For part (b) make use of the cone rule.)The �nal question in this list is answered by the following theorem.Theorem 12.14! 2 11 :<�> >>In particular, for all specs R,! 2 11 :<� RProof ! 2 11 :<�> >>� f de�nition !, de�nition 2 g11 �>> h 11 :<�> >>i 11 �>>� f de�nition :<�> g11 � 11 � >> = 11 � >> � >>� f 11 is a monotype, >> = >> � >> gtrueThe corollary follows because equality is a special case of inclusion and :<� isanti-monotonic in its second argument.2



196 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORSThe second naturality property of ! above is much the weaker of the two butmay have a more familiar appearance. It is derived from the type statement! � A 2 11 � Aby omitting the restriction of the domain to monotype A (in e�ect consideringthe polymorphic imp rather than an instance of it), replacing A by an arbitraryspec R and replacing \ �" by \ :<�". It is this that is often meant by sayingthat ! is \naturally polymorphic".The unit type constitutes a building block for the construction of data types;we turn now to the mortar: cartesian product and disjoint sum.12.2 Axioms for Cartesian Product and Dis-joint SumIn all systems that we know of, cartesian product and disjoint sum are dualsof each other. (Disjoint sum is indeed often given the name \co-product".) Inchoosing an axiomatisation of the two concepts in a relational framework wehave therefore striven for two sets of rules that are \dual" to each other in someclearly recognisable way. It is for this reason that we present the two sets ofaxioms together in this section. In subsequent sections we consider separatelythe consequences of the axioms for cartesian product and for disjoint sum be-fore returning in the �nal section to consider natural isomorphisms betweencombinations of the two.In choosing our axioms, we have, of course, been strongly in
uenced by ourexperience with set-theoretic presentations of the relational calculus, that beingthe model our axioms are intended to capture. Since our notation is somewhatunconventional we shall frequently refer to this model for motivation.We begin by postulating the existence of four specs, for cartesian productthe two projections� (pronounced \project left") and� (pronounced \projectright") and for disjoint sum the two injections ,! (pronounced \inject left")and  - (pronounced \inject right"). (Note the unconventional direction of thearrow heads. As an aid to memory, and motivation for this choice, we suggestthat the reader bear in mind the diagram \X ,! X+Y  - Y ".) Further,experience leads us to introduce four binary operators on specs, for cartesianproduct 4 (pronounced \split") and � (pronounced \times"), and for disjoint



12.2. AXIOMS FOR CARTESIAN PRODUCT AND DISJOINT SUM 197sum 5 (pronounced \junc") and + (pronounced \plus"), de�ned in terms ofthe projection and injection specs as follows:P 4Q = (�[ � P ) u (�[ � Q)(12.15) P 5Q = (P � ,![) t (Q �  -[)(12.16) P �Q = (P � �) 4 (Q � �)(12.17) P+Q = (,! � P ) 5 ( - � Q)(12.18)The relational model that we envisage assumes that the universe is a termalgebra formed by closing some base set under three operators: the binary oper-ator mapping the pair of terms x, y to the term (x; y), and two unary operators,! and  - mapping the term x to the terms ,!:x and  -:x, respectively. Theinterpretation of � and � is that they project a pair onto its left and rightcomponents. That is,x h�i (x; y)y h�i (x; y)The four de�ned operators should be familiar from their interpretations whichare (x; y) hP 4Qi z � x hP i z ^ y hQi zx hP 5Qi y � 9(z :: y = ,!:z ^ x hP i z)_ 9(z :: y =  -:z ^ x hQi z)(u; v) hP �Qi (x; y) � u hP i x ^ v hQi yx hP+Qi y � 9(u; v :: x = ,!:u ^ y = ,!:v ^ u hP i v)_ 9(u; v :: x =  -:u ^ y =  -:v ^ u hQi v)Note that these are the de�nitions of the operators in higher-order SPEC alge-bras.Our �rst axiom is that the injections are both imps.I w (,! � ,![) t ( - �  -[)(12.19)The \dual" of this axiom that we propose is:I w (�[ � �) u (�[ � �)(12.20)which says that projecting a pair onto its �rst and second components and thenrecombining the components leaves the pair unchanged.



198 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS(Berghammer and Zierer [14] and de Roever [81] introduce an almost iden-tical axiom to (12.20) but in their case the axiom is an equality rather than aninclusion. The di�erence is that their theories are monomorphic and not poly-morphic. Relations are assumed to be (externally) typed and there is a familyof product operators indexed by pairs of types. In our theory types (or ratherdomains) are internal and there is just one (polymorphic) product operator.)We remark that axioms (12.19) and (12.20) take the following form whenrephrased in terms of the product and sum operations.I w I+I(12.21) I w I � I(12.22)This is reassuring since it is one step on the way to guaranteeing that + and �are binary relators.Cartesian product and conjunction are closely related. Speci�cally, we have(in the set-theoretic interpretation of �)x hP \Qi y � (x; x) hP �Qi (y; y)Abstracting from this property in order to �nd an axiom that has a pleasingsyntactic shape we are led to the following axiom:(P 4Q)[ � (R 4 S) = (P [ � R) u (Q[ � S)(12.23)The dual axiom for disjoint sum is:(P 5Q) � (R 5 S)[ = (P � R[) t (Q � S[)(12.24)(The reader may wish to interpret these properties in the relational model toassure themself of their validity.)As a �nal axiom we postulate that left projection is possible if and only ifright projection is possible:�> = �>(12.25)Property (12.25) is equivalent to>> � � = >> � �(12.26)Its dual is therefore the trivially true,! � ?? =  - � ??



12.3. PROPERTIES OF CARTESIAN PRODUCT 199There are thus no further axioms for disjoint sum.The �ve properties (12.19), (12.20), (12.23), (12.24) and (12.25) are the sumtotal of our axiomatisation of cartesian product and disjoint sum.In the following two sections we consider individually the consequences ofthe axioms for cartesian product and disjoint sum. The cap operator in thede�nition of split together with the fact that composition is not universally u-junctive make the calculations with cartesian product somewhat harder thanthose with disjoint sum. For this reason we begin with cartesian product andallow ourselves the luxury of much greater brevity in the discussion of disjointsum. It should be noted that the organisation of the calculations in the nexttwo sections is intended to facilitate, above all, ease of reference. A consequencethereof is that the reader may spot ways of shortening our calculations byinterchanging the order of presentation.12.3 Properties of Cartesian ProductThere is a major complicating factor in developing a relational rather than afunctional theory of datatypes. It is not, however, a complication that we wantto avoid or brush under the carpet since it is an inevitable consequence of thedesire to face the issue of nondeterminism. The complication can be pinpointedto cartesian product. Consider, as a �rst example, the \doubling function",i.e. the function that constructs a pair from a singleton by simply copying itsargument. This is the imp I 4 I. Now consider the equation:(I 4 I) � R = R 4Rand let us interpret R as a nondeterministic function. The equation is thenclearly invalid since on the left side some nondeterministically calculated valueis copied whereas on the right side a pair is constructed by applying R twice;since that calculation is nondeterministic the two elements of the pair maydi�er. If, however, R is a true function (an imp according to our de�nition) theequation is valid, as can easily be proved. Clearly the di�erence lies in the factthat imps distribute backwards over the cap operator whereas that is not thecase in general.The rami�cations of the lack of such a distributivity property are many-fold. They can best be observed by comparing the theorems in this sectionwith those in the next. In particular the fusion properties in the subsection



200 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS12.3.1, the computation rules in subsection 12.3.2 and the terminality propertyin subsection 12.3.6 are signi�cantly less tractable than their counterparts fordisjoint sum.Many of the theorems in this section go in pairs: one for left and one forright projection. In all cases we prove just one of the two.12.3.1 Fusion PropertiesOur �rst concern is whether or not the product operator (�) is a relator. Ac-cording to the de�nition of a relator there are four conditions that we mustverify. The �rst condition is axiomatically true (see (12.22)). The second con-dition, the requirement that cartesian product be monotonic in both its argu-ments, is clear from its de�nition (it is a composition of monotonic functions).Also clear from the de�nition of cartesian product is that the reverse operatordistributes over it. I.e.(P �Q)[ = P [ � Q[(12.27)It remains to show that composition distributes over cartesian product:Theorem 12.28 (Product-Split and Product-Product Fusion)(a) (P �Q) � (R 4 S) = (P �R) 4 (Q � S)(b) (P �Q) � (R� S) = (P �R) � (Q � S)Proof We only prove the (a)-part, the other part follows immediately from(a) and (12.17).(P �Q) � (R 4 S)= f (12.27), reverse g(P [�Q[)[ � (R 4 S)= f (12.17) g((P [ ��) 4 (Q[ ��))[ � (R 4 S)= f (12.23) g(P [ ��)[ � R u (Q[ ��)[ � S= f reverse g�[ � P � R u �[ � Q � S= f (12.15) g(P �R) 4 (Q � S)2



12.3. PROPERTIES OF CARTESIAN PRODUCT 201Properties (12.28a) and (12.28b) are the �rst examples of many propertiesto which we give the name \fusion" property. In general, whenever we intro-duce a relator we seek its associated \catamorphism" operator (in the case ofcartesian product this is split, and in the case of disjoint sum this is junc) andwe investigate conditions under which two specs can be \fused" into the onecatamorphism. (Typically, as in (12.28a) and (12.28b) one of the specs to befused is itself a catamorphism.) Later on, when we discuss relators de�ned via�xed-points we shall observe a connection between catamorphism fusion andloop fusion, and such properties will prove their worth in enabling us to derivee�cient programs. Note, however, that we do not always use the rules to \fuse"specs; just as often we use them to \defuse" a spec into component parts. Thereader should not allow the one-way character of the name to prejudice theiruse of such rules.Remark Our e�orts to identify categories of properties to which we give compactnames can never be wholly satisfactory because the categories are not distinct.Property 12.28(b), for instance, is both a fusion property | because a productis a particular form of catamorphism | and an abide law | composition andproduct abide with each other. End of RemarkCorollary 12.29 � is a binary relator.2 A fusion equality in which the split occurs to the left of the compositioncannot be established in general. An inclusion does hold, however, and is notentirely useless. Two cases where an equality can be established (although notthe only ones) are when one operand of the split has the form S �>> for someS and when the right operand of the composition is an imp.Theorem 12.30 (Split-Spec and Split-Imp Fusion)(a) (R 4 S) � T v (R � T ) 4 (S � T )(b) (R 4 S) � T = (R � T ) 4 (S � T )( R w R � T � T [ _ S w S � T � T [In particular, for all imps f ,(c) (R 4 S) � f = (R � f) 4 (S � f)Also(d) (R 4 (S �>>)) � T = (R � T ) 4 (S �>>)Finally,



202 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS(e) (R 4 S) � T = (R � T ) 4 (S � T )( (R 4 S)< w ((R �T ) 4 (S �T ))<^ T w R[ � R � T ^ T w S[ � S � TProof As indicated (c) is an easy consequence of (b). (Just check that thepremisses in (b) are ful�lled by imps f . Straightforward unfolding of the de�-nition of split augmented by, in the case of part (a), monotonicity, in the caseof part (b), lemma D14, in the case of part (d), theorem D15 and in the caseof part (e), theorem D20 su�ces to establish the remaining parts.212.3.2 Computation RulesThe name \projection" immediately suggests its operational interpretation.Here that interpretation is represented by two rules that we call \computationrules". Before we can derive these rules we need to note several lemmas:Lemma 12.31(a) >> � � w �(b) >> � � w �Proof Immediate from (12.26), >> �� w � and >> �� w �.2 We shall have further use of lemma 12.31 later, but an immediate corollaryis that one can express various combinations of one projection in terms of thesplit and product operators:Lemma 12.32(a) �[ �R = R 4>>(b) �[ �R = >> 4R(c) �[ �R �� = R�>>(d) �[ �R �� = >>� RIn particular,(e) �[ = I 4>>(f) �[ = >> 4 I(g) �[ �� = I �>>(h) �[ �� = >>� I



12.3. PROPERTIES OF CARTESIAN PRODUCT 203Proof We only prove (a).R 4>>= f (12.15) g�[ � R u �[ � >>= f lemma 12.31(a), reverse, >> �R v >> g�[ � RTo prove (c) use exactly the same strategy.2 The following theorem is the announced \computation rule" permitting the\execution" (or simpli�cation) of a projection. Note that the rule is valid forall specs P and Q but the righthand side of each rule is slightly more complexthan a naive examination might suggest.Theorem 12.33 (Computation Rules for Split)(a) � � (P 4Q) = P � Q>(b) � � (P 4Q) = Q � P>Proof � � (P 4Q)= f (12.32)(e), reverse g(I 4>>)[ � (P 4Q)= f axiom: (12.23) gP u >> �Q= f domains: (10.20) gP � Q>2 We mention one, easily derived, corollary of lemma 12.32 and theorem 12.33.Theorem 12.34� � �[ = >> = � � �[2 Theorem 12.34 is important if only because it is an important stepping stoneto proving that product is \strict". (See section 12.3.5)



204 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORSSince product is de�ned in terms of split, the above computation rules can beinstantiated with that de�nition giving computation rules for product. Doingso, however, one obtains ugly domain expressions that we do not care to use.The next lemma reformulates those expressions and happens to come in handyin a later calculation.Lemma 12.35(a) (P ��)> = �[ � P> �� u �[ �� = P>� I(b) (Q ��)> = �[ �� u �[ �Q> �� = I �Q>Proof We prove (a) only. Within (a), the equality between the second andthird expressions is a straightforward unfolding of the de�nition of product sowe limit our attention to the equality between the �rst and second expressions.(P ��)>= f (10.21) g(P> � �)>= f de�nition of right domain, P> is a monotype gI u �[ � P> � �= f P> is a monotype, monotonicity gI u �[ � P> � � u �[ � �= f I u �[ �� = f (12.25) g I u �[ �� gI u �[ � P> � � u �[ � �= f (12.20), monotonicity g�[ � P> � � u �[ � �2Theorem 12.36 (Computation Rules for Product)(a) � � (P �Q) = P � � � (I �Q>)(b) � � (P �Q) = Q � � � (P>� I)Proof � � (P �Q)= f de�nition of �, computation rule 12.33(a) gP � � � (Q ��)>



12.3. PROPERTIES OF CARTESIAN PRODUCT 205= f (12.35) gP � � � (I �Q>)2 The occurrence of the right domains in the right sides of theorems 12.33and 12.36 alerts one to an important observation about product: the operandsinteract with each other in a curious and sometimes troublesome way. Rulesthat permit one to cancel one of the operands of a product or split | inevitablywith provisos | are therefore useful. One such is the following.Theorem 12.37(a) R = � � R�S � �[ ( S 6= ??(b) S = � � R�S � �[ ( R 6= ??Proof We conduct the proof in two stages. First we establish� �R� S ��[ = R u >> � S �>>� � R�S � �[= f 12.32(e) g� � R�S � I 4>>= f product-split fusion: 12.28(a) g� � R 4 (S �>>)= f computation rule 12.33(a) gR � (S �>>)>= f domains: (10.20) gR u >> �S �>>Now, it is easy to apply the cone rule and obtain the required result:R= f calculus gRu>>= f S 6=??, cone rule gR u >> �S �>>= f above g� � R�S � �[2



206 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS12.3.3 Imp and Co-imp PreservationUp till now our language has implied that the projections are imps but, asyet, we have not stated the fact so explicitly and nor has it been proven. Notsurprisingly the proof is rather trivial.Lemma 12.38� � �[ = I and � � �[ = IProof As always we content ourselves with the proof of just one of the state-ments. � � �[= f (12.32) g(I 4>>)[ � (I 4>>)= f axiom (12.23 gI u (>>[ �>>)= f calculus gI2Corollary 12.39 � and � are both imps.Proof Immediate from the de�nition of an imp.2Now we turn to product and split. Since product is a binary relator we have:Theorem 12.40 � preserves both imps and co-imps.2For split the situation is a little more interesting.Theorem 12.41(a) P 4Q is a co-imp ( P is a co-imp _ Q is a co-imp.(b) P 4Q is an imp ( P is an imp ^ Q is an imp.



12.3. PROPERTIES OF CARTESIAN PRODUCT 207Proof Note the disjunction in part (a). This quite strong theorem is never-theless straightforward to prove by application of axiom (12.23). Part (b) is alittle less straightforward:R 4 S is an imp� f de�nition g(R 4 S) � (R 4 S)[ v I� f (12.15), reverse g(�[ � R u �[ � S) � (R[ �� u S[ ��) v I( f monotonicity g�[ � R �R[ �� u �[ � S � S[ �� v I( f (12.20) gR � R[ v I ^ S � S[ v I� f de�nition gR is an imp ^ S is an imp2Corollary 12.42(a) I 4 I is a bijection(b) I 4R is a coimp for all specs R.2 Specs of the form I 4R form primitive instances of what Meertens [70] calls\paramorphisms". In particular, the doubling function I 4 I is important forvarious reasons. (One reason not elaborated further here is that in categorytheory it is one of the units in the de�ning adjunction of cartesian product.The other unit is the pair (�;�). In the current relational setting productis not categorical but does ful�ll a weaker notion of adjunction in which thetwo units are I 4 I and the pair (�;�). Since we have observed that the twoprojections are imps it would be remiss of us not to at least mention that I 4 Iis a co-imp.)(The fact that a split is a co-imp if just one of its arguments is a co-imp doesnot help one to prove anything stronger about product.)12.3.4 Left and Right DomainsMuch of the work necessary to determine the e�ect of the left and right domainoperators on splits and left and right projections has already been completed.



208 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORSLemma 12.38, for instance, tells us immediately that the projections are surjec-tive. I.e.Theorem 12.43 �< = I and �< = I2 Moreover, lemma 12.35, with P and Q both instantiated to I, predicts theirright domains:Theorem 12.44 �> = I � I and �> = I � I2 Since product is a (binary) relator we can immediately instantiate theorem10.34 obtaining:Theorem 12.45(a) (P �Q)< = P<�Q<(b) (P �Q)> = P>�Q>2 As discussed earlier it is important to establish rules that permit one toignore one of the operands of a split or product. For the calculation of leftdomains we have the following such rule:Theorem 12.46(a) (� � R�S)< = R< ( S 6=??(b) (� � R�S)< = S< ( R 6=??There is clearly a similar rule for right domains obtained by applying reverseto the arguments of the left-domain operators.Proof Consider (a). Beginning with (� � R�S)< the goal in the calculationis to work towards an application of theorem 12.37. Since the term \�["appears in the latter a way must be found to introduce it. Appropriate to thisis theorem 12.44.



12.3. PROPERTIES OF CARTESIAN PRODUCT 209(� � R � S)<= f � is a relator g(� � R � S � I � I)<= f theorem 12.44, domains: (10.19) g(� � R � S � �[<)<= f domains: (10.16) g(� � R � S � �[)<= f � S 6= ??, theorem 12.37 gR<2 We conclude this section with expressions for the right and left domains ofa split. That for the left domain is not particularly helpful but is more compactthan the expanded form of the de�nition! (As one might expect it is usuallymore di�cult to predict the left domain than the right domain of a split.)Theorem 12.47 (Split Right and Left Domain)(a) (P 4Q)> = P> u Q>(b) (P 4Q)< = �[ � P �Q[ �� u IProof Simple application of the de�nition of split and right domain togetherwith axiom (12.23) for part (a) and the de�nition of split together with property(10.18) for part (b).2Corollary 12.48 ((R � S) 4 T )< = (R 4 (T � S[))<Proof By 12.47(b) the left side is equal to�[ � R � S � T [ �� u IUsing the same rule and elementary properties of reverse the right side can alsobe written in the same way.2



210 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS12.3.5 Bottom StrictnessIn this section we explore circumstances in which a split or product of two specsis equal to ??. The conclusion of the section is that product and split are both\bottom-strict". That is, if either of their arguments is ?? then their result is??. The key observation is the following:Lemma 12.49 I 4R = ?? � R> = ?? .Proof I 4R = ??� f domains: (dual of) D9(d) g(I 4R)> = ??� f split right domain: 12.47(a) gI> uR> = ??� f domains: (10.27) and (10.4) gR> = ??2 Using lemma 12.49 we can determine exactly when a split is ??.Lemma 12.50 R 4 S = ?? � R � S[ = ?? .Proof R 4 S = ??� f domains: D9(d) g(R 4 S)< = ??� f corollary 12.48 g((R � S[) 4 I)< = ??� f domains: D9(d) (twice), and lemma 12.49 gR � S[ = ??2 Now, applying 12.50 we get a condition for a product to be ??.Lemma 12.51 R� S = ?? � R �>> � S[ = ?? .Proof



12.3. PROPERTIES OF CARTESIAN PRODUCT 211R� S = ??� f de�nition: 12.17, lemma 12.50 gR �� ��[ � S[ = ??� f theorem 12.34 gR �>> � S[ = ??2 If we assume the cone rule then (see lemma 12.1) the right side of lemma12.51 is equivalent to R = ?? _ S = ??. Thus we conclude:Theorem 12.52 (Strictness of Split and Product) For all specsa Rand S, R 4 S = ?? ( R = ?? _ S = ?? :Moreover, assuming the cone rule,R� S = ?? ( R = ?? _ S = ?? :Proof Straightforward application of 12.50 and 12.51 using the hints givenabove.212.3.6 Unique Extension PropertiesIn the category Set of sets and total functions cartesian product is de�nedvia limits of functors in the following way. Let 2 be the discrete categorywith objects f0,1g. For object A in Set the constant A functor is denoted byA : Set  � 2 . The cartesian product of X and Y is de�ned to be the limitof the functor F : Set  � 2 with F �0 = X and F �1 = Y . I.e. the productis a set C and a natural transformation � : F : � C such that for every setD and every natural transformation � : F : � D there is a unique arrow� : C  � D in Set such that � � � = �. Usually C is denoted by X QYor X � Y , while the natural transformation is denoted by the pair �X ; �Y ofprojections. The terminality of � is most often phrased as follows. For everyD and all total functions f : X  � D and g : Y  � D there isa unique total function h : X QY  � D such that �X � h = fand �Y � h = g : In our system this terminality is valid not only for imps



212 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS(our equivalent of functions) but also for a more general class of specs (althoughnot for all specs). We refer to the relevant theorem as the \unique extensionproperty" for cartesian product, and it is the purpose of this section to presentthe property and then to explore some of its consequences. First, an importanttheorem.Theorem 12.53 (Domain Trading)P 4Q = (P �Q>) 4 (Q � P>)Proof (P �Q>) 4 (Q � P>)= f domains (10.13), monotypes (10.2) g(P � (P> uQ>)) 4 (Q � (P> uQ>))= f P> uQ> is an imp, u-distributivity g(P 4Q) � (P> uQ>)= f (12.47(a)), (10.13) gP 4Q2Corollary 12.54 For monotypes A and B,A w Q> ^ B w P> ) P 4Q = (P � A) 4 (Q �B)Proof Follows immediately from the domain trading rule by monotonicity.2 The signi�cance of theorem 12.53 is that it is not dualisable to disjoint sum.As we shall see, a sum of two specs is truly disjoint. Theorem 12.53, on theother hand, says that a split (and hence also a product) is not disjoint; the twooperands interact with each other.In its most general form the unique extension property is as follows:Theorem 12.55 (Unique Extension Property)Suppose � 2 fv; =; wg. Assume also thatX � �[ � � � X u �[ � � � XThen X � P 4Q � � � X � P � Q> ^ � � X � Q � P>



12.3. PROPERTIES OF CARTESIAN PRODUCT 213Proof The)-part of the equivalence follows from the computation rule (the-orem 12.33) and monotonicity. For the other part we assume the righthand sideof the equivalence and prove the validity of the lefthand side:P 4Q= f lemma 12.53) g(P �Q>) 4 (Q � P>)= f de�nition of split g�[ � (P � Q>) u �[ � (Q � P>)� f rhs is assumed true, monotonicity g�[ � � � X u �[ � � � X� f assumption gX2 More often than not we apply the theorem with the variable \�" instan-tiated to \=". However, since our purpose is to develop a theory that admitsprogram re�nement as a possible step we are continually on the lookout formore general properties of the same nature as theorem 12.55, the cost in termsof burden of proof being typically almost negligible.The assumption in theorem 12.55 is somewhat unwieldy; however, it is im-portant to note that it is not equivalent to X being an imp. (It is howeverimplied by that circumstance when � is instantiated to equality.) The assump-tion is indeed quite weak and we shall encounter several instances where it isvalid. One such case is where X is itself a split term, resulting in the followingelimination property.Theorem 12.56 (Split Elimination)For all � 2 fv; =; wgP 4Q � R 4 S � P �Q> � R � S> ^ Q � P> � S �R>Proof We aim to use the unique extension property with X instantiated toR 4 S. We must therefore verify the premise. Now,�[ � � � (R 4 S) u �[ � � � (R 4 S)= f computation rule for split g



214 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS�[ � R � S> u �[ � S � R>= f de�nition of split g(R � S>) 4 (S �R>)= f lemma 12.53 gR 4 SThus the premise is veri�ed (whatever the value of � since equality impliesinclusion). The rest is straightforward: use the unique extension property andthen the computation rule for split to eliminate the projections.2 We return now to the original concern, which was the case that X, P and Qare all imps. The backwards distribution of imps over intersection shows thatthe assumption in the statement of the unique extension property is met forimps with left domain in I � I. For the terminality we also have to get rid ofthe right domains. This explains the assumptions in the terminality theorem.Theorem 12.57 (Terminality)Let f be an imp with I � I w f< and let P> = Q> . Thenf = P 4Q � � � f = P ^ � � f = QEquivalently, for all imps f and all specs P , Q,(I � I) � f = P 0 4Q0 � � � f = P 0 ^ � � f = Q0where P 0 denotes P �Q> and Q0 denotes Q � P>.Proof See the discussion above.212.3.7 Naturality PropertiesPart (a) of lemma 12.28 is a very important property, just as important as part(b). It can be expressed somewhat di�erently, namely as a naturality propertyof split.Theorem 12.58 (Naturality of Split)For all specs R,S and T , and all imps f ,(a) 4 2 (R� S :<� T ) :<� (R :<� T ) � (S :<� T )(b) 4 2 (R� S :<�> f) :<� (R :<�> f) � (S :<�> f)



12.3. PROPERTIES OF CARTESIAN PRODUCT 215Proof We supply the full details in the case of part (a) only.4 2 (R� S :<� T ) :<� (R :<� T ) � (S :<� T )� f (11.4), 4 is a function g8(U; V :: 4 :U hR� S :<� T i 4 :V( U h(R :<� T ) � (S :<� T )iV)� f de�nition of � in a higher-order algebra g8(U1; U2; V 1; V 2 ::U1 4 U2 hR� S :<� T iV 1 4 V 2( U1 hR :<� T iV 1 ^ U2 hS :<� T iV 2)� f de�nition of :<� g8(U1; U2; V 1; V 2 ::(R� S) � (V 1 4 V 2) w (U1 4 U2) � T( R � V 1 w U1 � T ^ S � V 2 w U2 � T)( f theorem 12.28(a); split-spec fusion theorem 12.30(a) g8(U1; U2; V 1; V 2 ::(R � V 1) 4 (S � V 2) w (U1 � T ) 4 (U2 � T )( R � V 1 w U1 � T ^ S � V 2 w U2 � T)� f monotonicity of 4 gtrueNote the occurrence of \(" in the fourth step; it is not the case that any ofthe \ :<�" operators can be replaced by either \ :�>"or \ :<�>" (except as indicatedin (b)).The proof of (b) can be obtained by suitably modifying the above proof,appealing to split-imp fusion (part (c) of theorem 12.30) rather than split-specfusion.2 Since product is a (binary) relator we can simply instantiate theorem 11.5to obtain:Theorem 12.59 (Naturality of Product)For all specs R; S; T; U and all :� 2 f :<�; :�>; :<�>g



216 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS� 2 (R� T :� S � U) :<� (R :� S)� (T :� U)2The two projections are also naturally polymorphic in the following sense.Theorem 12.60 (Naturality of Left and Right Projection)For all specs R, and all total specs S (i.e. specs S s.t. S> = I)(a) � 2 R :<�> R � S and � 2 R :<�> S � RIn particular, for all specs R,(b) � 2 R :<�> R �>> and � 2 R :<�> >>� Rand(c) � 2 R :<�> R � I and � 2 R :<�> I � Rand, for all specs R and S,(d) � 2 R :<� R� S and � 2 R :<� S �R(Note that all occurrences of \ :<�>" in the statement of the theorem can bereplaced by \ :<�" or \ :�>" since equality implies inclusion.)Proof � 2 R :<�> R� S� f de�nition of :<�> gR � � = � � (R� S)� f computation rule (12.36) gR � � = R � � � (I � S>)� f assumption: S> = I, theorem 12.44 gtrueThe corollaries (b) and (c) are just instances of (a). Part (d) follows because:<� is antimonotonic in its right argument (as is easily veri�ed).2 Now that we have cartesian product we can make the statement of thepolymorphic type of composition more compact.Theorem 12.61 (Naturality of Composition)For all :� 2 f :<�; :�>; :<�>g, and all specs P , Q and R,� 2 (P :� R) :<� (P :� Q)� (Q :� R)2



12.3. PROPERTIES OF CARTESIAN PRODUCT 21712.3.8 Junctivity PropertiesAlthough we give more general junctivity properties below, we start with the�nite junctivities. Distribution of cap over split and product is given byTheorem 12.62 (Split-Cap and Product-Cap Abide Laws)(a) (P 4Q) u (R 4 S) = (P uR) 4 (Q u S)(b) (P �Q) u (R� S) = (P u R)� (Q u S)Proof We only prove (a). The proof of (b) is almost the same, but for anextra appeal to the backward distribution of composition over imps.(P 4Q) u (R 4 S)= f (12.15) ; plat calculus g�[ � P u �[ � R u �[ � Q u �[ � S= f �[ and �[ are co-imps g�[ � (P u R) u �[ � (Q u S)= f (12.15) g(P u R) 4 (Q u S)2 Distribution of cup over split and product has another form. The easy proofis left to the reader.Theorem 12.63(a) (P tQ) 4 (R t S) = P 4R t P 4 S t Q 4R t Q 4 S(b) (P tQ)� (R t S) = P � R t P � S t Q� R t Q� SIn particular,(c) Q 4 (R t S) = Q 4R t Q 4 S(d) (P tQ) 4R = P 4R t Q 4R(e) Q� (R t S) = Q�R t Q� S(f) (P tQ)� R = P �R t Q�R2As mentioned we can do a lot better than (12.62) and (12.63): the split andproduct operators are positively u-junctive. They are not universally u-junctive,for in general>> 4>> 6= >> and >>�>> 6= >>(As a matter of fact the second of the above is independent of our axioms.)



