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Abstract. We investigate how to add coercive structural subtyping to a
type system for simply-typed lambda calculus with Hindley-Milner poly-
morphism. Coercions allow to convert between different types, and their
automatic insertion can greatly increase readability of terms. We present
a type inference algorithm that, given a term without type information,
computes a type assignment and determines at which positions in the
term coercions have to be inserted to make it type-correct according to
the standard Hindley-Milner system (without any subtypes). The algo-
rithm is sound and, if the subtype relation on base types is a disjoint
union of lattices, also complete. The algorithm has been implemented in
the proof assistant Isabelle.

1 Introduction

The main idea of subtype polymorphism, or simply subtyping, is to allow the pro-
grammer to omit type conversions, also called coercions. Inheritance in object-
oriented programming languages can be viewed as a form of subtyping.

Although the ability to omit coercions is important to avoid unnecessary clut-
ter in programs, subtyping is not a common feature in functional programming
languages, such as ML or Haskell. The main reason for this is the increase in
complexity of type inference systems with subtyping compared to Milner’s well-
known algorithm W [7]. In contrast, the theorem prover Coq supports coercive
subtyping, albeit in an incomplete manner. Our contributions to this extensively
studied area are:

— a comparatively simple type and coercion inference algorithm with

— soundness and completeness results improving on related work (see the be-
ginning of §3[and the end of , and

— a practical implementation in the Isabelle theorem prover. This extension is
very effective, for example, in the area of numeric types (nat, int, real etc),
which require coercions that used to clutter up Isabelle text.

Our work does not change the standard Hindley-Milner type system (and hence
leaves the Isabelle kernel unchanged!) but infers where coercions need to be
inserted to make some term type correct.

The rest of this paper is structured as follows. In we introduce terms,
types, coercions and subtyping. §3] presents our type inference algorithm for
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simply-typed lambda calculus with coercions and Hindley-Milner polymorphism.
In §4 we formulate the correctness and completeness statements and discuss
restrictions on the subtype relation that are necessary to prove them. An outline
of related research is given in

2 Notation and terminology

2.1 Terms and types

The types and terms of simply-typed lambda calculus are given by the following

grammars:
T=alT|CT ... 7T

t=a|cass | Az:7.t) |t 1

A type can be a type variable (denoted by «, B, ...), a base type (denoted by
S, T, U, ...), or a compound type, which is a type constructor (denoted by
C, D, ...) applied to a list of type arguments. The number of arguments of a
type constructor C, which must be at least one, is called the arity of C. The
function type is a special case of a binary type constructor. We use the common
infix notation 7 — o in this case. Terms can be variables (denoted by z, y, ...),
abstractions, or applications. In addition, a term can contain constants (denoted
by ¢, d, ...) of polymorphic type. All terms are defined over a signature X that
maps each constant to a schematic type, i.e. a type containing variables. In every
occurrence of a constant ¢, the variables in its schematic type can be instantiated
in a different way, for which we use the notation cjg,7, where @ denotes the
vector of free variables in the type of ¢ (ordered in a canonical way), and 7
denotes the vector of types that the free variables are instantiated with. The
type checking rules for terms are shown in Figure

z:Tel Y(e)=0o
—— Tvy-VAR ——— Tvy-CoONST
'kFx:T I't cgsm : ola— T
Nx:7Ht:o I'Ht1:7— o0 I'Eto:T
Ty-ABs Ty-App
I'FXe:7m.t:7—o0 'ty te:o

Fig. 1. Type checking rules

2.2 Subtyping and coercions

We write 7 <: o to denote that 7 is a subtype of 0. The subtyping relation that
we consider in this paper is structural: if 7 <: o, then 7 and o can only differ in
their base types. For example, we may have C'T' <: C U, but not C' T <: S. Type
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checking rules for systems with subtypes are often presented using a so-called
subsumption rule
I'Ft:r T<i0o

