Theory GraphProps

Up to index of Isabelle/HOL/Tame

theory GraphProps
imports Graph
begin

(*  ID:         $Id: GraphProps.thy,v 1.1 2006/01/04 13:43:50 nipkow Exp $
    Author:     Gertrud Bauer, Tobias Nipkow
*)

header{* Properties of Graph Utilities *}

theory GraphProps
imports Graph
begin

ML"fast_arith_neq_limit := 3"

lemma final_setFinal[iff]: "final(setFinal f)"
by (simp add:setFinal_def)


lemma eq_setFinal_iff[iff]: "(f = setFinal f) = final f"
proof (induct f)
  case (Face f t)
  then show ?case
    by (cases t) (simp_all add: setFinal_def)
qed

lemma setFinal_eq_iff[iff]: "(setFinal f = f) = final f"
by (blast dest:sym intro:sym)


lemma distinct_vertices[iff]: "distinct(vertices(g::graph))"
by(induct g) simp


subsection{* @{const nextElem} *}

lemma nextElem_append[simp]:
 "y ∉ set xs ==> nextElem (xs @ ys) d y = nextElem ys d y"
by(induct xs) auto

lemma nextElem_cases:
"nextElem xs d x = y ==>
 x ∉ set xs ∧ y = d ∨
 xs ≠ [] ∧ x = last xs ∧ y = d ∧ x ∉ set(butlast xs) ∨
 (∃us vs. xs = us @ [x,y] @ vs ∧ x ∉ set us)"
apply(induct xs)
 apply simp
apply simp
apply(split if_splits)
 apply(simp split:list.splits)
 apply(rule_tac x = "[]" in exI)
 apply simp
apply simp
apply(erule disjE)
 apply simp
apply(erule disjE)
 apply clarsimp
apply(rule conjI)
 apply clarsimp
apply (clarsimp)
apply(erule_tac x = "a#us" in allE)
apply simp
done


lemma nextElem_notin_butlast[rule_format,simp]:
 "y ∉ set(butlast xs) --> nextElem xs x y = x"
by(induct xs) auto

lemma nextElem_in: "nextElem xs x y : set(x#xs)"
apply (induct xs)
 apply simp
apply auto
apply(clarsimp split: list.splits)
apply(clarsimp split: list.splits)
done

lemma nextElem_notin[simp]: "a ∉ set as ==> nextElem as c a = c"
by(erule nextElem_append[where ys = "[]", simplified])

lemma nextElem_last[simp]: assumes dist: "distinct xs"
shows "nextElem xs c (last xs) = c"
proof cases
  assume "xs = []" thus ?thesis by simp
next
  let ?xs = "butlast xs @ [last xs]"
  assume xs: "xs ≠ []"
  with dist have "distinct ?xs" by simp
  hence notin: "last xs ∉ set(butlast xs)" by simp
  from xs have "nextElem xs c (last xs) = nextElem ?xs c (last xs)" by simp
  also from notin have "… = c" by simp
  finally show ?thesis .
qed


lemma prevElem_nextElem:
assumes dist: "distinct xs" and xxs: "x : set xs"
shows "nextElem (rev xs) (last xs) (nextElem xs (hd xs) x) = x"
proof -
  def x' ≡ "nextElem xs (hd xs) x"
  hence nE: "nextElem xs (hd xs) x = x'" by simp
  have "xs ≠ [] ∧ x = last xs ∧ x' = hd xs ∨ (∃us vs. xs = us @ [x, x'] @ vs)"
    (is "?A ∨ ?B")
    using nextElem_cases[OF nE] xxs by blast
  thus ?thesis
  proof
    assume ?A
    thus ?thesis using dist by(clarsimp simp:neq_Nil_conv)
  next
    assume ?B
    then obtain us vs where [simp]: "xs = us @ [x, x'] @ vs" by blast
    thus ?thesis using dist by simp
  qed
qed

lemma nextElem_prevElem:
 "[| distinct xs; x : set xs |] ==>
  nextElem xs (hd xs) (nextElem (rev xs) (last xs) x) = x"
apply(cases "xs = []")
 apply simp
using prevElem_nextElem[where xs = "rev xs" and x=x]
apply(simp add:hd_rev last_rev)
done


