Hoare Logics for Recursive Procedures and
Unbounded Nondeterminism

Tobias Nipkow

Fakultat fir Informatik, Technische Universitat Miinchen
http://www.in.tum.de/ nipkow/

Abstract. This paper presents sound and complete Hoare logics for
partial and total correctness of recursive parameterless procedures in the
context of unbounded nondeterminism. For total correctness, the litera-
ture so far has either restricted recursive procedures to be deterministic
or has studied unbounded nondeterminism only in conjunction with loops
rather than procedures. We consider both single procedures and systems
of mutually recursive procedures. All proofs have been checked with the
theorem prover Isabelle/HOL.

1 Introduction

Hoare logic has been studied extensively since its inception [8], both for its the-
oretical interest and its practical relevance. Strangely enough, procedures have
not been treated with adequate attention: many proof systems involving proce-
dures are unsound, incomplete, or ignore completeness altogether (see [2,21] for
details). In particular the combination of procedures with (unbounded) nonde-
terminism was an open issue altogether.

Let us briefly review the history of Hoare logics for deterministic languages
with procedures. The system proposed by Hoare [9] was later shown to be sound
and complete by Olderog [21]. Apt [2] presents sound and complete systems
both for partial correctness (following Gorelick [6]) and for total correctness
(following and completing Sokotowski [25]). The one for total correctness is later
found to be unsound by America and de Boer [1], who modify the system and
give new soundness and completeness proofs. A new twist is added by Kleymann
(né Schreiber) [24] who uses a little known consequence rule due to Morris [14]
to subsume the three adaption rules by America and de Boer. In particular, he
formalizes his work in the theorem prover LEGO [23]: this is the first time that
a new Hoare logic is first proved sound and complete in a theorem prover.

We continue our earlier work on Hoare logic in Isabelle/HOL [17,18] while
taking advantage of Kleymann’s technical advances. The main contribution of
our paper is to simplify some aspects of Kleymann’s proof system and, more
importantly, to provide the first Hoare logics for partial and for total correctness
of recursive procedures in the context of unbounded nondeterminism, both for
single procedures and mutually recursive procedures. At this point we connect
with the work by Apt [3] and Apt and Plotkin [4] on unbounded nondeterminism.

The main differences are that they use ordinals and we use well-founded relations,
and that they do not consider procedures, thus avoiding the difficulties explained
below which are at the heart of many unsound and incorrect proof systems in
the literature.

1.1 The problem with procedures
Consider the following parameterless procedure which calls itself recursively:
proc = if i=0 then skip else i := i-1; CALL; i := i+l

A classic example of the subtle problems associated with reasoning about pro-
cedures is the proof that i is invariant: {i=N} CALL {i=N}. This is done by
induction: we assume {i=N} CALL {i=N} and have to prove {i=N} body {i=N},
where body is the body of the procedure. The case i=0 is trivial. Otherwise
we have to show {i=N}i:=i-1;CALL;i:=i+1{i=N}, which can be reduced to
{i=N-1} CALL {i=N-1}. But how can we deduce{i=N-1} CALL {i=N-1} from
the induction hypothesis {i=N} CALL {i=N}? Clearly, we have to instantiate N
in the induction hypothesis — after all N is arbitrary as it does not occur in the
program. The problems with procedures are largely due to unsound or incom-
plete adaption rules. We follow the solution of Morris and Kleymann and adjust
the value of auxiliary variables like N with the help of the consequence rule. In
§4.4 we show how this example is handled with our rules.

1.2 The extensional approach

In modelling the assertion language, we follow the extensional approach where
assertions are identified with functions from states to propositions. That is, we
model only the semantics but not the syntax of assertions. This is common
practice in the theorem proving literature (with the exception of [11], but they do
not consider completeness) and can also be found in standard sematics texts [16].
Because our underlying logic is higher order, expressiveness, i.e. whether the
assertion language is strong enough to express all intermediate predicates that
may arise in a proof, is not much of an issue. Thus our completeness results do
not automatically carry over to other logical systems, say first order arithmetic.
The advantage of the extensional approach is that it separates reasoning about
programs from expressiveness considerations — the latter can then be conducted
in isolation for each assertion language. We discuss this further in §6.

1.3 Isabelle/HOL

Isabelle/HOL [19] is an interactive theorem prover for HOL, higher-order logic.
The whole paper is generated directly from the Isabelle input files, which include
the text as comments. That is, if you see a lemma or theorem, you can be sure its
proof has been checked by Isabelle. Most of the syntax of HOL will be familiar

to anybody with some background in functional programming and logic. We just
highlight some of the nonstandard notation.

The space of total functions is denoted by the infix =. Other type construc-
tors, e.g. set, are written postfix, i.e. follow their argument as in state set.

