

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Verified conversion between NFAs and regular

expressions

Manuel Eberl, Julian Brunner

October 22, 2012

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

1 Introduction

2 Algorithms

3 The abstract algorithm

4 Refinement

5 Evaluation

6 RE to NFA

7 Conclusion

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Problem

Given

r ∈ RE (Σ)

A = (Q,Σ,∆, I,F)

Wanted

nfa_to_re :: NFA (Q,Σ)⇒ RE (Σ)

re_to_nfa :: RE (Σ)⇒ NFA (Q,Σ)

Such that

L (nfa_to_re (A)) = L (A)

L (re_to_nfa (r)) = L (r)

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Problem

Regex as defined in Regular set.thy:

Zero with L(Zero) = {}

One with L(One) = {ε}

Atom a with L(Atom a) = {a}

Plus r1 r2 with L(Plus r1 r2) = L(r1) ∪ L(r2)

Times r1 r2 with L(Times r1 r2) = L(r1) · L(r2)

Star r with L(Star r) = L(r)∗

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Algorithm 1 – system of equations

Set up system of equations for accepted words in state i :

Xi = {c1} · Xi1 ∪ . . . ∪ {ck} · Xik (∪ {ε})
While ∃ unsolved equation for some Xi :

1 bring equation into form Xi = A · Xi ∪ B

2 apply Arden’s lemma: Xi = A∗ · B
3 propagate solution to other equations

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Algorithm 2 – recursive approach

Definition

Let R i ,j
Q′ ∈ RE (Σ)

such that L(R i ,j
Q′) = L(Q′,Σ,δ,I ,F)(i , j)

Then: recursive computation of R i ,j
Q

R i ,i
{} = δ(i , i) | ε

R i ,j
{} = δ(i , j) (for i 6= j)

R i ,k
Q′∪{j} = R i ,k

Q′ | RQ′(i , j) · RQ′(j , j)∗ · RQ′(j , k)

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Algorithm 3 – matrix method (cf. Dexter Kozen)

System can be seen as AX = b

where X = (X1, . . . ,Xn)T and A ∈ RE (Σ)n×n

Solution: X = A∗ · b
Compute A∗ by Divide & Conquer

Note: all previous algorithms can be seen as special case of

this Divide & Conquer algorithm

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Algorithm 4 – contractions

Definition (GNFA (Generalised NFA))

Properties of a GNFA:

regexes as labels, δ : Q 7→ Q 7→ RE (Σ)

I = {Start} and F = {End}

∀q. δ(q,Start) = {} ∧ δ(End , q) = {}

Idea:

1 convert NFA to GNFA (trivial)

2 remove some state q and compensate with new transitions

3 rinse, repeat

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Algorithm 4 – contractions

We have implemented contractions. Why?

simple, intuitive algorithm

straightforward correctness proof

formalisation effort significant, but not higher than the

other algorithms

implementation equivalent to all the other algorithms

(except matrix)

complexity O(n3) the same for all algorithms

But: worst-case output size 2Ω(n)(Gruber/Holzer , 2008)

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Abstract algorithm

Note: on the abstract level, GNFA is labelled with elements

from Σ∗ not RE (Σ).

Why? all proofs far easier; ∪ is commutative and associative,

Plus isn’t. Regexes have too much “structure” for the abstract

level.

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Abstract algorithm

A′ ← NFA to GNFA A
while QA′ 6= {Start,End} do

obtain q ∈ QA′\ {Start,End}
for all u ∈ δ(u, q) 6= {} do

for all v ∈ δ(q, v) 6= {} do
δ(u, v) := δ(u, v) ∪ δ(u, q) · δ(q, q)∗ · δ(q, v)

end for

end for

Q := Q \ {q}
end while

return δ(Start,End)

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Abstract correctness proof

Abstract part of the theory:

1 definition of GNFA

2 inductive for reachability in GNFAs

3 lemma: adding the subsumed transitions of state q does

not change behaviour of automaton

4 lemma: removing q thereafter does not change behaviour

(reachability) of remaining automaton

5 definition of conversion abstract NFA → abstract GNFA

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Refinement

1 implementation of algorithm as shown above

while loop invariant: ∀u, v ∈ QA′ . LA′(u, v) = LA(u, v)

after the loop, Q = {Start,End} and therefore

LA′ = δ(Start,End)

