Eindhoven University of Technology

Department of Mathematics and Computing Science

RELATIONAL CATAMORPHISMS

by

R.C.Backhouse P.J. de Bruin G.Malcolm
E.Voermans J. van der ‘Woude

Computing Science Note 91/11
Eindhoven, July 1991

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.

Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.

Copies of these notes are available from the
author or the editor. ’

Eindhoven University of Technology

Department of Mathematics and Computing Science
P.O. Box 513 '

5600 MB EINDHOVEN

The Netherlands

ISSN 0926-4515

All rights reserved
Editors: prof.dr.M.Rem
prof.dr.K.M. van Hee

RELATIONAL CATAMORPHISMS

Roland C. Backhouse* Peter J. de Bruin? Grant Malcolm?
Ed Voermans* Jaap van der Woude*$
Abstract

This paper reports ongoing research into a theory of datatypes based on the calculus
of relations. A fundamental concept introduced here is the notion of “relator” which
is an adaption of the categorical notion of functor. Relational catamorphisms are then
introduced and shown to satisfy a unique extension property. Several further properties
are discussed including so-called fusion properties. The paper is concluded by showing
how new relators can be constructed by an appropriate choice of relational catamorphism.

*Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box
513, 5600 MB Eindhoven, The Netherlands.

tDepartment of Computer Science, Rijksuniversiteit Groningen, P.O. Box 800, 9700 AV Groningen,
The Netherlands,

{Computing Laboratory, Programming Research Group, Oxford University, 8-11 Keble Road, Oxford
0X1 3QD, United Kingdom.

SCWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands. Sponsored by NWO (NF 62.518).

1 Introduction

Since the observation was first made (e.g. by Hoare [30]) that program structure is related
to data structure the notion of type has pervaded many theories of program design, so
much so that in our view such a notion has become indispensable. In line with its perceived
importance there is now an abundance of type theories, each drawing substance from one
or more established areas of mathematics — including category theory, intuitionism and
the second order lambda calculus. This paper explores yet another type theory, this time
based on an axiomatic presentation of the theory of binary relations.

Our reasons for embarking on this exploration involved an element of satisfaction
and an element of dissatisfaction with current programming research. The element of
satisfaction comprises, first, the ever-growing knowledge and understanding of theories
of type, second, the pioneering work of Bird and Meertens on economical notations for
functional programming and, third, the now well-established literature on the calculation
of imperative programs. The element of dissatisfaction arose from a growing frustration
with the fundamental limitations of the functional programming paradigm within which
almost all type theories have been developed up till now, and with the continuing disparity
in scale between formal and informal program development. Let us begin with the element
of satisfaction.

Type Theory, Category Theory and the Bird-Meertens Formalism

The history of research into type structure as it pertains to programming is something that
we do not care or dare to trace. Qur own understanding has, however, been substantially
influenced in recent years from two directions: the work of the “intuitionists” , in particular
Martin-Lof [40], the Géteborg group [46] and the NuPRI, group [21] on a theory of types
based on the notion of “propositions-as-types” (this work now being known to have strong
connections to the Automath project led by de Bruijn [18]), and the work of category
theoreticians on algebraic approaches to program specification [28, 43].

Martin-Léf’s theory of types can be characterised as a theory of inductively-defined
types. A major attraction of his theory is that there is an elegant scheme underlying the
definition of individual types that encourages and facilitates the construction of new types.
A contribution of members of the current consortium was to recognise and elaborate on
this scheme, leading to the publication of {6]; similar ideas have also been pursued by
Dybjer [27] and others.

In the categorical approach to type structure so-called “unique extension properties”
are used to characterise types as either the “initial” or “terminal” objects in a category.
Hagino {29] proposed a method of type-definition based on this characterisation. Most
researchers would concede that the two approaches are formally equivalent but would
argue that in nature they are quite distinct, the intuitionistic approach being based on
the natural-deduction style of proof development whereas the categorical approach is much
more equational and often better suited to program development. On the other hand a

1

major innovation of Martin-Léf’s theory was the notion of dependent type, which notion
does not seem to be so readily expressible within category theory.

