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Abstract

Coalgebras of set functors preserving weak pullbacks are particularly well-behaved.
Invoking a result by Carboni, Kelly, and Wood (1990), we show that this can be
explained by the fact that such functors can be uniquely extended to a relator. This
insight next suggests a definition of metric bisimulation.

1 Preliminaries

Let F': Set — Set be a functor. An F'-coalgebra is a pair (S, ag) consisting
of a set S and a function ag : S — F(S). Let (S,as) and (T, ar) be two
F-coalgebras. A function f : S — T is a homomorphism of F-coalgebras, or
F-homomorphism, if F'(f) o ag = ay o f. The collection of F-coalgebras and
F-homomorphisms forms a category, denoted by Setp. A relation R C S x T
is called an F'-bisimulation [AM89] between (S, ag) and (7, ar) if there exists
an F-coalgebra structure agp : R — F(R) on R such that the projections
m : R — S and my : R — T are F-homomorphisms. The following proposition
is readily proved.

Proposition 1.1 A function f : S — T is a homomorphism iff its graph
o(f) = {(s, f(s)) | s € S} is a (functional) F-bisimulation.

As we shall see, the following two observations turn out to be closely
related, and are best understood in the world of relators, to be introduced in
Section 2.

Theorem 1.2 A relation R C S X T is an F-bisimulation iff for all s in S
and t in T,

(5,t) € R = (as(s),ar(t)) € F(m) o F(m)™",
where the latter term denotes the relational composition of the inverse of F ()
followed by F(my).
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Theorem 1.3 If a functor F' : Set — Set preserves weak pullbacks then the
category Set is particularly well-behaved [Rut96]:

(i) The composition of two F-bisimulations is again an F-bisimulation.

(ii) If F has a final coalgebra (P, m) then for any F-coalgebra (S, as), the by
finality unique F-homomorphism f : (S, as) — (P, ) identifies precisely
those elements of S that are bisimilar: f(s) = f(s') iff there exists an
F-bisimulation R on (S, as) with (s,s’) € R.

2 Relators

Let Rel be the category with sets as objects and relations as arrows. Identity
arrows are given, for any set S, by Ag = {(s,s) | s € S}. Composition is given
by the usual relational composition, which we shall write in the same order as
composition of functions; i.e., for relations R C S x T and Q C T x U,

QoR={(s,uye SxU|3teT, (s,t) € Rand (t,u) € Q}.

A functor F : Rel — Rel is called a relator!. Notably, relators preserve
identities and composition: F(As) = A g, and F(Q o R) = F(Q) o F(R).

A well-known fact is that the category Set can be embedded into the
category Rel by the functor ¢ : Set — Rel which is the identity on sets
and maps a function f : S — T to its graph ¢(f). We say that a functor
F : Rel — Rel extends a functor F' : Set — Set if the following two conditions
are satisfied:

(i) For all sets S, F(S) = F(S).

(ii) For all functions f: S — T, F(o(f)) = ¢(F(f)).
In other words, on the subcategory Set of Rel, the functor F essentially be-
haves like F'. One can easily prove that extensions are unique, and are locally
monotone: if R C @ then F(R) C F(Q). Often the extension F will be
denoted again by F'.

Many functors on Set have a (unique) extension to Rel. The following
theorem, due to Carboni, Kelly, and Wood, makes precise which ones.

Theorem 2.1 [CKW90]

A functor F : Set — Set can be extended to a relator F : Rel — Rel iff the

functor F' preserves weak pullbacks. In that case, the extension F is given, for

any relation R C S x T with projections m : R — S and m : R — T, by
F(R) = F(my) o F(m) .

(Equivalently, F(R) is the image of the function (F(m), F(ms)) : F(R) —
F(S)x F(T).)

L The notion of relator has been defined by different authors in different ways. Relators also
play a role in certain algebraic approaches to programming; see [BAM97] and the references
therein.
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In fact, [CKW90] contains the following more general version of the theo-
rem above: Any endofunctor F' on a regular category can be extended to the
corresponding category of relations iff 1. F preserves strong epimorphisms,
and 2. F nearly preserves pullbacks. The above theorem on Set is an imme-
diate consequence of this more general statement, since condition 1 is trivially
fulfilled for any endofunctor on Set, and condition 2 is equivalent to the preser-
vation of weak pullbacks.

