
Concrete Semantics
with Isabelle/HOL

Tobias Nipkow

Fakultät für Informatik
Technische Universität München

2023-1-31

1



Part I

Isabelle

2



Chapter 2

Programming and Proving

3



1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification

4



Notation

Implication associates to the right:

A =⇒ B =⇒ C means A =⇒ (B =⇒ C )

Similarly for other arrows: ⇒, −→

A1 . . . An
B means A1 =⇒ · · · =⇒ An =⇒ B

6



1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification

7



HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
• datatypes
• recursive functions
• logical operators

HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
• For the moment: only term = term,

e.g. 1 + 2 = 4
• Later: ∧, ∨, −→, ∀, . . .

8



1 Overview of Isabelle/HOL
Types and terms
Interface
By example: types bool, nat and list
Summary

9



Types
Basic syntax:

τ ::= (τ)
| bool | nat | int | . . . base types
| ′a | ′b | . . . type variables
| τ ⇒ τ functions
| τ × τ pairs (ascii: *)
| τ list lists
| τ set sets
| . . . user-defined types

Convention: τ 1 ⇒ τ 2 ⇒ τ 3 ≡ τ 1 ⇒ (τ 2 ⇒ τ 3)

10



Terms

Terms can be formed as follows:
• Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

• Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

11



Terms
Basic syntax:

t ::= (t)
| a constant or variable (identifier)
| t t function application
| λx. t function abstraction
| . . . lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.
12



The computation rule of the λ-calculus is the
replacement of formal by actual parameters:

(λx. t) u = t[u/x]

where t[u/x] is “t with u substituted for x”.

Example: (λx. x + 5) 3 = 3 + 5

• The step from (λx. t) u to t[u/x] is called
β-reduction.

• Isabelle performs β-reduction automatically.

13



Terms must be well-typed
(the argument of every function call must be of the right type)

Notation:
t :: τ means “t is a well-typed term of type τ”.

t :: τ 1 ⇒ τ 2 u :: τ 1
t u :: τ 2

14



Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

User can help with type annotations inside the term.
Example: f (x::nat)

15



Currying

Thou shalt Curry your functions

• Curried: f :: τ 1 ⇒ τ 2 ⇒ τ

• Tupled: f ′ :: τ 1 × τ 2 ⇒ τ

Advantage:

Currying allows partial application
f a1 where a1 :: τ 1

16



Predefined syntactic sugar
• Infix: +, −, ∗, #, @, . . .
• Mixfix: if _ then _ else _, case _ of, . . .

Prefix binds more strongly than infix:
! f x + y ≡ (f x) + y 6≡ f (x + y) !

Enclose if and case in parentheses:
! (if _ then _ else _) !

17



Theory = Isabelle Module

Syntax: theory MyTh
imports T1 . . .Tn
begin
(definitions, theorems, proofs, ...)∗
end

MyTh: name of theory. Must live in file MyTh.thy
Ti : names of imported theories. Import transitive.

Usually: imports Main

18



Concrete syntax

In .thy files:
Types, terms and formulas need to be inclosed in "

Except for single identifiers

" normally not shown on slides

19



1 Overview of Isabelle/HOL
Types and terms
Interface
By example: types bool, nat and list
Summary

20



isabelle jedit

• Based on jEdit editor
• Processes Isabelle text automatically

when editing .thy files (like modern Java IDEs)

21



Overview_Demo.thy

22



1 Overview of Isabelle/HOL
Types and terms
Interface
By example: types bool, nat and list
Summary

23



Type bool

datatype bool = True | False

Predefined functions:
∧, ∨, −→, . . . :: bool ⇒ bool ⇒ bool

A formula is a term of type bool

if-and-only-if: =

24



Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc(Suc 0), . . .

Predefined functions: +, ∗, ... :: nat ⇒ nat ⇒ nat

! Numbers and arithmetic operations are overloaded:
0,1,2,... :: ′a, + :: ′a ⇒ ′a ⇒ ′a

You need type annotations: 1 :: nat, x + (y::nat)
unless the context is unambiguous: Suc z

25



Nat_Demo.thy

26



An informal proof
Lemma add m 0 = m
Proof by induction on m.
• Case 0 (the base case):

add 0 0 = 0 holds by definition of add.
• Case Suc m (the induction step):

We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.
The proof is as follows:
add (Suc m) 0 = Suc (add m 0) by def. of add

= Suc m by IH

27



Type ′a list
Lists of elements of type ′a

datatype ′a list = Nil | Cons ′a ( ′a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), . . .