Quite independently of the above work Bird and Meertens have been collaborating for
many years in the development of an APL-like notation for functional programs which
emphasises economy of expression and calculation. The importance of such economy to
programming has been eloquently advocated by Meertens [41] and it would not do justice
to his work to try to summarise the arguments here. A significant outcome, however, of
this collaboration has been an impressive, albeit limited, calculus of program construction
based around the notion of homomorphism on a list structure. The calculus has been
used to reformulate existing solutions and to develop ingenious new solutions to many
list-programming and other problems [12, 13, 15, 14, 16).

Some few years ago, research began with the aim of extending Bird and Meertens’ work
on lists to arbitrary, inductively-defined, data types. The conjecture we made at that time
and which has since been amply confirmed was that the basic concepts and calculational
techniques propounded by Bird and Meertens would be equally relevant and powerful in a
more general type-theoretic setting. In the process of conducting this research we became
more and more familiar with the categorical approach to type definition, and began to
appreciate and further the application of unique extension properties. For accounts of
this work refer to (2, 37, 36].

So much for the element of satisfaction. Now to the element of dissatisfaction.

Indeterminacy and Notational Issues

Although endowed with many mathematical niceties, there is, we believe, one overriding
reason why purely-functional programming can only be a passing phase in the devel-
opment of computing science: that is the lack of nondeterminism. Functions are by
definition deterministic, but nondeterminism — the ability to postpone, sometimes indef-
initely, decisions — has long been recognised as a vital component of any programming
calculus. Indeed, the inclusion of nondeterminism is a major desideratum within calculi
for imperative programming [25]. On the other hand, notions of type within imperative
programming languages are grossly impoverished relative to the same notions in func-
tional languages. Type theory has, until now, made the greatest advances within the
functional programming paradigm.

In addition to our dissatisfaction with the determinism of functional programming and
the type-poverty of imperative programming, we are becoming more and more distressed
with what we perceive as a severe notational flaw that pervades the everyday practice
of both imperative and functional programming, namely the ubiquitous use of bound
variables. As a consequence formal manipulations become long and unwieldy and can
indeed obscure rather than elucidate an argument. The minimisation of bound variables
has, of course, long been advocated by category theory as well as being fundamental to the
Bird-Meertens formalism. However, mathematical practice and programming practice lag
far behind theoretical argument, and we continue to find scope for substantial economies
in calculation. For more explanation and discussion of our viewpoint see [3].

So much for the element of dissatisfaction.

The Need For a Relational Framework

The relational calculus has been explored in the past as a framework for programming, for
example in [9], [10], [23] and [49]. (This list is certainly by no means exhaustive.) Recently
Hoare and He [32] have strongly advocated the view of specifications as relations and
the programming process as that of refining a given relation into a (possibly functional)
implementation. So far as we know, however, none of this research has combined the
relational calculus with type theory.

The need to admit relations, rather than functions, in programming was also much in
evidence at a summer school held as recently as September, 1989. At this summer school
de Moor lectured on his work on applying a relational calculus to various optimisation
problems [44] (such problems being by nature nondeterministic since unique optima are
exceptional) and to program inversion [45] whilst Sheeran [50] and Jones [33] reported on
the use of relations to describe butterfly circuits and the Fast Fourier Transform.

“Needs”, “wishes” or “wouldn’t-it-be-nice lists” are all very well, but the art of doing
research is to recognise out of the great multitude of outstanding issues those few that
can be resolved elegantly and effectively using current knowledge and techniques. The
incentive for us to investigate a relational theory of types was the (re)discovery by de
Bruin of the notion of “naturality” of polymorphism [19]). (As it turns out, this notion
was already known to Reynolds [47] much earlier but its full relevance to program calcula-
tion does not seem to have been envisaged. De Bruin’s and, more or less simultaneously,
Wadler’s [52] observation was that naturality of polymorphism explains and indeed pre-
dicts several of the most fundamental laws in the Bird-Meertens formalism.) In order to
express the notion of “naturality” one is obliged to extend the definition of a type functor
(a type constructor and corresponding “map” operator) to a mapping from relations to
relations. In other words, relations are essential to meta-reasoning about polymorphic
type constructors but there seems to be no reason why their use should be restricted to
the meta-level. One is indeed encouraged to replace the categorical notion of “functor” by
a (seemingly) stronger notion of “relator”. The ideas underlying, the goals of, and prelim-
inary justification for, a type-oriented theory of relational programming were discussed
by Backhouse [1] at the above-mentioned summer school.

