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SUMMARY

Eva and Kristoffer Rose proposed a (sparse) annotation of Java Virtual Machine code with types to enable a
one-pass verification of welltypedness. We have formalized a variant of their proposal in the theorem prover
Isabelle/HOL and proved soundness and completeness.
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1. Introduction

The Java Virtual Machine (JVM) comprises a typed assembly language, an abstract machine for
executing it, and the so-calledBytecode Verifier(BV) for checking the welltypedness of JVM programs.
Resource-bounded JVM implementations on smart cards do not provide bytecode verification because
of the relatively high space and time consumption. They either do not allow dynamic loading of JVM
code at all or rely on cryptographic methods to ensure that bytecode verification has taken place off-
card. In order to allow on-card verification, Eva and Kristoffer Rose [21] proposed a (sparse) annotation
of JVM code with types to enable a one-pass verification of welltypedness. Roughly speaking, this
transforms a type reconstruction problem into a type checking problem, which is easier. More precisely,
the type inference problem is a data flow analysis problem that requires an iterative solution, whereas
the type checking problem merely needs a single pass to check consistency of the type annotations with
the code. Based on these ideas we have extended an existing formalization of the JVM in Isabelle/HOL
[18, 12]. Isabelle [16] is a generic theorem prover that can be instantiated with different object logics,
and Isabelle/HOL [14], simply typed higher order logic, is the most widely used of these object logics.
We will first describe the general idea of bytecode verification and its formalization in Isabelle/HOL.
After that we explain how lightweight bytecode verification works, how we formalized it and proved it
correct and complete. The full formalization is available on the web [13].
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2 G. KLEIN AND T. NIPKOW

1.1. Related work

Starting with the paper by Stata and Abadi [22], there is a growing body of literature [3, 4, 19, 20, 5, 15]
that tries to come to grips with the subtleties of the BV, especiallysubroutines(a JVM specific concept
distinct from methods) andobject initialization. Probably the most complete formalization to date is by
Freund [2]. All of these papers formalize the BV with the help of a customized type system. In addition
there are some less orthodox approaches: Jones [6] and Yelland [26] reduce bytecode verification to
type checking in Haskell, Posegga and Vogt [17] reduce it to model checking.

Our work builds on a related line of research, that of embedding the formalization of the JVM and
the BV in a theorem prover. A first machine-checked specification of type checking for the JVM was
given by Pusch [18]. Using Isabelle/HOL she connected the type checking rules with an operational
semantics for the JVM by showing that execution of type correct programs is type sound, i.e. during
run time each storage location contains values of the type employed during type checking. We start
from a revised version of this work [12]. Recently, Nipkow [11] has also verified a data flow analysis
implementation of bytecode verification against the above type checking rules. These machine-checked
formalizations do not deal with some of the subtleties of the BV, namely exception handling, object
initialization, and subroutines. We come back to this point in the conclusion.

More abstractly, lightweight bytecode verification is an instance ofproof carrying code(PCC) [10],
where the “proof” (of well-typedness) is the type annotation of the JVM code. Abstracting from the
specifics of the JVM, this leads to the idea oftyped assemply languagesput forward by Morrisett
et al. [8], who describe the compilation fromλ-calculus to a typed variant of a conventional RISC
assembly language.

2. The bytecode verifier

The JVM is a stack machine where each method activation has its own expression stack and local
variables. The types of operands and results of bytecode instructions are fixed (modulo subtyping),
whereas the type of a storage location may differ at different points in the program. Let’s look at an
example:

-

instruction stack local variables

Load 0 Some ( [], [Class B, integer] )

Store 1 Some ( [Class A], [Class B, Err] )

Load 0 Some ( [], [Class B, Class A] )

Getfield F A Some ( [Class B], [Class B, Class A] )

Goto -3 Some ( [Class A], [Class B, Class A] )

On the left the instructions are shown and on the right the type of the stack elements and the local
variables. The type information attached to an instruction characterizes the statebeforeexecution of
that instruction. We assume that classB is a subclass ofA and thatA has a fieldF of typeA. TheSome

before each of the type entries means that we were able to predict some type for each of the instructions.
If one of the instructions had been unreachable, the type entry would have beenNone.
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VERIFIED LIGHTWEIGHT BYTECODE VERIFICATION 3

Execution starts with an empty stack and the two local variables hold a reference to an object of
classB and an integer. The first instruction loads local variable 0, a reference to aB object, on the stack.
The type information associated with the following instruction may puzzle at first sight: it says that a
reference to anA object is on the stack, and that usage of local variable 1 may produce an error. This
means the type information has become less precise but is still correct: aB object is also anA object
and an integer is now classified as unusable (Err ). The reason for these more general types is that
the predecessor of theStore instruction may have either beenLoad 0 or Goto -3 . Since there exist
different execution paths to reachStore , the type information of the two paths has to be “merged”.
The type of the second local variable is eitherinteger or Class A , which are incompatible, i.e. the
only common supertype isErr .

Bytecode verification is the process of inferring the types on the right from the instruction sequence
on the left and some initial condition, and of ensuring that each instruction receives arguments of the
correct type. This can be done on a per method basis because each method has fixed argument and result
types. The righthand side of the the table is called amethod type, one line of the method type is called
a state type. To simplify the presentation we restrict considerations in this paper to a single method.
Thus type inference is the computation of a method type from an instruction sequence, while type
checking means checking that a given method type fits an instruction sequence. Lightweight bytecode
verification is in between: only (crucial) bits of the method type are given, the rest is computed, but
this computation is performed in a single pass over the instruction sequence, i.e. in linear time. This
is in contrast to full bytecode verification, which requires an iterative computation. In this paper we
concentrate on type checking and lightweight bytecode verification.

Abstractly, lightweight bytecode verification can be seen as a combination of two principles:

• Result checking: instead of computing the method type, it is merely checked that the given
method type fits.
• Trading space for time: it is sufficient to store only the state type for the entry point to each basic

block (a code sequence with only one entry and exit point) because the remaining state types in
that block can be computed in linear time.

