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Abstract. We present the Autoref tool for Isabelle/HOL, which auto-
matically refines algorithms specified over abstract concepts like maps
and sets to algorithms over concrete implementations like red-black-trees,
and produces a refinement theorem. It is based on ideas borrowed from
relational parametricity due to Reynolds and Wadler.

The tool allows for rapid prototyping of verified, executable algorithms.
Moreover, it can be configured to fine-tune the result to the user’s needs.
Our tool is able to automatically instantiate generic algorithms, which
greatly simplifies the implementation of executable data structures.
Thanks to its integration with the Isabelle Refinement Framework and
the Isabelle Collection Framework, Autoref can be used as a backend
to a stepwise refinement based development approach, having access
to a rich library of verified data structures. We have evaluated the
tool by synthesizing efficiently executable refinements for some complex
algorithms, as well as by implementing a library of generic algorithms for
maps and sets.

1 Introduction

If one wants to generate efficiently executable code for an algorithm verified
in Isabelle/HOL, there are currently two alternatives. The first alternative is
to do the formalization with executability in mind, e.g. using lists instead of
sets. Then, Isabelle/HOL’s code generator [79] can extract executable code
from the formalization in various functional target languages like ML and Scala.
However, being limited to only executable concepts in the formalization has the
disadvantage of cluttering the proofs with implementation details. This makes
the proofs more complicated, and may even render proofs of medium complex
algorithms unmanageable.® Moreover, changing the implementation later means
essentially redoing the whole formalization.

A well known solution to this problem is refinement [I0], in particular re-
finement calculus [I2]. Here, an algorithm is formulated and proven correct
on an abstract level, and then refined towards an efficient implementation in
possibly multiple refinement steps. As each refinement step preserves correctness,
the resulting algorithm is correct. Stepwise refinement simplifies the proofs by
modularization: The correctness proof of the abstract algorithm focuses on the
algorithmic idea, not caring about implementation, while the proof of a refinement

! The author had this experience with early versions of algorithm formalizations [I7I24].



step shows the correctness of the implementation of particular abstract concepts,
not caring about the overall correctness.

In the context of code extraction from Isabelle/HOL, several approaches to
data refinement have been explored [I5l20]. They focus on the special case of
pure data refinement, where abstract types (e.g. sets) are replaced by concrete
implementations (e.g. red-black trees), but the structure of the algorithm is
preserved. Conceptually, this refinement is simple: Rephrase the algorithm using
efficient implementations for the abstract concepts and prove that it refines
the original algorithm. However, using existing techniques, this still requires
much effort. In particular, to produce multiple implementations from the same
abstract algorithm, it has to be manually rephrased for each implementation. An
alternative is to set up a parameterized version of the algorithm, e.g. by using
locales. However, this approach suffers from limited polymorphism in typical
HOL theorem provers (cf. [12]).

In this paper, we present the Autoref tool, which performs pure data refinement
automatically. Given an algorithm phrased over abstract concepts like sets and
maps, it automatically synthesizes a concrete, executable algorithm and the
corresponding refinement theorem. It has heuristics that try to choose suitable
implementations by default. Moreover, the defaults can easily be overridden by
the user. Thus, it can be used for both rapid prototyping and generating the
final, fine-tuned version of the code.

Autoref is based on the idea of relational parametricity [25126], which is used
to express data refinement for higher-order types.

To make it applicable for the development of actual algorithms, Autoref
is integrated with the Isabelle Refinement Framework [T9/I8] and the Isabelle
Collection Framework [I6I5]. The former supports a development approach
based on stepwise refinement, and the latter provides a large collection of verified
data structures. Both tools have already been used for successful verification of
complex algorithms [I7/T956]. Using Autoref as a back end greatly simplifies
this development process. As a case study, we have applied Autoref to generate
executable code for a nested depth-first search algorithm and an algorithm to
compute simulation relations on finite state machines.

Another distinguishing feature of Autoref is its support for generic program-
ming [2I] in a user-transparent manner. During the synthesis, the concrete
implementation of an abstract operation may be synthesized via a generic algo-
rithm. To demonstrate this feature, we have developed a library of generic map
and set algorithms.

Moreover, we provide implementations of data structures that overcome some
limitations of the implementations provided by the Isabelle Collection Framework.
Using Autoref’s support for parametricity reasoning, we were able to generalize
the existing implementations without redoing their correctness proofs.