Relational Programming

The starting point for the present work is the (already-mentioned) notion of “relational
programming” as put forward by Hoare and He [32]. In their view, specifications and
implementations are binary relations on input and output values. An implementation f
satisfies specification R if |

fCR

(where a binary relation is regarded as a set of pairs). Programming is thus the process
of calculating an implementation satisfying a given specification,

Which binary relations count as specifications is quite unrestricted: the whole of the
language of mathematics may be used as specification language. Which binary relations
count as implementations is fluid: the more we discover about what can and what cannot
be efficiently automated the more “higher-level” our programming languages will become,

3

Thus the two notions of specification and implementation are deliberately left vague in
order to take account of future developments.

In spite of this vagueness there is still much that can be said about what might
constitute a “healthy” theory of relational programming. Monotonicity, for example,
of the operators in one’s implementation language is desirable for “compositionality”
of programming: if ® is a binary operator, say, on relations monotonicity of ® is the
statement that

RS CURV « RCUASCYV

From a programming point of view this is the statement that a specification written in the
form U @ V can be implemented by finding an implementation R of U and — separately
— an implementation S of V, and then composing them to form B @ S.

Given the foregoing preamble, it will come as no surprise to the reader to learn that
our principal “healthiness” criterion is that the theory should support a theory of types
that encourages and facilitates the introduction of new type structures. Indeed, this whole
paper is devoted to the study of a general mechanism for defining a polymorphic type
constructor and associated “catamorphisms” within an axiomatic theory of relations.
The sort of type constructors that can be defined using this mechanism are familiar
constructors like List and Tree; in this sense the paper offers no surprises. On the other
hand, we do present a whole host of mathematical properties which, we argue, testify to
the theory’s healthiness both from a theoretical and a practical viewpoint. Moreover, we
are particularly encouraged by the economy and clarity of our calculations, which is in
our view of paramount importance.

The current paper is a much-abridged version of the theory that we have developed
thus far [4, 7]. We begin the current paper in the following section with a summary of an
axiom system for binary relations. (The system is not complete and is supplemented in [7]
with axioms characterising the unit type, cartesian product and disjoint sum.) With this
system as basis we build up in section 3 a vocabulary for discussing our theory. Most of
the concepts and laws introduced in sections 2 and 3 can be found in one place or another
in the mathematical literature and we claim no originality for their introduction. The
most important concept introduced in section 3, that of “relator”, does, however, appear
to be novel and it is this concept that forms the backbone of our work. The main contri-
bution of the paper begins in section 4 where we introduce and examine the properties of
(relational) “catamorphisms”. A specific concern in this section is to compare the prop-
erties of relational catamorphisms with functional catamorphisms (i.e. homomorphisms
with domain an initial algebra). Finally, section 5 shows how parameterised types are
defined and explores their junctivity properties.

We conclude this introduction with a short account of the style we use for presenting
calculations.

Proof Format

For the presentation of equational proofs we use the style introduced by W.H.J. Feijen in
[24]. That is, we write

R
= {p}
S

= {q}
T

R,S5 and T are expressions containing one or more free variables. p and ¢ are most often
semi-formal hints why (for all instantiations of the free variables) R = S and § = T,
respectively; in constructive proofs (discussed shortly) p and ¢ have a formal status.

This format emphasises the transitivity of equality: all the expressions R, § and T
are equal, but in particular the first and the last. We use other transitjve operators in
place of equality: = (equivalence), < (follows from) = (implies), J and € (the inclusion
operators defined in section 3). In such cases the connectives are used conjunctively, for
example R < § <= T means (R < S) and (§ « 7).

