
Flyspeck I: Tame Graphs

Tobias Nipkow and Gertrud Bauer and Paula Schultz†

Institut für Informatik, TU München

Abstract. We present a verified enumeration of tame graphs as defined
in Hales’ proof of the Kepler Conjecture and confirm the completeness of
Hales’ list of all tame graphs while reducing it from 5128 to 2771 graphs.

1 Introduction

In 1611 Kepler asserted what every cannoneer of the day must have known,
that the so-called cannonball packing is a densest arrangement of 3-dimensional
balls of the same size. In 1900 this assertion became part of Hilbert’s 18th
problem. In 1998 Thomas Hales announced the first (by now) accepted proof.
It involves 3 distinct large computations. After 4 years of refereeing by a team
of 12 referees, an abridged version was published only recently [5]. The referees
declared that they were 99% certain of the correctness of the proof. Dissatisfied
with this state of affairs Hales started the informal open-to-all collaborative
flyspeck project (www.math.pitt.edu/∼thales/flyspeck) to formalize the whole
proof with a theorem prover. This paper is the first definite contribution to
flyspeck.

Hales’ proof goes roughly like this: any potential counter example (denser
packing) gives rise to a “tame” plane graph, where tameness is a very specific
notion; enumerate all (finitely many) tame graphs (by computer); for each of
them check (again by computer) that they cannot constitute a counter example.
For modularity reasons Hales provided the Archive, a collection of files with
(hopefully) all tame graphs.

We recast Hales’ Java program for the enumeration of all tame graphs in
logic (Isabelle/HOL), proved its completeness, ran it, and compared the output
to Hales’ Archive. It turns out that Hales was right, the Archive is complete,
although redundant (there are at most 2771, not 5128 tame graphs), and that
one tameness condition present in his Java program was missing from his proof
text. Apart from the contribution to Hales’ proof, this paper demonstrates that
theorem provers can not just formalize known results but can help in establishing
the validity of emerging state-of-the-art mathematical proofs.

An intrinsic feature of this proof, which it shares with Gonthier’s proof of
the Four Colour Theorem [3], is the need to perform massive computations
involving the defined functions (§1.3, §5). Hence efficiency is a concern: during
the development phase it is not very productive if, after every change, it takes a
week to rerun the proof to find that the change broke it. Part of the achievement
of our work is narrowing the gap between the specification of tameness and the
enumeration (to simplify the proof) without compromising efficiency unduly.

www.math.pitt.edu/~thales/flyspeck

Here is one motivating glimpse of where the tame graphs come from: each
one is the result of taking a cluster of balls and projecting the centers of the
balls on to the surface of the ball in the center, connecting two centers if they
are within a certain distance. For an eminently readable overview of Hales’ proof
see [4], for the details see [5], and for the full monty read [6] and accompanying
articles in the same volume. For Hales’ Java program and his Archive see his web
page or the online material accompanying [5]. The gory details of our own work
can be found in the Isabelle theories available from the first author’s home page.
The thesis [1] also contains full details but is a precursor to the work presented
here: the enumeration and the proof have changed considerably and the proof
has been completed.

1.1 Related Work

Obua [10] and Zumkeller [11] work towards the verification of the remaining
computational parts in Hales’ proof.

Gonthier’s proof of the Four Colour Theorem [3] is very much concerned with
efficient data structures for various computations on plane graphs, a feature it
shares with our proof. At the same time he employs hypermaps as a unifying
representation of plane graphs. Potentially, hypermaps could play the same role
in the less computational but mathematically more abstract parts of flyspeck.

1.2 Basic Notation

Isabelle/HOL [9] conforms largely to everyday mathematical notation. This sec-
tion introduces further non-standard notation and in particular a few basic data
types with their primitive operations.

Types The basic types of truth values, natural numbers and integers are
called bool, nat, and int. The space of total functions is denoted by ⇒. Type
variables are written ′a, ′b, etc. The notation t::τ means that term t has type τ .

Sets (type ′a set) come with their usual syntax. The pointwise image of set
M under a function f is written f ‘ M.

Lists (type ′a list) come with the empty list [], the infix constructor · , the
infix @ that appends two lists, and the conversion function set from lists to sets.
Function hd yields the head of a list, last the last element, and butlast drops
the last element. Variable names ending in “s” usually stand for lists, |xs| is the
length of xs, distinct xs means that the elements of xs are all distinct. Instead
of map f xs and filter P xs we frequently write [f x . x ∈ xs] and [x∈xs . P x].

1.3 Proof by Evaluation

Many theorem provers (ACL2, Coq and PVS) have the ability to evaluate func-
tions during proof by compilation into some efficient format followed by execu-
tion. Isabelle has been able to generate ML code for some time now [2]. Recently
this has been made available as an inference rule: given a term t, all functions

2

in t are compiled to ML (provided this is possible), t is reduced to u by the ML
system, and the result is turned into the theorem t = u. Essentially, the ML
system is used as an efficient term rewriting engine. To speed things up further,
nat and int are implemented by arbitrary precision ML integers.