The syntax [P; Q] = R should be read as an inference rule with the two
premises P and @ and the conclusion R. Logically it is just a shorthand for
P — @ = R. Note that semicolon will also denote sequential composition
of programs, which should cause no major confusion. There are actually two
implications — and =. The two mean the same thing, except that — is
HOL’s “real” implication, whereas = comes from Isabelle’s meta-logic and
expresses inference rules. Thus = cannot appear inside a HOL formula. For
the purpose of this paper the two may be identified. However, beware that —
binds more tightly than =: in Vz. P — @ the Vx covers P — (), whereas
inVz. P = (@ it covers only P.

Set comprehension is written {x. P} rather than {z | P} and is also available
for tuples, e.g. {(z, vy, 2). P}.

2 Syntax and operational semantics

Everything is based on an unspecified type state of states. This could be a
mapping from variables to values, but to keep things abstract we leave this
open. The type bezp of boolean expressions is defined as an abbreviation:

types bexp = state = bool

This model of boolean expressions requires a few words of explanation. Type bool
is HOL’s predefined type of propositions. Thus all the usual logical connectives
like A and V are available. Instead of modelling the syntax of boolean expressions,
we model their semantics. For example, if states are mappings from variables to
values, the programming language expression x != y becomes As. s © # s y.

The syntax of our programming language is defined by a recursive datatype
(not shown). Statements in this language are called commands. Command Do f,
where f is of type state = state set, represents an atomic command that leads
in one step from some state s to a new state t € f s, or blocks if f s is empty.
Thus Do can represent many well-known constructs such as skip (Do (As. {s})),
abort (Do (As. {})), and (random) assignment. This is the only source of non-
determinism, but other constructs, like a binary choice between commands, are
easily simulated.

In addition we have sequential composition (c1; ¢2), conditional (IF b THEN
¢l ELSE c¢2), iteration (WHILE b DO ¢) and the procedure call command
CALL. There is only one parameterless procedure in the program. Hence CALL
does not even need to mention the procedure name. There is no separate syntax
for procedure declarations. Instead we introduce a new constant

consts body :: com

that represents the body of the one procedure in the program. Since body is
unspecified, this is completely generic.

The semantics of commands is defined operationally, by the simplest possi-
ble scheme, a so-called evaluation or big-step semantics. Execution is defined via
triples of the form s —c— ¢ which should be read as “execution of ¢ starting in
state s may terminate in state t”. This allows for different kinds of nondeter-
minism: there may be other terminating executions s —c— u with ¢ # u, there
may be nonterminating computations, and there may be blocking computations.
Nontermination and blocking is only discussed in the context of total correct-
ness. Execution of commands is defined inductively in the standard fashion and
requires no comments. See §1.3 for the notation.

tefs=s—-Dof—t

[s0 —c1— s1; s1 —c2— s2] = s0 —cl; c2— s2

[bs;s —cl— t] = s —IF b THEN c1 ELSE c2—t

[mbs;s —c2— t] = s —IF b THEN c1 ELSE c2—t

- bs= s —WHILEb DO c— s

[bs;s—c—t;t —=WHILE b DO ¢— u] = s —WHILE b DO ¢— u
s —body— t = s —CALL—t

This semantics turns out not to be fine-grained enough. The soundness
proof for the partial correctness Hoare logic below proceeds by induction on
the call depth during execution. To make this work we define a second semantics
s —c—n— t which expresses that the execution uses at most n nested procedure
invocations, where n is a natural number. The rules are straightforward: n is
just passed around, except for procedure calls, where it is decremented (Suc n
isn+ 1):

tefs=s—-Dof-n—t

[sO0 —cl—n— s1; s1 —c2—n— s2] = s0 —cl; c2—n— s2

[bs;s —cl—n— t] = s —IF b THEN c1 ELSE c2—n—t

[-bs;s —c2—n— t] = s —IF b THEN c1 ELSE c2—n— t

- bs= s —WHILE b DO c—n— s

[bs;s —c—n— t; t —WHILE b DO ¢—n— u] = s —WHILE b DO ¢c—n— u
s —body—n— t = s —CALL—Suc n— t

By induction on s —c—m— t we show monotonicity w.r.t. the call depth:
lemma s —c—-m— t =—=Vn.m<n—s —c—n—t

With the help of this lemma we prove the expected relationship between the two
semantics:

lemma ezec-iff-execn: (s —c— t) = (In. s —c—n— t)

Both directions are proved separately by induction on the operational semantics.