I'tt:o

allowing a term ¢ of type 7 to be used in a context where a term of the supertype o
would be expected. The problem of deciding whether a term is typable using the
subsumption rule is equivalent to the problem of deciding whether this term can
be made typable without the subsumption rule by inserting coercion functions
in appropriate places in the term. Rather than extending our type system with
a subsumption rule, we therefore introduce a new judgement I' - ¢ ~» u : 7
that, given a context I' and a term ¢, returns a new term u augmented with
coercions, together with a type 7, such that I' - w : 7 holds. We write 7 <:. o
to mean that c¢ is a coercion of type 7 — o. Coercions can be built up from
a set of coercions C between base types, and from a set of map functions M
for building coercions between constructed types from coercions between their
argument types as shown in Figure 2] The sets C and M are parameters of our
setup. We restrict M to contain at most one map function for a type constructor.

Definition 1 (Map function). Let C be an n-ary type constructor. A function
[ of type

=1 —=>Car ... ap,—>C By ... By
where 7; € {a; = Bi, Bi = «;}, is called a map function for C. If 1; = a; — 5,
then C' is called covariant in the i-th argument wrt. f, otherwise contravariant.

X)) =T—-U ceC
GEN-REFL GEN-BASE
T <iig T T<:.U

T<:eq U U<, S
T <:>\ZL‘IT.C2 (c1 =) S

GEN-TRANS

maps: (61 = p1) = = (6n 2 pn) > Car...an >C f1...0, €M
O={a—7,—a7} V1<i<n. 0(8) <. 0(pi)

Cti...Tn <!9(mapc c1 ... cn) Coi...on

GEN-CONS

Fig. 2. Coercion generation

For the implementation of type checking and inference algorithms, the sub-
sumption rule is problematic, because it is not syntax directed. However, it can
be shown that any derivation of I' - ¢ : ¢ using the subsumption rule can be
transformed into a derivation of I' F ¢ : 7 with 7 <: ¢, in which the subsumption
rule is only applied to function arguments [12], §16.2]. Consequently, the coer-
cion insertion judgement shown in Figure |3| only inserts coercions in argument
positions of functions by means of the COERCE-APP rule.



4 Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow

z:1el Y(e)=o
——— COERCE-VAR —— COERCE-CONST
'Fx~x:7T I'F clgom ~ Clasr : ol@— T

Nr:tHt~u:o

COERCE-ABS
I'FXe:mt~Xe:7u:7T—o

'ty ~uy 11 — Ti2 'ty ~> us 7o T2 <ic T11
COERCE-APP

Tkt ta ~ w1 (cuz): T2

Fig. 3. Coercion insertion

2.3 Type substitutions and unification

A central component of type inference systems is a unification algorithm for
types. Implementing such an algorithm for the type expressions introduced in
is straightforward, since this is just an instance of first-order unification. We
write mgu for the function computing the most general unifier. It produces a type
substitution, denoted by 6, which is a function mapping type variables to types
such that fa # « for only finitely many a. We will sometimes use the notation
{ay = 71,...,ap, — 7,} to denote such substitutions. Type substitutions are
extended to types, terms, and any other data structures containing type variables
in the usual way. The function mgu is overloaded: it can be applied to pairs of
terms, where 7 = 0o if 6 = mgu(r, o), to (finite) sets of equality constraints,
where 07; = 0o; if 6 = mgu{mr =01,...,7n = 0}, as well as to (finite) sets of
types, where 011 = --- =071, if 0 = mgu{m,..., 7}

3 Type Inference with Coercions

In a system without coercions, type inference means to find a type substitution
f and a type 7 for a given term ¢ and context I" such that ¢ becomes typable,
i.e. 0I' F 0t : 7. In a system with coercions, type inference also has to insert
coercions into the term t in appropriate places, yielding a term wu for which
O 0t ~ uw: 7 and 01" - w : 7 holds. A naive way of doing type inference in this
setting would be to compute the substitution # and insert the coercions on-the-
fly, as suggested by Luo [6]. The idea behind Luo’s type inference algorithm is to
try to do standard Hindley-Milner type inference first, and locally repair typing
problems by inserting coercions only if the standard algorithm fails. However,
this approach has a serious drawback: the success or failure of the algorithm
depends on the order in which the types of subterms are inferred. To see why
this is the case, consider the following example.