The implementation of Autoref and the case studies are available at https:
//www2l.in.tum.de/~lammich/autoref.
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Related Work We already mentioned the concepts of data refinement [10], re-
finement calculus [I], and parametricity [25126] that underly Autoref, as well as
various manual approaches to data refinement [1520].

The transfer package [13] for Isabelle/HOL can automatically transfer theo-
rems over quotient types. It is also based on parametricity, and inspired us to
use this technique in Autoref.

Parallel to our work, support for automatic data refinement has been inte-
grated into the Isabelle/HOL code generator by Haftmann et al. [§], and also
the verified code generator for HOL4 of Myreen et al. [22] supports automatic
data refinement. This work is complementary to ours, and we provide a detailed
comparison in Section [£.5]

The remainder of this paper is organized as follows: Section [2[ describes the
basic ideas that underly our tool. Section [3| describes how to implement a usable
tool based on these ideas. Section [4 reports on our case studies, and, finally,
Section [5] gives a short conclusion and outlook to future work.

2 Basic Ideas

In this section, we describe the basic ideas behind the Autoref tool. After a short
introduction to Isabelle/HOL (§2.1]), we describe relators (§2.2)) and transfer rules
(§2.3), and, finally, our treatment of equality and type classes (§2.4]).

2.1 Isabelle/HOL

Autoref is implemented in Isabelle/HOL [23], an LCF-style theorem prover for
higher order logic. However, the same approach could also be implemented within
other HOL theorem provers. We assume the reader has basic knowledge of
HOL-style theorem provers. In this subsection, we only describe some aspects of
Isabelle/HOL that are essential for this paper.

A type in Isabelle/HOL is either a type variable or a type constructor applied
to a list of types. Type variables are written with leading ticks, e.g. ’a, and
application of a type constructor is written in postfix notation, e.g. ’a list or
(’a,’b)prod. Moreover, there is syntactic sugar for some standard types: the
function type ‘a — ’b, the product type ’a x ’b, and the sum type ’a + ’b.

A term in Isabelle/HOL is either a constant, a variable, a bound variable,
function application, or A-abstraction. Constants and variables are annotated
with their type, and A-abstractions are annotated with the parameter type.

In Isabelle/HOL, there is a further distinction between schematic and free
type/term variables. Schematic variables can be instantiated by unification, while
fixed variables cannot. Schematic variables are denoted by a leading question
mark, e.g. ?’a or Za.

Schematic variables can be used for synthesis: For example, when starting
with a proof goal of the form ?a = 1, ?a may be instantiated during the proof. If
we resolve the above goal with reflexivity, ?a is instantiated to 1, and the theorem
that is proved is 1 = 1. In contrast, free variables cannot be instantiated during



the proof. However, they are converted to schematic variables after the proof has
been finished. Thus, reflexivity is stated as the goal z=x, and later gets converted
to 2z=%x. However, by convention, we do not use question marks for variables
when referring to a theorem.

Isabelle/HOL has no naming conventions to distinguish free variables from
constants. In this paper, the distinction between variables and constants should
always be clear from the context.

2.2 Relators

In order to refine an abstract program to an executable, concrete one, all types
and operations in the abstract program must be refined to concrete counterparts
that are executable. For example, a set in the abstract program may become
a red-black tree in the concrete program, and insertion into a set may become
insertion into a red-black tree.

We use relators [3] to express the relationship between concrete and abstract
types. Let T4 be an nary type constructor, and let T be its concrete version.
Then, a relator? Ry between T and T4 is an nary function that maps relations
between concrete and abstract argument types to a relation between T and Ta:

Ry :: (eaxar)set—. .. = (e X ap)set — ((‘c1,. .., cn)Tex(Car,. .., an)Ta)set

We use the postfix notation (Ry,...,R,)Rr for relators, to make them similar to
the notations (’c1,...,c,)Tc and (‘ay,..., a,)Ta for the corresponding types.

A natural relator relates a type constructor to itself, not changing the shape
of the values.