2 Refinement: caching of predecessors/successors

3 Refinement: δ from Q 7→ Q 7→ Σ∗ to

Q 7→ (Q 7→ RE (Σ) option) option

Note: now the return value is a regex

4 Refinement: executable data structures

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Evaluation

Exported ML code + sugar:

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Evaluation

Average size of regex against # of states, log plot
Le

ng
th

 o
f

re
g

ex

1

10

100

1,000

10,000

S
Number of states

0 5 10 15 20

Transition densities / exp. fits:
 0.5 / 3.0⋅1.44ⁿ
 1.0 / 4.8⋅2.33ⁿ

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Evaluation

Average computation time against # of states, log/log plot
E

xe
cu

ti
o

n
ti

m
e

[m
s]

10

100

1,000

Number of states
50 100 150 200 250

Fit: 2.27⋅n^3.10

Fit: 7.02⋅n^3.05

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Classic Thompson Algorithm

Follows the syntactic structure of the regular expression

Constructs automata for primitives Zero, One and Atom a

Given a non-primitive expression

Constructs automata for the subexpressions using recursion

Merges these automata according to the original expression

Usually described in terms of ε-NFAs

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Algorithms Based on Derivatives

Derivative of r with respect to u:

L (Du (r)) = {v |uv ∈ L (r)}

Du (r) is a regular expression

Algorithms

Brzozowski

Glushkov / McNaughton & Yamada

Berry & Sethi

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Thompson Merging Algorithm

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Thompson Merging Realization

Define algorithm in terms of sets and abstract NFAs

Primitives: TM_zero_NFA TM_one_NFA TM_plus_NFA

Composite: TM_plus_NFA TM_times_NFA TM_star_NFA

Translation: TM_translate_NFA

States are natural numbers

Automata are built using consecutive state indices

Prove correctness of abstract definitions

Example: L (TM_star_NFA (r)) = L (r)∗

Refine to executable data structures

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Thompson Accumulating Algorithm

Union of large sets performs poorly

Idea: Collect small automata in accumulator automaton

TM: Merge given automata, return result

TA: Build merged automaton on top of accumulator,

return new accumulator

Further optimizations: Accumulator state

gives the first unused state index

indicates whether the accumulator automaton accepts ε

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Thompson Accumulating Realization

Define algorithm in terms of sets and abstract NFAs

Prove that the TA algorithm builds the same automaton

as the TM algorithm

Refine to executable data structures

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Algorithms and Correctness Proofs

TM_translate TA_translate

TM_translate_impl TA_translate_impl

α α

=

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Translation Performance

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

 1 10 100 1000 10000

tr
a
n
sl

a
ti

o
n
 d

u
ra

ti
o
n
 [

s]

regular expression length

TM: 2.76e-08 · x2.55

TS: 2.87e-08 · x2.42

TA: 1.11e-08 · x2.51

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Automaton Size

100

101

102

103

104

105

106

107

 1 10 100 1000 10000

st
a
te

 c
o
u
n
t

/
tr

a
n
si

ti
o
n
 c

o
u
n
t

regular expression length

TMS: 1.27 · x0.979

TSS: 1.13 · x0.978

TMT: 0.107 · x1.93

TST: 0.115 · x1.88

Verified

conversion

between NFAs

and regular

expressions

Manuel Eberl,

Julian Brunner

Introduction

Algorithms

The abstract

algorithm

Refinement

Evaluation

RE to NFA

Conclusion

Conclusion

Possible improvements / further work:

General

clean up proofs, make an AFP entry

what about extended regexes (∩, ¬)?

NFA to RE

use on-the-fly simplification of regexes to avoid

unnecessarily bloated regexes for complex automata

RE to NFA

implement a derivative-based algorithm if smaller

automata and faster translation times are desired

	Introduction
	Algorithms
	The abstract algorithm
	Refinement
	Evaluation
	RE to NFA
	Conclusion

