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About this Tutorial

• These are the slides of an tutorial on the Refinement Framework and
Autoref, that I gave in May 2015

• You can download the accompanying theories at
http://www21.in.tum.de/~lammich/refine_tutorial.html

• To get started, run isabelle.sh to start the IDE. On first invocation, it will
build the image, which will take some time.
• It requires Isabelle 2016 to be on your path
http://isabelle.in.tum.de/index.html!

• with the AFP-Component installed
https://www.isa-afp.org/using.shtml!
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Motivation

• Algorithmic ideas presented best on abstract level
• Can also be proved on abstract level
• Implementation is orthogonal issue
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Direct Proofs

• Our experience shows
• Direct proofs tend to get unmanageable
• E.g. Dijkstra’s algorithm
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Separation of algorithmic idea and implementation

• Increased modularity
• Proofs are independent
• Changing implementation is simple
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Reusable data structures

• Implementations often make use of standard data structures
• Hash tables, red-black-trees, heaps, ...

• Abstractly, these correspond to standard HOL types
• Set, map, ...

• Important to have library of reusable implementations
• Here: Isabelle Collection Framework
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Simple example: Set-Sum

• Specification: Σs
• Abstract algorithm

r=0
for x ∈ s do r = r + x
return r

• Concrete (lists)

List.fold op + l 0

• Concrete (RBT)

RBT.fold (λk _ r. r+k) t 0
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Proving Set-sum correct

• Abstract idea: Invariant
• r is sum of elements already iterated over

• For concrete algorithms, the proof depends on available lemmas
• Has to be repeated for each set implementation

• Tedious, if proof gets complicated!
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Demo

Setsum.thy
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Nondeterminism

• Abstract specification may be nondeterministic
• Find an element with minimal priority
• Compute a path from node u to v

• Implementation is deterministic
• But depends on details of used data structures
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Monads

• If you do not know monads, skip to slide 18
• Structure α M with functions

• return : α→ α M, bind : α M → (α→ β M)→ β M
• bind m f also written m�= f

• That satisfy the monad laws

return x �= f = f (id1)
m�= return = m (id2)

(m�= f1)�= f2 = m�= (λx .f1 x �= f2) (assoc)

• But now some more intuitive thing
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Nondeterminism Monad

• α set
• return x = {x}, m�= f =

⋃
{fx | x ∈ m}

• return x yields the only value x
• m�= f nondeterministically chooses value of m, and applies f to it

• Sequential composition
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Adding errors

• Will turn out later: Nice to have errors
• α nres = res α set | fail

• return x = res {x}, res X �= f =
⊔
{fx | x ∈ X}, fail�= f = fail

• Intuition: Error propagates over bind.
• Note: Complete lattice structure of α set lifted to α nres

• res X v res Y ⇐⇒ X ⊆ Y and _ v fail
• Intuition: Possibility to choose error =⇒ error

• Assertions: assert Φ = if Φ then return () else fail
• Fail if Φ does not hold

• Specification: spec x . Φ x = res {x | Φ x}
• All values that satisfy Φ
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Do-notation

• More readable notation for monadic programs
• let x = t ; f syntax for letx = t in f
• x ← m; f syntax for m�= (λx .f )

• This shortcuts are enclosed in do{. . .} - block
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Theory-free intuition

• x ← m — Execute m, assign result to x
• return x — Return result x
• assertΦ — Assert that Φ holds. Immediate termination with failure

otherwise.
• x ← spec x . Φ x — Assign some x that satisfies Φ (choose

nondeterministically).
• Note: If there are no such x , your program will have no possible results at all.
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Examples

do {
ASSERT (l 6= []);
RETURN (hd l)
}

do {
ASSERT (s 6= {});
SPEC (λx. x∈s)
}
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Refinement Ordering

• Recall: Subset-ordering lifted to α nres
• We will use ≤-symbol from now on

RES X ≤ RES Y←→ X ⊆ Y \\
_ ≤ FAIL ←→ True
FAIL ≤ RES _←→ False

• Intuition: m ≤ m′

• All results of m also possible in m′ (or m′ is error)
• m refines m′

• Interesting cases
• m ≤ spec Φ Possible results of m satisfy Φ
• m ≤ fail Error refined by everything
• res ∅ ≤ m Empty result refines everything

