Graph Algorithms
Bernhard von Stengel, LSE
Definitions:

Directed graph = (V, E)

V = set of nodes, e.g. V ={1,2,3..., n}.
E set of node pairs (u,v), called edges (for directed graph also: arcs).

If E is symmetric, i.e. (u,v) in E if and only if (v,u) in E: undirected
graph, edges are unordered pairs {u, v}.

Path from u to v of length k = sequence of edges uo,us,us,..., U,
where u,=u, (u;ui) is an edge for i= 0,...,k-1, and ux=Vv.

An undirected graph is called connected if there is a path between
any two nodes.

A cycle in a graph is a path from a node to itself.

A tree is a directed or undirected graph with a distinguished node, the
root, from which there is a unique path to every other node. Unique
tree-predecessor also called “parent”.

Storing a graph:

1. Adjacency matrix

A[i][j] foriandjin V which is 1 if and only if (i,j) is an edge, and 0
otherwise.

Requires n® bits of storage if |V|=n.

Extends to graphs with multiple (parallel) edges by storing the
number of edges between i and j in A[i][j].

2. Adjacency list

Adjlul={vinV|(u,v)inE}
Adj[u] is the set of all neighbours of u. Can be stored as a linked list.

(picture)

Storage requirement O(|V|+|E|), which is less than |V|? if E has
relatively few edges (sparse graph).

Depth-first search (DFS) on undirected graphs

Initialisation:
first colour each node u "white" (unvisited),
and having no parent: p[u] = NULL

1. go through all nodes, and whenever one is white, start a DFS-visit

2. A DFS-visit of a node u

* marks the node "grey" (in process)

» assigns it a “timestamp” d[u] (a new number which afterwards is
incremented; all timestamps are distinct numbers), the DFS-
discovery time.

* looks at all neighbours v of u, and if v is white,
marks u has the DFS-parent of v, assignment p[v]=u, and then
recursively starts a

» DFS-visit(v)

« after all neighbours of u have been looked at, mark u "black"
(finished), give u a new time-stamp f[u], the DFS-finishing time.

4. The result will be a collection of trees, the DFS-trees, whose roots
are the nodes u with p[u]=NULL, and otherwise p[u] as parent of u.

Running time of the above procedure: O(|V|) for initialization 1., and
then the sum over all nodes u of |Adj[u]|, which is |E].
Altogether O(|V|+|E|).

Parenthesis-property of DFS-discovery and -finishing times
(Thm 23.6 of CLR):

For any two nodes u,v of a directed graph, if d[u] <d[v] (i.e. u
discovered before v), either f[v] < f[u] (i.e. visit-time-interval for v
subset of interval for u) and then v is descendant of u in DFS-tree,
or flu] <d[v] (i.e. visit of u finished before the search of v begins).

Proof: if not f[u] < d[v], then u still grey while v is being visited.
DFS-visit(v) will then terminate before DFS-visit(u).

Note: Each edge (u,v) of the graph will be visited once during DFS.
Classification of edges: according to colour of endpoint during DFS-
visit:

white edge (u,v): white endpoint v (also called tree edge, with u=pl[v])
grey edge (u,v): grey endpoint v (also called back edge)

black edge (u,v): black (already finished) endpoint v (sometimes
called forward/cross edge).

Thm 23.9 of CLR: An undirected graph G has no black edges (i.e.
only white or grey edges, i.e. tree or back edges)

Proof: (u,v) edge of G, w.l.o.g. d[u] <d[v]. Then f[u] < d[v] not
possible since v is a neighbour of u, so DFS-visit of u cannot have
finished when v is discovered.

Hence f[v] < flu] by Parenthesis theorem. If the edge is explored in
DFS as (u,v), it becomes a white (= tree) edge, if as (v,u), a grey (=
back) edge.

Lemma 23.10 of CLR: A directed graph G has no cycle if and only if
a DFS of G gives no grey (= back) edges.

Proof: A grey edge clearly gives a cycle. Conversely, consider a
cycle and let v be the node with smallest d[v] in that cycle (the node
that is discovered first).

Let u be its predecessor in the cycle, so that (u,v) is an edge.
Claim: this edge is grey, i.e. while exploring u the node v is still
grey. If not, then by the parenthesis theorem f[v] < d[u] (v already
finished before u was discovered).

We show that this is not possible (CLR call this the “white path
theorem”): Then there must be an edge (x,y) on the cycle (path)
from v to u: v..xy..u (where v=x ory=u or both are possible)
so that f[x] < f[v] (i.e. x finished before v) but f[v] <d[y] (v finished
before y discovered). But then f[x] < d[y], i.e. x finished before y
discovered, contradicting that y is a neighbor of x. So (u,v)is a
grey edge.

Application: Topological sorting

Given: a directed graph without cycles (acyclic graph).
Topological sorting means to sort the nodes of the graph in some
order uy,Uy,...,U, such that

whenever there is an edge from u; to u;, then i<;.

Picture: Dress-in-the morning topological sorting problem.