Ezample 1. Let ¥ = {leq : @« — a — B,n : N,i : Z} be the signature containing a
polymorphic predicate leq (e.g. less-or-equal), as well as a natural number constant n
and an integer constant ¢. Moreover, assume that the set of coercions C = {int : N — Z}



Coercive Subtyping 5

contains a coercion from natural numbers to integers, but not from integers to natural
numbers, since this would cause a loss of information. Then, it is easy to see that the
terms leqp,,,p @ n and leqp,, g n @ can both be made type correct by applying the
type substitution {8 — Z} and inserting coercions, but the naive algorithm can only
infer the type of the first term. Since the term is an application, the algorithm would
first infer (using standard Hindley-Milner type inference) that the function denoted by
the subterm leq(,, g i has type Z — B with the type substitution {B + Z}. Similarly,
for the subterm n the type N is inferred. Since the argument type Z of the function
does not match the type N of its argument, the algorithm inserts the coercion int to
repair the typing problem, yielding the term leg(,, 7 7 (int n) with type B. In contrast,
when inferring the type of the term leq|,, 5 7 7, the algorithm would first infer that
the subterm leqp,, 5 n has type N — B, using the type substitution {8 — N}. The
subterm 1 is easily seen to have type Z, which does not match the argument type N of
the function. However, in this case, the type mismatch cannot be repaired, since there
is no coercion from Z to N, and so the algorithm fails.

The strategy for coercion insertion used in the Coq proof assistant (originally
due to Saibi [15], who provides no soundness or completeness results) suffers
from similar problems, which the reference manual describes as the “normal”
behaviour of coercions [3, §17.12]. Our goal is to provide a complete algorithm
that does not fail in cases such as the above.

3.1 Coercive subtyping using subtype constraints

The algorithm presented here generates subtype constraints first, and postpones
their solution as well as the insertion of coercions to a later stage of the algorithm.
The set of all constraints provides us with a global view on the term that we are
processing, and therefore avoids the problems of a local algorithm.

The algorithm can be divided into four major phases. First, we generate
subtype constraints by recursively traversing the term. Then, we simplify these
constraints, which can be inequalities between arbitrary types, until the con-
straint set contains only inequalities between base types and variables. The next
step is to organize these atomic constraints in a graph and solve them, which
means to find a type substitution. Applying this substitution to the whole con-
straint set results in inequalities that are consistent with the given partial order
on base types. Finally, the coercions are inserted by traversing the term for the
second time. A visualization of the main steps of the algorithm in form of a
control flow is shown in Figure [

3.2 Constraint generation

The algorithm for constraint generation is described by a judgement I"' ¢ : 70>.5
defined by the rules shown in Figure [5] Given a term ¢ and a context I', the
algorithm returns a type 7, as well as a set of equality and subtype constraints
S denoted by infix “=" and “<:”, respectively. The equality constraints are
solved using unification, whereas the subtype constraints are simplified to atomic
constraints and then solved using the graph-based algorithm mentioned above.
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Fig. 4. Top-level control flow of the subtyping algorithm

The only place where new constraints are generated is the rule SUBCT-APP for
function applications t; to. It generates an equality constraint ensuring that the
type of t; is actually a function type, as well as a subtype constraint ensuring
that the type of t5 is a subtype of the argument type of ¢;.

el Y(e) =
v SuBCT-VAR ()=o

_ SuBCT-CoONST
I'Fx:7>0 't caomof@—7]>0

Nx:7Ht:o> S
I'tXe:7m.t:7T—o0o> S

SuBCT-ABs

I'tty:7>51 I'ktty:o0> 89 a, 3 fresh

- SuBCT-App
't te: B> S1USU{r=a— B0 <:a}

Fig. 5. Constraint generation rules

Note that as a first step not shown here, the type-free term input by the user
is augmented with type variables: Ax. t becomes Az : 8. t and ¢ becomes ClamB)
where all the 8s must be distinct and new.