Syntactic sugar:
• [] = Nil: empty list
• x # xs = Cons x xs:

list with first element x (“head”) and rest xs (“tail”)
• [x1, . . . , xn] = x1 # . . . xn # []

28



Structural Induction for lists

To prove that P(xs) for all lists xs, prove
• P([]) and
• for arbitrary but fixed x and xs,

P(xs) implies P(x#xs).

P([])
∧

x xs. P(xs) =⇒ P(x#xs)
P(xs)

29



List_Demo.thy

30



An informal proof
Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on xs.
• Case Nil: app (app Nil ys) zs = app ys zs =

app Nil (app ys zs) holds by definition of app.
• Case Cons x xs: We assume app (app xs ys) zs =

app xs (app ys zs) (IH), and we need to show
app (app (Cons x xs) ys) zs =
app (Cons x xs) (app ys zs).
The proof is as follows:
app (app (Cons x xs) ys) zs
= Cons x (app (app xs ys) zs) by definition of app
= Cons x (app xs (app ys zs)) by IH
= app (Cons x xs) (app ys zs) by definition of app

31



Large library: HOL/List.thy

Included in Main.

Don’t reinvent, reuse!

Predefined: xs @ ys (append), length, and map

32



1 Overview of Isabelle/HOL
Types and terms
Interface
By example: types bool, nat and list
Summary

33



• datatype defines (possibly) recursive data types.

• fun defines (possibly) recursive functions by
pattern-matching over datatype constructors.

34



Proof methods

• induction performs structural induction on some
variable (if the type of the variable is a datatype).

• auto solves as many subgoals as it can, mainly by
simplification (symbolic evaluation):

“=” is used only from left to right!

35



Proofs

General schema:

lemma name: "..."
apply (...)
apply (...)
...
done

If the lemma is suitable as a simplification rule:
lemma name[simp]: "..."

36



Top down proofs

Command

sorry

“completes” any proof.

Allows top down development:

Assume lemma first, prove it later.

37



The proof state

1.
∧

x1 . . . xp. A =⇒ B

x1 . . . xp fixed local variables
A local assumption(s)
B actual (sub)goal

38



Multiple assumptions

[[ A1; . . . ; An ]] =⇒ B
abbreviates

A1 =⇒ . . . =⇒ An =⇒ B

; ≈ “and”

39



1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification

40



2 Type and function definitions
Type definitions
Function definitions

41



Type synonyms
type_synonym name = τ

Introduces a synonym name for type τ

Examples
type_synonym string = char list
type_synonym ( ′a, ′b)foo = ′a list × ′b list

Type synonyms are expanded after parsing
and are not present in internal representation and output

42



datatype — the general case
datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)t
• Distinctness: Ci . . . 6= Cj . . . if i 6= j
• Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =

(x1 = y1 ∧ · · · ∧ xni = yni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

43



Case expressions
Datatype values can be taken apart with case:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards: _
(case m of 0 ⇒ Suc 0 | Suc _ ⇒ 0)

Nested patterns:
(case xs of [0] ⇒ 0 | [Suc n] ⇒ n | _ ⇒ 2)

Complicated patterns mean complicated proofs!
Need ( ) in context

44



Tree_Demo.thy

45



The option type

datatype ′a option = None | Some ′a

If ′a has values a1, a2, . . .
then ′a option has values None, Some a1, Some a2, . . .

Typical application:
fun lookup :: ( ′a × ′b) list ⇒ ′a ⇒ ′b option where
lookup [] x = None |
lookup ((a, b) # ps) x =
(if a = x then Some b else lookup ps x)

46



2 Type and function definitions
Type definitions
Function definitions

47



Non-recursive definitions

Example
definition sq :: nat ⇒ nat where sq n = n∗n

No pattern matching, just f x1 . . . xn = . . .

48



The danger of nontermination

How about f x = f x + 1 ?

