Concrete Semantics with Isabelle/HOL

Tobias Nipkow

Fakultät für Informatik Technische Universität München

2023-1-31

Part I

Isabelle

Chapter 2

Programming and Proving

1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification

Notation

Implication associates to the right:

$$A \Longrightarrow B \Longrightarrow C \quad \text{means} \quad A \Longrightarrow (B \Longrightarrow C)$$

Similarly for other arrows: \Rightarrow , \longrightarrow

$$A_1 \quad \dots \quad A_n \quad \text{means} \quad A_1 \Longrightarrow \dots \Longrightarrow A_n \Longrightarrow B$$

6

- 1 Overview of Isabelle/HOL
- 2 Type and function definitions
- 3 Induction Heuristics

4 Simplification

HOL = Higher-Order LogicHOL = Functional Programming + Logic

HOL has

- datatypes
- recursive functions
- logical operators

HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:

- For the moment: only term = term, e.g. 1 + 2 = 4
- Later: \land , \lor , \longrightarrow , \forall , ...

1 Overview of Isabelle/HOL

Types and terms

Interface By example: types bool, nat and list Summary

Types

Basic syntax:

Convention:
$$\tau_1 \Rightarrow \tau_2 \Rightarrow \tau_3 \equiv \tau_1 \Rightarrow (\tau_2 \Rightarrow \tau_3)$$

Terms

Terms can be formed as follows:

- Function application: f t is the call of function f with argument t. If f has more arguments: $f t_1 t_2 \ldots$ Examples: $sin \pi$, plus x y
- Function abstraction: λx . t is the function with parameter x and result t, i.e. " $x \mapsto t$ ". Example: λx . $plus \ x \ x$

Terms

Basic syntax:

```
t ::= (t)
a constant or variable (identifier)
b t t function application
b \lambda x. t function abstraction
b lots of syntactic sugar
```

Examples:
$$f(g|x)|y$$

 $h(\lambda x. f(g|x))$

Convention: $f t_1 t_2 t_3 \equiv ((f t_1) t_2) t_3$

This language of terms is known as the λ -calculus.

The computation rule of the λ -calculus is the replacement of formal by actual parameters:

$$(\lambda x. t) u = t[u/x]$$

where t[u/x] is "t with u substituted for x".

Example:
$$(\lambda x. \ x + 5) \ 3 = 3 + 5$$

- The step from $(\lambda x. \ t) \ u$ to t[u/x] is called β -reduction.
- Isabelle performs β -reduction automatically.

Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:

 $t:: \tau$ means "t is a well-typed term of type τ ".

$$\frac{t :: \tau_1 \Rightarrow \tau_2 \qquad u :: \tau_1}{t \ u :: \tau_2}$$

Type inference

Isabelle automatically computes the type of each variable in a term. This is called *type inference*.

In the presence of *overloaded* functions (functions with multiple types) this is not always possible.

User can help with *type annotations* inside the term. Example: f(x::nat)

Currying

Thou shalt Curry your functions

```
• Curried: f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau
```

• Tupled: $f' :: \tau_1 \times \tau_2 \Rightarrow \tau$

Advantage:

```
Currying allows partial application f a_1 where a_1 :: \tau_1
```

Predefined syntactic sugar

- *Infix:* +, -, *, #, @, ...
- Mixfix: if __ then __ else __, case __ of, ...

$$! fx + y \equiv (fx) + y \not\equiv f(x + y)$$

Enclose if and case in parentheses:

Theory = Isabelle Module

```
Syntax: theory MyTh imports T_1 \dots T_n begin (definitions, theorems, proofs, ...)* end
```

MyTh: name of theory. Must live in file MyTh. thy T_i : names of *imported* theories. Import transitive.

Usually: imports Main

Concrete syntax

In .thy files:

Types, terms and formulas need to be inclosed in "

Except for single identifiers

" normally not shown on slides

1 Overview of Isabelle/HOL

Types and terms

Interface

By example: types *bool*, *nat* and *list* Summary

isabelle jedit

- Based on jEdit editor
- Processes Isabelle text automatically when editing .thy files (like modern Java IDEs)

Overview_Demo.thy

1 Overview of Isabelle/HOL

Types and terms Interface

By example: types *bool*, *nat* and *list* Summary

Type bool

```
datatype bool = True \mid False
```

Predefined functions:

$$\land, \lor, \longrightarrow, \dots :: bool \Rightarrow bool \Rightarrow bool$$

A formula is a term of type bool

if-and-only-if: =

Type *nat*

datatype $nat = 0 \mid Suc \ nat$

Values of type nat: 0, Suc 0, Suc(Suc 0), ...

Predefined functions: $+, *, \dots :: nat \Rightarrow nat \Rightarrow nat$

Numbers and arithmetic operations are overloaded: 0,1,2,...: $'a, + :: 'a \Rightarrow 'a \Rightarrow 'a$

You need type annotations: 1 :: nat, x + (y::nat) unless the context is unambiguous: $Suc\ z$

Nat_Demo.thy

An informal proof

Lemma add m 0 = m**Proof** by induction on m.