3.3 Constraint simplification

The constraints generated in the previous step are now simplified by repeatedly
applying the transformation rules shown in Figure[6] The states that the trans-
formation operates on are pairs whose first component contains the current set of
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constraints, while the second component is used to accumulate the substitutions
computed during the transformation. As a starting state of the transformation,
we use the pair (S, 0). The rule DECOMPOSE splits up inequations between com-
plex types into simpler inequations or equations according to the variance of the
outermost type constructor. For this purpose, we introduce a variance operator,
which is defined as follows.

Definition 2 (Variance operator). Let map~ be a map function for the type
constructor C' of arity n in the set M. We use the abbreviation

T <:0 if C is covariant in the i-th argument wrt. mapq

vars(r,0) = {

o <:1 if C is contravariant in the i-th argument wrt. mapo
for 1 <14 <mn. If there is no such map., then we define for 1 <i <n:
vars(r,0) =1 = 0.

Thus, if no map function is associated with a particular type constructor,
it is considered to be invariant, causing the algorithm to generate equations
instead of inequations. Equations are dealt with by rule UNIFY using ordinary
unification. Since our subtyping relation is structural, an inequation having a
type variable on one side, and a complex type on the other side can only be
solved by instantiating the type variable with a type whose outermost type
constructor equals that of the complex type on the other side. This is expressed
by the two symmetric rules EXPAND-L and EXPAND-R. Finally, inequations with
an atomic type on both sides are eliminated by rule ELIMINATE, provided they
conform to the subtyping relation.

We apply these rules repeatedly to the constraint set until none of the rules

is applicable. Therefore, we use the notation :>me.

Definition 3. (Normal form) For a relation = we write
X ='X
if X =* X’ and X’ is in normal form wrt. =-.

Definition 4 (Atomic constraint). We call a subtype constraint atomic if it
corresponds to one of the following constraints (c, B are type variables, T is a
base type):

a<:f a<:T T<:«

If none of the rules is applicable, the algorithm terminates in a state (S, Osimp ),
where S’ either consists only of atomic constraints, or S’ contains an inequation
C1 T <: Cy 7 with Cy # Cy or an inequation T" <: U for base types T and U
such that T is not a subtype of U or an equation 7 = ¢ such that 7 and o are
not unifiable. In the latter three cases, the type inference algorithm fails.

An interesting question is whether such a state or a failure is always reached
after a finite number of iterations. It is obvious that the simplification of the
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DECOMPOSE
{Cm ... m<:Cor ... on}WS,0) = simp ({varic (rs,04) | i = ln} US,@)

UNIFY

({r = o} w5,6) iy (05,0 00)
where 0 = mgu(r, o)

ExpPAND-L

{a<:Cm ... Ta}WS,0) =imp (@ {a<:Cm ... T} US),0 006)
where 0’ = {a+— C a1 ... a,}
and a1 ... an are fresh variables

ExpAND-R

{Cm ... m<alws,o) =imp (0 {C 11 ... 7w <ta}US),0 006)
where ' = {a+— C a1 ... a,}
and a1 ... an are fresh variables

ELIMINATE

{U<:T}wS,0) = amp  (5,0)
where U, T are base types
and U <:' T

Fig. 6. Rule-based constraint simplification = simy

constraint & <: C' a will never terminate. Bourdoncle and Merz [2] have pointed
out that checking whether the initial constraint set has a weak unifier is sufficient
to avoid nontermination. Weak unification differs from standard unification in
that it identifies base types, which is necessary since two types 7 and o with
T <: 0 need to be equal up to their base types.

Definition 5 (Weak unification). A set of constraints S is called weakly
unifiable if there exists a substitution 6 such that [07] = [0o] for allT <:0 € S,
and Ot = 0o for all T =0 € S, where

[a] =«
[T] = Tp
[Cr ... ] = C[n] .. [m]

and Ty is a fized base type not used elsewhere.

Weak unification is merely used as a termination-test in our algorithm before
constraint simplification (see Figure [4)).