In order to remove constructs which are not by themselves executable, code
generation is preceded by a preprocessor that rewrites the term with speci-
fied lemmas. For example, the lemmas ∀ x∈set xs. P x ≡ list-all P xs and
∃ x∈set xs. P x ≡ list-ex P xs replace bounded quantifiers over lists with exe-
cutable functions. This is the key to bridging the gap between specification and
implementation automatically and safely.

Because lists are executable but sets are not, we sometimes phrase concepts
in terms of lists rather than sets to avoid having to define the concept twice and
having to provide a trivial implementation proof.

2 Plane Graphs

Following Hales we represent finite, undirected, plane graphs as lists (= finite
sets) of faces and faces as lists of vertices. Note that by representing faces as lists
they have an orientation. Our enumeration of plane graphs requires an additional
distinction between final and nonfinal faces. This flag is attached directly to each
face:

vertex = nat, face = vertex list × bool, graph = face list

The projection functions for faces are called vertices and final. The size of a face
is the length of its vertex list. Occasionally we call a list of vertices a face, too.
A graph is final if all its faces are final. Function F returns the set of faces of a
graph, i.e. is a synonym for function set. Function V returns the set of vertices
in a graph, countVertices the number of vertices. Given a graph g and a vertex
v, facesAt g v computes the list of faces incident to v.

For navigation around a face f we consider its list of vertices as cyclic and
introduce the following notation: if v is a vertex in f then f · v is the vertex
following v and f i · v is the ith vertex following v (where i may also be −1).
This description is ambiguous if there are multiple occurrences of v but this
cannot arise in our context.

Representing faces as lists means that we want to regard two vertex lists us
and vs as equivalent if one can be obtained from the other by rotation, in which
case we write us ∼= vs. We introduce the notation

x ∈∼= M ≡ ∃ y∈M . x ∼= y, M ⊆∼= N ≡ ∀ x∈M . x ∈∼= N

Throughout most of this paper we pretend that a graph is just a face list,
but in reality it is more complicated. To avoid recomputation, countVertices and
facesAt are (hidden) components of the graph.

2.1 Enumeration of Plane Graphs

Not every list of faces constitutes a plane graph. Hence we need additional means
of characterizing planarity. We have chosen an operational characterization, i.e.

3

an executable enumeration due to Hales. The reason is that we can then view
the enumeration of tame graphs as a restriction of the enumeration of plane
graphs. The justification for not starting with a more abstract traditional char-
acterization of planarity is that this is the first definite contribution to flyspeck
and it is not yet clear which notion of planarity is most suitable for the rest of
the project. In a nutshell, we wanted to concentrate on the new (and unchecked
by referees!) enumeration of tame graphs rather than the mathematically well
understood issue of planarity.

The graphs required for Hales’ proof are plane graphs with at least 2 faces
(including the outer one), where each face is a simple polygon of size ≥ 3. In the
sequel the term plane refers to this class. Hales’ enumeration of plane graphs
proceeds inductively: you start with a seed graph with two faces, the final outer
one and the (reverse) nonfinal inner one. If a graph contains a nonfinal face, it
can be subdivided into a final face and any number of nonfinal ones as shown
below. Final faces are grey, nonfinal ones white. The unbounded grey square
indicates the unbounded outer face.

Because a face can be subdivided in many ways, this process defines a tree of
graphs. By construction the leaves must be final graphs, and they are the plane
graphs we are interested in: any plane graph (in the above sense) of n faces can
be generated in n− 1 steps by this process, adding one (final) face at a time.

This definition is also meant to serve as the basis of the actual enumeration.
Hence we reduce its redundancy, i.e. the number of times each graph is generated,
by the following means:

– The enumeration is parameterized by a natural number p which controls the
maximal size of final faces in the generated graphs. The seed graph contains
two (p + 3)-gons and the final face created in each step may at most be a
(p + 3)-gon. As a result, different parameters lead to disjoint sets of graphs.
Note that the nonfinal faces may (and need to be) of arbitrary size.

– In each step we subdivide only one fixed face and the new final face always
shares one fixed edge with the subdivided face; which face and edge are
chosen is immaterial. This does not affect the set of final graphs that can be
generated but merely the order in which the final faces are created.