• We define succeed = res ∅
• Sometimes also called magic, as it magically satisfies any specification
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Examples

sort_spec l = SPEC (λl′. multiset_of l = multiset_of l′ ∧ sorted l′)

sort l ≤ sort_spec l

distinct l =⇒ sort l ≤ sort_spec l

pre a =⇒ algo a ≤ SPEC (λr. post a r)
(∗ Compare: Hoare−triple {pre} algo {post} ∗)
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Refinement

• Refinement ordering is transitive (it’s a complete lattice)
• In particular: impl ≤ abs and abs ≤ spec Φ implies impl ≤ spec Φ
• Allows to split abstract correctness proof and implementation

• Bind (and other combinators) are monotone
• m′ ≤ m, f ′ ≤ f =⇒ m′�= f ′ ≤ m�= f
• Only refining parts of program implies refinement
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Examples

min_spec l = do {ASSERT (l 6=[]); SPEC x. x∈set l ∧ prio x = Min (prio‘set l)}

min_abs l = do { ASSERT (l6=[]); l′ ← sort_spec l; RETURN (hd l′) }

min_impl l = do { ASSERT (l 6=[]); l′ ← sort l; RETURN (hd l′) }
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Demo

Sort_Min.thy
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Fixed points

• Let f : α→ α be a function
• x with f x = x is called fixed point

• Let ≤ be a complete lattice, and f be monotonic (i.e. x ≤ y =⇒ f x ≤ f y )
• A unique least fixed point lfp f exists
• Dually, a unique greatest fixed point gfp f exists
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Recursion

• Regard recursive function definition

let rec f x = F f x

• F is function body
• E.g. F f x = if x > 0 then 2 ∗ f (x − 1) else 1

• For f , we want the following equation
• f x = F f x
• I.e., f is a fixed point of F
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Pointwise ordering, flat lattice

• Given an ordering ≤⊆ α× α, we extend it to functions β → α:
• g ≤ f ⇐⇒ ∀x . g x ≤ f x

• Given a set S, we define a complete lattice ≤ on S ∪̇ {⊥,>}

⊥ ≤ _
s ≤ s for s ∈ S
_ ≤ >
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Recursion as least fixed point

let rec f x = F f x

• Now, we define f = lfp F
• Wrt. flat lattice and pointwise ordering

• Intuitively: If f x terminates: Only fixed-point is what we want
• Otherwise: f x = ⊥

• Dually, we could use gfp and get >
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Monotonicity, partial and total correctness

• Functions constructed using monad combinators, if-then-else, case,
nested fixed-point combinators are monotonic by construction

• Can be automatically proved (Krauss’ partial-function package)
• Moreover, for those functions, flat ordering matches refinement ordering

• lfpflatF = lfpref F , where ⊥ = succeed and > = fail
• Thus, when defining a function with lfp

• On nontermination, we get succeed
• which satisfies any specification

=⇒ partial correctness
• Dually, for gfp, we get fail

=⇒ total correctness
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REC and RECT combinators

• The refinement framework provides
• rec, recT :: ((α→ β nres)→ α→ β nres)→ α→ β nres
• rec F x = do{assert(mono F ); lfp F x}
• recT F x = do{assert(mono F ); gfp F x}

• With proof rules

pre x ;∀f x . (∀x . pre x =⇒ f x ≤ M x) ∧ pre x =⇒ F f x ≤ M x
rec F x ≤ M x

pre x ;∀f x . (∀x ′. pre x ′ ∧ x ′Vx =⇒ f x ′ ≤ M x ′) ∧ pre x =⇒ F f x ≤ M x
recT F x ≤ M x

for well-founded relation V

• And appropriate refinement rules (monotonicity)
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WHILE-Loops

• Based on this, we also have while-loops
• while c f s - iterate f on state s as long as c holds
• And also whileT

• With the expected rules
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Demo

Explore_Tree.thy
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Basic Idea

• Refinement not only implements specification by more concrete algorithm
• We also want to implement abstract data structures by more concrete

ones
• For example, sets by lists or red-black trees, or hash-tables
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Refinement Relation

• Relate concrete type ′c to abstract type ′a
• Relation R :: (′c ×′ a) set
• Usually single-valued, i.e. (c, a) ∈ R ∧ (c, a′) ∈ R =⇒ a = a′

• (Right-Unique)
• But not necessary total: There may be c with ∀a. (c, a) /∈ R

• Intuition: Concrete type has invariant, e.g., distinct list
• Nor surjective, i.e., there are a with ∀c. (c, a) /∈ R

• Intuition: Concrete type cannot represent all abstract elements, e.g., only finite
sets
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Invariant and abstraction function

• Consider an invariant I ::′ c → bool and an abstraction function
α ::′ c →′ a

• We define br α I = {(c, α c) | c. I c}
• Intuitively: Map concrete elements that satisfy the invariant to abstract

elements.