218 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORSTheorem 12.64 Let V be a non-empty bag of pairs (V�; V�) of specs,L =u (V : V 2 V : V� ) and R =u (V : V 2 V : V� ) . Then(a) L 4R = u (V : V 2 V : V� 4 V� )(b) L� R = u (V : V 2 V : V� � V� )Proof u (V : V 2 V : �[ � V� u �[ � V� )= f quanti�er calculus gu (V : V 2 V : �[ � V� ) u u (V : V 2 V : �[ � V� )= f � and � are imps and V is non-empty g�[ � L u �[ � R= f (12.15) gL 4RThe proof of part (b) is similar, thus left to the reader.2In particular, split and product are u-continuous. Although they are not t-junctive, they are t-continuous:Theorem 12.65 Let V be a linear bag of pairs (V�; V�) of specs, L =t (V :V 2 V : V� ) and R =t (V : V 2 V : V� ) . Then(a) L 4R = t (V : V 2 V : V� 4 V� )(b) L� R = t (V : V 2 V : V� � V� )Proof �[ � L u �[ � R= f universal t-junctivity of composition gt (V : V 2 V : �[ � V�) u t (V : V 2 V : �[ � V� )= f quanti�er calculus gt (V;W : V;W 2 V : �[ � V� u �[ � W� )= f V is linear, diagonalization gt (V : V 2 V : �[ � V� u �[ � V� )= f (12.15) gt (V : V 2 V : V� 4 V� )2



12.4. PROPERTIES OF DISJOINT SUM 21912.4 Properties of Disjoint SumWe have discussed the properties of cartesian product before those of disjointsum because the latter are substantially simpler to derive. This is because thecap operator in the de�nition of split is replaced by the cup operator in thede�nition of junc, and composition is universally t-junctive but not universallyu-junctive. Calculations with split and/or the projections can thus often betransliterated into calculations with junc and/or the injections | but less oftenthe other way round. We shall take advantage of this fact by simply statingseveral properties of disjoint sum without accompanying proof. Only where theclaimed property is stronger than its counterpart do we provide a proof. Theorder of presentation also remains the same so that the reader may compare theproperties one-by-one. (Note that we said that proofs about cartesian productcan often be transliterated. We do not know of an algorithm to perform thetransliteration (when indeed it is possible). The reader should therefore be ontheir guard as we are on ours.)12.4.1 Fusion PropertiesAs was the case for cartesian product it is straightforward to see that + satis�esthree of the conditions necessary for it to be a relator: the �rst is satis�edaxiomatically, and monotonicity and commutation with reverse are satis�ed byconstruction. Distributivity with respect to composition is also a special caseof a \fusion" law, namely that a sum can be fused with a junc.Theorem 12.66 (Junc-Sum and Sum-Sum Fusion)(a) (P 5Q) � (R+S) = (P � R) 5 (Q � S)(b) (P+Q) � (R+S) = (P � R) + (Q � S)2Proof Transliteration of the proof of theorem 12.28.2Corollary 12.67 + is a relator.2 One more fusion property can be added to this list on account of the universalt-junctivity of composition, namely:



220 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORSTheorem 12.68 (Spec-Junc Fusion)P � (Q 5R) = (P �Q) 5 (P � R)2 Comparison should be made with theorem 12.30 where a restriction to impshad to be made in order to obtain an equality.12.4.2 Computation RulesThe computation rules for junc do not involve any extra complications (unlikethose for split). Their derivation, however, follows the same pattern. Lemma12.31 has a trivial counterpart; the following is the counterpart of lemma 12.32.Lemma 12.69(a) ,![ = I 5??(b)  -[ = ?? 5 I(c) ,! � ,![ = I + ??(d)  - � -[ = ?? + I2 For want of inventiveness we give the name \co-strictness" to the next the-orem (although the property is not really the dual of the strictness of product).Theorem 12.70 (Co-strictness of Sum)R+S = ?? � R = ?? ^ S = ??2The proof is elementary.Derivation of the computation rules is now straightforward and is left to thereader.Theorem 12.71 (Computation Rules for Junc)



12.4. PROPERTIES OF DISJOINT SUM 221(a) (P 5Q) � ,! = P(b) (P 5Q) �  - = QIn particular(c) (P+Q) � ,! = ,! � P(d) (P+Q) �  - =  - � Q2 As for split, we mention one particularly interesting corollary obtained bycombining the computation rules with lemma 12.69.Theorem 12.72,![ �  - = ?? =  -[ � ,!212.4.3 Imp and Co-imp PreservationOur �rst axiom was that left and right injection are both imps. In fact they arealso co-imps as is evidenced by the following:Lemma 12.73,![ � ,! = I =  -[ �  -Proof Immediate from the computation rule (12.71) combined with (12.69).2Corollary 12.74 ,! and  - are bijections.2 Since split preserves both imps and co-imps one would expect that junc doesso too. But this is not the case! The proof that split preserves imps cannot betransliterated into a proof that junc preserves co-imps (thus emphasising thatone has to be very careful with \dualisation" of arguments) and we can onlyassert that it preserves imps. Nevertheless, + preserves both.Theorem 12.75 (Imp and Co-imp Preservation)



222 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS(a) 5 preserves imps.(b) If f and g are both co-imps and f< u g< = ?? thenf 5 g is a co-imp.(c) + preserves both imps and co-imps.Proof We leave (a) and (b) as exercises for the reader. (By implication(b) states also that 5 does not preserve co-imps in general.) Part (c) followsimmediately from the fact that + is a relator.212.4.4 Left and Right DomainsLemma 12.73 not only predicts that the injections are co-imps but also thatthey are total. Formulae for the left domain of the injections are also easy tocalculate:Theorem 12.76(a) ,!> = I and  -> = I(b) ,!< = I+?? and  -< = ??+I2 The next theorem could be said to be the dual to the theorem that the rightdomains of the projections are equal.Theorem 12.77,!< u  -< = ??Proof,!< u  -<= f domains are monotypes, (10.2) g,!< �  -<= f theorem 12.76(b) gI +?? � ??+ I= f relator.+ g??+??= f costrictness of sum: theorem 12.70 g??2



12.4. PROPERTIES OF DISJOINT SUM 223For many purposes a weaker form of theorem 12.77 su�ces.Corollary 12.78,! u  - = ??Proof ,! u  - = ??� f lemma 12.1 g(,!u -)< = ??( f monotonicity g,!< u  -< = ??2 In contrast to those for cartesian product the rules for the left and rightdomains of junc and sum are very simple. Both domain operators distributeover sum, and over junc, but transforming the operator in one case into cupand in the other into sum.Theorem 12.79(a) (P+Q)> = P> + Q>(b) (P+Q)< = P< + Q<(c) (P 5Q)< = P< t Q<(d) (P 5Q)> = P> + Q>2Proof The proofs of (a), (b) and (c) can all be obtained by transliteratingthe proofs of the corresponding properties of cartesian product. By (10.20), (d)follows if we can establish that>> � (P>+Q>) = >> � (P 5Q)This we now do.>> � (P>+Q>)= f de�nition of sum, theorem 12.68 g(>> � ,! � P>) 5 (>> �  - � Q>)= f (10.20) g



224 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS(>> � ,!> � P>) 5 (>> �  -> � Q>)= f (12.76) g(>> � P>) 5 (>> � Q>)= f (10.20), theorem 12.68 g>> � (P 5Q)212.4.5 Unique Extension PropertyThe counterpart of the terminality property of cartesian product is an initialityproperty. Here it is yet stronger: so much so indeed that it warrants a di�erentorder of presentation. The key insight is that two components in a junc or sumremain truely disjoint. To be precise:Theorem 12.80 (Cancellation Properties)For all � 2 fv; =; wg,(a) P 5Q � R 5 S � P � R ^ Q � S(b) P+Q � R+S � P � R ^ Q � SProof(a) P 5Q � R 5 S) f monotonicity gP 5Q � ,! � R 5 S � ,! ^ P 5Q �  - � R 5 S �  -� f computation rules gP � R ^ Q � S) f monotonicity gP 5Q � R 5 S(b) P+Q � R+S� f de�nition of sum, (a) g,! � P � ,! � R ^  - � Q �  - � S) f compose on the left with ,![ and  -[, lemma 12.73 gP � R ^ Q � S) f monotonicity g



12.4. PROPERTIES OF DISJOINT SUM 225P+Q � R+S2Corollary 12.81 (Junc Initiality)For all � 2 fv; =; wg,P � (I+I) � Q 5R � P � ,! � Q ^ P � - � RProof By the de�nition of sum, (12.18) and spec-junc fusion, (12.68),P � (I+I) = (P � ,!) 5 (P � -)Initiality thus follows immediately.212.4.6 Naturality PropertiesThe naturality properties of the two injections are stronger than those of theprojections.Theorem 12.82 (Naturality of Left and Right Injection)For all specs R and S,(a) ,! 2 R+S :<�> R(b)  - 2 R+S :<�> SProof Immediate from the computation rules and the de�nition of :<�> .2 The naturality property of junc is also stronger.Theorem 12.83 (Naturality of Junc and Sum)For all specs R, S, T and U and all :� 2 f :<�; :�>; :<�>g,(a) 5 2 (R :� S+T ) :<� (R :� S)� (R :� T )(b) + 2 (R+S :� T+U) :<� (R :� T )� (S :� U)Proof In the following proof we use � to stand for w , v or = dependingon the value of :� . (Cf the de�nitions of the three naturality operators.)



226 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS5 2 (R :� S+T ) :<� (R :� S)� (R :� T )� f theorem 11.4 g8(U; V;W;X ::U 5 V hR :� S+T i W 5X ( U hR :� SiW ^ V hR :� T iX)We now continue with the quanti�ed expression.U 5 V hR :� S+T i W 5X ( U hR :� Si W ^ V hR :� T i X� f de�nition of :� gR � (W 5X) � (U 5 V ) � (S+T )( R �W � U � S ^ R �X � V � T� f theorems 12.68 and 12.66 g(R �W ) 5 (R �X) � (U � S) 5 (V � T )( R �W � U � S ^ R �X � V � T� f monotonicity gtrueThe veri�cation of (b) proceeds in the same way.212.4.7 Junctivity PropertiesThe �nite junctivity properties of disjoint sum are stronger than those for carte-sian product:Theorem 12.84 (Junc/Sum-Cup/Cap Abide Laws)(a) (P 5Q) t (R 5 S) = (P tR) 5 (Q t S)(b) (P+Q) t (R+S) = (P t R)+(Q t S)(c) (P 5Q) u (R 5 S) = (P uR) 5 (Q u S)(d) (P+Q) u (R+S) = (P u R)+(Q u S)Proof The proof technique is the same in all four cases. We make do, there-fore, with a proof of (c) as illustration.Applying the initiality property (12.81), property (c) reduces to three prop-erties:



12.4. PROPERTIES OF DISJOINT SUM 227(P 5Q) u (R 5 S) � I+I = (P 5Q) u (R 5 S)(P 5Q) u (R 5 S) � ,! = P uR(P 5Q) u (R 5 S) �  - = Q u S .The validity of these three is easily seen by applying theorem 10.30 (noting thatI+I, ,! and - are all imps) followed by junc-sum fusion in the case of the �rstequation and the computation rule in the case of the second two equations.2 Again, more can be shown: Both junc and sum are positively u-junctiveand universally t-junctive. Hence they are t- and u-continuous.Theorem 12.85 Let V be a bag of pairs (V�; V�) of specs, L =t (V : V 2V : V� ) and R =t (V : V 2 V : V� ) . Then(a) L 5R = t (V : V 2 V : V� 5 V� )(b) L+R = t (V : V 2 V : V�+V� )2Theorem 12.86 Let V be a non-empty bag of pairs (V�; V�) of specs,L =u (V : V 2 V : V� ) and R =u (V : V 2 V : V� ) . Then(a) L 5R = u (V : V 2 V : V� 5 V� )(b) L+R = u (V : V 2 V : V�+V� )Proof L 5Rv f 5 is monotonic gu (V : V 2 V : V� � ,![ t V� � -[ )v f quanti�er calculus gu (V : V 2 V : V� � ,![ ) t u (V : V 2 V : V� � -[ )t (>> � ,![ u >> � -[ )= f (12.77) gu (V : V 2 V : V� � ,![ ) t u (V : V 2 V : V� � -[ )= f ,![ is an imp and V is non-empty gu (V : V 2 V : V� ) � ,![ t u (V : V 2 V : V� ) � -[= f de�nitionof 5 : (12.16) gL 5R2



228 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS12.5 Basic Simulations and IsomorphismsTo summarise, we now have one non-trivial monotype and two binary relators.Unary relators can be derived from these by �xing one of the arguments toa monotype; ternary relators, quaternary relators etc. can be obtained bycomposing them in appropriate ways; and new monotypes can be obtainedby applying existing relators to existing monotypes. For example, 11+11 and11�(11+11) are monotypes, and the functions 11+ and (11�11)+ are unary relators.Relators and monotypes built in this way we call polynomial. This, however, isjust the foundation. It is only now that our theory can really begin.In this section we make a modest start to showing the ease with whichcertain calculations can be made within the theory by constructing a seriesof elementary natural isomorphisms between combinations of the polymorphicrelators. One simulation is also calculated.Examples of natural isomorphisms are provided by the two injections ,!and  -. The former is a natural isomorphism between the relator (+??) andthe identity relator. I.e.,! 2 R+?? :<�> R, for all specs R,! is a bijection, and,!< = I+?? and ,!> = ISimilarly, the latter is an isomorphism between the the relator (??+) and theidentity relator. The injections are also examples of natural simulations: ,!is, for example, a natural simulation of the identity relator by the relator +11.(In general any monotype may be used in place of 11.)As might be expected, both natural simulations and natural isomorphismsenjoy many simple but powerful algebraic properties. In later versions of thispaper it is our intention to document some of them. For the time being, however,we leave the reader the pleasure of their discovery. Let us proceed to moresigni�cant examples. We begin with the most complicated, basic example of anatural isomorphism.Consider the ternary relators de�ned byR; S; T 7! R� (S+T )R; S; T 7! (R� S)+(R� T )



12.5. BASIC SIMULATIONS AND ISOMORPHISMS 229Our objective is to show that the two relators are naturally isomorphic.To complete this task we must exhibit a spec, 
, satisfying three quite strongconditions. We can make progress in this task by temporarily setting aside twoof the conditions, constructing 
 to satisfy the remaining condition, and then(hopefully) verifying that it satis�es the two other conditions. The conditionsingled out should be the one that leaves the least freedom to manoeuvre, in thiscase clearly condition (a). What we shall now demonstrate is how systematicallythis can be done using the rules we have given for the naturally polymorphictype of the operators we have introduced.Here then is the construction of the desired natural isomorphism. AssumeR, S, and T are arbitrary specs. Thenby construction of 
:
 2 R� (S+T ) :<�> (R� S)+(R� T )( f naturality of 5 , 
 := 
1 5 
2 g
1 2 R � (S+T ) :<�> R� S^ 
2 2 R� (S+T ) :<�> R� T( f naturality of product, I 2 R :<�> R,
1 := I � 
1, 
2 := I � 
2 g
1 2 S+T :<�> S ^ 
2 2 S+T :<�> T( f naturality of the injections g
1 = ,! ^ 
2 =  -Thus the constructed spec is 
 where
 = (I � ,!) 5 (I � -)It remains to show that 
 is a bijection and has the correct left and rightdomains. The veri�cations are straightforward, but we give them nonethelessas proof of the pudding.First, we assert that 
 is a bijection. That it is an imp follows because it isbuilt out of imps using imp-preserving operators. Since junc is not necessarilyco-imp preserving we need to take further steps to show that it is a co-imp.
 is a co-imp( f theorem 12.75(b) g(I � ,! and I �  - are co-imps )^ (I � ,!)< u (I �  -)< = ??



230 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS� f theorem 12.41 g(I � ,!)< u (I �  -)< = ??� f theorem 12.45 g(I � ,!<) u (I �  -<) = ??� f lemma 12.62(b) gI � (,!< u  -<) = ??� f theorem 12.77, I �?? = ?? gtrueWe now calculate the left domain of 
.
<= f de�nition of 
, theorem 12.79(c) g(I � ,!)< t (I �  -)<= f theorems 12.45 and 12.76 gI � (I +??) t I � (??+ I)= f lemma 12.63(e) gI � ((I +??)t (??+ I))= f de�nition of + gI � (I + I)Finally, we calculate the right domain of 
.
>= f de�nition of 
, theorem 12.79(d) g(I � ,!)> + (I �  -)>= f theorems 12.45 and 12.76 g(I � I)+(I � I)This completes the veri�cation.The point of discussing this example in so much detail is to emphasise theimportance of type considerations in constructing specs having prescribed prop-erties. (This is a somewhat di�erent emphasis than that which one encountersmost frequently. Wadler [91], for example, discusses the use of natural polymor-phism to infer properties of already constructed functions.) There is, however,yet more that can be said about the bijection 
 that we have constructed thatso far as we know is not predicted by any naturality theorem and yet seems



12.5. BASIC SIMULATIONS AND ISOMORPHISMS 231\obvious" from type considerations. The properties that we allude to record itsbehaviour with respect to the two catamorphisms split and junc. Before statingand proving the properties we need to interpose a truly remarkable and elegantlaw permitting an exchange of split for junc and vice-versa.Theorem 12.87 (Split-Junc Abide Law)(R 5 S) 4 (T 5 U) = (R 4 T ) 5 (S 4 U)Proof We aim to use the initiality property (theorem 12.81) of junc. Firstnote that(R 5 S) 4 (T 5 U) � I+I= f I+I is a monotype and thus an imp, fusion: 12.30(c) g(R 5 S � I+I) 4 (T 5 U � I+I)= f split fusion (12.28) g(R 5 S) 4 (T 5 U)Hence: (R 5 S) 4 (T 5 U) = (R 4 T ) 5 (S 4 U)� f theorem 12.81 combined with the above g(R 5 S) 4 (T 5 U) � ,! = R 4 T^ (R 5 S) 4 (T 5 U) �  - = S 4 UContinuing now with just one of the conjuncts in the last expression we calcu-late: (R 5 S) 4 (T 5 U) � ,!= f ,! is an imp, split-imp fusion g(R 5 S � ,!) 4 (T 5 U � ,!)= f junc-computation gR 4 TThe other conjunct being dealt with in a similar way our proof is now complete.2 The properties of the natural isomorphism 
 that we anticipated above cannow be given.



232 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORSTheorem 12.88(a) 
 � (R 4 S)+(R 4 T ) = (R � I 5 I) 4 (S+T )(b) R� (S 5 T ) � 
 = (R � S) 5 (R� T )Proof(a) 
 � (R 4 S)+(R 4 T )= f de�nition of 
, junc fusion theorem 12.66(a) g(I � ,! � R 4 S) 5 (I � - � R 4 T )= f split fusion theorem 12.28(a) g(R 4 (,! � S)) 5 (R 4 ( - � T ))= f abides law (12.87) g(R 5R) 4 ((,! � S) 5 ( - � T ))= f junc fusion (12.66a), de�nition of sum (12.18) g(R � I 5 I) 4 (S+T )(b) R� (S 5 T ) � 
= f de�nition of 
, spec-junc fusion (12.68) g(R� (S 5 T ) � I � ,!) 5 (R� (S 5 T ) � I � -))= f � is a relator, junc computation rules (12.71) g(R� S) 5 (R� T )2 Natural isomorphisms seem to receive scant attention in the category theoryliterature, often being relegated to a brief exercise. This is somewhat unfortu-nate because it deemphasises their importance and it means that no guidanceis given on how to construct them. We also relegate the construction of severalbasic natural isomorphisms to the present set of exercises, not because they areunimportant but because by doing them the reader may be enabled to make ajudgement on the e�ectiveness of the calculus developed thus far.It is useful to begin by listing the elementary natural isomorphisms. For thispurpose we use a home-grown, but hopefully self-evident, lambda notation.�(R :: ??) �= �(R :: R �??)(12.89) �(R :: R+??) �= �(R :: R)(12.90) �(R; S :: R+S) �= �(R; S :: S+R)(12.91) �(R; S; T :: R+(S+T )) �= �(R; S; T :: (R+S)+T )(12.92)



12.5. BASIC SIMULATIONS AND ISOMORPHISMS 233�(R; S :: R� S) �= �(R; S :: S � R)(12.93) �(R; S; T :: R� (S � T )) �= �(R; S; T :: (R� S)� T )(12.94) �(R :: R) �= �(R :: R� 11)(12.95) �(R; S; T :: R� (S+T )) �= �(R; S; T :: (R� S)+(R� T ))(12.96)Of these (12.89) is trivial (the isomorphism is ?? itself) and (12.90) and (12.96)we have already discussed. Hints on how to prove (12.91)-(12.95) are givenbelow. Of course the reader may wish to ignore the hints altogether.Hints: Isomorphisms (12.91) and (12.92) can be constructed using the samestartegy as that used to construct (12.96). In the case of (12.91) the very shortcalculations that are necessary can be made yet shorter by noting that theconstructed isomorphism is its own reverse.Isomorphisms (12.93) and (12.94) require a somewhat di�erent strategy.The reason is that the natural isomorphism properties of split and product onlyhelp in the construction of up-formations (see de�nition 11.9) and not trans-formations. Moreover, whereas the calculation of the right domain of a split isstraightforward, the calculation of its left domain is not (compare 12.47(a) with12.47(b)). To add to this, split preserves imps but does not preserve co-imps.One may avoid all these di�culties by constructing two up-formations, one ofthe left-side relator by the right-side relator and one of the right-side relator bythe left-side relator. (In the case of (12.93) these \two" up-formations obviouslycoincide.) For this purpose the naturality properties are used. One then provesthat the �rst is the reverse of the second. It then su�ces to prove that both areimps and to calculate the right domains of each.The proof of (12.95) is a case apart. Note that � is an up-formation of theidentity relator by �11. Try restricting � so that its right domain is I � 11 andthen verify that your conjectured isomorphism meets all the requirements. Youmay �nd that theorem 12.46 is helpful. End of hintsHaving completed this task you should be able to verify the following prop-erties of the constructed isomorphisms. (The names �1 : : : �8 have been givento the isomorphisms in order of their appearance in the list above.)?? = �1 � R 4??(12.97) R 5?? � �2 = R(12.98) R 5 S � �3 = S 5R(12.99) R 5 (S 5 T ) � �4 = (R 5 S) 5 T(12.100)



234 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORSR 4 S = �5 � S 4R(12.101) R 4 (S 4 T ) = �6 � (R 4 S) 4 T(12.102) R = �7 � R 4 !(12.103)Rest assured: all have very trivial proofs. Note the pattern: the relators + and� have been systematically replaced by their corresponding catamorphism and11 has been replaced by its catamorphism !. The �'s are eaten up on the rightside by a junc and on the left side by a split.Consider now the quaternary relators F and G, respectively, de�ned byR; S; T; U 7! (R+S) � (T+U)R; S; T; U 7! (R� T ) + (S � U)We conclude this section by showing that F simulates G.We begin by constructing 
 satisfying requirement (a) of a natural simulation(see de�nition 11.10).
 2 (R+S) � (T+U) :<�> (R� T ) + (S � U)( f 
 := �1 5 �2 , naturality of junc g�1 2 (R+S) � (T+U) :<�> R� T^ �2 2 (R+S) � (T+U) :<�> S � U( f �1 := �1 � �2 , �2 := �3 � �4 , naturality of product g�1 2 R+S :<�> R ^ �2 2 T+U :<�> T^ �3 2 R+S :<�> S ^ �4 2 T+U :<�> U( f naturality of the injections g�1 = �2 = ,! ^ �3 = �4 =  -We have thus shown that(,!� ,!) 5 ( -� -) 2 (R+S) � (T+U) :<�> (R� T )+(S � U)We continue to call the constructed spec 
.Clearly, 
 is an imp; it is also a co-imp although this requires more (routine)e�ort to establish.



12.5. BASIC SIMULATIONS AND ISOMORPHISMS 235co-imp:((,!� ,!) 5 ( -� -))( f 12.75(b) gco-imp:(,!� ,!) ^ co-imp:( -� -)^ (,!� ,!)< u ( -� -)< = ??� f relator.�, ,! and  - are both bijections g(,!� ,!)< u ( -� -)< = ??� f relator.�, theorem 12.76 g(I +??) � (I +??) u (??+ I) � (??+ I) = ??� f cap-sum and cap-product abide laws: (12.84) and (12.62) g((I u??) + (??u I)) � ((I u??) + (??u I)) = ??� f co-strictness of sum, strictness of product gtrueCalculation of its right domain using (12.79), (12.45) and (12.76) is straightfor-ward. We obtain
> = (I � I) + (I � I)as required. The veri�cation that F simulates G is thus complete.We leave it as an exercise for the reader to show that 
 does not witness anisomorphism between the two relators. To do this �rst verify that
< = (I +??)� (I +??) t (?? + I)� (?? + I)and then use this to show that 
< is properly included in (I + I)� (I + I).In just the same way that we explored the behaviour of natural isomorphismswith respect to split and junc, it is useful to explore further the properties ofthe simulation 
. First, in a matter of a few steps using junc-sum and product-split fusion followed by the junc-split abide law and the de�nition of sum, oneobtains 
 � (R 4 T )+(S 4 U) = (R+S) 4 (T+U)Second, using the de�nition of product, the junc-split abide law and the de�ni-tion of sum one obtains:
 = (�+�) 4 (�+�)which is a better form of 
 for the �nal calculation which is to verify that(R 5 S)� (T 5 U) � 
 = (R� T ) 5 (S � U)



236 CHAPTER 12. POLYNOMIAL DATA TYPES AND RELATORS(This calculation also takes only a few steps and involves using the fusion lawsand the de�nition of product.)This concludes our discussion of the elementary properties of the polynomialrelators.