Subtract f x on both sides.
=⇒ 0 = 1

! All functions in HOL must be total !

49



Key features of fun

• Pattern-matching over datatype constructors

• Order of equations matters

• Termination must be provable automatically
by size measures

• Proves customized induction schema

50



Example: separation

fun sep :: ′a ⇒ ′a list ⇒ ′a list where
sep a (x#y#zs) = x # a # sep a (y#zs) |
sep a xs = xs

51



Example: Ackermann

fun ack :: nat ⇒ nat ⇒ nat where
ack 0 n = Suc n |
ack (Suc m) 0 = ack m (Suc 0) |
ack (Suc m) (Suc n) = ack m (ack (Suc m) n)
Terminates because the arguments decrease
lexicographically with each recursive call:
• (Suc m, 0) > (m, Suc 0)
• (Suc m, Suc n) > (Suc m, n)
• (Suc m, Suc n) > (m, _)

52



primrec
• A restrictive version of fun
• Means primitive recursive
• Most functions are primitive recursive
• Frequently found in Isabelle theories

The essence of primitive recursion:
f(0) = . . . no recursion
f(Suc n) = . . . f(n). . .
g([]) = . . . no recursion
g(x#xs) = . . . g(xs). . .

53



1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification

54



Basic induction heuristics

Theorems about recursive functions
are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number i

55



A tail recursive reverse
Our initial reverse:
fun rev :: ′a list ⇒ ′a list where
rev [] = [] |
rev (x#xs) = rev xs @ [x]

A tail recursive version:
fun itrev :: ′a list ⇒ ′a list ⇒ ′a list where
itrev [] ys = ys |
itrev (x#xs) ys =

itrev xs (x#ys)

lemma itrev xs [] = rev xs

56



Induction_Demo.thy

Generalisation

57



Generalisation

• Replace constants by variables

• Generalize free variables
• by arbitrary in induction proof
• (or by universal quantifier in formula)

58



So far, all proofs were by structural induction
because all functions were primitive recursive.
In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.
Now: induction for complex recursion patterns.

59



Computation Induction

Example
fun div2 :: nat ⇒ nat where
div2 0 = 0 |
div2 (Suc 0) = 0 |
div2 (Suc(Suc n)) = Suc(div2 n)

 induction rule div2.induct:

P(0) P(Suc 0)
∧

n. P(n) =⇒ P(Suc(Suc n))
P(m)

60



Computation Induction
If f :: τ ⇒ τ ′ is defined by fun, a special induction
schema is provided to prove P(x) for all x :: τ :

for each defining equation

f (e) = . . . f (r1) . . . f (rk) . . .

prove P(e) assuming P(r1), . . . ,P(rk).

Induction follows course of (terminating!) computation
Motto: properties of f are best proved by rule f.induct

61



How to apply f.induct

If f :: τ1 ⇒ · · · ⇒ τn ⇒ τ ′:

(induction a1 . . . an rule: f.induct)

Heuristic:
• there should be a call f a1 . . . an in your goal
• ideally the ai should be variables.

62



Induction_Demo.thy

Computation Induction

63



1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification

64



Simplification means . . .

Using equations l = r from left to right
As long as possible

Terminology: equation  simplification rule

Simplification = (Term) Rewriting

65



An example

Equations:

0 + n = n (1)
(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)
(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x (1)
=

Suc 0 ≤ Suc 0 + x (2)
=

Suc 0 ≤ Suc (0 + x) (3)
=

0 ≤ 0 + x (4)
=

True
66



Conditional rewriting
Simplification rules can be conditional:

[[ P1; . . . ; Pk ]] =⇒ l = r

is applicable only if all Pi can be proved first,
again by simplification.

Example
p(0) = True

p(x) =⇒ f (x) = g(x)
We can simplify f (0) to g(0) but
we cannot simplify f (1) because p(1) is not provable.

67



Termination
Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly from left to right.