The same principles can be applied to any data flow analysis problem.
We will now sketch some of the key ingredients of the type checking specification by Nipkowet

al. [12] that our formalization builds on.

2.1. Order on types

Before we can proceed to the formalization of the bytecode verifier itself we first have to define what
extactly we mean when we say a state type is less precise than another one.

In our Isabelle formalization state types are values of type

(ty list × ty err list) option

That means a state type is a datatypeoption with elements that are tuples ofty list (the stack) and
ty err list (local variables). Theoption datatype over an element type’a is declared as:

datatype ’a option = None | Some ’a
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4 G. KLEIN AND T. NIPKOW

The Isabelle notation above defines a new datatypeoption , very similar to datatypes in functional
programming. It has two constructors, namelyNone with no arguments andSomewith one argument.
The datatype is polymorphic: it has a type variable’a which in this case is used for the type of the
argument ofSome.

We useoption here with the meaning already mentioned in the example: instructions with state
typeNone are unreachable,Some t indicates a reachable instruction with type informationt .

The stack partty list of a state type is a list of usual Java types, e.g. reference types for classes
or primitive types likeinteger . The local variables of a method are modeled by a list withty err

elements. Similar tooption , the datatypeerr is used to extend a type’a by one element:

datatype ’a err = Err | Ok ’a

Here the additional element isErr and we use it to indicate that usage of a local variable with that
type may produce an error at runtime. According to the JVM Specification [7] only local variables can
contain such unusable entries, the stack cannot—hence the difference.

Having defined what a state type is in Isabelle, we will now move on to an order on these state
types: the notion of “less precise” or “more general” is basically the same as the supertype relation
in Java. The expressionG ` Class B � Class A means: classA is more general than classB in a
declaration contextG iff A is a superclass ofB in that context. The relation is reflexive, transitive, and
antisymmetric. Primitive types likeinteger can only be compared with themselves.

When two types have to be merged in the bytecode verifier, the result is their least common
supertype. With just the usual Java types, this least common supertype may not always exist, e.g. for
integer and some class. As in the example above we would have a situation where we cannot predict
which type the entry will actually have. Because JVM instructions are monomorphic, i.e. will take
either aninteger or a reference type, but not both, we need to express that the value of this entry
cannot be used. Again as already mentioned in the example, we mark unusable entries by giving them
type Err . When we say thatErr is the least common supertype of any two incompatible types, we
say in other words thatErr is the most general type we can assign to an entry. If we want to lift the
supertype relation from Java typesty to the new type system with theErr elementty err , we have
to treatErr as top element:

G ` a’ <=o a ≡ case a of

Err ⇒ True

| Ok t ⇒ (case a’ of Err ⇒ False | Ok t’ ⇒ G ` t’ � t)

The≡ sign means “equal by definition”, whereas the= sign means usual equality on an arbitrary
type (on booleans= therefore means “if and only if”).

The step to lists with elements of typety err is easy: when we want to compare two lists we
compare them componentwise. We write this order onty err list as<=l .

The next step is tuples: a further relation<=s compares a pair of stack entries and local variables.
Local variables have exactly typety err list so we can use our list order<=l on them unchanged.
The stack on the other hand only has typety list . In order to reuse<=l we lift all stack entries from
ty to ty err by explicitly stating that they are usable:

G ` (s,l) <=s (s’,l’) ≡ G ` map Ok s <=l map Ok s’ ∧ G ` l <=l l’

With that we can finally define an order<=’ on state types. We only need to lift<=s to the option
datatype. As witherr we have one additional element. This time it isNone, used to indicate that an
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VERIFIED LIGHTWEIGHT BYTECODE VERIFICATION 5

instruction is not reachable. Contrary to theerr case we must now treat the additional element as
bottom element, not as top element. The motivation for that will become clearer when we take a closer
look at the bytecode verifier itself in the next section.

G ` s’ <=’ s ≡
case s’ of

None ⇒ True
| Some t’ ⇒ (case s of None ⇒ False | Some t ⇒ G ` t’ <=s t)

2.2. Type checking

In this paper we only treat the type checking part of the bytecode verifier. We model type checking as
a predicate that determines if a method is welltyped with respect to a given method type:

wt_method G C pTs rT mxl ins phi ≡
let max_pc = length ins in

0 < max_pc ∧ wt_start G C pTs mxl phi ∧
( ∀ pc. pc < max_pc −→ wt_instr (ins!pc) G rT phi max_pc pc)

The predicatewt_method is parameterized by a declaration contextG, the classC in which the
method is declared, a listpTs of the method’s parameter types, the return typerT declared for the
method, the number of declared local variablesmxl , the method bodyins (a list of instructions),
and finally the method typephi (a list of state types). With respect to these parameters a method is
welltyped iff:

• the method contains at least one instruction
• the method type satisfies some start conditionwt_start , and
• each instruction in the method is welltyped with respect to a predicatewt_instr . The ! is

the Isabelle operator that yields the nth element of a list. In the conditionpc < max_pc as
throughout the rest of this paperpc is a natural number, so we don’t need an additonal0 ≤ pc .

The start condition may look a bit complicated at first sight:

wt_start G C pTs mxl phi ≡
G ` Some ([], Ok(Class C)#(map Ok pTs)@replicate mxl Err) <=’ phi!0

The operator# is Isabelle’s cons for lists,@appends two lists, andreplicate n x produces a list
with n entries all having the valuex . The predicatewt_start ensures that the state type of instruction
0 correctly approximates a certain intitial state. It is the initial state of stack and local variables directly
after invocation of the method:

• The first instruction is reachable, marked bySomeat the beginning of the expression.
• The first component of the pair is the empty list. That means the operand stack must be empty.
• The first local variable contains thethis pointer. It is a reference to the classC the method

belongs to. The precedingOk marks the value explicitly as usable.
• The next entries in the local variables are the parameter types of the methodpTs . Again, with

map Ok pTs we mark each parameter explicitly as usable.
• Finally, the declared local variables are treated: as many entries as there are declared local

variables in the method are marked withErr as not yet initialized.
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6 G. KLEIN AND T. NIPKOW

The only thing missing now is the definition of the welltypedness conditions for single instructions:

wt_instr i G rT phi mpc pc ≡
app i G rT (phi!pc) ∧
( ∀ pc’ ∈ set (succs i pc). pc’ < mpc ∧ G ` step i G (phi!pc) <=’ phi!pc’)

Most of the work is again delegated, this time to three functions:app for applicability conditions,
succs for a list of the program counters of successor instructions, andstep for the effect the
instruction will have on the state type when executed. With these functions we have: a single instruction
is welltyped iff the instruction is applicable in the current state type, the program counter of each
successor instruction lies within the method, and if again for each successorpc’ the state type atpc’

is more general than the state type we get when we execute the instruction in the current state type
(set converts a list into a set).

