
RS3 Code Generation Tutorial with Isabelle/HOL
The Refinement Framework

Peter Lammich

May 2015

1 / 71

About this Tutorial

• These are the slides of an tutorial on the Refinement Framework and
Autoref, that I gave in May 2015

• You can download the accompanying theories at
http://www21.in.tum.de/~lammich/refine_tutorial.html

• To get started, run isabelle.sh to start the IDE. On first invocation, it will
build the image, which will take some time.
• It requires Isabelle 2016 to be on your path
http://isabelle.in.tum.de/index.html!

• with the AFP-Component installed
https://www.isa-afp.org/using.shtml!

2 / 71

http://www21.in.tum.de/~lammich/refine_tutorial.html
http://isabelle.in.tum.de/index.html
https://www.isa-afp.org/using.shtml

Table of Contents

1 Motivation

2 Theory of Program Refinement

3 Automatic Refinement

3 / 71

Motivation

• Algorithmic ideas presented best on abstract level
• Can also be proved on abstract level
• Implementation is orthogonal issue

4 / 71

Direct Proofs

• Our experience shows
• Direct proofs tend to get unmanageable
• E.g. Dijkstra’s algorithm

5 / 71

Separation of algorithmic idea and implementation

• Increased modularity
• Proofs are independent
• Changing implementation is simple

6 / 71

Reusable data structures

• Implementations often make use of standard data structures
• Hash tables, red-black-trees, heaps, ...

• Abstractly, these correspond to standard HOL types
• Set, map, ...

• Important to have library of reusable implementations
• Here: Isabelle Collection Framework

7 / 71

Simple example: Set-Sum

• Specification: Σs
• Abstract algorithm

r=0
for x ∈ s do r = r + x
return r

• Concrete (lists)

List.fold op + l 0

• Concrete (RBT)

RBT.fold (λk _ r. r+k) t 0

8 / 71

Proving Set-sum correct

• Abstract idea: Invariant
• r is sum of elements already iterated over

• For concrete algorithms, the proof depends on available lemmas
• Has to be repeated for each set implementation

• Tedious, if proof gets complicated!

9 / 71

Demo

Setsum.thy

10 / 71

Table of Contents

1 Motivation

2 Theory of Program Refinement

3 Automatic Refinement

11 / 71

Table of Contents

1 Motivation

2 Theory of Program Refinement
The nondeterminism monad
Refinement Ordering
Recursion, total and partial correctness
Data Refinement
Translation to executable specification

3 Automatic Refinement

12 / 71

Nondeterminism

• Abstract specification may be nondeterministic
• Find an element with minimal priority
• Compute a path from node u to v

• Implementation is deterministic
• But depends on details of used data structures

13 / 71

Monads

• If you do not know monads, skip to slide 18
• Structure α M with functions

• return : α→ α M, bind : α M → (α→ β M)→ β M
• bind m f also written m�= f

• That satisfy the monad laws

return x �= f = f (id1)
m�= return = m (id2)

(m�= f1)�= f2 = m�= (λx .f1 x �= f2) (assoc)

• But now some more intuitive thing

14 / 71

Nondeterminism Monad

• α set
• return x = {x}, m�= f =

⋃
{fx | x ∈ m}

• return x yields the only value x
• m�= f nondeterministically chooses value of m, and applies f to it

• Sequential composition

15 / 71

Adding errors

• Will turn out later: Nice to have errors
• α nres = res α set | fail

• return x = res {x}, res X �= f =
⊔
{fx | x ∈ X}, fail�= f = fail

• Intuition: Error propagates over bind.
• Note: Complete lattice structure of α set lifted to α nres

• res X v res Y ⇐⇒ X ⊆ Y and _ v fail
• Intuition: Possibility to choose error =⇒ error

• Assertions: assert Φ = if Φ then return () else fail
• Fail if Φ does not hold

• Specification: spec x . Φ x = res {x | Φ x}
• All values that satisfy Φ

16 / 71

Do-notation

• More readable notation for monadic programs
• let x = t ; f syntax for letx = t in f
• x ← m; f syntax for m�= (λx .f)

• This shortcuts are enclosed in do{. . .} - block

17 / 71

Theory-free intuition

• x ← m — Execute m, assign result to x
• return x — Return result x
• assertΦ — Assert that Φ holds. Immediate termination with failure

otherwise.
• x ← spec x . Φ x — Assign some x that satisfies Φ (choose

nondeterministically).
• Note: If there are no such x , your program will have no possible results at all.