Formalization Now we are ready for the top level formal specification:

PlaneGraphs ≡
⋃

p {g | Seedp [next-planep]→∗ g ∧ final g}

where Seedp ≡ [([0 ,. . .,p+2],True), ([p+2 ,. . .,0],False)] is the seed graph de-
scribed above. Notation g0 [f]→∗ g is simply suggestive syntax for (g0, g) ∈

4

{(g , g ′) | g ′ ∈ set (f g)}∗, i.e. we can reach g from g0 in finitely many steps
via function f :: graph ⇒ graph list. In our case f is next-planep which maps a
graph to a list of successor graphs:

next-planep g ≡
let fs = [f ∈faces g . ¬ final f]
in if fs = [] then []

else let f = minimalFace fs; v = minimalVertex g f
in

⊔
i∈ [3 ..p + 3] generatePolygon i v f g

If there are only final faces, we are done. Otherwise we pick a minimal nonfinal
face (in terms of size) and a minimal vertex within that face. Minimality of the
vertex refers to its distance from the vertices in the seed graph. This policy
favours compact graphs over stringy objects. Its implementation requires an
additional (hidden) component in each graph. But since the choice of vertex
(and face) is irrelevant as far as completeness of the enumeration is concerned,
so is the precise implementation.

Having fixed f and v we subdivide f in all possible ways by placing an i -gon
inside it (along the edge from v to its predecessor vertex in f), where i ranges
from 3 to p+3. Function generatePolygon returns a list of all possible successor
graphs and the suggestive syntax

⊔
i∈ I F i represents the concatenation of all

F i for i in I.
Function generatePolygon operates and is explained in stages:

generatePolygon n v f g ≡
let enumeration = enumerator n |vertices f |;

enumeration = [is∈enumeration . ¬ containsDuplicateEdge g f v is];
vertexLists = [indexToVertexList f v is. is ∈ enumeration]

in [subdivFace g f vs. vs ∈ vertexLists]

Enumeration We have to enumerate all possible ways of inscribing a final n-
gon inside f such that it shares the edge (f−1 · v , v) with f (which is removed).
The new n-gon can in fact share all edges with f, in which case we simply finalize
f without adding any new nonfinal faces; or it can touch f only at f−1 · v and v
and all of its other vertices are new; or anything in between. Following Hales one
can describe each of these n-gons by a list of length n of increasing indices from
the interval {0 ,. . .,|vertices f | − 1}. Roughly speaking, index i represents vertex
f i · v and a pair i ,j of adjacent list elements is interpreted as follows: if i < j
then the new polygon contains an edge from vertex f i · v to f j · v ; if i = j then
the new polygon contains a new vertex at that point. For example, given the
face [v0,. . .,v5], the index list [0 ,2 ,3 ,3 ,3 ,5] represents some face [v0,v2,v3,x ,y ,v5]
where x and y are new vertices.

The enumeration of all these index lists is the task of function enumerator
which returns a nat list list. We have proved that enumerator n m returns all
(not necessarily strictly) increasing lists of length n starting with 0 and ending
with m − 1 :

set (enumerator n m) =

5

{is | |is| = n ∧ hd is = 0 ∧ last is = m − 1 ∧ last (butlast is) < last is ∧
increasing is}

Condition last (butlast is) < last is excludes lists like [. . .,m,m] which would
insert a new vertex behind the last element, i.e. between f−1 · v and v.

The next stage in generatePolygon removes those index lists which would
create a duplicate edge: containsDuplicateEdge g f v is checks that there are no
two adjacent indices i < j in is such that (f i · v , f j · v) or (f j · v , f i · v) is
an edge in g (unless it is an edge in f, in which case no duplicate edge is created
because f is removed). Finally the index list is turned into a list of vertices as
sketched above employing

datatype ′a option = None | Some ′a

to distinguish an existing vertex Some(f i · v) from a new vertex None:

indexToVertexList f v is ≡ hideDups [f k · v . k ∈ is]
hideDups (i · is) = Some i · hideDupsRec i is
hideDupsRec a [] = []
hideDupsRec a (b · bs) =
(if a = b then None · hideDupsRec b bs else Some b · hideDupsRec b bs)

The result (in generatePolygon) is vertexLists of type vertex option list list where
each list in vertexLists describes one possibility of inserting a final face into f.

Subdivision The last step in generatePolygon is to generate a new graph
subdivFace g f vos for each vos in vertexLists by subdividing f as specified by
vos. This is best visualized by an example. Given a face f = [1 ,. . .,8] and vos =
[Some 1 , Some 3 , None, Some 4 , None, Some 8] the result of inserting a face
specified by vos into f is shown below.

8

1

2 3

4

5

67

1

3

9

3

4 4

10
8

Subdividing is an iterative process where in each step we split the (remaining)
face in two nonfinal faces; at the end we finalize the face. In the example we first
split the face along the path [1 ,3], then along [3 ,9 ,4] and finally along [4 ,10 ,8].
Each splitting in two is performed by splitFace g u v f newvs which returns a
new graph where f has been replaced by its two halves by inserting a list of new
vertices newvs between the existing vertices u and v in f. The straightforward
definition of splitFace is omitted.