3.4 Solving subtype constraints on a graph

An efficient and logically clean way to reason about atomic subtype constraints
is to represent the types as nodes of a directed graph with arcs given by the
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constraints themselves. Concretely, this means that a subtype constraint o <: 7
is represented by the arc (o,7). This allows us to speak of predecessors and
successors of a type.

Definition 6 (Constraint graph). For a constraint set S, we denote by

G(S) = (U{{T,a} |7 <:0€ St {(r,0)|T<:0€S8})
the constraint graph corresponding to S.

Given a graph G = (V, E), the subgraph induced by a vertex set X C V is
denoted by G[X] = (X, (X x X)N E). The set of type variables contained in the
vertex set of G is denoted by TV (G).

In what follows, we write o <: 7 for the subtyping relation on base types
induced by the set of coercions C, which is defined by

= ={TU)|c:T—-UecC}

Graph construction Building such a constraint graph is straightforward. We
only need to watch out for cycles. Since the subtype relation is a partial order
and therefore antisymmetric, at most one base type should occur in a cycle. In
other words, if the elements of the cycle are not unifiable, the inference will fail.
Unifiable cycles should be eliminated with the iterated application of the rule
CycLE-ELIM shown in Figure [7}

CycLE-ELIM
((V,E),0) =y (VNKU{rxh, E'UP x {tx}U{TK} x S),0K 00)
where K is a cycle in (V, E)
and Ok = mgu(K)
and {TK} = QKK
and E' ={(r,0) € E|T7¢ K,0 ¢ K}
and P={r|Jo € K. (1,0) € E}\ K
and S={o|3Ir€ K. (1,0) € E}\ K

Fig. 7. Rule-based cycle elimination ==y,

Figure [§| visualizes an example of cycle elimination. We call the substitution
obtained from cycle elimination 6.

Constraint resolution Now we must find an assignment for all variables that
appear in the graph G = (V, E). We use an algorithm that is based on the
approach presented in [20]. First, we define some basic lattice-theoretic notions.

Definition 7. Let S, T,T' denote base types and X a set of base types. With
respect to the given subtype relation <: we define:
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Fig. 8. Collapse of a cycle in a graph

— T ={T"|T =:T'}, the set of supertypes

— T ={T'"|T" X:T}, the set of subtypes

TUSeTNS andVU € TNS. TUS <:U, the supremum of S and T
TNnSelINS andVLeTNS. L=X:TMNS, the infimum of S and T

- UXe N TandVUe () T. | |X =X:U, the supremum of X
Tex Tex

-[1Xe N LandVLe (| L. L=:[]X, the infimum of X.
Tex Tex

Note that, depending on =:, suprema or infima may not exist.
Given a type variable « in the constraint graph G = (V, E), we define:

— PY ={T | (T,a) € ET}, the set of all base type predecessors of a
— S¢ ={T | (a,T) € E*}, the set of all base type successors of a.

ET is the transitive closure of the edges of G.

The algorithm assigns base types to type variables that have base type successors
or predecessors until no such variables are left using the rules shown in Figure [0}
The resulting substitution is referred to as 6.

The original algorithm described by Wand and O’Keefe [20] is designed to be
complete for subtype relations that form a tree. It only uses the rules ASSIGN-
INF and FAIL-INF without the check if S is empty. It assigns each type variable
a the infimum []S$ of its upper bounds, and then checks whether the assigned
type is greater than all lower bounds PS. If [].S$ does not exist, their algorithm
fails. If SG is empty, its infimum only exists if there is a greatest type, which
exists in a tree but not in a forest. In order to avoid this failure in the absence
of a greatest type, our algorithm does not compute the infimum/supremum of
the empty set, and is symmetric in successors/predecessors.

