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Abstract
Braun trees are functional data structures for implementing
extensible arrays and priority queues (and sorting functions
based on the latter) efficiently. Some well-known functions
on Braun trees have not yet been verified, including espe-
cially Okasaki’s linear time conversion from lists to Braun
trees. We supply the missing proofs and verify all of these al-
gorithms in Isabelle, including non-obvious time complexity
claims. In particular we provide the first linear-time conver-
sion from Braun trees to lists. We also state and verify a new
characterization of Braun trees as the trees t whose index
set is the interval {1, . . . , size of t}.

CCS Concepts • Software and its engineering → Soft-
ware verification; Formal software verification; Functional
languages; • Theory of computation → Interactive proof
systems; Sorting and searching.
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1 Introduction
Braun trees are a popular data structure for implementing
extensible arrays in a purely functional manner; they are
balanced and thus have optimal logarithmic height. By arrays
we mean mappings from an interval of natural numbers and
extensible means that we can add new elements at either end.
Searching a number in a Braun tree starts at the root and
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uses the binary representation of the number as a directory
string: 0 means “left”, 1 means “right”.
Braun trees for extensible arrays were first investigated

by Braun and Rem [17] and, in a more functional setting,
by Hoogerwoord [8]. Okasaki [15] introduced some clever
and efficient algorithms for Braun trees. Paulson [16] (in col-
laboration with Okasaki) presented a different application
of Braun trees to implement priority queues. Filliâtre [5]
presents the only formal verification we are aware of, veri-
fying a priority queue implementation and one of Okasaki’s
efficient algorithms using the Why3 system.
In this paper we aim to address the topic of Braun trees

comprehensively. We implement all of the operations of
interest in Isabelle/HOL. We prove functional correctness
of all operations and also verify the more interesting time
complexity claims. The Isabelle/HOL sources with the formal
proofs can be found partly in the Isabelle distribution in
the directory src/HOL/Data_Structures and partly in the
Archive of Formal Proofs [10].

We make the following contributions:

• The first formal verification of Braun trees (based on
Paulson’s [16] code) against a specification of arrays.
• The first correctness proofs (formal or informal) of
Okasaki’s [15] linear time conversion of lists to Braun
trees. We also show how to convert a Braun tree into
a list in linear time (Oksaki had not covered this direc-
tion), which yields an efficient fold function on Braun
trees. We formally prove the linear time complexity of
the conversions in both directions.
• A novel combinatorial analysis of Braun trees. We
show that a tree t is a Braun tree iff the indices of its
nodes form the interval {1, . . . , size of t}.
• Proofs of correctness of Okasaki/Paulson [16] priority
queues based on Braun trees and of sorting functions
built on them, including some proofs of time complex-
ity.

1.1 Isabelle/HOL and Notation
We use the Isabelle/HOL interactive proof assistant [13, 14],
including many of its types. Basic types include bool, nat,
int and real; the function arrow syntax is⇒. Function lg is
the binary logarithm. There are three numeric conversion
functions int :: nat ⇒ int, nat :: int ⇒ nat and real :: nat
⇒ real. We suppress them in this text except where that
would result in ambiguities for the reader. The floor and
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Figure 1. Braun tree with nodes indexed by 1–15.

ceiling conversions ⌊x⌋ and ⌈y⌉ convert from real to int by
rounding down and up respectively.
Lists are constructed from the empty list [] via the infix

cons-operator (#); the infix (@) appends two lists; |xs | is the
length of xs; functions hd and tl return head and tail.
We define binary trees as a recursive data type ′a tree

which has two constructors: the empty tree or leaf ⟨⟩ and
the node ⟨l, a, r⟩ with subtrees l, r :: ′a tree and contents a ::
′a. The size |t | of a tree t is the number of its nodes.

1.2 Inductive Proofs
This paper mostly consists of proofs about recursive func-
tional programs, which are typically shown by induction. To
avoid much repetition, when we say we prove a property
without giving details, we mean that we proved the result
by induction with the help of standard mostly-automated
Isabelle proof steps. The value of our presentation lies in pro-
viding all the inductive lemmas that are the key challenge
when constructing proofs.

2 Braun Trees
Braun trees are binary lookup trees with natural numbers as
indices of the nodes. The Braun tree with nodes indexed by
1–15 is shown in Figure 1. The numbers are the indices and
not the elements stored in the nodes. Any subset {1, . . . ,n}
of the nodes, e.g. {1, . . . , 9}, also forms a Braun tree. The bits
of the binary encoding of the indices tell us how to walk the
tree from the root to the corresponding node, starting with
the least significant bit. For example, the index 14 is 1110
in binary. If we read it in reverse (least significant) order as
left-right-right-stop, we get the path to node 14 in Figure 1.
We do not define a separate type of Braun trees. Instead,

we use the general binary tree type ′a tree mentioned in
Section 1.1 and require the following recursive size property:
braun :: ′a tree⇒ bool
braun ⟨⟩ = True
braun ⟨l, _, r⟩
= ((|l | = |r | ∨ |l | = |r | + 1) ∧ braun l ∧ braun r)

The disjunction can alternatively be expressed as |r | ≤ |l |
≤ |r | + 1. We will call a tree a Braun tree iff it satisfies
predicate braun. We will see (in Section 6) that the predicate

is satisfied exactly by those trees t whose nodes are indexed
by 1, ..., |t |.
The shape of a Braun tree is uniquely determined by its

size. This can be expressed by considering trees of type unit
tree because type unit contains exactly one element, (), and
thus every node contains the same element. Formally:

Lemma 2.1. Let t1, t2 :: unit tree.
braun t1 ∧ braun t2 ∧ |t1 | = |t2 | −→ t1 = t2

2.1 Balance
Braun trees are very precisely balanced: |r | ≤ |l | ≤ |r | + 1
must hold for every node ⟨l, x, r⟩. A more general notion
of balanced binary trees compares the height of a tree (h t)
with its minimum height (mh t):
h:: ′a tree⇒ nat
h ⟨⟩ = 0
h ⟨l, _, r⟩ = max (h l) (h r) + 1

mh :: ′a tree⇒ nat
mh ⟨⟩ = 0
mh ⟨l, _, r⟩ = min (mh l) (mh r) + 1

balanced :: ′a tree⇒ bool
balanced t = (h t − mh t ≤ 1)

Isabelle’s library includes some basic facts about balanced
trees. One is that balanced trees have optimal logarithmic
(minimal) height:
balanced t −→ h t = ⌈lg (|t | + 1)⌉ (1)
balanced t −→ mh t = ⌊lg (|t | + 1)⌋ (2)

From these two properties we derive a lemma that is rather
specifically aimed at Braun trees:

Lemma 2.2. balanced l ∧ balanced r ∧ |int |l | − int |r | | ≤ 1
−→ balanced ⟨l, x, r⟩

Proof. The proof is by cases. We consider only the case |l | =
|r | + 1. From (1) and (2) it follows that h ⟨l, x, r⟩ = ⌈lg (|r |
+ 2)⌉ + 1 and mh ⟨l, x, r⟩ = ⌊lg (|r | + 1)⌋ + 1. These two
quantities can be proved to be 1 apart and thus balanced ⟨l,
x, r⟩ holds. □

Now we can prove that all Braun trees are balanced:

Lemma 2.3. braun t −→ balanced t

The proof is by induction on t and follows directly from
Lemma 2.2.
Thus Braun trees have optimal logarithmic height, a fact

we will use in the running time analyses that follow.
Another useful property of balanced trees (which follows

directly from (1) by monotonicity) is that their height in-
creases monotonically with their size:

Lemma 2.4. balanced t ∧ balanced t ′∧ |t | ≤ |t ′| −→
h t ≤ h t ′
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Filliâtre [5] proves a variant of this lemma (where balanced
is replaced by braun) directly, without recourse to balanced.
With more effort one can prove a stronger version of

Lemma 2.4 that essentially says that the height of balanced
trees is optimal:
balanced t ∧ |t | ≤ |t ′| −→ h t ≤ h t ′