Repeated splitting is performed by subdivFace ′ g f u n vos where u is the
vertex where splitting starts, n records how many new vertices must be inserted
along the seam, and vos is a vertex option list from vertexLists:

6

subdivFace ′ g f u n [] = makeFaceFinal f g
subdivFace ′ g f u n (vo · vos) =
(case vo of None ⇒ subdivFace ′ g f u (Suc n) vos
| Some v ⇒

if f · u = v ∧ n = 0 then subdivFace ′ g f v 0 vos
else let ws = [countVertices g ..<countVertices g + n];

(f 1, f 2, g ′) = splitFace g u v f ws
in subdivFace ′ g ′ f 2 v 0 vos)

The definition is by recursion on vos. The base case simply turns f into a final face
in g. If vos starts with None, no splitting takes place but n is incremented. If vos
starts with Some v there are two possibilities. Either we have merely advanced
one vertex along f, in which case we keep on going. Or we have skipped at least
one vertex of f, in which case we must split f between u and v, inserting n new
vertices: the term [i ..<j] is the list of natural numbers from and including i
up to but excluding j. Function splitFace returns the two new faces along with
the new graph. Only f 2 is used (it is the face that is subdivided further), but
returning both faces helps to state many lemmas more succinctly.

Function subdivFace (called from generatePolygon) simply starts subdivFace ′:

subdivFace g f (Some u · vs) ≡ subdivFace ′ g f u 0 vs

Note that because all index lists produced by enumerator are nonempty, all
vertex lists produced by indexToVertexList are nonempty and start with Some.

2.2 Invariants

Almost half the proof is concerned with verifying that PlaneGraphs satisfy cer-
tain invariants which are combined into the predicate inv :: graph ⇒ bool. Proba-
bly half that effort is caused by showing that the extended graph representation,
primarily facesAt, is kept consistent. The remaining properties are: each face is
of size ≥ 3 and all its vertices are distinct, there are at least two faces, the faces
are distinct modulo ∼= and if the graph has more than 2 faces also modulo re-
versal, the edges of distinct faces are disjoint (where edges are pairs of adjacent
vertices in an oriented face), and any nonfinal face is surrounded by final faces.

3 Tame Graphs

Tameness is rooted in geometric considerations but for this paper it is simply a
fixed interface to the rest of Hales’ proof and should be taken as God given.

3.1 Definition of Tame Graphs

The definition relies on 4 tables a :: nat ⇒ nat, b :: nat ⇒ nat ⇒ nat, c :: nat
⇒ int, d :: nat ⇒ nat. Their precise definition is immaterial for this paper and
can be found elsewhere [1,5]. Like Hales (in his Java program) we have scaled

7

all rational numbers (from the paper proof) by 1000, thus turning them into
integers.

Summing over the elements of a list (below: of faces) is written
∑

x ∈ xs f x .
Function faces returns the list of faces in a graph: in our simplified model of
graphs it is the identity but in the real model it is a projection.

Functions tri and quad count the number of final triangles and quadrilaterals
incident to a vertex. Hales calls a face f exceptional if it is a pentagon or larger,
i.e. if 5 ≤ |vertices f |. Function except returns the number of final exceptional
faces incident to a vertex. A vertex has type (p, q) if p = tri g v, q = quad g v
and except g v = 0.

A graph is tame if it is plane and satisfies 8 conditions:

1. The size of each face is at least 3 and at most 8:

tame1 g ≡ ∀ f ∈F g . 3 ≤ |vertices f | ∧ |vertices f | ≤ 8

2. Every 3-cycle is a face or the opposite of a face:

tame2 g ≡
∀ a b c.

is-cycle g [a, b, c] ∧ distinct [a, b, c] −→
(∃ f ∈F g . vertices f ∼= [a, b, c] ∨ vertices f ∼= [c, b, a])

where is-cycle g vs ≡ hd vs ∈ set (neighbors g (last vs)) ∧ is-path g vs,
function neighbors does the obvious and

is-path g [] = True
is-path g (u · vs) =
(case vs of [] ⇒ True | v ·ws ⇒ v ∈ set (neighbors g u) ∧ is-path g vs)

3. Every 4-cycle surrounds one of the following configurations:

The tame configurations are straightforward to describe:

tameConf 1 a b c d ≡ [[a, b, c, d]]
tameConf 2 a b c d ≡ [[a, b, c], [a, c, d]]
tameConf 3 a b c d e ≡ [[a, b, e], [b, c, e], [a, e, c, d]]
tameConf 4 a b c d e ≡ [[a, b, e], [b, c, e], [c, d , e], [d , a, e]]

Predicate tame-quad formalizes that a,b,c,d forms one of the tame configu-
rations, taking rotation into account:

tame-quad g a b c d ≡
set (tameConf 1 a b c d) ⊆∼= vertices ‘ F g ∨
set (tameConf 2 a b c d) ⊆∼= vertices ‘ F g ∨
set (tameConf 2 b c d a) ⊆∼= vertices ‘ F g ∨
(∃ e∈V g − {a, b, c, d}.