Example: f (x) = g(x), g(x) = f (x)

Principle:
[[ P1; . . . ; Pk ]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True YES
Suc n < m =⇒ (n < m) = True NO

68



Proof method simp
Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply(simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using
• lemmas with attribute simp
• rules from fun and datatype
• additional lemmas eq1 . . . eqn
• assumptions P1 . . . Pm

Variations:
• (simp . . . del: . . . ) removes simp-lemmas
• add and del are optional

69



auto versus simp

• auto acts on all subgoals
• simp acts only on subgoal 1

• auto applies simp and more

• auto can also be modified:
(auto simp add: . . . simp del: . . . )

70



Rewriting with definitions

Definitions (definition) must be used explicitly:

(simp add: f_def . . . )

f is the function whose definition is to be unfolded.

71



Case splitting with simp/auto
Automatic:

P (if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

By hand:

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀ n. e = Suc n −→ P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t: t.split

72



Simp_Demo.thy

73



Chapter 3

Case Study: IMP Expressions

74



5 Case Study: IMP Expressions

75



5 Case Study: IMP Expressions

76



This section introduces

arithmetic and boolean expressions

of our imperative language IMP.

IMP commands are introduced later.

77



5 Case Study: IMP Expressions
Arithmetic Expressions
Boolean Expressions
Stack Machine and Compilation

78



Concrete and abstract syntax
Concrete syntax: strings, eg "a+5*b"
Abstract syntax: trees, eg +

@
@
@

�
�

�a *
A
AA

�
��

5 b

Parser: function from strings to trees
Linear view of trees: terms, eg Plus a (Times 5 b)

Abstract syntax trees/terms are datatype values!

79



Concrete syntax is defined by a context-free grammar, eg

a ::= n | x | (a) | a + a | a ∗ a | . . .

where n can be any natural number and x any variable.

We focus on abstract syntax
which we introduce via datatypes.

80



Datatype aexp

Variable names are strings, values are integers:
type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete Abstract
5 N 5
x V ′′x ′′
x+y Plus (V ′′x ′′) (V ′′y ′′)
2+(z+3) Plus (N 2) (Plus (V ′′z ′′) (N 3))

81



Warning

This is syntax, not (yet) semantics!

N 0 6= Plus (N 0) (N 0)

82



The (program) state

What is the value of x+1?

• The value of an expression
depends on the value of its variables.

• The value of all variables is recorded in the state.
• The state is a function from variable names to

values:
type_synonym val = int
type_synonym state = vname ⇒ val

83



Function update notation

If f :: τ 1 ⇒ τ 2 and a :: τ 1 and b :: τ 2 then

f (a := b)

is the function that behaves like f
except that it returns b for argument a.

f(a := b) = (λx. if x = a then b else f x)

84



How to write down a state

Some states:
• λx. 0
• (λx. 0)( ′′a ′′ := 3)
• ((λx. 0)( ′′a ′′ := 5))( ′′x ′′ := 3)

Nicer notation:

< ′′a ′′ := 5, ′′x ′′ := 3, ′′y ′′ := 7>

Maps everything to 0, but ′′a ′′ to 5, ′′x ′′ to 3, etc.

85



AExp.thy

86



5 Case Study: IMP Expressions
Arithmetic Expressions
Boolean Expressions
Stack Machine and Compilation

87



BExp.thy

88



5 Case Study: IMP Expressions
Arithmetic Expressions
Boolean Expressions
Stack Machine and Compilation

89



ASM.thy

90



This was easy.
Because evaluation of expressions always terminates.
But execution of programs may not terminate.
Hence we cannot define it by a total recursive function.

We need more logical machinery
to define program execution and reason about it.

91



Chapter 4

Logic and Proof
Beyond Equality

92



6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions

93



6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions

94



Syntax (in decreasing precedence):

form ::= (form) | term = term | ¬form
| form ∧ form | form ∨ form | form −→ form
| ∀x. form | ∃x. form

Examples:
¬ A ∧ B ∨ C ≡ ((¬ A) ∧ B) ∨ C

s = t ∧ C ≡ (s = t) ∧ C
A ∧ B = B ∧ A ≡ A ∧ (B = B) ∧ A
∀ x. P x ∧ Q x ≡ ∀ x. (P x ∧ Q x)

Input syntax: ←→ (same precedence as −→)

95



Variable binding convention:

∀ x y. P x y ≡ ∀ x. ∀ y. P x y

Similarly for ∃ and λ.

96



Warning

Quantifiers have low precedence
and need to be parenthesized (if in some context)

! P ∧ ∀ x. Q x  P ∧ (∀ x. Q x) !