Ezample 1. Consider the list type ’a list ::= Nil | Cons ’a (’a list). The natural
relator for lists relates two lists element-wise according to a relation on the
elements. This relator is defined inductively: For each relation R, (R)list_rel is
the smallest relation that satisfies

(Nil,Nil) € (R)list_rel
[ (a,a”) € R; (L)) € (R)list_rel | = (Cons a l, Cons a’ ') € (R)list_rel

Similarly, natural relators can be defined for other algebraic types. The natural
relator — for functions relates functions that produce related results when applied
to related arguments. It is defined as

(f, f) € Ry = R, +— Y(2,) € Ry. (fz, [ 2)€ER,

Functions and algebraic types are usually refined to themselves using their
natural relators. However, types like maps or sets need to be represented differently.
The relator list_set_rel, which relates distinct lists to finite sets, is defined as

2 Relators are typically required to be monotonic, commute with composition and
converse, and preserve identity [3]. However, as our technique does not rely on this,
we call relator any function with the appropriate type. Actually, most of our relators
satisfy these properties, a notable exception being the function relator.



(R)list_set_rel = (R)list_rel o { (1,s). s = set I A\ distinct | }

Here, o is relational composition. That is, a list of concrete elements is first
related to a list of distinct abstract elements, and this list is then related to a set
of abstract elements.

2.3 Transfer Rules

In Isabelle/HOL, a program is represented as a term, which contains no schematic
variables. Thus, in order to relate a concrete and an abstract term, we have to
relate applications, abstractions, constants and free variables. We assume that an
abstract constant (or free variable) f’::’a;—. .. — a,, is implemented by a concrete
constant (or free variable) f::’ci—...— ¢, of the same arity. In order to relate
these constants, we have to prove a transfer rule of the form (f,f)€R;—... > R,.
For abstraction and application, we use the following transfer rules:

[ Az 2z’ (z,2)) € Rp = (t,t) € R, | = (A\z. t, A\z’. t) € Ry—R,
[ (f.f) € Ry = Ry; (z,2) € Ry ] = (fz, f2)) € R,

We now state the synthesis problem that our tool has to solve: Given an
(abstract) term ¢’ and transfer rules for its constants and free variables, synthesize
a (concrete) term ¢ and a relation R, such that (¢,¢') € R can be proven by the
transfer rules.

Note that the synthesis problem is effective: As the rules decompose the
structure of the abstract term, there are only finitely many proof trees for each
term ¢'. In Isabelle/HOL, all solutions to the synthesis problem can be enumerated
by solving the goal (?t,t") € ?R by repeated resolution with the transfer rules,
using backtracking to recover from failed attempts or to explore further solutions.
However, this approach may produce large search spaces. In Section [3| we describe
our actual implementation of the synthesis.

Ezample 2. The transfer rules for the list constructors (cf. Example [I)) are

(Nil,Nil) € (R)list_rel
(Cons,Cons) € R — (R)list_rel — (R)list_rel

Now counsider the relator int_nat_rel = {(i,n). i = int n} that relates integers to
natural numbers.® The transfer rule for addition is

(op +, op +) € int_nat_rel — int_nat_rel — int_nat_rel

Note that in Isabelle/HOL the +-operator is overloaded for both integers and
natural numbers.

Moreover, consider the abstract term t’ = Az y::nat. [z+y] that maps two
natural numbers to a list, where [z+y] is syntactic sugar for Cons (z+y) Nil.
Trying to prove the goal (9t,t") € ¢R by recursive resolution with the transfer
rules results in the theorem

(A\z y:sint. [z+y], t)) € int_nat_rel — int_nat_rel — {(int_nat_rel)list_rel

3 Implementing natural numbers by integers makes sense, as Isabelle/HOL uses a
binary representation for integers, but a unary one for natural numbers.



2.4 Equality and Type Classes

Some refinements also depend on operations that are implicit on the abstract
type, like equality or type class operations. In this case, the concrete operation
needs to be parameterized by explicit concrete versions of these implicit abstract
operations. Then, the transfer rules have the more general form [(ci,a1) €
Ri;...;(cn,an) € Ry] = (cc1 ... cp,a) € R, where the constants a; are the
implicit abstract operations, and c¢; are their implementations. Note that the
synthesis problem remains effective, as repeated resolution with the transfer
rules can only produce finitely many different subgoals. Thus, the finitely many
possible proof trees where no subgoal occurs twice on a path can be enumerated.

Ezample 3. Reconsider the relator list_set_rel from Example|[l] which implements
finite sets by distinct lists. The membership operation € is implemented by
searching the list for an equal element:

primrec glist_member :: (‘a—’a—bool) — ’a — ’a list — bool where
glist_-member eq z [| +— False
| glist_member eq © (y#ys) «— eq x y V glist_member eq z ys

It is parameterized with an equality operation. Note that we cannot use the
default equality operation on the concrete side, as equality of abstract values
does not necessarily imply equality of their implementations. For example, the
set {1,2} is implemented by both lists, [1,2] and [2, 1].

