
Formalizing Probabilistic Noninterference

Andrei Popescu, Johannes Hölzl, and Tobias Nipkow

Technische Universität München

Abstract. We present an Isabelle formalization of probabilistic noninterference
for a multi-threaded language with uniform scheduling. Unlike in previous set-
tings from the literature, here probabilistic behavior comes from both the sched-
uler and the individual threads, making the language more realistic and the math-
ematics more challenging. We study resumption-based and trace-based notions
of probabilistic noninterference and their relationship, and also discuss composi-
tionality w.r.t. the language constructs and type-system-like syntactic criteria. The
formalization uses recent development in the Isabelle probability theory library.

1 Introduction
Language-based noninterference [25] is a major topic in computer security. To state
noninterference, one typically assumes the program memory is separated into a low, or
public, part, which an attacker is able to observe, and a high, or private, part, hidden to
the attacker. A program satisfies noninterference if, upon running it, the high part of the
initial memory does not affect the low part of the resulting memory. In other words, the
program has no information leaks from the private part of the memory into the public
one, so that a potential attacker should not be able to obtain information about private
data by inspecting public data.

While research on language-based noninterference has been thriving in recent years,
only little effort has been put in the mechanical verification of results in this area. In a
previous paper [23], we presented a formalization of possibilistic noninterference, with
a focus on compositionality and type-system-like syntactic criteria. Here, we continue
this research agenda with noninterference for a probabilistic language. The general mo-
tivation for our formalization efforts is the belief, shared by more and more researchers
lately, that the development of programming language metatheory should be pursued
with the help (and confidence) offered by a proof assistant [1]. But there is also a more
specific motivation. Previous work on probabilistic language-based noninterference is
presented in a very informal fashion, even by the standards of a “pen-and-paper” math-
ematician. While justified by the complexity of the involved concepts, this situation is
certainly not satisfactory. The work reported here tries to alleviate this problem, tak-
ing advantage of the recent development of a rich Isabelle/HOL library for probability
theory [9, 10].

We start by formalizing a probabilistic multi-threaded language and its small-step
operational semantics under a uniform scheduler (§2). Then we proceed with the for-
malization of noninterference properties (§3). At the heart of the formalization is an
abstract equivalence ∼ on the memory states, called indistinguishability, where s∼ t
intuitively means that an attacker cannot distinguish between s and t. (For a concrete
notion of state that assigns values to variables and a classification of variables as high
or low, ∼ becomes the standard low equality, i.e., identity on the low variables.) In

this context, noninterference of a program roughly means that selected parts of its ex-
ecution are compatible with ∼, in that if starting in indistinguishable states they yield
indistinguishable results. We consider two flavors of noninterference.

Resumption-based (or bisimulation-based) noninterference (§3.1), amply represented
in the literature [3–6, 26–31] requires that each execution chunk (where the chunk may
be one single step or several steps, depending on the specific notion) is compatible
with ∼ on states, and that this property is also resumed in the matching continuations.
For a probabilistic language, it does not suffice to speak of solitary matching contin-
uations; instead, one partitions the continuations and matches the sets of the partition
in a probability-preserving way. A main advantage of resumption-based notions is usu-
ally compositionality w.r.t. the language constructs; as we argue in [23] for possibilistic
noninterference, this can form the basis of the automatic inference of type-system-like
criteria—and indeed, this also applies here (§3.3). Therefore, we take compositionality
as a major test for a newly introduced resumption-based notion (§3.2). A first notion we
consider is a variation of standard probabilistic bisimilarity, which is mostly composi-
tional but does not interact well with thread-termination sensitive parallel composition.
To cope with this problem, we define a weaker notion, 01-bisimilarity, relaxing the
requirement to match continuation steps by allowing stutter moves.

Trace-based noninterference (§3.4), rather scarce in language-based settings [17,33]
but pervasive in system-based settings (overviewed in [16]), requires that the whole set
of execution traces is compatible with ∼. In a possibilistic framework, this would mean
that, given two indistinguishable states s∼ t, for any execution starting in s and ending
in s′ there exists an execution starting in t and ending in some t ′ such that s′ ∼ t ′. In a
probabilistic framework however, one needs to take a global view and equate, for each
possible indistinguishability class S of the result, the (cumulated) measure of all traces
starting in s and ending in S with the measure of all traces starting in t and ending
in S. We formalize two natural trace-based notions representing end-to-end security
guarantees of our two main resumption-based notions.

The results of our formal development [21] can be summarized as follows:

syntactic criteria
compositionality

=⇒ resumption nointerference =⇒ trace noninterference

Besides the certification aspect, our formalization makes new contributions to the state
of the art in language-based noninterference:
– it considers for the first time a fully probabilistic language, where probabilistic be-
havior comes not only from the scheduler, but also from the individual threads (through
probabilistic choice);
– it performs a comprehensive study, including both trace-based and resumption-based
noninterference and their comparison.

On the other hand, the formalized language has several limitations:
– it restricts thread communication to shared-state communication;
– it does not cover dynamic thread creation;
– it is confined to a uniform scheduler, assigning equal probabilities to each thread.

Throughout the paper, we employ notations close to the formalization, but we occa-
sionally take some liberties with the Isabelle notation in order to ease the presentation.

2

2 The programming language
We formalize a programming language featuring the usual sequential commands, ex-
tended with probabilistic choice and parallel composition under a uniform scheduler.

2.1 Syntax
The language is parameterized by the following types:
– atom, of atoms, ranged over by atm;
– test, of tests, ranged over by tst;
– choice, of (probabilistic) choices, ranged over by ch.

Standard examples of atoms and tests are assignments such as x := x+y and Boolean
expressions such as x < y+ x. Moreover, as we discuss in §2.2, choices are flexible
enough to cover the standard “if” conditions, as well as stateless probabilistic choice.

The type com, of commands, ranged over by c,d, is defined as follows:

datatype com = Atm atom | Done | Seq com com | While test com |
Ch choice com com | Par (com list) | ParT (com list)

For atomic commands Atm atm we usually omit the constructor Atm. The lists of com-
mands passed as arguments to Par and ParT will be indicated using explicit index no-
tation, e.g., [c0, . . . ,cn−1] is a list of length n—this is a detour from the Isabelle syntax
aimed at making the presentation clearer.

A command is called finished if it is either Done or, inductively, a Par- or ParT-
composition of finished commands: finished Done;
(
∧n−1

i=0 finished ci) =⇒ finished (Par [c0, . . . ,cn−1]);
(
∧n−1

i=0 finished ci) =⇒ finished (ParT [c0, . . . ,cn−1]).
Seq c1 c2 is the sequential composition of c1 and c2, written in concrete syntax1 as

c1 ; c2. While tst c is the usual while loop, in concrete syntax, while tst do c. Ch ch c1 c2 is
a choice command. Par [c0, . . . ,cn−1] and ParT [c0, . . . ,cn−1] are two variants of parallel
composition of the thread pool [c0, . . . ,cn−1], written in concrete syntax as c1 ‖ . . . ‖ cn−1
and c1 ‖T . . . ‖T cn−1, respectively. They differ in that the latter is termination-sensitive,
removing finished threads from the thread pool.