set (tameConf 3 a b c d e) ⊆∼= vertices ‘ F g ∨

8

set (tameConf 3 b c d a e) ⊆∼= vertices ‘ F g ∨
set (tameConf 3 c d a b e) ⊆∼= vertices ‘ F g ∨
set (tameConf 3 d a b c e) ⊆∼= vertices ‘ F g ∨
set (tameConf 4 a b c d e) ⊆∼= vertices ‘ F g)

Finally, tame3 also takes reversal of orientation into account:

tame3 g ≡
∀ a b c d .

is-cycle g [a, b, c, d] ∧ distinct [a, b, c, d] −→
tame-quad g a b c d ∨ tame-quad g d c b a

4. The degree of every vertex is at most 6 and at most 5 if the vertex is contained
in an exceptional face:

tame45 g ≡ ∀ v∈V g . degree g v ≤ (if except g v = 0 then 6 else 5)

We have combined conditions 4 and 5 from [5] into one.
5. The following inequality holds:

tame6 g ≡ 8000 ≤
∑

f ∈faces g c |vertices f |

6. There exists an admissible assignment of weights to faces of total weight less
than 14800:

tame7 g ≡ ∃w . admissible w g ∧
∑

f ∈faces g w f < 14800

Admissibility is quite involved and discussed below. Although this is not
immediately obvious, tame7 guarantees there are only finitely many tame
graphs. It also is the source of most complications in the proofs because it
is not straightforward to check this condition.

7. There are no two adjacent vertices of type (4, 0):

tame8 g ≡ ¬ (∃ v∈V g . type40 g v ∧ (∃w∈set (neighbors g v). type40 g w))

Now tame is the conjunction of tame1 up to tame8; the numbering follows [5].
Note that tame8 is missing in earlier versions of the proof, e.g. www.math.

pitt.edu/∼thales/kepler04/fullkepler.pdf of 13/3/2004. The second author no-
ticed and informed Hales of this discrepancy between the proof and his Java
code, where the test is present. As a result Hales added tame8 in the published
versions of his proof.

3.2 Admissible Weight Assignment

For w :: face ⇒ nat to be an admissible weight assignment it needs to meet the
following requirements:

1. admissible1 w g ≡ ∀ f ∈F g . d |vertices f | ≤ w f
2. admissible2 w g ≡

∀ v∈V g . except g v = 0 −→ b (tri g v) (quad g v) ≤
∑

f ∈facesAt g v w f

9

www.math.pitt.edu/~thales/kepler04/fullkepler.pdf
www.math.pitt.edu/~thales/kepler04/fullkepler.pdf

3. admissible3 w g ≡
∀V . separated g (set V) ∧ set V ⊆ V g −→∑

v∈V a (tri g v) +∑
f ∈[f ∈faces g . ∃ v∈set V . f ∈ set (facesAt g v)] d |vertices f |

≤
∑

f ∈[f ∈faces g . ∃ v∈set V . f ∈ set (facesAt g v)] w f

The first two constraints express that d and b yield lower bounds for w. The
last requirement yields another lower bound for w in terms of “separated” sets
of vertices. Separatedness means that they are not neighbors, do not lie on a
common quadrilateral, and fulfill some additional constraints:

separated1 g V ≡ ∀ v∈V . except g v 6= 0
separated2 g V ≡ ∀ v∈V . ∀ f ∈set (facesAt g v). f · v /∈ V
separated3 g V ≡
∀ v∈V . ∀ f ∈set (facesAt g v). |vertices f | ≤ 4 −→ V f ∩ V = {v}
separated4 g V ≡ ∀ v∈V . degree g v = 5

Note that Hales [5] lists 4 admissibility conditions, the third of which our
work shows to be superfluous.

3.3 Enumeration of Tame Graphs

The enumeration of tame graphs is a modified enumeration of plane graphs
where we remove final graphs that are definitely not tame, and cut the search
tree at nonfinal graphs that cannot lead to tame graphs anymore. Note that in
contrast to the enumeration of plane graphs, a specification we must trust, the
enumeration of tame graphs is accompanied by a correctness theorem (Theorem 3
below), the central result of the work, stating that all tame graphs are generated.
Hence it is less vital to present the tame enumeration in complete detail (except
to satisfy the curiosity of the reader and allow reproduceability).

The core of the tame enumeration is a filtered version of generatePolygon:

generatePolygonTame n v f g = [g ′∈generatePolygon n v f g . ¬ notame g ′]

In reality this is not the definition but the characteristic lemma. The actual defi-
nition replaces the repeated enumeration of lists of index lists in generatePolygon
by a table lookup. This is “merely” an optimization for speed, but an important
one. The filter notame removes all graphs that cannot lead to a tame graph:

notame g ≡ ¬ (tame45 g ∧ is-tame7 g)
is-tame7 g ≡ squanderLowerBound g < 14800

Using tame45 on nonfinal graphs is justified because the degree of a vertex can
only increase as a graph is refined and because except takes only the final faces
into account.1 Function squanderLowerBound computes a lower bound for the
total admissible weight of any final graph that can be generated from g. By
tame7 this lower bound must be < 14800.
1 tame6 on the other hand cannot be used to filter out nonfinal graphs because function

c may return both positive and negative values, i.e. summing over it is not monotone
under the addition of new faces.