2 The Algebraic Framework

A major component of our endeavour is the development of a calculus of programming that
permits and, indeed, encourages clear and economical calculation. For this we need an
elegant algebraic setting. Although from the mathematical point of view, there is nothing
wrong with a standard set-theoretic approach nor with the algebraically more attractive
predicate calculus, we are dissatisfied with the persistent appearance of arguments and
dummies in those systems. This invites us to look for a setting one abstraction level
higher that fits our manipulative needs.

In order to choose such an abstract setting (“syntax” for short) several design criteria
should be established. Here some of ours are mentioned, not as dictates but just for the
sake of clarifying our point of view.

¢ The syntax should reflect the structure of the everyday mathematical view of rela-
tions as tightly as possible (excluding historical oddities, inelegancies and prejudice).

¢ The syntax should be built up in layers. If possible, those layers should be well-
known syntactical unities with proven “elegance”.

* The meta-language used for juggling with the syntax is the predicate calculus.

® There should be a clear distinction between terms in the meta-language and terms
in the syntax.

Fortunately we don’t have to start from scratch. The road towards an “axiomatic
theory of relations” is already paved with the pioneering work of Tarski [51]. Besides,
the above point of view is apparent in most of the curricula nowadays, be it not always
explicit. Without further ado we present the most basic part of the syntax.

2.0.1 Plat Calculus and the Knaster-Tarski Theorem

Let A be a set, the elements of which are to be called specs. On A we impose the structure
of a complete, completely distributive, complemented lattice

(A’ m’ U) —" 'TT) J_L)

where “I” and “U” are associative and idempotent, binary infix operators with unit
elements “TT” and “1L”, respectively, and “~” is the unary prefix operator denoting
complement (or negation). We assume familiarity with the standard definition of a lattice
given, for example, by Birkhoff [17]. By “complete lattice” we mean that the extremums

U(Z: ieT: R)
and N(i: i€7: R;)

exist for all families of specs {i : i € T : R;}, where the index set T is completely
arbitrary. “Completely distributive lattice” means that

R N uU(:7€I:8) = U@E:4iel: ROS)
and R U MN(i:i€T:8) = N{:iel: RUS)

for all specs R and all families of specs {i: i €Z: S} Finally, “complemented
lattice” means that —R exists for all specs R and obeys de Morgan’s laws and the double
negation rule. (Note: the definition of a Boolean algebra requires only the existence of
finite extremums and distributivity over such finite extremums. Our requirements are
thus stronger.) The ordering relation induced by the lattice structure will be denoted by
“:]”.

This structure is well known from the predicate calculus: for “M1” and “U” read con-
junction and disjunction, respectively, for “TT” and “11” read true and false, and for
“J” read “«=”. We call such a structure a plat, the “p” standing for power set and “lat”
standing for lattice. Since the structure is so well known and well documented we shall
assume a high degree of familiarity with it.

Among the more significant properties of such a structure is the (well-known) “Knaster-
Tarski fixpoint theorem”. Since we shall use the theorem frequently we summarise it here
(to the extent and in the form appropriate to our own needs). Specifically, it says that,
for arbitrary monotonic function 8, the equation

X:: X:H.X

has a smallest solution, which henceforth we denote by p#, characterised by the two
properties:

e = 0.u0
and, for all X,
X =« X 30X

Moreover, such an equation also has a largest solution, which henceforth we denote by
v8, characterised by the properties:

vl = 8.9

and, for all X,
XCuv <« XCO6X

For an excellent account of plat calculus (although that name is not used!), including
a modern proof of the Knaster-Tarski theorem and a clear and careful exposition of its
implications, we would recommend the reader to refer to [25].

2.0.2 Composition and Factors
The second layer is the monoid structure for composition:
(A, 2, I)
where o is an associative binary infix operator with unit element 7.

The interface between these two layers is: © is coordinatewise universally “cup-junctive”.

Le. for VVIW C A4,
UV) o (UW) = U(P,Q: PEVAQeEW: PoQ)
In particular,

e 1l is a left and right zero for o,
® © is monotonic with respect to .
¢ TToTT = TT.