The transfer rule for the membership operation is the following:

(eq,op =) € R—R—Id = (glist_member eq,op €) € R — (R)list_set_rel — Id

Thus, in order to transfer membership, we need to synthesize an additional
equality operation on the element type. Note that we relate Booleans by their
natural relator Id.

Other examples for implicit operations are hash codes and ordering operations,
which are usually defined by type classes on the abstract type. Moreover, transfer
rules with premises can be used to automatically instantiate generic algorithms,
as described in Section 3.5

2.5 Summary

In this section, we have described the basic machinery required to synthesize a
(concrete) term ¢ and a relation R from an (abstract) term ¢’ such that (¢,¢') € R
holds. In the next section, we tackle the additional problems that arise when
using these ideas to implement a tool for automatic transfer of abstract programs
to efficiently executable ones.

3 Tool Implementation

Given an abstract program specified by a term t’, we ideally want to synthesize
a term t and a relation R such that 1: (¢,t)) € R holds, 2: ¢ is executable, 3: R



is adequate, and 4: ¢ is optimally efficient. Criterion 1 is a by-product of our
synthesis that works by actually proving (¢,t) € R. In the Isabelle/HOL setting,
Criterion 2 has to be understood w.r.t. the code generator [7J9], which exports
a functional fragment of HOL to functional languages like ML or Scala. If the
left-hand sides of the transfer rules lay in this functional fragment, the synthesized
term is executable. Thus, it is the responsibility of the user to specify transfer
rules with executable left-hand sides. Otherwise, exporting the synthesized term
will fail. Criterion 3 considers the refinement relations itself. A refinement relation
should be able to uniquely represent a sufficiently large subset of the abstract
type. Again, it is the responsibility of the user not to use inadequate refinement
relations. Otherwise, the synthesized refinement theorem will be too weak to
prove useful properties about the synthesized term. Finally, Criterion 4 is the
most difficult to achieve, as it depends on many parameters outside the scope of
our tool, like the algorithm itself, the expected distribution of input, etc. However,
we provide some heuristics for selecting efficient implementations, as well as many
configuration options that allow the user to fine-tune the result.

In the remainder of this section, we describe the actual implementation of
Autoref and the heuristics.

3.1 Identification of Operations

The first step to solve the synthesis problem is to identify the abstract operations.
In the previous section, we optimistically assumed that relators match the
structure of the type and operations in the abstract term are expressed by single
constants. However, these assumptions are not true in practice. For example,
Isabelle/HOL represents maps from ’a to ’b by the type ‘a — b option. Lookup
in a map is expressed by function application, the empty map is Az. None and
map update is fun_upd m k (Some v)*.

To handle this mismatch, we represent conceptual types like map or set by so
called interfaces. We write f:; I to express that operation f has interface I. In
order to identify operations that are not represented by a single constant, we
define a set of pattern rewrite rules of the form pat = ¢ z_1... z_n.

The actual operation identification is then done by solving a type inference
problem according to the following rules:

tt'x:IGF t'tEt/ r=¢:1 . cy I
artiregr P IFi:1 COMStE T

FFtIl FFf:IlHIQ bs - (lL’IIl)FFtZIQ
app TFft:Iy TR Oa ) I — I

Here, I; — I is the interface for functions. The rules are standard except for the
pat rule, which replaces the current term according to a pattern rewrite rule. Our
type inference algorithm first tries to apply the pat rule. Only if this does not

4 The forms Map.empty and m(k—v) are just syntactic sugar.



lead to a valid typing, it backtracks to use the const, app, or abs rules. If a typing
is found, the term is rewritten according to the applied pat rules®. Moreover,
to simplify later processing, we define tagging constants OP and $ to indicate
operations and application of operands: OP ¢ = c and f$z = f z.

Ezample 4. The interface for maps is (Iy,[,)i-map. Note that we use the same
postfix notation for arguments of interfaces as for arguments of relators. The
pattern rewrite rule for map lookup is m k = op_map_lookup m k, and we have
op-map_lookup :; (I, I,Yi_map — I, — (I,)i_option.

Now consider the term m k :: ’a option. Autoref has to decide whether this is
a lookup operation in the map m, or an application of the function m. The type
inference first tries the pattern rewrite rule m k = op_map_lookup m k, thus trying
to derive a map interface for m. If this fails, it backtracks and uses the app-rule to
derive a function interface for m. If m really has a map interface, after rewriting
and adding the OP and $ tags, the term becomes OP op_map_lookup$ m$ k.
Otherwise, it becomes m $ .