18 / 71

Examples

do {
ASSERT (l 6= []);
RETURN (hd l)
}

do {
ASSERT (s 6= {});
SPEC (λx. x∈s)
}

19 / 71

Table of Contents

1 Motivation

2 Theory of Program Refinement
The nondeterminism monad
Refinement Ordering
Recursion, total and partial correctness
Data Refinement
Translation to executable specification

3 Automatic Refinement

20 / 71

Refinement Ordering

• Recall: Subset-ordering lifted to α nres
• We will use ≤-symbol from now on

RES X ≤ RES Y←→ X ⊆ Y \\
_ ≤ FAIL ←→ True
FAIL ≤ RES _←→ False

• Intuition: m ≤ m′

• All results of m also possible in m′ (or m′ is error)
• m refines m′

• Interesting cases
• m ≤ spec Φ Possible results of m satisfy Φ
• m ≤ fail Error refined by everything
• res ∅ ≤ m Empty result refines everything

• We define succeed = res ∅
• Sometimes also called magic, as it magically satisfies any specification

21 / 71

Examples

sort_spec l = SPEC (λl′. multiset_of l = multiset_of l′ ∧ sorted l′)

sort l ≤ sort_spec l

distinct l =⇒ sort l ≤ sort_spec l

pre a =⇒ algo a ≤ SPEC (λr. post a r)
(∗ Compare: Hoare−triple {pre} algo {post} ∗)

22 / 71

Refinement

• Refinement ordering is transitive (it’s a complete lattice)
• In particular: impl ≤ abs and abs ≤ spec Φ implies impl ≤ spec Φ
• Allows to split abstract correctness proof and implementation

• Bind (and other combinators) are monotone
• m′ ≤ m, f ′ ≤ f =⇒ m′�= f ′ ≤ m�= f
• Only refining parts of program implies refinement

23 / 71

Examples

min_spec l = do {ASSERT (l 6=[]); SPEC x. x∈set l ∧ prio x = Min (prio‘set l)}

min_abs l = do { ASSERT (l6=[]); l′ ← sort_spec l; RETURN (hd l′) }

min_impl l = do { ASSERT (l 6=[]); l′ ← sort l; RETURN (hd l′) }

24 / 71

Demo

Sort_Min.thy

25 / 71

Table of Contents

1 Motivation

2 Theory of Program Refinement
The nondeterminism monad
Refinement Ordering
Recursion, total and partial correctness
Data Refinement
Translation to executable specification

3 Automatic Refinement

26 / 71

Fixed points

• Let f : α→ α be a function
• x with f x = x is called fixed point

• Let ≤ be a complete lattice, and f be monotonic (i.e. x ≤ y =⇒ f x ≤ f y)
• A unique least fixed point lfp f exists
• Dually, a unique greatest fixed point gfp f exists

27 / 71

Recursion

• Regard recursive function definition

let rec f x = F f x

• F is function body
• E.g. F f x = if x > 0 then 2 ∗ f (x − 1) else 1

• For f , we want the following equation
• f x = F f x
• I.e., f is a fixed point of F

28 / 71

Pointwise ordering, flat lattice

• Given an ordering ≤⊆ α× α, we extend it to functions β → α:
• g ≤ f ⇐⇒ ∀x . g x ≤ f x

• Given a set S, we define a complete lattice ≤ on S ∪̇ {⊥,>}

⊥ ≤ _
s ≤ s for s ∈ S
_ ≤ >

29 / 71

Recursion as least fixed point

let rec f x = F f x

• Now, we define f = lfp F
• Wrt. flat lattice and pointwise ordering

• Intuitively: If f x terminates: Only fixed-point is what we want
• Otherwise: f x = ⊥

• Dually, we could use gfp and get >

30 / 71

Monotonicity, partial and total correctness

• Functions constructed using monad combinators, if-then-else, case,
nested fixed-point combinators are monotonic by construction

• Can be automatically proved (Krauss’ partial-function package)
• Moreover, for those functions, flat ordering matches refinement ordering