2.2 Semantics
The semantics of the language indicates the immediate steps available to a command in
a given state, where the steps are assigned weights that sum up to 1. It is parameterized
by the following data:
– a type of (memory) states, state, ranged over by s, t;
– an execution function for the atoms, aexec : atom→ state→ state;
– an evaluation function for the tests, tval : test→ state→ bool;
– an evaluation function for the choices, cval : choice→ state→ [0,1], where [0,1] is
the real unit interval.

cval ch s expresses the probability with which the left branch, c1, will be picked
when executing the command Ch ch c1 c2 (while the right branch, c2, will be picked
with probability 1− cval ch s).

1 We use abstract syntax in theoretical results and concrete syntax in examples.

3

c wt c s i cont c s i eff c s i
atm 1 Done aexec c s

Done 1 Done s

Seq c1 c2 wt c1 s i
c2, if finished c1
Seq (cont c1 i) c2, otherwise

eff c1 s i

Ch ch c1 c2
cval ch s, if i = 0
1− cval ch s, if i = 1

c1, if i = 0
c2, if i = 1

s

While tst d 1
Seq d (While tst d), if tval tst s
Done, otherwise

s

Par [c0, . . . ,cn−1]
1
n
∗wt ck s j Par [c0, . . . ,cont ck s j, . . . ,cn−1] eff ck s j

ParT [c0, . . . ,cn−1]

1
m
∗wt ck s j,

if ¬ finished ck
0, otherwise

ParT [c0, . . . ,cont ck s j, . . . ,cn−1] eff ck s j

(k, j) ≡ the unique pair in nat×nat such that 0≤ k < n ∧ 0≤ j < brn ck ∧ i=(∑k−1
l=0 brn cl)+ j

m ≡ the number of indexes l ∈ {0, . . . ,n−1} such that ¬ finished cl

Fig. 1: Probabilistic Small-Step Semantics

For every command c, we define its branching number (branching for short), brn c:
brn atm = brn Done = brn (While tst d) = 1; brn (Seq c1 c2) = brn c1;
brn (Ch ch c1 c2) = 2; brn (Par [c0, . . . ,cn−1]) = brn (ParT [c0, . . . ,cn−1]) = ∑

n−1
l=0 brn cl .

Indexes ranging from 0 to brn c− 1 are used to label the single-step transitions
available from a command c. Then, given current states s, these transitions are assigned
weights, continuation commands (continuations for short) and state effects (effects for
short) by the functions wt c s : {0, . . . ,brn c−1}→ [0,1], cont c s : {0, . . . ,brn c−1}→
com, and eff c s : {0, . . . ,brn c−1}→ state, respectively. All these are defined in Fig. 1’s
table. The first column lists all possible forms of c, and the other columns show, for the
three operators, the defining recursive clauses for each form (with i∈ {0, . . . ,brn c−1}).

The semantics of atm and Done are straightforward: there is one single available
step (hence brn is 1) with weight 1, transiting to the terminating continuation Done. For
Done, there is no effect on the state (i.e., the state s remains unchanged), and for atm,
the effect is given by aexec. For technical reasons, Done has a dummy transition to itself.

A Seq c1 c2 command obtains its branching, weight and effect from c1, and its con-
tinuation is the continuation of c1 if unfinished and is c2 otherwise. While tst d performs
an unfolding step to the continuation Seq d (While tst d) if the test is True and to Done

otherwise, in both cases with weight 1 and no effect.
A choice command Ch ch c1 c2 is assumed to perform an effectless branching ac-

cording to ch. It has 2 branches, labeled 0 and 1: the left one with weight cval ch s
and continuation c1, and the right one with complementary weight 1− cval ch s and
continuation c2.

If c has the form Par [c0, . . . ,cn−1], then it consists of n threads, c0, . . . , cn−1, running
in parallel under a uniform scheduler assigning them equal probabilities. The branching
of c is thus the sum the branchings of cl for l ∈ {0, . . . ,n− 1}. A branch label i of c
determines uniquely the numbers k and j so that i corresponds to the j’s branch of ck,

4

cf1 = (Ch0.5 (x := 3) Done, s)

0.5

ssggggggggggggggggggg
0.5

**VVVVVVVVVVVVVVVVVV

cf2 = (x := 3,s)

1
��

cf3 = (Done,s)

1

WW

cf4 = (Done,s[x← 3])

1

WW

Fig. 2: Markov Chain

via the equation i = (∑k−1
l=0 brn cl)+ j. The weight of i in c is [the probability of picking

thread ck (out of n possibilities)] times [the weight of j in ck], i.e., (1/n) ∗wt ck s j.
The i-continuation from c is obtained by replacing, in the thread pool, ck with its j-
continuation cont ck s j. The i-effect of c is the j-effect of ck, eff ck s j.

ParT behaves like Par, except that it is termination-sensitive, in that finished threads
are not taken into consideration (being assigned weight 0), and the choice is made
among the m unfinished threads—consequently, the weight of an unfinished thread is
1/m. In case all threads are finished, we simply add a single idle transition, with prob-
ability 1—this trivial case is not shown in the figure.

Example 1 Here is a simple standard instantiation of the generic notions of state,
atomic statement and test. state consists of assignments of values to variables, var→
val, where val is a type of values (e.g., integers) and var a countable type of variables.
The atomic statements and the tests are built by means of arithmetic and boolean ex-
pressions applied to variables. The atom and test valuation functions are as expected.

Since the choice is allowed to depend on the state, it can capture not only standard
probabilistic choice, but also the “if” statement [11]. We define choice to be [0,1] +
test, i.e., a choice is either Inl x, the embedding of a unital real number, or Inr tst, the
embedding of a test tst. Then cval (Inl x) s = x for all s, making Ch (Inl x) c1 c2, simply
written Chx c1 c2, the stateless probabilistic choice. Moreover, cval (Inr tst) s = 1 if
tval tst s = True and = 0 otherwise, making Ch (Inr tst) c1 c2, simply written if tst then
c1 else c2, the standard conditional statement.

For any command, the sum of the weights of its branches is 1, meaning that the
small-step semantics yields the transition matrix M of a Markov chain on the type of
configurations, config = com× state:

M (c,s) (c′,s′) = ∑{wt c s i | i ∈ {0, . . . ,brn c−1} ∧ (c′,s′) = (cont c s i, eff c s i)}

Fig. 2 shows the portion of the Markov chain reachable from (Ch0.5 (x := 3) Done,s).
Note that a node (c,s) may have fewer outer edges than brn c, since some branches may
lead to the same node, case in which they are merged into a single transition weighed
with the sum of their weights. E.g., if c = Ch0.5 d d, then (c,s) has a single Markov
transition to (d,s) of weight 0.5+0.5 = 1.