10

squanderLowerBound g ≡
∑

f ∈finals g d |vertices f | + ExcessNotAt g None

The lower bound consists of a d-sum over all final faces (justified by admissible1

and the fact that d cannot be negative) and an error correction term Excess-
NotAt. The definition of ExcessNotAt is somewhat involved and not shown.
Essentially we enumerate all maximal separated sets of vertices, compute the
“excess” over and above the d-sum for each one (taking a and b into account as
justified by admissible2 and admissible3), and take the maximum. Note that the
number of separated sets can grow exponentially with the number of vertices.

On top of generatePolygonTame we have a variant of next-planep:

next-tame0p g ≡
let fs = [f ∈faces g . ¬ final f]
in if fs = [] then []

else let f = minimalFace fs; v = minimalVertex g f
in

⊔
i∈ polysizes p g generatePolygonTame i v f g

where polysizes restricts the possible range [3 ..p + 3] to those sizes which can
still lead to tame graphs:

polysizes p g ≡ [n∈[3 ..p + 3] . squanderLowerBound g + d n < 14800]

The justification is that the insertion of a new n-gon into g adds at least d n to
squanderLowerBound g. Hence all these graphs would immediately be discarded
again by notame and polysizes is merely an optimization, but one which happens
to reduce the run time by a factor of 10.

The key correctness theorems for squanderLowerBound (recall inv from §2.2)
are that it increases with next-tame0 (in fact with next-plane)

Theorem 1. If g ′ ∈ set (next-tame0p g) and inv g then squanderLowerBound
g ≤ squanderLowerBound g ′.

and for (final) tame graphs squanderLowerBound is a lower bound for the total
weight of an admissible assignment:

Theorem 2. If tame g and final g and inv g and admissible w g and∑
f ∈faces g w f < 14800 then squanderLowerBound g ≤

∑
f ∈faces g w f

These two theorems are the main ingredients in the completeness proof of
next-tame0 w.r.t. next-plane: any tame graph reachable via next-plane is still
reachable via next-tame0.

Now we compose next-tame0 with a function makeTrianglesFinal (details
omitted) which finalizes all nonfinal triangles introduced by next-tame0 :

next-tame1p ≡ map makeTrianglesFinal ◦ next-tame0p

This step appears to be a trivial consequence of tame2 which says that all 3-
cycles must be triangles, i.e. that one should not be allowed to subdivide a
triangle further. The latter implication, however, is not completely trivial: one
has to show that if one ever subdivides a triangle, that triangle cannot be re-
introduced as a face later on. A lengthy proof yields completeness of next-tame1
w.r.t. next-tame0. The invariants (§2.2) are absolutely essential here.

As a final step we filter out all untame final graphs:

11

next-tamep ≡ filter (λg . ¬ final g ∨ is-tame g) ◦ next-tame1p
is-tame g ≡ tame45 g ∧ tame6 g ∧ tame8 g ∧ is-tame7 g ∧ is-tame3 g

Tameness conditions 1 and 2 are guaranteed by construction. Conditions 45,
6 and 8 are directly executable. Condition 7 has been discussed already. This
leaves condition 3, the check of all possible 4-cycles:

is-tame3 g ≡
∀ vs∈set (find-cycles 4 g).

is-cycle g vs ∧ distinct vs ∧ |vs| = 4 −→ ok4 g vs

This implementation is interesting in that it employs a search-and-check tech-
nique: function find-cycles need not be verified at all because the rest of the
code explicitly checks that the vertex lists are actually cycles of distinct vertices
of length 4. This can at most double the execution time but reduces verifi-
cation time. In fact, find-cycles is expressed in terms of a while-functional [9]
which simplifies definition but would complicate verification. Function ok4 is a
straightforward implementation of tame-quad.

Note that this search-and-check technique is applicable only because we
merely need to ensure completeness of the enumeration of tame graphs, not
correctness. Otherwise we would need to verify that find-cycles finds all cycles.

Completeness of next-tame w.r.t. next-tame1 follows from Theorem 2 to-
gether with the implementation proof of ok4 w.r.t. tame-quad. Putting the three
individual completeness theorems together we obtain the overall completeness
of next-tame: all tame graphs are enumerated.

Theorem 3. If Seedp [next-planep]→∗ g and final g and tame g then Seedp
[next-tamep]→∗ g .