- Case 0 (the base case): $add \ 0 \ 0 = 0$ holds by definition of add.
- Case $Suc\ m$ (the induction step): We assume $add\ m\ 0=m$, the induction hypothesis (IH). We need to show $add\ (Suc\ m)\ 0=Suc\ m$. The proof is as follows: $add\ (Suc\ m)\ 0=Suc\ (add\ m\ 0)$ by def. of $add\ =Suc\ m$ by IH

Type 'a list

Lists of elements of type 'a

```
datatype 'a list = Nil | Cons 'a ('a list)
```

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:

-] = Nil: empty list
- $x \# xs = Cons \ x \ xs$: list with first element x ("head") and rest xs ("tail")
- $[x_1, \ldots, x_n] = x_1 \# \ldots x_n \# []$

Structural Induction for lists

To prove that P(xs) for all lists xs, prove

- P([]) and
- for arbitrary but fixed x and xs, P(xs) implies P(x#xs).

$$\frac{P([]) \qquad \bigwedge x \ xs. \ P(xs) \Longrightarrow P(x \# xs)}{P(xs)}$$

List_Demo.thy

An informal proof

Lemma app (app xs ys) zs = app xs (app ys zs)**Proof** by induction on xs.

- Case Nil: app (app Nil ys) zs = app ys zs = app Nil (app ys zs) holds by definition of app.
- Case $Cons \ x \ xs$: We assume $app \ (app \ xs \ ys) \ zs = app \ xs \ (app \ ys \ zs)$ (IH), and we need to show $app \ (app \ (Cons \ x \ xs) \ ys) \ zs = app \ (Cons \ x \ xs) \ (app \ ys \ zs)$.

The proof is as follows:

app (app (Cons x xs) ys) zs

- $= Cons \ x \ (app \ (app \ xs \ ys) \ zs)$ by definition of app
- $= Cons \ x \ (app \ xs \ (app \ ys \ zs))$ by IH
- $= app (Cons \ x \ xs) (app \ ys \ zs)$ by definition of app

Large library: HOL/List.thy

Included in Main.

Don't reinvent, reuse!

Predefined: xs @ ys (append), length, and map

1 Overview of Isabelle/HOL

Types and terms
Interface
By example: types bool, nat and list
Summary

- datatype defines (possibly) recursive data types.
- fun defines (possibly) recursive functions by pattern-matching over datatype constructors.

Proof methods

- *induction* performs structural induction on some variable (if the type of the variable is a datatype).
- auto solves as many subgoals as it can, mainly by simplification (symbolic evaluation):
 - "=" is used only from left to right!

Proofs

General schema:

```
lemma name: "..."
apply (...)
apply (...)
:
done
```

If the lemma is suitable as a simplification rule:

```
lemma name[simp]: "..."
```

Top down proofs

Command

sorry

"completes" any proof.

Allows top down development:

Assume lemma first, prove it later.

The proof state

1.
$$\bigwedge x_1 \dots x_p$$
. $A \Longrightarrow B$
 $x_1 \dots x_p$ fixed local variables A local assumption(s) B actual (sub)goal

Multiple assumptions

$$\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow B$$
 abbreviates $A_1 \Longrightarrow \ldots \Longrightarrow A_n \Longrightarrow B$; $pprox$ "and"

- ① Overview of Isabelle/HOL
- 2 Type and function definitions
- 3 Induction Heuristics

4 Simplification

2 Type and function definitions
Type definitions
Function definitions

Type synonyms

type_synonym $name = \tau$

Introduces a $synonym\ name$ for type au

Examples

type_synonym $string = char \ list$ type_synonym $('a,'b)foo = 'a \ list \times 'b \ list$

Type synonyms are expanded after parsing and are not present in internal representation and output

datatype — the general case

datatype
$$(\alpha_1, \ldots, \alpha_n)t = C_1 \tau_{1,1} \ldots \tau_{1,n_1}$$
 $\mid \ldots \mid$
 $\mid C_k \tau_{k,1} \ldots \tau_{k,n_k}$

- Types: $C_i :: \tau_{i,1} \Rightarrow \cdots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1, \ldots, \alpha_n)t$
- Distinctness: $C_i \ldots \neq C_j \ldots$ if $i \neq j$
- Injectivity: $(C_i \ x_1 \dots x_{n_i} = C_i \ y_1 \dots y_{n_i}) = (x_1 = y_1 \wedge \dots \wedge x_{n_i} = y_{n_i})$

Distinctness and injectivity are applied automatically Induction must be applied explicitly

Case expressions

Datatype values can be taken apart with case:

(case
$$xs$$
 of $[] \Rightarrow \dots | y\#ys \Rightarrow \dots y \dots ys \dots)$

Wildcards: _

(case
$$m$$
 of $0 \Rightarrow Suc \ 0 \mid Suc _ \Rightarrow 0$)

Nested patterns:

(case
$$xs$$
 of $[0] \Rightarrow 0 \mid [Suc \ n] \Rightarrow n \mid _ \Rightarrow 2$)

Complicated patterns mean complicated proofs!