5

Let Trace(c,s) = {(ci,si)i∈nat | (c0,s0)= (c,s) ∧ ∀i∈ nat.M (ci,si) (ci+1,si+1)> 0},
the set of traces starting at (c,s) ((c,s)-traces for short). A basic event for (c,s) is the set
of all (c,s)-traces of a given finite prefix (ci,si)

n
i=0; the measure of such a basic event

is the product of transition weights ∏
n
i=0 M (ci,si) (ci+1,si+1). Let Alg(c,s) be the σ -

algebra generated by the basic events, i.e., the smallest collection of subsets of Trace(c,s)
that is closed under countable union and complement and contains every basic event. By
standard probability theory [13], there is a unique probability measure Pr(c,s) : Alg(c,s)→
[0,1] extending the measure of basic events. ([9] describes in detail the formalization
of the involved standard constructions.) For example, in Fig. 2’s Markov chain, we
have only two (c0,s)-traces, cf1 cf2 cf ω

4 and cf1 cf ω
3 . In general, the set of traces may be

infinite, even uncountable. We have Pr(c0,s) {cf1 cf2 cf ω
4 }= Pr(c0,s) {cf1 cf ω

3 }= 0.5.

3 Noninterference
We fix a relation ∼ on states, called indistinguishability, where s∼ t is meant to say “s
and t are indistinguishable by the attacker.”

Example 2 In the context of Example 1, ∼ is often defined as follows. Variables are
classified as either low (lo) or high (hi) by a given security level function sec : var→
{lo,hi}. Then ∼ is defined as coincidence on the low variables, with the intuition that
the attacker can only observe these: s∼ t ≡ ∀x ∈ var. sec x = lo =⇒ s x = t x.

Noninterference of a program states that its execution is compatible with the indis-
tinguishability relation: given two indistinguishable states s and t, (partially) executing
the program once starting from s and once starting from t yield indistinguishable states.

There are two main types of formulation of noninterference: as an indefinite in-
distinguishability resumption property (bisimilulation) and as a property of alternative
execution traces. The seminal paper [32] proposes an end-to-end noninterference prop-
erty using big-step semantics, which can be seen as a property of traces. Much of sub-
sequent work [3–6, 26–31] prefers small-step semantics and resumption-based notions,
although trace-based notions are also considered [17, 33].

In the presence of concurrency, resumption-based notions have been shown to be
more compositional (which was no surprise, since this phenomenon is known from
process algebra). Sabelfeld and Sands [26] were the first to observe the tight connection
between the compositionality of resumption-based notions and sufficient type-system
criteria—in a previous paper [23], we used this idea to devise a uniform methodology
for extracting syntactic criteria from compositionality.

On the other hand, trace-based notions are often more intuitive to grasp, as they do
not involve the alternation complexity of bisimulations. Also, trace-based notions can
benefit from other other kinds of static analyses, such as data-race analysis [33].

Next, we study and relate the two flavors of noninterference, including composi-
tionality and syntactic criteria, for the introduced probabilistic language.

3.1 Resumption-Based Noninterference
We define the following notions of self isomorphism, siso, and discreetness, discr, coin-
ductively as greatest fixed points, i.e., as the weakest predicates satisfying certain equa-
tions. (They are probabilistic counterparts of possibilistic notions introduced in [23].)

6

For siso, one requires that, if started in indistinguishable states, executions take the
same branches with the same probabilities. For discr, one requires that, during the com-
putation, the states stay indistinguishable from the initial state.
siso c ≡ (∀s t i. s∼ t ∧ i < brn c =⇒ cont c s i = cont c t i ∧ eff c s i∼ eff c t i) ∧

(∀s i. i < brn c =⇒ siso (cont c s i))
discr c ≡ ∀s i. i < brn c =⇒ s∼ eff c s i ∧ discr (cont c s i)

siso and cont are very demanding notions of security. To define weaker notions, we
need to allow alternative executions to take different branches, while also allowing exe-
cution to change the indistinguishability class of the state. It is easy to notice that these
two relaxations lead us to the consideration of (binary) relations rather than unary pred-
icates. Indeed, if the command c branches according to a high test in two continuations
d1 and d2, then the notion of security of c is conditioned by the notion of “equivalence”
of d1 and d2. This equivalence will be defined as bisimilarity, while security of c will
be defined as self bisimilarity (c bisimilar to itself).

To introduce probabilistic bisimulation, we need a few preparations. Given I ⊆
{0, . . . ,brn c− 1}, we write Wt c s I for the cumulated weights from (c,s) of the la-
bels in I, namely, ∑i∈I wt c s i. Given sets A and P, we say P is a partition of A, written
part A P, if P consists of mutually disjoint sets whose union is A.

The following predicate matchC
C (read “match continuation against continuation”)

shows, for a relation on commands θ and two commands c and d, how the steps taken
by c and d are matched unambiguously and weight-exhaustively, so that their effects
are indistinguishable and their continuations are in θ :
matchC

C θ c d ≡
∀s t. s∼ t =⇒ ∃P Q F.
part {0, . . . ,brn c−1}P ∧ part {0, . . . ,brn d−1}Q ∧ [F : P→ Q bijection] ∧
(∀I ∈ P. Wt c s I = Wt d t (F I) ∧

(∀i ∈ I. ∀ j ∈ F I. eff c s i∼ eff d t j ∧ θ (cont c s i) (cont d t j)))
Thus, matchC

C θ c d states that there exist partitions P and Q of the branches of c
and d and a bijective correspondence F : P→ Q so that, for any corresponding sets of
branches I and F I:
– The cumulated weights are the same.
– For any pair (i, j) of branches in these sets, the effects are indistinguishable and the
continuations are in θ .

Strong bisimilarity, ≈S, is defined coinductively as the largest (i.e., weakest) rela-
tion satisfying ∀c,d. c≈S d ⇐⇒ matchC

C (≈S) c d, or, equivalently, the largest relation
satisfying ∀c,d. c≈S d =⇒ matchC

C (≈S) c d. If we ignore preservation of the state in-
distinguishability, this boils down to a well known property of Markov chains called
probabilistic bisimulation or lumpability [13, 15].

According to the insight obtained in [23], a good during-execution noninterference
candidate should be compositional with the language constructs and weaker than both
siso and discr. It turns out that ≈S has many of these characteristics, in particular, it will
be shown to commute with all the constructs except for While and ParT.