3 Hoare logic for partial correctness

As motivated in §1.1, auxiliary variables will be an integral part of our frame-
work. This means that assertions must depend on them as well as on the state.
Initially we do not fix the type of auxiliary variables but parameterize the type
of assertions with a type variable 'a:

types ‘a assn = 'a = state = bool

Reasoning about recursive procedures requires a context to store the induc-
tion hypothesis about recursive CALLs. This context is a set of Hoare triples:

types ‘a cntzt = ('a assn x com X 'a assn)set

In the presence of only a single procedure the context will always be empty or
a singleton set. With multiple procedures, larger sets can arise. Contexts are
denoted by C and D.

Validity (w.r.t. partial correctness) is defined as usual, except that we have
to take auxiliary variables into account as well:

E{P}c{Q} = Vst.s —c—>t— (V2. Pzs — Q zt)

The state of the auxiliary variables (auziliary state for short) is always denoted
by z.
Validity of a context and a Hoare triple in a context are defined as follows:

IE C = V(P,,Q) € C. = {P}c{Q}
CEAPI{Q} = |F C — E{P}c{Q}

Note that {} = {P} ¢ {@} is equivalent to = {P} ¢ {Q}.

Unfortunately, this is not the end of it. As we have two semantics, —c—
and —c—n—, we also need a second notion of validity parameterized with the
recursion depth n:

En {P}c{Q} Vst.s —c—n—t — (V2. Pzs — Q z 1)

lEn C V(P,c,Q) € C. En {P}c{Q}
C En {P}c{Q} lEn € — En {P}c{Q}

Finally we come to the proof system for deriving triples in a context:

CrH{Xzs.Vtefs. Pzt} Dof {P}

[CFA{P} c1 {Q}; CF{Q} c2 {R}] = C+ {P} cl; c2 {R}
[CE{Xzs. PzsAbs}cl {Q}; CH{Azs. PzsA~-bs}c2{Q}]
— O+ {P} IF b THEN c1 ELSE ¢2 {Q}

CH{Xzs. PzsANbs}c{P} = CF{P} WHILEbDO c{ zs. Pzs A —bs}
Consequence:

[CHA{P} c{Q'};Vst. (Vz. Pl2s — Q' 2t) — (V2. Pz2s — Q z)]

= CF{P} c{Q}

CALL: {(P, CALL, Q)} F {P} body {Q} = {} F {P} CALL {Q}
Assumption: {(P, CALL, Q)} + {P} CALL {Q}

Note that Hoare triples to the left of F are written as real triples, whereas to
the right of F both the customary {P} ¢ {Q} syntax and ordinary triples are
permitted.

The rule for Do is the generalization of the assignment axiom to an arbitrary
nondeterministic state transformation. The next 3 rules are familiar, except for
their adaptation to auxiliary variables. The CALL rule embodies induction and
has already been motivated in §1.1. Note that it is only applicable if the context
is empty. This shows that we never need nested induction. For the same reason
the assumption rule is stated with just a singleton context.

The consequence rule is unusual but not completely new. Modulo notation
it is identical to a slight reformulation by Olderog [21] of a rule by Cartwright
and Oppen [5]. A different reformulation of the rule seems to have appeared
for the first time in the work by Morris [14]. A more recent reinvention and
reformulation is due to Hofmann [10]:

Vstz. Pzs — QztVvV 32z . P 2/ sn(Q'z2't— Qzt))

Although logically equivalent to our side condition, the symmetry of our version
appeals not just for aesthetic reasons but because one can actually remember it!
Our system differs from earlier Hoare logics for partial correctness because
we have followed Kleymann [24] who realized that a rule like the above conse-
quence rule subsumes the normal consequence rule — thus the latter has become
superfluous.
The proof of the soundness theorem

theorem C + {P}c{Q} = C = {P}A{Q}

requires a generalization: Vn. C =n {P} ¢ {Q} is proved instead, from which
the actual theorem follows directly via lemma ezec-iff-execn. The generalization
is proved by induction on C' - {P} ¢ {Q}.

The completeness proof follows the most general triple approach [6]:

MGT :: com = state assn X com X state assn
MGT ¢ = (Azs.z=38,¢, Azt. 2z —c— t)

There are a number of points worth noting. For a start, the most general triple
equates the type of the auxiliary state z with type state. The precondition
equates the auxiliary state with the initial state, so to speak making a copy
of it. Therefore the postcondition can refer to this copy and thus the initial
state. Finally, the postcondition is the strongest postcondition w.r.t. the given
precondition and command.

It is easy to see that {} - MGT ¢ implies completeness:

lemma MG T-implies-complete:

{} F MGT ¢ = {} E{P}c{Q} = {} F {P}c{Q::state assn}

Simply apply the consequence rule to {} = MGT ¢ to obtain {} - {P} ¢ {Q}
— the side condition is discharged with the help of {} &= {P} ¢ {Q} and a
little predicate calculus reasoning. The type constraint @Q::state assn is required
because pre and postconditions in MGT c are of type state assn, not ‘a assn.