Need () in context

Tree_Demo.thy

The option type

```
datatype 'a option = None \mid Some 'a

If 'a has values a_1, a_2, \ldots
then 'a option has values None, Some \ a_1, Some \ a_2, \ldots
```

Typical application:

```
fun lookup :: ('a \times 'b) \ list \Rightarrow 'a \Rightarrow 'b \ option where lookup \ [] \ x = None \ | lookup \ ((a, b) \# ps) \ x = (if \ a = x \ then \ Some \ b \ else \ lookup \ ps \ x)
```

2 Type and function definitions
Type definitions
Function definitions

Non-recursive definitions

```
Example
```

definition $sq :: nat \Rightarrow nat$ where sq n = n*n

No pattern matching, just $f x_1 \ldots x_n = \ldots$

The danger of nontermination

How about
$$f x = f x + 1$$
 ?

All functions in HOL must be total

Key features of fun

- Pattern-matching over datatype constructors
- Order of equations matters
- Termination must be provable automatically by size measures
- Proves customized induction schema

Example: separation

```
fun sep :: 'a \Rightarrow 'a \ list \Rightarrow 'a \ list where sep \ a \ (x\#y\#zs) = x \# a \# sep \ a \ (y\#zs) \mid sep \ a \ xs = xs
```

Example: Ackermann

```
fun ack :: nat \Rightarrow nat \Rightarrow nat where
ack \ 0 \qquad n \qquad = Suc \ n \mid
ack \ (Suc \ m) \ 0 \qquad = ack \ m \ (Suc \ 0) \mid
ack \ (Suc \ m) \ (Suc \ n) = ack \ m \ (ack \ (Suc \ m) \ n)
```

Terminates because the arguments decrease *lexicographically* with each recursive call:

- $(Suc \ m, \ 0) > (m, Suc \ 0)$
- $(Suc \ m, \ Suc \ n) > (Suc \ m, \ n)$
- $(Suc \ m, Suc \ n) > (m, _)$

primrec

- A restrictive version of fun
- Means primitive recursive
- Most functions are primitive recursive
- Frequently found in Isabelle theories

The essence of primitive recursion:

```
f(0) = \dots no recursion f(Suc\ n) = \dots f(n)\dots g([]) = \dots no recursion g(x\#xs) = \dots g(xs)\dots
```

- ① Overview of Isabelle/HOL
- 2 Type and function definitions

3 Induction Heuristics

4 Simplification

Basic induction heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f if f is defined by recursion on argument number i

A tail recursive reverse

Our initial reverse:

```
fun rev :: 'a \ list \Rightarrow 'a \ list where rev \ [] = [] \mid rev \ (x\#xs) = rev \ xs \ @ \ [x]
```

A tail recursive version:

```
fun itrev :: 'a \ list \Rightarrow 'a \ list \Rightarrow 'a \ list where itrev \ [] \qquad ys = ys \ | itrev \ (x\#xs) \quad ys =
```

lemma itrev xs [] = rev xs

Induction_Demo.thy

Generalisation

Generalisation

- Replace constants by variables
- Generalize free variables
 - by *arbitrary* in induction proof
 - (or by universal quantifier in formula)

So far, all proofs were by structural induction because all functions were primitive recursive.

In each induction step, 1 constructor is added. In each recursive call, 1 constructor is removed.

Now: induction for complex recursion patterns.

Computation Induction

Example

```
fun div2 :: nat \Rightarrow nat where

div2 \ 0 = 0 \ |

div2 \ (Suc \ 0) = 0 \ |

div2 \ (Suc(Suc \ n)) = Suc(div2 \ n)
```

→ induction rule div2.induct:

$$\frac{P(0) \quad P(Suc\ 0) \quad \bigwedge n. \quad P(n) \Longrightarrow P(Suc(Suc\ n))}{P(m)}$$

Computation Induction

If $f:: \tau \Rightarrow \tau'$ is defined by **fun**, a special induction schema is provided to prove P(x) for all $x:: \tau$:

for each defining equation

$$f(e) = \dots f(r_1) \dots f(r_k) \dots$$

prove P(e) assuming $P(r_1), \ldots, P(r_k)$.

Induction follows course of (terminating!) computation Motto: properties of f are best proved by rule f.induct

How to apply f.induct

```
If f :: \tau_1 \Rightarrow \cdots \Rightarrow \tau_n \Rightarrow \tau':
(induction \ a_1 \ \dots \ a_n \ rule: f.induct)
```

Heuristic:

- there should be a call $f a_1 \ldots a_n$ in your goal
- ideally the a_i should be variables.

Induction_Demo.thy

Computation Induction

- Overview of Isabelle/HOL
- 2 Type and function definitions

3 Induction Heuristics

4 Simplification

Simplification means . . .

Using equations l=r from left to right As long as possible

Terminology: equation *→ simplification rule*

Simplification = (Term) Rewriting

An example

Equations:
$$\begin{array}{rcl} 0+n & = & n & (1) \\ (Suc \ m)+n & = & Suc \ (m+n) & (2) \\ (Suc \ m \leq Suc \ n) & = & (m \leq n) & (3) \\ (0 \leq m) & = & True & (4) \end{array}$$

$$0 + Suc \ 0 \le Suc \ 0 + x \stackrel{(1)}{=}$$

$$Suc \ 0 \le Suc \ 0 + x \stackrel{(2)}{=}$$

$$Suc \ 0 \le Suc \ (0 + x) \stackrel{(3)}{=}$$

$$0 \le 0 + x \stackrel{(4)}{=}$$

$$True$$

Conditional rewriting

Simplification rules can be conditional:

$$\llbracket P_1; \ldots; P_k \rrbracket \Longrightarrow l = r$$

is applicable only if all P_i can be proved first, again by simplification.