Topological-Sort(G):

1. Perform DFS(G), where

2. Whenever a node is finished (marked black), insert it at the
beginning of a list.

3. Output the list, which is then topologically sorted (in effect in
reverse order of their finishing times).

Running time O(|V|+|E|).

Why does topological sort work? Consider an edge (u,v) of G when
encountered during DFS. Then v cannot be grey by Lemma 23.10
since G is acyclic, so v is either black, i.e. already finished and f[v] <
flu], or white, which means that (u,v) is a tree edge and v hence a
DFS-descendant of u, and thus again f[v] < f[u] by the parenthesis
theorem.

Connected components

Any undirected graph is a disjoint union of connected graphs, which
are called its connected components.

Recognition of these components:

Array element c[v] for each node v, which is simply the root of its
DFS-tree, updated whenever a new node is encountered. Then c[u]=x
if and only if c[u] is in same component as x.

Compute components in time O(|V|+|E|).

Can be extended to biconnected components, which are sets of
nodes such that between any two nodes there are two paths. This
means that taking any one node out still keeps the graph connected
(application: reliable networks).

Breadth first search (BFS)

Idea: unlike DFS, where the search continues at the most recently
discovered node (so the nodes are stored on a stack), the search
continues at the oldest not yet fully explored node. Any newly
discovered node is therefore not put on a stack, but at the end of a
queue.

Works for directed as well as undirected graphs.

BFS(G, s) s = starting node
d[v] = depth is BFS-tree

Initialize: For each node u:
» colour u "white"

* d[u] = infinity

* p[u] = NULL

mark s "grey";

d[s]=0;

Q = (s);

(Q is the queue of nodes to be processed)

while (Q is not empty)

u = first node in Q; remove u from Q;

for each neighbour u of v, if v is white:

* mark v "grey"

d[v] = d[u] + 1;

p[vl]=u (parentofvisuin BFS tree)
append v at the end of Q.

when all neighbours of u have been visited, mark u "black" (finished).

Running time:

 each white node is exactly once put into Q.

* Queue operation takes time O(1)

All of them time O(|V|)

each node u moved once out of Q, work on Adj[u], altogether O(|E|)
time.

Running time thus O(|V|+|E|).

Theorem: After BFS,

d[v] is shortest length of a path from s to v.
Single-source shortest paths

Given: weight function from edges to reals, usually called the length
I(e) of an edge, nonnegative.

Weight (or length) of a path: sum of length of edges in the path.
Shortest path from u to v = the path of shortest length.

Single source shortest path: source s (some node) is fixed, find

shortest paths from s to all nodes v.

Happens to be just as quickly computable as single-pair shortest
path between any two nodes s and t.

Remark: Negative weights might create cycles with negative length,
running through them again and again makes the path arbitarily
"short".

(Picture of a negative-length cycle.)

Recognition of negative-length cycle is easy, finding shortest path
avoiding negative-length cycles makes the problem difficult.

Single-source shortest path computation

d(u, v) = shortest length of a path from utov
S start node

Lemmas (sub-paths of shortest paths are shortest paths):

1.1f vovy ... vk is a shortest path from v, to vk, then v; ... v; is also a
shortest path from v; to v;. (A shorter path from v; to v; would
also shorten the overall path.)

2.Let s...uv be a shortest path from s to v. Then

d(s,v) = d(s, u) + l(u, v)
(Recall that I(u, v) is the length of the edge from u to v.)
3. Forall (u, v)in E:

d(s,v) < d(s, u) + I(u, v)

Dijkstra's Algorithm:
Given is a graph with node set V and nonnegative lengths |(e) for its
edges e. Data used in the algorithm:

D[u] preliminary distance from s to u, more precisely: the
shortest length of all paths from s to u, which are, with the
exception of u, completely in S. (The set S grows over time,
initially empty.)

pred[v] predecessor on shortest path from s to v

S set of nodes such that for all v in S D[v] = d(s,v)

Initialisation:

forall vin V: { D[v] = infinity; pred[v] = NULL; }

D[s] =0 ;

S =empty set; Q=V,;

Throughout: Q = VAS (the nodes not in S) form a priority queue
sorted in ascending order of D[v] for the nodes v it contains.

Main algorithm:

while (Q is not empty)
{
remove u with smallest D[u] from Q;
S = S augmented by u;
for (all nodes v adjacentto u and notin S)
if (D[v] > D[u] + I(u, v))
{

D[v] = D[u] + l(u, v);
predlv] =u ;

}

The algorithm terminates when S==V.
The predecessor on the shortest path from s to uis given by
pred[u], and the shortest distance by D[u].

Running time:
« visit all nodes during initialisation
« visit all edges (u,v) once for updating D[v]
* per node:
- find the smallest D[u] for uin Q
- has running time O(]V|) if linear search,
overall running time O(|V[?)
- if the priority queue is implemented as heap: only logarithmic
search time O(log |V|), then overall running time O(|E| log|V|).

Correctness: see reasoning at the board (use own notes).