97



Mathematical symbols
and their ascii representations

∀ \<forall> ALL
∃ \<exists> EX
λ \<lambda> %
−→ -->
←→ <->
∧ /\ &
∨ \/ |
¬ \<not> ~
6= \<noteq> ~=

98



Sets over type ′a
′a set

• {}, {e1,. . . ,en}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A − B, − A
• . . .

∈ \<in> :
⊆ \<subseteq> <=
∪ \<union> Un
∩ \<inter> Int

99



Set comprehension

• {x. P} where x is a variable
• But not {t. P} where t is a proper term
• Instead: {t |x y z. P}

is short for {v. ∃ x y z. v = t ∧ P}
where x, y, z are the free variables in t

100



6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions

101



simp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

• Show you where they got stuck
• highly incomplete
• Extensible with new simp-rules

Exception: auto acts on all subgoals

102



fastforce

• rewriting, logic, sets, relations and a bit of arithmetic.
• incomplete but better than auto.
• Succeeds or fails
• Extensible with new simp-rules

103



blast

• A complete proof search procedure for FOL . . .

• . . . but (almost) without “=”
• Covers logic, sets and relations
• Succeeds or fails
• Extensible with new deduction rules

104



Automating arithmetic

arith:
• proves linear formulas (no “∗”)
• complete for quantifier-free real arithmetic
• complete for first-order theory of nat and int

(Presburger arithmetic)

105



Sledgehammer

106



Architecture:

Isabelle
Goal

& filtered library ↓ ↑ Proof

external
ATPs1

Characteristics:
• Sometimes it works,
• sometimes it doesn’t.

Do you feel lucky?
1Automatic Theorem Provers

107



by(proof-method)

≈

apply(proof-method)
done

108



Auto_Proof_Demo.thy

109



6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions

110



Step-by-step proofs can be necessary if automation fails
and you have to explore where and why it failed by
taking the goal apart.

111



What are these ?-variables ?
After you have finished a proof, Isabelle turns all free
variables V in the theorem into ?V.
Example: theorem conjI: [[?P; ?Q]] =⇒ ?P ∧ ?Q
These ?-variables can later be instantiated:
• By hand:
conjI[of "a=b" "False"]  
[[a = b; False]] =⇒ a = b ∧ False

• By unification:
unifying ?P ∧ ?Q with a=b ∧ False
sets ?P to a=b and ?Q to False.

112



Rule application
Example: rule: [[?P; ?Q]] =⇒ ?P ∧ ?Q

subgoal: 1. . . . =⇒ A ∧ B
Result: 1. . . . =⇒ A

2. . . . =⇒ B

The general case: applying rule [[ A1; . . . ; An ]] =⇒ A
to subgoal . . . =⇒ C:
• Unify A and C
• Replace C with n new subgoals A1 . . . An

apply(rule xyz)
“Backchaining”

113



Typical backwards rules
?P ?Q
?P ∧ ?Q conjI

?P =⇒ ?Q
?P −→ ?Q impI

∧
x. ?P x
∀ x. ?P x allI

?P =⇒ ?Q ?Q =⇒ ?P
?P = ?Q iffI

They are known as introduction rules
because they introduce a particular connective.

114



Automating intro rules
If r is a theorem [[ A1; . . . ; An ]] =⇒ A then

(blast intro: r)

allows blast to backchain on r during proof search.
Example:

theorem le_trans: [[ ?x ≤ ?y; ?y ≤ ?z ]] =⇒ ?x ≤ ?z
goal 1. [[ a ≤ b; b ≤ c; c ≤ d ]] =⇒ a ≤ d

proof apply(blast intro: le_trans)
Also works for auto and fastforce

Can greatly increase the search space!
115



Forward proof: OF
If r is a theorem A =⇒ B
and s is a theorem that unifies with A then

r[OF s]

is the theorem obtained by proving A with s.

Example: theorem refl: ?t = ?t

conjI[OF refl[of "a"]]
 

?Q =⇒ a = a ∧ ?Q

116



The general case:

If r is a theorem [[ A1; . . . ; An ]] =⇒ A
and r1, . . . , rm (m≤n) are theorems then

r[OF r1 . . . rm]

is the theorem obtained
by proving A1 . . . Am with r1 . . . rm.