Finally we proved that the height of Braun trees satisfies
a similar invariant as the size. As a direct consequence of
Lemmas 2.3 and 2.4 we obtain:

Lemma 2.5. braun ⟨l, x, r⟩ −→ h r ≤ h l

Lemma 2.3 together with the trivial mh r ≤ h r yields:

Lemma 2.6. braun ⟨l, x, r⟩ −→ h l ≤ h r + 1

3 Arrays
3.1 ADT Specification
Braun trees are useful for encoding arrays indexed by nat-
ural numbers. We describe below the expected interface of
arrays as an abstract data type (ADT). Arrays can naturally
be specified using lists. The Isabelle type ′a list comes with
two array-like operations:

Indexing: xs ! n is the nth element of the list xs.
Updating: xs[n := x] is xs with the nth element replaced

by x.
By convention, indexing starts with n = 0. If |xs | ≤ n then xs
! n and xs[n := x] are underdefined: they are defined but we
do not know what their value is.
We specify the ADT following the model-oriented style

of specifications [9]. The ADT includes a collection of opera-
tions, an abstraction function, and a representation invariant.
The array operations are:
lookup :: ′ar ⇒ nat⇒ ′a update :: nat⇒ ′a⇒ ′ar ⇒ ′ar
len :: ′ar ⇒ nat array :: ′a list⇒ ′ar
The type ′ar above is the type of the array, and ′a the type
of array elements. The additional invariant I :: ′ar ⇒ bool
and abstraction function list :: ′ar ⇒ ′a list are used in the
ADT specification. The specification requires that each op-
eration preserves the invariant and behaves like its abstract
counterpart on lists:
I ar ∧ n < len ar −→ lookup ar n = list ar ! n (lookup)
I ar ∧ n < len ar −→ I (update n x ar) (update-inv)
I ar ∧ n < len ar
−→ list (update n x ar) = (list ar)[n := x] (update)
I ar −→ len ar = |list ar | (len)
I (array xs) (array-inv)
list (array xs) = xs (array)
We could have included list in the interface as well: it is a
useful operation and we will develop an efficient implemen-
tation for it.

In Isabelle this ADT is expressed as a locale [1]. The ADT
can be used in other programs, which are implemented and

lookup (t, l) n = lookup1 t (n + 1)
update n x (t, l) = (update1 (n + 1) x t, l)
len (t, l) = l
array xs = (adds xs 0 ⟨⟩, |xs |)

Figure 2. Array implementation via Braun trees.

verified against this abstract interface. The locale mecha-
nism can then instantiate those other programs to a specific
instance such as Braun trees.

3.2 Implementing Arrays via Braun Trees
We start by defining array-like functions on Braun trees.
Function lookup1 :: ′a tree⇒ nat⇒ ′a examines the bits of
the index starting from the least significant one:
lookup1 ⟨l, x, r⟩ n
= (if n = 1 then x

else lookup1 (if even n then l else r) (n div 2))
The least significant bit is the parity of the index and we
advance to the next bit by div 2. The function is called lookup1
rather than lookup to emphasize that it expects the index to
be at least 1, which simplifies the implementation.

Function update1 :: nat⇒ ′a⇒ ′a tree⇒ ′a tree descends
in the same manner:
update1 n x ⟨⟩ = ⟨⟨⟩, x, ⟨⟩⟩
update1 n x ⟨l, a, r⟩
= (if n = 1 then ⟨l, x, r⟩

else if even n then ⟨update1 (n div 2) x l, a, r⟩
else ⟨l, a, update1 (n div 2) x r⟩)

The second equation performs the update of existing entries.
The first equation, however, creates a new entry and thus
supports extending the tree. That is, update1 (|t | + 1) x t
extends the tree with a new node x at index |t | + 1. Function
adds iterates this process (expecting parameter n = |t |) and
thus adds a whole list of elements:
adds :: ′a list⇒ nat⇒ ′a tree⇒ ′a tree
adds [] _ t = t
adds (x # xs) n t = adds xs (n + 1) (update1 (n + 1) x t)

The implementation of the abstract array interface is shown
in Figure 2. An array is represented as a pair of a Braun tree
and its size, and each operation is a thin wrapper around the
Braun tree operation.

3.3 Functional Correctness
Our main result is that the Braun implementation of arrays
(in Figure 2) is correct. The invariant is obvious:
I (t, l) = (braun t ∧ l = |t |).
The abstraction function list :: ′a tree ⇒ ′a list could be
defined by repeatedly using lookup1. Instead we define list
recursively:
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list ⟨⟩ = []
list ⟨l, x, r⟩ = x # splice (list l) (list r)
This definition is best explained by looking at Figure 1. The
subtrees with root 2 and 3 will be mapped to the lists [2, 4,
6, 8, 10, 12, 14] and [3, 5, 7, 9, 11, 13, 15]. The obvious way
to combine these two lists into [2, 3, ..., 15] is to splice them:
splice :: ′a list⇒ ′a list⇒ ′a list
splice [] ys = ys
splice (x # xs) ys = x # splice ys xs

Before we embark on the actual proofs we state a helpful
arithmetic truth (where {m..n} = {k | m ≤ k ∧ k ≤ n}) that
is frequently used implicitly below:
braun ⟨l, x, r⟩ ∧ n ∈ {1..|⟨l, x, r⟩|} ∧ 1 < n −→
(odd n −→ n div 2 ∈ {1..|r |}) ∧ (even n −→ n div 2 ∈ {1..|l |})
We will now verify that the implementation in Figure 2

satisfies the ADT specification given in Section 3.1.
We start with the ADT property (len). First we prove this

size lemma (by induction):
|list t | = |t |

The lemma and the ADT invariant establish property (len).
We will also use |list t | = |t | implicitly in many proofs below.

To establish (lookup) we first prove a lemma about splice:
n < |xs | + |ys | ∧ |ys | ≤ |xs | ∧ |xs | ≤ |ys | + 1 −→
splice xs ys ! n = (if even n then xs else ys) ! (n div 2)
From the lemma we prove this proposition, which estab-

lishes the correctness property (lookup):
braun t ∧ i < |t | −→ list t ! i = lookup1 t (i + 1) (3)

As a corollary to (3) we obtain that function list can indeed
be expressed via lookup1:
braun t −→ list t = map (lookup1 t) [1..|t |] (4)
It follows by list extensionality: xs = ys←→ |xs | = |ys | ∧
(∀ i< |xs |. xs ! i = ys ! i)

Let us now verify update as implemented via update1. We
prove two preservation properties which prove (update-inv):
braun t ∧ n ∈ {1..|t |} −→ |update1 n x t | = |t |

braun t ∧ n ∈ {1..|t |} −→ braun (update1 n x t)

The following property relates lookup1 and update1:
braun t ∧ n ∈ {1..|t |} −→
lookup1 (update1 n x t) m
= (if n = m then x else lookup1 t m)
The last three properties together with (4) and list extension-
ality prove the following proposition, which implies (update):
braun t ∧ n ∈ {1..|t |} −→
list (update1 n x t) = (list t)[n − 1 := x]

Finally we turn to the constructor array. It is implemented
in terms of adds and update1. Their correctness is captured
by the following properties whose inductive proofs build on
each other:

braun t −→ |update1 (|t | + 1) x t | = |t | + 1 (5)

braun t −→ braun (update1 (|t | + 1) x t) (6)

braun t −→ list (update1 (|t | + 1) x t) = list t @ [x] (7)

braun t −→ |adds xs |t | t | = |t | + |xs | ∧ braun (adds xs |t | t)

braun t −→ list (adds xs |t | t) = list t @ xs

The last two of the above imply the remaining proof obli-
gations (array-inv) and (array). The proof of (7) requires
the following properties which are proved by simultaneous
induction:

|ys | ≤ |xs | −→ splice (xs @ [x]) ys = splice xs ys @ [x]
|xs | ≤ |ys | + 1 −→ splice xs (ys @ [y]) = splice xs ys @ [y]

3.4 Running Time Analysis
The running time of lookup and update is obviously logarith-
mic because of the guaranteed logarithmic height of Braun
trees. We sketch why list and array both have running time
O(n · lgn). In the next section we present linear time ver-
sions of the latter two functions and prove their complexity
formally.
Consider calling list on a complete tree of height h. We

focus on splice because it performs almost all the work. At
each level k of the tree (starting with 0 for the root), splice
is called 2k times with lists of size 2h−k−1. The running time
of splice with lists of the same length is proportional to
the size of the lists. Thus the running time at each level
is O(2k · 2h−k−1) = O(2h−1) = O(2h). Thus all the splices
together require timeO(h · 2h). Because complete trees have
size n = 2h , the bound O(n · lgn) follows.
Function array is implemented via adds and thus via re-

peated calls of update1. How expensive is it to call update1 n
times on a growing tree starting with a leaf? Because update1
has logarithmic running time, the n calls roughly take time
proportional to lg 1 + · · · + lgn = lg(n!). Stirling’s formula
tells us that lg(n!) ∈ Θ(n · lgn).