The set of tame graphs is defined in the obvious manner:

TameEnump ≡ {g | Seedp [next-tamep]→∗ g ∧ final g}
TameEnum ≡

⋃
p ≤ 5 TameEnump

An executable version of TameEnump is provided under the name tameEnum.
It realizes a simple work list algorithm directly on top of next-tame and need not
be shown or discussed, except for one detail. Being in a logic of total functions
we have to apply an old trick: since we want to avoid proving termination of the
enumeration process (which is bound to be quite involved), tameEnum takes two
parameters: the usual p and a counter which is decremented in each step. If it
reaches 0 prematurely, we return None, otherwise we return Some Fs where Fs
is the collected list of final graphs, the result of the enumeration. When running
tameEnum we merely need to start with a large enough counter. Because the
returned graphs are all final we reduce each graph to a list of list of vertices via

fgraph g ≡ map vertices (faces g)

before including it in the result. Hence the actual return type of tameEnum is
vertex fgraph list where

′a fgraph = ′a list list.

12

We merely show tameEnum’s correctness theorem, not the definition:

Theorem 4. If tameEnum p n = Some Fs then set Fs = fgraph ‘ TameEnump.

As a final step we need to run tameEnum p n with suitably large n (such
that Some is returned) for all p ≤ 5 2 and compare the result with the contents
of the Archive.

4 The Archives

It turned out that Hales’ Archive was complete but redundant. That is, our
verified enumeration produced only 2771 graphs as opposed to Hales’ 5128. The
reason is twofold: there are many isomorphic copies of graphs in his Archive and
it contains a number of non-tame graphs (partly because for efficiency reasons
he does not enforce tame3 completely in his Java program). The new reduced
Archive can be found at the first author’s web page.

The new Archive is a constant Archive :: vertex fgraph set in the Isabelle
theories which is defined via the concatenation of 6 separate archives, one for
each p ≤ 5 :

Archive ≡ set (Tri @ Quad @ Pent @ Hex @ Hept @ Oct)

The main theorem of our work is the completeness of Archive:

Theorem 5. If g ∈ PlaneGraphs and tame g then fgraph g ∈' Archive.

Relation ' is graph isomorphism (§4.1) and x ∈' M ≡ ∃ y∈M . x ' y. This
theorem is a combination of the completeness of next-tame (Theorem 3) and of
fgraph ‘ TameEnum ⊆' Archive (where M ⊆' N ≡ ∀ x∈M . x ∈' N). The
latter is a corollary of the fact that, for each p ≤ 5, tameEnum p n (for
suitable n) returns Some Fs such that Fs is equivalent to the corresponding
part of the Archive. Quite concretely, we have proved by evaluation (§1.3)
that same (tameEnum 0 800000) Tri, same (tameEnum 1 8000000) Quad,
same (tameEnum 2 20000000) Pent, same (tameEnum 3 4000000) Hex, same
(tameEnum 4 1000000) Hept, and same (tameEnum 5 2000000) Oct, where
same is an executable check of equivalence (modulo ')3 of two lists of fgraphs.
Corollary fgraph ‘ TameEnum ⊆' Archive follows by correctness of tameEnum
(Theorem 4) .

We cannot detail the definition of same (or its correctness theorem) but
we should point out that it is a potential bottleneck: for p = 2 we need to
check 15000 graphs for inclusion in an archive of 1500 graphs — modulo graph
isomorphism! Although isomorphism of plane graphs can be determined in linear
time [8], this algorithm is not very practical because of a large constant factor.
Instead we employ a hashing scheme to home in on the isomorphic graph quickly.

2 By tame1 we are only interested in graphs where all faces are of size ≤ 8 = 5+3,
the 3 being added in next-plane.

3 A check for ⊆' would suffice but it is nice to know that Archive is free of junk.

13

The graphs of each archive are stored in a search tree (a trie) indexed by a list
of natural numbers. The index is the concatenation of a number of hash values
invariant under isomorphism. The most important component is obtained by
adding up, for each vertex, the size of the faces around that vertex, and then
sorting the resulting list. This idea is due to Hales.

4.1 Plane Graph Isomorphisms

For lack of space we present our definition of isomorphism but not its implemen-
tation:

is-pr-iso ϕ Fs1 Fs2 ≡ is-pr-Iso ϕ (set Fs1) (set Fs2)
is-pr-Iso ϕ Fs1 Fs2 ≡ is-Hom ϕ Fs1 Fs2 ∧ inj-on ϕ (

⋃
F∈Fs1

set F)
is-Hom ϕ Fs1 Fs2 ≡ map ϕ ‘ Fs1 // {∼=} = Fs2 // {∼=}

Parameter ϕ is a function of type vertex ⇒ vertex. Predicate is-pr-iso compares
lists of faces (fgraphs), is-pr-Iso sets of faces; pr stands for proper. Proper iso-
morphisms assume that the faces of both graphs have the same orientation. An
isomorphism is defined as usual as an injective homomorphism. A homomor-
phism must turn one graph into the other, modulo rotation of faces: the infix //
is quotienting and the symbol {∼=} is defined as {(f 1, f 2) | f 1