• lfpflatF = lfpref F , where ⊥ = succeed and > = fail
• Thus, when defining a function with lfp

• On nontermination, we get succeed
• which satisfies any specification

=⇒ partial correctness
• Dually, for gfp, we get fail

=⇒ total correctness

31 / 71

REC and RECT combinators

• The refinement framework provides
• rec, recT :: ((α→ β nres)→ α→ β nres)→ α→ β nres
• rec F x = do{assert(mono F); lfp F x}
• recT F x = do{assert(mono F); gfp F x}

• With proof rules

pre x ;∀f x . (∀x . pre x =⇒ f x ≤ M x) ∧ pre x =⇒ F f x ≤ M x
rec F x ≤ M x

pre x ;∀f x . (∀x ′. pre x ′ ∧ x ′Vx =⇒ f x ′ ≤ M x ′) ∧ pre x =⇒ F f x ≤ M x
recT F x ≤ M x

for well-founded relation V

• And appropriate refinement rules (monotonicity)

32 / 71

WHILE-Loops

• Based on this, we also have while-loops
• while c f s - iterate f on state s as long as c holds
• And also whileT

• With the expected rules

33 / 71

Demo

Explore_Tree.thy

34 / 71

Table of Contents

1 Motivation

2 Theory of Program Refinement
The nondeterminism monad
Refinement Ordering
Recursion, total and partial correctness
Data Refinement
Translation to executable specification

3 Automatic Refinement

35 / 71

Basic Idea

• Refinement not only implements specification by more concrete algorithm
• We also want to implement abstract data structures by more concrete

ones
• For example, sets by lists or red-black trees, or hash-tables

36 / 71

Refinement Relation

• Relate concrete type ′c to abstract type ′a
• Relation R :: (′c ×′ a) set
• Usually single-valued, i.e. (c, a) ∈ R ∧ (c, a′) ∈ R =⇒ a = a′

• (Right-Unique)
• But not necessary total: There may be c with ∀a. (c, a) /∈ R

• Intuition: Concrete type has invariant, e.g., distinct list
• Nor surjective, i.e., there are a with ∀c. (c, a) /∈ R

• Intuition: Concrete type cannot represent all abstract elements, e.g., only finite
sets

37 / 71

Invariant and abstraction function

• Consider an invariant I ::′ c → bool and an abstraction function
α ::′ c →′ a

• We define br α I = {(c, α c) | c. I c}
• Intuitively: Map concrete elements that satisfy the invariant to abstract

elements.

• Exactly the single-valued relations can be represented like this

38 / 71

Concretization function

• Idea: Concrete program refines abstract one:
• All outcomes in domain of refinement relation
• All corresponding abstract values in abstract program

• For R : (′c ×′ a) set , we define a concretization function
⇓R :′ a nres→′ c nres

⇓R (res X) = res (R− `` X)

⇓R fail = fail

• Intuitively, this transforms the abstract program into the biggest refining
concrete program

• Refinement now expressed by

concrete ≤ ⇓R abstract

39 / 71

Remark: Galois connection

• For single-valued refinement relations, ⇓R is the adjoint of a Galois
connection
• The other adjoint is ⇑R defined by

⇑R (res X) =

{
res (R `` X) if X ⊆ Domain R
fail otherwise

⇑R fail = fail

• Galois connection means, that we have:

m′ ≤ ⇓R m ⇐⇒ ⇑R m′ ≤ m

• Intuitively, abstraction and concretization can be swapped
• This gives us nice mathematical properties
• But only for single-valued relations
• Recently, we decided to drop single-valued restrictions where possible

40 / 71

Refinement conditions

• We can derive structure-preserving refinement rules
• E.g. for return. bind, recursion (show in IDE)

• And build a verification condition generator on them
• Additionally, there are rules that try to cope with non-exact matches
• And a tool that helps finding appropriate refinement relations

41 / 71

Demo

Basic_Refinements.thy

42 / 71

Table of Contents

1 Motivation

2 Theory of Program Refinement
The nondeterminism monad
Refinement Ordering
Recursion, total and partial correctness
Data Refinement
Translation to executable specification

3 Automatic Refinement

43 / 71

Deterministic Programs

• Executable specifications must be deterministic
• And must not contain succeed
• And all used functions should be executable
• Transfer to deterministic monad