3.2 Selecting the Implementation Types

After it has identified the operations of the abstract term, Autoref decides what
concrete types to use. We separate this decision from the actual synthesis mainly
for efficiency reasons. In early versions of Autoref, we had serious efficiency
problems due to extensive backtracking in the synthesis phase.

The goal of the next phase is to annotate each operation in the abstract term
by the relation that will be used to transfer it to a concrete operation. This
annotation is done by another tagging constant ::: that is defined as f ::: R = f.
In order to influence the result of this phase, the user can manually place :::-
annotations in the abstract term. This phase also implements some heuristics
that aim at choosing efficient implementations.

Internally, this phase is split into multiple sub-phases, which successively
instantiate relation variables to actual relations.

The first sub-phase uses the derived interface types to annotate each operation
with a relation that consists of fresh variables and function relators, and also
processes :::-annotations. After this sub-phase, every operation is annotated with
a relation. Typically, most of these relations still contain fresh variables, and only
a few have been specified by the user via explicit annotations.

The next sub-phase tries to restrict the possible instantiations of the relation
variables by what we call homogeneity rules. The idea is that operations should
preserve the implementation if possible. For this purpose, there is a set of
homogeneity rules of the form OP f ::: R, and Autoref tries to unify the annotated
operations in the term against the homogeneity rules, using a depth-first strategy.
For each operation, a maximal specific homogeneity rule that has a unifier
is taken. If there is no such rule, the original relation is not changed. This
method propagates the user annotations over the operations, according to the

5 The actual implementation combines type inference and rewriting.



homogeneity rules. The depth-first strategy ensures that user annotations are
propagated upwards in the term, until they conflict with other user annotations.

Ezxample 5. A typical setup provides a generic implementation for the set inter-
section operation, which iterates over the first set, performs a membership query
in the second set, and builds up the result set. It may be instantiated for any
combination of implementations of the first, second, and result set. Moreover,
consider two set implementations with the relators rbi_set_rel and list_set_rel.

Assume the user wants to translate the term a N (b:::(R)list_set_rel). After
operator identification and relator annotation, the term becomes:

(OP N ::: 7Ry — (R)list_set_rel — TR3)$a$ b

where 7R, and ?Rs are fresh relator variables that need to be instantiated
further. Autoref could safely use any relation for 7R; and ?Rs, as the generic
implementation of N works for any combination of relations. However, the user
probably wanted both a, and the result of the intersection to be implemented via
list_set_rel. This can be expressed by the homogeneity rule OP N ::: R—R—R.
If applied, it instantiates both 7Ry and ?Rs to (R)list_set_rel.

Now assume the user specified (a N b):::(R)rbt_set_rel, thus explicitly request-
ing the result to be implemented by rbt_set_rel. Again, the homogeneity rule
ensures that both a and b are implemented by rbt_set_rel, unless they contain
different annotations.

Another useful homogeneity rule is OP N ::: R—R—R’, which tries to at
least choose the same representation for both operands.

A homogeneity rule should not be able to render a possible implementable
operation unimplementable. For example, if the only implementations of op-
eration f’ are (f1,f) ::: Ri— Ry and (fa,f’) ::: Ro— Ry, the homogeneity rule
OP f ::: R — R would make the operation unimplementable.

After application of the homogeneity rules, the term may still contain unin-
stantiated relation variables. In the final sub-phase, all relation variables are
instantiated by means of the available transfer rules. For each operation OP f ::: R
in the term, we try to find a transfer rule with a conclusion (-,f) € R’ such that
R unifies with R/, and instantiate R accordingly. This instantiation is done in
a depth-first order, using backtracking until a solution is found. Premises of
transfer rules are taken into account only if they have the form (_,-) € _.

In order to influence the solution, the transfer rules are ordered by priorities,
such that rules with higher priority are tried first.

The priority of a rule is computed from a direct component, which may be
annotated to the rule, and a relator component, which prefers transfer rules
involving certain relators. For example, in order to prefer red-black trees over lists,
one gives the relator rbt_set_rel a higher priority than list_set_rel. On the other
hand, to prefer an optimized implementation of an operation over an unoptimized
one, the transfer rule for the optimized implementation is annotated with a higher
direct priority.