∼= f 2}.
‘Improper’ isomorphisms allow to reverse the orientation of all faces in one

graph (rev reverses a list):

is-iso ϕ Fs1 Fs2 ≡ is-Iso ϕ (set Fs1) (set Fs2)
is-Iso ϕ Fs1 Fs2 ≡ is-pr-Iso ϕ Fs1 Fs2 ∨ is-pr-Iso ϕ Fs1 (rev ‘ Fs2)

Two fgraphs are isomorphic if there exists an isomorphism between them:

g1 ' g2 ≡ ∃ϕ. is-iso ϕ g1 g2

5 Statistics

The starting point were 2200 lines of Java, the result 600 lines of executable HOL
(= ML), excluding comments, debugging aids, and libraries. This reduction is
primarily due to simplifications of the algorithm itself: not splitting the treatment
of triangle and quadrilateral seed graphs into 17 cases, dropping all symmetry
checks, dropping the special treatment of nonfinal quadrilaterals, and dropping
some complicated lower bound estimates (which are all still present in [1]). The
simplicity of the final solution belies the difficulty of arriving at it.

The whole formalization encompasses 17000 lines of definitions and proofs.
Running the complete proof takes 165 minutes on a Xeon: the completeness
proof takes 15 minutes, evaluating the enumeration 105 minutes, and comparing
the resulting graphs with the Archive (modulo graph isomorphism) 45 minutes.

During execution of the enumeration, the gargantuan number of 23 million
graphs are generated and examined, of which 35000 are final. The distribution
of graphs over the new Archive (for p = 0, . . . , 5) is (20,22,13), (923,18,12),
(1545,18,13), (238,17,12), (23,16,12), and (22,15,12), where each triple gives the
number of graphs, average number of faces, and average number of vertices for
that group of graphs.

14

6 Future Work

The enumeration of plane graphs needs to be connected with some abstract
notion of planarity. Hales is preparing a revised proof based on hypermaps
that could serve as the glue — face lists are easily turned into hypermaps.
On the other end, it needs to be shown that none of the tame graphs con-
stitutes a counter example. The linear programming techniques for this step are
in place [10], but their application is nontrivial and not well documented in Hales
proof.

Finally there is the exciting prospect of modifying our proof to cover a very
similar graph enumeration in the proof of the Dodecahedral Conjecture [7].

Acknowledgments The first author wishes to thank: Tom Hales for generously

hosting his sabbatical semester at the University of Pittsburgh and for patiently an-

swering all questions; Jeremy and Sean for lunches and friendship; Q & U for late night

entertainment.

References

1. G. Bauer. Formalizing Plane Graph Theory — Towards a Formalized Proof of the
Kepler Conjecture. PhD thesis, Technische Universität München, 2006.

2. S. Berghofer and T. Nipkow. Executing higher order logic. In P. Callaghan, Z. Luo,
J. McKinna, and R. Pollack, editors, Types for Proofs and Programs (TYPES
2000), volume 2277 of Lect. Notes in Comp. Sci., pages 24–40. Springer-Verlag,
2002.

3. G. Gonthier. A computer-checked proof of the four colour theorem. Available at
research.microsoft.com/∼gonthier/4colproof.pdf.

4. T. C. Hales. Cannonballs and honeycombs. Notices Amer. Math. Soc., 47:440–449,
2000.

5. T. C. Hales. A proof of the Kepler conjecture. Annals of Mathematics, 162:1063–
1183, 2005.

6. T. C. Hales. Sphere packings, VI. Tame graphs and linear programs. Discrete and
Computational Geometry, 2006. To appear.

7. T. C. Hales and S. McLaughlin. A proof of the dodecahedral conjecture. E-print
archive arXiv.org/abs/math.MG/9811079.

8. J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs (preliminary report). In STOC ’74: Proc. 6th ACM Symposium Theory of
Computing, pages 172–184. ACM Press, 1974.

9. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of Lect. Notes in Comp. Sci. Springer-Verlag,
2002. http://www.in.tum.de/∼nipkow/LNCS2283/.

10. S. Obua. Proving bounds for real linear programs in Isabelle/HOL. In J. Hurd,
editor, Theorem Proving in Higher Order Logics (TPHOLs 2005), volume 3603 of
Lect. Notes in Comp. Sci., pages 227–244. Springer-Verlag, 2005.

11. R. Zumkeller. A formalization of global optimization with Taylor models. In
Automated Reasoning (IJCAR 2006), 2006. This volume.

15

research.microsoft.com/~gonthier/4colproof.pdf
arXiv.org/abs/math.MG/9811079
http://www.in.tum.de/~nipkow/LNCS2283/

	Flyspeck I: Tame Graphs
	Tobias Nipkow and Gertrud Bauer and Paula Schultz