To compensate for the lack of ParT-compositionality of ≈S , we introduce a weaker
relation, ≈01, that we call 01-bisimilarity because it requires a step to be matched by
either no step (a stutter move) or one step. Its characteristic matcher is

7

c≈01 c

c≈S c

KS

discr c

9A{{{{{{{

{{{{{{{
siso c

]eBBBBBBB

BBBBBBB

≈01 c

≈S c

KS

discr c

;C~~~~~~~

~~~~~~~
siso c

[c>>>>>>>

>>>>>>>

Fig. 3: Resumption-Based Notions and Syntactic Criteria

matchC
01C θ c d ≡

∀s t. s∼ t =⇒ ∃P Q I0 F.
part {0, . . . ,brn c−1}P ∧ part {0, . . . ,brn d−1}Q ∧ I0 ∈ P ∧ [F : P→ Q bijection]

(∀I ∈ P−{I0}.
Wt c s I

1−Wt c s I0
=

Wt d t (F I)
1−Wt d t (F I0)

∧

(∀i ∈ I. ∀ j ∈ F I. eff c s i∼ eff d t j ∧ θ (cont c s i) (cont d t j))) ∧
(∀i ∈ I0. s∼ eff c s i ∧ θ (cont c s i) d) ∧
(∀ j ∈ F I0. t ∼ eff d t j ∧ θ c (cont d t j))

matchC
01C θ c d relaxes matchC

C to allow matching continuation steps not only by con-
tinuation steps, but also by stutter moves. Thus, in the partitions P and Q, one singles
out sets of stutter branches I0 and F I0 whose effects are required to preserve indis-
tinguishability and whose continuations are required to be in relation θ with the other
party’s source command, d or c. Moreover, the cumulated weights in corresponding
non-stutter sets of branches are no longer required to be equal, but only equal relatively
to the cumulated weights of all non-stutter branches (i.e., to 1 minus the cumulated
weights of the stutter ones).

01-bisimilarity, ≈01, is now defined analogously to ≈S, as the largest relation sat-
isfying ∀c d. c≈01 d ⇐⇒ matchC

01C (≈01) c d. The notion of security associated to a
bisimilarity is its diagonal version, which we call self bisimilarity. Thus, c is called
self strongly-bisimilar if c≈S c and self 01-bisimilar if c≈01 c.

The 01-steps relaxation scheme is well-known in language-based possibilistic bisim-
ulations [4–6, 23], and corresponds to the triangle unwinding scheme in system-based
security [16]—our relation ≈01 seems to be its first probabilistic adaptation.

Note that all the above four notions of security are defined employing universal
quantification over the relevant current states (either s alone for discr or the indistin-
guishable states s and t for the other notions), which are therefore “refreshed” at each
resumption point. This means that security is defined interactively, guaranteeing correct
behavior under the assumption that the environment (consisting perhaps of the attacker
or of the other threads) may change the state at any point. This is crucial for compo-
sitionality [23, 24, 26]. It is immediate to prove by coinduction that ≈01 is weaker than
≈S, which in turn is weaker than siso and discr:
Prop 1 The implications shown in the left of Fig. 3 hold.

3.2 Compositionality
Here we establish the compositionality properties of the two resumption-based notions
w.r.t. the language constructs and discuss their relative strengths and weaknesses.

8



First, we need atomic properties of preservation and compatibility adapted to the ab-
stract notions of state and indistinguishability relation. An atom atm is called
∼-preserving, written pres atm, if ∀s. aexec atm s∼ s; it is called ∼-compatible, written
cpt atm, if ∀s t. s∼ t =⇒ aexec atm s∼ aexec atm t. A test tst is called ∼-compatible,
written cpt tst, if ∀s t. s∼ t =⇒ tval tst s = tval tst t. A choice ch is called∼-compatible,
written cpt ch, if ∀s t. s∼ t =⇒ cval ch s = cval ch t.

In the setting of Example 2, for atoms, ∼-preservation means no assignment to low
variables and∼-compatibility means no direct leaks, i.e., no assignment to low variables
of expressions depending on high variables. Moreover, for tests,∼-compatibility means
no dependence on high variables. A stateless choice is always compatible and an “if”
choice is compatible if it is so as a test.

The next proposition states various compositionality results, schematically repre-
sented in Fig. 4 as follows. The first column lists the possible forms of a command c (c
may be an atom atm, or have the form Seq c1 c2, etc.). The next columns list conditions
under which the predicates stated on the first row hold for c. Thus, e.g., row 4 column
3 says: if cpt ch, siso c1 and siso c2, then siso (Ch ch c1 c2). The horizontal line in row 3
columns 4 and 5 represents an “or”—thus, e.g., row 3 column 4 says: if either [siso c1
and c2 ≈S c2] or [c1 ≈S c1 and discr c2] then Seq c1 c2 ≈S Seq c1 c2.

Prop 2 The compositionality facts stated in Fig. 4 hold.

As expected, compatibility is a minimal security requirement for atoms, with dis-
creetness requiring even preservation. Sequential composition behaves perfectly w.r.t.
siso and discr, but for ≈S and ≈01 it requires strengthening either to siso on the left com-
ponent or to discr on the right component. For choice, compatibility is required for all
notions except for discr; in the particular case of “if” tests, this becomes the well-known
“no high test” condition; for stateless choices, the condition is vacuously true.

The compositionality w.r.t. Par and ParT reveal some interesting phenomena. While
in the possibilistic case we have shown that, in the presence of the aforementioned
interactivity proviso, parallel composition is unconditionally compositional, here the
situation is less convenient. Possibilistically, it makes no difference whether or not a
finished thread is removed from the pool. Indeed, scheduling it to take a stutter move
has no possibilistic effect. However, it does have the effect of delaying the steps taken
by other threads. This is already discussed in [28, 29] for sequential threads, and is
reflected in our case by ≈S not being compositional w.r.t. ParT. Also, ≈01 is not ParT-
compositional either. Fortunately, ParT composition of ≈S-related threads yields ≈01-
related results, which saves the day—this is the main reason for introducing ≈01.

Another problem that seems specific to probabilistic semantics is that≈S and≈01 are
not compositional w.r.t. While. The main reason is that both ≈S and ≈01 are termination-
insensitive, and hence they do not detect, in a while loop, when the body command has
finished executing, which makes synchronization impossible in the bisimilarity game.

These compositionality problems are actually not as bad as they may seem: as we
discuss in §3.3, when proving noninterference of a command c, if a notion fails to be
compositional w.r.t. the construct from the top of c, one can fall back on a stronger