4 Flexible Arrays
4.1 ADT Specification
Flexible arrays can be grown and shrunk at either end. The
new flexible array ADT extends the previous array ADTwith
four new operations:

add_lo :: ′a⇒ ′ar ⇒ ′ar del_lo :: ′ar ⇒ ′ar
add_hi :: ′a⇒ ′ar ⇒ ′ar del_hi :: ′ar ⇒ ′ar

These operations must also preserve I and match the be-
haviour of their counterparts on lists. The tl and butlast
operations below remove the first and last elements of a list.
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I ar −→ I (add_lo a ar) (add_lo-inv)
I ar −→ list (add_lo a ar) = a # list ar (add_lo)
I ar −→ I (del_lo ar) (del_lo-inv)
I ar −→ list (del_lo ar) = tl (list ar) (del_lo)
I ar −→ I (add_hi a ar) (add_hi-inv)
I ar −→ list (add_hi a ar) = list ar @ [a] (add_hi)
I ar −→ I (del_hi ar) (del_hi-inv)
I ar −→ list (del_hi ar) = butlast (list ar) (del_hi)

4.2 Implementation via Braun Trees

We have already seen that update1 adds an element at
the high end of a Braun tree. The inverse operation del_hi
removes the high end, assuming that the given index is the
size of the tree:
del_hi :: nat⇒ ′a tree⇒ ′a tree
del_hi _ ⟨⟩ = ⟨⟩
del_hi n ⟨l, x, r⟩
= (if n = 1 then ⟨⟩

else if even n then ⟨del_hi (n div 2) l, x, r⟩
else ⟨l, x, del_hi (n div 2) r⟩)

It is perhaps intuitive how to place a new node at the
bottom of the tree but less clear how to extend the array at the
low end since the existing entries all move to new positions.
However, Braun trees support a logarithmic implementation:
add_lo :: ′a⇒ ′a tree⇒ ′a tree
add_lo x ⟨⟩ = ⟨⟨⟩, x, ⟨⟩⟩
add_lo x ⟨l, a, r⟩ = ⟨add_lo a r, x, l⟩

Function add_lo installs the new element x at the root of the
tree. Because the indices of the existing elements change by
1, the left subtree (indices 2, 4, . . . ) and right subtree (indices
3, 5, . . . ) change places. The old root, now at index 2, is added
to the new left subtree.
Function del_lo simply reverses add_lo by removing the

root and merging the subtrees:
del_lo :: ′a tree⇒ ′a tree
del_lo ⟨⟩ = ⟨⟩
del_lo ⟨l, _, r⟩ = merge l r

merge :: ′a tree⇒ ′a tree⇒ ′a tree
merge ⟨⟩ r = r
merge ⟨l, a, r⟩ rr = ⟨rr, a, merge l r⟩

Figure 3 shows the obvious implementation of the opera-
tions of the flexible array ADT (on the left-hand side) using
the corresponding Braun tree operations (on the right-hand
side). It is an extension of the basic array implementation
from Figure 2. All these functions have logarithmic time
complexity because the Braun tree functions each descend
along one branch of the tree.

4.3 Functional Correctness
We now have to prove the correctness properties of the
flexible array ADT (Section 4.1). We have already dealt with

add_lo x (t, l) = (add_lo x t, l + 1)
add_hi x (t, l) = (update1 (l + 1) x t, l + 1)
del_lo (t, l) = (del_lo t, l − 1)
del_hi (t, l) = (del_hi l t, l − 1)

Figure 3. Flexible array implementation via Braun trees.

update1 and thus add_hi above. Properties (add_hi-inv) and
(add_hi) follow from (5), (6) and (7) stated earlier.

We establish the correctness of del_hi by proving the fol-
lowing two properties:
braun t −→ braun (del_hi |t | t)

braun t −→ list (del_hi |t | t) = butlast (list t) (8)
Our proof of (8) starts with two auxiliary lemmas, the

simple fact list t = [] ←→ t = ⟨⟩ and also the following
property which relates splice to butlast:
butlast (splice xs ys)
= (if |ys | < |xs | then splice (butlast xs) ys

else splice xs (butlast ys))

The ADT correctness property (del_hi) follows.
Correctness of add_lo on Braun trees is captured by the

following two properties:
braun t −→ braun (add_lo x t)

braun t −→ list (add_lo a t) = a # list t
Properties (add_lo-inv) and (add_lo) follow directly.

Finally we turn to del_lo. Inductions (for merge) and case
analyses (for del_lo) yield the following correctness proper-
ties:
braun ⟨l, x, r⟩ −→ braun (merge l r)

braun ⟨l, x, r⟩ −→ list (merge l r) = splice (list l) (list r)

braun t −→ braun (del_lo t)

braun t −→ list (del_lo t) = tl (list t)

The last two properties imply (del_lo-inv) and (del_lo), and
conclude our proof that the ADT implementation is correct.

5 Bigger, Better, Faster, More!
This section is inspired by Okasaki’s [15] efficient algorithms
on Braun trees. Our emphasis is on the functions convert-
ing between Braun trees and lists. We shall see that their
correctness proofs are not trivial and rely on a tricky auxil-
iary notion braun_list. Our function for converting a list to
a tree is based on the ideas of the corresponding function by
Okasaki but the code is quite different. Okasaki provides no
efficient function in the other direction but we do.

For completeness reasons we also verified Okasaki’s func-
tions size and copy2 (size_fast and braun2_of below) al-
though the functions and proofs are quite simple, the proofs
are already given (or suggested) by Okasaki, and Filliâtre has
verified the size_fast proof in Why3 [5].
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Okasaki presents the following O(log2(|t |)) time function
to compute the size:
size_fast :: ′a tree⇒ nat
size_fast ⟨⟩ = 0
size_fast ⟨l, _, r⟩ = (let n = size_fast r in 1 + 2 · n + diff l n)

diff :: ′a tree⇒ nat⇒ nat
diff ⟨⟩ _ = 0
diff ⟨l, _, r⟩ n
= (if n = 0 then 1

else if even n then diff r (n div 2 − 1) else diff l (n div 2))
Correctness (braun t −→ size_fast t = |t |) follows from this
auxiliary property of diff :
braun t ∧ |t | ∈ {n, n + 1} −→ diff t n = |t | − n

A simple fact not mentioned by Okasaki is that the height
of a Braun tree can be computed in logarithmic time:
lh :: ′a tree⇒ nat
lh ⟨⟩ = 0
lh ⟨l, _, _⟩ = lh l + 1
The reason is Lemma 2.5. It allows us to prove that on Braun
trees, lh computes the height:
braun t −→ lh t = h t