Example

$$p(0) = True$$

 $p(x) \Longrightarrow f(x) = g(x)$

We can simplify f(0) to g(0) but we cannot simplify f(1) because p(1) is not provable.

Termination

Simplification may not terminate. Isabelle uses simp-rules (almost) blindly from left to right.

Example:
$$f(x) = g(x), g(x) = f(x)$$

Principle:

$$\llbracket P_1; \ldots; P_k \rrbracket \Longrightarrow l = r$$

is suitable as a simp-rule only if l is "bigger" than r and each P_i

Proof method simp

Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$

$$apply(simp \ add: \ eq_1 \ldots \ eq_n)$$

Simplify $P_1 \ldots P_m$ and C using

- lemmas with attribute simp
- rules from fun and datatype
- additional lemmas $eq_1 \ldots eq_n$
- assumptions $P_1 \ldots P_m$

Variations:

- $(simp \dots del: \dots)$ removes simp-lemmas
- add and del are optional

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more
- *auto* can also be modified: (auto simp add: ... simp del: ...)

Rewriting with definitions

Definitions (**definition**) must be used explicitly:

```
(simp \ add: f\_def...)
```

f is the function whose definition is to be unfolded.

Case splitting with simp/auto

Automatic:

$$\begin{array}{ccc} P \ (\textit{if} \ A \ \textit{then} \ s \ \textit{else} \ t) \\ &= \\ (A \longrightarrow P(s)) \ \land \ (\neg A \longrightarrow P(t)) \end{array}$$

By hand:

Proof method: $(simp\ split:\ nat.split)$ Or auto. Similar for any datatype $t:\ t.split$

Simp_Demo.thy

Chapter 3

Case Study: IMP Expressions

Case Study: IMP Expressions

Case Study: IMP Expressions

This section introduces

arithmetic and boolean expressions

of our imperative language IMP.

IMP commands are introduced later.

5 Case Study: IMP Expressions
Arithmetic Expressions
Boolean Expressions
Stack Machine and Compilation

Concrete and abstract syntax

Concrete syntax: strings, eg "a+5*b"

Abstract syntax: trees, eg

Parser: function from strings to trees

Linear view of trees: terms, eg $Plus\ a\ (Times\ 5\ b)$

Abstract syntax trees/terms are datatype values!

Concrete syntax is defined by a context-free grammar, eg

$$a ::= n \mid x \mid (a) \mid a + a \mid a * a \mid \dots$$

where n can be any natural number and x any variable.

We focus on *abstract* syntax which we introduce via datatypes.

Datatype *aexp*

Variable names are strings, values are integers:

```
\label{eq:constraint} \begin{array}{l} \textbf{type\_synonym} \ vname = string \\ \textbf{datatype} \ aexp = N \ int \mid \ V \ vname \mid \ Plus \ aexp \ aexp \end{array}
```

Concrete	Abstract
5	N 5
X	$egin{array}{c} N \ 5 \ V \ ''x'' \end{array}$
x+y	Plus (V''x'') (V''y'')
2+(z+3)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Warning

This is syntax, not (yet) semantics!

$$N 0 \neq Plus (N 0) (N 0)$$

The (program) state

What is the value of x+1?

- The value of an expression depends on the value of its variables.
- The value of all variables is recorded in the state.
- The state is a function from variable names to values:

```
type_synonym val = int
type_synonym state = vname \Rightarrow val
```

Function update notation

If
$$f :: au_1 \Rightarrow au_2$$
 and $a :: au_1$ and $b :: au_2$ then
$$f(a := b)$$

is the function that behaves like f except that it returns b for argument a.

$$f(a := b) = (\lambda x. if x = a then b else f x)$$

How to write down a state

Some states:

- \bullet λx . 0
- $(\lambda x. \ 0)(''a'' := 3)$
- $((\lambda x. \ 0)("a" := 5))("x" := 3)$

Nicer notation:

$$<''a'' := 5, "x" := 3, "y" := 7>$$

Maps everything to 0, but "a" to 5, "x" to 3, etc.

AExp.thy

6 Case Study: IMP Expressions
 Arithmetic Expressions
 Boolean Expressions
 Stack Machine and Compilation

BExp.thy

5 Case Study: IMP Expressions
Arithmetic Expressions
Boolean Expressions
Stack Machine and Compilation

ASM.thy

This was easy.

Because evaluation of expressions always terminates.

But execution of programs may *not* terminate.

Hence we cannot define it by a total recursive function.

We need more logical machinery to define program execution and reason about it.