• α dres = succeedd | resd α | faild
• return x = resd x , resd x �= f = f x , faild�= f = faild
• nres_of : α dres→ α nres

• Transfer preserves structure
• But has no rules for res (nor spec)
• Assertions are dropped

• This can be automated
• Yields det with nres_of det ≤ impl

44 / 71

Getting rid of dres-type

• Additionally, prove that program cannot yield succeed
• Possible for total correct programs

• Then, extract result by selector

the_res : α dres→ α

• And get return (the_res det) ≤ impl

45 / 71

Transfer to plain function

• If program is tail-recursive
• I.e., only recursion combinator is while

• We can transfer to a plain HOL-definition
• Without any deterministic monad involved

46 / 71

Recursion Combinators

• Code generator cannot handle recursion combinators (REC, RECT)
• They need to be converted to equations

• For every instance, as a monotonicity proof is required

• Done automatically by command prepare_code_thms

47 / 71

Demo

Basic_Refinements.thy

continued

48 / 71

Hands-On session

• Now, it’s your turn! Here are some ideas
• Extend graph-exploration/ worklist algorithm to remember visited nodes

• And thus be total correct for arbitrary (finitely-branching) graphs
• Hint: find_theorems finite_psupset

• Implement the visited-nodes set by lists or red-black trees
• You will need thm rs.correct thm ls.correct

• Extend the algorithm to return a path to the node

49 / 71

Table of Contents

1 Motivation

2 Theory of Program Refinement

3 Automatic Refinement

50 / 71

Table of Contents

1 Motivation

2 Theory of Program Refinement

3 Automatic Refinement
Motivation
Parametricity and Refinement Relations
Phases of Autoref

51 / 71

Motivation

• Refinement often just replaces abstract by concrete data types
• E.g. α set to α dlist

• Tedious to write the algorithm down two times
• Could be automated

52 / 71

Generic Algorithms

• And, while we are automating this
• perhaps throw in some meta-programming
• automatically instantiate generic algorithms?
• E.g., setsum,

• parameterized by iterator over set

53 / 71

Table of Contents

1 Motivation

2 Theory of Program Refinement

3 Automatic Refinement
Motivation
Parametricity and Refinement Relations
Phases of Autoref

54 / 71

Recall:

• Refinement relation: Relates concrete and abstract type
• For example, 〈R〉list_set_rel

• relates distinct lists to sets, members are related by R
• Basic relators

• Function relator (f , g) ∈ A→ B ⇐⇒ ∀(x , y) ∈ A. (f x , g y) ∈ B
• Identity (x , y) ∈ Id ⇐⇒ x = y

• Structure-preserving relators
• ((a, b), (a′, b′)) ∈ A×r B ⇐⇒ (a, a′) ∈ A ∧ (b, b′) ∈ B
• Also have list_rel, option_rel, . . .

55 / 71

Relators for data refinement

• Consider operation „empty set”: {} :: ′a set
• We have ([],{}) ∈ 〈A〉list_set_rel
• For any relation A between the elements

• Consider operation „singleton set”: λx. {x} :: ′a⇒ ′a set
• We have (λx. [x], λy. {y}) ∈ A→ 〈A〉list_set_rel
• In words: If x implements y then [x] implements y

56 / 71

Synthesis with parametricity

• We have

∀ x y . (x , y) ∈ A =⇒ (f x ,g y) ∈ B
(λx . f x , λy . g y) ∈ A→ B

(abs)

(x , y) ∈ A; (f ,g) ∈ A→ B
(f x ,g y) ∈ B

(app)

• With these, and parametricity rules for the constants, we can synthesize
an implementation from the abstract term
• Compare with lifting and transfer

• BUT:
• We must choose consistent implementations
• All abstract operations expressed by single constant
• Consider a couple of problems, see next slides

• This is exactly what Autoref does

57 / 71

Equality

• Equality is structural equality in HOL
• But structural equality on abstract type need not match structural equality

on implementation
• [1, 2] and [2, 1] both implement the same set

58 / 71

Set is non-free

• Beware of hidden equality
• Try to implement ∈ for lists
• You’ll need equality on the elements
• (eq,op=) ∈ A→ A→ bool_rel
• Which may not be structural equality!