lemma nextElem_nth:
 "!!i. [|distinct xs; i < length xs |]
   ==> nextElem xs z (xs!i) = (if length xs = i+1 then z else xs!(i+1))"
apply(induct xs) apply simp
apply(case_tac i)
 apply(simp split:list.split)
apply clarsimp
done


subsection {* @{text nextVertex} *}

lemma nextVertex_in_face'[simp]:
  "vertices f ≠ [] ==> f • v ∈ \<V> f"
proof -
  assume f: "vertices f ≠ []"
  def c ≡ "nextElem (vertices f) (hd (vertices f)) v"
  then have "nextElem (vertices f) (hd (vertices f)) v = c" by auto
  with f show ?thesis
    apply (simp add: nextVertex_def)
    apply (drule_tac nextElem_cases)
    apply(fastsimp simp:neq_Nil_conv)
    done
qed

lemma nextVertex_in_face[simp]:
  "v ∈ set (vertices f) ==> f • v ∈ \<V> f"
 by (auto intro: nextVertex_in_face')


lemma nextVertex_prevVertex[simp]:
 "[| distinct(vertices f); v ∈ \<V> f |]
 ==> f • (f-1 • v) = v"
by(simp add:prevVertex_def nextVertex_def nextElem_prevElem)

lemma prevVertex_nextVertex[simp]:
 "[| distinct(vertices f); v ∈ \<V> f |]
 ==> f-1 • (f • v) = v"
by(simp add:prevVertex_def nextVertex_def prevElem_nextElem)

lemma prevVertex_in_face[simp]:
 "v ∈ \<V> f ==> f-1 • v ∈ \<V> f"
apply(cases "vertices f = []")
 apply simp
using nextElem_in[of "rev (vertices f)" "(last (vertices f))" v]
apply (auto simp add: prevVertex_def)
done

lemma nextVertex_nth:
 "[| distinct(vertices f); i < |vertices f| |] ==>
  f • (vertices f ! i) = vertices f ! ((i+1) mod |vertices f| )"
apply(cases "vertices f = []") apply simp
apply(simp add:nextVertex_def nextElem_nth hd_conv_nth)
done


subsection {* @{text"\<E>"} *}

lemma finite_edges: "finite(\<E>(f::face))"
apply(simp add:edges_face_def)
apply(rule finite_surj[of "\<V> f" _ "%v. (v, f • v)"])
 apply simp
apply blast
done


lemma edges_face_eq:
 "((a,b) ∈ \<E> (f::face)) = ((f • a = b) ∧ a ∈ \<V> f)"
by (auto simp add: edges_face_def)


lemma edges_setFinal[simp]: "\<E>(setFinal f) = \<E> f"
by(induct f)(simp add:setFinal_def edges_face_def nextVertex_def)

lemma in_edges_in_vertices:
 "(x,y) ∈ \<E>(f::face) ==> x ∈ \<V> f ∧ y ∈ \<V> f"
apply(simp add:edges_face_eq nextVertex_def)
apply(cut_tac xs= "vertices f" and x= "hd(vertices f)" and y=x in nextElem_in)
apply(cases "vertices f")
apply(auto)
done


lemma vertices_conv_Union_edges:
 "\<V>(f::face) = (\<Union>(a,b)∈\<E> f. {a})"
apply(induct f)
apply(simp add:vertices_face_def edges_face_def)
apply blast
done


lemma nextVertex_in_edges: "v ∈ \<V> f ==> (v, f • v) ∈ edges f"
by(auto simp:edges_face_def)

lemma prevVertex_in_edges:
 "[|distinct(vertices f); v ∈ \<V> f|] ==> (f-1 • v, v) ∈ edges f"
by(simp add:edges_face_eq)


subsection {* Triangles *}

lemma vertices_triangle:
   "|vertices f| = 3 ==> a ∈ \<V> f ==>
  distinct (vertices f) ==>
  \<V> f = {a, f • a, f • (f • a)}"
proof -
  assume "|vertices f| = 3"
  then obtain a1 a2 a3 where "vertices f = [a1, a2, a3]"
    by (auto dest!:  length3D)
  moreover assume "a ∈ \<V> f"
  moreover assume "distinct (vertices f)"
  ultimately show ?thesis
    by (simp, elim disjE) (auto simp add: nextVertex_def)
qed