• Exactly the single-valued relations can be represented like this
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Concretization function

• Idea: Concrete program refines abstract one:
• All outcomes in domain of refinement relation
• All corresponding abstract values in abstract program

• For R : (′c ×′ a) set , we define a concretization function
⇓R :′ a nres→′ c nres

⇓R (res X ) = res (R− `` X )

⇓R fail = fail

• Intuitively, this transforms the abstract program into the biggest refining
concrete program

• Refinement now expressed by

concrete ≤ ⇓R abstract
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Remark: Galois connection

• For single-valued refinement relations, ⇓R is the adjoint of a Galois
connection
• The other adjoint is ⇑R defined by

⇑R (res X ) =

{
res (R `` X ) if X ⊆ Domain R
fail otherwise

⇑R fail = fail

• Galois connection means, that we have:

m′ ≤ ⇓R m ⇐⇒ ⇑R m′ ≤ m

• Intuitively, abstraction and concretization can be swapped
• This gives us nice mathematical properties
• But only for single-valued relations
• Recently, we decided to drop single-valued restrictions where possible
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Refinement conditions

• We can derive structure-preserving refinement rules
• E.g. for return. bind, recursion (show in IDE)

• And build a verification condition generator on them
• Additionally, there are rules that try to cope with non-exact matches
• And a tool that helps finding appropriate refinement relations
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Demo

Basic_Refinements.thy
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Deterministic Programs

• Executable specifications must be deterministic
• And must not contain succeed
• And all used functions should be executable
• Transfer to deterministic monad

• α dres = succeedd | resd α | faild
• return x = resd x , resd x �= f = f x , faild�= f = faild
• nres_of : α dres→ α nres

• Transfer preserves structure
• But has no rules for res (nor spec)
• Assertions are dropped

• This can be automated
• Yields det with nres_of det ≤ impl
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Getting rid of dres-type

• Additionally, prove that program cannot yield succeed
• Possible for total correct programs

• Then, extract result by selector

the_res : α dres→ α

• And get return (the_res det) ≤ impl
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Transfer to plain function

• If program is tail-recursive
• I.e., only recursion combinator is while

• We can transfer to a plain HOL-definition
• Without any deterministic monad involved
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Recursion Combinators

• Code generator cannot handle recursion combinators (REC, RECT)
• They need to be converted to equations

• For every instance, as a monotonicity proof is required

• Done automatically by command prepare_code_thms
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Demo

Basic_Refinements.thy

continued
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Hands-On session

• Now, it’s your turn! Here are some ideas
• Extend graph-exploration/ worklist algorithm to remember visited nodes

• And thus be total correct for arbitrary (finitely-branching) graphs
• Hint: find_theorems finite_psupset

• Implement the visited-nodes set by lists or red-black trees
• You will need thm rs.correct thm ls.correct

• Extend the algorithm to return a path to the node
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Motivation

• Refinement often just replaces abstract by concrete data types
• E.g. α set to α dlist

• Tedious to write the algorithm down two times
• Could be automated
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Generic Algorithms

• And, while we are automating this
• perhaps throw in some meta-programming
• automatically instantiate generic algorithms?
• E.g., setsum,

• parameterized by iterator over set
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Recall:

• Refinement relation: Relates concrete and abstract type
• For example, 〈R〉list_set_rel

• relates distinct lists to sets, members are related by R
• Basic relators

• Function relator (f , g) ∈ A→ B ⇐⇒ ∀(x , y) ∈ A. (f x , g y) ∈ B
• Identity (x , y) ∈ Id ⇐⇒ x = y

• Structure-preserving relators
• ((a, b), (a′, b′)) ∈ A×r B ⇐⇒ (a, a′) ∈ A ∧ (b, b′) ∈ B
• Also have list_rel, option_rel, . . .
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Relators for data refinement

• Consider operation „empty set”: {} :: ′a set
• We have ([],{}) ∈ 〈A〉list_set_rel
• For any relation A between the elements

• Consider operation „singleton set”: λx. {x} :: ′a⇒ ′a set
• We have (λx. [x], λy. {y}) ∈ A→ 〈A〉list_set_rel
• In words: If x implements y then [x ] implements y
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Synthesis with parametricity

• We have

∀ x y . (x , y) ∈ A =⇒ (f x ,g y) ∈ B
(λx . f x , λy . g y) ∈ A→ B

(abs)