With this definition we can model the bytecode verifier independently of the actual instruction set as
long as we have functionsapp , succs , andstep describing the poperties of instructions the bytecode
verifier is interested in.

If we further demand that

app i G rT None = True

app i G rT (Some s) −→ ( ∃ s’. step i G (Some s) = Some s’)

step i G None = None

we obtain from our definition ofNone as bottom element of<=’ the following two properties
for unreachable code: all instructions reachable from instruction 0 must contain entries of the
form Some s, and no unreachable instruction can influence the welltypedness of the rest, because
G ` None <=’ phi!pc’ will always yield true.

Figure 1 shows the definition ofstep for theµJava instruction set. Figure 2 shows the applicability
conditions.

The definition ofstep in figure 1 builds on astep’ and directly satisfies the conditions above.
The equations forstep’ are written in pattern matching style as used in functional programming. The
function is only well defined for state types matching the pattern on the left-hand side, and there are
only equations for functions that have at least one successor instruction in the same method, i.e.Return

is missing. This is sound since we know thatstep will only be needed when the list of successors is
not empty, and when the instruction is applicable. The applicability conditions will ensure that the
state type matches the pattern given in the definition ofstep . The proof thatstep andapp indeed
have something to do with the semantics of theµJava instruction set, and that they work together as
described, is a crucial part of the type safety proof of the bytecode verifier. A description of that proof
for an earlier version of the bytecode verfier can be found in [18], the detailed Isabelle proof for the
current version is available from our web page [13].

Figure 1 uses some notation and functions not yet mentioned: in the first equation we encounterval .
It is defined byval (Ok x) = x . The expressionLT[idx := Ok ts] is a list update. The entry at
positionidx in the listLT gets the new valueOk ts . The valueNT in the equation forAconst_null

is the Java null type, the type of the valuenull . It is approximated by any other reference type. As
expected,fst andsnd are selector functions returning the first resp. the second component of a pair.
Functionthe is the destructor for the option datatype. It is defined bythe (Some x) = x and (like
val ) it is underspecified, i.e. the casethe None is left out. As a consequence one can only prove
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VERIFIED LIGHTWEIGHT BYTECODE VERIFICATION 7

step’ (Load idx, G, (ST,LT)) = (val (LT!idx)#ST,LT)

step’ (Store idx, G, (ts#ST,LT)) = (ST, LT[idx:= Ok ts])

step’ (Bipush i, G, (ST,LT)) = (integer#ST,LT)

step’ (Aconst_null, G, (ST,LT)) = (NT#ST,LT)

step’ (Getfield F C, G, (oT#ST,LT)) = (snd (the (field (G,C) F))#ST,LT)

step’ (Putfield F C, G, (vT#oT#ST,LT)) = (ST,LT)

step’ (New C, G, (ST,LT)) = (Class C#ST,LT)

step’ (Checkcast C, G, (RefT rt#ST,LT)) = (Class C#ST,LT)

step’ (Pop, G, (ts#ST,LT)) = (ST,LT)

step’ (Dup, G, (ts#ST,LT)) = (ts#ts#ST,LT)

step’ (Dup_x1, G, (ts1#ts2#ST,LT)) = (ts1#ts2#ts1#ST,LT)

step’ (Dup_x2, G, (ts1#ts2#ts3#ST,LT)) = (ts1#ts2#ts3#ts1#ST,LT)

step’ (Swap, G, (ts1#ts2#ST,LT)) = (ts2#ts1#ST,LT)

step’ (IAdd, G, (integer#integer#ST,LT)) = (integer#ST,LT)

step’ (Ifcmpeq b, G, (ts1#ts2#ST,LT)) = (ST,LT)

step’ (Goto b, G, s) = s

step’ (Invoke C mn fpTs, G, (ST,LT)) = (let ST’ = drop (length fpTs) ST

in (fst (snd (the (method (G,C) (mn,fpTs))))#(tl ST’),LT))

step i G (Some s) = Some (step’ (i,G,s))

step i G None = None

Figure 1. Effect of instructions on a state type

interesting properties aboutthe if the argument is known to be of the formSome x. Again as in some
functional programming languages,take anddrop return the firstn elements of a list, or all but the
first n elements. Finally there are twoµJava specific lookup functionsfield andmethod . The first one
yields the declared name and type of a class field, the second one gives full declaration information for
methods. Both respect the structure of the class hierarchy, inheritance and visibility of names. InµJava
we have not modeled access modifiers likepublic andprivate , though. The rather largestep’

equation forInvoke merely takes the method’s parameters and the reference on which the method is
invoked from the stack, and then puts the type of the return value on it in turn.