Another, less immediate and somewhat unfamiliar consequence of this interface, is the
existence of so-called “left” and “right factors” defined as follows.

Definition 1 For specs R and S we define the right factor R\S by
(a) R\SJX = SJR.X

and the left factor S/R by

(b) S/RIX = SJIXoR

a

Left and right factors are thus defined to be the largest solutions to inequations in a
variable X (the inequation to the right of the equivalence in their respective definitions).
Although we shall have no use for it here we mention that the operators “\” and “/”
associate with each other (i.e. P\(Q/R) = (P\Q)/R), thus justifying writing P\Q/R
and that such is a factor of (.

Equations (1la) and (1b) are instances of what are known as “Galois connections”.
(See e.g. {35], in particular exercise 1 on p.15.). Our use of the word “factor” is intended
to suggest an analogy between composition and multiplication, and between factoring and
division. This analogy is further reinforced by the following easily derived cancellation
properties of factors.

Lemma 2

(@) S I Ro (RS
(b) S 3(S/R)-R
A

Evidence for the claim that definitions (1a) and (1b) and, in particular, the calcula-
tional possibilities they admit are important but not well known is the fact that they have
surfaced in various guises and under various names over the last fifty years beginning, to
our knowledge, with [26] (under the names left and right “residuals”) and involving di-
verse application areas such as the structure of natural language [34], regularity properties
of generalised-sequential machines [22] (under the name used here of left and right “fac-
tors”), the well-known Knuth-Morris-Pratt string searching algorithm [8], and program
specification [32] (under the names “weakest pre- and post-specification”). We prefer
Conway’s {22] more anonymous terminology to that used by Hoare and He (32]. The term
“residual”, which is also used by Birkhoff [17], would have been equally acceptable, Note,
however, that of the above-referenced works, Hoare and He’s calculational formulation of
the properties of “factors” is the single most significant contribution to the present work.

Remark In addition to the use of different terminology our choice of notation is exactly
opposite to Hoare and He’s: they would write S/R where we write R\S, and vice-versa
R\5 where we write S/R. Our own choice of notation is justified by the — for us very
important — property that in the use of (2a) and (2b) the “cancelled” expressions are
adjacent. We reject outright the notation adopted by Birkhoff [17] as unsystematic and
inappropriate to compact calculation. End of Remark

2.0.3 Reverse

The third layer is the “reverse structure”,
(A, v)

where “0” is a unary postfix operator such that it is its own inverse.
The interface with the first layer is that “v” is an isomorphism of plats. ILe. for all

P,@Q e A,
PIQ = Ps1Qu

Consequently, for all P,Q € A,

~(P) = (=P}
(PUQy = PouQo
(PNQM = Pon@

Tiv = 7

dlu = A1

Remark As a rule we shall write the names of unary functions as prefixes to their
arguments. A partial justification for making an exception of “o” is that it commutes
with “=7, thus permitting us to write the syntactically ambiguous “~Ru”. Later we shall
see that “u” also commutes (by definition) with so-called “relators”. The latter is the

main reason for this choice of notation.
End of Remark

The interface with the second layer is formed by the two rules
(R =3 S)U frt Su o RU
and

Iv = T

2.0.4 Operator precedence

Some remarks on operator precedence are necessary to enable the reader to parse our
formulae. First, as always, operators in the metalanguage have lower precedence than
operators in the object language. The principle meta-operators we use are equivalence
(“="), implication (“=>") and follows-from (“<") ~— these all having equal precedence -—
, together with conjunction (“A”) and disjunction (“v”) — which have equal precedence
higher than that of the other meta-operators. The precedence of the operators in the plat
structure follows the same pattern. That is, “=”, “3” and “C” all have equal precedence;
so do “U” and “I'”; and, the former is lower than the latter. Composition (“°”) has
a yet higher precedence than all of the operators mentioned thus far, whilst the two
factoring operators (“/” and “\”) have the highest precedence of all the binary operators.
Finally, all unary operators in the object language, whether prefix or postfix, have the
same precedence which is the highest of all. Parentheses will be used to disambiguate
expressions where this is necessary.