(* could be generalized from 3 to n
   but presburger would no longer do the job *)
lemma tri_next3_id:
 "|vertices f| = 3 ==> distinct(vertices f) ==> v ∈ \<V> f
  ==> f • (f • (f • v)) = v"
apply(subgoal_tac "ALL (i::nat) < 3. (((((i+1) mod 3)+1) mod 3)+1) mod 3 = i")
 apply(clarsimp simp:in_set_conv_nth nextVertex_nth)
apply(presburger)
done


lemma triangle_nextVertex_prevVertex:
 "|vertices f| = 3 ==> a ∈ \<V> f ==>
  distinct (vertices f) ==>
  f • (f • a) = f-1 • a"
proof -
  assume "|vertices f| = 3"
  then obtain a1 a2 a3 where "vertices f = [a1, a2, a3]"
    by (auto dest!:length3D)
  moreover assume "a ∈ \<V> f"
  moreover assume "distinct (vertices f)"
  ultimately show ?thesis
    by (simp, elim disjE) (auto simp add: nextVertex_def prevVertex_def)
qed

subsection {* Quadrilaterals *}


lemma vertices_quad:
  "|vertices f| = 4 ==> a ∈ \<V> f ==>
  distinct (vertices f) ==>
  \<V> f = {a, f • a, f • (f • a), f • (f • (f • a))}"
proof -
  assume "|vertices f| = 4"
  then obtain a1 a2 a3 a4 where "vertices f = [a1, a2, a3, a4]"
    by (auto dest!: length4D)
  moreover assume "a ∈ \<V> f"
  moreover assume "distinct (vertices f)"
  ultimately show ?thesis
    by (simp, elim disjE) (auto simp add: nextVertex_def)
qed

lemma quad_next4_id:
 "[| |vertices f| = 4; distinct(vertices f); v ∈ \<V> f |] ==>
  f • (f • (f • (f • v))) = v"
apply(subgoal_tac "ALL (i::nat) < 4.
 (((((((i+1) mod 4)+1) mod 4)+1) mod 4)+1) mod 4 = i")
 apply(clarsimp simp:in_set_conv_nth nextVertex_nth)
apply(presburger)
done


lemma quad_nextVertex_prevVertex:
 "|vertices f| = 4 ==> a ∈ \<V> f ==> distinct (vertices f) ==>
  f • (f • (f • a)) = f-1 • a"
proof -
  assume "|vertices f| = 4"
  then obtain a1 a2 a3 a4 where "vertices f = [a1, a2, a3, a4]"
    by (auto dest!: length4D)
  moreover assume "a ∈ \<V> f"
  moreover assume "distinct (vertices f)"
  ultimately show ?thesis
    by (auto) (auto simp add: nextVertex_def prevVertex_def)
qed

lemma C0[dest]: "f ∈ set (facesAt g v) ==> v ∈ \<V> g"
  by (simp add: facesAt_def split: split_if_asm)


lemma len_faces_sum: "|faces g| = |finals g| + |nonFinals g|"
by(simp add:finals_def nonFinals_def sum_length_filter_compl)


lemma graph_max_final_ex:
 "∃f∈set (finals (graph n)). |vertices f| = n"
proof (induct "n")
  case 0 then show ?case by (simp add: graph_def finals_def)
next
  case (Suc n) then show ?case
   by (simp add: graph_def finals_def)
qed


subsection{* No loops *}

lemma distinct_no_loop2:
 "[| distinct(vertices f); v ∈ \<V> f; u ∈ \<V> f; u ≠ v |] ==> f • v ≠ v"
apply(frule split_list[of v])
apply(clarsimp simp: nextVertex_def neq_Nil_conv hd_append
  split:list.splits split_if_asm)
done