Figure 2 looks even more involved. The definition ofapp’ makes use of a default equation at the
bottom stating that the instruction is by default not applicable when no other equation matches. For
app’ we need some new notation, too. The predicateis_class G C unsurprisingly tests wether the
nameC is declared as a class in the programG. In the Ifcmpeq equation,PrimT andRefT are type
constructors for primitive types and reference types inµJava. As withstep’ , theInvoke instruction is
the largest. In its equation we use a functionrev returning a list in reverse order, and the functionzip

that converts a pair of lists into a list of pairs. The equation states that the stack must at least contain
the parameters for the method call and referenceT on which to invoke the method. Of course, thisT

should be compatible with the class theInvoke instruction expects. If we want to invoke a method,
we also have to look up if a method with the given name and signature exists in the program. Since
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8 G. KLEIN AND T. NIPKOW

app’ (Load idx, G, rT, (ST,LT)) = (idx < length LT ∧ LT!idx 6= Err)

app’ (Store idx, G, rT, (ts#ST, LT)) = (idx < length LT)

app’ (Bipush i, G, rT, s) = True

app’ (Aconst_null, G, rT, s) = True

app’ (Getfield F C, G, rT, (oT#ST, LT)) = ( ∃ vT. field (G,C) F = Some (C,vT) ∧
G ` oT � Class C ∧ is_class G C)

app’ (Putfield F C, G, rT, (vT#oT#ST, LT)) = ( ∃ vT’. field (G,C) F = Some (C,vT’) ∧
G ` oT � Class C ∧ G ` vT � vT’ ∧
is_class G C)

app’ (New C, G, rT, s) = (is_class G C)

app’ (Checkcast C, G, rT, (RefT rt#ST,LT)) = (is_class G C)

app’ (Pop, G, rT, (ts#ST,LT)) = True

app’ (Dup, G, rT, (ts#ST,LT)) = True

app’ (Dup_x1, G, rT, (ts1#ts2#ST,LT)) = True

app’ (Dup_x2, G, rT, (ts1#ts2#ts3#ST,LT)) = True

app’ (Swap, G, rT, (ts1#ts2#ST,LT)) = True

app’ (IAdd, G, rT, (integer#integer#ST,LT)) = True

app’ (Ifcmpeq b, G, rT, (ts#ts’#ST,LT)) = (( ∃ p. ts = PrimT p ∧ ts’ = PrimT p) ∨
( ∃ r r’. ts = RefT r ∧ ts’ = RefT r’))

app’ (Goto b, G, rT, s) = True

app’ (Return, G, rT, (T#ST,LT)) = (G ` T � rT)

app’ (Invoke C mn fpTs, G, rT, (ST,LT)) = (length fpTs < length ST ∧
(let apTs = rev (take (length fpTs) ST);

T = hd (drop (length fpTs) ST)

in

G ` T � Class C ∧
method (G,C) (mn,fpTs) 6= None ∧
( ∀ (a,f) ∈set (zip apTs fpTs). G ` a � f)))

app’ (i,G,rT,s) = False

app i G rT s ≡ case s of None ⇒ True | Some t ⇒ app’ (i,G,rT,t)

Figure 2. Applicability conditions
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VERIFIED LIGHTWEIGHT BYTECODE VERIFICATION 9

method already handles inheritance and visibility, it is enough to check if the lookup is successfull.
The zip expression then checks if the actual parameters on the stack are type compatible with the
expected formal parameters from the instruction.

3. The lightweight bytecode verifier

Two things make current implementations of the bytecode verifier unsuitable for on-card verification:
the type reconstruction algorithm itself is large and complex, and the whole method type is held in
memory. Lightweight bytecode verification addresses both problems.

Data flow analysis of bytecode is nontrivial because multiple execution paths may lead to the same
instruction, in which case the types constructed on these paths have to be merged. This can only occur at
the targets of jumps. The basic idea of lightweight bytecode verification is to look what happens when
we provide the result of the type reconstruction process at these points beforehand. This additional
outside information is called thecertificate. It becomes apparent that the type reconstruction is now
reduced to a single linear pass over the instruction sequence: each time we would have to consider more
than one path of execution, the result is already there and only needs to be checked, not constructed. The
second effect is that apart from the certificate we only need constant memory: the type reconstruction
can be reduced to a function that calculates the state type atpc+1 only from the state type atpc and
the global information that is already provided from outside. After having calculated the type atpc+1 ,
we can immediately forget about the one atpc .

For our example program, the situation at the start of the lightweight bytecode verification process
looks like this:

-

instruction certificate

Load 0 None

Store 1 Some ( [Class A], [Class B, Err] )

Load 0 None

Getfield F A None

Goto -3 None

At this point we use the option datatype with a different meaning:None indicates that the certificate
contains no entry at this point.Some means that the certificate stores a state type of a reachable
instruction.

From the certificate the whole method type is reconstructed in a single linear pass: The state type
Some ([], [Class B, integer]) for theLoad instruction will be filled in as initialization. The
state type forStore 1 is in the certificate, sinceStore is the target of theGoto -3 jump. The
lightweight bytecode verifier calculates the effect ofLoad 0 , i.e. Some ([Class B], [Class B,

integer]) , and checks if the certificateSome ([Class A], [Class B, unusable]) correctly
approximates this result. The types before execution of the next instructionsLoad , Getfield and
Goto are then easily calculated from current state type and the effect of the instructions alone. We arrive
at Goto with a current state typeSome ([Class A], [Class B, Class A]) . The lightweight
bytecode verifier now checks if the calculated state type is correctly approximated by the jump target.
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10 G. KLEIN AND T. NIPKOW

We didn’t store the state type of the target, but since it is a jump target, we have an entry in the certificate
at that point: we only need to check if the entry correctly approximates our calculated state type.

Note that all execution paths joining atStore 1 were checked, but no iteration or additional
memory was required.

In the terminology of data flow analysis (see e.g. [9]) the certificate records the type information
at the entry points to so calledbasic blocks(and potentially additional points). This is completely
standard in (global) data flow analysis where basic blocks are viewed as atomic (hence their name),
and their local structure is immaterial. What is more, this view has significant advantages not just for
lightweight but also for standard bytecode verification: during the iterative computation of the method
type it is sufficient to store those state types that correspond to entry points of basic blocks. This is a
significant reduction in space at practically no additional cost in time.

3.1. Formalization

With that kind of process and certificate in mind, we can start a formalization of the lightweight
bytecode verifier. We have two goals here: on the one hand, we want the formalization to be abstract and
as easy to understand as possible. On the other hand, we now not only want to model type checking, but
also the simplified form of type reconstruction, i.e. we want functions, not predicates. The lightweight
bytecode verifier is a functional program with a structure very similar to the predicates presented for
the bytecode verifier above. We have one layer for methods, one for lists of instructions (corresponding
to the∀ quantifier inwt_method ), and one for single instructions. The instruction layer is divided in
one part for certificate checking and one part for the actual type checking.