After constraint resolution, unassigned variables can only occur in the result-
ing graph in weakly connected components that do not contain any base types.
As we do not want to annotate the term with unresolved subtype constraints, all
variables in a single weakly connected component should be unified. This is done
by the rule UNIFY-WCC shown in Figure [10|and produces the final substitution
0.
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ASSIGN-SUP
(G, 0) = ({a— LIPSYG, {a — |_|Pf}o€)
ifaeTV(G)APS #0A3|PEAVT € SS. | |PSE =T
FaiL-Sup
(G, 9) =50l FAIL
ifacTV(G)APS #0AFUPS vIT €SS LIPS £4:T)
ASSIGN-INF
(G,0) = ({a—=T1SS1G, {a—[155}00)
ifa e TV(G)ANSS #OAN3[NSSAVT € PS. T <: 5§
FarL-INr
(G,0) = FAIL
ifacTV(G)ANSS A0 FSS vIT € PS. T £4:T155)
Fig. 9. Rule-based constraint resolution =>4,;
UNIFY-WCC
(G,0) =unig (G[V\ W], mgu(W) o 0)

where W is a weakly connected component of G = (V, E)

Fig. 10. Rule-based WCC-unification == ynss

Ezample 2. Going back to Example , we apply our algorithm to the term leq o, 7 i
According to the inference rules from Figure [5l we obtain I' & leqq, o, n ¢ @ B1 >
{az = as > B=as = B2,82 = a1 — B1,N <: az,Z <: a1 }. Simplifying the generated
constraints yields the substitution Osimp = {1 — asz, a2 — as, 1 — B, B2 — az — B}
and the atomic constraint set {N <: as,Z <: as}. This yields the constraint graph
shown in Figure [TI] The constraint resolution algorithm assigns as the least upper
bound of {N,Z}, which is Z. The resulting substitution is 0, = {a1 — Z,a2 —
Zyas — Z,B1 — B,B2 — Z — B}. Since there are no unassigned variables in the
remaining constraint graph, UNIFY-WCC is inapplicable and 6, the final result, is 05,;.

N Z

Fig. 11. Constraint graph of legj,, ) 7 ¢
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In §4 we will see that the constraint resolution algorithm defined in this
subsection is not complete in general but is complete if the partial order on base
types is a disjoint union of lattices.

3.5 Coercion insertion

Finally, we have a solving substitution 8. Applying this substitution to the initial
term will produce a term that can always be coerced to a type correct term by
means of the coercion insertion judgement shown in Figure [3] We inspect this
correctness statement and the termination of our algorithm in §4

4 Total correctness and completeness

To prove total correctness, we need to show that for any input ¢ and I', the
algorithm either returns a substitution 6, a well-typed term u together with
its type 07 or indicates a failure. Failures may occur at any computation of a
most general unifier, during the weak unification test, or explicitly at the re-
duction steps FAIL-SUP and FAIL-INF in the constraint resolution phase. Below
we discuss correctness and termination. Due to space limitations, all proofs and
supporting lemmas had to be omitted and can be found in the full version of this
paper [19]. Since the reduction rules in each phase are applied nondeterministi-
cally, the algorithm may output different substitutions for the same input term
t and context I'. By AlgSol(I", t) we denote the set of all such substitutions.

Theorem 1 (Correctness). For a given term t in the context I', assume 6 €
AlgSol(I',t). Then there exist a term u and a type T, such that 0T b 0t ~ w : T
and O - : 7.

Thus, we know that if the algorithm terminates successfully, it returns a well-
typed term. Moreover, it terminates for any input:

Theorem 2 (Termination). The algorithm terminates for any input t and I

4.1 An example for incompleteness

So far, we have only made statements about termination and correctness of our
algorithm. It is equally important that the algorithm does not fail for a term
that can be coerced to a well-typed term. An algorithm with this property is
called complete. As mentioned earlier, our algorithm is not complete for arbitrary
posets of base types.

Ezample 3. Figure 12| shows a constraint graph and base type order where our algo-
rithm may fail, although {a — C, 8+ N} is a solving substitution. If during constraint
resolution the type variable « is assigned first, it will receive value R. Then, the as-
signment of 8 will fail, since the infimum R MN does not exist in the given poset. The
fact that our algorithm does find the solution if 8 is assigned before « is practically
irrelevant because we cannot possibly exhaust all nondeterministic choices.
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A :
7 X
R N| | R

Constraint graph Partial order on base types

Fig. 12. Problematic example without type classes

We see that the problem is the non-existence of a supremum or infimum. The
solution to this problem is to require a certain lattice structure for the partial
order on base types. Alternatively we could try and generalize our algorithm,
but this is unappealing for complexity theoretic reasons.