Note that the relator annotation phase may render solvable synthesis problems
unsolvable. One reason are unsuitable homogeneity rules, as described above.



Another reason is that the last subphase does not consider all side conditions
of transfer rules. However, when carefully setting up homogeneity and transfer
rules, those effects will not occur. Thus we chose to accept this incompleteness
for the advantage of a considerably faster synthesis.

3.3 Side Conditions

Apart from requiring implementations of equality and other type class operations,
transfer rules may have other side conditions that need to be solved. For example,
the Refinement Framework [19] sometimes requires relations to be single-valued,
and functions to be monotonic. It already provides solvers for those properties,
which we invoke from our tool.

Another complication arises for transfer rules with preconditions over operands.
For example, the hd-operation, which returns the first element of a list, can only
be transferred if the list is non-empty. Hence, the transfer rule for hd cannot
be written in the form (hd,hd) € (R)list_-rel — R. We solve this problem by also
allowing transfer rules written in first-order form:

[ ); (L1) € (R)listrel] = (hd I, hd I') € R

When applying transfer rules in first-order form to operations that do not have
enough arguments, the operation is n-expanded. Note that n-expansion is always
possible in Isabelle/HOL, as f = Az. f x is a theorem.

In order to be able to solve the side conditions, we have to augment some
transfer rules to pass on additional information. For example, in order to transfer
the term If (I # []) (hd 1) a, we have to pass on information about the If statement
during the transfer. For this purpose, we again use a first-order transfer rule:

[ (¢,e)€ld; ¢ = (t,t)ER; "¢ = (e,e)eR]| = (If ct e If ¢’ ¢’ ¢))ER

Thus, when transferring the hd-operation, [#[] is available as an assumption.
We use similar rules for other crucial operations like the assertions from the
Refinement Framework.

Side conditions may also be used for optimized implementations. Consider,
for example, the insert operation for a set represented by a distinct list. If we
know that the element is not yet contained in the set, it can be implemented in
constant time by prepending the element to the list. Otherwise, we need linear
time to check whether the element is already contained in the list. By giving
the transfer rule for the optimized operation a higher priority, it is tried first. If
it’s side condition can be solved, the optimized version is used. Otherwise, the
synthesis backtracks and uses the general transfer rule.

3.4 Synthesis

The last phase of Autoref takes the term ¢/, which is completely annotated
with relations, and constructs a proof goal of the form (?¢,t))€ R. Here, 7t is a
schematic variable that will be instantiated during the synthesis process, and R
is the relation inferred for ¢’ by the previous phase. Then, it tries to apply the

10



transfer rules to this goal in order of their priorities. After applying each transfer
rule, the process is recursively invoked for the evolving subgoals. If solving one of
the subgoals fails, the next matching transfer rule is tried. If the subgoal is not of
the form (¢,¢') € R, it is a side condition and Autoref analyzes its shape to find
an adequate solver. As an additional optimization, the premises of a transfer rule
are ordered such that side conditions concerning the abstract term or the relator
come first. This avoids synthesizing the concrete term when side conditions over
the abstract term or relation fail.

3.5 Generic Programming

Many abstract operations can be implemented in terms of other abstract opera-
tions. For example, we have aNb={} <— Va€a. z¢b, i.e. the disjointness test for
sets can be implemented by means of bounded quantification and membership
query. Along these lines, most operations on finite sets can be implemented by
five basic operations: Empty set, insert, membership, deletion of an element, and
iteration over the elements of the set. We extensively exploit this idea already in
the Isabelle Collection Framework [T6/T5]. However, there we have to manually
pre-instantiate the generic algorithms for each combination of implementations,
which does not scale. Using Autoref, generic algorithms are expressed as transfer
rules, and automatically instantiated only on demand. Moreover, the usage of
generic algorithms is transparent to the user, who specifies an abstract operation,
and lets the tool decide whether it is realized by a direct implementation or a
generic algorithm.

Ezxample 6. Reconsider the disjointness test. We define the constant
op_set_disjoint a b +— a N b ={}

and add an appropriate rewrite rule to the operation identification phase. More-
over, we define

gen_disjoint balll memlI a b = balll a (Az. ~meml x b)
Then, we can easily prove the following transfer rule:

[ (b,Ball) € (Re)Rs1 — (Re—Id) — Id; (m, op €) € Re — (Re)Rss — Id ]
= ( gen_disjoint b m, OP op_set_disjoint) € (Re)Rs; — (Re)Rsy — Id

A low direct priority ensures that it does not override explicit rules for disjointness
tests. Thus, whenever Autoref finds no explicit rule for a disjointness test, it
tries to find rules for bounded quantification and membership instead, and
automatically implements the disjointness test by those operations.