We begin at the bottom layer with the lightweight type checking function for single instructions.
Because it is easier to read and also shorter, we don’t show the complete functional definition for this
level, but proved the following equivalence instead:

(wtl_inst i G rT s cert max_pc pc = Ok s’) =

(app i G rT s ∧
( ∀ pc’ ∈ set (succs i pc). pc’ < max_pc) ∧
( ∀ pc’ ∈ set (succs i pc). pc’ 6= pc+1 −→ G ` step i G s <=’ cert!pc’) ∧
s’ = (if pc+1 ∈ set (succs i pc) then step i G s else cert!(pc+1)))

This function wtl_inst corresponds closely to the predicatewt_instr from the traditional
bytecode verifier. It takes as arguments an instructioni , a declaration contextG, the return type, the
current state types , the certificate, the maximal program counter, and the current program counterpc .
It yields Ok s’ wheres’ is the state type atpc+1 when the instruction is welltyped, andErr when it
is not. The big conjunction on the right-hand side decomposes into four parts:

• as with the traditional bytecode verifier,wtl_inst requires the instruction to be applicable. This
is modeled by the termapp i G rT s .
• again as in the traditional case,∀ pc’ ∈set (succs i pc). pc’ < max_pc ensures that all

successor program counters lie within the method.
• the rest is a bit different: since there is no global method type available any more, we can only

check jump targets with the certificate. Jump targets are all successors of the instruction apart
from pc+1 . SoG ` step i G s <=’ cert!pc’ is only tested forpc’ 6= pc+1 .
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VERIFIED LIGHTWEIGHT BYTECODE VERIFICATION 11

• to calculate the state type atpc+1 we again execute the instruction on the current state type.
The problem is: that can only yield a valid result ifpc+1 is among the successors of the current
instruction. If it is not, e.g. if the current instruction is aReturn or Goto , we have to think of
something different: if the instruction atpc+1 is ever executed, it must have been the target of
a jump. In this case we will have the information we need in the certificate and can proceed
with that. If the instruction atpc+1 is unreachable, the corresponding state type should beNone,
which is exactly what the certificate will contain in this case, too.

In wtl_inst we have covered almost everything we have done in the example above. There is still
a difference, though: when “executing”Store 1 in the example we did not start from the state type
calculated from theLoad before, but we used the value of the certificate instead. We also checked if the
certificate correctly approximated the current state type. We achieve this behaviour in the formalization
by another predicate:

wtl_cert i G rT s cert max_pc pc ≡
case cert!pc of

None ⇒ wtl_inst i G rT s cert max_pc pc

| Some s’ ⇒ if G ` s <=’ (Some s’) then

wtl_inst i G rT (Some s’) cert max_pc pc

else Err

In wtl_cert , we first check for a current state types if there is something stored in the certificate.
If there is nothing, we just proceed as we would have. If there is something stored however, we first
compare with the current state type, and then use the stored value instead. If the check fails, the
instruction is rejected as not welltyped.

We can now write a function that calculates the state type reached after a whole list of instructions:

wtl_inst_list [] G rT cert max_pc pc s = Ok s

wtl_inst_list (i#is) G rT cert max_pc pc s =

(let s’ = wtl_cert i G rT s cert max_pc pc in

strict (wtl_inst_list is G rT cert max_pc (pc+1)) s’)

The function takes the same arguments aswtl_inst but now works on a list of instructions instead.
An empty list of instructions does not change the state type at all. In the cons case we calculate the
effect of the first instruction and pass the result on to the rest of the lift. Withstrict we can lift a
function from type’a ⇒ ’b err to ’a err ⇒ ’b err in the canonical way:

strict f x ≡ case x of Err ⇒ Err | Ok v ⇒ f v

Usingwtl_inst_list it is easy to express welltypedness of a method:

wtl_method G C pTs rT mxl ins cert ≡
let max_pc = length ins;

start = (Some ([], Ok(Class C)#(map Ok pTs)@(replicate mxl Err)))

in

0 < max_pc ∧ wtl_inst_list ins G rT cert max_pc 0 start 6= Err

The arguments are the same as withwt_method but we have now only the certificate instead of the
whole method type. The state type fed towtl_inst corresponds to the situation at method invocation
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12 G. KLEIN AND T. NIPKOW

time as inwt_start . For welltypedness of the method we only have to demand that the result is not
an error, but a legal state type.

The formalization of the lightweight bytecode verifier is again independent of the actual instruction
set and builds on the same functionsapp , step , and succs as the traditional bytecode verifier.
The main funtion is a simple linear sweep through the instruction list, and the functions for single
instructions get no global type information apart from the certificate.

3.2. Soundness

When we specify a new kind of bytecode verification we of course wish to know if this new bytecode
verifier does the right thing. In our case this means: if the lightweight bytecode verifier accepts a piece
of code as welltyped, the traditional bytecode verifier should accept it, too. We must also show that it
is safe to rely on outside information, i.e. in the soundness proof we must not make any assumptions
on how the certificate was produced. So the soundness theorem is

wtl_method G C pTs rT mxl ins cert −→
( ∃ phi. wt_method G C pTs rT mxl ins phi)

This means that if the certificate was tampered with, the lightweight bytecode verifier either rejects
the method as not welltyped, or if it does not reject, it was still able to reconstruct the method type
correctly.

We will now sketch the outline of the soundness proof. The detailed, machine checked Isabelle/Isar
proof document is available from our website [13]. Isabelle/Isar [25] is a generic way to write Isabelle
proofs in a more human readable form (as opposed to tactic scripts). The hope is that such Isabelle/Isar
proof documents give the reader more insight why a property holds, and not only with which sequence
of commands the prover can establish it.

We prove the soundness theorem by first describing what the method typephi should look like.
To do that we can take into account all information from a successful run of the lightweight bytecode
verifier. Then we show that such aphi always exists and that it satisfieswt_method .