Example: theorem refl: ?t = ?t

conjI[OF refl[of "a"] refl[of "b"]]
 

a = a ∧ b = b

117



From now on: ? mostly suppressed on slides

118



Single_Step_Demo.thy

119



=⇒ versus −→

=⇒ is part of the Isabelle framework. It structures
theorems and proof states: [[ A1; . . . ; An ]] =⇒ A

−→ is part of HOL and can occur inside the logical
formulas Ai and A.

Phrase theorems like this [[ A1; . . . ; An ]] =⇒ A
not like this A1 ∧ . . . ∧ An −→ A

120



6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions

121



Example: even numbers
Informally:
• 0 is even
• If n is even, so is n + 2
• These are the only even numbers

In Isabelle/HOL:
inductive ev :: nat ⇒ bool
where

ev 0 |
ev n =⇒ ev (n + 2)

122



An easy proof: ev 4

ev 0 =⇒ ev 2 =⇒ ev 4

123



Consider

fun evn :: nat ⇒ bool where
evn 0 = True |
evn (Suc 0) = False |
evn (Suc (Suc n)) = evn n

A trickier proof: ev m =⇒ evn m
By induction on the structure of the derivation of ev m
Two cases: ev m is proved by
• rule ev 0

=⇒ m = 0 =⇒ evn m = True
• rule ev n =⇒ ev (n+2)

=⇒ m = n+2 and evn n (IH)
=⇒ evn m = evn (n+2) = evn n = True

124



Rule induction for ev
To prove

ev n =⇒ P n

by rule induction on ev n we must prove
• P 0
• P n =⇒ P(n+2)

Rule ev.induct:

ev n P 0
∧

n. [[ ev n; P n ]] =⇒ P(n+2)
P n

125



Format of inductive definitions

inductive I :: τ ⇒ bool where
[[ I a1; . . . ; I an ]] =⇒ I a |
...

Note:
• I may have multiple arguments.
• Each rule may also contain side conditions not

involving I.

126



Rule induction in general
To prove

I x =⇒ P x

by rule induction on I x
we must prove for every rule

[[ I a1; . . . ; I an ]] =⇒ I a

that P is preserved:

[[ I a1; P a1; . . . ; I an; P an ]] =⇒ P a

127



!
Rule induction is absolutely central

to (operational) semantics
and the rest of this lecture course

!

128



Inductive_Demo.thy

129



Inductively defined sets

inductive_set I :: τ set where
[[ a1 ∈ I; . . . ; an ∈ I ]] =⇒ a ∈ I |
...

Difference to inductive:
• arguments of I are tupled, not curried
• I can later be used with set theoretic operators,

eg I ∪ . . .

130



Chapter 5

Isar: A Language for
Structured Proofs

131



10 Isar by example

11 Proof patterns

12 Streamlining Proofs

13 Proof by Cases and Induction

132



Apply scripts

• unreadable
• hard to maintain
• do not scale

No structure!

133



Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with assertions

But: apply still useful for proof exploration

134



A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1

135



Isar core syntax
proof = proof [method] step∗ qed

| by method

method = (simp . . . ) | (blast . . . ) | (induction . . . ) | . . .

step = fix variables (
∧

)
| assume prop (=⇒)
| [from fact+] (have | show) prop proof

prop = [name:] ”formula”

fact = name | . . .

136



10 Isar by example

11 Proof patterns

12 Streamlining Proofs

13 Proof by Cases and Induction

137



Example: Cantor’s theorem

lemma ¬ surj(f :: ′a ⇒ ′a set)
proof default proof: assume surj, show False

assume a: surj f
from a have b: ∀ A. ∃ a. A = f a

by(simp add: surj_def)
from b have c: ∃ a. {x. x /∈ f x} = f a

by blast
from c show False

by blast
qed

138



Isar_Demo.thy

Cantor and abbreviations

139



Abbreviations

this = the previous proposition proved or assumed
then = from this
thus = then show

hence = then have

140



using and with

(have|show) prop using facts
=

from facts (have|show) prop

with facts
=

from facts this

141



Structured lemma statement
lemma

fixes f :: ′a ⇒ ′a set
assumes s: surj f
shows False

proof − no automatic proof step
have ∃ a. {x. x /∈ f x} = f a using s

by(auto simp: surj_def)
thus False by blast

qed
Proves surj f =⇒ False
but surj f becomes local fact s in proof.