Chapter 13Initial Datatypes andCatamorphismsA fundamental argument for the use of type information in the design of largeprograms is that the structure of the program is governed by the structure of thedata. A well-established example is the use of recursive descent to structure theparsing (and compilation) of strings de�ned by a context-free grammar; here thestructure of the data is de�ned by its grammar and the structure of the parsingprogram is identical. The idea is extended in the denotational description ofprogramming languages where a fundamental initial step is the de�nition ofso-called domain equations; those familiar with denotational semantics knowthat once this step has been taken the later steps are often relatively mundaneand straightforward. Users of strongly-typed languages like Pascal will arguestrongly that the e�ective use of type declarations is extremely important forsubsequent program development, and even users of untyped languages like Lispwill admit that the programming errors that they make are often caused by typeviolations. A fundamental goal of our research is therefore to develop calculi ofprogram construction that lay bare the oneness of program and data structure.An example of a programming formalism in which this oneness plays the rôleof a major design principle is the theory of types developed by Martin-L�of. Inthis theory each type is de�ned by four sets of rules one of which is the set of so-called introduction rules and another is a singleton set containing the so-calledelimination rule for the type. (The remaining sets are not relevant to the presentdiscussion.) The introduction rules describe the structure of the elements ofthe type whereas the elimination rule says how to construct functions over237



238 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMSthe elements of the type. As has been argued elsewhere [8], the introductionrules completely de�ne the type in the sense that all other rules (including theelimination rule) are systematically derived from them. The elimination rule isadded in order to express the notion that \nothing else" is in the type otherthan the elements that can be constructed via the introduction rules by statingthat the structure of functions on elements of the type is completely governedby the structure of these rules.In the algebraic approach that we are currently pursuing a di�erent (al-though formally equivalent) approach is taken to the de�nition of data typesand in particular to expressing the notion that \nothing else" is in the typeother than the elements constructed via its introduction rules. Nevertheless,the underlying principle is that a data type is a structured set of elements thatis equipped with a mechanism governed by that structure for de�ning functionson the elements of the type. For the bene�t of readers who may not be familiarwith it we now outline this approach as it pertains to functional programming.Other readers will probably wish to skip the next two paragraphs; all they needto know is that we use the term \catamorphism" to refer to F -homomorphismswhose domain is an initial F -algebra. (We are currently in the process of ex-tending our work to terminal algebras but none of that work is reported here.)The approach involves several stages building up to the de�nition of a \uni-versal object" in a category of algebras. First, in place of the introduction rulesin Martin-L�of's system the notion of endofunctor is of paramount importance.An endofunctor is (in this context) a pair of functions, one from types to typesand the other from functions to functions. Typically, both functions are denotedby the same symbol. Suppose F is an endofunctor, A and B are types and fand g are functions of composable type. Let IA denote the identity function onthe type A. Then it is required thatF:f 2 F:A � F:B ( f 2 A � BF:IA = IF:Aand F:(f � g) = F:f � F:gWithout seeing some examples it is di�cult for the uninitiated to envisage thecorrespondence between a number of introduction rules and an endofunctor.For the moment let us just remark that typically an endofunctor will take theform of a disjoint sum of other more primitive functors, and that each term insuch a sum corresponds to one introduction rule. The next step is to de�ne anF -algebra as a pair consisting of a type A and a function f 2 A � F:A. (Note



239that if, indeed, the endofunctor F is a disjoint sum of other functors then thefunction f can be broken down into distinct components each being applicableto elements introduced by one of the corresponding introduction rules.) Thedata type de�ned by the endofunctor F is then an F -algebra satisfying a so-called \universality property", namely that there is a unique homomorphismfrom the data type to each F -algebra. Such homomorphisms take the place ofthe eliminators in Martin-L�of's theory. To emphasise their special rôle we shallgive them the name \catamorphism".An example would be the data type natural number. Roughly speaking, INhas the propertyIN = f0g+INwhere \+" denotes the disjoint sum of two types. (According to this de�nitionthe elements of IN are ,!:0 and  -:n where n ranges over IN and ,! and  -denote the injection functions associated with disjoint sum. You should inter-pret \,!:0" as zero and \ -" as the successor function. Our discussion hasbeen phrased in terms of \f0g" rather than the unit type \11" in order to makethe link with standard terminology a little more accessible.) More formally, werecognise in this equation an endofunctor \f0g+". This is a function that mapsthe type A to the type f0g+A. But it may also be extended to map functionsto functions by de�ning f0g+f to be that function g such that g � ,! is theconstant function always returning ,!:0, and g � - =  - � f . (Moreover, itsatis�es all the properties required of a functor, but that we leave to the readerto verify.) A f0g+-algebra is a set together with a constant and a unary op-erator (these being zero and the successor function in the case of the naturalnumbers), and a f0g+-homomorphism is just what one would normally under-stand by a homomorphism of an algebraic structure, in this case a function �,say, from one f0g+-algebra (A; a; �), say, to another (B; b; �), say, that mapsthe constant of the �rst to the constant of the secondi.e. �:a = band commutes with the unary operator of the �rst replacing it with that of thesecondi.e. � � � = � � �



240 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMSThat IN is \universal" in the class of f0g+-algebras just means that for anyf0g+-algebra (A; a; �), say, there is a unique homomorphism mapping IN to A.With a suitable de�nition of the operators it is also easily shown that f0g+INis a f0g+-algebra satisfying the universality property. Thus, IN is a �xed pointof the endofunctor f0g+ in the sense that there are homomorphisms mappingIN to f0g+IN and vice-versa which (on account of their uniqueness) are eachothers' inverses.To summarise this discussion: in the framework of functional programmingdatatypes are �xed points of endofunctors on which are de�ned what we call\catamorphisms", i.e. homomorphisms satisfying a uniqueness and universalityproperty. This is not the place to discuss the practicality of catamorphisms asa program structuring method, that being something that we intend to addressin future publications. We hope however that we have provided su�cient back-ground to motivate the calculations that follow in this section. Speci�cally, weexplore the extension of the notion of a (functional) catamorphism to relations.For this we need the notion of endorelator instead of endofunctor. We beginby discussing the least �xed point of an endorelator and then introduce ourde�nition of a (relational) catamorphism.From now on we assume that F is an endorelator.13.1 Initial DatatypesSince endorelators are, by de�nition, monotonic the Knaster-Tarski theoremasserts the existence of their �xed points, in particular least and greatest. Wehope shortly to report on our work on greatest �xed points but in the presentpaper we restrict our attention to least �xed points. Speci�cally, the least �xedpoint of the endorelator F , here denoted by �F , has the de�ning properties�F = F:�F(13.1)and, for all X,X w �F ( X w F:X(13.2)We shall refer to (13.2) as the induction principle.The following lemma is about all we can say about �F at this stage. Nev-ertheless, it is a necessary �rst step.



13.2. CATAMORPHISMS DEFINED 241Lemma 13.3 �F is a monotype.Proof �F is a monotype� f de�nition gI w �F( f induction principle (13.2) gI w F:I� f F is a relator (10.33a) gtrue213.2 Catamorphisms De�nedDe�nition 13.4 For endorelator F we de�ne a function, denoted by ([F ; ]),by the properties that, for all specs R,(a) ([F ; R ]) = R � F:([F ; R ])and for all specs R and X,(b) X w ([F ; R ]) ( X w R � F:X2In other words, ([F ; R ]) is the least solution to the equationX :: X = R � F:XIts well-de�nedness is thus guaranteed by the Knaster-Tarski theorem.We call specs of the form ([F ; R ]) catamorphisms (or F -catamorphismswhen we particularly wish to be explicit about F ) and we verbalise ([F ; R ]) as\(F -)catamorphism R", omitting the quali�cation \F" when there is no doubtabout the relator in question.



242 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMSFor reasons that will only become clear later, we call 13.4(a) the computationrule for catamorphisms. We call 13.4(b) the induction principle for catamor-phisms. (The relationship with the induction principle for �F will become evi-dent after we have established that �F is itself a catamorphism | see theorem13.20.)One may well raise one's eyebrows at the unconventional \banana brackets"we have chosen to denote catamorphisms. The reasoning behind this choiceis based on envisaged applications: typically, the relators one encounters inprogramming problems are formed using the disjoint-sum operator. Conse-quently, the catamorphism constructor will be applied to a junc of specs havingthe same number of components as that of the associated relator. The use ofspecial brackets thus avoids the otherwise inevitable pair of parentheses. Forseveral examples of such applications see [53] and [80]. The notation was �rstintroduced by Malcolm in [63] and [64].The catamorphism ([F ; I ]) is of particular importance since it is clearly theleast �xed point of F . Thus, we have:�F = ([F ; I ])(13.5)From now on we omit the argument \F" within the catamorphism bracketsand write just \([R ])" instead of \([F ; R ])".13.3 The Unique Extension PropertyThe de�nition of a catamorphism is clear enough but with its two distinct partsit is not well suited to calculational purposes. We proceed now to prove twoproperties that predict a single-statement de�nition of catamorphism. The �rstis simple enough.Theorem 13.6([R ]) = ([R ]) � �FProof ([R ]) = ([R ]) � �F� f lemma 13.3 g([R ]) � �F w ([R ])



13.3. THE UNIQUE EXTENSION PROPERTY 243( f induction principle for catamorphisms: (13.4b) g([R ]) � �F w R � F:(([R ]) � �F )� f F is a relator (10.33c), �F is a �xed point of F g([R ]) � �F w R � F:([R ]) � �F� f computation rule for catamorphisms: (13.4a) gtrue2Note that the theorem could equally well have been formulated as�F w ([R ])>We have now established that ([R ]) satis�es two equations, namely,X :: X = R � F:Xand X :: X = X � �FObviously, therefore, it also satis�es the third equationX :: X = R � F:X � �F(13.7)The important insight contained in the next theorem is that the set of specssimultaneously solving the �rst two equations is identical to the set of solutionsof the third equation.Theorem 13.8X = R � F:X � �F � X = X � �F ^ X = R � F:XProof X � �F = X ^ X = R � F:X� f substitution gX � �F = X ^ X = R � F:(X � �F )� f F is a relator (10.33c), �F is a �xed point of F gX � �F = X ^ X = R � F:X � �F� f ) is obvious; ( by (13.3) and (10.1) gX = R � F:X � �F2



244 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMSMore signi�cantly, equation (13.7) has a unique solution, which we shallnow prove. It will come as no surprise that a goal in our proof is to invoke theinduction principle (13.2). How we do so is, in our view, particularly elegantand o�ers an excellent illustration of the bene�ts to be gained from a systematicdevelopment of a theory taking account of clearly stated calculational rules, inthis case the Galois connection between factors and composition.Suppose P and Q are two solutions to (13.7). I.e.P = R � F:P � �F(13.9) Q = R � F:Q � �F(13.10)Since P and Q are completely symmetrical our task reduces to showing thatQ w P . We use factor theory and the induction principle to prove this propertyas follows.Q w P� f P = f (13.9), theorem 13.8 g P � �F gQ w P � �F� f (9.1a) gPnQ w �F( f induction principle (13.2) gPnQ w F:(PnQ)� f (9.1a) gQ w P � F:(PnQ)� f (13.9), (13.10), theorem 13.8 gR � F:Q w R � F:P � F:(PnQ)( f F is a relator, monotonicity of composition gF:Q w F:(P � PnQ)� f (9.2a), monotonicity of relators gtrueIn conclusion we have:Corollary 13.11 (Unique Extension Property)For all specs X and R,X = ([R ]) � X = R � F:X � �F2



13.4. CONSEQUENCES OF THE UEP 24513.4 Consequences of the UEPWere we obliged to refer to one theorem in the paper that is the most importantof all then it would be the above unique extension property. It will be used sooften below that we will refer to it within proof hints simply as \uep". A �rstexample is the simple but nevertheless useful identity rule:Lemma 13.12 (Identity Rule)�F = ([�F ])Proof �F = ([�F ])� f uep: (13.11) g�F = �F � F:�F � �F� f (13.1), (13.3) and (10.1) gtrue2(Later | see theorem 13.20 | we shall see various other ways in which �F canbe expressed as a catamorphism.)Also, the coincidence in ([R ]) of the least and greatest solutions of (13.7) togetherwith the Knaster-Tarski theorem gives:Theorem 13.13(a) X = ([R ]) ( X = R � F:X � �F(b) X w ([R ]) ( X w R � F:X � �F(c) X v ([R ]) ( X v R � F:X � �F2 A corollary of the above that �gures very prominently in program calcula-tions isCorollary 13.14 (Catamorphism Fusion)(a) U � ([V ]) = ([R ]) ( U � V = R � F:U(b) U � ([V ]) w ([R ]) ( U � V w R � F:U(c) U � ([V ]) v ([R ]) ( U � V v R � F:U



246 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMSProof Let � 2 f=;w;vg. ThenU � ([V ]) � ([R ])( f (13.13) gU � ([V ]) � R � F:(U � ([V ])) � �F� f uep: (13.11); (10.33c) gU � V � F:([V ]) � �F � R � F:U � F:([V ]) � �F( f invariance of � under composition gU � V � R � F:U2 The importance of fusion laws has already been stressed in our discussionof the polynomial relators. In earlier publications [4, 62] we used the term\promotion" property, this term having been used by Bird to name a techniquefor improving the e�ciency of programs [15] and which our notion capturedand generalised. In so doing it was our explicit intention to \promote" therecognition and use of such laws in program transformation. Maarten Fokkingasuggested the more descriptive term \fusion" property, and we have been gladto adopt his suggestion. Our use of the term here is yet another generalisationthat we have no doubt will prove to be just as important.Theorem 13.15 (Monotonicity)([R ]) w ([S ]) ( R w SProof ([R ]) w ([S ])( f fusion (13.14b), U := I gI � R w S � F:I( f (10.33a) gR w S213.5 Further Properties of CatamorphismsOur next series of calculations is motivated by the wish to determine the de-pendency of the left and right domain of ([R ]) on the left and right domain



13.5. FURTHER PROPERTIES OF CATAMORPHISMS 247of R. We also wish to determine to what extent \functionality", \injectivity",\surjectivity" and \totality" properties are maintained by catamorphism con-struction.An alternative motivation might be that we wish to verify the type inferencerules ([R ]) 2 A��F ( R 2 A�F:Aand ([R ]) 2 A � �F ( R 2 A � F:AWe do indeed verify these rules but would stress once again that they are in-cluded primarily to enable the reader to relate theorems about \<" and \>" toconventional mechanisms for expressing type properties. Statements about \<"and \>" involve one fewer dummy (the universally quanti�ed monotype A inthe rules above is not needed) and separate properties of the left from thoseof the right domain; either of these is su�cient grounds to justify their use inpreference to the conventional modes of expression.We begin with imp and co-imp preservation.Lemma 13.16R w ([S ]) � ([T ])[ ( R w S � F:R � T [Proof R w ([S ]) � ([T ])[� f left factors (9.1b) gR=([T ])[ w ([S ])( f induction principle: 13.4(b) gR=([T ])[ w S � F:(R=([T ])[)� f left factors (9.1b) gR w S � F:(R=([T ])[) � ([T ])[� f computation rule (13.4a), reverse gR w S � F:(R=([T ])[) � F:([T ])[ � T [� f relators (10.33c) gR w S � F:(R=([T ])[ � ([T ])[) � T [( f left factors (9.2b), monotonicity gR w S � F:R � T [



248 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMS2Theorem 13.17 (Imp and co-imp preservation)The function ([ ]) respects (a) imps, (b) co-imps and (c) bijections.Proof Part (a) is a corollary of lemma 13.16 obtained by instantiating R toI and applying monotonicity. Speci�cally, we have:([S ]) is an imp� f de�nition gI w ([S ]) � ([S ])[( f lemma 13.16(a) gI w S � F:I � S[( f (10.33a), monotonicity gI w S � S[� f de�nition gS is an imp.Co-imp preservation is established by the following argument:I w ([S ])[ � ([S ])( f transitivity: 13.3 g�F w ([S ])[ � ([S ])( f (13.5), catamorphism fusion: 13.14(c) gI � F:([S ])[ w ([S ])[ � S� f calculus gF:([S ]) w S[ � ([S ])� f computation rule: 13.4(a) gF:([S ]) w S[ � S � F:([S ])( f monotonicity gI w S[ � SPart (c) is, of course, just the conjunction of (a) and (b).2 It is interesting to note that the complete proof of theorem 13.17 (that isincluding the proof of lemma 13.16) uses all the properties of a relator. (Usesof (10.33a) and (10.33c) are explicitly mentioned; use of (10.33b) | the mono-tonicity of F | occurs along with the use of other monotonicity properties



13.5. FURTHER PROPERTIES OF CATAMORPHISMS 249in the last step in the proof of lemma 13.16, and use of (10.33d) is hidden inthe preceding step by our use of ambiguous notation.) Indeed, this theorem iscrucial to potential uses of our calculus and provides, on its own, much supportfor the chosen de�nition of a relator.We turn now to the relationship between the right and left domains of ([R ])and those of R. We begin with some relatively straightforward observations.Theorem 13.18 (Type of catamorphisms)(a) R< w ([R ])<(b) �F w ([R ])>Proof Both parts follow immediately from ([R ]) = R � F:([R ]) � �F and, re-spectively, properties (10.17) and (10.22).2 In the next theorem we show how, without loss of generality, the argumentof a catamorphism can be restricted to specs whose domains satisfy certaincriteria.Theorem 13.19 (Domain Trading)For all monotypes A and specs R,(a) ([R ]) = ([R � F:A ]) = ([A � R ]) ( A w (R � F:A)<(b) ([R ]) = ([R � F:R< ])(c) ([R ]) = ([R � A ]) ( A w F:R<Proof Part (b) is a particular instance of (a) obtained by instantiating A toR<. (The antecedent of (a) is easily veri�ed to be true.) Part (c) follows from(b) by monotonicity. So only (a) needs to be proved. We begin by provingequality of the �rst and second terms.([R]) = ([R � F:A])( f calculus g([R]) = A � ([R � F:A]) ^ A � ([R � F:A]) = ([R � F:A])( f fusion (13.14), applied twice gA � R � F:A = R � F:A ^ A � R � F:A = R � F:A � F:A� f F:A � F:A = F:A, calculus gA � R � F:A = R � F:A� f (10.12) gA w (R � F:A)<



250 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMSNow, equality between the second and third terms is straightforward:([R � F:A])= f assumption: A w (R � F:A)< g([A � R � F:A])= f A w (A �R � F:A)<, theorem above g([A �R])2 A consequence of this domain trading rule is that we can now generaliselemma 13.12 to a very 
exible and useful form.Theorem 13.20 (Identity Rule)(a) �F = ([A]) ( I w A w �FIn particular,(b) �F = ([�F ]) = ([I]) = ([F:I])Proof First we show that ([I]) = �F .([I]) = �F� f lemma 13.12 g([I]) = ([�F ])( f domain trading: 13.19(c) g�F w F:(�F )<� f �F = F:�F = (�F )< gtrueHence�F = ([A])� ([I]) = ([A]) = ([�F ])( f monotonicity: theorem 13.15 gI w A w �FThis proves part (a). Part (b) lists some particular instances that we use mostcommonly.2Properties 13.18(a) and (b) may be jointly rephrased as



13.5. FURTHER PROPERTIES OF CATAMORPHISMS 251([R ]) 2 A��F ( R 2 A�BIn particular,([R ]) 2 A��F ( R 2 A�F:AMoreover, property 13.19(b) implies that catamorphisms may be restricted,quite without loss of generality, to relations R 2 A�F:A for some monotypeA. In conventional accounts this restriction is indeed imposed | with theconsequence that catamorphisms are no longer total functions. It is preciselythese burdensome and highly undesirable type restrictions that our theory triesto avoid!Theorem 13.18 raises the question as to when the inclusions in (a) and (b)may be strengthened to equalities. This is an important question because thestatement([R ])< = R<is interpreted as the statement that ([R ]) maintains any surjectivity property ofR, whilst the statement([R ])> = �Fis interpreted as the statement that ([R ]) is total on �F . Part (a) of the fol-lowing lemma seems to be the strongest statement that can be made about thesurjectivity of catamorphisms; the dual statement (part (b) below) acts as astepping stone to the desired theorem on totality.Lemma 13.21(a) ([R ])< = R< ( F:([R ])< w R>(b) ([R ])> = �F ( R> w F:([R ])<Proof(a) R< = ([R ])<� f computation rule, (13.4a) gR< = (R � F:([R ]))<� f (10.16) gR< = (R � F:([R ])<)<( f (10.13) gF:([R ])< w R>



252 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMS(b) ([R ])> = �F� f (13.18b) g([R ])> w �F( f induction principle (13.2 g([R ])> w F:([R ])>� f computation rule, (13.4a) g(R � F:([R ]))> w F:([R ])>( f (10.21) and (10.12) gR> w F:([R ])<2A requirement for totality of ([R ]) is now easy to derive.Theorem 13.22 (Totality)([R ])> = �F ( R> w F:R<Proof ([R ])> = �F( f lemma 13.21b gR> w F:([R ])<( f theorem 13.18(a), monotonicity gR> w F:R<2Corollary 13.23([f ]) 2 A � �F ( f 2 A � F:AProof This is a matter of expanding the de�nition of the antecedent andconsequent and applying the appropriate lemma or theorem. Thus, assumef 2 A  � F:A. Then, by de�nition and the monotonicity of relators, f isan imp and f> = F:A w F:f<. Thus, by theorem 13.17, ([f ]) is an imp, bytheorem 13.22, ([f ])> = �F , and, by theorem 13.18(a), A w ([f ])<. I.e. ([f ]) 2A � �F .2



13.6. NATURALITY OF CATAMORPHISMS 25313.6 Naturality of CatamorphismsTheorem 13.24 (Naturality of catamorphisms) If F is an endorelator thenfor all specs R(a) ([F ; ]) 2 (R :<� �F ) :<� (R :<� F:R)(b) ([F ; ]) 2 (R :�> �F ) :<� (R :�> F:R)(c) ([F ; ]) 2 (R :<�> �F ) :<� (R :<�> F:R)Proof We prove part (a) only. The proof is very similar to that of theorem11.5 and the reader should be able to see how to extend the proof of (a) toprove (b) and (c).([F ; ]) 2 (R :<� �F ) :<� (R :<� F:R)� f theorem 11.4, de�nition of 2 :<� g8(U; V :: ([F ;U ]) hR :<� �F i ([F ;V ]) ( U hR :<� F:RiV )� f de�nition of :<� g8(U; V :: R � ([V ]) w ([U ]) � �F ( R � V w U � F:R)� f lemma 13.6; fusion, theorem 13.14 gtrue2 The reader who has diligently followed through the proofs of theorems 11.5and 13.24 (and �lled in the missing elements) will realise that the theoremscombine a number of important properties of relators and catamorphisms |they preserve imps (and co-imps although that didn't play any rôle above),they are monotonic, relators distribute through composition and catamorphismsobey the fusion properties 13.14 (a) to (c).It is no accident that this is the case. Indeed, it can be said that theorems11.5 and 13.24 were the initial inspiration for all the research reported here.That is to say, some time after becoming aware of the notion of \natural poly-morphism" we speci�cally set out to develop a theory of datatypes with thesetwo theorems as primary \healthiness criteria". As our work developed we re-alised that they could be decomposed into more elementary requirements |exactly the theorems presented prior to this subsection. Most important of allwe realised that the \naturality" of functors amounted precisely to the de�ni-tion of \relator" that we have given. (We now run the risk of being criticised for



254 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMSnot having included this discussion at a much earlier stage in the presentation.That argument we would counter by saying that a research paper and a logbookare not the same thing.)Theorem 13.24 reformulates various fusion properties as naturality proper-ties. We conclude this section with a useful lemma whose statement involves acombination of a naturality property and a fusion property.Lemma 13.25 (Catamorphism-catamorphism fusion)For all (� ; :�) 2 f(w; :<�); (=; :<�>); (v; :�>)g,([F ; R ]) � ([G; S ]) � ([G; R � S ]) ( S 2 F :� GProof ([F ; R ]) � ([G; S ]) � ([G; R � S ])( f catamorphism fusion: theorem 13.14 g([F ; R ]) � S � R � S � G:([F ; R ])( f computation rule: 13.4(a) gR � F:([F ; R ]) � S � R � S � G:([F ; R ])( f transitivity and monotonicity gS 2 F :� G213.7 Isomorphic Monotypes and Initial Alge-brasIn this section we turn to the consideration of monotypes that are isomorphicto �F . We have two reasons to do so. The �rst is in order to relate ourown theory to other theories, in particular to those based on category theory.Since categorical approaches characterise types only \up to isomorphism" we areobliged to pitch the discussion at this more general level. The second, and moreimportant reason, is that types are often represented by a variety of isomorphicalgebraic structures. The natural numbers, for example, can be represented byunary numerals (zero and the successor operator of Peano arithmetic), binarynumerals, decimal numerals etc. Lists may be cons lists (an algebraic structurehaving a constant nil and a binary \cons" operator that appends new elementsto the front of a list), snoc lists ( a similar structure but with a \snoc" operator



13.7. ISOMORPHIC MONOTYPES AND INITIAL ALGEBRAS 255that appends new elements to the end of a list) or join lists (a structure havinga constant nil, a unary singleton-list-forming operation, and an associative joinoperation on pairs of lists). Such isomorphic instances of a type arise throughthe use of di�erent relators and so have di�erent associated catamorphisms.Choosing the right instance can be the key to the design of e�cient programs,but it is also necessary to be able to relate the catamorphisms of isomorphictypes.13.7.1 Initial F -Algebras De�nedIn category theory types are de�ned by means of initial algebras (see e.g. [73]).In order to set the scene we introduce the de�nitions of an \F -algebra" and an\initial" F -algebra.De�nition 13.26 An F -algebra is a pair (C; �) such that:(a) C is a monotype, and(b) � 2 C  � F:C2De�nition 13.27 An initial F -algebra is a triple (C; �; �) such that(a) the pair (C; �) is an F -algebra.Furthermore, � is a function from imps to imps with the property that for allF -algebras (A; f):(b) �:f 2 A � Cand is the unique solution in A � C of the equationg :: g � � = f � F:gThat is, for all g 2 A � C,(c) g = �:f � g � � = f � F:gCondition (c) is referred to as the initiality condition.2



256 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMSIn de�nition 13.27 we have been at pains to reproduce the conventionalde�nition of an initial F -algebra as closely as possible within our system whilstnevertheless giving a de�nition that is amenable to calculation. It is an uglyde�nition because of the provisos on the rules pertaining to the use of �:f .A rephrasing of the de�nition helps in later calculations: Note the similaritybetween (c) and the unique extension property. The similarity increases if wecan prove:g � � = f � F:g � g = f � F:g � �[(13.28)for g 2 A � C and f 2 A � F:A.g � � = f � F:g � g = f � F:g � �[( f mutual implication and Leibniz gg � � � �[ = g ^ F:g � �[ � � = F:g( f g � C = g, relator.F g� � �[ = C ^ �[ � � = F:CSo (13.28) holds if � is a bijection to C from F:C. To prove this fact involvesconstructing the inverse of � .Simple type inference gives us a potential candidate. Speci�cally:�:(F:�) 2 F:C  � C(13.29)Thus, we now proceed to verify that �[ = �:(F:�).The basis for the veri�cation is theorem (D21) in the appendix which, giventhe type information that we already have, asserts that it su�ces to verify thetwo properties:� � �:(F:�) = C(13.30) �:(F:�) � � = F:C(13.31)Before proceeding it is useful to interpose a minor observation.C = �:�(13.32)Proof



13.7. ISOMORPHIC MONOTYPES AND INITIAL ALGEBRAS 257C = �:�� f initiality condition: 13.27(c) gC � � = � � F:C� f (13.26b) gtrue2Now we can continue.Proof of (13.30)� � �:(F:�) = C� f (13.32) g� � �:(F:�) = �:�� f initiality condition: 13.27(c) g� � �:(F:�) � � = � � F:(� � �:(F:�))( f substitution, relators g�:(F:�) � � = F:� � F:(�:(F:�))� f initiality condition: 13.27(c) with g := �:(F:�) gtrue2Proof of (13.31)�:(F:�) � � = F:C� f initiality condition: 13.27(c) gF:� � F:(�:(F:�)) = F:C( f substitution, relators g� � �:(F:�) = C� f (13.30) gtrue2 As already explained we conclude by (D21) that � is a bijection to C fromF:C with:�[ = �:(F:�)(13.33)