It could be the case that there is more than one welltypingphi for any given method. For soundness
we only need to show the existence of one of them. We pick aphi with the following properties:

• if the certificate contains a state types at some pointpc , phi contains thats at the same point.
• otherwise, if the lightweight bytecode verifier has processed the firstpc instructions and has

calculated a current state types , phi will contain thats at positionpc .

The predicatefits captures that notion:

fits phi is G rT s cert ≡
∀ pc s’.

pc < length is −→
wtl_inst_list (take pc is) G rT cert (length is) 0 s = Ok s’ −→
phi!pc = (case cert!pc of None ⇒ s’ | Some t ⇒ cert!pc)

It is obvious, that such aphi always exists. Given a function calculating the entries ofphi (essentially
just fits written as function), Isabelle proves automatically:

∃ phi. fits phi is G rT s cert
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VERIFIED LIGHTWEIGHT BYTECODE VERIFICATION 13

It remains to show that thisphi satisfieswt_method . When we look back at the definition of
wt_method , we find it consists mainly of the demand thatwt_instr should hold for all instructions
in the method. So we prove first:

wtl_inst_list is G rT cert (length is) 0 s 6= Err ∧
fits phi is G rT s cert −→
( ∀ pc. pc < length is −→ wt_instr (is!pc) G rT phi (length is) pc)

If we have that and combine it with the fact thatwt_start also holds (because we use the exact
same term as start inwtl_method ) we finally get that for every certificate there is a method type such
thatwt_method holds and have proved our soundness result.

The fact thatwt_instr holds for all instructions is the main statement of our soundness proof.
Figure 3 shows how this property may be established in Isabelle (the whole soundness proof is about
600 lines). We will not explain all elements of the Isar proof language we used in full formal detail
(we refer the reader to [25] for that). The hope is however that the Isar language is intuitive enough to
follow the chain of reasoning without being an expert on the proof tool. We will go through the proof
step by step and explain the main points informally.

Figure 3 begins by stating the property to be proved as Isabelle inference rule. Then the proof starts
off by assuming that all the premises hold, and by labeling them for later usage withfits , pc , andwtl

respectively. Since our goal is to show thatwt_instr holds, we would like to start fromwtl_inst

for the same instruction and the same state type. The assumptions on the other hand only contain the
successful run on the whole method, so the next few proof steps will first establish thatwtl_inst must
have worked successfully.

From the assumptionspc andfits we can obtain state typess’ ands’’ such that partial execution
of wtl_inst_list up to the instruction at positionpc yieldsOk s’ andwtl_cert for the instruction
itself yields Ok s’’ . This must hold since the the bytecode verifier couldn’t have run successfully
otherwise. The commandby tells Isabelle to prove this by applying the lemmawtl_all (which states
the possibility of partial execution ofwtl_inst_list in general) and the proof methodauto . We
again label the two properties for later usage.

From our assumptionsfits , pc and wtl we now get thatphi contains the same value as the
certificate if it has the formSome t or, if the certificate isNone, thatphi contains the state types’ we
just obtained from the partial execution. The propertyc_Some talks not only about the current position
pc but about all positions in the method since we will need it later for apc’ other thanpc . Both facts
follow almost directly from the definition offits .

Now we are able to show thatwtl_inst does not return an error for the same instruction and
state type we require forwt_instr . This propertywti follows mainly fromwtl_cert and the things
we learned about the relationship betweenphi andcert . Isabelle can establish it by unfolding the
definition of wtl_cert and by cases analysis on theoption type andif expression contained in
there.

If we take a look at the definition of the property we set out to prove, i.e.wt_instr , we see that
it mainly consists of the demand thatG ` step (is!pc) G (phi!pc) <=’ phi!pc’ should hold
for all successorspc’ . The rest, i.e. applicability and thatpc’ should lie within the method, is neither
difficult nor very interesting. Isabelle will establish it automatically at the end of the proof.

Let us concentrate on the more interesting part instead: we take an arbitrary but fixedpc’ with
pc’ ∈ set (succs (is!pc) pc) (assumptionpc’ in figure 3). For this successor, which must
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14 G. KLEIN AND T. NIPKOW

theorem [[ wtl_inst_list is G rT cert (length is) 0 s 6= Err; pc < length is;

fits phi is G rT s cert ]] =⇒ wt_instr (is!pc) G rT phi (length is) pc

proof -

assume fits: fits phi is G rT s cert

assume pc: pc < length is and wtl: wtl_inst_list is G rT cert (length is) 0 s 6= Err

then obtain s’ s’’ where

w: wtl_inst_list (take pc is) G rT cert (length is) 0 s = Ok s’ and

c: wtl_cert (is!pc) G rT s’ cert (length is) pc = Ok s’’

by - (drule wtl_all, auto)

from fits wtl pc

have c_Some: ∀ t pc. pc < length is ∧ cert!pc = Some t −→ phi!pc = Some t

by (auto dest: fits_lemma1)

from fits wtl pc

have c_None: cert!pc = None −→ phi!pc = s’ by (auto dest!: fitsD_None)

from pc c c_None c_Some

have wti: wtl_inst (is!pc) G rT (phi!pc) cert (length is) pc = Ok s’’

by (auto simp add: wtl_cert_def split: if_splits option.splits)

{ fix pc’ assume pc’: pc’ ∈ set (succs (is!pc) pc)

with wti have less: pc’ < length is by (simp add: wtl_inst_Ok)

have G ` step (is!pc) G (phi!pc) <=’ phi ! pc’

proof (cases pc’ = pc+1)

case False with wti pc’

have G: G ` step (is!pc) G (phi!pc) <=’ cert!pc’ by (simp add: wtl_inst_Ok)

hence cert!pc’ = None −→ step (is!pc) G (phi!pc) = None by auto

hence cert!pc’ = None −→ ?thesis by auto

moreover

{ fix t assume cert!pc’ = Some t

with less have phi!pc’ = cert!pc’ by (simp add: c_Some)

with G have ?thesis by simp }
ultimately show ?thesis by blast

next

case True with pc’ wti

have step (is!pc) G (phi!pc) = s’’ by (simp add: wtl_inst_Ok)

also from w c fits pc wtl

have pc+1 < length is −→ G ` s’’ <=’ phi!(pc+1) by (auto intro: wtl_suc_pc)

with True less have G ` s’’ <=’ phi!pc’ by auto

finally show ?thesis .

qed }
with wti show ?thesis by (auto simp add: wtl_inst_Ok wt_instr_def)

qed

Figure 3. Part of the soundness proof in Isabelle/Isar notation
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VERIFIED LIGHTWEIGHT BYTECODE VERIFICATION 15

of course also lie within the method (factless in figure 3 wherewtl_inst_Ok is the equation for
wtl_inst from section 3.1), we show thatG ` step (is!pc) G (phi!pc) <=’ phi!pc’ holds.
The proof is by case distinction on the termpc’ = pc+1 .