142



The essence of structured proofs

Assumptions and intermediate facts
can be named and referred to explicitly and selectively

143



Structured lemma statements

fixes x :: τ1 and y :: τ2 . . .
assumes a: P and b: Q . . .
shows R

• fixes and assumes sections optional
• shows optional if no fixes and assumes

144



10 Isar by example

11 Proof patterns

12 Streamlining Proofs

13 Proof by Cases and Induction

145



Case distinction
show R
proof cases

assume P...
show R 〈proof 〉

next
assume ¬ P...
show R 〈proof 〉

qed

have P ∨ Q 〈proof 〉
then show R
proof

assume P...
show R 〈proof 〉

next
assume Q
...
show R 〈proof 〉

qed

146



Contradiction

show ¬ P
proof

assume P...
show False 〈proof 〉

qed

show P
proof (rule ccontr)

assume ¬P...
show False 〈proof 〉

qed

147



←→

show P ←→ Q
proof

assume P...
show Q 〈proof 〉

next
assume Q
...
show P 〈proof 〉

qed

148



∀ and ∃ introduction
show ∀ x. P(x)
proof

fix x local fixed variable
show P(x) 〈proof 〉

qed

show ∃ x. P(x)
proof

...
show P(witness) 〈proof 〉

qed

149



∃ elimination: obtain

have ∃ x. P(x)
then obtain x where p: P(x) by blast
... x fixed local variable

Works for one or more x

150



obtain example

lemma ¬ surj(f :: ′a ⇒ ′a set)
proof

assume surj f
hence ∃ a. {x. x /∈ f x} = f a by(auto simp: surj_def)
then obtain a where {x. x /∈ f x} = f a by blast
hence a /∈ f a ←→ a ∈ f a by blast
thus False by blast

qed

151



Set equality and subset

show A = B
proof

show A ⊆ B 〈proof 〉
next

show B ⊆ A 〈proof 〉
qed

show A ⊆ B
proof

fix x
assume x ∈ A...
show x ∈ B 〈proof 〉

qed

152



Isar_Demo.thy

Exercise

153



10 Isar by example

11 Proof patterns

12 Streamlining Proofs

13 Proof by Cases and Induction

154



12 Streamlining Proofs
Pattern Matching and Quotations
Top down proof development
moreover
Local lemmas

155



Example: pattern matching

show formula1 ←→ formula2 (is ?L ←→ ?R)
proof

assume ?L...
show ?R 〈proof 〉

next
assume ?R...
show ?L 〈proof 〉

qed

156



?thesis

show formula (is ?thesis)
proof -

...
show ?thesis 〈proof 〉

qed

Every show implicitly defines ?thesis

157



let

Introducing local abbreviations in proofs:
let ?t = "some-big-term"
...
have ". . . ?t . . . "

158



Quoting facts by value
By name:

have x0: ”x > 0” . . ....
from x0 . . .

By value:
have ”x > 0” . . ....
from ‹x > 0› . . .

↑ ↑
\<open> \<close>

159



Isar_Demo.thy

Pattern matching and quotations

160



12 Streamlining Proofs
Pattern Matching and Quotations
Top down proof development
moreover
Local lemmas

161



Example

lemma
∃ ys zs. xs = ys @ zs ∧
(length ys = length zs ∨ length ys = length zs + 1)

proof ???

162



Isar_Demo.thy

Top down proof development

163



When automation fails
Split proof up into smaller steps.

Or explore by apply:

have . . . using . . .
apply - to make incoming facts

part of proof state
apply auto or whatever
apply . . .

At the end:
• done
• Better: convert to structured proof

164



12 Streamlining Proofs
Pattern Matching and Quotations
Top down proof development
moreover
Local lemmas

165



moreover—ultimately
have P1 . . .
moreover
have P2 . . .
moreover...
moreover
have Pn . . .
ultimately
have P . . .

≈

have lab1: P1 . . .
have lab2: P2 . . .
...
have labn: Pn . . .
from lab1 lab2 . . .
have P . . .