lemma distinct_no_loop1:
 "[| distinct(vertices f); v ∈ \<V> f; |vertices f| > 1 |] ==> f • v ≠ v"
apply(subgoal_tac "∃u ∈ \<V> f. u ≠ v")
 apply(blast dest:distinct_no_loop2)
apply(cases "vertices f") apply simp
apply(rename_tac a as)
apply (clarsimp simp:neq_Nil_conv)
done


subsection{* @{const between} *}

lemma between_front[simp]:
 "v ∉ set us ==> between (u # us @ v # vs) u v = us"
by(simp add:between_def split_def)

lemma between_back:
 "[| v ∉ set us; u ∉ set vs; v ≠ u |] ==> between (v # vs @ u # us) u v = us"
by(simp add:between_def split_def)


lemma next_between:
 "[|distinct(vertices f); v ∈ \<V> f; u ∈ \<V> f; f • v ≠ u |]
  ==> f • v ∈ set(between (vertices f) v u)"
apply(frule split_list[of u])
apply(clarsimp)
apply(erule disjE)
 apply(clarsimp simp:set_between_id nextVertex_def hd_append split:list.split)
apply(erule disjE)
 apply(frule split_list[of v])
 apply(clarsimp simp: between_def split_def nextVertex_def split:list.split)
 apply(clarsimp simp:append_eq_Cons_conv)
apply(frule split_list[of v])
apply(clarsimp simp: between_def split_def nextVertex_def split:list.split)
apply(clarsimp simp: hd_append)
done


lemma next_between2:
 "[| distinct(vertices f); v ∈ \<V> f; u ∈ \<V> f; u ≠ v |] ==>
  v ∈ set(between (vertices f) u (f • v))"
apply(frule split_list[of u])
apply(clarsimp)
apply(erule disjE)
 apply(clarsimp simp: nextVertex_def hd_append split:list.split)
 apply(rule conjI)
  apply(clarsimp)
 apply(frule split_list[of v])
 apply(clarsimp simp: between_def split_def split:list.split)
 apply(fastsimp simp: append_eq_Cons_conv)
apply(frule split_list[of v])
apply(clarsimp simp: between_def split_def nextVertex_def split:list.splits)
apply(clarsimp simp: hd_append)
apply(erule disjE)
 apply(clarsimp)
apply(frule split_list)
apply(fastsimp)
done


(* distinctness seems not to be necessary but simplifies the proof *)
lemma between_next_empty:
 "distinct(vertices f) ==> between (vertices f) v (f • v) = []"
apply(cases "v ∈ \<V> f")
 apply(frule split_list)
 apply(clarsimp simp:between_def split_def nextVertex_def
   neq_Nil_conv hd_append split:list.split)
 apply(clarsimp simp:between_def split_def nextVertex_def)
apply(cases "vertices f")
 apply simp
apply simp
done


lemma unroll_between_next:
 "[| distinct(vertices f); u ∈ \<V> f; v ∈ \<V> f; f • v ≠ u |] ==>
  between (vertices f) v u = f • v # between (vertices f) (f • v) u"
using split_between[OF _ _ _ next_between]
apply (simp add: between_next_empty split:split_if_asm)
apply(blast dest:distinct_no_loop2 intro:sym)
done


lemma unroll_between_next2:
 "[| distinct(vertices f); u ∈ \<V> f; v ∈ \<V> f; u ≠ v |] ==>
  between (vertices f) u (f • v) = between (vertices f) u v @ [v]"
using split_between[OF _ _ _ next_between2]
by (simp add: between_next_empty split:split_if_asm)