258 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMSAll together we now have the ingredients of an equivalent de�nition of initialF -algebras:De�nition 13.34 (C; �; �) is an initial F -algebra equivales the conjunctionof(a) C is a monotype,(b) � is a bijection to C from F:C.and � is a function from imps to imps with the properties that, for all F -algebras(A; f) and all imps g 2 A � C,(c) �:f 2 A � C, and(d) g = �:f � g = f � F:g � �[Proof We have shown that� is a bijection to C from F:C) 8(A; f; g : (A; f) is an F -algebra ^ g 2 A �C: g � � = f � F:g � g = f � F:g � �[)and (C; �; �) is an initial F -algebra) � is a bijection to C from F:CSimple predicate calculus completes the proof.2 Since we also have� (�F; �F ) is an F -algebra� ([f ]) 2 A � �F ( f 2 A � F:A(see corollary 13.23) we conclude:Corollary 13.35 (�F; �F; ([F ; ])) is an initial F -algebra.2



13.7. ISOMORPHIC MONOTYPES AND INITIAL ALGEBRAS 259Our next objective in this section is to prove the more general statementthat a monotype C is the �rst component of an initial F -algebra if and only ifC is isomorphic to �F . Just as for �F , we shall, in so doing, characterise suchmonotypes by somewhat broader properties than the initiality condition; inparticular, we establish the existence of \C-catamorphisms", i.e. the existenceof a function that is total on all specs (rather than just imps), is imp-preserving,and obeys a certain \unique extension property" that when restricted to impsagrees with the required initiality property of \�" in de�nition 13.34.The proof is by mutual implication, the next two subsections being devotedto each part.13.7.2 Isomorphic monotypesSuppose C is a monotype that is isomorphic to �F . By de�nition there is abijection, " say, satisfying:" � "[ = C(13.36) "[ � " = �F(13.37)Simple consequences of (13.36) and (13.37) are that "< = C and "> = �F . Inparticular,C � " = " = " � �F(13.38)We use de�nition 13.34 to show that C is the �rst component in an initialF -algebra. Our �rst task is to construct a bijection � to C from F:C. This wedo by type considerations.By construction of � :� is a bijection to C from F:C� f " is a bijection to C from �F ,� � := " � 
 g
 is a bijection to �F from F:C( f �F = F:�F g
 is a bijection to F:�F from F:C( f "[ is a bijection to �F from C,� 
 := F:"[ gtrue



260 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMSThe constructed bijection is thus� = " � F:"[(13.39)Our next (and �nal) task is to construct a function � from imps to imps satis-fying 13.34(c) and (d). It is at this point that we make a more general claim.Speci�cally, our claim is that C enjoys its own form of catamorphism with com-parable properties to F -catamorphisms, including that of satisfying the initialitycondition.Such a \C-catamorphism" is required to be the unique solution to the equa-tion: X :: X = R � F:X � �[(In other words we generalise (d) in de�nition 13.34 to all specs R and not justimps f of a certain type.) To show that this equation always has a unique solu-tion and simultaneously derive the de�nition of a C-catamorphism we proceedas follows (the goal of the calculation being to remove X from the rhs of theinitial equation):X = R � F:X � �[� f (13.39), reverse gX = R � F:X � F:" � "[� f by (13.36), "[ � C = "[ gX = R � F:X � F:" � "[ ^ X � C = X� f relators, (13.36), (13.37) gX � " = R � F:(X � ") � �F ^ X � C = X� f uep: (13.11) gX � " = ([F ; R ]) ^ X � C = X� f (13.36), (13.37), substitution gX = ([F ; R ]) � "[ ^ X � C = X� f by (13.36), "[ � C = "[ gX = ([F ; R ]) � "[In conclusion, we de�ne([F; "; R ]) = ([F ; R ]) � "[(13.40)and we have established the unique extension propertyR = ([F; "; S ]) � R = S � F:R � �[(13.41)



13.7. ISOMORPHIC MONOTYPES AND INITIAL ALGEBRAS 261Note that we have introduced yet another parameter into the de�nition of acatamorphism. This should, however, cause no confusion since the number ofparameters clearly identi�es the intended de�nition. Moreover, the multiple useof the catamorphism brackets is justi�ed by the identity([F ; R ]) = ([F; �F ; R ])which identity is easily derived from the properties of the monotype �F andthe right domain of ([F ; R ]).Property 13.41 holds the key to many additional properties of such catamor-phisms. All the properties of F -catamorphisms established in sections 13.3 and13.5 can be generalised. The generalised properties are almost verbatim repe-titions of the originals, only minor modi�cations being necessary to replace �Fby C, � or �[. Without further ado, therefore, we shall quickly summarise theproperties. Note that the order of presentation remains the same as in sections13.3 and 13.5.To begin, the computation rule is([F; "; R ]) � � = R � F:([F; "; R ])(Some readers may �nd this rule more familiar than the earlier one; it is therule that appears frequently in, for example, [62].)Second, we have the identity rule:([F; "; � ]) = CThird, by invoking the Knaster-Tarski theorem we have:X = ([F; "; R ]) ( X = R � F:X � �[X w ([F; "; R ]) ( X w R � F:X � �[X v ([F; "; R ]) ( X v R � F:X � �[from which we may derive just as before the fusion properties:U � ([F; "; V ]) = ([F; "; R ]) ( U � V = R � F:UU � ([F; "; V ]) w ([F; "; R ]) ( U � V w R � F:U



262 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMSU � ([F; "; V ]) v ([F; "; R ]) ( U � V v R � F:UMonotonicity is now an easy consequence:([F; "; R ]) w ([F; "; S ]) ( R w SThat the function ([F; "; ]) respects (a) imps, (b) co-imps and (c) bijectionsfollows from the fact that it is the composition of two functions, namely ([ ])and (�("[)), that themselves respect imps, co-imps and bijections. (That (�("[))respects all three is a consequence of " being a bijection. That function com-position preserves the property of being imp- (respectively co-imp-, bijection-)respecting is easily veri�ed.)Finally, we have the following properties of the left and right domains of suchcatamorphisms:R< w ([F; "; R ])<C w ([F; "; R ])>([F; "; R ]) = ([F; "; R � F:R< ])([F; "; R ])< = R< ( F:([F; "; R ])< w R>([F; "; R ])> = C ( R> w F:R<([F; "; f ]) 2 A � C ( f 2 A � F:AAll of these properties can be veri�ed by minor editing of the proofs givenin sections 13.3 and 13.5. In some cases we have outlined an alternative (andpreferable) proof strategy. The complete details are left to the industriousreader.It remains for us to remark that (C; �) is obviously an F -algebra, and itsinitiality is guaranteed by the last property above together with the uniqueextension property, property (13.41).



13.7. ISOMORPHIC MONOTYPES AND INITIAL ALGEBRAS 26313.7.3 Initial algebrasWe suppose now that (C; �; �) is an initial F -algebra. Our goal is to prove thatC is isomorphic to �F . We intend to achieve this goal by exhibiting " and 
such that� " 2 C  � �F� 
 2 �F  � C� 
 = "[Type inference again gives us potential candidates " and 
:By construction of ":" 2 C  � �F( f � " = ([f ]), initiality of (�F; �F; ([ ])) gf 2 C  � F:C( f (C; �) is an F -algebra gf = �By construction of 
:
 2 �F  � C( f � 
 = �:f , initiality of (C; �; �) gf 2 �F  � F:�F( f (�F; �F ) is an F -algebra gf = �FSo choose " = ([� ]) and 
 = �:�F . Finally we verify that one is the reverse ofthe other: 
 = "[� f choice of " and 
 g�:�F = ([� ])[� f initiality of �: 13.34(d) g([� ])[ = �F � F:([� ])[ � �[� f reverse, �F = �F [ g([� ]) = � � F:([� ]) � �F� f uep: (13.11) gtrue



264 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMS13.7.4 An Application to Isomorphic RelatorsUnder what circumstances might one construct two isomorphic monotypes?One possibility that suggests itself is when constructing the �xed point of twonaturally isomorphic endorelators. That, after all, is how one obtains naturallyisomorphic representations of the natural numbers. Suppose F is an endorelatorand 
 is a bijection with 
< = F:I. Then, the claim is:Theorem 13.42([F ; 
[]) = ([F 
; 
])[ is a bijection to �(F 
) from �F .(See (11.14) in section 11.4 for the de�nition of F 
.)Proof Let G = F 
. We must construct a bijection with right domain �Fand left domain �G. To satisfy the �rst condition an F -catamorphism is theobvious thing to construct. To satisfy the second condition the reverse of aG-catamorphism is more appropriate. Let us therefore try both. First,by construction of �([F ; �])> = �F( f lemma 13.21(b) g�> w F:([F ; �])<( f � � := 
[, 
[> = F:I gF:I w F:([F ; 
[])<� f domains are monotypes, monotonicity gtrueSimilarly,([G; 
])> = �GSince 
 is a bijection and catamorphisms preserve bijections, both of ([F ; 
[])and ([G; 
]) are bijections. We now conjecture that([F ; 
[]) = ([G; 
])[The proof goes as follows:



13.7. ISOMORPHIC MONOTYPES AND INITIAL ALGEBRAS 265([F ; 
[]) = ([G; 
])[� f uep: (13.11) g([G; 
])[ = 
[ � F:([G; 
])[ � �F� f reverse, �F = �F [ g([G; 
]) = �F � F:([G; 
]) � 
� f 
 2 F<�>G g([G; 
]) = �F � 
 � G:([G; 
])( f computation rule: 13.4(a) g([G; 
]) = ([G; �F � 
])( f 13.19(a) g�F w (
 � G:�F )<� f 
 2 F<�>G g�F w (F:�F � 
)<� f �F = F:�F = F:�F<, domains: (10.17) gtrueIn conclusion([F ; 
[]) = ([G; 
])[is a bijection to �G from �F .2 We now seek a relationship between F -catamorphisms and F 
-catamorphisms.Formally we prove:Theorem 13.43([F 
; R � 
]) = ([F ; R]) � ([F 
; 
]) = ([F; ([F ; 
[]); R])ProofBy construction of S and � :([F 
; S]) = ([F ; R]) � �� f uep: (13.11), F 
 is a relator g([F ; R]) � � = S � F 
:([F ; R]) � F 
:� � �F 
� f computation rule: 13.4(a) gR � F:([F ; R]) � � = S � F 
:([F ; R]) � F 
:� � �F 
( f � S := R � 
, aiming to invoke 
 2 F<�>F 
 gR � F:([F ; R]) � � = R � 
 � F 
:([F ; R]) � F 
:� � �F 




266 CHAPTER 13. INITIAL DATATYPES AND CATAMORPHISMS� f 
 2 F<�>F 
 gR � F:([F ; R]) � � = R � F:([F ; R]) � 
 � F 
:� � �F 
( f Leibniz g� = 
 � F 
 :� � �F 
� f uep: (13.11) g� = ([F 
; 
])2Dual to this we expectTheorem 13.44([F ; R � 
[]) = ([F 
; R]) � ([F ; 
[]) = ([F 
; ([F 
; 
]); R])which we verify as follows:([F 
; R])= f 13.19(a) g([F 
; R � F 
:I])= f 
[ � 
 = F 
:I g([F 
; R � 
[ � 
])= f theorem 13.43 g([F ; R � 
[]) � ([F 
; 
])Hence ([F ; R � 
[])= f �F 
 = ([F 
; 
]) � ([F ; 
[]) g([F ; R � 
[]) � ([F 
; 
]) � ([F ; 
[])= f above g([F 
; R]) � ([F ; 
[])2



Chapter 14Parameterised Types
14.1 New relators from oldThe theorems in the earlier sections are all well and good but a major concernis to build new relators from existing ones. The achievement of this goal isdelightfully simple. Suppose 
 is a binary relator. Fix one of its argumentsto spec R, say, and then consider �(R
). Finally, abstracting from R we haveconstructed a function from specs to specs. In this section we prove the beautifuland remarkable result that this function is a relator.(Note: Up until now we have used the operator \�" only in the context ofa relator. In general R
 is not a relator (although I
 is), but it is monotonicand so has a least �xed point.)Before embarking on the proof let us recall also the de�ning property of�(R
): �(R
) = R
 �(R
)(14.1) X w �(R
) ( X w R 
X(14.2)The form of (14.1) and (14.2) is highly reminiscent of the de�nition of acatamorphism, leading us to the following:De�nition 14.3Suppose 
 is a binary relator. It is easy to verify that I
 is a relator (where(I
):R = I 
 R). Its catamorphisms therefore exist and we may de�ne:$R b= ([I
; R
 I ]) 267



268 CHAPTER 14. PARAMETERISED TYPES2Our initial goal is to show that �(R
) = $R.In the following calculations we adopt the convention that composition haslower precedence than \
". We also drop the argument \I
" within the cata-morphism brackets since our discussion will be con�ned to just this one relator.For ease of reference it is useful to instantiate the unique extension property,computation rule and fusion properties of section 13 with F := I
 and thede�nition of $R. After some simpli�cation, using in particular the assumedcompositionality of 
, these become:(Unique extension property)X = $R � X = R 
X � �(I
)(14.4)(Computation rules)([R ]) = R � I 
 ([R ]) = ([R ]) � �(I
)(14.5) $R = R
 $R = $R � �(I
)(14.6)(Fusion laws)U � ([V ]) � ([R]) ( U � V � R � I 
 U(14.7) U � $V � $R ( U � V 
 I � R
 U(14.8)where \�" is any of \=", \w", \v".To achieve our goal the obvious �rst step is to invoke the unique extensionproperty. �(R
) = $R� f uep: (14.4) g�(R
) = R
 I � I 
 �(R
) � �(I
)� f relator.
 g�(R
) = R 
 �(R
) � �(I
)� f induction principle: (14.2) g�(R
) = �(R
) � �(I
)



14.1. NEW RELATORS FROM OLD 269This last equality is established by proving two inclusions. First:I w �(I
)(14.9)Proof Immediate from the induction principle (14.2) and I w I 
 I.2Thus, by monotonicity:�(R
) w �(R
) � �(I
)(14.10)For the other inclusion another appeal to the induction principle is required:�(R
) � �(I
) w �(R
)( f induction principle: (14.2) g�(R
) � �(I
) w R 
 (�(R
) � �(I
))� f relator.
 g�(R
) � �(I
) w R 
 �(R
) � I 
 �(I
)� f (14.1) g�(R
) � �(I
) w �(R
) � �(I
)� trueWe have thus established�(R
) v �(R
) � �(I
)(14.11)and the combination of (14.10) and (14.11) completes the proof of:Theorem 14.12 �(R
) = $R2 It is a straightforward matter to verify that $ is a relator. Here are theproofs of the four properties.Lemma 14.13I w $I



270 CHAPTER 14. PARAMETERISED TYPESProof Immediate from the conjunction of (14.9) and theorem 14.12.2In order to show that $ distributes over composition we prove �rst a moregeneral lemma, called the map fusion lemma. The lemma is very useful in itsown right because it states that a catamorphism and a map can always be fusedinto a single catamorphism. Although the lemma is just a special case of thefusion laws in section 13.4 (see corollary 13.14) its signi�cance is that two specsof which the left operand is a catamorphism are fused into one catamorphism.Lemma 14.14 (Map Fusion)([R ]) � $S = ([R � S 
 I ])Proof ([R ]) � $S = ([R � S 
 I ])( f fusion | (14.7) and de�nition 14.3 g([R ]) � S 
 I = R � S 
 I � I 
 ([R ])� f binary relators abide with composition g([R ]) � S 
 I = R � I 
 ([R ]) � S 
 I� f computation rule, (14.5) gtrue2Lemma 14.15$R � $S = $(R � S)Proof $R � $S= f defn. of $ g([R
 I ]) � $S= f lemma 14.14 g([R
 I � S 
 I ])= f compositionality of relators g([(R � S)
 I ])= f defn. of $ g$(R � S)2



14.1. NEW RELATORS FROM OLD 271Lemma 14.16 (Monotonicity)$R w $S ( R w SProofImmediate from the de�nition of $ and the monotonicity of catamorphisms andrelators.2Lemma 14.17 (Revertability)($R)[ = $(R[)Proof ($R)[ = $(R[)� f uep: (14.4) g($R)[ = R[
 ($R)[ � �(I
)� f reverse, 
 is a relator and �(I
) a monotype g$R = �(I
) � R 
 $R� f theorem 14.12; computation rule (14.6) g$R = $I � $R� f lemma 14.15, I is the unit of composition gtrue2Theorem 14.18 $ is a relator.Proof Lemmas 14.13, 14.15, 14.16 and 14.17.2 The map fusion law and general fusion law for catamorphisms, specialisedappropriately, are conveniently combined into one naturality law.Theorem 14.19 (Naturality of Map Relators)For all � 2 f<�; <�>;�>g([ ]) 2 (S � $:R) :<� (S � R 
 S) .Proof Choosing � 2 fw;=;vg appropriately we have



272 CHAPTER 14. PARAMETERISED TYPES([ ]) 2 (S � $:R) :<� (S � R
 S)( f ([ ]) is a total function: theorem 11.4 g8(U; V :: S � ([U ]) � ([V ]) � $:R( S � U � V � R
 S)But, for all R; S; U and V ,S � ([U ]) � ([V ]) � $:R� f map fusion: 14.14 gS � ([U ]) � ([V � R
 I])( f catamorphism fusion: 13.14 gS � U � V � R
 I � I 
 S� f 
 is a relator gS � U � V � R
 S .2 ****comment***Theorem 14.20([A
;R]) = ([I
;R]) � $AProof ([A
;R]) = ([I
;R]) � $A� f uep: (13.11) g([I
;R]) � $A = R � A 
 (([I
;R]) � $A) � �(A
)� f computation rule: (14.5); 
 is a relator; (14.12) gR � I 
 ([I
;R]) � $A = R � I 
 ([I
;R]) � A 
 $A � $A� f (14.6), $A = $A � $A gtrue214.2 Junctivity propertiesIn [36], chapter 8, Dijkstra and Scholten tread a similar path to our own: they�rst consider equations in X of the form X = �:X, for monotonic function �,and then introduce a parameter Y by supposing that � = Y� for some binary



14.2. JUNCTIVITY PROPERTIES 273operator �. (Their notation is, however, di�erent.) By way of two, what theycall \beautiful", theorems they establish that the least and greatest solutionsof the equation in X, X = Y � X, are remarkably well behaved with respectto the parameter Y . In the present contexts their theorems become one, whichwe shall call the junctivity theorem.As remarked elsewhere, the functions (R�) and (�R) are universally t-junctive for all specs R. Moreover, (f �) is positively u-junctive for all co-impsf , and (�f) is positively u-junctive for all imps f . These are two of the mostimportant ingredients in the proof that follows.Theorem 14.21 (Junctivity)(a) If 
 is I-t-junctive then so too is $.(b) For non-empty I, if 
 is I-u-junctive then so too is $.(c) If 
 is I-t-continuous, then so too is $.(d) For non-empty I, if 
 is I-u-continuous then so too is $.Proof(a) Suppose R is an I-bag.$(tIR) = tI($ � R)� f uep gtI($ � R) = tIR
 tI($ � R) � �(I
)( f tI($ � R)= f de�nition gt(i : i 2 I : $(R:i))= f (14.6) gt(i : i 2 I : $(R:i) � �(I
))= f �(�(I
)) is universally t-junctive gt(i : i 2 I : $(R:i)) � �(I
)= f de�nition gtI($ � R) � �(I
)gtI($ � R) = tIR
 tI($ � R)� f computation rule gtI(
 � hR;$Ri ) = tIR
 tI($ � R)( f de�nition g
 is I-t-junctive



274 CHAPTER 14. PARAMETERISED TYPESThe proof of part (b) is the exact dual except for the step that appeals tothe universal t-junctivity of �(�(I
)). Since �(I
) is a monotype, it is animp; hence (see our preliminary remarks) �(I
) is positively u-junctive. Thejusti�cation of the step may thus be replaced by an appeal to this fact underthe assumption that I is non-empty.For parts (c) and (d) all we have to remark is that, if R is linear, mono-tonicity of $ guarantees that the I-bag hR;$Ri is linear too.2Interesting consequences of theorem 14.21 are obtained by universally quanti-fying over all I-bags of a certain type. Examples include the theorem that $ ispositively u-junctive if 
 is, and $ is (t-or u-) continuous if 
 is too.14.3 Preservation of IsomorphismsAn obvious and important question to ask is whether the construction of $ frombinary relator 
 preserves natural isomorphisms between relators. The answeris, of course, yes!Theorem 14.22 Let � and 
 be binary relators and suppose 
 2 � �= 
.Let y and z be the relators de�ned byyR = ([I�; R � I])zR = ([I
; R 
 I])Then y and z are naturally isomorphic.Proof For binary relators � and 
 the statement 
 2 � �= 
 means that 
is a bijection with
< = I � I(14.23) 
> = I 
 I(14.24)and for all specs R and S,R� S � 
 = 
 � R
 S(14.25)Equation (14.25) is easily shown to be equivalent to the conjunction ofR� I � 
 = 
 � R
 I(14.26)



14.3. PRESERVATION OF ISOMORPHISMS 275for all specs R, andI � S � 
 = 
 � I 
 S(14.27)for all specs S.Hence, in combination with (14.23) and (14.24) we have:
 2 � �= 
 � 
 2 (I�) �= (I
) ^ 
 2 (�I) �= (
I)That 
 2 (I�) �= (I
) means we can invoke theorem 13.44 with F instanti-ated to (I�) and G to (I
). For brevity let 
 = ([I�; 
[]). Then, instantiatingtheorems 13.42, 13.43 and 13.44 we have the following:
 is a bijection to y I from z I(14.28) 
 = ([I�; 
[]) = ([I
; 
])[(14.29) ([I
; R � 
]) = ([I�; R]) � 
[(14.30) ([I�; R � 
[]) = ([I
; R]) � 
(14.31)Because of (14.28) we conjecture that 
 witnesses an isomorphism between yand z. To verify the conjecture it su�ces to show that zR � 
 = 
 � y Rfor all R. Here goes!zR � 
= f de�nition of z g([I
; R 
 I]) � 
= f (14.31) g([I�; R 
 I � 
[])= f (14.26) g([I�; 
[ � R� I])= f lemma 14.14 g([I�; 
[]) � yR= f (14.29) g
 � y R2



276 CHAPTER 14. PARAMETERISED TYPES14.4 A Simulation PropertyIn this section we present what is, at the time of writing, an isolated result butwhich may prove to be much more signi�cant in the future.Recall that relator F simulates relator G is denoted by F >� G. Simulationis a preordering on relators and so can easily be extended to a partial ordering.Now, one of the most powerful tools for reasoning about partial orderings isthe Knaster-Tarski theorem. The question thus arises whether it is possible toextend the theorem to simulations between relators. This is highly desirablebecause one can then demonstrate that one relator simulates another withouthaving to explicitly construct the \witness", i.e. the simulation itself, | this isobtained mechanically as a by-product of the extended Knaster-Tarski theorem.In order to set up such a theorem we �rst need the notion of a monotonicfunction on relators. The de�nition is obvious: a function � is a monotonicfunction on relators if it maps relators to relators and is such that, for allrelators F and G,F >� G ) �:F >� �:GThe revised \Knaster-Tarski theorem" would then take the form: if � is amonotonic function from relators to relators then the equationF :: F �= �:Fhas a least solution �� with the properties that�� �= �:��and F >� �:F ) F >� ��The proof of the theorem would have to be constructive, otherwise the wholepurpose of establishing the theorem (establishing simulations without explicitlyconstructing the witness) would be lost. It is likely, therefore, that its proofwould necessarily be by induction on the prescribed methods for constructingrelators. Here we present one lemma in such an inductive proof.Suppose 
 is a binary relator and G is a unary relator. De�ne the function� from relators to relators by, for all specs R,(�:F ):R = G:R
 F:RI.e. �:F = G
̂F .



14.4. A SIMULATION PROPERTY 277It is easy to verify that if � is monotonic in the sense just de�ned.Now the theorem we prove is the following:F >� G
̂F ) F >� $ �GThe introduction of the relator G into the statement of the theorem makesit slightly more general than the generalisation of the Knaster-Tarski theoremoutlined above but the extra complication proves useful.Three lemmas lead the way to the theorem's proof.Lemma 14.32 ([(G:I)
; T ]) = ([I
; T � G:I 
 I]) .Proof ([(G:I)
; T ])= f theorem 14.20 g([I
; T ]) � $:G:I= f map fusion: theorem 14.14 g([I
; T � G:I 
 I]) .2Lemma 14.33R> = G:I 
 F:I ^ R< v F:I ) ([I
; R])> = $:G:I :Proof Assume R> = G:I 
 F:I ^ R< v F:I . Then,([I
; R])= f R> = G:I 
 F:I , domains g([I
; R � G:I 
 I])= f lemma 14.32 g([(G:I)
; R]) .Hence, ([I
; R]) = $:G:I( f above, totality: theorem 13.22 gR> w G:I 
 R<( f R> = G:I 
 F:I gF:I w R< .2



278 CHAPTER 14. PARAMETERISED TYPESCorollary 14.34 R 2 F >� G
 F ) ([I
; R])> = $:G:I .2Lemma 14.35 For all :� 2 f :<�; :<�>; :�>g([I
; R]) 2 F :� $ �G ( R 2 F :� G
 F .Proof ([I
; R]) 2 F :� $ �G� f de�nition g8(S :: ([I
; R]) 2 F:S <�> $:G:S)( f naturality of map relators: 14.19 g8(S :: R 2 F:S <�> G:S 
 F:S)� f de�nition gR 2 F :� G
 F2Theorem 14.36([I
; T ]) 2 F >� $ �G ( T � I 
 F:I 2 F >� G
 F .Proof By combining lemmas 14.34 and 14.35, with R instantiated to T � I 
F:I, we obtain:([I
; T ]) 2 F >� $ �G ( T � I 
 F:I 2 F >� G
 F .But, by a simple application of the domain trading rule for catamorphisms(theorem 13.19),([I
; T ]) = ([I
; T � I 
 F:I]) .2Theorem 14.37([(G:I)
; T ]) 2 F >� $ �G ( T �G:I 
 F:I 2 F >� G
 F .



14.4. A SIMULATION PROPERTY 279Proof Immediate from lemma 14.32 together with theorem 14.36.2 Remark: In connection with our earlier uncertainty about the best de�nitionof \simulates" it is worth pointing out that all theorems so far stated withrespect to the current de�nition are equally valid if <�> is replaced by <� in thede�nition. End of RemarkThis is an excellent point at which to conclude this section: such a powerfultheorem proved with so little e�ort!
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Chapter 15Complemented Domains andConditionalsConditionals (if-then-else statements) are a well-established feature of pro-gramming languages, and our own theory would be incomplete if they were notincluded. In this section we show how they are expressed and we explore insome detail their algebraic properties.15.1 Domain ComplementFor the purpose of de�ning conditionals (if-then-else statements) it is usefulto have a total operator that has the properties of a complement operator whenrestricted to monotypes. We call this operator the complemented right domainoperator.We specify the complemented right domain of R, denoted R>�, by the re-quirement that it is the greatest monotype A satisfying ?? w R � A. I.e.R>� w A � ?? w R � A(15.1)As always, such a requirement imposes on us the burden of showing that it canindeed be ful�lled. To this end we �rst observe several expressions equivalentto the right side of equation (15.1). Two of these give a closed form for R>� thusestablishing the existence (and uniqueness) of the operator.Lemma 15.2 The following are all equivalent:281



282 CHAPTER 15. COMPLEMENTED DOMAINS AND CONDITIONALS(a) ?? w R � A(b) ?? w R> � A(c) I u :(R>) w A(d) ?? w >> �R � A(e) R v :(>> � A)(f) :(>> �R) w >> � A(g) (:(>> �R))> w AProof We leave the details to the reader. The equivalence of properties (a),(b), (c) and (d) is a consequence of the properties of domains combined in thecase of (c) with simple plat calculus and in the case of (d) with the identity>> �?? = ??. The equivalence of (d), (e) and (f) is a consequence of themiddle exchange rule. Finally the equivalence of (f) and (g) is once more aproperty of domains.2From the equivalence of (a), (c) and (g) we inferR>� = I u :(R>) = (:(>> �R))> :(15.3)The latter two formulae are clumsy; exhibiting them serves the purpose ofshowing that R>� does exist. Both are formulae that are suggested by theintended interpretation of the complemented right domain and might have beenproposed as de�nitions. We prefer, however, the form of (15.1) on the groundsthat it is closer to our view of a speci�cation and is easier to calculate with.The steps used to reach (c) and (g) suggest several properties, speci�cally:Lemma 15.4(a) R> t R>� = I and R> u R>� = ??(b) R>�>� = R>(c) R>� = R>�>(d) R>� = R>>� = (>> � R)>�(e) R>� � S> � S>� � R> for � 2 fv; =; wg:Proof Part (a) follows from R>� = I u :(R>) and simple plat calculus, asdoes (b). Part (c) follows from the speci�cation of R>� (in particular that it is amonotype). Part (d) follows from the equivalence of (a), (b) and (d) in lemma15.2. From the symmetry of (e) in R and S it su�ces to establish just the casethat � is w. For this case we have:



15.1. DOMAIN COMPLEMENT 283R>� w S>� f (15.1) and lemma 15.2(b) g?? w R> � S>� f monotypes commute g?? w S> � R>� f (15.1) and lemma 15.2(b) gS>� w R>(This little proof illustrates beautifully our preference for (15.1) as the de�nitionof the complemented right domain.)2 The importance of 15.4(c) has to do with the fact that we have de�ned atotal complement operator. One is tempted to make do with the complementoperator in the monotype lattice | for monotype A its complement is I u :A| or in the lattice of right (or left) conditions | for right condition p itscomplement :p in the spec lattice coincides with its complement in the latticeof right conditions. However this creates a dilemma as to which to choose,a dilemma which it is better to circumvent. Lemma 15.4(c) indicates thatthe choice is irrelevant. (We return to this matter when we introduce to thede�nition of conditionals.)The equivalence of (a) and (e) in lemma 15.2 together with the speci�cation(15.1) of the complemented domain operator predict that the complementeddomain operator is one adjoint of a Galois connection. It follows that thecomplemented domain operator is universally t-junctive. To be precise wehave:Theorem 15.5 For all sets of specs V ,(a) (tV)>� = uM (V>�)where uM denotes the in�mum operator in the lattice of monotypes. (I.e.uMB = I when set of monotypes B is empty, otherwise uMB = u B.)In particular, for all specs R and S,(b) (RtS)>� = R>� u S>�2In contrast, but not unexpectedly, the complemented domain operator is notuniversally u-junctive. Its u-junctivity properties are inextricably linked, how-ever, to those of the normal domain operator.