With names

166



12 Streamlining Proofs
Pattern Matching and Quotations
Top down proof development
moreover
Local lemmas

167



Local lemmas

have B if name: A1 . . . Am for x1 . . . xn
〈proof 〉

proves [[ A1; . . . ; Am ]] =⇒ B
where all xi have been replaced by ?xi .

168



Proof state and Isar text
In general: proof method
Applies method and generates subgoal(s):∧

x1 . . . xn. [[ A1; . . . ; Am ]] =⇒ B
How to prove each subgoal:

fix x1 . . . xn
assume A1 . . . Am...
show B

Separated by next

169



10 Isar by example

11 Proof patterns

12 Streamlining Proofs

13 Proof by Cases and Induction

170



Isar_Induction_Demo.thy

Proof by cases

171



Datatype case analysis
datatype t = C1 ~τ | . . .

proof (cases "term")
case (C1 x1 . . . xk)
. . . xj . . .

next
...
qed

where case (Ci x1 . . . xk) ≡
fix x1 . . . xk
assume Ci :︸︷︷︸

label

term = (Ci x1 . . . xk)︸ ︷︷ ︸
formula

172



Isar_Induction_Demo.thy

Structural induction for nat

173



Structural induction for nat
show P(n)
proof (induction n)

case 0 ≡ let ?case = P(0)
...
show ?case

next
case (Suc n) ≡ fix n assume Suc: P(n)
... let ?case = P(Suc n)...
show ?case

qed

174



Structural induction with =⇒
show A(n) =⇒ P(n)
proof (induction n)

case 0 ≡ assume 0: A(0)
... let ?case = P(0)
show ?case

next
case (Suc n) ≡ fix n
... assume Suc: A(n) =⇒ P(n)

A(Suc n)
... let ?case = P(Suc n)
show ?case

qed

175



Named assumptions

In a proof of
A1 =⇒ . . . =⇒ An =⇒ B

by structural induction:
In the context of

case C
we have

C.IH the induction hypotheses
C.prems the premises Ai

C C.IH + C.prems

176



A remark on style

• case (Suc n) . . . show ?case
is easy to write and maintain

• fix n assume formula . . . show formula′
is easier to read:
• all information is shown locally
• no contextual references (e.g. ?case)

177



13 Proof by Cases and Induction
Rule Induction
Rule Inversion

178



Isar_Induction_Demo.thy

Rule induction

179



Rule induction
inductive I :: τ ⇒ σ ⇒ bool
where
rule1: . . .
...
rulen: . . .

show I x y =⇒ P x y
proof (induction rule: I.induct)

case rule1
· · ·
show ?case

next
...
next

case rulen
· · ·
show ?case

qed

180



Fixing your own variable names

case (rulei x1 . . . xk)

Renames the first k variables in rulei (from left to right)
to x1 . . . xk.

181



Named assumptions
In a proof of

I . . . =⇒ A1 =⇒ . . . =⇒ An =⇒ B
by rule induction on I . . . :
In the context of

case R
we have

R.IH the induction hypotheses
R.hyps the assumptions of rule R

R.prems the premises Ai

R R.IH + R.hyps + R.prems

182



13 Proof by Cases and Induction
Rule Induction
Rule Inversion

183



Rule inversion

inductive ev :: nat ⇒ bool where
ev0: ev 0 |
evSS: ev n =⇒ ev(Suc(Suc n))

What can we deduce from ev n ?
That it was proved by either ev0 or evSS !

ev n =⇒ n = 0 ∨ (∃ k. n = Suc (Suc k) ∧ ev k)

Rule inversion = case distinction over rules

184



Isar_Induction_Demo.thy

Rule inversion

185



Rule inversion template
from ‘ev n‘ have P
proof cases

case ev0 n = 0...
show ?thesis . . .

next
case (evSS k) n = Suc (Suc k), ev k
...
show ?thesis . . .

qed

Impossible cases disappear automatically
186


	Programming and Proving
	Type and function definitions
	Induction Heuristics

	Case Study: IMP Expressions
	Logic and Proof Beyond Equality
	Isar: A Language for Structured Proofs
	Proof by Cases and Induction