Chapter 4

Logic and Proof Beyond Equality **6** Logical Formulas

Proof Automation

8 Single Step Proofs

9 Inductive Definitions

- 6 Logical Formulas
- Proof Automation

8 Single Step Proofs

Inductive Definitions

Syntax (in decreasing precedence):

Examples:

$$\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$$

$$s = t \land C \equiv (s = t) \land C$$

$$A \land B = B \land A \equiv A \land (B = B) \land A$$

$$\forall x. \ P \ x \land Q \ x \equiv \forall x. \ (P \ x \land Q \ x)$$

Input syntax: \longleftrightarrow (same precedence as \longrightarrow)

Variable binding convention:

$$\forall x y. P x y \equiv \forall x. \forall y. P x y$$

Similarly for \exists and λ .

Warning

Quantifiers have low precedence and need to be parenthesized (if in some context)

$$! P \wedge \forall x. Q x \rightsquigarrow P \wedge (\forall x. Q x)$$

Mathematical symbols

and their ascii representations

\forall	\ <forall></forall>	ALL
\exists	\ <exists></exists>	EX
λ	\ <lambda></lambda>	%
\longrightarrow	>	
\longleftrightarrow	<->	
\wedge	/\	&
\vee	\/	
\neg	\ <not></not>	~
\neq	\ <noteq></noteq>	~=

Sets over type 'a

'a set

- $\{\}$, $\{e_1, \ldots, e_n\}$
- $e \in A$, $A \subseteq B$
- $A \cup B$, $A \cap B$, A B, -A

• ...

Set comprehension

- $\{x. P\}$ where x is a variable
- But not $\{t. P\}$ where t is a proper term
- Instead: $\{t \mid x \ y \ z. \ P\}$ is short for $\{v. \ \exists \ x \ y \ z. \ v = t \land P\}$ where $x, \ y, \ z$ are the free variables in t

- **6** Logical Formulas
- Proof Automation

Single Step Proofs

Inductive Definitions

simp and auto

simp: rewriting and a bit of arithmeticauto: rewriting and a bit of arithmetic, logic and sets

- Show you where they got stuck
- highly incomplete
- Extensible with new simp-rules

Exception: auto acts on all subgoals

fastforce

- rewriting, logic, sets, relations and a bit of arithmetic.
- incomplete but better than *auto*.
- Succeeds or fails
- Extensible with new simp-rules

blast

- A complete proof search procedure for FOL . . .
- ... but (almost) without "="
- Covers logic, sets and relations
- Succeeds or fails
- Extensible with new deduction rules

Automating arithmetic

arith:

- proves linear formulas (no "*")
- complete for quantifier-free real arithmetic
- complete for first-order theory of nat and int (Presburger arithmetic)

Sledgehammer

Architecture:

Characteristics:

- Sometimes it works,
- sometimes it doesn't.

Do you feel lucky?

¹Automatic Theorem Provers

by(proof-method)

 \approx

apply(proof-method)
done

Auto_Proof_Demo.thy

- **6** Logical Formulas
- Proof Automation

8 Single Step Proofs

Inductive Definitions

Step-by-step proofs can be necessary if automation fails and you have to explore where and why it failed by taking the goal apart.

What are these ?-variables ?

After you have finished a proof, Isabelle turns all free variables $\,V\,$ in the theorem into $\,?\,V.$

Example: theorem conjI: [P]; P; P

These ?-variables can later be instantiated:

- By hand: $\operatorname{conjI}[\operatorname{of} "a=b" "False"] \rightsquigarrow$ $[a=b; False] \implies a=b \land False$
- By unification: unifying $?P \land ?Q$ with $a=b \land False$ sets ?P to a=b and ?Q to False.

Rule application

Example: rule:
$$[P; P; Q] \Longrightarrow P \land Q$$

subgoal: $1. \ldots \Longrightarrow A \land B$

Result:
$$1. \ldots \Longrightarrow A$$

 $2. \ldots \Longrightarrow B$

The general case: applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal $\ldots \Longrightarrow C$:

- Unify A and C
- Replace C with n new subgoals $A_1 \ldots A_n$

 $apply(rule \ xyz)$

"Backchaining"

Typical backwards rules

$$\frac{?P \quad ?Q}{?P \land \ ?Q} \operatorname{conjI}$$

$$\frac{?P \Longrightarrow ?Q}{?P \longrightarrow ?Q} \text{ impI} \qquad \frac{\bigwedge x. ?P \ x}{\forall \ x. ?P \ x} \text{ allI}$$

$$\frac{?P \Longrightarrow ?Q \quad ?Q \Longrightarrow ?P}{?P = ?Q} \text{ iffI}$$

They are known as introduction rules because they *introduce* a particular connective.

Automating intro rules

If r is a theorem $\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow A$ then $(blast\ intro:\ r)$

allows blast to backchain on r during proof search.

Example:

```
theorem le\_trans: [?x \le ?y; ?y \le ?z] \Longrightarrow ?x \le ?z goal 1. [a \le b; b \le c; c \le d] \Longrightarrow a \le d proof apply(blast\ intro:\ le\_trans)
```

Also works for *auto* and *fastforce*

Can greatly increase the search space!

Forward proof: OF

If r is a theorem $A \Longrightarrow B$ and s is a theorem that unifies with A then

$$r[OF\ s]$$

is the theorem obtained by proving A with s.