• We have glist_member :: (′a⇒ ′a⇒ bool)⇒ ′a list⇒ bool
• Thus

(eq,op=) ∈ A→ A→ bool_rel
=⇒ (glist_member eq,op ∈) ∈ A→ 〈A〉list_set_rel→ bool_rel

59 / 71

Other type classes

• The same applies for other type classes
• The concrete datatypes need not instantiate them consistently with their

abstract counterparts
• Operations on them have to be made explicit
• For example, linear ordering on red-black trees

60 / 71

Generic algorithms

• Consider again the singleton set operation
• It can be (abstractly) expressed by empty set and insertion

{x} = insert x {}

• Thus, if we have implementations for insert and empty-set
• we also get one for singleton set

[[(ins_impl,insert) ∈ A→ 〈A〉Rs→ 〈A〉Rs; (empty_impl,{}) ∈ 〈A〉Rs]]
=⇒ (λx. ins_impl x empty_impl, λx. {x}) ∈ A→ 〈A〉Rs

• Note: This works for any relator Rs!

61 / 71

Specialization (Type)

• Apart from generic algorithm, we may still define specialized versions for
certain data types

• E.g., we still have (λx. [x], λx. {x}) ∈ A→ 〈A〉list_set_rel

62 / 71

Partially parametric functions

• Consider the function hd : α list → α

• For refining the elements of a list, keeping the list structure, we would like
to have (hd,hd) ∈ 〈A〉list_rel→ A
• However, we cannot prove that!
• As hd [] = undefined , this would imply (undefined , undefined) ∈ A
• Which we cannot prove!

• Solution: Restrict parametricity theorem to non-empty lists

[[l 6= []; (li,l) ∈ 〈A〉list_rel]] =⇒ (hd li, hd l) ∈ A

63 / 71

Specialization (Precondition)

• Consider insertion of element into set, implemented on distinct lists
• We need to check whether element is already in

• Linear time required

• But, sometimes, we know that the element is not in the set e.g.
if x/∈ s then let s=insert x s; . . . else . . .

• In this case, insert can be implemented by Cons, in constant time

[[x/∈s; (xi,x) ∈ A; (l,s) ∈ 〈A〉list_set_rel]]
=⇒ (xi#l, insert x s) ∈ 〈A〉list_set_rel

64 / 71

Wrap-up

• Idea of automatic refinement via parametricity is very simple
• But lots of things to think of if implemented for the real stuff

• Abstract operations are not single constants (Map.empty, x 6= {}, ...)
• Consistent selection of implementations
• Hidden operations and type-classes

• we get generic algorithms as a bonus
• Partial parametricity

• we get precondition-based specialization as a bonus

65 / 71

Relation to Refinement Framework

• Combinators of nondeterminism monad are parametric
• With relator (c,a) ∈ 〈R〉nres_rel←→ c ≤ ⇓ R a
• Thus, automatic refinement just works for them

• preserving the structure of the program

• Show: param_RETURN, param_bind, param_RECT

66 / 71

Table of Contents

1 Motivation

2 Theory of Program Refinement

3 Automatic Refinement
Motivation
Parametricity and Refinement Relations
Phases of Autoref

67 / 71

Identify

• Try to identify the abstract datatypes and operations
• Rewrite to have each operation represented by a single constant

• Which uniquely identifies the abstract concept
• Uses a heuristics

• Typing rules + rewriting

• Example, show some autoref_itype rules

68 / 71

Fix Relators

• Infer consistent relators
• Again, typing.

• With conditional rules for generic algorithms.
• And many heuristics to get a „good” implementation

• User annotations
• Priority of implementations (e.g., prefer RBT over list)
• Homogeneity: Implement types involved in operation the same way

• A ∪ B: Try to use the same impl for A, B, and the result

• Note: Does not consider side conditions!

69 / 71

Translate

• Do the translation with the fixed relators
• Try to discharge side-conditions

• Try specialized rules before more general ones

• Infer operations required for generic algorithms

70 / 71

Demo

Autoref_Basic_Demo.thy

71 / 71

	Motivation
	Theory of Program Refinement
	The nondeterminism monad
	Refinement Ordering
	Recursion, total and partial correctness
	Data Refinement
	Translation to executable specification

	Automatic Refinement
	Motivation
	Parametricity and Refinement Relations
	Phases of Autoref