4.2 Complexity and completeness

Tiuryn and Frey [I8/4] showed that the general constraint satisfaction problem
is PSPACE-complete. Tiuryn [I8] also shows that satisfiability can be tested in
polynomial time if the partial order on base types is a disjoint union of lattices.
Unfortunately, Tiuryn only gives a decision procedure that does not compute
a solution. Nevertheless, most if not all approaches in the literature adopt the
restriction to (disjoint unions of) lattices, but propose algorithms that are ex-
ponential in the worst case. This paper is no exception. Just like Simonet [I7]
we argue that in practice the exponential nature of our algorithm does not show
up. Our implementation in Isabelle confirms this.

All phases of our algorithm have polynomial complexity except for constraint
simplification: a cascade of applications of EXPAND-L or EXPAND-R may pro-
duce an exponential number of new type variables. Restricting to disjoint union
of lattices does not improve the complexity but guarantees completeness of
our algorithm because it guarantees the existence of the necessary infima and
suprema for constraint resolution.

Therefore, we assume in the following that the base type poset is a disjoint
union of lattices.

To formulate the completeness theorem, we need some further notation.

Definition 8 (Equality modulo coercions). Two substitutions 6 and 0’ are
equal modulo coercions wrt. the type variable set X, if for all x € X there exists
a coercion ¢ such that either 6(x) <:. 0'(x) or 0'(z) <:. 0(x) holds. We write
0 ~x 0.

Definition 9 (Subsumed). The substitution 6’ is subsumed modulo coercions
wrt. to the type variable set X by the substitution 0, if there exists a substitution
0 such that 6 ~x §o 0. We write § <x 0.

Let TV (7) and TV (t) be the sets of type variables that occur in 7 and the
type annotations of ¢t. For a context I' = {1 : 71,...,Z, : T}, we denote by

TV(I') the set |J TV (7).
i=1

1=
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Theorem 3 (Completeness). If '+ 0t ~ u : 7/, then AlgSol(I',t) # 0 and
for all 0 € AlgSol(I';t) it holds that 0 Srv(ryurv ¢

It is instructive to consider a case where our algorithm is not able to reconstruct
a particular substitution but only a subsumed one.

Example 4. Let X = {id : « — a,n : N, sin : R — R} be a signature and let C = {int :
N — Z, real : Z — R} be a set of coercions. Now consider the term sin (idiqaq,] 1) in
the empty context. The constraint resolution phase will be given the atomic constraints
{N <: ai,a1 <: R} and will assign a; the tightest bound either with respect to its
predecessors or its successors: AlgSol(0, sin (idjasa,) 1)) = {{a1 = N}, {a1 = R}}.

The substitution {1 — Z} is also solution of the typing problem, i.e. {a1 + Z}0 +
{a1 = Z}(sin (idjasa,) 7)) ~ sin (real (idjasz) (int n))) @ R. It is itself not a pos-
sible output of the algorithm, but it is subsumed modulo coercions by both of the
substitutions that the algorithm can return.

The completeness theorem tells us that the algorithm never fails if there is a
solution. The example shows us that the algorithm may fail to produce some
particular solution. The completeness theorem also tells us that any solution is
an instance of the computed solution, but only up to coercions. In practice this
means that the user may have to provide some coercions (or type annotations)
explicitly to obtain what she wants. This is not the fault of the algorithm but
is unavoidable if the underlying type system does not provide native subtype
constraints.

Compared with the work by Saibi we have a completeness result. On the
other hand he goes beyond coercions between atomic types, something we have
implemented but not yet released. Luo also proves a completeness result, but
his point of reference is a modified version of the Hindley-Milner system where
coercions are inserted on the fly, which is weaker than our inference system. In
most other papers the type system comes with subtype constraints built in (not
an option for us) and unrestricted completeness results can be obtained.