5.1 Initializing a Braun Tree with a Fixed Value
We have so far considered the construction of a Braun tree
from a list. Alternatively one may want to create a tree (ar-
ray) where all elements are initialized to the same value.
Okasaki presents function braun2_of (which he calls copy2)
that shares trees as much as possible by producing trees of
size n and n + 1 in parallel:
braun2_of :: ′a⇒ nat⇒ ′a tree × ′a tree
braun2_of x n
= (if n = 0 then (⟨⟩, ⟨⟨⟩, x, ⟨⟩⟩)

else let (s, t) = braun2_of x ((n − 1) div 2)
in if odd n then (⟨s, x, s⟩, ⟨t, x, s⟩)

else (⟨t, x, s⟩, ⟨t, x, t⟩))

braun_of :: ′a⇒ nat⇒ ′a tree
braun_of x n = fst (braun2_of x n)
The running time is clearly logarithmic in n.
The correctness properties are:

list (braun_of x n) = replicate n x and braun (braun_of x n)
where replicate n x is a list of n copies of x. These are corol-
laries of the more general inductive statement:
braun2_of x n = (s, t) −→
list s = replicate n x ∧ list t = replicate (n + 1) x
∧ |s | = n ∧ |t | = n + 1 ∧ braun s ∧ braun t

5.2 Converting a List into a Braun Tree
We improve on function adds from Section 3.2 that has run-
ning time Θ(n · lgn) by developing a linear-time function.
Given a list of elements [1, 2, . . . ], we can subdivide it into

sublists [1], [2, 3], [4, . . . , 7], . . . such that the kth sublist con-
tains the elements of level k of the corresponding Braun tree.
This is simply because on each level we have the entries
whose index has k + 1 bits. Thus we need to process the
input list in chunks of size 2k to produce the trees on level
k . For reasons of space we must refer the reader to Okasaki
who presents a good example-based explanation how these
chunks need to be processed. We simply present the defini-
tion of our main function brauns :: nat ⇒ ′a list ⇒ ′a tree
list. Loosely speaking, brauns k xs produces the Braun trees
on level k.
brauns k xs
= (if xs = [] then []

else let ys = take 2k xs; zs = drop 2k xs;
ts = brauns (k + 1) zs

in nodes ts ys (drop 2k ts))
Function brauns chops off a chunk ys of size 2k from the
input list, and recursively converts the remainder of the list
into a list ts of (at most) 2k+1 trees. This list is (conceptually)
split into take 2k ts and drop 2k ts which are combined with
ys by function nodes that traverses its three argument lists
simultaneously. As a local optimization, we pass all of ts
rather than just take 2k ts to nodes.
nodes :: ′a tree list⇒ ′a list⇒ ′a tree list⇒ ′a tree list
nodes (l # ls) (x # xs) (r # rs) = ⟨l, x, r⟩ # nodes ls xs rs
nodes (l # ls) (x # xs) [] = ⟨l, x, ⟨⟩⟩ # nodes ls xs []
nodes [] (x # xs) (r # rs) = ⟨⟨⟩, x, r⟩ # nodes [] xs rs
nodes [] (x # xs) [] = ⟨⟨⟩, x, ⟨⟩⟩ # nodes [] xs []
nodes _ [] _ = []
The final row of a Braun tree will usually be incomplete,
which results in function nodes processing lists of different
lengths. It handles these cases by implicitly extending the
row with additional ⟨⟩ elements as necessary.

The top-level function brauns1 :: ′a list⇒ ′a tree for turn-
ing a list into a tree simply extracts the first (and only) ele-
ment from the list computed by brauns 0:
brauns1 xs = (if xs = [] then ⟨⟩ else brauns 0 xs ! 0)

5.2.1 Functional Correctness
The key correctness lemma below expresses a property of
Braun trees: the subtrees on level k consist of all elements
of the input list xs that are 2k elements apart, starting from
some offset. The most concise definition is this one
take_nths i k xs = nths xs (

⋃
n {n · 2k + i})

where nths [x0,x1,...] I is the list of all xi (in increasing order
of indices) such that i ∈ I. However, we found that proof
automation increases with this recursive definition which
implies the preceding specification in terms of nths:
take_nths :: nat⇒ nat⇒ ′a list⇒ ′a list
take_nths _ _ [] = []
take_nths i k (x # xs)
= (if i = 0 then x # take_nths (2k − 1) k xs
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else take_nths (i − 1) k xs)
A number of simple properties follow by easy inductions:
take_nths i k (drop j xs) = take_nths (i + j) k xs (9)
take_nths 0 0 xs = xs (10)
splice (take_nths 0 1 xs) (take_nths 1 1 xs) = xs (11)
take_nths i m (take_nths j n xs)
= take_nths (i · 2n + j) (m + n) xs (12)
take_nths i k xs = [] ←→ |xs | ≤ i (13)
i < |xs | −→ hd (take_nths i k xs) = xs ! i (14)
|xs | = |ys | ∨ |xs | = |ys | + 1 −→
take_nths 0 1 (splice xs ys) = xs ∧
take_nths 1 1 (splice xs ys) = ys (15)
|take_nths 0 1 xs | = |take_nths 1 1 xs | ∨
|take_nths 0 1 xs | = |take_nths 1 1 xs | + 1 (16)
We also introduce a predicate braun_list :: ′a tree⇒ ′a list
⇒ bool:
braun_list ⟨⟩ xs = (xs = [])
braun_list ⟨l, x, r⟩ xs
= (xs , [] ∧ x = hd xs ∧ braun_list l (take_nths 1 1 xs) ∧
braun_list r (take_nths 2 1 xs))
This definition may look a bit mysterious at first. The idea
is that instead of relating ⟨l, x, r⟩ to xs via splice we invert
the process and relate l and r to the even and odd numbered
elements of drop 1 xs. Luckily braun_list satisfies a simple
specification:

Lemma 5.1. braun_list t xs←→ braun t ∧ xs = list t

Proof. The proof is by induction on t. The base case is trivial.
In the induction step we use (16) to prove braun t and (11)
and (15) to prove xs = list t. □

The correctness proof of brauns needs these lemmas:
|nodes ls xs rs | = |xs | (17)
i < |xs | −→
nodes ls xs rs ! i
= ⟨if i < |ls | then ls ! i else ⟨⟩, xs ! i,

if i < |rs | then rs ! i else ⟨⟩⟩ (18)
|brauns k xs | = min |xs | 2k (19)
Lemmas (17) and (18) capture the correctness of nodes,

returning tree nodes built from the input lists padded with
⟨⟩ elements.
The main theorem expresses the following correctness

property of the elements of brauns k xs: every tree brauns k
xs ! i is a Braun tree and its list of elements is take_nths i k
xs:

Theorem 5.2. i < min |xs | 2k −→
braun_list (brauns k xs ! i) (take_nths i k xs)

Proof. The proof is by induction on the length of xs. Assume
i < min |xs | 2k, which implies xs , []. Let zs = drop 2k xs.
Thus |zs | < |xs | and therefore the IH applies to zs and yields
the property

∀ i j. j = i + 2k ∧ i < min |zs | 2k + 1 −→
braun_list (ts ! i) (take_nths j (k + 1) xs) (∗)

where ts = brauns (k + 1) zs. Let ts ′= drop 2k ts.
Since xs , [], brauns k xs ! i is by definition nodes ts (take

2k xs) ts ′ ! i, which we can examine via (18). This results in
two conditionals and thus four possible cases, all of which
can be solved by rewriting with (*), lemmas (18), (12), (13),
(14), (19) and assumptions. □

Setting i = k = 0 in this theorem yields the correctness of
brauns1 using Lemma 5.1 and (10):

Corollary 5.3. braun (brauns1 xs) ∧ list (brauns1 xs) = xs

5.2.2 Running Time Analysis
Wewill analyse running time by defining for each function f
a timing function t_f that takes the same arguments as f but
computes the number of function calls the computation of f
needs, the ‘time’. Function t_f follows the same recursion
structure as f and can be seen as an abstract interpretation
of f . This is similar to our previous work [11] however for
simplicity of presentation we will define each f and t_f
directly rather than deriving them from a monadic function
that computes both the value and the time.Wemust convince
ourselves that these timing functions are representative of
real execution time, which is usually clear.
We focus on the key function brauns. In the step from

brauns to t_brauns we simplify matters a little bit: we count
only the expensive operations that traverse lists and ignore
the other small additive constants. The time to evaluate
take n xs and drop n xs is linear in min n |xs | and we simply
usemin n |xs |. Thus the three take and drop calls contribute 3
· min 2k |xs |. Evaluating nodes _ ys _ takes time linear in |ys |
= |take 2k xs | = min 2k |xs |. Thus we obtain the following
definition:
t_brauns :: nat⇒ ′a list⇒ nat
t_brauns k xs
= (if xs = [] then 0

else let ys = take 2k xs; zs = drop 2k xs;
ts = brauns (k + 1) zs

in 4 · min 2k |xs | + t_brauns (k + 1) zs)