Using such rules, we have to be careful not to follow cycles, trying to implement
an operation by means of itself. Checking for such cycles is not yet implemented.
Thus, it is the responsibility of the user not to use transfer rule setups with cyclic
dependencies. However, even with this restriction, we were able to implement
generic algorithm libraries for maps and sets (cf. Section .
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3.6 Summary

In this section we have described how to use the basic idea of synthesis via
transfer rules to implement the Autoref tool, which automatically synthesizes
efficient implementations of abstractly specified algorithms. The tool has several
heuristics that try to automatically produce a suitable implementation. If these
heuristics produce a non-adequate result, the user can influence the result by
configuration of the heuristics and annotations to the abstract algorithm. In the
next section, we present some case studies that prove the practical usefulness of
Autoref.

4 Case Studies

In this section, we describe the integration of Autoref with the Isabelle Refinement
Framework [I8/19] and the Isabelle Collection Framework [I6JI5]. Moreover, we
describe a library of generic map and set algorithms that demonstrates the
generic programming capabilities of Autoref. Finally, we report on the automatic
refinement of some complex algorithms to efficiently executable code.

4.1 Refinement Framework

In order to be useful for practical algorithms, we have set up Autoref as a back
end to the stepwise refinement development process provided by the Isabelle
Refinement Framework [I8/19].

A detailed description of the Refinement Framework can be found in [19]. Here,
we give a very brief overview. The basic concept of the Refinement Framework is
a nondeterminism monad, whose inner type is called result. A result is either a
set of values, describing the possible outcomes of a nondeterministic computation,
or it is the special result fail, describing that one of the possible outcomes is
an exception, i.e. a failed assertion or diverging computation. By lifting the
subset ordering, with fail being the biggest element, one gets a complete lattice
structure on results. The lifted ordering is called refinement ordering, where
smaller results are more refined. An algorithm is expressed as a function yielding
a result. Correctness of an algorithm is expressed by refinement of its specification,
e.g. ® = fx < spec ¥ describes correctness of f w.r.t. precondition @ and
postcondition ¥. Here, spec V¥ is the result that contains all values satisfying V.

Given a (single-valued) refinement relation R, the concretization function
J R maps abstract results to concrete results w.r.t. R. Thus, data refinement is
expressed by r < |lR r’, meaning that r refines r’ w.r.t. the relation R.

In order to integrate the Refinement Framework with Autoref, we define data
refinement as a relator for results: (R)nres_rel = {(c,a). ¢ < JR a}. Then, we
provide transfer rules for the combinators of the Refinement Framework. Those
transfer rules are already contained in the Refinement Framework, and only
have to be rephrased in the format expected by Autoref. Some of the transfer
rules have side conditions, for which the Refinement Framework already provides
solvers, which could easily be integrated into Autoref.
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4.2 Collection Framework

The Isabelle Collection Framework [I5JI6] provides a rich library of verified
collection data structures, and is already based on data refinement. Thus, it is
straightforward to set up Autoref to use the data structures provided by the
Collection Framework.

However, the Collection Framework only supports refinement relations of
the form (Id,... ,Id)R. For example, it is not possible to refine a set of sets of
integers to a list of lists of integers. Thus, we implemented a red-black tree based
map implementation and a list-based set implementation that do not have this
restriction. Using parametricity [26], we were able to reuse the existing theorems
about red-black trees and lists, as illustrated in the following example:

Ezample 7. The existing implementation of sets by distinct lists gives us the
following transfer rule:

(list_member,Set.member) € Id — {(I,s). s = set | A distinct I} — Id

Here, list_member implicitly uses equality on the elements. It is straightforward
to show list_member = glist_member (op =), where glist_member is the one from
Example [3l Moreover, Autoref easily shows that glist_member is parametric®:

(glist_member, glist.member) € (R—R—1Id) — R — (R)list_rel — Id

Combining these theorems, one gets precisely the transfer rule from Example

4.3 Generic Programming

In Section [3.5] we sketched how Autoref can be used for generic programming.
In order to demonstrate this feature, we implemented a library of generic map
algorithms, which provides a variety of operations based on the five basic opera-
tions empty, update, lookup, delete, and iterate. Analogously, we implemented
generic set algorithms based on the basic operations empty, insert, member,
delete, and iterate. Finally, we implemented the basic set operations by the basic
map operations, using a map from elements to unit values to represent a set.