• Looking at the definition ofwtl_inst we see that the casepc’ 6= pc+1 , i.e. whenpc’ is a
jump target, is covered by the certificate:G ` step (is!pc) G (phi!pc) <=’ cert!pc’ .
If the certificate containsNone, the result ofstep (is!pc) G (phi!pc) must also have
beenNone, becauseNone is the bottom element of the order<=’ . For the same reason, this
step (is!pc) G (phi!pc) must then be smaller thanphi!pc’ which is what we wanted to
show. “What we wanted to show” is abbreviated by the schematic variable?thesis in figure
3. It binds to the nearest enclosing property to be proved. Since the casecert!pc’ = None is
now taken care of, we can direct our attention to acert of the formSome t : we know from
the factc_Some established above that it must be equal tophi!pc’ . Hence we again arrive
at G ` step (is!pc) G (phi!pc) <=’ phi!pc’ . Both statements together conclude the
casepc’ 6= pc+1 .
• The second case ispc’ = pc+1 . As a first step we notice thatstep (is!pc) G (phi!pc)

is just the result we obtained forwtl_cert in the very beginning. The next step establishes that
thiss’’ is smaller thanphi!(pc+1) . In order to fit the Isabelle proof on a single page we moved
this into a lemmawtl_suc_pc that is not shown here. It states that the result ofwtl_cert at
instructionpc will always be smaller thanphi at positionpc+1 .
The proof of the lemma again works by case distinction on the certificate, this time at position
pc+1 : if it is None, fits says thatphi!(pc+1) is the same ass’’ and the conjecture
becomes trivial because<=’ is reflexive. If the certificate contains a value, then again it is
equal tophi!(pc+1) , and wtl_cert for the instruction atpc+1 will ensure that our goal
G ` s’’ <=s phi!(pc+1) holds. We relied onwtl_cert for the instruction atpc+1 : such
an instruction will always exists, because we have thatpc’ = pc+1 is a legal successor of our
current instruction.
Combiningstep (is!pc) G (phi!pc) = s’’ and the resultG ` s’’ <=’ phi!pc’ of
the lemma, we arrive in one trivial step at our goal and have concluded the casepc = pc+1 .

We now have established

∀ pc’ ∈set (succs (is!pc) pc). G ` step (is!pc) G (phi!pc) <=’ phi!pc’

By unfolding the definitions ofwtl_inst andwt_instr , Isabelle then automatically proves our main
goal

wt_instr (is!pc) G rT phi (length is) pc

3.3. Completeness

Of course, the trivial bytecode verifier that rejects all programs also would be correct in the sense
above. Therefore we show that our lightweight bytecode verifier also is complete, i.e. that if a program
is welltyped with respect to the traditional bytecode verifier, the lightweight bytecode verifier will
accept the same program with an easy to obtain certificate. What will this certificate look like? As in
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16 G. KLEIN AND T. NIPKOW

the example, we get the information we need from the method type of a successful run of the traditional
bytecode verifier. Since we want to minimize the amount of information we have to provide, we do not
take the whole method type as the certificate, but only the targets of jumps.

We will again only sketch the proof. See the web for details [13]. Before we prove completeness, we
write a functionmake_cert that builds us a certificate from a method typephi and the corresponding
instruction list. The certificate should contain the jump targets, so we define

is_target ins pc ≡
∃ pc’. pc 6= pc’+1 ∧ pc’ < length ins ∧ pc ∈ set (succs (ins!pc’) pc’)

make_cert ins phi ≡
map (λpc. if is_target ins pc then phi!pc else None) [0..length ins(]

The new bit of notation[0..length ins(] is the list of natural numbers from0 to length

ins-1 . The function goes through a listins of instructions and looks at each position if the current
instruction is a jump target. If it is, the certificate gets the value ofphi , if it is not, the certificate gets
no entry.

Now the completeness theorem is:

wt_method G C pTs rT mxl ins phi −→
wtl_method G C pTs rT mxl ins (make_cert ins phi)

One of the key ingredients to the proof of that theorem is monotonicity of the functionsapp andstep :

G ` s <=’ s’ ∧ app i G rT s’ −→ app i G rT s

succs i pc 6= [] ∧ app i G rT s’ ∧ G ` s <=’ s’ −→
G ` step i G s <=’ step i G s’

For monotonicity ofstep we may take into account that the instruction has at least one successor and
that the applicability conditions hold. Otherwise, a call of thestep function doesn’t make much sense
anyway. We have proved these monotonicity theorems for theµJava instructions by case distinction
over the instruction set. The proof is rather long (500 lines) and not very interesting. It contains mostly
reasoning about the<=’ order. One of the most involved instructions is method invocation.