5 Related work

Type inference with automatic insertion of coercions in the context of functional
programming languages was first studied by Mitchell [8/9]. First algorithms for
type inference with subtypes were described by Fuh and Mishra [5] as well as
Wand and O’Keefe [20]. The algorithm for constraint simplification presented
in this paper resembles the MATCH algorithm by Fuh and Mishra. However, in
order to avoid nontermination due to cyclic substitutions, they build up an extra
data structure representing equivalence classes of atomic types, whereas we use
a weak unification check suggested by Bourdoncle and Merz [2]. The seemingly
simple problem of solving atomic subtype constraints has also been the subject
of extensive studies. In their paper [5], Fuh and Mishra also describe a second
algorithm CONSISTENT for solving this problem, but they do not mention
any conditions for the subtype order on atomic types, so it is unclear whether
their algorithm works in general. Pottier [I3] describes a sound but incomplete



Coercive Subtyping 15

simplification procedure for subtype constraints. Simonet [I7] presents general
subtype constraint solvers and simplifiers for lattices designed for practical ef-
ficiency. Benke [1], as well as Pratt and Tiuryn [I4] study the complexity of
solving atomic constraints for a variety of different subtype orders. Extensions
of Haskell with subtyping have been studied by Shields and Peyton Jones [I6],
as well as Nordlander [IT].

5.1 Conclusion

Let us close with a few remarks on the realization of our algorithm in Isabelle.
The abstract algorithm returns a set of results because coercion inference is
ambiguous. For example, the term sin(n+n), where +: « - o« = a, sin : R - R
and n : N has two type-correct completions with the coercion real : N — R:
sin(real(n + n)) and sin(real n + real n). Our deterministic implementation
happens to produce the first one. If the user wanted the second term, he would
have to insert at least one real coercion. Because Isabelle is a theorem prover
and because we did not modify its kernel, we do not have to worry whether
the two terms are equivalent (this is known as coherence): in the worst case the
system picks the wrong term and the proof one is currently engaged in fails or
proves a different theorem, but it will still be a theorem.

To assess the effectiveness of our algorithm, we picked a representative Isa-
belle theory from real analysis (written at the time when all coercions had to be
present) and removed as many coercions from it as our algorithm would allow
— remember that some coercions may be needed to resolve ambiguity. Of 1061
coercions, only 221 remained. In contrast, the on-the-fly algorithm by Saibi and
Luo (see the beginning of still needs 666 coercions. The subtype lattice in
this theory is a linear order of the 3 types nat, int, real.

Isabelle supports an extension of Hindley-Milner polymorphism with type
classes [I0]. In the full version of this paper [19], we cover type classes, too,
and show how to extend our algorithms soundly; completeness seems difficult to
achieve in this context.

We have not mentioned let so far because it does not mesh well with coercive
subtyping. Consider the term ¢ = let f = s in u where u = (Suc(f(0)), £(0.0)),
0:N, Suc: N — N, 0.0: R, and s is a term that has type a« — « under the
constraints {a =: R, a <: 3, N <: 8}. For example s = Az. if v = 0 A sin(z) =
0.0 then z else x) where = : @ - a — B and sin : R — R. Constraint
resolution can produce the two substitutions {a — N, § — N} and {a — R, § —
R}, i.e. s can receive the two types N — N and R — R. A simple-minded
extension of our algorithm to let might choose one of the two substitutions to
type u and would necessarily fail. However, if we consider u[s/f] instead of
t, our algorithm can insert suitable coercions to make the term type correct.
Unfortunately this is not a shortcoming of the hypothetical extension of our
algorithm but of coercive subtyping in general: there is no way to insert coercions
into t to make it type correct according to Hindley-Milner. If you want subtyping
without extending the Hindley-Milner type system, there is no complete typing
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algorithm for /et terms that simply inserts coercions. You may need to expand
or otherwise transform let first.
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