Thus, in order to prototype a new data structure, it is enough to implement
the five basic map operations. All other map and set operations become available
automatically. Most of the generic algorithms are reasonable efficient, such that
they can be kept even for the final version. To specialize a generic algorithm for a
particular implementation, it is sufficient to add the specialized transfer rule with
a higher priority than the generic rule. For example, we have a generic algorithm
for union of finite sets that iterates over one set and inserts its elements into the
other set. However, for red-black trees, there is a more efficient algorithm. It is
declared as a transfer rule with default priority, thus overriding the lower priority
rule for the generic algorithm.

5 Indeed, this is a theorem that you get for free in the setting of [26]!
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4.4 Code Generation for Actual Algorithms

We have tested Autoref on several actual algorithms. The most complex ones
are the algorithm by Ilie, Navarro and Yu for the computation of simulation
preorders in nondeterministic finite automata [I4], and an emptiness check for
Buchi automata using a nested depth-first search [IT]. For the former algorithm,
we adapted an existing formalization [5], where the refinement to executable code
was done manually”. Here, the size of the Isabelle text required for the refinement
to executable code was reduced from more than 500 lines to about 15 lines. In
order to use Autoref, we had to insert two additional assertions into the abstract
algorithm, which were required to automatically discharge side conditions of
transfer rules. In the original formalization, these side conditions were discharged
using some non-trivial reasoning during the manual refinement.

For the latter algorithm, the refinement to executable code requires about 10
lines. Moreover, we require about 20 lines for setup of a custom datatype, for
which automation is not yet supported. As this algorithm was initially developed
using Autoref, we have no data how big a manual refinement would be, but we
estimate it to several hundred lines of code.

4.5 Data Refinement within the Code Generator

The Isabelle/HOL code generator also supports automatic data refinement [§].
However, it has some limitations that render it unsuitable for our purpose, namely
code generation for programs defined in the Refinement Framework. For example,
the refinement relations are restricted to the form o ¢ = a. This is essential for
integration into the Isabelle/HOL code generator. However, it is not possible to
express reduction of nondeterminism, which is required to be used as back end
for the Refinement Framework. Moreover, it lacks the operation identification of
our tool, thus limiting the refinement to types with their own type constructor.
On the other hand, due to the direct integration into the code generator, one gets
support of the Isabelle packages for defining recursive functions and algebraic
datatypes for free, and tools like evaluate and quickcheck [4] immediately profit
from the more efficient code. Here, Autoref currently requires manual setup
for each non-primitive recursion scheme and for each algebraic datatype, and
automating this task would require quite some effort.

The code generator of Myreen et al. [22] for the HOL4 theorem prover
translates terms to the deeply embedded MiniML language, and proves correctness
of the translation. It uses a synthesis procedure that is similar to ours, i.e. it
keeps track of a relation between the generated code and the original term. While
the currently implemented features seems to be limited®, in theory it should
be possible to support the same generality as Autoref does, which yields an
interesting topic for future research.

7 A very early prototype of Autoref was already used for some simple steps.
8 For example, equality on abstract values is mapped to equality in the target language.
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5 Conclusions

We have presented Autoref, a tool for automatic data refinement in Isabelle/HOL.
Given an abstract algorithm that uses abstract concepts like maps or sets, it
synthesizes a concrete algorithm that uses efficient implementations like red-black
trees, and a corresponding refinement theorem. Autoref allows for both rapid
prototyping of executable code and fine-tuning the results to get the final version.
Compared to previous manual approaches, our tool saves the user from tedious
and time consuming writing of boilerplate code. To substantiate the usefulness
of Autoref, we have shown how it can be used to refine actual algorithms for
simulation preorder computation and for nested depth-first search.

Directions of future work include to add even more automation. For example,
transfer rules with natural relators correspond to the ”theorems for free” of [20],
and could be derived automatically. Moreover, we are currently working on
several algorithm verifications using the Refinement Framework. The feedback
from those projects will lead to improvements of the tool, and extension of its
data structure and generic algorithm libraries. Another interesting topic is to use
the heuristics that we developed for Autoref as a front end to the code generator
based data refinement [g].

Acknowledgements We thank Andrei Popescu for proofreading and inspiring
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comments.
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