284 CHAPTER 15. COMPLEMENTED DOMAINS AND CONDITIONALSTheorem 15.6 For all sets of specs V,(a) (uV)>� = t(V>�) � (uV)> = uM(V>)In particular, for all specs R and S,(b) (RuS)>� = R>� t S>� � (RuS)> = R> u S>(Note that the right side of (b) is true if R and S are both monotypes or bothright conditions. These are two situations in which the lemma proves useful.)Proof (uV)>� = t(V>�)� f t(V>�) = (t(V>�))>, lemma 15.4(e) g(uV)> = (t(V>�))>�� f corollary 15.5 g(uV)> = uM(V>�>�)� f lemma 15.4(b) g(uV)> = uM(V>)2 We now turn our attention to the behaviour of the operator with respect torelators. Idealistically it would commute with them (like the ordinary domainoperators) but we are out of luck. Nevertheless the next lemma proves to begood enough in most cases.Lemma 15.7 If relator F is t-junctive and strict then, for all specs R,F:I � (F:R)>� = F:(R>�)Proof F:I � (F:R)>�= f lemma 15.4(a) gF:(R> t R>�) � (F:R)>�= f � F is t-junctive g(F:R> t F:(R>�)) � (F:R)>�= f lemma 15.4(a) with R := F:R g



15.2. DOMAIN TRANSLATION 285F:(R>�) � (F:R)>�= f � ?? = F:??, lemma 15.4(a) gF:(R>�) � F:R> t F:(R>�) � (F:R)>�= f distributivity gF:(R>�) � (F:R> t (F:R)>�)= f lemma 15.4(a) with R := F:R gF:(R>�)215.2 Domain TranslationWe now come to the �rst of several translation rules.Lemma 15.8 (Domain Translation) For all specs R and imps f , we have:R> � f = f � (R � f)>Proof R> � f= f domains: (10.20) g(I u >> � R) � f= f � imp.f gf u >> � R � f= f domains: (10.20) gf � (R � f)>2 The above domain translation rule is the embryonic form of the so-called\range translation rule" in the quanti�er calculus [3]. The rule provides amechanism for translating a restriction (R>) on the left domain of imp f into arestriction ( (R � f)> ) on its right domain.Our next goal is to show that there is also a translation rule for the comple-mented domain operator. Three lemmas are necessary.Lemma 15.9 For all specs R and imps f ,R>� � f = f � (R>� � f)>



286 CHAPTER 15. COMPLEMENTED DOMAINS AND CONDITIONALSProof R>� � f= f lemma 15.4(c) gR>�> � f= f domain translation: lemma 15.8 gf � (R>� � f)>2Lemma 15.10S � (R>� � S)> w S � (R � S)>�Proof S � (R>� � S)> w S � (R> � S)>�( f monotonicity, domains: S � S> = S g(R>� � S)> w S> � (R> � S)>�� f A � B = AuB, lemma 15.4(a) g(R>� � S)> t (R> � S)> w S>� f domains: (10.8) g((R>� t R>) � S)> w S>� f lemma 15.4(a) gtrue2Lemma 15.11 For all specs R and imps f(R>� � f)> v (R � f)>�Proof (R>� � f)> v (R> � f)>�� f de�nition complemented domains (15.1) gR> � f � (R>� � f)> v ??� f lemma 15.9 gR> � R>� � f v ??� f lemma 15.4(a) gtrue2



15.3. CONDITIONALS 287Corollary 15.12 (Complemented-Domain Translation) For all specsR and imps fR>� � f = f � (R � f)>�Proof By mutual inclusion. The combination of lemmas 15.9 and 15.10 givesone inclusion. Lemma 15.9 combined with 15.11 gives the other.215.3 ConditionalsSeveral publications have already appeared documenting the algebraic proper-ties of conditionals, the most comprehensive account that we know of beingby Hoare et al [39]. We shall therefore compare the rules given here with thelist that they supply. Their notation for conditionals will also be used, its vitalcharacteristic being that it promotes the Boolean condition to an in�x operator.Some of the rules presented here were included in Backus's [11] Turing awardlecture but his account is less comprehensive and spoiled by the choice of themulti�x notation used in the language Lisp.We take the liberty of omitting most proofs about conditionals on thegrounds that the properties are (or should be) unsurprising and their proofsinvolve only the plat calculus plus a few extra rules to be stated (and proven)shortly. (Some less straightforward proofs are given nonetheless.)De�nition 15.13 (Conditional) For all specs P we de�ne the binaryoperator <P > by:R<P >S = R � P> t S � P>�2The conditional R<P >S can be viewed as a spec which applies R to thoseelements for which condition P holds and applies S to the other ones.Note that conditionals are de�ned for all specs but that for all specs P , Rand S, R<P >S = R<(P>)>S = R<(>> � P )>S .



288 CHAPTER 15. COMPLEMENTED DOMAINS AND CONDITIONALSTotality of operators is something we strive for at all times: the alternative inthis case would have been to restrict P either to monotypes or to right condi-tions. Had we done so then we would have imposed on ourselves the obligationto determine for every other operator in the calculus whether it preserves mono-types and/or right conditions. In the cases that that is not so the laws relatingthose operators to conditionals would inevitably have taken on much clumsierforms.Guards are usually formed by composing primitive guards with the booleanoperators. We apply the same design principle to the de�nition of the booleans:we seek de�nitions that are total on all specs but are indi�erent to the choiceof monotypes or right conditions as representations of sets. This leads to thefollowing de�nition.De�nition 15.14 (Boolean Operators) The operators W, V and �, andconstants true and false are de�ned by, for all sets of specs P and specs R,(a) WP = (tP)>(b) VP = uM (P>)(c) �R = R>�(d) true = I(e) false = ??2 In the last section we saw two translation rules, one for the right domainoperator, one for the complemented-right-domain operator. Combining thesewith the fact that imps distribute over both cup and cap we obtain:Theorem 15.15 (Predicate Translation) For all specs R, imps f andsets (possibly empty) of specs P, we have:(a) WP � f = f � W(P � f)(b) VP � f = f � V(P � f)(c) �R � f = f � �(R � f)Hence, for all propositional functions � (i.e. functions from specs to specs builtfrom the identity function, constant functions and the boolean operators ^, _,�) and all vectors of specs P of the appropriate arity,(d) �:P � f = f � �:(P � f)2



15.3. CONDITIONALS 289Theorem 15.16 The binary operator <P > respects imps. I.e.imp:(f<P >g) ( imp.f ^ imp.gProof imp:(f<P >g)� f de�nition 10.28(a) gI w f<P >g � (f<P >g)[� f de�nition 15.13, properties of reverse gI w (f � P> t g � P>�) � (P> � f[ t P>� � g[)� f � distributes over t, P> � P>� = ?? gI w f � P> � f[ t g � P>� � g[( f right domains are monotypes, monotonicity gI w f � f[ ^ I w g � g[� f de�nition 10.28(a) gimp:f ^ imp:g2Theorem 15.16 corresponds to the theoremx := E<P >F = (x := E) <P > (x := F )in the set of properties listed by Hoare et al [39]. For them the most primitiveimplementation (thus, \imp") is an assignment and the content of their rule isthat a conditional respects assignments. Their rule is thus at a lower level ofabstraction than ours, and more detailed.The theorem illustrates the sort of proof burden one encounters when typerestrictions are imposed on laws. We are obliged to document this theorembecause, for example, all the translation rules are restricted to translation byimps. Should we ever wish to translate a domain (say) via a conditional thenwe need to know in advance that the conditional is an imp.One �nal lemma is necessary before we can list the laws obeyed by condi-tionals.Lemma 15.17(a) (R<P >S)> = R><P >S>(b) (R<P >S)>� = R>�<P >S>�



290 CHAPTER 15. COMPLEMENTED DOMAINS AND CONDITIONALSProof Part (a) is easily proved using the de�nition of conditionals. For (b)we have (R<P >S)>�= f lemma 15.4(d), (a) g((R> u P>) t (S> u P>�))>�= f theorem 15.5(a) g(R> u P>)>� u (S> u P>�)>�= f theorem 15.6, monotypes g(R>� t P>�) u (S>� t P>)= f calculus, lemma 15.4(a) g(R>� u S>�) t (R>� u P>) t (S>� u P>�)= f A u B v (A u P>) t (B u P>�) g(R>� u P>) t (S>� u P>�)= f R>�, S>� are monotypes, de�nition conditionals gR>�<P >S>�2 The set of \unsurprising" laws that we announced earlier can now be given:Theorem 15.18 For all specs P;Q;R; S; T , imps f , and non-empty sets ofspecs V:(a) R<true >S = R(b) R< false >S = S(c) R<P >R = R(d) R<�P >S = S<P >R(e) R<P >(S<P >T ) = R<P >T = (R<P >S)<P >T(f) R<(P ^Q)>S = (R<P >S)<Q>S(g) R<(P _Q)>S = R<P >(R<Q>S)(h) (tV)<P >S = t (V<P >S)(i) (uV)<P >S = u (V<P >S)(j) S<(P<Q>R)>T = (S<P >T )<Q> (S<R>T )(k) (R<P >S) t T = (R t T )<P >(S t T )(l) (R<P >S) u T = (R u T )<P >(S u T )(m) (R<P >S) <Q> T = (R<Q>T )<P >(S<Q>T )(n) T � R<P >S = (T � R)<P >(T � S)(o) R<P >S � f = (R � f)<(P � f)>(S � f)



15.3. CONDITIONALS 291Moreover, for all propositional functions � and all vectors of specs P of theappropriate arity,(p) R<�:P >S � f = (R � f)<�:(P � f)>(S � f)2 Little needs to be said about properties (a) through (g) except perhaps tonote that (e) asserts that the binary operator <P > is associative. Properties(h) and (i) assert that the function (X 7! X<P >S) is positively t- and u-junctive. This is more general than the rules stated by Hoare et al. (Theyclaimed only �nite, positive t- and u-junctivity.) Property (j) is equivalent tothe combination of both parts of lemma 15.17. It is used to construct canonicalforms of conditionals (see [51]) but otherwise has marginal value.Properties (k), (l) and (m) are all distributivity properties of the form�:(R<P >S) = (�:R)<P > (�:S)for some function �. The function � has moreover the form (X 7! X � T )for some binary operator �. Each rule has a dual whereby � is replaced bythe function (X 7! T � X). These duals have not been listed because theycan all be deduced from a combination of the properties (k), (l) and (m) andproperties already given. Thus the duals of (k) and (l) follow because t andu are both symmetric. The dual of (m) follows from (d) and the fact thatP>�>� = P>. Property (o) is also a distributivity property of the same form;its dual is obtained by replacing the assumption that f is an imp with theassumption that f is a co-imp and reversing all compositions.As forewarned we omit all proofs | with one exception. We prove parts (o)and (p) in order to explain why we gave lemmas 15.8 and 15.15.Proof of (o).R<P >S � f= f de�nition (15.13) g(R � P> t S � P>�) � f= f � distributes over t gR � P> � f t S � P>� � f= f lemma 15.8, corollary 15.12 gR � f � (P � f)> t S � f � (P � f)>�= f de�nition (15.13) g(R � f)<(P � f)>(S � f)



292 CHAPTER 15. COMPLEMENTED DOMAINS AND CONDITIONALSPart (p) is proved in the same way: replace P everywhere by �:p and apply15.15(d) instead of corollary 15.12.2 Part (p) is the translation rule for conditionals. Given a spec R<P >S withright domain A and an imp f 2 A � B one may always translate it to a specwith right domain (at most) B by translating the condition at the level of itsprimitive components. It takes the place of the law(x := E) ; (R<P (x)>S)= ((x := E) ; R) <P (E)> ((x := E) ; S)in the paper by Hoare et al [39]. Parts (n) and (o) of the theorem are alsowell-documented in the form that we have given here, for example by Backus[11] and Meertens [68] (| at least up to the level of imps in the case of part(n)).A glaring omission | in the present context | in theorem 15.18 is anymention of relators or catamorphisms. A partial remedy is provided by thenext theorem.Theorem 15.19 For all specs P , R and S and all strict, t-junctive relatorsF ,(a) F:(R<P >S) = (F:R)<(F:P )>(F:S)In particular, for all specs P , Q, R, S, T and U ,(b) (R+S)<(P+Q)>(T+U)= (R<P >T )+ (S<Q>U)Furthermore, for all specs P , R, S and T ,(c) (R<P >S) 4 T = (R 4 T )<P > (S 4 T )2 We leave the proof of this theorem as an exercise for the reader. In the caseof part (a) the relevant lemma is lemma 15.7. Part (b) is a special case becausedisjoint sum is universally t-junctive, which is rather more than is required toapply (a). Part (c) involves a simple expansion of the de�nition of 4 and theapplication of theorem 15.18(l).



15.3. CONDITIONALS 293Just as several of the distributivity properties listed in theorem 15.18 had adual, part (c) has a dual in which the conditional is the righthand argument ofthe split. The dual follows from (c) by precomposing both sides with the naturalisomorphism �5 between the relators (R; S 7! R� S) and (R; S 7! S �R) andapplying (12.101).(Theorem 15.19 was not included by Hoare et al because their investigationdid not extend to type structures.)Other properties of conditionals have been omitted where they can be de-rived by combining elements of theorems 15.18 and 15.19. For example, thereader may wish to verify that the binary operators <P > abide with eachother and with t, u and 4 . Another interesting property that can be provedin a few steps with the toolkit now present is, for all specs P , Q, R, S, T andU , (R<P >S) 5 (T<Q>U) = (R 5 T )<(P 5Q)>(S 5 U)(15.20)Try it and see!



294 CHAPTER 15. COMPLEMENTED DOMAINS AND CONDITIONALS



Chapter 16A Hierarchy of Freebies
16.1 The Bird-Meertens FormalismOne of the hardest tasks faced by the theoretician is the assessment of thepracticality of one's work. The task is not made any easier by the immensebreadth of programming problems to which any useful programming calculusshould be applicable. The traditional apology for such an assessment is thepresentation of a few, inevitably worn and tired, case studies. We shall notfollow such a course.The course we do follow is to pass the buck: we ask the reader not to assessthe practicality of our theory but to assess the practicality of the so-called \Bird-Meertens formalism", and to combine that assessment with an evaluation of theway the formalism is rendered within our theory.The \Bird-Meertens formalism" (to be more precise, our own conceptionof it) is a calculus of total functions based on a small number of primitivesand a hierarchy of types including trees and lists. The theory was set out inan inspiring paper by Meertens [68] and has been further re�ned and appliedin a number of papers by Bird and Meertens [16, 17, 20, 18, 21]. Its beautyderives from the small scale of the theory itself compared with the large scaleof applications.Essentially there are just three primitive operators in the theory - \reduce",\map" and \�lter". (Actually, the names used by Meertens for the �rst twoof these operators were \inserted-in" and \applied-to-all". Moreover, just the�rst two are primitive since �lter is de�ned in terms of reduce and map.) These295



296 CHAPTER 16. A HIERARCHY OF FREEBIESoperators are de�ned at each level of a hierarchy of types called the \Boomhierarchy" 1 after H.J. Boom to whom Meertens attributes the concept.The basis of this hierarchy is given by what Meertens calls \D-structures".A D-structure, for given type D, is formed in one of two ways: there is anembedding function that maps an element of D into a D-structure, and thereis a binary join operation that combines two D-structures into one. Thus, aD-structure is a full binary tree with elements of D at the leaves. (By \full"we mean that every interior node has exactly two children.) The embeddingfunction and the join operation are called the constructors of the type. Othertypes in the hierarchy are obtained by adding extra algebraic structure. Trees |binary but non-full | are obtained by assuming that the base type D containsa designated nil element which is a left and right unit of the join operation.Lists, bags and sets are obtained by successively introducing the requirementsthat join is associative, symmetric and idempotent.Meertens describes the D-structures as \about the poorest (i.e., in algebraiclaws) possible algebra" and trees as \about the poorest-but-one possible alge-bra". Nevertheless, in this section we exploit the power of abstraction a�ordedby the notion of a relator to add several more levels to the Boom hierarchyeach of which is \poorer" than those considered by Meertens. Each level ischaracterised by a class of relators that specialises the class at the level belowit. In decreasing order of abstraction these are the \sum" relators, \grounded"and \polymorphically grounded" relators, \monadic" relators and \pointed"relators. (\Grounded" and \polymorphically grounded" relators are formallyindistinguishable but it helps to introduce an arti�cial distinction for a �rstintroduction.) The reason for introducing these extra levels is organisational:the goal is to pin down as clearly as possible the minimum algebraic structurenecessary to be able to, �rst, de�ne the three operators of the Bird-Meertensformalism and, second, establish each of the basic properties of the operators.The conciseness and systematic nature of the development about to be pre-sented, and the fact that it can be conducted at a level yet poorer than \thepoorest possible algebra" is for us the most satisfying aspect of this work.The unconventional nature (and perhaps also the conciseness) of the no-tations used in the Bird-Meertens formalism makes the formalism di�cult to1For the record: Doaitse Swierstra appears to have been responsible for coining the name\Bird-Meertens Formalism" when he cracked a joke comparing \BMF" to \BNF" | Backus-Naur Form | at a workshop in Nijmegen in April, 1988. The name \Boom hierarchy" wassuggested to Roland Backhouse by Richard Bird at the same workshop.



16.2. SUM RELATORS 297comprehend for many groups. The program calculations carried out withinthe formalism are, however, strongly related to calculations within other sys-tems. In particular there is a strong link between a certain combination of thethree basic operators of the formalism and the quanti�er expressions used formany years in the Eindhoven school of program development, this link beingexpressed via a correspondence between the basic laws of the two systems. Forthe bene�t of those familiar with the Eindhoven calculus we use the opportunityto point out elements of this correspondence. What emerges is that there aretypically more laws in the Bird-Meertens formalism than the quanti�er calculusbut the Bird-Meertens formalism exhibits a much better developed-separationof concerns. Note, however, that this section only covers a small part of thecorrespondence. To complete the picture the extra structure introduced at thedi�erent levels of the (original) Boom hierarchy is necessary. For a full accountthe reader is referred to [53].The theorems presented in this section are more general than those in thepublications of Bird and Meertens since their work is restricted to total func-tions. (Meertens [68] does discuss the issue of indeterminacy but this part ofhis paper | we regret to have to say | is in our view the least satisfactory.) Adanger of generalisation is that it brings with it substantial overhead making atheory abstruse and unworkable. At this stage in our work, however, the gener-alisation from (total) functions to relations has been very positive bringing tomind a parallel with the extension of the domain of real numbers to complexnumbers. The fact of the matter is that we are rarely aware of working withrelations rather than functions. The following pages are intended to providesome justi�cation for that claim.16.2 Sum RelatorsWe begin our discussion with the so-called \sum" relators. Speci�cally, F is asum relator if for some relators G and H and for all specs X,F:X = G:X + H:X(16.1)In words, F is the (lifted) sum of G and H.The class of sum relators is very broad but, in spite of its generality, there issurprisingly much that we can say about the class. The most important aspectof such a relator F is that we can identify the \constructors" of �F bringing the



298 CHAPTER 16. A HIERARCHY OF FREEBIESnotion of relator somewhat closer to the notion of polymorphic type as it wouldbe de�ned in a conventional programming language. An additional technicalaspect that proves to be very useful is that F -catamorphisms can be restrictedwithout loss of generality to arguments that are the junc of two specs. Thesetwo aspects are considered in turn below. Throughout the remainder of thissubsection we assume that equation (16.1) is in force.16.2.1 ConstructorsLet us consider what consequences equation (16.1) has on �F . We have thefollowing simple calculation:�F= f �F is a �xpoint of F gF:�F= f de�nition of F : (16.1) gG:�F + H:�F= f de�nition of +: (12.18) g(,! � G:�F ) 5 ( - � H:�F )Continuing with just the �rst component of this junc expression, we calculate:,! � G:�F= f computation rule: theorem 12.71(c) gG:�F + H:�F � ,!= f de�nition of F : (16.1), �F = F:�F g�F � ,!Similarly, - � H:�F = �F �  -Thus, introducing names � and � for the two components of the above junc, wehave established:Theorem 16.2 (Constructors) For relators F ,G andH such that F = G+H, �F = � 5 �



16.2. SUM RELATORS 299where � = ,! � G:�F = �F � ,!and � =  - � H:�F = �F �  -2A paraphrase of theorem 16.2 might be that all elements of �F are constructedby injections of elements of G:�F or elements of H:�F . For this reason we call� and � the constructors of �F .Note that the constructors are bijections (since they are restrictions of thetwo bijections ,! and  -). For their domains we have:�>= f de�nition of � : theorem 16.2 g(,! � G:�F )>= f domains: (10.21) g(,!> � G:�F )>= f ,!> = I : theorem 12.76(a) gG:�F>= f �F is a monotype: (10.27) gG:�Fand �<= f de�nition of � : theorem 16.2 g(�F � ,!)<= f domains: (10.16) g(�F � ,!<)<= f ,!< = I +?? : theorem 12.76(b) g(�F � I +??)<= f �F = G:�F +H:�F , + abides with composition g(G:�F + ??)<= f domains: (12.79) and (10.27) gG:�F + ??



300 CHAPTER 16. A HIERARCHY OF FREEBIESBy a completely symmetrical argument we have:�> = H:�Fand �< = ?? + H:�FCombining these four domain calculations with the cup and cap abide propertiesand co-strictness of sum (see theorems 12.84 and 12.70) and summarising wehave established:Theorem 16.3 The constructors � and � are both bijections with thefollowing domain properties:(a) �> = G:�F(b) �< = G:�F + ??(c) �> = H:�F(d) �< = ?? + H:�F(e) �< t �< = �F(f) �< u �< = ??2Interpretating these statements in the relational model we have proved thatthe constructors � and � establish a (1-1) correspondence between the elementsof �F and the elements of the union of G:�F and H:�F in such a way thatelements constructed by � are distinct from those constructed by �.16.2.2 Sum-relator CatamorphismsLet us now investigate the structure of the catamorphisms of a sum relator. Wehave: ([R])= f domain trading: theorem 13.19(b) g([R � (G:R + H:R)<])= f +; G; H are relators: theorem 10.34 g([R � G:R< + H:R<])= f de�nition +: (12.18) g([R � (,! � G:R<) 5 ( - � H:R<)])



16.2. SUM RELATORS 301= f spec-junc fusion: theorem 12.68 g([(R � ,! � G:R<) 5 (R �  - � H:R<)])This calculation shows that we may assume without loss of generality that forevery R there exist specs S and T such that([R]) = ([S 5 T ])Speci�cally,S = R � ,! � G:R<and T = R �  - � H:R<Note that from ([R]) = ([R]) � �F and the fact that �F can be expressed asa junc it follows that every catamorphism can also be expressed as a junc. Thisobservation is most useful when combined with the cancellation property of junc(see theorem 12.80). To see why let us �rst observe the following instantiationof the junc-cancellation property:Lemma 16.4 For � 2 fw;=;vg,X � �F � Y � �F � X � � � Y � � ^ X � � � Y � �Proof X � �F � Y � �F� f theorem 16.2 gX � � 5 � � Y � � 5 �� f spec-junc fusion: theorem 12.68 g(X � �) 5 (X � �) � (Y � �) 5 (Y � �)� f junc cancellation: theorem 12.80 gX � � � Y � � ^ X � � � Y � �2 Combining lemma 16.4 with the unique extension property of catamorphismswe derive a characterisation of F -catamorphisms (for sum relators F , of course),namely:



302 CHAPTER 16. A HIERARCHY OF FREEBIESTheorem 16.5 (UEP for Sum Relators)X � �F = ([R 5 S])� X � � = R �G:(X � �F ) ^ X � � = S �H:(X � �F )Proof X � �F = ([R 5 S])� f catamorphism uep: theorem 13.11 gX � �F = R 5 S � F:(X � �F ) � �F� f lemma 16.4 gX � � = R 5 S � F:(X � �F ) � �^ X � � = R 5 S � F:(X � �F ) � �Proceeding further with just the �rst of the conjuncts on the right hand side ofthe equivalence (the other being completely symmetrical) we have:R 5 S � F:(X � �F ) � �= f de�nition of � : theorem 16.2 gR 5 S � F:(X � �F ) � �F � ,!= f �F = F:�F , �F = �F � �F gR 5 S � F:(X � �F ) � ,!= f de�nition of F : (16.1), junc-sum fusion: (12.66) g(R � G:(X � �F )) 5 (S � H:(X � �F )) � ,!= f junc computation: theorem 12.71(a) gR � G:(X � �F )Back-substituting the desired theorem is obtained.2 Compared with the general uep property (theorem 13.11) theorem 16.5 splitsthe task of deriving a catamorphism realising a given spec into two separatecomponents, one for each of the constructors. This separation is further re
ectedin the computation rules for � and �:Theorem 16.6 (Computation Rule)(a) ([R 5 S]) � � = R � G:([R 5 S])(b) ([R 5 S]) � � = S � H:([R 5 S])



16.3. POLYMORPHICALLY GROUNDED RELATORS 303Proof Instantiate theorem 16.5 with X = ([R 5 S]) and simplify using thefact that ([R 5 S]) = ([R 5 S]) � �F .2 Several other properties of sum relators can be derived simply by instan-tiating the more general properties of catamorphisms listed in section 13, inparticular the fusion and monotonicity properties of catamorphisms (theorems13.14 and 13.15). The bene�t that is gained is that, in each case, the premisein the theorem can be expressed as a conjunction of two simpler premises, thusdecomposing the proof obligations. We postpone performing this exercise, how-ever, until we have added more structure to our class of relators.16.3 Polymorphically Grounded RelatorsA typical characteristic of monotypes occurring in programming problems isthat their elements are generated from a base (mono)type by application ofone or more operations. For example, the Peano numbers are generated fromthe set containing just zero by the successor operation. Polymorphic types,such as list or tree, are families of monotypes parameterised by some base(mono)type. We call such types polymorphically grounded types (or rather wecall their de�ning relators polymorphically grounded), the word \grounded"referring to the existence of a base monotype. In this section we abstract ade�nition of \polymorphically grounded" relator. We do this in two steps.First, we abstract what it means for a relator to be grounded. Then, in orderto capture the \polymorphic" element, we abstract su�cient conditions for theexistence of a \map" operator. We conclude the section with some consequencesof the obtained de�nition.16.3.1 Grounded RelatorsThe mechanism needed to introduce the notion of a ground monotype into ourclass of relators is straightforward: we consider a sum relator and choose theleft component of the sum to be a constant relator, i.e. we consider the casethat G:X = A for some monotype A and all specs X, thereby specializing F tothe form:F:X = A + H:X(16.7)



304 CHAPTER 16. A HIERARCHY OF FREEBIESUsing this the constructors are� = �F � ,! = ,! � A(16.8) � = �F �  - =  - � H:�F(16.9)The form of the constructors provides some motivation for the chosen restric-tion on F . Speci�cally, suppose we interpret monotypes as sets and f �B, formonotype B and imp f , also as a set, namely the set obtained by applying thefunction f to the elements of B. Then the set �F is formed by \juncing" twosorts of sets, the set of \ground" elements, i.e. those elements formed by � , i.e.by applying ,! to elements of A, or \non-ground" elements, i.e. those built by� from existing elements of �F . We call relators F satisfying (16.7) \grounded"relators.In the case that the relator H is t-continuous we can apply a well-known�xpoint theorem to deduce that the elements of �F are �nitely generated. Moreinterestingly, if H is denumerably t-junctive and strict we can express �F asthe cup of a sequence of monotypes generated from A. Speci�cally, lettingB = A+??(16.10)and �:X = ??+H:X(16.11)for all specs X, we haveTheorem 16.12 If relator H is denumerably t-junctive then�F = t (i : i � 0 : �i:B)Moreover, fi : i � 0 : �i:Bg is a set of monotypes and, if H is strict (i.e.H:?? = ??) and u-junctive, the elements of the set are mutually disjoint.2(The notation �i in the statement of the theorem denotes the i-fold compositionof function �. That is,�0:X = X, and�i+1 = �:�i:X for all natural numbers i.