notion, for which the proof can progress.

9



c discr c siso c c≈S c c≈01 c
atm pres atm cpt atm cpt atm cpt atm

Seq c1 c2
discr c1
discr c2

siso c1
siso c2

siso c1
c2 ≈S c2
c1 ≈S c1
discr c2

siso c1
c2 ≈01 c2
c1 ≈01 c1
discr c2

Ch ch c1 c2
discr c1
discr c2

cpt ch
siso c1
siso c2

cpt ch
c1 ≈S c1
c2 ≈S c2

cpt ch
c1 ≈01 c1
c2 ≈01 c2

While tst d discr d
cpt tst
siso d

False False

Par [c0, . . . ,cn−1]
discr cl
0≤ l < n

siso cl
0≤ l < n

cl ≈S cl
0≤ l < n

False

ParT [c0, . . . ,cn−1]
discr cl
0≤ l < n

False False
cl ≈S cl
0≤ l < n

Fig. 4: Compositionality of Resumption-Based Noninterference

3.3 Syntactic Criteria
With the implications between bisimilarities and their compositionality facts in place,
we can automatically infer type-system criteria. This was described in [23, §6] as a
“table-and-graph” method for a possibilistic programming language. Since the analysis
from there is semantics-independent, it also applies here. For each security notion χ ∈
{discr, siso,≈S,≈01 }, we define a function χ : com→ bool following a potential attempt
to prove χ c, first using the corresponding compositionality fact from Fig. 4’s table, and,
if this fails, falling back on stronger notions given by the predecessors of χ from Fig. 3’s
left graph. Thus, the cell corresponding to the form of c and the notion χ contains some
properties of the components of c and possibly a side condition. Then:
– if the side condition holds, then χ c is defined recursively as the conjunction of all
χ ′ c′, where χ ′ c′ are the listed conditions for the components c′ of c;
– otherwise, χ c is defined as the disjunction of all χ ′ c, where χ ′ are the immediate
predecessors of χ in Fig. 3’s left graph.

Concretely:
discr atm⇐⇒ pres atm; discr (Seq c1 c2)⇐⇒ discr (Ch ch c1 c2)⇐⇒ discr c1 ∧ discr c2;
discr (While tst d)⇐⇒ discr d;
discr (Par [c0, . . . ,cn−1])⇐⇒ discr (ParT [c0, . . . ,cn−1])⇐⇒

∧n−1
i=0 discr ci;

siso atm⇐⇒ cpt atm; siso (Seq c1 c2)⇐⇒ siso c1 ∧ siso c2;
siso (Ch ch c1 c2)⇐⇒ cpt ch ∧ siso c1 ∧ siso c2; siso (While tst d)⇐⇒ cpt tst ∧ siso d;
siso (Par [c0, . . . ,cn−1])⇐⇒

∧n−1
i=0 siso ci; siso (ParT [c0, . . . ,cn−1])⇐⇒ False;

≈S atm⇐⇒ cpt atm; ≈S (Seq c1 c2)⇐⇒ (siso c1 ∧ ≈S c2) ∨ (≈S c1 ∧ discr c2);
≈S (Ch ch c1 c2)⇐⇒ cpt ch ∧ ≈S c1 ∧ ≈S c2;
≈S (While tst d)⇐⇒ siso (While tst d) ∨ discr (While tst d);
≈S (Par [c0, . . . ,cn−1])⇐⇒

∧n−1
i=0 ≈S ci;

≈S (ParT [c0, . . . ,cn−1])⇐⇒ siso (ParT [c0, . . . ,cn−1]) ∨ discr (ParT [c0, . . . ,cn−1]);
≈01 atm⇐⇒ cpt atm; ≈01 (Seq c1 c2)⇐⇒ (siso c1 ∧ ≈01 c2) ∨ (≈01 c1 ∧ discr c2);

10



≈01 (Ch ch c1 c2)⇐⇒ cpt ch ∧ ≈01 c1 ∧ ≈01 c2; ≈01 (While tst d)⇐⇒ ≈S (While tst d);
≈01 (Par [c0, . . . ,cn−1])⇐⇒ ≈S (Par [c0, . . . ,cn−1]);
≈01 (ParT [c0, . . . ,cn−1])⇐⇒

∧n−1
i=0 ≈S ci.

The above are valid recursive definitions: each operator χ is defined recursively in
terms of itself and/or in terms of previously defined operators. Note how, when compo-
sitionality for a notion fails, stronger notions are invoked, e.g.:
≈S (While tst d)⇐⇒ siso(While tst d)∨discr (While tst d)⇐⇒ (cpt tst∧ siso d)∨discr d

We can prove that the syntactic notions are indeed sufficient criteria for their se-
mantic counterparts, and that the former inherit the hierarchy of the latter.

Prop 3 (1) For any χ in Fig. 3 left, it holds that ∀c. χ c =⇒ χ c.
(2) The implications shown in the right of Fig. 4 hold.

The next example illustrates the semantic notions and their syntactic criteria:

Example 3 Consider the following commands, with h,h′ high and l, l′ low variables.
– d0: h′ := 0 ; while h > 0 do Ch0.5 (h := 0) (h′ := h′+1)
– d1: while h > 0 do Ch0.5 (h := h−1) (h := h+1)
– d2: if l = 0 then l′ := 1 else d0
– d3: h := 5 ; (d0 ‖T l := 1)
– d4: (if h = 0 then h := 1 ; h := 2 else h := 3) ; l := 4
– d5: d4 ‖T l := 5

Provided initially h > 0, d0 has the effect of assigning a random geometrically dis-
tributed integer value to h′, and d1 performs a one-dimensional random walk with the
value of h (the so-called gambler’s ruin), resulting invariably in exit (at h = 0) with
probability 1. d3 illustrates one advantage of being able to nest parallel composition in-
side sequential composition—the possibility to make some global initializations (here,
h := 5) before starting up the thread pool (here, containing two threads, d0 and l := 1).

d0 and d1 are discreet, d2 is self strongly bisimilar, and d3 is self 01-bisimilar, but
not self strongly bisimilar due to the presence of ParT whose compositionality requires
the shift from≈S to ≈01. (d3 would become self strongly bisimilar had we replaced ParT
with Par.) Indeed, d0–d3 are deemed secure by the syntactic criteria from Fig. 3, e.g.:

≈01 d3 ⇐⇒
siso (h := 5) ∧ ≈01 (d0 ‖T l := 1) ∨ ≈01 (h := 5) ∧ discr (d0 ‖T l := 1) ⇐⇒

True ∧ ≈S d0 ∧ ≈S (l := 1) ∨ True ∧ discr d0 ∧ discr (l := 1) ⇐⇒
. . . ⇐⇒

True ∧ True ∧ True ∨ True ∧ True ∧ False ⇐⇒
True ∨ False ⇐⇒

True
On the other hand, d4 and d5 are not secure, not even according to ≈01. The problem with

d4 is that the timing of the low assignment l := 4 depends on the value of the high variable h,
which can cause probabilistic leaks when placed in parallel with other threads that may update l.
d5 shows such a situation: the initial value of h influences the likelihood that l := 4 is executed
before l := 5. And indeed, d4 and d5 are rejected by all the syntactic criteria, e.g.:

≈01 d4 ⇐⇒
siso (if h = 0 . . .) ∧ ≈01 (l := 4) ∨ ≈01 (if h = 0 . . .) ∧ discr (l := 4) ⇐⇒

. . . ⇐⇒
False ∧ True ∨ True ∧ False ⇐⇒

False

11



c≈01 c aeT c +3 eSec c

c≈S c

KS

+3 amSec c

KS

Fig. 5: Resumption-Based and Trace-Based Notions of Security

3.4 Trace-Based Noninterference
Both ≈S and ≈01 protect against the following end-to-end kind of probabilistic attack:
The attacker may run the program multiple times and collect statistical information
about the distribution of the final state up to ∼ (which corresponds to the low part of
the memory); however, this data will never allow the attacker to infer anything about
the initial state beyond the ∼-abstraction (which corresponds to the high part of the
memory). Such a property is best formalized as trace-based noninterference.

For technical reasons, all our execution traces are infinite, with dummy transitions
added for finished commands. We call terminating those traces reaching a configuration
whose command is finished: termin (ci,si)i∈nat ≡ ∃i ∈ nat. finished ci. Since dummy