Example: theorem refl:
$$?t = ?t$$
 conjI[OF refl[of "a"]] $\overset{\leadsto}{?Q} \Longrightarrow a = a \land ?Q$

The general case:

If r is a theorem $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ and $r_1, \ldots, r_m \ (m \le n)$ are theorems then

$$r[OF \ r_1 \ \dots \ r_m]$$

is the theorem obtained by proving $A_1 \ldots A_m$ with $r_1 \ldots r_m$.

Example: theorem refl: ?t = ?t

$$a = a \wedge b = b$$

From now on: ? mostly suppressed on slides

Single_Step_Demo.thy

 \Longrightarrow is part of the Isabelle framework. It structures theorems and proof states: $[A_1; \ldots; A_n] \Longrightarrow A$

 \longrightarrow is part of HOL and can occur inside the logical formulas A_i and A.

Phrase theorems like this $[A_1; \ldots; A_n] \Longrightarrow A$ not like this $A_1 \land \ldots \land A_n \longrightarrow A$

- **6** Logical Formulas
- Proof Automation

Single Step Proofs

Inductive Definitions

Example: even numbers

Informally:

- 0 is even
- If n is even, so is n+2
- These are the only even numbers

In Isabelle/HOL:

```
inductive ev :: nat \Rightarrow bool
where
ev \ 0 \quad |
ev \ n \Longrightarrow ev \ (n+2)
```

An easy proof: ev 4

 $ev \ 0 \Longrightarrow ev \ 2 \Longrightarrow ev \ 4$

Consider

```
fun evn :: nat \Rightarrow bool where evn \ 0 = True \mid evn \ (Suc \ 0) = False \mid evn \ (Suc \ (Suc \ n)) = evn \ n
```

A trickier proof: $ev \ m \Longrightarrow evn \ m$

By induction on the *structure* of the derivation of $ev\ m$ Two cases: $ev\ m$ is proved by

- rule ev 0 $\implies m = 0 \implies evn \ m = True$
- rule $ev \ n \Longrightarrow ev \ (n+2)$ $\Longrightarrow m = n+2 \text{ and } evn \ n \ (IH)$ $\Longrightarrow evn \ m = evn \ (n+2) = evn \ n = True$

Rule induction for ev

To prove

$$ev \ n \Longrightarrow P \ n$$

by rule induction on ev n we must prove

- P 0
- $P n \Longrightarrow P(n+2)$

Rule ev.induct:

Format of inductive definitions

```
inductive I :: \tau \Rightarrow bool where \llbracket I \ a_1; \ldots; I \ a_n \rrbracket \Longrightarrow I \ a \mid \vdots
```

Note:

- I may have multiple arguments.
- Each rule may also contain side conditions not involving I.

Rule induction in general

To prove

$$I x \Longrightarrow P x$$

by $rule\ induction\ on\ I\ x$ we must prove for every rule

$$\llbracket I a_1; \ldots; I a_n \rrbracket \Longrightarrow I a$$

that P is preserved:

$$\llbracket I a_1; P a_1; \dots ; I a_n; P a_n \rrbracket \Longrightarrow P a$$

Rule induction is absolutely central to (operational) semantics and the rest of this lecture course

Inductive_Demo.thy

Inductively defined sets

```
inductive_set I :: \tau \text{ set where}
\llbracket a_1 \in I; \dots ; a_n \in I \rrbracket \implies a \in I \mid
\vdots
```

Difference to **inductive**:

- arguments of I are tupled, not curried
- I can later be used with set theoretic operators, eg $I \cup \ldots$

Chapter 5

Isar: A Language for Structured Proofs

- Isar by example
- Proof patterns
- Streamlining Proofs

Proof by Cases and Induction

Apply scripts

- unreadable
- hard to maintain
- do not scale

No structure!

Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with assertions

But: apply still useful for proof exploration

A typical Isar proof

```
proof
   assume formula_0
   have formula_1 by simp
   have formula_n by blast
   show formula_{n+1} by . . .
ged
proves formula_0 \Longrightarrow formula_{n+1}
```

Isar core syntax

```
proof = proof [method] step* qed
          by method
method = (simp ...) | (blast ...) | (induction ...) | ...
\begin{array}{lll} \mathsf{step} &=& \mathsf{fix} \; \mathsf{variables} & & (\bigwedge) \\ & | & \mathsf{assume} \; \mathsf{prop} & & (\Longrightarrow) \end{array}
          [from fact<sup>+</sup>] (have | show) prop proof
prop = [name:] "formula"
fact = name | \dots |
```

- Isar by example
- Proof patterns
- Streamlining Proofs
- Proof by Cases and Induction

Example: Cantor's theorem

```
lemma \neg surj(f :: 'a \Rightarrow 'a \ set)
proof default proof: assume surj, show False
  assume a: surj f
 from a have b: \forall A. \exists a. A = f a
   by(simp add: surj def)
  from b have c: \exists a. \{x. x \notin f x\} = f a
   by blast
  from c show False
   by blast
ged
```