16.3. POLYMORPHICALLY GROUNDED RELATORS 305) The import of this theorem is that, if H is denumerably t-junctive, themonotype �F is the cup of a set of monotypes, and, if in addition H is u-junctive and strict, there is a \size" function de�ned on its elements. Elementsof size i, for natural number i, are the elements of �i:B. Elements of size zeroare thus the elements of B (= �0:B) which are, in turn, elements of the groundtype A \tagged" by +??. Elements of size i+1 are generated by application ofH to elements of size i and then \tagging" these elements by ??+. Essentially,therefore, the elements of �F are generated by a �nite number of applicationsof H accompanied by a tagging process that ensures that the number of timesH has been applied can always be recovered by inspection of the element itself.(Note, however, that if H:X is constantly ?? the sets �i+1:B are all ??.)Although the proof is quite long it is very straightforward. It is, however,worth studying at least brie
y as a good illustration of the use of the abide lawsof disjoint sum given in section 12.4.7.Proof The \well-known" theorem that we referred to above (appropriatelyinstantiated) says that if F is t-continuous then�F = t (i : i � 0 : F i:??)(16.13)(The theorem is sometimes called \Kleene's theorem", sometimes \Tarski's the-orem". See [60] for a discussion of its origin.)In order to apply the theorem in a form more suited to our purposes we needto break down the proof obligations into separate parts. First, we observe thatthe denumerable t-junctivity of F follows from the denumerable t-junctivityof H. Second, we show that the right side of (16.13) can be rewritten in theform stated in the theorem. Third and fourth, we observe that the specs �i:B(for i ranging over the natural numbers) are monotypes and, with the givenassumption, mutually disjoint.That t-continuity of F follows from the denumerable t-junctivity of H isclear from the de�nition of F (see (16.7)): the function F is the composition ofthe function A+ after the function H and the former is universally t-junctive(see theorem 12.85). Thus F is denumerably t-junctive. But, denumerablet-junctivity of a function is equivalent to its being both t-continuous and t-junctive. (See [36] for a proof.) So F is t-continuous. For later use we remarkthat, by the same argument, � also inherits denumerable t-junctivity from H.Moreover, from the co-strictness of sum (theorem 12.70), it is strict if H isstrict.



306 CHAPTER 16. A HIERARCHY OF FREEBIESNow we proceed to rewrite the right side of (16.13). First, we rewrite thede�nition of F in a way that introduces �.F:X= f de�nition: (16.7) gA + H:X= f plat calculus g(At??) + (?? t H:X)= f + and t abide: theorem 12.84(b) g(A+??)t (?? + H:X)= f de�nitions: (16.10) , (16.11) gB t �:XSummarising,F:X = B t �:X(16.14)In particular,F:X w �:X(16.15)Next, we claim thatt (i : i � 0 : F:�i:B) = t (i : i � 0 : �i:B) v �F(16.16)from which it follows that, if F is denumerably t-junctive,F: t (i : i � 0 : �i:B) = t (i : i � 0 : �i:B) v �F(16.17)That is, t(i : i � 0 : �i:B) is a �xed point of F that is at most �F . Since �Fis the least �xed point of F the two are equal.The proof of (16.16) proceeds as follows: we have:t(i : i � 0 : F:�i:B)= f (16.14) gt(i : i � 0 : B t �i+1:B)= f plat calculus gt(i : i � 0 : �i:B)v f B v F:??, (16.15) gt(i : i � 0 : F i:??)v f elementary induction g�F



16.3. POLYMORPHICALLY GROUNDED RELATORS 307This completes the �rst half of the theorem.Induction is needed to show that �i:B is a monotype. The basis is B is amonotype: this is true because B is the result of applying the relator +?? to themonotype A. The induction step is also straightforward: � preserves monotypesbecause it is the composition of two relators (??+ and H) and hence is itself arelator.The �nal step is to investigate the circumstances under which these mono-types are disjoint. Formally we prove that if H is, in addition, u-junctive then,for all natural numbers i and j, �i+j+1:B u �i:B = ??.�i+j+1:B u �i:B= f � inherits u-junctivity from H.Hence so does �i g�i:(�j+1:B u B)= f de�nitions of � and B g�i:((??+H:�j:B) u (A+??))= f + and u abide: theorem 12.84(d) g�i:(??+??)= f co-strictness of +: theorem 12.70,� inherits strictness from H g??2 The fact that �F is itself a catamorphism (see the identity rule: theorem13.20) leads one to speculate that | in the case of strict, denumerably t-junctive H | all catamorphisms are �nitely computable when applied to el-ements of �F (provided their arguments are computable). This is indeed thecase. We leave it to the reader to verify (using the computation rule: 13.4(a))that for all specs R and S,([R 5 S]) � B = R � A � ,![and, for all i � 0,([R 5 S]) � �i+1:B = S � H:(([R 5 S]) � �i:B) �  -[For anyone wishing to base a programming language on our calculus the detailsof this last remark are highly signi�cant. The remark is also signi�cant to



308 CHAPTER 16. A HIERARCHY OF FREEBIESprogrammers but the details less so: all the programmer need know is that if Hobeys the three conditions stipulated in theorem 16.12 each element of �F hasan easily identi�ed \size" and the application of an F -catamorphism to such anelement can be evaluated in time proportional to the product of the element'ssize and the complexity of the arguments of the catamorphism.The extra structure introduced into grounded types makes little di�erenceto the computation rule; where it is needed we shall simply instantiate theorem16.6(a) with G:X = A. The fusion property for ground-relator-catamorphismsis worth stating, however, because we can exploit the extra structure to strengthenthe general result.Theorem 16.18 (Ground-Relator Fusion) For � in fv;=;wg,U � ([R 5 S]) � ([P 5 Q])( U � R � A � P � A ^ U � S � H:I � Q � H:U2The added-value of this theorem relative to theorem 13.14 | apart from theantecedent having been split into two conjuncts | is the introduction of thedomain restrictions A and H:I in the �rst and second conjuncts, respectively,of the antecedent. Note thatU � R � A � P � A ( U � R � PThus the �rst conjunct in the antecedent has been weakened. (That it is a trueweakening is easily seen by taking A = ??.) The second conjunct has beensimilarly weakened.Proof Let � 2 fw;=;vg. ThenU � ([R 5 S]) � ([P 5Q])� f domain trading: theorem 13.19(a), since A+H:I = F:Iand junc-sum fusion: theorem 12.66(a) gU � ([(R � A) 5 (S � H:I)]) � ([P 5Q])( f catamorphism fusion: theorem 13.14 gU � (R � A) 5 (S � H:I) � P 5Q � F:U� f spec-junc fusion: theorem 12.68;de�nition of F : (16.7),and + abides with composition: theorem 12.66(b) g



16.3. POLYMORPHICALLY GROUNDED RELATORS 309(U � R � A) 5 (U �S �H:I) � (P � A) 5 (Q � H:U)� f junc cancellation: theorem 12.80(a) gU � R � A � P � A ^ U � S �H:I � Q � H:U216.3.2 Introducing Polymorphism via MapWe come now to the �rst of the primitive operators in the Bird-Meertens for-malism, namely the map operator. Section 14.1 provides the appropriate mech-anism for introducing such an operator: we must express F in the form I
 forsome binary relator 
. This we can do by choosing A = K:I for some relatorK and de�ning binary relator 
 byR
 S = K:R + H:S(16.19)Accordingly we have:F:X = (I
):X = K:I + H:X(16.20)Note that K:I is a monotype so that F is indeed grounded. It is also poly-morphic in the sense that we have de�ned a family of relators, namely the setof relators (B
) for B ranging over all monotypes. More importantly we caninstantiate the theorems of section 14 to obtain the sought-after map operator.Speci�cally, instantiating de�nition 14.3 and citing theorem 14.18, we have:Theorem 16.21 (Map) The function $ from specs to specs de�ned by$R = ([K:R + H:I])is a relator.2 The function $ de�nes a family of monotypes, namely the monotypes $Bwhere B ranges over monotypes. In particular, $I = �F . For each spec R,the spec $R has left domain $(R<) and right domain $(R>). In addition, formonotypes A and B and imps f 2 A � B, $f 2 $A � $B. An instance ofsuch a relator is the List relator which is sometimes denoted by *. In functionalprogramming texts �f is commonly called \map f" (and sometimes writtenthat way too) and denotes a function from lists to lists that \maps" the givenfunction f over the elements of the argument list (i.e. constructs a list of the



310 CHAPTER 16. A HIERARCHY OF FREEBIESsame length as the argument list whereby the elements are obtained by applyingf to each of the elements of the argument list). This then is the origin of thename \map" for $.We will mostly use another but equivalent de�nition for map that exploitsthe particular structure of the relator 
. That de�nition is obtained by �rstinstantiating the map fusion theorem (theorem 14.14) of section 14.Theorem 16.22 (Map Fusion)([P 5 Q]) � $R = ([(P � K:R) 5 Q])Proof ([P 5 Q]) � $R= f map fusion: theorem 14.14, de�nition of 
: (16.19) g([P 5 Q � K:R+H:I])= f junc-sum fusion: theorem 12.66(a) g([(P �K:R) 5 Q � K:I +H:I])= f domain trading: theorem 13.19(c), K:I +H:I = F:I g([(P � K:R) 5 Q])2Theorem 16.23 (Map { Alternative De�nition)$R = ([(� � K:R) 5 �])Proof $R= f $ is a relator g$I � $R= f $I = �F = ([�F ]) g([�F ]) � $R= f �F = � 5 �, map fusion: theorem 16.22 g([(� � K:R) 5 �])2 The reason why we sometimes prefer this de�nition is that catamorphismsof the shape ([R 5 �]) enjoy many properties.Instantiating the computation rule (16.6) with the revised de�nition of F| (16.7) | and the above de�nition of $ we obtain the following computationrules:



16.4. DEFINING REDUCE 311$R � � = � � K:R$R � � = � � H:$RThese two equations can be recombined into one using theorem 12.80 viz:$R � � 5 � = (� � K:R) 5 (� � H:$R)(16.24)Recalling that$I = �F = � 5 � = (� � K:I) 5 (� � H:$I)(see theorems 14.12, 16.2 and equations (16.8), (16.9) and (16.20)) one can view$R as a spec which, when applied to an element of �F , applies R to the groundelements but does not destroy the original structure.16.4 De�ning ReduceThe second primitive in the Bird-Meertens formalism is called \reduce" and isdenoted by the symbol \/". In the context of our work, reduce is a function fromspecs to specs. We shall adopt the same symbol but use it as a pre�x operatorin order to be consistent with our convention of always writing function andargument in that order. Thus we write =S and read \reduce with S" or just\reduce S".(In choosing to write reduce as a pre�x operator we are turning the clockback to Backus' Turing award lecture [11] rather than following the exampleof Bird and Meertens. In the context of Bird and Meertens' original workreduce was a binary in�x operator with argument a pair consisting of a binaryoperator, say �, and a list, say x, thus giving �=x. In the course of timeit was recognised that calculations and laws could be made more compact byworking with the function (x 7! �=x) rather than the object �=x. To achievethe compactness the notation �= (or sometimes (�=)) was adopted for thefunction, the process of abstracting one of the arguments of a binary operatorbeing commonly referred to as \sectioning". By this development, presumably,they came to the convention of using \/" as a post�x operator. Since ourconcern is to pro�t from what has been learnt rather than repeat the learningprocess we shall not adopt their notation in its entirety.)The idea behind reduce is that it should have a complementary behaviourto map. Recall that map, applied to an element of �F , leaves the structure



312 CHAPTER 16. A HIERARCHY OF FREEBIESunchanged but applies its argument to the ground elements. Reduce should dothe opposite: leave the ground elements unchanged but destroy the structure.Since a catamorphism does both (modi�es the ground elements and the struc-ture) we formulate the requirement on reduce as being that every catamorphismis factorisable into a reduce composed with a map. I.e. for all specs R and S,=S � $R = ([R 5 S])Let us try to calculate a suitable de�nition for =S.=S � $R= f We try to express =S as a catamorphism� =S = ([P 5Q]) g([P 5 Q]) � $R= f map fusion: theorem 16.22 g([(P � K:R) 5 Q])Now we cannot choose P and Q (for arbitrary relator K) such that([(P � K:R) 5 Q]) = ([R 5 S])But if we take P = I and Q = S, i.e. we de�ne the reduce operator by:=S = ([K:I 5 S])(16.25)then we have established the following factorisation property:Lemma 16.26=S � $R = ([K:R 5 S])2 Some simpli�cation of (16.25) is possible using domain trading and junc-sumfusion (theorems 13.19(a) and 12.66(a)). Speci�cally, we claim that the termK:I in (16.25) may be replaced by I (the veri�cation being left to the reader)which leads us to the following de�nition of reduce:De�nition 16.27 (Reduce)=S = ([I 5 S])



16.5. MONADIC RELATORS 3132For =S we have the following computation rules (obtained by instantiating the-orem 16.6 with G:X = K:I for all X):=S � � = K:I=S � � = S � H:=SSo one can view =S as a spec which, when applied to an element of �F , stripsthe ground elements of the constructor � and replaces the constructor � by S.16.5 Monadic RelatorsAs mentioned before, with F having the form given by (16.20), we cannotfactorise every catamorphism into a reduce and a map for arbitrary relator K.For relator K de�ned by K:X = X |i.e. the identity relator|we can, since([R 5 S])= f � K:R = R g([K:R 5 S])= f catamorphism factorisation: theorem 16.26 g=S � $RSo we further specialise the binary relator
 and the unary relator F by de�ningK:X = X(16.28) X 
 Y = X + H:Y(16.29)and F:X = (I
):X = I + H:X(16.30)for all specs X and Y . Then we have established the all-important:Theorem 16.31 (Factorisation) With relator F de�ned by (16.29) and(16.30) we have, for all specs R and S,([R 5 S]) = =S � $R2



314 CHAPTER 16. A HIERARCHY OF FREEBIESThe importance of this theorem derives from the fact that it enhances furtherdecomposition of calculations with catamorphisms. Instead of working with theentire catamorphism one works with the components =S and $R. Laws are alsoformulated concerning the individual behaviours of reduce and map as well astheir interaction. The advantage is that the laws become extremely compactand thus more manageable, the disadvantage is that there are more of them.Let us illustrate this by considering the computation rules, the unique extensionproperty and the fusion properties of reduce and map.First, the de�nitions of the constructors � and � are specialised accordingly:� = �F � ,! = ,!(16.32) � = �F �  - =  - � H:�F(16.33)Whereas before we had two computation rules, one for each of the constructors,we now have four rules:Theorem 16.34 (Computation Rule)(a) $R � � = � � R(b) $R � � = � � H:$R(c) =S � � = I(d) =S � � = S � H:=S2(Of course these rules can be recombined into two using the factorisation theo-rem, and whether one chooses to do so is a matter of taste.)In the case of the unique extension property there is little gain from the use ofthe factorisation theorem.Theorem 16.35 (Unique Extension Property)X � �F = =S � $R� X � � = R ^ X � � = S � H:(X � �F )2



16.5. MONADIC RELATORS 315On the other hand, the fusion law becomes more compact since it su�ces tostate the law only for a reduce. We call the resulting theorem a \leapfrog"rule because its symbol dynamics is that a reduce \leapfrogs" from one side tothe other of a composition of two specs. (The more general fusion law can berecovered by combining the reduce leapfrog theorem with the monotonicity ofthe relator $.)Theorem 16.36 (Reduce Leapfrog) For � in fw;=;vg,R � =S � =T � $R ( R � S � H:I � T � H:RProof R � =S � =T � $R� f de�nition 16.27, factorisation: theorem 16.31 gR � ([I 5 S]) � ([R 5 T ])( f ground relator fusion: theorem 16.18, A = K:I = I gR � I � I � R � I ^ R � S � H:I � T � H:R� f calculus gR �S �H:I � T � H:R2 Because �F is expressible as a catamorphism, it too can be factorised:Theorem 16.37 (Identity Rule)=� � $� = $IProof =� � $�= f factorisation: theorem 16.31 g([� 5 �])= f constructors: theorem 16.2 g([�F ])= f identity rules: theorems 13.20 and 14.12 g$I2



316 CHAPTER 16. A HIERARCHY OF FREEBIESTheorem 16.37 is one of those theorems that, because of their simplicity, arevery often overlooked and yet prove to be vital.A special reduce is =� (for list-structures this is the \
attening" catamor-phism; it maps a list of lists to a list). For this catamorphism there exist twospecial leapfrog properties:Theorem 16.38 (=� Leapfrog)(a) =S � =� = =S � $=S(b) $R � =� = =� � $$RProof Immediate from the reduce leapfrog rule | theorem 16.36 | and thetwo �-computation rules | theorem 16.34(b) and (d).2Corollary 16.39 The triple ($; � ; =�) is a monad in the following sense:(a) $ is a relator.(b) � 2 $ <�> II(c) =� 2 $ <�> $$(d) =� � $� = $I(e) =� � � = I(f) =� � =� = =� � $=�Proof Part (a) has already been mentioned. Parts (b) and (e) follow fromthe computation rule of � (theorem 16.34), (c) and (f) follow from theorem16.38 and (d) is just the identity rule.2 The concept of a monad is highly signi�cant and is given due prominencein the mathematical literature. (See for instance [13, 58]. Note that monadsare also called \triples".) In the computing science literature the importance ofmonads is as yet di�cult to assess but appears to be steadily growing, the bestknown example being lists: a monad is formed by the triple �, [ ] and 
atten,where � denotes the list map operation discussed earlier, [ ] is the function thatconstructs a singleton list, and 
atten is the function that \
attens" a list oflists into a single list. See for instance [92] for examples of particular relevanceto the design and implementation of functional programming languages.The existence of a monad structure is the reason why we call the relator ofthis subsection a \monadic" relator.



16.6. POINTED RELATORS AND FILTER 31716.6 Pointed Relators and FilterThe third, and �nal, primitive operator in the Bird-Meertens formalism is called\�lter" and denoted by /. The function of /p ( read \�lter with p", or just \�lterp") is just to �lter out the elements in a given data structure that do not satisfythe predicate p.There are two obvious requirements on the de�nition of a �lter operation.The �rst is that /true should be the identity function on �F . The second isthat /false should return an \empty" data-structure. In order to meet the latterrequirement we introduce a so-called \unit element" into the de�nition of H,viz: H:X = 11 + J:X(16.40)where J is a relator. Consequently, F is specialised to:F:X = I + (11 + J:X)(16.41)with the two constructors we already have� = �F � ,! = ,!(16.42) � = �F �  - =  - � 11+J:�F(16.43)and two new ones2 = �F �  - � ,! =  - � ,! � 11(16.44) ++ = �F �  - �  - =  - �  - � J:�F(16.45)Note that� = 2 5 ++(16.46)Because this relator has a disjoint unit in its ground as well, we call theserelators \pointed relators". Again we want to point out that because this relatorF is just an instance of the previous one, the de�nition of map and reduce staythe same and all the theorems stated so far remain valid. For our immediatepurposes we only need to update the computation rule:



318 CHAPTER 16. A HIERARCHY OF FREEBIESTheorem 16.47 (Computation Rule) In addition to the computationrules given in theorem 16.34 we have:(a) $R � 2 = 2(b) $R � ++ = ++ � J:$R(c) =(S 5 T ) � 2 = S � 11(d) =(S 5 T ) � ++ = T � J:=(S 5 T )Proof There are two pairs of computation rules given in the theorem but byusing junc cancellation (theorem 12.80(a)) we can derive the elements of eachpair simultaneously. We illustrate the method on the second pair:(=(S 5 T ) � 2) 5 (=(S 5 T ) � ++)= f spec-junc fusion: theorem 12.68(a) g=(S 5 T ) � 2 5++= f (16.46) g=(S 5 T ) � �= f computation rule: theorem 16.34(d) gS 5 T � 11+J:=(S 5 T )= f junc-sum fusion: theorem 12.66(a) g(S � 11) 5 (T � J:=(S 5 T ))We have thus proved the equality of two juncs. Rules (c) and (d) now followby the junc cancellation theorem. The �rst pair is derived similarly.216.6.1 De�nition of FiltersThe de�nition of �lter is borrowed directly from the work of Meertens [68] andBird [19]:De�nition 16.48 (Filter) For right-condition p,/p = =� � $(�<p>(2 � >>))2 Note that from the fact that � and 2 � >> are imps and the fact that con-ditionals, junc and catamorphism respect imps it follows that /p is an imp.



16.6. POINTED RELATORS AND FILTER 319In this section we explore several algebraic properties of the �lter operation.The properties that we seek are motivated by the relationship between the Bird-Meertens formalism and the so-called quanti�er calculus, which relationship willbe clari�ed in the next section.By design /true is the identity function on specs of the correct type:Theorem 16.49/true = $IProof /true= f de�nition 16.48 g=� � $(�<true >(2 � >>))= f conditionals: theorem 15.18(a) g=� � $�= f identity rule: theorem 16.37 g$I2 Now we consider whether two �lters can be fused into one. Since /p is acatamorphism of the form =� � $p where p = �<p>(2 � >>) it pays to beginby exploring whether a map can be fused with a �lter. Indeed it can.Lemma 16.50(a) $R � / p = =� � $((� �R)<p>(2 �>>))(b) =� � $R � / p = =� � $(R<p>(2 �>>))Proof For brevity let p denote �<p>(2 � >>). Then we prove part (a) asfollows: $R � / p= f de�nition 16.48 g$R � =� � $p= f =� leapfrog: theorem 16.38(b) g=� � $$R � $p



320 CHAPTER 16. A HIERARCHY OF FREEBIES= f $ is a relator, de�nition of p g=� � $($R � �<p>(2 �>>))= f conditionals: theorem 15.18(n) g=� � $(($R � �)<p>($R �2 �>>))= f computation rule: theorem 16.47(a) g=� � $((� �R)<p>(2 �>>))Part (b) is derived from (a) using the leapfrog rule, theorem 16.38(a), followedby theorem 15.18(n) and the computation rule 16.47(c).2A direct consequence of lemma 16.50 is:Theorem 16.51 (/ distribution)/p � / q = / (p^ q)Proof /p � / q= f de�nition 16.48, lemma 16.50(b) g=� � $((�<p>(2 � >>))<q >(2 � >>))= f conditionals: theorem 15.18(f) g=� � $(�<(p^ q)>(2 � >>))= f de�nition 16.48 g/(p^ q)2Yet another fusion property for �lters isTheorem 16.52 (Filter Translation) For all imps f/p � $f = $f � / (p � f) � $f>Proof $f � / (p � f) � $f>= f lemma 16.50(a) g=� � $((� � f)<(p � f)>(2 � >>)) � $f>= f relator.$ g=� � $((� � f)<(p � f)>(2 � >>) � f>)



16.6. POINTED RELATORS AND FILTER 321= f imp.(f>), conditionals: theorem 15.18(o) g=� � $((� � f � f>)<(p � f � f>)>(2 � >> � f>))= f domains: (10.25) and >> � f> = >> � f : (10.20) g=� � $((� � f)<(p � f)>(2 � >> � f))= f � imp.f , conditionals: theorem 15.18(o) g=� � $(�<p>(2 � >>) � f)= f relator.$ g=� � $(�<p>(2 � >>)) � $f= f de�nition 16.48 g/p � $f2 Theorem 16.52 can also be strengthened in the same way that theorem15.18(o) was strengthened to theorem 15.18(p).The syntactic resemblance of theorems 15.8 and 16.52 should not go unno-ticed. After some thought the resemblance is not surprising: p> is a sort of �lterbut on elements of some base set, /p is the same �lter but \lifted" to elementsof $I. (By the way, Meertens [68] included both laws but they are somewhathidden in the text.)AcknowledgementWe would like to thank Peter de Bruin, Henk Doornbos, Netty van Gasteren,Rik van Geldrop, Grant Malcolm, Asia van Mortel-Fronczak, Frans Rietmanand Martin Simons for their various contributions to this work.Preparation of this paper was expedited by the use of the proof editor de-veloped by Paul Chisholm [28].
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Chapter 17Solutions to Exercises
Solution to exercise: 3.27a: We derive for any yy v u:(x : x 2 S : f:x) u u:(x : x 2 S : g:x)� f de�nition of in�mum and (3.22) g8(x : x 2 S : y v f:x) ^ 8(x : x 2 S : y v g:x)� f distribution of 8 over ^ g8(x : x 2 S : y v f:x ^ y v g:x)� f (3.22) and de�nition of in�mum gy v u:(x : x 2 S : f:x u g:x) .b: For any y we derivey v a u u:S� f (3.22) and de�nition of in�mum gy v a ^ 8(x : x 2 S : y v x)� f S 6= ; hence distribution of ^ over 8 allowed g8(x : x 2 S : y v a ^ y v x)� f (3.22) and de�nition of in�mum gy v u:(x : x 2 S : a u x) .c: For any y we observe192z y v u:(x : x 2 S : >>)� f de�nition of in�mum g323



324 CHAPTER 17. SOLUTIONS TO EXERCISES8(x : x 2 S : y v >>)� f term true gtrue .2Solution to exercise: 3.28a: Let R be re
exive and anti-symmetric, for any x and y we havex = y) f Leibniz g8(z :: zRx � zRy)) f Instantiate z := x and z := y gxRx � xRy ^ yRx � yRy� f R is re
exive gxRy ^ yRx) f R is anti-symmetric gx = y .b:()) Assume that R is re
exive and transitive. For any x and y we derivexRy) f R is transitive g8(z :: zRx ) zRy)) f instantiate z := x gxRx ) xRy� f R is re
exive gxRy .(() Assume xRy � 8(z :: zRx ) zRy) holds for all x and y. Forre
exivity of R we havexRx� f assumption g8(z :: zRx ) zRx)� f term true gtrue .For the transitivity of R we derive



325xRv ^ vRy� f assumption g8(z :: zRx ) zRv) ^ 8(z :: zRv ) zRy)� f distribution of 8 over ^ g8(z :: zRx ) zRv ^ zRv ) zRy)) f ) is transitive g8(z :: zRx ) zRy)) f assumption gxRy .c: In view of part a and b, it only remains to prove that 8(z :: zRx � zRy)� x = y and xRy � 8(z :: zRx ) zRy), for all x and y, implies thatR is anti-symmetric.xRy ^ yRx� f assumption g8(z :: zRx ) zRy) ^ 8(z :: zRy ) zRx)� f distribution of 8 over ^, calculus g8(z :: zRx � zRy)� f assumption gx = y .2Solution to exercise: 3.46a: First observe that x v x t y, since for any z we havex v z ( x t y v z� f de�nition supremum gx v z ( x v z ^ y v z� f elementary predicate calculus gtrue .Hence, by duality x u y v x .x t (x u y) = x� f x t y w x for arbitrary y gx t (x u y) v x� f de�nition supremum g



326 CHAPTER 17. SOLUTIONS TO EXERCISESx v x ^ x u y v x� f calculus gtrue .b: Note that u:(y : y w S : y) = u:Ŝ where Ŝ is de�ned by y 2 Ŝ � y w S.We show that t:S solvesx :: z v x � z v Ŝ:z v t:S� f indirect equality g8(y : t:S v y : zv y)� f suprema g8(y : Sv y : zv y)� f de�nition of Ŝ g8(y : y 2 Ŝ : zv y)� f de�nition of \below" gzv Ŝ .2Solution to exercise: 3.51Let S be a non-empty, �nite set. From property 3.50(a) we observe that itis su�cient to prove u:S 2 S . The proof is by induction on the cardinality ofS. For S a one-element set, the result follows from (3.15). If jSj > 1 we canchoose two subsets of S, X and Y , both non-empty and stricly contained in Ssuch that S = X [ Y . By induction we have u:X 2 X and u:Y 2 Y . Sincev is total we assume, without loss of generality, u:X v u:Y . Henceu:S= f (3.16) range disjunction g(u:X)u (u:Y )= f (3.26) since u:X v u:Y gu:X2 f X � S gS .