Lemma 5.4. t_brauns k xs = 4 · |xs |

Proof. The proof is by induction on the length of xs. If xs =
[] the claim is trivial. If xs , [] the claim follows by IH and
the fact |drop n xs | = |xs | − n. □

5.3 Converting a Braun Tree into a List
We improve on function list that has running timeO(n · lgn)
by developing a linear-time version. Imagine that we want
to invert the computation of brauns1 and thus of brauns. We
convert a whole list of trees. Consider the last two levels
of the tree in Figure 1 and reorder them by increasing root
labels:
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The following strategy strongly suggests itself: first the roots,
then the left subtrees, then the right subtrees. The recursive
application of this strategy also takes care of the required
reordering of the subtrees. Of course we have to ignore any
leaves we encounter. This is the resulting function:
list_fast_rec :: ′a tree list⇒ ′a list
list_fast_rec ts
= (let us = filter (λt. t , ⟨⟩) ts

in if us = [] then []
else map value us @

list_fast_rec (map left us @ map right us))
where value ⟨l, x, r⟩ = x, left ⟨l, x, r⟩ = l and right ⟨l, x, r⟩ =
r.
To prove the termination of list_fast_rec we must supply

the measure function φ = sum_list ◦ map tree_size, the sum
of the sizes of the trees in the list. The proof also requires an
auxiliary lemma, which we skip here.

The top level function list_fast :: ′a tree⇒ ′a list extracts
a list from a single tree:
list_fast t = list_fast_rec [t]

From list_fast one can easily derive an efficient fold func-
tion on Braun trees that processes the elements in the tree
in the order of their indices.

5.3.1 Functional Correctness
We want to prove correctness of list_fast: list_fast t = list t
if braun t. A direct proof of list_fast_rec [t] = list t will fail
and we need to generalize this statement to all lists of trees
of length 2k. Reusing the infrastructure from the previous
subsection this can be expressed as follows:
Theorem 5.5.
|ts | = 2k ∧ (∀ i<2k. braun_list (ts ! i) (take_nths i k xs)) −→
list_fast_rec ts = xs

Proof. The proof is by induction on the length of xs. Assume
the two premises. There are two cases. First assume |xs | <
2k. Then
ts = map (λx . ⟨⟨⟩, x, ⟨⟩⟩) xs @ replicate n ⟨⟩ (∗)

where n = |ts | − |xs |. This can be proved pointwise. Take
some i < 2k. If i < |xs | then take_nths i k xs = take 1 (drop i
xs) (which can be proved by induction on xs). By definition
of braun_list it follows that t ! i = ⟨l, xs ! i, r⟩ for some l and
r such that braun_list l [] and braun_list r [] and thus l = r
= ⟨⟩, i.e. t ! i = ⟨⟨⟩, xs ! i, ⟨⟩⟩. If ¬ i < |xs | then take_nths i
k xs = [] by (13) and thus braun_list (ts ! i) [] by the second
premise and thus ts ! i = ⟨⟩ by definition of braun_list. This
concludes the proof of (∗). The desired list_fast_rec ts = xs
follows easily by definition of list_fast_rec.

Now assume ¬ |xs | < 2k. Then for all i < 2k

ts ! i , ⟨⟩ ∧ value (ts ! i) = xs ! i ∧
braun_list (left (ts ! i)) (take_nths (i + 2k) (k + 1) xs) ∧
braun_list (right (ts ! i)) (take_nths (i + 2 · 2k) (k + 1) xs)
follows from the second premise with the help of (12), (13)
and (14). We obtain two consequences:
map root_val ts = take 2k xs
list_fast_rec (map left ts @ map right ts) = drop 2k xs
The first consequence follows by pointwise reasoning, the
second consequence with the help of the IH and (9). From
these two consequences the desired conclusion list_fast_rec
ts = xs follows by definition of list_fast_rec. □

5.3.2 Running Time Analysis
We focus on list_fast_rec. In the step from list_fast_rec to
t_list_fast_rec we simplify matters a little bit: we count only
the expensive operations that traverse lists and ignore the
other small additive constants. The time to evaluate map left
ts,map right ts, filter (λt. t , ⟨⟩) ts and ts@ ts ′ is linear in |ts |
and we simply use |ts |. As a result we obtain the following
definition of t_list_fast_rec:
t_list_fast_rec :: ′a tree list⇒ nat
t_list_fast_rec ts
= (let us = filter (λt. t , ⟨⟩) ts

in |ts | +
(if us = [] then 0
else 5 · |us | +

t_list_fast_rec (map left us @ map right us)))
The following inductive property is an abstraction of the

core of the termination argument of list_fast_rec above.
(∀ t∈set ts. t , ⟨⟩) −→
(
∑
t←ts. k · |t |)

= (
∑
t←map left ts @ map right ts. k · |t |) + k · |ts | (20)

The Haskell-inspired notation
∑
x←xs. f x is syntactic

sugar for sum_list (map f xs).
Now we can state and prove a linear upper bound of

t_list_fast_rec:

Theorem 5.6. t_list_fast_rec ts ≤ (
∑
t←ts. 7 · |t | + 1)

Proof. The proof is by induction on the sum of the sizes of
the trees in ts, which decreases with recursive calls as we
proved above. If ts = [] the claim is trivial. Now assume ts ,
[] and let us = filter (λt. t , ⟨⟩) ts and children = map left us
@ map right us.
t_list_fast_rec ts = t_list_fast_rec children + 5 · |us | + |ts |
≤ (

∑
t←children. 7 · |t | + 1) + 5 · |us | + |ts | by IH

= (
∑
t←children. 7 · |t |) + 7 · |us | + |ts |

= (
∑
t←us. 7 · |t |) + |ts | by (20)

≤ (
∑
t←ts. 7 · |t |) + |ts | = (

∑
t←ts. 7 · |t | + 1) □

5.4 Generalisation to Other Tries
A Braun tree is an instance of a more general structure, a trie
[3, 6]. A trie is a search tree where the path followed during
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a lookup is uniquely determined by the key being looked up.
The key ideas of the list conversions brauns and list_fast_rec
can be adapted to some other tries.
One such trie is the “sptree” datatype provided by the

standard library of the HOL4 theorem prover [18]. This trie
has similar lookup structure to a Braun tree, but it may
be sparsely populated and it may be unbalanced. We have
adapted the concepts of list_fast_rec to the sparse case, con-
verting to a sorted association list (a list of index/element
pairs). This adds a previously missing operation to the HOL4
library. It does not seem to be worthwhile to adapt the ap-
proach of brauns however, because of the time cost of com-
paring indices while assembling a row.