2.0.5 The RS and Rotation Rules

To the above axioms we now add an axiom that acts as an interface between all three
layers.

The RS Rule
=Y P°—|X°Q = X 3 PquoQu

The name “RS” is a mnemonic for “Rotation and Shunting”. The “rotation rule” is
obtained by making the substitutions ¥ := Ru, P := S, X :=-T and Q := I and
simplifying using the properties of I, reverse and complement.

Rotation Rule
~Re J ST = -Tv J RS

(Note how the variables R, S and T are rotated in going from the left {o the right side
of the rule.) “Shunting” is the name given by Dijkstra and Scholten (25] to an important

9

rule in the predicate calculus. Specifically, by making the substitutions Y := U, P := I,
X =V, and Q := W and simplifying we obtain the rule

ﬁUg—\VOW = V;U"WU

Interpreting “o” as conjunction, “v” as the identity function, and “3” as follows-from

this is the afore-mentioned shunting rule.

It is our experience that the RS rule can meet with considerable resistance for one of
two reasons. First, for calculational purposes, a rule with four free variables is (rightly)
regarded as approaching, if not outwith, the limits of useability. Second, for those already
familiar with the relational calculus, there is resistance to the fact that we have chosen to
replace the better known “Schréder” rule which states that the following three statements
are all equivalent. ‘

(See, for example, [48] for historical references.) To counter these arguments we would
point out that the RS rule is more compact than the Schroder rule (two statements are
equivalent rather than three) and, more importantly, has a clean syntactic form that
makes it easy to remember and to apply. The rotation rule shares these advantages
as well as involving only three free variables, but suffers the disadvantage that in some
calculations two successive uses are required where only one use of the RS rule is necessary.
In combination with other laws both rules are equivalent to the Schréder rule. (The
Schréder rule can also be reduced to the equivalence of just two statements, making our
first argument void, but then it would suffer the same disadvantage as the rotation rule,
which is probably the reason why it is always stated in the way that it is.)

2.1 Models

Various models of the above axioms are discussed in [4] with regard to the following
questions:

(a) Are the layers and axioms independent?

(b) Are the successive extensions conservative?

(c) Does the axiomatisation characterise the set-theoretic relations
completely?

Here we shall content ourselves with a summary of the conclusions, namely: the set-
theoretic relations do indeed form a model of the axiom systern but the axiom system is
not complete for this model; the RS and cone rules are independent of the other axioms
but the reverse structure is not.

A final comment with regard to the idiosyncracies of our narming conventions. The
following sections must serve a dual purpose. The technical aim is to build up a theory
of types based upon the above syntax. To do this in a way that is evidently free from
logical inconsistencies necessitates making a clear distinction between the theory itself

10

and the metalanguage. For this reason we have chosen to call elements of A “specs”
rather than “relations” and to use the symbols “I” and “U” etc. rather than “rY" and
“U” etc. To serve the second purpose we intersperse the development with references to
the relational model. The reader may prefer to construct their own proofs of the various
lemmas, theorems etc. in this one interpretation, but they do so at their own peril.

3 Foundations

The purpose of this (abridged) section is to build up a vocabulary for our later discussion
of the properties of catamorphisms. In order to avoid confusion with existing terminology
we make a complete reappraisal of what is meant by “type”, “function”, “type construc-
tor” etc. Nevertheless, it should be emphasised that — with the important exception
of the notion of “relator” — the concepts defined here are amply documented in the
mathematical literature and we make no claim to originality.

3.1 Monotypes

We say that spec A is a monotype iff I O A.

In the relational model, for example, we may assumne that the universe U contains two
unequal values true and false. The monotype B of booleans is then defined to be the
relation

{(true, true), (false, false)}
Note that for monotypes A and B

B) A = IMNA = Av = AoA
(4) A<B = BeA = ANB

Properties such as (3) and (4) stated here without proof are proven in [4].
We often write

Re S~T
as a synonym for
(5) SeR =R = RoT
Note that (5) defines S~T to be a subset of A. Typically S and T will be monotypes,

but we prefer not to complicate the definition by making such a restriction.