transitions do not affect the state, the final state of a terminating trace, fstate (ci,si)i∈nat,
is well defined as the unique s such that ∃i. s = si ∧ finished ci.

We define the following sets of traces, for any (c,s), n and t:
T(c,s),n,t ≡ {(ci,si)i∈nat ∈ Trace(c,s) | sn ∼ t},
the set of (c,s)-traces whose n-th configuration’s state is indistinguishable from t;
T(c,s),t ≡ {(ci,si)i∈nat ∈ Trace(c,s) | termin (ci,si)i∈nat ∧ fstate (ci,si)i∈nat ∼ t},
the set of terminating (c,s)-traces whose final state is indistinguishable from t.

The set of terminating states, as well as T(c,s),n,t and T(c,s),t , are all measurable sets
since they can be written as countable unions of countable intersections of basic events.
We say c almost everywhere terminates, written aeT c, if ∀s. Pr(c,s) {(ci,si)i∈nat ∈
Trace(c,s) | termin (ci,si)i∈nat}= 1, i.e., the set of terminating (c,s)-traces has measure 1.

We can now define the following trace-based notions of noninterference:
– Any-moment security states that, for any two executions starting in indistinguishable
states and any given time, the probability of being at that time in any given indistin-
guishability class is the same:

amSec c ≡ ∀s1 s2. s1 ∼ s2 =⇒∀n t. Pr(c,s1) T(c,s1),n,t = Pr(c,s2) T(c,s2),n,t
– End security states that, for any two executions starting in indistinguishable states, the
probability of ending up in any given indistinguishability class is the same:

eSec c≡ ∀s1 s2.s1 ∼ s2 =⇒∀t. Pr(c,s1) T(c,s1),t = Pr(c,s2) T(c,s2),t
Any-moment security is a strong guarantee: even if one is able to observe the dis-

tribution of the low memory at any given moment, one still cannot infer anything about
the initial high memory. On the other hand, end security warrants something weaker:
that the final distribution of the low memory tells nothing about the initial high mem-
ory. One can prove that ≈S implies any-moment security, and that this in turn implies
end security. More interestingly, ≈01 implies end security if we also assume almost-
everywhere termination; roughly, the last assumption is necessary to make sure that the
“bisimulation noise” caused by stutter moves cannot delay synchronization forever, but
eventually becomes negligible.

Prop 4 The implications listed in Fig. 5 hold.

12



In Example 3, d0–d3 are all ≈01-secure programs and are also almost-everywhere
terminating, hence they satisfy eSec by Prop. 4. Moreover, since d2 is ≈S-secure, it
satisfies the stronger property amSec by Prop. 4. d5 does not satisfy eSec, since the
distribution of the final low memory reveals whether h is 0 or not: if h = 0, then 1 out
of 4 executions yields l = 4; otherwise, only 1 out of 8. On the other hand, even though
d4 is not ≈01-secure, it obviously satisfies eSec, since all its executions yield l = 4.

4 Overview and Statistics

Our formal development [21] amounts to about 8000 lines of scripts in Isabelle [19].
Fig. 6 shows the main theory structure, indicating for each theory the number of lines
and the corresponding sections of the paper. The types and functions parameterizing the
language syntax and semantics, as well as the state-indistinguishability relation ∼, are
fixed in Isabelle locales [12]—theory Concrete instantiates these locales as discussed in
Examples 1 and 2.

The language semantics was tedious to formalize due to parallel composition (espe-
cially the termination-sensitive one), which involves list-index manipulation—employing
iterated binary parallel composition instead (as in the possibilistic case [23]) was not
an option, since the scheduler needs to address the thread pool as a whole. On the other
hand, probabilistic semantics displays a certain conceptual simplification over tradi-
tional nondeterministic semantics: for each language construct, the direct rules and the
inversion rules are merged into “direct” quantitative equations (as described in Fig. 1).

We defined the probabilistic bisimulations on the concrete branches of the opera-
tional semantics, and not on the more abstract Markov-chain transitions (which may
identify some of the branches); indeed, the branches provided us with a good notation
for partitioning the continuations and, more importantly, with the right level of abstrac-
tion for proving compositionality facts without having to query whether some continua-
tions happen to be equal. On the other hand, we used the general-purpose Markov-chain
construction of the traces and their probability space [9] as opposed to building them
from branches, which of course saved us much background work but complicated a
little the proofs relating resumption notions with trace notions.

The largest and most laborious part (roughly 36% of the whole development) deals
with the compositionality results listed in Prop. 2—the bisimulation relations provided
as witnesses in coinductive proofs involved tedious constructions of partitions and
sums over sets. Isabelle’s Sledgehammer tool for deploying external automatic theorem
provers [20], very helpful in discharging goals on possibilistic bisimulations, was less
helpful here, where the ∀∃ scheme of traditional bisimulations gives way to a quan-
titative ∀∑ scheme. Another laborious task was establishing the connection between
trace-based and resumption-based notions, which also involved heavy sum reasoning.

Having the compositionality preparations, the inference of syntactic criteria (Prop. 3)
was immediate, with the induction goals discharged automatically by the simplifier and
the classical reasoner. The route through compositionality facts localized at each lan-
guage construct does better justice to noninterference results than previous formulations
from the literature [17, 27–29, 31], which rely on complex monolithic proofs.

13



Syntactic Criteria [140] (§3.3) Concrete [200] Trace Based [1260] (§3.4)

Compositionality [2900] (§3.2)

fffffffffffff

Resumption Based [1750] (§3.1)

XXXXXXXXXXXX

nnnnnnnnnnnnnnnnnnn

Language Semantics [1880] (§2)

Fig. 6: Isabelle Theory Structure

5 Conclusions and Related Work

We have formalized noninterference properties for a multi-threaded language with prob-
abilistic choice and uniform scheduler. Distinguishing features of our approach are the
comprehensive study, covering both resumption-based and trace-based notions, and the
automatic extraction of syntactic criteria from compositionality. Moreover, all previous
work2 considers systems of sequential deterministic threads run in parallel by a prob-