(x , y) ∈ A; (f ,g) ∈ A→ B
(f x ,g y) ∈ B

(app)

• With these, and parametricity rules for the constants, we can synthesize
an implementation from the abstract term
• Compare with lifting and transfer

• BUT:
• We must choose consistent implementations
• All abstract operations expressed by single constant
• Consider a couple of problems, see next slides

• This is exactly what Autoref does
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Equality

• Equality is structural equality in HOL
• But structural equality on abstract type need not match structural equality

on implementation
• [1, 2] and [2, 1] both implement the same set
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Set is non-free

• Beware of hidden equality
• Try to implement ∈ for lists
• You’ll need equality on the elements
• (eq,op=) ∈ A→ A→ bool_rel
• Which may not be structural equality!

• We have glist_member :: (′a⇒ ′a⇒ bool)⇒ ′a list⇒ bool
• Thus

(eq,op=) ∈ A→ A→ bool_rel
=⇒ (glist_member eq,op ∈) ∈ A→ 〈A〉list_set_rel→ bool_rel
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Other type classes

• The same applies for other type classes
• The concrete datatypes need not instantiate them consistently with their

abstract counterparts
• Operations on them have to be made explicit
• For example, linear ordering on red-black trees
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Generic algorithms

• Consider again the singleton set operation
• It can be (abstractly) expressed by empty set and insertion

{x} = insert x {}

• Thus, if we have implementations for insert and empty-set
• we also get one for singleton set

[[(ins_impl,insert) ∈ A→ 〈A〉Rs→ 〈A〉Rs; (empty_impl,{}) ∈ 〈A〉Rs ]]
=⇒ ( λx. ins_impl x empty_impl, λx. {x} ) ∈ A→ 〈A〉Rs

• Note: This works for any relator Rs!
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Specialization (Type)

• Apart from generic algorithm, we may still define specialized versions for
certain data types

• E.g., we still have (λx. [x], λx. {x}) ∈ A→ 〈A〉list_set_rel
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Partially parametric functions

• Consider the function hd : α list → α

• For refining the elements of a list, keeping the list structure, we would like
to have (hd,hd) ∈ 〈A〉list_rel→ A
• However, we cannot prove that!
• As hd [] = undefined , this would imply (undefined , undefined) ∈ A
• Which we cannot prove!

• Solution: Restrict parametricity theorem to non-empty lists

[[ l 6= []; (li,l) ∈ 〈A〉list_rel ]] =⇒ (hd li, hd l) ∈ A
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Specialization (Precondition)

• Consider insertion of element into set, implemented on distinct lists
• We need to check whether element is already in

• Linear time required

• But, sometimes, we know that the element is not in the set e.g.
if x/∈ s then let s=insert x s; . . . else . . .

• In this case, insert can be implemented by Cons, in constant time

[[ x/∈s; (xi,x) ∈ A; (l,s) ∈ 〈A〉list_set_rel ]]
=⇒ (xi#l, insert x s) ∈ 〈A〉list_set_rel
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Wrap-up

• Idea of automatic refinement via parametricity is very simple
• But lots of things to think of if implemented for the real stuff

• Abstract operations are not single constants (Map.empty, x 6= {}, ...)
• Consistent selection of implementations
• Hidden operations and type-classes

• we get generic algorithms as a bonus
• Partial parametricity

• we get precondition-based specialization as a bonus
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Relation to Refinement Framework

• Combinators of nondeterminism monad are parametric
• With relator (c,a) ∈ 〈R〉nres_rel←→ c ≤ ⇓ R a
• Thus, automatic refinement just works for them

• preserving the structure of the program

• Show: param_RETURN, param_bind, param_RECT
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Identify

• Try to identify the abstract datatypes and operations
• Rewrite to have each operation represented by a single constant

• Which uniquely identifies the abstract concept
• Uses a heuristics

• Typing rules + rewriting

• Example, show some autoref_itype rules
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Fix Relators

• Infer consistent relators
• Again, typing.

• With conditional rules for generic algorithms.
• And many heuristics to get a „good” implementation

• User annotations
• Priority of implementations (e.g., prefer RBT over list)
• Homogeneity: Implement types involved in operation the same way

• A ∪ B: Try to use the same impl for A, B, and the result

• Note: Does not consider side conditions!
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Translate

• Do the translation with the fixed relators
• Try to discharge side-conditions

• Try specialized rules before more general ones

• Infer operations required for generic algorithms
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Demo

Autoref_Basic_Demo.thy
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