3.2 Imps and Co-imps

In this subsection we define “imps” and “co-imps” as special classes of specs. In the
relational model an “imp” is a function.

11

Definition 6
(2) A spec f is said to be an imp if and only if 7 T f o fu.
(b) A spec f is said to be a co-imp if and only if fuis an imp.
o
The intended interpretation is that an “imp” is an “imp”lementation. On the other
hand, it is not the intention that all implementations are “imps”. Apart from their

interpretation imps have an important distributive property not enjoyed by arbitrary
specs, namely:

Theorem 7 If f is an imp then, for all non-empty sets of specs V
M(P: PeV: P)of = N(P: PeV: Pof)

]

In particular, for all specs R and S,

(ROS) o f = (Ref)n(Sef)

0

Dually we have:

Theorem 8 If f is a co-imp then, for all non-empty sets of specs V,
feN(P: PeV: P) = N(P: PeV; feoP)

In particular, for all specs R and S,

fe(RNS) = (feR)N(fe9)

In the relational model a monotype is the identity function on that type. More gen-
erally, the requirement of being a function is the requirement of being single-valued on
some subset of U, the so-called “domain” of the function. The domain and range are
made explicit in the following.

Definition 9 For monotypes A and B we define the set A——B by f € A«~—DB whenever

(@) foB=7f
(b) feef I B, and
© A 3 fofe

The nomenclature “f € A+— B” is verbalised by saying that “f is an imp to A from B”.
0

12

In terms of the relational model, property (9a) expresses the statement that the domain
of definition of f is confined to B. Property (9b) expresses the statement that f is total
on domain B, 1.e. for each z € B there is at least one y such that y (f) z; finally, property
(9c) expresses the statement that f maps elements of B to A and that f is single-valued,
i.e. for each x € B there is at most one y such that ¥ (f) z. . Their combination justifies
writing “f.a”, for each z € B, denoting the unique object y in A such that y{f)z.

By including the above definition and not simuitaneously including a dual notion
for co-imps we have introduced an asymmetry into our theory that until now has been
totally absent. This expresses a slight bias with an eye to the extension of the theory with
cartesian product and disjoint sum later in this section. We hasten to add, nonetheless,
that there is no such asymmetry in the theory at this instant and every property we state
for imps alone has a dual property for co-imps.

To avoid repeating assumptions and to assist the reader’s understanding we continue
to use the conventions that capital letters A, B,C,... at the beginning of the alphabet
denote monotypes, small letters f, g, &, ... denote imps or co-imps, and capital letters
R,S5,T,... at the end of the alphabet denote arbitrary specs.

Finally, let us remark that the unconventional direction of the arrow in the statement
“f € A—DB" is entirely dictated by the choice to denote function application with
the function name to the left of its argument. (We owe the suggestion to deviate from
convention to Meertens [42].)

3.3 Relators

In categorical approaches to type theory a parallel is drawn between the notion of type
constructor and the categorical notion of “functor”, thereby emphasising that a type
constructor is not just a function from types to types but also comes equipped with a
function that maps arrows to arrows. For an informative account of this parallel see, for
example, [39]. In this subsection we propose a modest extension to the notion of functor
to which we give the name “relator”.

Definition 10 A relator is a function, F, from specs to specs such that

(a) I 2 FI

(b) RIS = FRIFS
(<) F(ReS) = FRoFS
d) F(R) = (FR)

|

In view of (10d) we take the liberty of writing simply “F.Ru” without parentheses, thus
avoiding explicit use of the property.

The above ostensibly defines a unary relator but we also wish to allow it to serve
as the definition of a relator mapping an m-ary vector of specs into an n-ary vector
of specs, for some natural numbers m and n. (This is necessary in order to allow the
theory to encompass what are variously called “mutually recursive type definitions” and
“many-sorted algebras”. More generally, there is no reason why “m” and “n” may not be

13

some fixed but nevertheless arbitrary index sets. However, such a generalisation would
complicate the current discussion more than we deem justified.) The mechanism by which
we can do this is to assume that all the constants appearing in the definition (“=", “