lemma nextVertex_eq_lemma:
 "[| distinct(vertices f); x ∈ \<V> f; y ∈ \<V> f; x ≠ y;
    v ∈ set(x # between (vertices f) x y) |] ==>
  f • v = nextElem (x # between (vertices f) x y @ [y]) z v"
apply(drule split_list[of x])
apply(simp add:nextVertex_def)
apply(erule disjE)
 apply(clarsimp)
 apply(erule disjE)
  apply(drule split_list)
  apply(clarsimp simp add:between_def split_def hd_append split:list.split)
  apply(fastsimp simp:append_eq_Cons_conv)
 apply(drule split_list)
 apply(clarsimp simp add:between_def split_def hd_append split:list.split)
 apply(fastsimp simp:append_eq_Cons_conv)
apply(clarsimp)
 apply(erule disjE)
 apply(drule split_list[of y])
 apply(clarsimp simp:between_def split_def)
 apply(erule disjE)
  apply(drule split_list[of v])
  apply(fastsimp simp: hd_append neq_Nil_conv split:list.split)
 apply(drule split_list[of v])
 apply(clarsimp)
 apply(clarsimp simp: hd_append split:list.split)
 apply(fastsimp simp:append_eq_Cons_conv)
apply(drule split_list[of y])
apply(clarsimp simp:between_def split_def)
apply(drule split_list[of v])
apply(clarsimp)
apply(clarsimp simp: hd_append split:list.split)
apply(clarsimp simp:append_eq_Cons_conv)
apply(fastsimp simp: hd_append neq_Nil_conv split:list.split)
done

lemma nextVertex_eq_if_between_eq:
 "[| between (vertices f) x y = between (vertices f') x y;
    distinct(vertices f); distinct(vertices f'); x ≠ y;
    x ∈ \<V> f; y ∈ \<V> f; x ∈ \<V> f'; y ∈ \<V> f';
    v ∈ set(x # between (vertices f) x y) |] ==>
  f • v = f' • v"
by(simp add:nextVertex_eq_lemma[where z = 0])

end

lemma final_setFinal:

  final (setFinal f)

lemma eq_setFinal_iff:

  (f = setFinal f) = final f

lemma setFinal_eq_iff:

  (setFinal f = f) = final f

lemma distinct_vertices:

  distinct (vertices g)

@{const nextElem}

lemma nextElem_append:

  y ∉ set xs ==> nextElem (xs @ ys) d y = nextElem ys d y

lemma nextElem_cases:

  nextElem xs d x = y
  ==> x ∉ set xsy = dxs ≠ [] ∧ x = last xsy = dx ∉ set (butlast xs) ∨
      (∃us vs. xs = us @ [x, y] @ vsx ∉ set us)

lemma nextElem_notin_butlast:

  y ∉ set (butlast xs) ==> nextElem xs x y = x

lemma nextElem_in:

  nextElem xs x y ∈ set (x # xs)

lemma nextElem_notin:

  a ∉ set as ==> nextElem as c a = c

lemma nextElem_last:

  distinct xs ==> nextElem xs c (last xs) = c

lemma prevElem_nextElem:

  [| distinct xs; x ∈ set xs |]
  ==> nextElem (rev xs) (last xs) (nextElem xs (hd xs) x) = x

lemma nextElem_prevElem:

  [| distinct xs; x ∈ set xs |]
  ==> nextElem xs (hd xs) (nextElem (rev xs) (last xs) x) = x

lemma nextElem_nth:

  [| distinct xs; i < |xs| |]
  ==> nextElem xs z (xs ! i) = (if |xs| = i + 1 then z else xs ! (i + 1))

@{text nextVertex}

lemma nextVertex_in_face':

  vertices f ≠ [] ==> fv ∈ \<V> f

lemma nextVertex_in_face:

  v ∈ \<V> f ==> fv ∈ \<V> f

lemma nextVertex_prevVertex:

  [| distinct (vertices f); v ∈ \<V> f |] ==> f • (f-1v) = v

lemma prevVertex_nextVertex:

  [| distinct (vertices f); v ∈ \<V> f |] ==> f-1 • (fv) = v

lemma prevVertex_in_face:

  v ∈ \<V> f ==> f-1v ∈ \<V> f

lemma nextVertex_nth:

  [| distinct (vertices f); i < |vertices f| |]
  ==> f • (vertices f ! i) = vertices f ! ((i + 1) mod |vertices f|)

@{text"\<E>"}

lemma finite_edges:

  finite (\<E> f)

lemma edges_face_eq:

  ((a, b) ∈ \<E> f) = (fa = ba ∈ \<V> f)

lemma edges_setFinal:

  \<E> (setFinal f) = \<E> f

lemma in_edges_in_vertices:

  (x, y) ∈ \<E> f ==> x ∈ \<V> fy ∈ \<V> f

lemma vertices_conv_Union_edges:

  \<V> f = (UN (a, b):\<E> f. {a})

lemma nextVertex_in_edges:

  v ∈ \<V> f ==> (v, fv) ∈ \<E> f

lemma prevVertex_in_edges:

  [| distinct (vertices f); v ∈ \<V> f |] ==> (f-1v, v) ∈ \<E> f

Triangles

lemma vertices_triangle:

  [| triangle f; a ∈ \<V> f; distinct (vertices f) |]
  ==> \<V> f = {a, fa, f • (fa)}

lemma tri_next3_id:

  [| triangle f; distinct (vertices f); v ∈ \<V> f |] ==> f • (f • (fv)) = v

lemma triangle_nextVertex_prevVertex:

  [| triangle f; a ∈ \<V> f; distinct (vertices f) |] ==> f • (fa) = f-1a

Quadrilaterals

lemma vertices_quad:

  [| |vertices f| = 4; a ∈ \<V> f; distinct (vertices f) |]
  ==> \<V> f = {a, fa, f • (fa), f • (f • (fa))}

lemma quad_next4_id:

  [| |vertices f| = 4; distinct (vertices f); v ∈ \<V> f |]
  ==> f • (f • (f • (fv))) = v

lemma quad_nextVertex_prevVertex:

  [| |vertices f| = 4; a ∈ \<V> f; distinct (vertices f) |]
  ==> f • (f • (fa)) = f-1a

lemma C0:

  f ∈ set (facesAt g v) ==> v ∈ \<V> g

lemma len_faces_sum:

  |faces g| = |finals g| + |nonFinals g|

lemma graph_max_final_ex:

f∈set (finals (graph n)). |vertices f| = n

No loops

lemma distinct_no_loop2:

  [| distinct (vertices f); v ∈ \<V> f; u ∈ \<V> f; uv |] ==> fvv

lemma distinct_no_loop1:

  [| distinct (vertices f); v ∈ \<V> f; 1 < |vertices f| |] ==> fvv

@{const between}

lemma between_front:

  v ∉ set us ==> between (u # us @ v # vs) u v = us

lemma between_back:

  [| v ∉ set us; u ∉ set vs; vu |] ==> between (v # vs @ u # us) u v = us

lemma next_between:

  [| distinct (vertices f); v ∈ \<V> f; u ∈ \<V> f; fvu |]
  ==> fv ∈ set (between (vertices f) v u)

lemma next_between2:

  [| distinct (vertices f); v ∈ \<V> f; u ∈ \<V> f; uv |]
  ==> v ∈ set (between (vertices f) u (fv))

lemma between_next_empty:

  distinct (vertices f) ==> between (vertices f) v (fv) = []

lemma unroll_between_next:

  [| distinct (vertices f); u ∈ \<V> f; v ∈ \<V> f; fvu |]
  ==> between (vertices f) v u = fv # between (vertices f) (fv) u

lemma unroll_between_next2:

  [| distinct (vertices f); u ∈ \<V> f; v ∈ \<V> f; uv |]
  ==> between (vertices f) u (fv) = between (vertices f) u v @ [v]

lemma nextVertex_eq_lemma:

  [| distinct (vertices f); x ∈ \<V> f; y ∈ \<V> f; xy;
     v ∈ set (x # between (vertices f) x y) |]
  ==> fv = nextElem (x # between (vertices f) x y @ [y]) z v

lemma nextVertex_eq_if_between_eq:

  [| between (vertices f) x y = between (vertices f') x y; distinct (vertices f);
     distinct (vertices f'); xy; x ∈ \<V> f; y ∈ \<V> f; x ∈ \<V> f';
     y ∈ \<V> f'; v ∈ set (x # between (vertices f) x y) |]
  ==> fv = f'v