Isar_Demo.thy

Cantor and abbreviations

Abbreviations

```
this = the previous proposition proved or assumed then = from this thus = then show hence = then have
```

using and with

```
\begin{array}{c} \textbf{(have|show)} \ \text{prop } \textbf{using} \ \text{facts} \\ = \\ \textbf{from facts } \textbf{(have|show)} \ \text{prop} \end{array}
```

with facts

=

from facts *this*

Structured lemma statement

```
lemma
  fixes f:: 'a \Rightarrow 'a \ set
  assumes s: surj f
  shows False
proof — no automatic proof step
  have \exists a. \{x. x \notin f x\} = f a using s
   by(auto simp: surj def)
  thus False by blast
ged
     Proves surj f \Longrightarrow False
     but surj f becomes local fact s in proof.
```

The essence of structured proofs

Assumptions and intermediate facts can be named and referred to explicitly and selectively

Structured lemma statements

```
fixes x :: \tau_1 and y :: \tau_2 ... assumes a: P and b: Q ... shows R
```

- fixes and assumes sections optional
- shows optional if no fixes and assumes

- Isar by example
- Proof patterns
- Streamlining Proofs

Proof by Cases and Induction

Case distinction

```
have P \vee Q \langle proof \rangle
show R
proof cases
                               then show R
  assume P
                               proof
                                 assume P
  show R \langle proof \rangle
                                 show R \langle proof \rangle
next
  assume \neg P
                               next
                                 assume Q
  show R \langle proof \rangle
ged
                                 show R \langle proof \rangle
                               ged
```

Contradiction

```
\begin{array}{l} \textbf{show} \ \neg \ P \\ \textbf{proof} \\ \textbf{assume} \ P \\ \vdots \\ \textbf{show} \ False \ \langle proof \rangle \\ \textbf{qed} \end{array}
```

```
\begin{array}{l} \textbf{show} \ P \\ \textbf{proof} \ (rule \ ccontr) \\ \textbf{assume} \ \neg P \\ \vdots \\ \textbf{show} \ False \ \langle proof \rangle \\ \textbf{qed} \end{array}
```



```
show P \longleftrightarrow Q
proof
  assume P
  show Q \langle proof \rangle
next
  assume Q
  show P \langle proof \rangle
qed
```

\forall and \exists introduction

```
show \forall x. P(x)
proof
  fix x local fixed variable
  show P(x) \langle proof \rangle
ged
show \exists x. P(x)
proof
  show P(witness) \langle proof \rangle
ged
```

∃ elimination: **obtain**

```
have \exists x. P(x)
then obtain x where p: P(x) by blast
\vdots x fixed local variable
```

Works for one or more x

obtain example

```
lemma \neg surj(f :: 'a \Rightarrow 'a \ set)
proof
  assume surj f
 hence \exists a. \{x. \ x \notin f \ x\} = f \ a \ by(auto \ simp: \ surj \ def)
  then obtain a where \{x.\ x \notin f x\} = f a by blast
  hence a \notin f \ a \longleftrightarrow a \in f \ a by blast
  thus False by blast
ged
```

Set equality and subset

```
\begin{array}{lll} \operatorname{show} \ A = B & \operatorname{show} \ A \subseteq B \\ \operatorname{proof} & \operatorname{proof} \\ \operatorname{show} \ A \subseteq B \ \langle \operatorname{proof} \rangle & \operatorname{fix} \ x \\ \operatorname{next} & \operatorname{assume} \ x \in A \\ \operatorname{show} \ B \subseteq A \ \langle \operatorname{proof} \rangle & \vdots \\ \operatorname{qed} & \operatorname{show} \ x \in B \ \langle \operatorname{proof} \rangle \\ \operatorname{qed} & \operatorname{qed} \end{array}
```

Isar_Demo.thy

Exercise

- Isar by example
- Proof patterns
- Streamlining Proofs

Proof by Cases and Induction

Streamlining Proofs
Pattern Matching and Quotations
Top down proof development
moreover
Local lemmas

Example: pattern matching

```
show formula_1 \longleftrightarrow formula_2 (is ?L \longleftrightarrow ?R)
proof
   assume ?L
   show ?R \langle proof \rangle
next
   assume ?R
   show ?L \langle proof \rangle
ged
```

?thesis

```
show formula (is ?thesis)
proof -
    :
    show ?thesis \langle proof \rangle
qed
```

Every show implicitly defines ?thesis

let

Introducing local abbreviations in proofs:

```
let ?t = "some-big-term":
have "... ?t..."
```

Quoting facts by value

```
By name:

have x0: "x > 0" ...

:

from x0...
```

```
By value:

have "x > 0" ...

from \langle x > 0 \rangle ...

\uparrow

\langle \text{open} \rangle \langle \text{close} \rangle
```

Isar_Demo.thy

Pattern matching and quotations

Streamlining Proofs

Pattern Matching and Quotations
Top down proof development
moreover

Local lemmas

Example

lemma

```
\exists ys \ zs. \ xs = ys @ zs \land (length \ ys = length \ zs \lor length \ ys = length \ zs + 1)
proof ???
```

Isar_Demo.thy

Top down proof development

When automation fails

Split proof up into smaller steps.