3272Solution to exercise: 3.52For S and T subsets of A we deriveu:S v u:T� f (3.26) gu:S = (u:S) u (u:T )� f range disjunction: (3.16) gu:S = u:(S [ T )( f Leibniz gS = S [ T� f set calculus gS � T .As a dual we havet:S v t:T ( S � T :2Solution to exercise: 4.10The proof is by mutual implication.(: Assume 8(S : min:S exists : f:min:S = min:f:S) . Let x v y, hencex = min:fx; yg . From the assumption it follows f:x = min:ff:x; f:yg, fromwhich we deduce f:x v f:y .): Assume min:S exists. We prove f:min:S satis�es the de�nition ofmin:f:S . First we observe f:min:S 2 f:S , since min:S 2 S. It remains toprove 8(s : s 2 S : f:min:S v f:s) . Since f is monotonic, this is implied bymin:S v s for all s 2 S; which is trivially true.2Solution to exercise: 4.15For any X � B we deriveu:f:X v u:g:X� f characterisation of in�mum: (3.10) g8(x : x 2 X : u:f:X v g:x)( f u:f:X v f:x , transitivity g8(x : x 2 X : f:x v g:x) .



328 CHAPTER 17. SOLUTIONS TO EXERCISESThe dual property ist:f:X _w t:g:X ( f _w g .2Solution to exercise: 4.19First the easy part. Assume (f �) is univerally _t-junctive. Take an arbitraryX � A and de�ne the set of endofunctions cX by bx 2 cX � x 2 X. Since(f �) is univerally _t-junctive we obtain (f �): _t:cX = _t:((f �):cX) . Applying bothfunctions to an arbitrary y 2 A, we obtain f: t :X = t (f:X) .For the other part, assume f is universally t-junctive. Let G � A  � A,then for arbitrary x 2 A we have((f �):( _t:G)):x� f de�nition of (f �) and _t gf: t :(g : g 2 G : g:x)� f f is universally t-junctive gt:(g : g 2 G : f:g:x)� f de�nition of _t g( _t:(f �G)):x� f de�nition of (f �) g( _t:((f �):G)):x .2Solution to exercise: 5.40We �rst prove the equivalence between a and b. The rest is proven by cyclicimplication. Assume (F;G) is a Galois connection.8(x : x 2 B : F:x = min:(y : x = G:y : y))� f de�nition min g8(x : x 2 B : x = G:F:x ^ 8(y : x = G:y : F:x v y))� f (F;G) is a Galois connection g8(x : x 2 B : G:F:x = x) .We now prove b) c) d)e)b.



3298(x : x 2 B : G:F:x = x)� f theorem 5.20(a) g8(x : x 2 B : x 2 G:A)� f calculus gB = G:A) f theorem 5.16(a), restriction to G:A is vacuous gF is a poset-monomorphism) f calculus gF is injective) f de�nition of injective g8(x : x 2 B : F:G:F:x = F:x � G:F:x = x)� f semi-inverse g8(x : x 2 B : G:F:x = x) .The fact that any of the clauses a through e implies F:x = u:(y : x = G:y : y)for all x 2 B is trivial.The dual theorem is:For (F;G) a Galois connection the following are equivalenta 8(y : y 2 A : G:y = max:(x : F:x = y : x)) ,b 8(y : y 2 A : F:G:y = y) ,c F is surjective,d G is a poset-monomorphism,e G is injective.And any one of the above implies� 8(y : y 2 A : G:y = t:(x : F:x = y : x)) .2Solution to exercise: 6.8The proof is by cyclic implication. a)b



330 CHAPTER 17. SOLUTIONS TO EXERCISESb� f suprema and in�ma gx u (y t z) v (x u y) t (x u z)( f a with z := x u z gx u (y t z) v x u (y t (x u z))� f in�ma, x u (y t z) v x gx u (y t z) v y t (x u z)( f a with y; z := z; y gx u (y t z) v x u (z t y)� f supremum is commutative gtrue .b)c (x t y) u (x t z)= f b with x; y := x t y; x g((x t y) u x) t ((x t y) u z)= f ((x t y) u x) = x; b with x; z := z; x gx t (x u z) t (y u z)= f x t (y u z) = x gx t (y u z) .c)d (x u y) t (y u z) t (z u x)= f c with x := x u y g(((x u y) t y) u ((x u y) t z)) t (z u x)= f ((x u y) t y) = y g(y u ((x u y) t z)) t (z u x)= f c with x; z := z u x; (x u y) t z g(y t (z u x)) u ((x u y) t z t (z u x))= f z t (z u x = z g(y t (z u x)) u ((x u y) t z)= f c twice, calculus g(x t y) u (y t z) u (z t x) .d)aInstantiate in d x; y; z := (x u y) t (x u z); y u z; x . Then the right-handside of d becomes



331((x u y) t (x u z) t (y u z))u((y u z) t x) u (x t (x u y) t (x u z))= f d; x t (x u w) = x, twice g((x t y) u (x t z) u (y t z)) u ((y u z) t x) u x= f x u (x t w) = x g(y t z) u x ,and the left-hand side of d becomes(((x u y) t (x u z)) u y u z)t((y u z) u x) t (((x u y) t (x u z)) u x)= f in�ma, suprema g(x u y u z) t ((x u y) t (x u z))v f in�ma, suprema g(x u y) t z .2Solution to exercise: 6.9The proof is by mutual implication.First assume distributivity, thenx u z v y ^ x v z t y� f (3.40) and (3.26) gy = (x u z) t y ^ x = x u (z t y)) f exercise 6.8(a) gx v y .For the other part, assume x u z v y ^ x v z t y ) x v y holds. Fromexercise 6.8(a) it is su�cient to prove x u (y t z) v (x u y) t zx u (y t z) v (x u y) t z( f assumption, � some w gx u (y t z) u w v (x u y) t z^ x u (y t z) v w t (x u y) t z( f choose w := y gtrue .



332 CHAPTER 17. SOLUTIONS TO EXERCISES2Solution to exercise: 6.10With the notation as in the hint:Since t:(x u S) v x u (t:S) , it su�ces to prove for every ordinal � thatx u �� v t:(x u S) . By trans�nite induction: for the step we havex u ��+1= f de�nition � gx u (�� t S�)= f distributiion g(x u ��) t (x u S�)v f induction, calculus gt:(x t S) .For the limit case we observex u ��= f � is a limit ordinal gx u t:(� : � < � : S�)= f S� forms a chain, chain distribution gt:(� : � < � : x u S�)v f induction gt:(� : � < � : x u S)= f calculus gt:(x u S) .2Solution to exercise: 6.30Let x0 and x00 be complements of x. By symmetry the following su�cesx0= f x t x00 = >> gx0 u (x t x00)v f exercise 6.8(a) g(x0 u x) t x00= f x0 u x = ?? gx00 .



3332Solution to exercise: 6.31Just for fun we calculate the upper adjoint of n #, so it exists.n # k � l� f supremum gn � l _ k � l� f calculus gif n � l! true [] n > l! k � l fi� f true � k � 1 gk � if n � l!1 [] n > l! l fi ,hence (n #)]:l = if n � l!1 [] n > l! l fi .Similarly (n ")[:k = if k � n! 0 [] k > n! k fi . So(n #)]:0= f de�nition (n #)] gif n = 0!1 [] n > 0! 0 fi6= f for n 6= 0 and n 6=1 gif n < 1!1 [] n = 0! 0 fi= f de�nition (n ")[ g(n ")[:1 .2Solution to exercise: 6.32For any endofunction f and a set S:f:t:S = t:f:S� f f = f ��, de�nition conjugate g:(f �::(t:S)) = t::(f �:(:S))� f calculus, de Morgan gf �:u::S = u:f �::S .2Solution to exercise: 6.33Part a is trivial, since y v x t y and x u y v y .For part b



334 CHAPTER 17. SOLUTIONS TO EXERCISES(xu)]:yv f z v x t (xt)[:z with z := (xu)]:y g(x t (xt)[:(xu)]:y) u (xu)]:yv f distributution, calculus g(x u (xu)]:y) t (xt)[:(xu)]:yv f x u (xu)]:y v y gy t (xt)[:(xu)]:yv f a twice g(xu)]:y .Note: the �rst step generalises the �rst step in the proof of (6.15), introducing(xt)[ . The third step generalises the third step in the proof of (6.15).For c we derive for any ww v (xu)]:y u (zu)]:y� f in�mum gw v (xu)]:y ^ w v (zu)]:y� f de�nition ] gx u w v y ^ z u w v y� f supremum, distributivity g(x t z) u w v y� f de�nition ] gw v ((x t z)u)]:y .2Solution to exercise: 6.452Solution to exercise: 6.46We �rst prove that a implies b. Assume p 2 IA, thenp v x t y� f calculus, distributivity g(p u x) t (p u y) = p� f p 2 IA so p u x = p _ p u x = ?? gp u x = _ ?? t (p u y) = p� f calculus gp v y _ p v y .



335The equivalence of b of c is proven by mutual implication.b)c p = x t y� f part b gp = x t y ^ (p v x _ p v y)) f p = x t y implies x v p and y v p, calculus gp = x _ p = y .c)b p v x t y� f calculus, distribution gp = (p u x) t (p u y)) f part c gp = p u x _ p = p u y� f calculus gp v x _ p v y .If we assume complementation, we can prove b)c. Assume b and p v x, thentrue� f x t :x = >> w p, part b gp v x _ p v :x) f x v p gx = p _ x v :x� f calculus gx = p _ x = ?? .2Solution to exercise: 6.47We �rst establish the equivalence between part a and b.A is saturated� f theorem 6.47 g8(x :: x = t:IA u x)) f instantiate x := >> g>> = t:IA) f Leibniz with (ux) for every x 2 A g8(x :: x = t:IA u x) .



336 CHAPTER 17. SOLUTIONS TO EXERCISESAssume a. We prove c holds.x v y� f de�nition 6.39 gt:(a : a v x : a) v t:(a : a v y : a)( f exercise 3.52 g8(a : a v x : a v y)( f transitivity gx v y .Assume c. We show the validity of b.>> v t:IA� f c g8(a : a v >> : a v t:IA)� f a ranges over IA gtrue .2Solution to exercise: 7.5Let f be re
exive, idempotent and monotonic.g _v f � h) f f is monotonic gf � g _v f � f � h� f f is idempotent gf � g _v f � h) f f is re
exive gg _v f � h .2Solution to exercise: 7.6Function f is a closure operator over the poset (A;v), hence f 2 A  � A.Take A to be the set of closed elements, i.e. A = f:A . We construct a Galoisconnection between A and A. Let F be f but typed as F 2 A  � A . TakeG 2 A  � A to be the inclusion, i.e. G:x = x for all x 2 A. Now observethat G � F = f and F �G is the identity on A. It is easy to check that F andG satisfy the clauses of theorem 5.30.



3372Solution to exercise: 7.16By de�nition 7.10 f ? is an f -closure. It remains to prove that it is the leastf -closure. Let ' be an f -closure.f ? _v '( f corollary 7.12(e) with g; h := IA; ' gIA _v ' ^ f � ' _v '� f ' is an f -closure gtrue .2Solution to exercise: 7.17We prove the statement by mutual containment.(f �) _? �v (f ?)�( f corollary 7.12(e) g_IA �v (f ?)� ^ (f �) � ((f ?)�) �v (f ?)�( f corollary 7.12(b), � is associative g_IA �v IA� ^ (f � f ?)� �v (f ?)�( f calculus, monotonicity of � and theorem 7.10(a) gtrue .For the other containment we observe(f ?)� �v (f �) _?� f de�nition of lifting g8(g :: f ? � g _v (f �)?:g) .Hence, for g an arbitrary endofunction we derivef ? � g _v (f �) _?:g� f (�g) has an upper adjoint (�g)] gf ? _v (�g)]:(f �) _?:g( f corollary 7.12(e) gIA _v (�g)]:(f �) _?:g ^ f � (�g)]:(f �) _?:g _v (�g)]:(f �) _?:g� f adjoints g



338 CHAPTER 17. SOLUTIONS TO EXERCISESg _v (f �) _?:g ^ f � (�g)]:(f �) _?:g � g _v (f �) _?:g( f corollary 7.12(b); cancellation: (�g):(�g)]:h _v h gf � (f �) _?:g _v (f �) _?:g� f theorem 7.10(a) gtrue .2Solution to exercise: 7.22d We are obliged to prove two inclusions. The inclusion g? _v f ? does notrequire induction: by the monotonicity of ? it su�ces to show that g _v f . Now,for all x, we have:g:x= f de�nition gx � x= f calculus g(y 7! x � y):x_v f 7.12(f) g(y 7! x � y)?:x= f de�nition gf:x .Hence, abstracting from x, g _v f as required.The other inclusion is the one requiring induction:f ?:x v g?:x( f 7.12(e), (b) gf:g?:x v g?:x� f de�nition of f g(y 7! g?:x � y)?:g?:x v g?:x( f 7.12(e) gg?:x � g?:x v g?:x� f 7.10(a), de�nition of g gtrue .e Again we begin with the inclusion not requiring induction.



339�f= f de�nition of f g�(x 7! (y 7! x � y)?:x)w f � and closure operators are monotonic, ?? v x g�(x 7! (y 7! x � y)?:??)= f de�nition of � g�(x 7! �(y 7! x � y))= f de�nition of h g�h .Now for the other inclusion we �rst simplify the proof requirement:�f v �h( f 7.21 gf:�h v �h� f de�nition of f g(y 7! �h � y)?:�h v �h( f 7.12(e) g�h � �h v �h .But, �h= f 7.20 gh:�h= f de�nition of h g�(y 7! �h � y)= f 7.20 g�h � �(y 7! �h � y) .Hence �h = �h� �h and the proof is complete.f This last part is just a combination of the previous two. From d we havef ? = g?, hence �f = �g (since �f = f ?:??). Together with part e we have�g = �h .Solution to exercise: 7.23The proof is by mutual containment.



340 CHAPTER 17. SOLUTIONS TO EXERCISES�(f � g) _v f:�(g � f)( f �(f � g) is the least �xed point of f � g gf:g:f:�(g � f) = f:�(g � f)� f �(g � f) is a �xed point of g � f gtrue .For the other containment we observef:�(g � f) _v �(f � g)� f �(f � g) is a �xed point of f � g gf:�(g � f) _v f:g:�(f � g)( f f is monotonic g�(g � f) _v g:�(f � g)� f see above, with f and g interchanged gtrue .2Solution to exercise: 7.24For part a _�( bf)= f de�nition �xpoint gbf: _�( bf)= f bf:g = f , for all g gf .For part b we observe that we have the following characterisation for _�(f �):i f: _�(f �):x = _�(f �):x for all x 2 A ,ii _�(f �):x v y ( f:y v y for all x; y 2 A .From this it is immediate that _�(f �):x is �f for every x 2 A. Hence _�(f �) = c�f .Now for the interesting claim, part c. First we show that f ? � g is a �xpointof bg �t (f �) .(bg �t (f �)):(f ? � g)= f application gg _t f � f ? � g



341= f distribution of �g g(IA _t f � f ?) � g= f corollary 7.12(f) gf ? � g .Now we prove f ? � g is the least pre�x point of bg �t (f �).(bg �t (f �)):h _v h� f application gg _t f � h _v h) f suprema, corollary 7.12(e) gf ? � g _v h .2Solution to exercise: 7.25f ? � (g � f ?)?= f 7.24(c) gf ? � _�(h 7! I _t g � f ? � h)= f �xed point fusion: (7.23)f := f ?� , g := bI �t (g�) g_�(h 7! f ? � (I _t g � h))= f 7.24(c) g_�(h 7! _�(k 7! (I _t g � h) _t f � h))= f 7.22(f) and rearrangement of terms g_�(h 7! I _t f � h _t g � h)= f de�nition of _t g_�(h 7! I _t (f _t g) � h)= f 7.24(c) g(f _t g)? .2Solution to exercise: 7.26The �xed points of f are the post�x points of f (those x for which x v f:xholds) in the lattice of pre�x points. The pre�x points of f form a completelattice by the pre�x lemma 7.7. By the dual of the pre�x lemma, the set ofpost�x points, hence the �xed points, forms a complete lattice.



342 CHAPTER 17. SOLUTIONS TO EXERCISESNow for the second part, an expression for the suprema and in�ma. Let Fdenote the lattice of pre�x points and L the lattice of �xed points. We calculatefor X � L the supremum, i.e. tL:X .tL:X= f dual of the pre�x lemma with A := F gtF :X= f (3.42) guF :fy 2 F j X v yg= f pre�x lemma guA:fy 2 F j X v yg= f de�nition of F guA:fy 2 A j X v y ^ f:y v yg= f X v y ^ f:y v y� f ): X = f:X and monotonicity of f ,(: transitivity of v gX v f:y v y guA:fy 2 A j X v f:y v yg .2Solution to exercise: 8.20For the proof of (8.21); instantiating x to ?? in (8.19) gives??� = I+ = I� ;and I+ = I� f (8.9) gI+ v I( f (8.10) gI v I ^ I � I v I� f I is unit gtrue .Not that only the proof of I+ = I uses the fact that I is the unit of � .For (8.22)



343x� = I t x+� f (8.11) and (8.17) gx� v I t x+( f (8.13) gx v I t x+ ^ (I t x+) � (I t x+) v I t x+� f (8.12), � is t-junctive gI � I t I � x+ t x+ � I t x+ � x+ v I t x+� f I is unit of � gI t x+ t x+ � x+ v I t x+� f calculus, (8.11) gtrue .Finally for (8.23), observex� = x� � x�� f (8.11) gx� v x� � x�( f (8.11): I v x� gx� v I � x�� f I is identity of � gtrue .2Solution to exercise: 8.35The proof is by mutual containment(x�)?:x v x+( f (8.26) gx v x+ ^ x � x+ v x+( f (8.9) | applied twice gx+ � x+ v x+� f (8.8) gtrue .The other inclusion is proven byx+ v (x�)?:x( f (8.10) g



344 CHAPTER 17. SOLUTIONS TO EXERCISESx v (x�)?:x ^ (x�)?:x � (x�)?:x v (x�)?:x� f corollary 7.12(b); (8.29) g(x�)?:(x � (x�)?:x) v (x�)?:x( f corollary 7.12(e) gx � (x�)?:x v (x�)?:x ^ (x�)?:(x�)?:x v (x�)?:x� f theorem 7.10(a) and corollary 7.12(c) gtrue .2Solution to exercise: 8.36It is the objective to use((a�)?:x v y � x v y) ( a � y v y :(17.1) (a�)?:x v x � (b�)?:I� f (8.28) g(a�)?:I � x v x � (b�)?:I� f factors: (8.3) g(a�)?:I v (x � (b�)?:I)=x� f (17.1), see below gI v (x � (b�)?:I)=x� f factors: (8.3) gx v x � (b�)?:I( f corollary 7.12(b), I is unit of � gtrue .In the middle step we appeal to (17.1). To verify the antecedent for the case inquestion we calculate as follows:a � (x � (b�)?:I)=x v (x � (b�)?:I)=x( f factors: (8.3), and cancellation: (8.5) ga � x � (b�)?:I v x � (b�)?:I( f theorem 7.10(a), monotonicity ga � x � (b�)?:I v x � b � (b�)?:I( f monotonicity ga � x v x � b� f assumption gtrue .



3452Solution to exercise: 8.45A counterexample to (8.46) is the following.Consider the set R of binary relations over the set fa; bg. Let R range overR. Take g to be the identity function on R and f = sq = (R 7! R �R). Wedemonstrate that f � f ? 6= f ? � f .Take R = f(a; b); (b; a)g .Then sq:R = f(a; a); (b; b)g (which is a transitive relation),and sq?:R = f(a; b); (b; a); (a; a); (b; b)g .So, (sq? � sq):R = f(a; a); (b; b)g ,and (sq � sq?):R = f(a; b); (b; a); (a; a); (b; b)g .Note however that one inclusion is valid, namely:(f � g)? � f _v f � (g � f)? :(17.2)That this inclusion is valid but not the opposite inclusion is attributable tothe fact that the function (�f) is universally t-junctive in the lattice of liftedfunctions whereas (f �) is not. Since the proof of 17.2 closely resembles the proofof the matching inclusion in the leapfrog rule we do not supply it here.2Solution to exercise: 8.49Step 1. Re
exivity of n is equivalent to I v XnX for all X which, in turn,is equivalent to I being a right unit of composition. Dually, re
exivity of = isequivalent to I being a left unit of composition. Transitivity of n is the propertythat, for all X and Z,t:(Y :: XnY � Y nZ) v XnZ :This, by the de�nition of supremum, is equivalent to, for all X, Y and Z,XnY � Y nZ v XnZ :We leave this calculation (one use of the Galois connection between (Xn) and(X�) plus two uses of cancellation) to the reader.Step 2. The Galois connection isR/ w S � R v S.from which (8.55) and (8.56) follow immediately.We prove (8.57) by the rule of indirect equality.



346 CHAPTER 17. SOLUTIONS TO EXERCISESX v E/.� f (8.54), factors gE/ �X v E� f (8.53) gE=E �X v E� f ()) I v E=E(() cancellation and monotonicity gX v E .By a dual proof E = E./ .Step 3. Suppose F = XnE=Y . Then we have:XnE=Y= f (8.54) g(X.)=Y= f (8.56) g(X./.)=Y= f (8.61) g(X./)n(Y /) .Thus we take L0 = X./ and L1 = Y /. To construct L2 and L3 we calculate:L= f L = X/ for some X, (8.55) gL./= f (8.53) gE=(L.)= f (8.57) g(E/.)=(L.)= f (8.61) g(E/)n(L./)= f L = X/ for some X, (8.55) g(E/)nL .So we take L2 = E/ and L3 = L. Since L2 is independent of L and L3 istrivially uniquely de�ned by L, the (E/)th row of the factor matrix comprisesexactly one occurrence of each left factor of E.For the right factors we have the following calculation:



347R= f R = X. for some X, (8.56) gR/.= f (8.54) g(R/)nE .Since E is a left factor of itself (see (8.57)) we take L4 = R/ and L5 = E.Again it is easy to see from the above calculation that the Eth column of thefactor matrix comprises exactly one occurrence of each right factor of E. Finally,property (8.62) is a trivial consequence of the identity L = (E/)nL, for all leftfactors L, proved above and the fact that E is a left factor of itself.2Solution to exercise: 8.65Property (8.66) is veri�ed as follows:X � Y v E� f (8.54) gY v X.� f (8.56) gY v X./.� f /. is a closure operator gY /. v X./.� f (8.54) gX./ � Y /. v E .Since ./ and /. are both closure operators (and thus X v X./ and Y v Y /.)it also follows that all four of the following inclusions are equivalentX � Y v E ;X./ � Y v E ;X � Y /. v E ;X./ � Y /. v E :Property (8.67) can now be veri�ed using indirect equality:Z v (X � Y ).� f (8.54) g



348 CHAPTER 17. SOLUTIONS TO EXERCISESX � Y � Z v E� f above gX./ � Y � Z v E� f (8.54) gZ v (X./ � Y ). .2



A. PRELIMINARY REMARKS AND SOME ABBREVIATIONS 349AppendixA Preliminary Remarks and Some Abbrevia-tionsIn this appendix we consider two aspects of the structured calculus of relationspresented in section 9. These are:(a) the completeness and independence of the constituent partsof the axiomatisation(b) proofs of basic but non-evident results needed elsewhere inthe paper.Since the purpose is to support the use of the calculus in the remainder of thepaper the discussion is at times terse and limited.We may brie
y summarise the discussion of the axiomatisation as follows.First, the system of axioms is a sound but not complete axiomatisation of thebinary relations over some universe: we demonstrate the incompleteness by ex-hibiting a model that ful�lls all the axioms but is obviously not isomorphic withsome class of binary relations. Second, each of the di�erent layers is indepen-dent of the others but for the reverse structure. The dependence of the reversestructure on the remainder of the axiomatisation permits an alternative formu-lation of the axioms in which reverse is a de�ned notion. The independence ofthe individual layers is discussed at the same time as we discuss the complete-ness and soundness of the axiom system (since both apects involve exhibitingmodels), namely in section C. How reverse might have been introduced as ade�ned notion is discussed in section B.For reference purposes we name the constituent parts of the axiomatisationas follows:P : the plat structureC : the composition structureR : the reverse structurePC interface : the interface between the P and C structuresi.e. \ � " is universally cupjunctive



350 APPENDIX . SOLUTIONS TO EXERCISESPR interface : the interface between the P and R structuresi.e. \[" is a plat automorphismspeci�cally, P w Q � P [ w Q[CR interface : the interface between the C and R structuresi.e. \[" is a contravariant monoid isomorphismspeci�cally, (P �Q)[ = Q[ � P [and I[ = IPC : the combination of P , C and their interfacesPCR : the combination of P , C, R and their interfacesM : the middle exchange rulec : the cone ruleThe reader may wish to remind themself of our conventions on operatorprecedence, detailed in section 9.1.4, before reading further.B DependenceIn this section we discuss the reverse structure, R, and its interfaces with theplat structure, P, and the monoid structure, C. It is shown that, with a suitablede�nition of \[", all of R, the PR interface and the CR interface follow fromPCM. This opens up the possibility for an alternative presentation of theaxiomatic framework in which the reverse operator does not appear within aseparate layer but is a de�ned notion within the algebraic structure PC. Asecond alternative is furnished by a mixture of the original presentation andthe �rst alternative. Both alternatives are investigated in some detail.Yet another presentation of the axiomatic framework is furnished by a ruledubbed \Dedekind's rule" by Schmidt and Str�ohlein [84]. This alternative wealso discuss in some detail. (We are grateful to Schmidt and Str�ohlein for theirinsistence on the importance of this rule in lectures they gave in Utrecht in1991.)Which presentation of the axiomatisation one chooses is an important ques-tion. We have to admit that the presentation chosen here re
ects our relativeunfamiliarity with the relational calculus when we began this research ratherthan a well-considered choice. In future revisions of this report it is likely thatwe will build up the calculus in a quite di�erent way.