Example 2.2 The definitions of the following relators, which are all stem-
ming from weak-pullback-preserving functors, follow from Theorem 2.1. Let A
be an arbitrary set and R a relation on sets S and T.

(i) The relator A x (—) : Rel — Rel is defined on sets as usual and on
relations by

((a,s), (b,t)) € AX R iff a="0b and (s,t) € R.

(ii) For A — (—): Rel — Rel, we have

(f,9) € A— R iff Ya € A, (f(a), g(a)) € R.

(iii) The powerset functor extends to a relator P : Rel — Rel assigning to
a set the collection of all its subsets, and to a relation R the following
relation:

(VW)Y e P(R) iff Vo e VIw e W, (v,w) € R and
Vwe W3 eV, (v,w) €R.

3 Coalgebras of relators

In this section, let F' be a functor that preserves weak pullbacks and hence
extends to a relator, again denoted by F'. Let the category Relr be defined as
follows. Objects are, as before, coalgebras (S, ag), consisting of a set S and a
function ag : S — F(S). Arrows between coalgebras (S, ag) and (T, ar) are
relations R C S x T such that

(s,t) € R= (as(s),ar(t)) € F(R).

This definition generalizes an earlier definition of Hermida and Jacobs [HJ98|
for polynomial functors to the case of arbitrary (weak-pullback-preserving)
functors. (See also [Len98].)

The following is immediate by Theorem 1.2 and Theorem 2.1.

Corollary 3.1 Let (S,ag) and (T, ar) be two F-coalgebras. A relation R C
S x T is an F-bisimulation iff R : (S,as) — (T, ar) is an arrow in Relp.

The above corollary establishes an equivalence between the definition of F'-
bisimulation in the style of Aczel and Mendler, on the one hand, and a def-
inition of bisimulation in the style of Milner and Park [Mil80,Par81], on the
other. For a prototypical example, consider the relator P(A x —) : Rel — Rel,
the coalgebras of which are (A-)labelled transition systems. Writing s——s'
for (a,s") € ag(s), for a coalgebra (S, ag) of P(A x —), we have:

3
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R is a P(A x —)-bisimulation
iff R is an arrow in the category Relp(AX_)
iff (s,t) € R = (as(s), ar(t)) € P(A x R)
iff (s,t) € R=Vs—s" I <¢—t, (s,t') €R
and Vt—t'3s'«%s, (s',t') € R.
There is also the following corollary of Corollary 3.1 and Proposition 1.1.

Corollary 3.2 The embedding ¢ : Set — Rel can be extended to an embedding
¢: Setp — Relp.

We briefly return to the second observation (Theorem 1.3) of Section 1. The
fact that Setp is well-behaved for functors F' that preserve weak pullbacks is
best explained by the fact that for such functors, Set is in essence a subcat-
egory of Relr. For instance, the fact that the composition of bisimulations
is again a bisimulation is equivalent to the observation that Relr indeed is
a category, that is, Relp is closed under composition of arrows. Working in
the ‘larger’ category Relp has some additional advantages. For instance, the
greatest bisimulation relation (bisimilarity) on an F-coalgebra (S, as) can be
characterized, as in the original definitions of Milner and Park, as the largest
(post-)fixpoint of the following monotone operator A : P(S x S) — P(S x S),
defined, for R C S x S, by

(s,8") € AR) iff (as(s), as(s)) € F(R).
Using A, the coinduction proof principle for a final F-coalgebra (P, ), looks
like
Ap=|J{R|RCA(R)}.

4 Metric bisimulations

In this section, we sketch how to extend the framework of sets and relations
to metric spaces, which are, in some sense, more expressive. We give a few
examples of dynamical systems on metric spaces X:

(i) One-dimensional discrete-time dynamical systems, which are continuous
functions f: X — X.