6 More Combinatorics of Braun Trees
This section gives an alternative characterization of Braun
trees that seems to have gone unnoticed in the literature.
It is based on the notion of the index set of a tree, defined
below. The image of a set S under a function f is defined by
f ‘ S = {y | ∃ x∈S. y = f x}.
braun_indices :: ′a tree⇒ nat set
braun_indices ⟨⟩ = {}
braun_indices ⟨l, _, r⟩
= {1} ∪ (λi. i · 2) ‘ braun_indices l ∪
(λi. i · 2 + 1) ‘ braun_indices r
The braun_indices of a tree are the numbers for which

lookup1 (Section 3.2) is defined. Our main result is that Braun
trees are exactly the trees that encode arrays:

Theorem 6.1. braun t←→ braun_indices t = {1..|t |}

We start with some auxiliary properties:
(λi. i · 2) ‘ {a..b} ∪ (λi. i · 2 + 1) ‘ {a..b}
= {2 · a..2 · b + 1} (21)
S = {m..n} ∩ {i | even i} −→
(∃m ′ n ′. S = (λi. i · 2) ‘ {m ′..n ′}) (22)
S = {m..n} ∩ {i | odd i} −→
(∃m ′ n ′. S = (λi. i · 2 + 1) ‘ {m ′..n ′}) (23)
These proofs are all mostly automatic. We then show that
the size (cardinality card in Isabelle) of the index set agrees
with the size of the tree:

Lemma 6.2. card (braun_indices t) = |t |

Proof. By induction. In the inductive step, t = ⟨l, x, r⟩, the
index set of t is the three way union seen in the definition of
braun_indices. We prove additional lemmas that show that
the unions are disjoint and that the images apply injective
functions, and the goal follows. □

We can now show that, if the index set is an interval, it is
the expected one:
braun_indices t = {m..n} −→ {m..n} = {1..|t |} (24)

It is easy to show the lower bound must be 1, and the known
cardinality tells us the upper bound.

The two directions of Theorem 6.1 are proved separately:
Lemma 6.3. braun t −→ braun_indices t = {1..|t |}
Proof. The proof is by induction on t. In the inductive step, t
= ⟨l, x, r⟩, the subtrees l and r must also be Braun trees, and
the induction hypotheses tell us that their index sets form
intervals {1..|l |} and {1..|r |}. The sizes must also satisfy the
usual constraints. The braun_indices of t are combined from
these two intervals and the additional element 1. Lemma
(21) shows we can merge these intervals, and the proof is
completed with some special-case reasoning about 1 and an
optional last element which exists if l is larger than r. □

Lemma 6.4. braun_indices t = {1..|t |} −→ braun t

Proof. By induction, focusing on the inductive step where t
= ⟨l, x, r⟩, with the premise that braun_indices t = {1..|t |}.
We can specialise that premise to the odd and even subsets,
eliminate 1 as a special case, and derive a pair of equalities:
(λi. i · 2) ‘ braun_indices l = {2..|t |} ∩ {i | even i} (*)
(λi. i · 2 + 1) ‘ braun_indices r = {2..|t |} ∩ {i | odd i} (**)
We can now prove the index sets of the subtrees are inter-
vals. We prove braun_indices l = {1..|l |} (from (*) and (22),
(24)) and braun_indices r = {1..|r |} (from (**), (23) and (24)).
These are the premises of the induction hypotheses, giving
us braun l and braun r.

The complicated part is to prove the Braun size constraints.
We know that |t | must be a member of the LHS sets of (*)
and (**) if it is a member of the RHS set, and likewise for
|t | − 1. This gives us four implications. From these four
implications and the interval properties, and by considering
various parity cases, Isabelle can automatically show the
Braun size constraints |l | = |r | ∨ |l | = |r | + 1. □

7 Priority Queues via Braun Trees
Another application of Braun trees is to implement priority
queues. Maintaining the Braun shape invariant is a simple
way to ensure logarithmic depth.

Paulson [16] presents such an implementation (which he
credits to Okasaki). Here we show that implementation and
expand on our correctness proof. The Isabelle sources are
available in the Archive of Formal Proofs [10].
This is the first verification of Paulson’s implementation.

Filliâtre has verified a slightly different version which is
available in the Why3 gallery of verified programs [5]. For
completeness we also present that version in Section 7.1
below.
The priority queue is another ADT interface, defined ab-

stractly for types ′a with a linear order. The operations are:
insert :: ′a⇒ ′q⇒ ′q
get_min :: ′q⇒ ′a del_min :: ′q⇒ ′q
empty :: ′q is_empty :: ′q⇒ bool
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The abstract operations are specified using multisets [12].
We will use the function mset, which converts a list into
a multiset, and mset_tree, which does the same for trees.
The singleton multiset is denoted {#x#}, and multisets also
support addition and subtraction.
We omit the ADT full specification and focus on the key

operations, insertion and minimum-deletion. The array op-
erations on Braun trees are not useful in this setting.

The implementation uses trees with a stronger invariant.
They have Braun shape, and the elements are also ordered
as a heap:
heap :: ′a tree⇒ bool
heap ⟨⟩ = True
heap ⟨l, m, r⟩
= (heap l ∧ heap r ∧ (∀ x∈set_tree l ∪ set_tree r . m ≤ x))

Insertion into a heap and Braun tree is by simple recursion:
insert :: ′a⇒ ′a tree⇒ ′a tree
insert a ⟨⟩ = ⟨⟨⟩, a, ⟨⟩⟩
insert a ⟨l, x, r⟩
= (if a < x then ⟨insert x r, a, l⟩ else ⟨insert a r, x, l⟩)

The key properties of insertion are straightforward to
prove:
braun t −→ braun (insert x t)

heap t −→ heap (insert x t)

mset_tree (insert x t) = {#x#} + mset_tree t

|insert x t | = |t | + 1
The difficult operation is deletion of the minimum element

from the root of the tree, leaving two subtrees to be merged.
This is performed by two recursive functions, one to extract
the leftmost element from a tree, and another to reassemble
the heap. We have reproduced Paulson’s definition of these
functions almost verbatim; only the base case of del_left
has been tuned slightly. These functions are specialised to
Braun trees, with some cases missing (unspecified) that are
impossible in the case of a Braun tree.
del_left :: ′a tree⇒ ′a × ′a tree
del_left ⟨⟨⟩, x, r⟩ = (x, r)
del_left ⟨l, x, r⟩ = (let (y, l ′) = del_left l in (y, ⟨r, x, l ′⟩))

sift_down :: ′a tree⇒ ′a⇒ ′a tree⇒ ′a tree
sift_down ⟨⟩ a uu = ⟨⟨⟩, a, ⟨⟩⟩
sift_down ⟨⟨⟩, x, uv⟩ a ⟨⟩
= (if a ≤ x

then ⟨⟨⟨⟩, x, ⟨⟩⟩, a, ⟨⟩⟩
else ⟨⟨⟨⟩, a, ⟨⟩⟩, x, ⟨⟩⟩)

sift_down ⟨l1, x1, r1⟩ a ⟨l2, x2, r2⟩
= (if a ≤ x1 ∧ a ≤ x2 then ⟨⟨l1, x1, r1⟩, a, ⟨l2, x2, r2⟩⟩

else if x1 ≤ x2
then ⟨sift_down l1 a r1, x1, ⟨l2, x2, r2⟩⟩
else ⟨⟨l1, x1, r1⟩, x2, sift_down l2 a r2⟩)

The deletion operation combines del_left and sift_down:

del_min :: ′q⇒ ′q
del_min ⟨⟩ = ⟨⟩
del_min ⟨⟨⟩, x, r⟩ = ⟨⟩
del_min ⟨l, x, r⟩ = (let (y, l ′) = del_left l in sift_down r y l ′)