Or explore by **apply**:

```
have ... using ...

apply - to make incoming facts part of proof state

apply auto or whatever

apply ...
```

At the end:

- done
- Better: convert to structured proof

Streamlining Proofs

Pattern Matching and Quotations Top down proof development

moreover

Local lemmas

moreover—ultimately

```
have P_1 ...
                                have lab_1: P_1 \ldots
                                have lab_2: P_2 ...
moreover
have P_2 ...
                                have lab_n: P_n ...
moreover
                         \approx
                                from lab_1 \ lab_2 \dots
                                have P ...
moreover
have P_n ...
ultimately
have P ...
```

With names

Streamlining Proofs

Pattern Matching and Quotations
Top down proof development
moreover

Local lemmas

Local lemmas

```
have B if name: A_1 \ldots A_m for x_1 \ldots x_n \langle proof \rangle proves [\![ A_1; \ldots; A_m ]\!] \Longrightarrow B where all x_i have been replaced by ?x_i.
```

Proof state and Isar text

In general: **proof** *method*

Applies *method* and generates subgoal(s):

$$\bigwedge x_1 \ldots x_n. \ \llbracket \ A_1; \ldots ; A_m \ \rrbracket \Longrightarrow B$$

How to prove each subgoal:

```
fix x_1 \ldots x_n assume A_1 \ldots A_m:
show B
```

Separated by **next**

Isar by example

- Proof patterns
- Streamlining Proofs

Proof by Cases and Induction

Isar_Induction_Demo.thy

Proof by cases

Datatype case analysis

```
datatype t = C_1 \vec{\tau} \mid \dots
```

```
\begin{array}{c} \textbf{proof} \; (cases \; "term") \\ \quad \textbf{case} \; (C_1 \; x_1 \; \dots \; x_k) \\ \quad \dots \; x_j \; \dots \\ \\ \textbf{next} \\ \vdots \\ \textbf{qed} \end{array}
```

```
where \mathbf{case} \ (C_i \ x_1 \ \dots \ x_k) \equiv  \mathbf{fix} \ x_1 \ \dots \ x_k \mathbf{assume} \ \underbrace{C_i:}_{\mathsf{label}} \ \underbrace{term = (C_i \ x_1 \ \dots \ x_k)}_{\mathsf{formula}}
```

Isar_Induction_Demo.thy

Structural induction for nat

Structural induction for *nat*

```
show P(n)
proof (induction \ n)
  case 0
                         \equiv let ?case = P(0)
  show ?case
next
  case (Suc\ n)
                         \equiv fix n assume Suc: P(n)
                             let ?case = P(Suc \ n)
  show ?case
ged
```

Structural induction with \Longrightarrow

```
show A(n) \Longrightarrow P(n)
proof (induction \ n)
  case 0
                            \equiv assume 0: A(0)
                                let ?case = P(0)
  show ?case
next
  case (Suc\ n)
                                 fix n
                                 assume Suc: A(n) \Longrightarrow P(n)
                                                 A(Suc \ n)
                                let ?case = P(Suc \ n)
  show ?case
ged
```

Named assumptions

In a proof of
$$A_1 \Longrightarrow \ldots \Longrightarrow A_n \Longrightarrow B$$
 by structural induction:
In the context of case C we have $C.IH$ the induction hypotheses $C.prems$ the premises A_i C $C.IH + C.prems$

A remark on style

- **case** (Suc n) ... **show** ?case is easy to write and maintain
- **fix** *n* **assume** *formula* . . . **show** *formula'* is easier to read:
 - all information is shown locally
 - no contextual references (e.g. ?case)

Proof by Cases and Induction Rule Induction

Isar_Induction_Demo.thy

Rule induction

Rule induction

```
inductive I :: \tau \Rightarrow \sigma \Rightarrow bool where rule_1 : \dots : rule_n : \dots
```

```
show I x y \Longrightarrow P x y
proof (induction rule: I.induct)
  case rule_1
  show ?case
next
next
  case rule_n
  show ?case
qed
```

Fixing your own variable names

case
$$(rule_i \ x_1 \ \dots \ x_k)$$

Renames the first k variables in $rule_i$ (from left to right) to $x_1 \ldots x_k$.

Named assumptions

```
In a proof of
     I \dots \Longrightarrow A_1 \Longrightarrow \dots \Longrightarrow A_n \Longrightarrow B
by rule induction on I \dots:
In the context of
     case R
we have
     R.IH the induction hypotheses
   R.hyps the assumptions of rule R
 R.prems the premises A_i
         R R.IH + R.hyps + R.prems
```

Proof by Cases and Induction
Rule Induction

Rule inversion

inductive $ev :: nat \Rightarrow bool$ where

ev0: ev 0 |

 $evSS: ev n \Longrightarrow ev(Suc(Suc n))$

What can we deduce from $ev \ n$? That it was proved by either ev0 or evSS!

$$ev \ n \Longrightarrow n = 0 \lor (\exists k. \ n = Suc \ (Suc \ k) \land ev \ k)$$

Rule inversion = case distinction over rules

Isar_Induction_Demo.thy

Rule inversion

Rule inversion template

```
from 'ev n' have P
proof cases
 case ev0
                            n=0
 show ?thesis ...
next
 case (evSS k)
                             n = Suc (Suc k), ev k
 show ?thesis ....
ged
```

Impossible cases disappear automatically