B. DEPENDENCE 351B.1 The Axiom FWe begin by remarking that, within the algebraic framework PC, de�nition 9.1makes sense. We recall that the left factor, S=R, is de�ned by the property:S=R w X � S w X � R(B0)That it is well-de�ned is established by verifying thatS=R = t (X : S w X � R : X)We now remark that, for all Q, \Q[" can be reexpressed entirely within thelanguage of PC. Speci�cally,Theorem B1 Within the algebra PCRMQ[ = :I=:QProof We have, for arbitrary X,:I=:Q w X� f (B0); I is the unit of composition g:I w X � :Q � I� f middle exchange rule; I is the unit of composition gQ w X[ � I[� f CR and PR interfaces gQ[ w X2Theorem B2 The system of axioms PCMF consisting of PCM supplementedby the de�nitionQ[ = :I=:Q(B3)is equivalent to PCRM.ProofOn account of theorem B1 it su�ces for us to show that the addition of (B3)to PCM implies all the remaining axioms of PCRM. There are thus threeelements to the proof. We have to establish that \[" is its own inverse, the CRinterface and the PR interface. As a preliminary we show that I[ = I.From (B3) and (B0) it follows thatI[ w I(B4)whilst



352 APPENDIX . SOLUTIONS TO EXERCISESI w I[( f (B4) ; PC gI w I[ � I � I[� f M g:I w I � :I � I� f C gtrueHence I[ = I(B5)We make frequent use of the middle exchange rule in the remainder of theproof. On occasion, in order to use the rule, we use the axiom that I is theunit of composition to insert \I" and/or | by (B5) | \I[" into a sequence ofcompositions. Such insertions will go unannounced, the hint given being simply\M". Similarly, deletions of \I" or \I[" in a sequence of compositions will alsooccur without mention.We can now prove that \[" is its own inverse since we have, for arbitrary X,Q[[ w X� f (B3), (B0) g:I w X � :(Q[)� f M gQ[ w X[� f (B3), (B0) g:I w X[ � :Q� f M g::Q w X � ::I� f P ; C gQ w XHence Q[[ = Q(B6)The interface between P and R follows from:P [ w Q[� f (B3), (B0) g



B. DEPENDENCE 353:I w Q[ � :P� f M ; (B6) gP w QOnly the CR interface is left to prove (and we have already (B5)). The con-travariance of [ follows from:X w (P �Q)[� f PR interface, (B6) gX[ w P � Q� f (B3), (B0) g:I w P � Q � :X� f M g:(Q � :X) w P [� f P g:(P [) w Q � :X� f M gX w Q[ � P [2 We may conclude from the above that the reverse structure is not indepen-dent of the remainder of the axiomatisation.The �rst alternative formulation of the axiomatisation can now be explained.Let PCRF denote PCR supplemented by the property (B3). Then we have:Theorem B7 PCRM and PCRF are equivalent.ProofOn account of the above it su�ces to show that the middle exchange rule can bederived within PCRF . Our proof involves three stages. First, we derive a rulecalled the \divergence rule", next we derive the rotation rule �rst mentioned insection 9.1 and then we derive the complete middle exchange rule (these proofsbeing conducted, of course, under the assumption of PCRF).The statement of the divergence rule is as follows::I w P � Q � :I w Q � P(B8)Note that (B8) is an expression within the language of PC. Its name comesfrom the fact that :I is sometimes given the name \divergence". (The interpre-tation of :I is a relation between pairs of unequal, i.e. \divergent", elements.)To establish the rule we make the following calculation:



354 APPENDIX . SOLUTIONS TO EXERCISES:I w P �Q� f factors: (B0) g:I = Q w P� f (B3), P g(:Q)[ w P� f PR g(:P )[ w Q� f (B3), P g:I = P w Q� f factors: (B0) g:I w Q �PNote that the last two steps are the mirror image of the �rst two.Now for the rotation rule::P [ w Q � R� f (B3), (B0) g:I w Q � R � P� f divergence rule: (B8) g:I w R � P � Q� f (B3), (B0) g:Q[ w R � PSo we have established the rotation rule::P [ w Q � R � :Q[ w R � P(B9)Finally we may proceed to the middle exchange rule.:Y w P � :X � Q� f rotation rule: (B9) g:P [ w :X � Q � Y [� f rotation rule: (B9) gX[ w Q � Y [ � P� f CR interface gX w P [ � Y � Q[2



B. DEPENDENCE 355B.2 Dedekind's RuleOne of the more di�cult but frequently occurring tasks in the relational calculusis to simplify an expression involving both composition and the cap operator.This is the primary motivation for the rule that Schmidt and Str�ohlein [84] dub\Dedekind's rule".Dedekind's rule is, on �rst encounter, yet more forbidding than the middleexchange rule: its syntactic shape is less attractive, the rule is plucked out ofthe hat, is relatively complicated to use and its proof involves an ugly caseanalysis. Against this must be weighed the fact that the rule is extraordinarilypowerful | once proven it simpli�es enormously the proofs of several otherbasic properties. Moreover the rule does not involve complementation and yet,in combination with PCR is completely equivalent to PCRM.Lemma B10 (Dedekind's Rule: 1st Version) In the axiom system PCRMthe following inclusions are valid:(a) T u U �V v (T u U; � V [) � V(b) T u U �V v U � (U[ � T u V )(c) T u U �V v (V u T � U[) � (U[ � T u V )Proof We begin with (a).T u U �V= f excluded middle gT u (U u (T � V [ t :(T � V [))) � V= f distributivity g(T u (U u T � V [) � V ) t (T u (U u :(T � V [)) � V )= f T u (U u :(T � V [)) � V v ??� f shunting rule g(U u :(T � V [)) � V v :T( f monotonicity g:(T � V [) � V v :T� f left exchange rule gT � V [ v T � V [� truegT u (U u T � V [) � V



356 APPENDIX . SOLUTIONS TO EXERCISESProperty (a) now follows by simple plat calculus.By a similar proof, or by applying reverse to the equality above, one obtains:T u U �V = T u U � (U[ �T u V )Property (b) is an immediate consequence. Property (c) combines (a) and (b):T u U �V= f (a) gT u (U u T � V [) � V= f (b), U := U u T � V [ gT u (U u T � V [) � ((U u T � V [)[ � T u V )= f properties of reverse gT u (U u T � V [) � ((U[ u V � T [) � T u V )= f (a), T; U; V := V; U[; T gT u (U u T � V [) � (U[ � T u V )v f calculus g(U u T � V [) � (U[ � T u V )2 A slight reformulation of Dedekind's rule, even though it involves two extradummies, pays handsome dividends in terms of increased useability:Corollary B11 (Dedekind's Rule) In the axiom system PCRM we have:(a) R �S w U u T �S ( R w T u U � S[(b) R �S w U u R �T ( S w T u R[ � U(c) R �S w T u U � V( R w U u T � V [ ^ S w U[ � T u V2 Schmidt and Str�ohlein [84] attribute lemma B10 to Dedekind and J. Riguetand subsequently refer to it as Dedekind's rule (\Dedekind-Formel"). We will,however, never use the rule in that form preferring always to use corollary B11.It is therefore this corollary that we refer to when we cite \Dedekind's rule".We asserted at the beginning of this subsection that Dedekind's rule is ex-traordinarily powerful. Formally, it is equivalent to the middle exchange rulein the context of PCR. This we shall now prove. (This was pointed out to usby Henk Doornbos. Schmidt and Str�ohlein [84] seem to make a similar claim,



B. DEPENDENCE 357but the exercise they give to support the claim asserts only an implication.)Let PCRD denote the system of axioms PCR supplemented by the propertyB11(b).Theorem B12 PCRD is equivalent to PCRF and PCRM.Proof We have already shown that PCRM implies PCRD and that PCRFand PCRM are equivalent. It remains to show that PCRD implies PCRF ,i.e. (B3) can be derived within the context of PCRD. An intermediate stageis to show that, in the context PCRD,:I w R � S � ?? w S uR[(B13)following which we complete the derivation of property (B3).:I w R �S� f shunting rule g?? w R �S u I� f PC gR �?? w R �S u I( f Dedekind's rule: B11(b) g?? w S u R[ � I� f C g?? w S u R[� f C, P gR[ � ?? w R[ � I u S( f Dedekind's rule: B11(b), reverse g?? w I u R �S� f shunting rule g:I w R �SNow for (B3)::I = :R w X� f factors: (B0) g:I w X � :R� f (B13) g?? w X[ u :R



358 APPENDIX . SOLUTIONS TO EXERCISES� f plat calculus, shunting gR w X[� f reverse gR[ w XHence :I = :R = R[2In conclusion, we have exhibited four equivalent axiomatisations: PCRM,PCRF , PCMF and PCRD.C Independence and CompletenessIn this section evidence is presented, via a variety of models, for the indepen-dence of several parts of the axiomatisation. It turns out that PCRMc does notcharacterize the binary relations completely. Most of the proofs are elementaryso they are omitted.C.1 Power SetsThe starting point for all models is the powerset, forC0 The powerset P(V ), for any set V , with t and u interpreted as set unionand set intersection, respectively, satis�es P.In this power set model, >> and ?? are, of course, V and the empty set,respectively.On P(V ) we may de�ne a composition and a reverse as the intersection andthe identity, respectively. With these de�nitions, P(V ) satis�es PCR and alsoM, forM is just the shunting rule. However, c is not satis�ed for nontrivial Vsince: V \ R \ V = V � R = VReferring to the elements of P(V ) as predicates we may summarise the foregoingby:C1 The predicates satisfy PCRM but, in general, not c.



C. INDEPENDENCE AND COMPLETENESS 359C.2 Binary RelationsThe binary relations on some set U are obtained by choosing V = U � U andde�ning composition and reverse on P(V ) by:(s; t) 2 P �Q � 9(u : u 2 U : (s; u) 2 P ^ (u; t) 2 Q)(s; t) 2 P [ � (t; s) 2 P(s; t) 2 I � s = tAs is usual we shall write x hRi y instead of (x; y) 2 R.With these de�nitions, P(U � U) satis�es PCRc. For satisfaction ofM, wecalculate::X w P � :Y � Q� f de�nitions of � and w g8(s; t : 9(u; v :: s hP i u^ :(u hY i v) ^ v hQi t) : :(s hXi t))� f predicate calculus g8(s; t; u; v : s hP i u ^ :(u hY i v) ^ v hQi t : :(s hXi t))� f predicate calculus g8(u; v : 9(s; t :: s hP i u^ s hXi t ^ v hQi t) : u hY i v)� f de�nition of [ g8(u; v : 9(s; t :: u hP [i s ^ s hXi t ^ t hQ[i v) : u hY i v)� f de�nitions of � and w gY w P [ � X � Q[In conclusion:C2 The binary relations over some set U satisfy PCRMc.C.3 Wp and wlp PairsThe generalised statements, or, equivalently, the wp and wlp-pairs [36] withoutthe law of the excluded miracle, are obtained by choosingV = S � (S [ f?g)where S is the statespace and \?" represents non-termination; and(s; t) 2 P �Q � (t =? ^ s hP i t) _ 9(u :: s hP i u ^ u hQi t)



360 APPENDIX . SOLUTIONS TO EXERCISESThen P(V ) satis�es P and C but neither the PC interface nor c, since:(S � f?g) � ; = S � f?gV � (S � f?g) � V = S � f?gThat is:C3 The predicate transformer pairs satisfy P and C, but not PC.C.4 Monoids and GroupsA guaranteed way to obtain a model that satis�es PC is to choose, for a monoid(M;�; 1�), V = MP � Q = fp; q : p 2 P ^ q 2 Q : p� qgI = f1�gSatisfaction of C is straightforward and of the PC interface follows from thepointwise de�nition of composition. In other words:C4 The powerset of a monoid satis�es PC.If the monoid contains elements x and y such that x� y = 1� and y � x 6= 1�then P(M) fails to satisfy the divergence rule, (B8) which we remarked was aninstance of the middle exchange rule. (Choose P = fyg and Q = fxg.) Theconclusion we reach from the consideration of C4 is thus:C5 PCRM is a non-conservative extension of PCR.For a group (G;�; 1�;�1 ), with the construction above, P(G) satis�es PCc,since fgg � G = G(C6)An obvious way to de�ne reverse isP [ = fp�1jp 2 PgWith this de�nition, P(G) satis�es PCRMc. ForM:



C. INDEPENDENCE AND COMPLETENESS 361:X w P � :Y � Q� f de�nitions of w and � g8(p; y; q; x : p 2 P ^ y 62 Y ^ q 2 Q ^ x 2 X : p� y � q 6= x)� f group calculus g8(p; y; q; x : p 2 P ^ x 2 X ^ q 2 Q ^ y 62 Y : y 6= p�1 � x� q�1)� f de�nition of [, �rst step backwards gY w P [ � X � Q[Since (C6) does not hold for binary relations, this shows that:C7 PCRMc is not a complete characterisation of binary relations.Finally, we construct a model that satis�es PCRc but does not satisfyM.(Thanks are due here to C.S.Scholten for simplifying our original construction.)As in the former example, we take a group in order to guarantee satisfaction ofPCc. But we di�er from the former in the de�nition of reverse which we simplyde�ne as the identity function. Clearly, therefore, PCRc is satis�ed. Nowsuppose we choose a group with two elements a and b such that a�b = 1� andb�b 6= 1�. (A concrete example would be the natural numbers under additionmodulo 3 with a = 1 and b = 2.) We claim that P(G) does not satisfy themiddle exchange rule: Assign P; Q; X; Y := fag; f1�g; fbg; f1�g. ThenY = P [ � X � Q[but b 62 :X whereas b� b 2 :Y and, hence,b = a� b� b 2 P � :Y � QThat is,:X 6w P � :Y � QWe conclude:C8 The middle exchange and cone rules are independent in the context ofPCR.



362 APPENDIX . SOLUTIONS TO EXERCISESD Basic PropertiesWe now turn to the proofs of the basic properties used throughout the paper.The plat calculus is used extensively but, since it is (or should be!) well-known,we shall use it without further ado, often giving as hint the bland statement\plat calculus". Occasionally we provide a little more assistance by way of thefollowing hints. (Note, however, that where such a hint is given the rule namedis usually not the only element of the plat calculus that is required to verify thestep.) shunting rule R w S u T � R t :S w Texcluded middle >> = R t :Rcontradiction ?? = R u :R\Distributivity" and \monotonicity" are also hints that we occasionally supply:the former can refer to the distributivity properties of any of the three operatorst, u or : with respect to each other. Similarly, the latter can refer to themonotonicity property of any of these three operators (in the case of : anti-monotonicity, of course). Which is intended should be clear from the context.We shall not assume the same level of familiarity with the C, R and Mcalculi and their interfaces; accordingly the proof steps we take will be smaller.Sometimes, \PC interface" or \PR interface" is given as a hint; at other timeswe use the following terminology.bottom strictness ?? � R = R � ?? = ??monotonicity R w S ) R � T w S � Tdistributivity e.g. R � S = ((R u T ) � S) t ((R u :T ) � S)(Again we would remark that to which operator the hint \monotonicity" or\distributivity" refers should be evident from the context.)D.1 Properties of MonotypesIn this section we consider the properties of monotypes quoted in section 10.First the non-trivial elements of properties (10.1) and (10.2) are proven.Lemma D0 Let I w A and I w B. Then(a) A � B = A u B,(b) A[ = A



D. BASIC PROPERTIES 363Proof As a preliminary we note thatI w A[� f I = I[ gI[ w A[( f monotonicity gI wAAssume I w A and I w B. Then,A �B = AuB� f assumption, monotonicity gA �B w AuB� f I is the unit of composition gA �B w A u I �B( f Dedekind's rule: B11(a) gA w A � B[ u I( f above, monotonicity gI wA ^ I wBand A[ = A� f equality; [ is its own inverse gA w A[ ^ A[ w A[[� f monotonicity of [ gA w A[( f I w A[ gA[ � A w A[� f I w A[ gA[ � A w A[ � I u I( f Dedekind's rule: B11(b) gA w I u A[[ � I� f R gA w I uA� f P gtrue2



364 APPENDIX . SOLUTIONS TO EXERCISESCorollary D1 Every monotype is an imp and a co-imp.Proof Assume I w A. ThenI w A � A[ t A[ � A� f lemma D0 and plat calculus gI w A � A� f assumption, monotonicity gtrueThus, I w A � A[ and I w A[ � A. In words, A is an imp and a co-imp.2Theorem D2I w A ^ I w B ) (A u B) � R = (A �R) u (B �R)Proof Assume I w A ^ I w B. Then(AuB) � R = A �R u B �R� f monotonicity g(AuB) � R w A �R u B �R� f assumption, D0(a) gA �B �R w A �R u B �R( f Dedekind's rule: B11(b) gB �R w A[ � B � R u R� f assumption, lemma D0(b) and calculus gtrue2 In general it is di�cult to give an expression for :(S � R) in terms of :S and:R. By (D2), this is possible in the case that S (or, dually, R) is a monotype:Lemma D3 Let I w A. Then:(A � R) = (I u :A) �R t :RProof The proof is based on the identity:X = Y � X u Y = ?? ^ X t Y = >>The two conjuncts are, �rst,



D. BASIC PROPERTIES 365A � R u ((I u :A) �R t :R)= f distributivity g(A �R u (I u :A) �R) t (A �R u :R)= f corollary D2 g(A u I u :A) �R t (A �R u :R)= f contradiction; bottom strictness gA � R u :R= f R w A �R, contradiction g??and, second,A � R t (I u :A) �R t :R= f distributivity of composition g(A t (I u :A)) �R t :R= f plat calculus; assumption gI �R t :R= f I is unit of composition; excluded middle g>>2D.2 Left and Right Domains****To be revised*****The subject matter of this section is the veri�cation of those properties ofleft and right domains stated in section 10.1 of the paper. In fact, we onlyconsider the properties of left domains since it is obvious that all our proofscan be dualised (by reversing the order of all compositions) to encompass rightdomains. First we establish the equivalence of the two modes of de�nition ofR< of section 10.1, and simultaneously introduce a third de�nition. By way ofpreparation we have the following lemma.Lemma D4 Let I w A. ThenA � R = R � A w I u R �>>Proof



366 APPENDIX . SOLUTIONS TO EXERCISESA w I u R �>>� f shunting rule g:I t A w R � >>� f rotation rule g:>>[ w :(:I t A)[ � R� f PR and CR interfaces, distributivity and (D0b) g?? w (I u :A) � R� f lemma D3, plat calculus g:(A � R) = :R� f plat calculus gA � R = R2Theorem D5 The following three statements are equivalent:X = I u R �R[X = I u R �>>8(A : I w A : A �R = R � A w X)Proof We begin by establishing the equivalence of the �rst two statements.I u R �R[ = I u R �>>� f excluded middle and PC interface gI u R �R[ = I u (R � R[ t R � :R[)( f plat calculus g?? w I u R � :R[� f shunting rule g:I w R � :R[� f rotation rule gR[ w R[� f plat calculus gtrueNow we prove the equivalence of the second and third statements. To do so, letus consider the equationX :: 8(A : I w A : A �R = R � A w X)



D. BASIC PROPERTIES 367By lemma D4, a solution of this equation exists: I u (R �>>). Let X be anarbitrary solution. Then I w X. Moreover, for any Y such that I w Y wehave Y w X� f X is a solution gY � R = R� f lemma D4 gY w I u (R �>>)Hence, X = I u (R �>>) .2By theorem D5 we are free to de�ne R< byR< = I u R �R[(D6) R< = I u R �>>(D7)or by 8(A : A v I : A � R = R � A w R<)(D8)The right domain operator is similarly de�ned.A few easy properties of < are summarised in the next theorem.Theorem D9(a) (t(R : R 2 V : R))< = t (R : R 2 V : R<)for arbitrary set of specs V . In particular: < is monotonic.(b) I w A ) A = A<(c) (R[)< = R>(d) R = ?? � R< = ?? .Proof Straightforward calculation. (For (a) use de�nition (D7), for (b) usede�nition (D6) and for (c) either of these two together with the correspondingdual de�nition of R> . For (d) use (D8).)2Theorem D10(R u S)< = I u R � S[



368 APPENDIX . SOLUTIONS TO EXERCISESProof The proof establishes mutual inclusion. First,(RuS)<= f de�nition gI u (RuS) � (RuS)[v f monotonicity gI u R � S[Second, (RuS)< w I u R � S[� f de�nition gI u (RuS) � >> w I u R � S[� f calculus g(RuS) � >> w I u R � S[( f Dedekind's rule: B11(c) gRuS w R u I � S[[ ^ >> w R[ � I u S[� f calculus gtrue2The following lemma is the one that we drew particular attention to in section10.1.Lemma D11(a) R � >> = R< � >>(b) (R �>>) u S = R< � S(c) The following three statements are equivalent:R< w S<R � >> w SR � >> w S � >>Proof(a) R � >>= f (D8) gR< � R � >>



D. BASIC PROPERTIES 369v f R �>> v >> , monotonicity gR< � >>v f (D7) gR � >> � >>= f >> �>> = >> gR � >>Part (b) is an instance of theorem D15. (Make the substitutionR; S; T := I; R; S.)Finally, we prove part (c):R< w S<) f >> w S , monotonicity gR< � >> w S< � S� f (a); (D8) gR � >> w S) f >> �>> = >> , monotonicity gR � >> w S � >>) f (D7) and plat calculus gR< w S<2Note that part (b) above appears as (10.15) in the main body of the paper, andthat it subsumes part (a). (Instantiate S to >> and then simplify the resultingequation.)We are now ready to prove (10.17) and (10.16) in section 10.1:Theorem D12(a) S< w (S � T )<(b) (R � S)< = (R � S<)<Proof(a) S< w (S � T )<� f lemma D11(b) gS � >> w S � T � >>� f >> w T �>> , monotonicity gtrue



370 APPENDIX . SOLUTIONS TO EXERCISES(b) (R � S)<= f domains, (D11b) gI u R � S �>>= f domains, (D11b) gI u R � S< �>>= f domains, (D11b) g(R � S<)<2 Property (10.17) follows from (10.16) by straightforward use of the fact thatS< is a monotype and monotonicity of the left domain operator.Finally we prove theorem 10.34(a) from section 10.4: Let F be a relator (seede�nition 10.33).Theorem D13 F:(R<) = (F:R)<Proof The strategy is to use (D11c) to prove the mutual containment. Thatis, we prove:F:R � >> v F:(R<) � >>and F:(R<) � >> v F:R � >>For the �rst of these we have:F:R � >>v f by (D11a), R v R< � >>, monotonicity gF:(R< �>>) � >>= f relators distribute through composition gF:(R<) � F:>> � >>v f PC gF:(R<) � >>and for the second:F:(R<) � >>v f (D5), properties of relators gF:R � F:R[ � >>v f PC gF:R � >>



D. BASIC PROPERTIES 371It follows by two applications of (D11b) that(F:R)< = (F:(R<))<But I w F:(R<)( f I w F:I, F is monotonic gI w R<� f de�nition: (D6) gtrueHence, by (D9b),(F:(R<))< = F:(R<)and so transitivity of equality completes the proof.2D.3 Distribution of Composition over CapThe interface between the plat calculus and the monoid structure of compo-sition guarantees that composition is universally cup-junctive. What aboutcap-junctivity? In general, this is not the case but in the presence of certainclasses of specs more can be said. This section documents some of those classes.Theorem D14(RuS) � T = R �T u S �T( R w R � T � T [ _ S w S � T � T [Proof By monotonicity,(RuS) � T v R �T u S �TThe task is thus to prove the other inclusion, which we do as follows:



372 APPENDIX . SOLUTIONS TO EXERCISES(RuS) � T w R �T u S �T( f Dedekind's rule: B11(a) gRuS w S u R � T � T [( f calculus gR w R � T � T [2 Theorem D14 predicts a distributivity property when one of the given specsis a \left-condition" (i.e. of the form U �>>) but a more useful property in sucha case is the following:Theorem D15(R u S �>>) � T = R �T u S �>>Proof Two applications of lemma D11(a) and monotonicity.2 The following theorem was pointed to us by Oege de Moor [74]. We makeno use of it but include it for the sake of completeness. De�neR � S = (R u :S) t (:R u S)Then we have:Theorem D16 If R � S is a co-imp, then(R u S) � T = (R � T ) u (S � T )Note: There must surely be a better proof than this one!Proof First we rewrite the right-hand side of the claimed equality as follows:(R � T ) u (S � T )= f distributivity and excluded middle g(((R u S) � T ) t ((R u :S) � T ))u (((S uR) � T ) t ((S u :R) � T ))= f plat calculus g((R u S) � T ) t (((R u :S) � T ) u ((S u :R) � T ))Proceeding with this new right-hand side, we have



D. BASIC PROPERTIES 373(R u S) � T= ((R u S) � T ) t (((R u :S) � T ) u ((S u :R) � T ))( f plat calculus g?? w ((R u :S) � T ) u ((S u :R) � T )( f plat calculus g:((:R u S) � T ) w (R u :S) � T� f middle exchange rule g:I w (R u :S)[ � (:R u S) � T � T [( f bottom strictness g?? w (R u :S)[ � (:R u S)� f Iw f assumption g(R � S)[ � (R � S)w f de�nition of �, PC and PR interfaces g(R u :S)[ � (:R u S)g:I w (R u :S)[ � (:R u S)� f rotation rule, de Morgan g:R t S w :R u S� f plat calculus gtrue2Clearly, theorem D16 can be dualized to:T � (S u R) = (T � S) u (T � R)(D17)if R � S is an imp.Theorem D18(a) f is a co-imp ) (f �) is positively cap-junctive(b) f is an imp ) (�f) is positively cap-junctive.Proof We prove (a); part (b) follows by duality. Within the proof we makeextensive use of the terminology of de�nition 10.36 in section 14.2 which, if itis not already familiar, the reader may wish to consult.



374 APPENDIX . SOLUTIONS TO EXERCISESFirst, we remark thatuI(G � R) w G:(uIR)(D19)for all monotonic functions G, sets I and I-bags R. Now suppose I is anon-empty set, R is an I-bag and f is a co-imp. Since (f �) is monotonic,property (D19) reduces the problem to showing thatf � uIR w uI((f �) � R)But, f � uIRw f f is a co-imp, monotonicity gf � uI(((f[ � f)�) � R)w f (D19) with G := (f[�), R := (f �) � R gf � f[ � uI((f �) � R)w f de�nition of f< gf< � uI((f �) � R)= f f< w fsee below g (uI((f �) � R))< ; (D8) guI((f �) �R)In the last step we claimed thatf< w (uI((f �) � R))<The proof is(uI((f �) � R))<v f (D19), G := <, R := (f �) � R guI(< � (f �) � R)= f de�nition gu(i : i 2 I : (f �R:i)<)v f (D12a), monotonicity gu(i : i 2 I : f<)= f I is non-empty, plat calculus gf<2 Here is another condition under which composition distributes over cap.



D. BASIC PROPERTIES 375Theorem D20(RuS) �T = R �T u S �T( (RuS)< w (R �T u S �T )<^ T w R[ � R � T ^ T w S[ � S � TProof (RuS) � T = R �T u S �T� f monotonicity g(RuS) � T w R �T u S �T� f assumption: (RuS)< w (R �T uS �T )<, (D8) g(RuS) � T w (RuS)< � (R �T u S �T )( f domains: (D6) g(RuS) � T w (RuS) � (RuS)[ � (R �T u S �T )( f monotonicity gT w (RuS)[ � (R �T u S �T )( f monotonicity gT w (RuS)[ � R � T ^ T w (RuS)[ � S � T( f monotonicity gT w R[ � R � T ^ T w S[ � S � T2D.4 Two Theorems Concerning ReverseVerifying that one spec is the reverse of another is also a task that frequentlyoccurs. In this section we establish two lemmas that assist in this task. The�rst is well-known and included for completeness sake. The second may not beso familiar.Theorem D21 Suppose f 2 A � B and g 2 B  � A. Then,A w f � g ^ B w g � f � f[ = gProof The proof of \follows-from" is a straightforward application of de�ni-tion 10.32. We content ourselves, therefore, with just the proof of the impli-cation. To that end assume the given premises and the left-hand side of theclaimed equivalence. The statement of the theorem is symmetrical in f and g;it su�ces therefore to show that f[ w g. This is accomplished as follows.



376 APPENDIX . SOLUTIONS TO EXERCISESf[= f f 2 A � B gf[ � Aw f A w f � g gf[ � f � gw f f 2 A � B gB � g= f g 2 B  � A gg2Lemma D22 Suppose A and B are symmetric specs (i.e. A[ = A andB[ = B). Suppose also that R and S are arbitrary specs related by the prop-erties:(a) R �A = R(b) S �B = S(c) R �S = B(d) S �R = AThen R = S[.Proof R= f symmetric.A , (a) gR � A[= f (d) gR � R[ � S[w f domains: (??) gR< � S[w f (c), domains: (10.17) gB< � S[= f domains: (10.19) g(S �B<)[= f (b) g(S �B �B<)[= f domains: (10.16), (b) gS[



E. SOLUTIONS 377Swapping A with B and R with S the opposite inclusion is obtained and thusR and S are equal.2E SolutionsNatural IsomorphismsThe following is a list of the natural simulations discussed in section 12.5.?? 2 �(R :: ??) �= �(R :: R �??),! 2 �(R :: R+??) �= �(R :: R) - 5 ,! 2 �(R; S :: R+S) �= �(R; S :: S+R)(I + ,!) 5 (,! � ,!)2 �(R; S; T :: R+(S+T )) �= �(R; S; T :: (R+S)+T )� 4 � 2 �(R; S :: R� S) �= �(R; S :: S � R)( � � �) 4 ( �� I)2 �(R; S; T :: R� (S � T )) �= �(R; S; T :: (R � S)� T )� � I � 11 2 �(R :: R) �= �(R :: R� 11)(I � ,!) 5 (I � -)2 �(R; S; T :: R� (S+T )) �= �(R; S; T :: (R � S)+(R� T ))
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