abilistic scheduler. Our language is more powerful, allowing pervasive probabilistic
behavior, including probabilistic threads. This makes the mathematical analysis more
challenging, since each thread yields a Markov chain, which needs to be combined by
parallel composition in the larger Markov chain of the thread pool. In fact, the very
notions of thread and thread pool are relative here, since the language allows nesting
parallel composition into other constructs (e.g., having Seq on top of Par or ParT), al-
though, as we have seen, security requirements restrict some of this expressiveness.

If we are to identify a “pen-and-paper” reference for our formalized resumption-
based notions, the closest is a series of papers by Smith and others [27–29, 31], which
progressively introduces notions analogous to ours. Specifically, [31] introduces self
isomorphism, [27] strong bisimilarity, and [28,29] a notion weaker than our 01-bisimilarity
called weak bisimilarity. In each case, the type system proved sound in there is equiva-
lent to our syntactic criterion uniformly extracted from compositionality (Prop. 3).

A further point of convergence with the above works is the consideration of various
flavors of parallel composition. [31] and [27] consider the termination-insensitive Par,
while later work [28, 29] focuses on the termination-sensitive ParT. Retrospectively, in
the light of the compositionality facts of Prop. 2, this is not surprising, since siso and ≈S

are both compositional w.r.t. Par, and ≈01 is quasi-compositional w.r.t. ParT.
Interestingly, all of the above works prove that the type system implies the corre-

sponding resumption-based version, but they allude informally to a trace-based notion
as the ultimately targeted security guarantee. E.g., [27, page 10] reads: “the proba-
bility that the low variables have certain values after k steps is the same when start-
ing from (O,µ) as where starting from (O,ν)” (where (O,µ) and (O,ν) are bisimilar
configurations)—we have formalized this as any-moment security. Also, [28, page 8]
reads: “the probability that the low variables end up with some values from (O,µ)

2 We only discuss the most related work, covering probabilistic languages and noninterference.
A survey of related work on possibilistic noninterference is given in [23].

14



is the same as the probability that they end up with those values from (O,ν)”—we
have formalized this as end security. Establishing formally the relationship between
a resumption-based notion and a trace-based notion can range from routine (as in ≈S

versus any-moment security) to highly nontrivial (as in ≈01 versus end security).
There are some extensions and generalizations of probabilistic semantics and non-

interference not covered by our formalization. Smith [28] also considers a protect com-
mand enforcing atomicity of execution. (In principle, our formalization can handle this
language construct by “instantiating” the atom parameter to a type mutually recursive
with com.) He also sketches an extension to dynamic thread creation. Sabelfeld and
Sands [26] show that a type system corresponding to our syntactic criterion siso for self
isomorphism is strong enough to ensure noninterference for any scheduler, not only
the uniform one. Mantel and Sudbrock [17] relax the siso requirement, while still cov-
ering relevant schedulers such as uniform and round robin. Our own “pen-and-paper”
work [22] generalizes the results of Smith based on weak bisimilarity [28, 29] to a
different class of schedulers than Mantel and Sudbrock’s, providing an arguably more
manageable criterion for schedulers and a stronger security guarantee.

Our end security is a generalization of the one from [17], where one defines the
property only for globally terminating thread pools—this simplifying assumption al-
lows an elementary treatment of the relevant probabilities, not requiring measure the-
ory. We relax the termination requirement to almost-everywhere termination. This re-
laxation is relevant for probabilistic languages, where many interesting programs termi-
nate only almost everywhere—this also happens to be the case for d0–d3 in Example 3.

Probabilistic, but single-threaded languages in the style of pGCL [18] have been
formalized before in HOL4 [11], Coq [2] and Isabelle [8]. In very recent work [7], Cock
verifies in Isabelle a lattice scheduler (a uniform scheduler that distinguishes between
high and low processes) aimed at closing covert channels such as cash channels. The
scheduler is shown compatible with the possibilistic refinement framework underlying
the verification of the seL4 operating system kernel [14]. While the work does not
target a programming language, the scheduler itself is specified as a program in pGCL
and shown probabilistically noninterfering w.r.t. a version of lumpability.
Acknowledgments. This work was supported by the DFG project Ni 491/13–2, part of
the DFG priority program RS3 and the DFG RTG 1480.

References

1. The POPLmark challenge, 2009. http://www.seas.upenn.edu/ plclub/poplmark/.
2. P. Audebaud and C. Paulin-Mohring. Proofs of randomized algorithms in Coq. S. of Comp.

Prog., 74(8):568–589, 2009.
3. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-composition. In

CSFW, pages 100–114, 2004.
4. G. Barthe and L. P. Nieto. Formally verifying information flow type systems for concurrent

and thread systems. In FMSE, pages 13–22, 2004.
5. G. Boudol. On typing information flow. In ICTAC, pages 366–380, 2005.
6. G. Boudol and I. Castellani. Noninterference for concurrent programs and thread systems.

Theoretical Computer Science, 281(1-2):109–130, 2002.
7. D. Cock. Practical probability: Applying pGCL to lattice scheduling. ITP 2013, to appear.

15



8. D. Cock. Verifying probabilistic correctness in Isabelle with pGCL. In SSV, pages 167–178,
2012.

9. J. Hölzl. Analyzing discrete-time Markov chains with countable state space in Isabelle/HOL.
Submitted to CPP 2013.

10. J. Hölzl and T. Nipkow. Verifying pCTL model checking. In TACAS, pages 347–361, 2012.
11. J. Hurd, A. McIver, and C. Morgan. Probabilistic guarded commands mechanized in HOL.

Theor. Comput. Sci., 346(1), 2005.
12. F. Kammüller, M. Wenzel, and L. C. Paulson. Locales - a sectioning concept for Isabelle. In

TPHOLs’99, pages 149–166, 1999.
13. J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov chains (second edition).

Springer, 1976.
14. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-

gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. sel4: formal verifi-
cation of an os kernel. In SOSP, pages 207–220, 2009.

15. K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1):1 – 28, 1991.

16. H. Mantel. A uniform framework for the specification and verification of security properties.
Ph.D. thesis, Univ. of Saarbrücken, 2003.

17. H. Mantel and H. Sudbrock. Flexible scheduler-independent security. In ESORICS, pages
116–133, 2010.

18. A. McIver and C. Morgan. Abstraction, Refinement and Proof for Probabilistic Systems.
Springer, 2005.

19. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-order
Logic. Springer, 2002.

20. L. C. Paulson and J. C. Blanchette. Three years of experience with Sledgehammer, a practical
link between automatic and interactive theorem provers. In IWIL, 2010.

21. A. Popescu and J. Hölzl. Formal development associated with this paper. http://www21.
in.tum.de/~popescua/prob.zip.

22. A. Popescu, J. Hölzl, and T. Nipkow. Noninterfering schedulers. To be presented at CALCO
2013. http://www21.in.tum.de/~popescua/pdf/CALCO2013.pdf.

23. A. Popescu, J. Hölzl, and T. Nipkow. Proving concurrent noninterference. In CPP, pages
109–125, 2012.

24. A. Sabelfeld. Confidentiality for multithreaded programs via bisimulation. In International
Conference on Perspectives of System Informatics, LNCS, pages 260–273, 2003.

25. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal on
Selected Areas in Communications, 21(1):5–19, 2003.

26. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In
CSFW, pages 200–214, 2000.

27. G. Smith. A new type system for secure information flow. In CSFW, pages 115–125, 2001.
28. G. Smith. Probabilistic noninterference through weak probabilistic bisimulation. In CSFW,

pages 3–13, 2003.
29. G. Smith. Improved typings for probabilistic noninterference in a multi-threaded language.

Journal of Computer Security, 14(6):591–623, 2006.
30. G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language.

In POPL, pages 355–364, 1998.
31. D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. Journal

of Computer Security, 7(2,3):231–253, 1999.
32. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. Journal

of Computer Security, 4(2,3):167–187, 1996.
33. S. Zdancewic and A. C. Myers. Observational determinism for concurrent program security.

In CSFW, pages 29–43, 2003.

16

http://www21.in.tum.de/~popescua/prob.zip
http://www21.in.tum.de/~popescua/prob.zip
http://www21.in.tum.de/~popescua/pdf/CALCO2013.pdf


Appendix: Proof Ideas

This appendix is included for the reviewers’ convenience and is not required for under-
standing the content of the main paper.

Proof of Prop. 2. For statements involving≈S and≈01, we prove the more general form
that does not assume the arguments equal. All proofs are by coinduction, exhibiting a
suitable post-fixpoint relation that implies the conclusion.

We sketch the proof of a representative case, in row 7 column 5: (
∧n−1

k=0 ck ≈S dk)=⇒
ParT [c0, . . . ,cn−1] ≈01 ParT [d0, . . . ,dn−1]. To prove this by coinduction on the definition
of ≈01, we let θ c d ≡ ∃(ck, dk)

n−1
k=0. (

∧n−1
i=0 ck ≈S dk) ∧ c = ParT [c0, . . . ,cn−1] ∧ d =

ParT [d0, . . . ,dn−1] and assume θ c d; we need to show matchC
01C θ c d.

For each k ∈ {0, . . . ,n− 1}, from ck ≈S dk we have matchC
C (≈S) ck dk, hence we

obtain the partitions Pk of brn ck and Qk of brn dk and the function Fk : Pk→Qk as in the
definition of matchC

C. From these, we construct suitable partitions P of brn c and Q of
brn d and set I0 ∈ P of stutter-move indexes as in the definition of matchC

01C as follows.
Let Gk be the shifting of Pk with the branches of the previous commands in the list,
{{∑k−1

l=0 brn cl + i | i ∈ I} | I ∈ Pk}, and, similarly, Hk = {{∑k−1
l=0 brn dl + j | j ∈ J} |

J ∈ Qk}. We let P =
⋃n−1

k=0 Pk, Q =
⋃n−1

k=0 Qk and define F : P→ Q by F Gk = Hk. We
let I0 =

⋃
{Gk | 0 < k < n ∧ (finished ck ∨ finished dk)}—intuitively, whenever one of

the threads of the pool is finished, it and its matching thread are marked as stutter; this
is justified by the fact that any thread strongly bisimilar to a finished thread is discreet.
The conditions from the definition of matchC

01C can now be checked using the operational
semantics of ParT—this involves some straightforward but tedious computation with
sums. ut

Proof of Prop. 3. Both points follow by structural induction on c. For (1), the proof is
straightforward, since the defining clauses of χ were chosen to be properties of χ . ut

Proof of Prop. 4.
c≈S c =⇒ c≈01 c is already covered by Prop. 1.
amSec c =⇒ eSec c: Let F(c,s),n,t be the set of all (c,s)-traces whose command be-
comes finished precisely at moment n with final state indistinguishable from t, namely,
{(ci,si)i∈nat ∈ Trace(c,s) | finished cn ∧ ∀i < n. ¬ finished ci}. From amSec c, we have
that, given s1 ∼ s2, Pr(c1,s1) F(c1,s1),n,t = Pr(c2,s2) F(c2,s2),n,t . Now eSec c follows from
T(c,s),t =

⋃
n∈nat F(c,s),n,t and the sets F(c,s),n,t being disjoint.

To prove the remaining implications, we use the following properties of T(c,s),n,t and
T(c,s),t , where next c s i denotes (cont c s i,eff c s i):

Pr(c,s) T(c,s),n+1,t = ∑i∈brn c wt c s i ∗ Prnext c s i Tnext c s i,n,t (*)

Pr(c,s) T(c,s),t = ∑i∈brn c wt c s i ∗ Prnext c s i Tnext c s i,t (**)

c≈S c =⇒ amSec c: We prove the slightly more general fact c1 ≈S c2 ∧ s1 ∼ s2 =⇒
Pr(c1,s1) T(c1,s1),n,t = Pr(c2,s2) T(c2,s2),n,t by induction on n using the definition of ≈S’s
matcher matchC

C and (*).

17



c≈01 c =⇒ eSec c: Let N(c,s),n be the set of traces whose (n+1)’th state is not discreet
(which also means, by the definition of discreetness, that its previous states are not
discreet either).

We first assume c1 ≈S c2 and show that

dist (Pr(c1,s1) T(c1,s1),t , Pr(c2,s2) T(c2,s2),t)≤ Pr(c1,s1) N(c1,s1),n+Pr(c2,s2) N(c2,s2),m (***)

(where dist is the standard distance between two reals) by induction on n+m using the
definition of ≈01’s matcher matchC

01C and (**).
Now, we assume c≈01 c and aeT c. To prove eSec c, we assume s1 ∼ s2. Since all

finished commands are also discreet, from eSec c it follows that
⋂

n∈nat Pr(c,s1) N(c,s1),n =⋂
n∈nat Pr(c,s2) N(c,s2),n = /0, hence limn→∞ Pr(c,s1) N(c,s1),n = limn→∞ Pr(c,s2) N(c,s2),n =

0. With (***), it follows that Pr(c,s1) T(c,s1),t = Pr(c,s2) T(c,s2),t , as desired. ut

18


	Formalizing Probabilistic Noninterference 