(ii) Contractions f : P.(X) — P.(X) on the space of compact subsets of X
are of particular interest, since their unique fixed points can be used to
model fractals.

(iii) Probabilistic transition systems can be modelled by continuous functions
f: X — M(X), which map a state z in X to a Borel measure on X.

Taking Lawvere’s [Law73] enriched-categorical view on metric spaces, the cat-
egories of interest are Met and MRel. The objects in Met are (generalized)
metric spaces X, which consist of a set X and a distance function dyx tak-
ing values in [0, oo]; arrows are non-expansive functions. (See [BBR9S8]| for a
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detailed account of generalized metric spaces.) The category MRel has the
same objects, and arrows are what we shall call metric relations, also called
bimodules or distributors. A metric relation ® : X = Y is a non-expansive
function ® : Y? x X — [0,00]?. A metric relation ® can be thought of as
a fuzzy relation; it measures for any y and = the amount ®(y,z) to which
these elements are related by @ (‘the smaller this number the better’). The
composition ¥ o @ : X = Z of metric relations ®: X = Y and ¥V:Y = Z is
given by the following ‘least cost’ composition:

Vo d(z,z) = mf{®(y,z) + V(2 y)}-

The distance function dy : X? x X — [0,00] on a metric space X is an
identity for this composition.

As with sets and relations, there exists an embedding functor G : Met —
MRel, which is the identity on metric spaces, and maps a non-expansive func-
tion f: X — Y to its fuzzy graph, defined by G(f)(y,z) = dy(y, f(x)).

A metric relator is now any endofunctor on the category MRel. As before,
we say that a functor F : MRel — MRel extends a functor F' : Met — Met
if it commutes with the functor G : Met — MRel: F oG = G o F. The
guiding principle in extending a functor F' on Met to a functor F on MRel is
the fact that F'is already defined on one particular kind of metric relation: F
assigns to any set and distance function again a set and a distance function.
Distance functions are identity metric relations, so we already know what F
should look like on those. And this can often be easily generalized to arbitrary
metric relations.

This may be illustrated by the following example. Let P : Met — Met be
defined as the powerset functor on metric spaces, assigning to a metric space
X the collection of subsets of X, with the familiar Hausdorff distance:

dp(X)(V, W) = max {18}161‘13 u}giV dx (v, w), 316111/)[/ ?}g‘ff dx(v,w) }.
Now P can be extended to MRel by defining, for any metric relation ® : X =
Y, a relation P(®) : P(X) = P(Y), given by
P(®)(V,W) = max {sup inf ®(v,w), sup inf ®(v,w) }.
vey WEW weWw VEV
This definition generalizes in a very precise sense the definition of the powerset
relator (read ‘max’ as ‘and’, ‘sup’ as ‘for all’, and ‘inf’ as ‘there exists’).

Let F': Met — Met be a functor with a (unique) extension, denoted by
the same symbol, F' : MRel — MRel. The category MRelp is defined as
follows: objects are F-coalgebras (X, ax), consisting of a metric space X and
a non-expansive function ay : X — F(X). Arrows in MRelp are metric
bisimulations: given two metric F-coalgebras (X, ax) and (Y, ay), a metric
F-bisimulation is a metric relation ® : X = Y satisfying

F((I))(Oéy(y), O‘X(x)) < (I)(y,!L')

2 The space Y7 is like Y but with distance dyo»(y,y’) = dy (y',y). Note that generalized
distances are generally non-symmetric.
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Examples of metric bisimulations are bismulations ‘up-to-depth-n’. An early
example can be found in [TR98|.

The goal will now be to develop a theory of metric coalgebras and bisim-
ulations along the lines of the theory of (universal) coalgebra for sets. As
an example of a theorem in such a theory, there is the following principle of
metric coinduction.

Theorem 4.1 Under reasonable conditions® on the functor F, the distance
function dp of a final F-coalgebra (P, ) satisfies:

dp =inf {® | ® is a metric bisimulation on (P, )}.

Again, this generalizes in a precise sense the coinduction principle for final
coalgebras of endofunctors on Set (formulated at the very end of Section 3).
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