The correctness properties of del_left are shown in a se-
quence of inductive proofs:
del_left t = (x, t ′) ∧ t , ⟨⟩ −→ |t | = |t ′| + 1 (25)
del_left t = (x, t ′) ∧ braun t ∧ t , ⟨⟩ −→ braun t ′ (26)
del_left t = (x, t ′) ∧ t , ⟨⟩ −→
set_tree t = {x} ∪ set_tree t ′ (27)
del_left t = (x, t ′) ∧ t , ⟨⟩ ∧ heap t −→ heap t ′ (28)
del_left t = (x, t ′) ∧ t , ⟨⟩ −→
mset_tree t = {#x#} + mset_tree t ′ (29)
del_left t = (x, t ′) ∧ t , ⟨⟩ −→
x ∈# mset_tree t ∧ mset_tree t ′= mset_tree t − {#x#} (30)
Each of the key properties above requires an auxiliary lemma.
We use a fact about tree size (25) to show the Braun size
invariants (26) and likewise a lemma about the tree contents
(27) to show the heap property (28). It is convenient to prove
a multiset addition property (29) by induction and derive
the expected multiset subtraction property (30). Multiset
addition has convenient algebraic properties, but subtraction
requires side conditions about whether we subtract more
elements than were present.
The correctness properties of sift_down are also proved

as a chain of simple inductive proofs. Again the Braun and
heap properties are supported by lemmas about tree size and
contents. Each lemma assumes the input is a Braun tree, as
the function is not fully specified in other cases.
braun ⟨l, a, r⟩ −→ |sift_down l a r | = |l | + |r | + 1
braun ⟨l, a, r⟩ −→ braun (sift_down l a r)

braun ⟨l, a, r⟩ −→
set_tree (sift_down l a r) = {a} ∪ (set_tree l ∪ set_tree r)

braun ⟨l, a, r⟩ ∧ heap l ∧ heap r −→ heap (sift_down l a r)

braun ⟨l, a, r⟩ −→
mset_tree (sift_down l a r)
= {#a#} + (mset_tree l + mset_tree r)

The essential results about del_min follow:
braun t −→ braun (del_min t)

heap t ∧ braun t −→ heap (del_min t)

braun t ∧ t , ⟨⟩ −→
mset_tree (del_min t) = mset_tree t − {#value t#}

7.1 A Variant of del_min
Filliâtre’s counterpart to del_min, which we call del_min2
below (and which is called remove_min in [5]) combines the
two subtrees below the root via a binary merge function
instead of the ternary sift_down. During merging, if the root
value of the right tree is moved up, preservation of the Braun
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invariant requires that it is replaced by an element from the
left tree. This is the complete definition:
le_root :: ′a⇒ ′a tree⇒ bool
le_root a t = (t = ⟨⟩ ∨ a ≤ value t)
replace_min :: ′a⇒ ′a tree⇒ ′a tree
replace_min x ⟨l, _, r⟩
= (if le_root x l ∧ le_root x r then ⟨l, x, r⟩

else let a = value l
in if le_root a r then ⟨replace_min x l, a, r⟩

else ⟨l, value r, replace_min x r⟩)
merge :: ′a tree⇒ ′a tree⇒ ′a tree
merge l ⟨⟩ = l
merge ⟨l1, a1, r1⟩ ⟨l2, a2, r2⟩
= (if a1 ≤ a2 then ⟨⟨l2, a2, r2⟩, a1, merge l1 r1⟩

else let (x, l ′) = del_left ⟨l1, a1, r1⟩
in ⟨replace_min x ⟨l2, a2, r2⟩, a2, l ′⟩)

del_min2 :: ′a tree⇒ ′a tree
del_min2 ⟨⟩ = ⟨⟩
del_min2 ⟨l, _, r⟩ = merge l r

It turns out that replace_min is just sift_down in disguise:
braun ⟨l, a, r⟩ −→ replace_min x ⟨l, a, r⟩ = sift_down l x r
This means that del_min2 is merely a slight optimization
of del_min: instead of calling del_left right away, merge can
take advantage of the case where the smaller element is
at the root of the left heap and can be moved up without
complications. However, on average this is just the case on
the first level.
The correctness properties for del_min2 are the same as

for del_min (see above) and follow easily from the lemmas
about sift_down above (because replace_min is just sift_down)
and these inductive lemmas about merge:
braun ⟨l, x, r⟩ −→
mset_tree (merge l r) = mset_tree l + mset_tree r
braun ⟨l, x, r⟩ ∧ heap l ∧ heap r −→ heap (merge l r)
braun ⟨l, x, r⟩ −→ braun (merge l r) ∧ |merge l r | = |l | + |r |
The proofs can be found online [10].

8 Sorting via Priority Queues
One immediate application of a priority queue is to provide
a sort operation. A list can be sorted by pushing its elements
into the queue and retrieving them in order. Implementations
of sorting using Braun trees have been presented in the
literature by Paulson [16] and also by Guttman et al. [7].
Paulson’s code does not come with proofs; Guttmann et
al. derive their algorithm from a specification by program
transformations but do not address time complexity. We
verify both approaches, including the proof that their time
complexity is O(n · lgn).
Algorithm A, by Guttmann et al., constructs a heap as

described above, by inserting every element of a list:
heap_ofA :: ′a list⇒ ′a tree

heap_ofA [] = ⟨⟩
heap_ofA (a # as) = insert a (heap_ofA as)

Algorithm B, by Paulson, constructs a heap differently,
constructing a collection of heaps in a similar manner to an
array-based heap sort:
heapify :: nat⇒ ′a list⇒ ′a tree × ′a list
heapify 0 xs = (⟨⟩, xs)
heapify (n + 1) (x # xs)
= (let (l, ys) = heapify ((n + 1) div 2) xs;

(r, zs) = heapify (n div 2) ys
in (sift_down l x r, zs))

heap_ofB :: ′a list⇒ ′a tree
heap_ofB xs = fst (heapify |xs | xs)

The correctness properties of heap_ofA are easy to prove
given the correctness of insert:
heap (heap_ofA xs)

braun (heap_ofA xs)

mset_tree (heap_ofA xs) = mset xs

The correctness of heapify is more complicated. Firstly
we prove an auxiliary lemma about the remainder element
returned by heapify:
heapify n xs = (t, ys) ∧ n ≤ |xs | −→ ys = drop n xs

We then state a single correctness theorem for proof by
induction:
n ≤ |xs | ∧ heapify n xs = (t, ys) −→
|t | = n ∧ heap t ∧ braun t ∧ mset_tree t = mset (take n xs)

The induction is on the recursion pattern of heapify. The
proof follows from the correctness properties for sift_down.
The proof is conceptually straightforward, but complicated
by side conditions about division. The proof also requires
hand instantiation of the following fact about take and drop:
drop:
mset (take n xs) + mset (drop n xs) = mset xs

The above lemma is instantiated to show that the multisets
generated by the two recursive calls can be merged, since
one is essentially a take of the early elements and the other
taken from list with those elements dropped.

Algorithm A reduces a heap to a list using a merge opera-
tion:
merge :: ′a tree⇒ ′a tree⇒ ′a tree
merge ⟨⟩ t2 = t2
merge t1 ⟨⟩ = t1
merge ⟨l1, a1, r1⟩ ⟨l2, a2, r2⟩
= (if a1 ≤ a2

then ⟨merge l1 r1, a1, ⟨l2, a2, r2⟩⟩
else ⟨⟨l1, a1, r1⟩, a2, merge l2 r2⟩)

list_ofA :: ′a tree⇒ ′a list
list_ofA ⟨⟩ = []
list_ofA ⟨l, a, r⟩ = a # list_ofA (merge l r)
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Algorithm B uses the del_min operation of the priority
queue ADT:

list_ofB :: ′a tree⇒ ′a list
list_ofB ⟨⟩ = []
list_ofB ⟨l, a, r⟩ = a # list_ofB (del_min ⟨l, a, r⟩)

The interesting aspect of the approach of Guttman et al. is
that the merge operation does not preserve the Braun shape
invariant, in contrast to the merge function in Section 7.1.
This makes the code simple but allows the tree to become
unbalanced.
The correctness properties for list_ofA build on those of

merge, and all are straightforward to prove:

mset_tree (merge l r) = mset_tree l + mset_tree r

set_tree (merge l r) = set_tree l ∪ set_tree r

heap l ∧ heap r −→ heap (merge l r)

mset (list_ofA t) = mset_tree t

set (list_ofA t) = set_tree t

heap t −→ sorted (list_ofA t)