With a certificatecert as produced bymake_cert above, this monotonicity carries over to
wtl_inst and thenwtl_cert :

wtl_cert i G rT s1 cert mpc pc = Ok s1’ ∧ G ` s2 <=’ s1 −→
( ∃ s2’. wtl_cert i G rT s2 cert mpc pc = Ok s2’ ∧ G ` s2’ <=’ s1’)

The other key ingredient is a relationship betweenwt_instr from the traditional bytecode verifier
andwtl_cert : if wt_instr holds for an instructioni thenwtl_cert will successfully return a valid
state types when fed with the same valuephi!pc that wt_instr used. If we are not yet at the last
instruction, this state types will also satisfyG ` s <=’ phi!(pc+1) :

wt_instr i G rT phi mpc pc −→ wtl_cert i G rT (phi!pc) cert mpc pc 6= Err

wt_instr i G rT phi mpc pc ∧
wtl_cert i G rT (phi!pc) cert mpc pc = Ok s −→ G ` s <=’ phi!(pc+1)

With these we can prove completeness by induction. Induction on the list of instructions does not
work immediately, we have to strengthen the goal: we will show that, when the lightweight bytecode
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VERIFIED LIGHTWEIGHT BYTECODE VERIFICATION 17

verifier has finished part of the job, i.e. has processed the firstn instructions, it will always be able to
finish successfully. Even that is not enough yet. We demand further that we will even be able to finish
when we continue with any state type smaller thanphi at the current position. So under the assumption
thatwt_instr holds for all instructions, and with acert as described above, we prove the following
statement by induction on the list of instructionsb that has not yet been processed:

∀ s. G ` s <=’ phi!pc −→ wtl_inst_list b G rT cert (length ins) pc s 6= Err

The base case, whereb is the empty list of instructions, is trivial. In the cons caseb = i#b’ is
composed of one instructioni and a rest listb’ . That means the lightweight bytecode verifier has
processedn-1 instructions and we have to prove that it will be able to finish the rest of the method
which contains now one more instruction. Our induction hypothesis is

∀ s. G ` s <=’ phi!(pc+1) −→
wtl_inst_list b’ G rT cert (length ins) (pc+1) s 6= Err

We have to show thatwtl_inst_list gives a valid result for the listb = i#b’ with a state types
satisfyingG ` s <=’ phi!pc .

To do that, we show thatwtl_cert with i ands returns a state types’ smaller thanphi!(pc+1) .
We could then instantiate the induction hypothesis with thiss’ . From the fact thati is welltyped
and that the rest list can continue with the calculated state type, we instantly havewtl_inst_list

for the whole b = i#b’ . Since we know thatwt_instr holds for instructioni , we get that
wtl_cert gives a valid result withi and phi!pc . We also know that this results’’ satisfies
G ` s’’ <=’ phi!(pc+1) . Monotonicity gives us thatwtl_cert also has a valid results’ for
i ands , becauseG ` s <=’ phi!pc . Moreover, thiss’ satisfiesG ` s’ <=’ s’’ , and since<=’

is transitive alsoG ` s’ <=’ phi!(pc+1) . Together with the induction hypothesis instantiated with
s’ we get that the cons case of the induction holds, too.

Now we have as corollary what we wanted in the first place:wtl_inst_list will produce no
error for the whole instruction list when fed with the start term. This in turn directly implies that
wtl_method holds.

4. Conclusion

We have presented our formalization of lightweight bytecode verification forµJava. It contains the
lightweight bytecode verifier as an executable functional program for which we have proved soundness
and completeness. Both theorems are with respect to our formalization of the traditional bytecode
verifier, which has already been proved type safe. All proofs have been done with Isabelle/HOL, the
theorems in this paper are directly generated from the Isabelle proof document.

The pure specification of the lightweight bytecode verifier alone is only about 50 lines of Isabelle
definitions. The proofs of soundness and completeness however, together with all related lemmas, take
up about 1500 lines of Isabelle/Isar text, and about 6 months of work for one person. The lightweight
bytecode verifier builds on the existing specification of the wholeµJava language. All JVM and BV
related parts ofµJava together consist of about 7000 lines of Isabelle definitions and proofs. This
includes JVM operational semantics, type safety for the bytecode verifier, and an executable traditional
bytecode verifier together with proof that it satisfies the specification presented in this paper. The
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18 G. KLEIN AND T. NIPKOW

source language ofµJava is another 2500 lines, among which areµJava’s operational semantics,
wellformedness of the class hierarchy, lookup functions, and type safety of the source language. In
total µJava is about 9500 lines of Isabelle code and generates about 160 pages of printed, human
readable Isabelle/Isar proof document. All ofµJava is publicly available as part of the official Isabelle
distribtion.

In comparison to our formalization the approach of Eva and Kristoffer Rose [21] is a bit more
general, but also a bit more complex. They only need the certificate when a type merge really produces
a different type than expected, which leads to a smaller type annotation. It does however not save space
during the verification pass, since the state type at all jump targets has to be saved for later checks
anyway. Our completeness result on the other hand includes the simpler and easier to implement notion
that the certificate should contain all jump targets.

The soundness theorem states that the lightweight bytecode verifier accepts only typecorrect
programs, and that it is safe to rely on outside information. The completeness theorem states
that the lightweight bytecode verifier will accept the same welltyped programs as the traditional
bytecode verifier. Both theorems together give us that lightweight bytecode verification is functionally
completely equivalent to traditional bytecode verification. The functional implementation shows that
the algorithm is linear in time and constant in space. All these results together enable a secure scheme
for on-card verification with Java smartcards: programs are annotated with a certificate, produced by
a traditional bytecode verifier or directly by the compiler off-card. On-card verification can then take
place with the efficient and compact lightweight bytecode verifier as part of the card’s JVM. This
scheme provides easy, seamless use for developers while maintaining all security properties from
bytecode verification that we have become accustomed to. The major advantage over cryptographic
methods is that no trust at all in the certifying party and authenticity of the certificate is needed.

Lightweight bytecode verification is already in industrial use as part of the KVM [23, 24], the virtual
machine of the Java 2 Micro Edition. So how does the KVM deal with the features we have not dealt
with here? Exception handlers are not really difficult but add clutter, which is the main reason why we
have ignored them. Sun’s specifications do not go into details either. The main change is that the verifier
has to follow the transfer of control to exception handlers as well. Object initialization is trickier, and
[24] is more explicit about it: one needs to introduce two further kinds of objects, newly created ones
and partly initialized ones. Again, this should be straightforward to add to our formalization. The
notorious subroutine problem [22] is solved by brute force: subroutines are inlined. This is another
indication that JVM-style subroutines are more of a problem than a solution (see also [1]).
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