We are interested in the multiset properties, but must also
show the set properties since the heap and sorted predicates
are defined in terms of those.
Together with the correctness result for heap_ofA, this

proves the functional correctness of algorithm A:

sorted (list_ofA (heap_ofA xs))

mset (list_ofA (heap_ofA xs)) = mset xs

The correctness of list_ofB follows from the correctness of
del_min. This proof requires us to address a technical detail:
del_min calls sift_down and sift_down is partly underspeci-
fied. The sift_down implementation ignores the case where
the right subtree is populated and the left subtree empty,
since that is impossible for Braun trees. It would be possible
to extend sift_down into a total function, but it requires mul-
tiple additional (redundant) cases and means a substantial
change from Paulson’s presentation. However the under-
specification prevents us proving termination of list_ofB in
general. Instead we prove that list_ofB is terminating for all
input Braun trees, which is true as the tree size |t | decreases
for each recursion.
The correctness of list_ofB (for Braun trees) can then be

shown by measure induction on |t |:

braun t −→ mset (list_ofB t) = mset_tree t

braun t −→ set (list_ofB t) = set_tree t

braun t ∧ heap t −→ sorted (list_ofB t)

This establishes the functional correctness of algorithm B:

sorted (list_ofB (heap_ofB xs))

mset (list_ofB (heap_ofB xs)) = mset xs

8.1 Running Time Analysis
Againwe define a ‘time’ function for each function of interest.
These are the time functions required to analyse insert (see
Section 7) and heap_ofA, the heap-creation part of algorithm
A:
t_insert :: ′a⇒ ′a tree⇒ nat
t_insert _ ⟨⟩ = 1
t_insert a ⟨_, x, r⟩
= (if a < x then 1 + t_insert x r else 1 + t_insert a r)

t_heap_ofA :: ′a list⇒ nat
t_heap_ofA [] = 0
t_heap_ofA (a # as)
= t_insert a (heap_ofA as) + t_heap_ofA as

The time functionswe use in this section count the number
of new constructor cells required for each function. The
exception will be the list length function which requires no
new constructors but which we will use as a time function
for itself.
In the following proofs, we will mostly use the height of

the Braun tree h t as a proxy for the logarithm of the size of
the tree. We proved before (in Section 2.1) that Braun trees
have logarithmic size. We can usually reason directly about
the effect of the operations on the size of the tree and avoid
reasoning about logarithms.

We prove that heap_ofA has complexityO(n · lgn) using a
chain of lemmas:
t_insert x t ≤ h t + 1
h t ≤ h (insert x t)

t_heap_ofA xs ≤ |xs | · (h (heap_ofA xs) + 1)
It is more interesting and challenging to analyse the heap

construction of algorithm B. These are the time functions
needed (list length is used to time itself):
t_heapify :: nat⇒ ′a list⇒ nat
t_heapify 0 _ = 1
t_heapify (n + 1) (x # xs)
= (let (l, ys) = heapify ((n + 1) div 2) xs;

t1 = t_heapify ((n + 1) div 2) xs;
(r, zs) = heapify (n div 2) ys;
t2 = t_heapify (n div 2) ys

in 1 + t1 + t2 + t_sift_down l x r)

t_heap_ofB :: ′a list⇒ nat
t_heap_ofB xs = |xs | + t_heapify |xs | xs

We can prove that heapify has linear time complexity.
Because heapify is a divide and conquer algorithm, we can
in principle determine its asymptotic complexity using the
“master theorem” [2]. However, a verified master theorem is
a nontrivial undertaking and it appears that it is currently
only available in Isabelle [4]. To make our proof pearl self
contained we give a direct proof.
We begin with two properties about sift_down and tree

height, both of which are easy to prove:
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braun ⟨l, x, r⟩ −→ h (sift_down l x r) ≤ h ⟨l, x, r⟩ (31)
braun ⟨l, x, r⟩ −→ t_sift_down l x r ≤ h ⟨l, x, r⟩ (32)

This key lemma implies an O(n) complexity of heapify:
i ≤ |xs | −→ t_heapify i xs + h (fst (heapify i xs)) ≤ 5 · i + 1
The proof is by induction on the recursion of t_heapify. The
challenging part is the inductive step. We must prove an
inequality from two inductive hypotheses, a problem with
the following form:
t1 + h l ≤ . . . −→
t2 + h r ≤ . . . −→
1 + t1 + t2 + t_sift_down l x r + h (sift_down l x r) ≤ . . .

The times t1, t2 and variables l, x, r are from the definition
of t_heapify above. The lemma was carefully phrased with
an additional height term so that if we add together the
two inequalities from the inductive premises, we get a new
inequality with a very similar shape to the one we must
prove.

Isabelle can prove the inductive goal from the sum inequal-
ity if we first establish these properties:
t_sift_down l x r ≤ h l + 1
h (sift_down l x r) ≤ h r + 2

To establish these subgoals within our inductive case, we
repeat the proof of braun ⟨l, x, r⟩ from the correctness proof
of heapify. We can then use balance lemmas 2.5 and 2.6 to
relate h l and h r, which together with the height bounds (31)
and (32) establish our subgoals. This completes the inductive
proof and shows heapify has linear time complexity.
The complexity proofs about extracting lists from heaps

are simpler. For algorithm A, we need these time functions:
t_merge :: ′a tree⇒ ′a tree⇒ nat
t_merge ⟨⟩ _ = 0
t_merge ⟨_, _, _⟩ ⟨⟩ = 0
t_merge ⟨l1, a1, r1⟩ ⟨l2, a2, r2⟩
= (if a1 ≤ a2 then 1 + t_merge l1 r1 else 1 + t_merge l2 r2)

t_list_ofA :: ′a tree⇒ nat
t_list_ofA ⟨⟩ = 0
t_list_ofA ⟨l, _, r⟩ = 1 + t_merge l r + t_list_ofA (merge l r)

Firstly we show merge runs in time proportional to the
height of the heap, which it cannot increase:
t_merge l r ≤ max (h l) (h r)

h (merge l r) ≤ h ⟨l, x, r⟩

The time bound follows by induction:
t_list_ofA t ≤ 2 · h t · |t |

We can now convert heights to logarithms and prove the
final timing result for algorithm A:
t_heap_ofA xs + t_list_ofA (heap_ofA xs)
≤ 3 · |xs | · (⌈lg (|xs | + 1)⌉ + 1)
For algorithm B, we have some more auxiliary constants

to cover (del_left and del_min were defined in Section 7):

t_del_left :: ′a tree⇒ nat
t_del_left ⟨⟨⟩, x, r⟩ = 1
t_del_left ⟨l, x, r⟩
= (let (y, l ′) = del_left l in 2 + t_del_left l)

t_del_min :: ′a tree⇒ nat
t_del_min ⟨⟩ = 0
t_del_min ⟨⟨⟩, x, r⟩ = 0
t_del_min ⟨l, x, r⟩
= (let (y, l ′) = del_left l

in t_del_left l + t_sift_down r y l ′)

t_list_ofB :: ′a tree⇒ nat
t_list_ofB ⟨⟩ = 0
t_list_ofB ⟨l, a, r⟩
= 1 + t_del_min ⟨l, a, r⟩ + t_list_ofB (del_min ⟨l, a, r⟩)

We prove a chain of time and height bounds:
t , ⟨⟩ −→ t_del_left t ≤ 2 · h t

del_left t = (v, t ′) ∧ t , ⟨⟩ −→ h t ′ ≤ h t

braun t −→ t_del_min t ≤ 3 · h t

braun t −→ h (del_min t) ≤ h t

braun t −→ t_list_ofB t ≤ 3 · (h t + 1) · |t |
The proofs are all straightforward by induction, aside from
the complication that t_list_ofB , like list_ofB , is only partially
terminating, and we must prove again that Braun trees are
in its termination domain.

The above results let us prove the total time for algorithm
B is also O(n · lgn):
t_heap_ofB xs + t_list_ofB (heap_ofB xs)
≤ 3 · |xs | · (⌈lg (|xs | + 1)⌉ + 3) + 1

9 Conclusion
We have thoroughly explored the topic of Braun trees, veri-
fying all algorithms in Isabelle/HOL: flexible arrays, priority
queues and sorting functions based on them. This includes
the first correctness proofs of Okasaki’s conversion from
lists to Braun trees and the first presentation of a linear time
conversion in the other direction. We have also presented a
novel combinatorial characterization of Braun trees.
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