In order to discharge {} F MGT ¢ one proves
lemma MGT-lemma: C - MGT CALL — C+ MGT c

The proof is by induction on c¢. In the WHILE-case it is easy to show that Az
t. (z, t) € {(s, t). b s A s —c— t}* is invariant. The precondition Az s. z=s
establishes the invariant and a reflexive transitive closure induction shows that
the invariant conjoined with — b ¢ implies the postcondition Az t. z —WHILE b
DO c¢— t. The remaining cases are trivial.

We can now derive {} = MGT c as follows. By the assumption rule we
have {MGT CALL} - MGT CALL, which implies {MGT CALL} - MGT body
by the MGT-lemma. From the CALL rule it follows that {} - MGT CALL.
Applying the MGT-lemma once more we obtain the desired {} + MGT ¢ and
hence completeness:

theorem {} = {P}c{Q} = {} F {P}c{Q::state assn}

This is the first proof of completeness in the presence of (unbounded) nondeter-
minism. Earlier papers, if they considered completeness at all, restricted them-
selves to deterministic languages. However, our completeness proof follows the
one by Apt [2] quite closely. This will no longer be the case for total correctness.

4 Hoare logic for total correctness

4.1 Termination

To express total correctness, we need to talk about guaranteed termination of
commands. Due to nondeterminism, the existence of a terminating computa-
tion in the big-step semantics does not guarantee that all computations from
some state terminate. Hence we inductively define a new judgement ¢ | s that
expresses guaranteed termination of ¢ started in state s:

fs#{ = Dofls

[el] s0;Vs1. s0 —cl— s1 — ¢2 | s1] = (c1; ¢2) | sO

[bs;ct | s]= IFbTHEN cl ELSE ¢2 | s

[mbs;¢2] s]= IFbTHEN cl ELSEc2 | s

- bs=— WHILEb DO c | s

[bs;cls;Vt.s —c—t — WHILEbDOc | t] = WHILE b DO ¢ | s
body | s = CALL | s

The first rule expresses that if Do f blocks, i.e. there is no next state in f s, we
do not consider this a normal termination. Thus | rules out both infinite and
blocking computations. The remaining rules are self-explanatory.

By induction on | it is easily shown that if WHILE terminates in the sense
of | then one must eventually reach a state where the loop test becomes false:

lemma [(WHILE b DO ¢) | fk; Vi. fi —c— f(Suci)] = Fi. -b(f 1)

The inductive proof requires f k rather than the more intuitive f 0.

It follows that the executions of the body of a terminating WHILE-loop form
a well-founded relation (for wf see below):

lemma wf-WHILE: wf {(¢,s). WHILEb DO ¢ | s ANbs As —c— t}

Now that we have termination, we can define total validity, =, as partial
validity and guaranteed termination:
E.{P}c{Q} = E{P}c{Q}ANNVzs. Pzs— cls)

For validity of a context and validity of a Hoare triple in a context we follow the
corresponding definitions for partial correctness:

|E: C = V(P,c,Q) € C. = {P}c{Q}
CEA{P}cAQ} = |t C — | {P}ce{Q}

4.2 Hoare logic
To distinguish the proofs of partial and total correctness the latter use the symbol

F:. The rules for F; differ from the ones for - only in the two places where
nontermination can arise (loops and recursion) and in the consequence rule:

[wfr;Vs. Cre{Azs. Pzs ANbsAs =s}c{hzs. PzsA(s, s)er}]
= C +y {P} WHILE b DO ¢ {Azs. Pzs A —bs}
[wfr; Vs {(Azs. PzsA(s,s') er, CALL, Q)} k4
{A2s. Pzs As=s'"} body {Q}]

— [} . (P} CALL {Q}
[C AP} ¢ {Q);

(Vst. (V2. Plzs — Q' 2zt) — (V2. Pz2s — Q zt)) A

(Vs. (32z. Pzs) — (3z. P'z9))]
= Ok {P} c{Q}

Before we discuss these rules in turn, a note on wf, which means well-founded:
a relation r is well-founded iff there is no infinite descending chain

., (83,52), (52,51),(51,50) €T

The WHILE-rule is fairly standard: in addition to invariance one must also
show that the state goes down w.r.t. some well-founded relation r. The only
notable feature is the universal quantifier (Vs’) that allows the postcondition
to refer to the initial state. If you are used to more syntactic presentations of
Hoare logic you may prefer a side condition that s’ is a new variable. But since
we embed Hoare logic in a language with quantifiers, why not use them to good
effect?

The CALL-rule is like the one for partial correctness except that use of the
induction hypothesis is restricted to those cases where the state has become
smaller w.r.t. 7. The V s’ fulfills a similar function as in the WHILE-rule. See
§4.4 for an application of this rule which elucidates how V s’ is handled.

The consequence rule is like its cousin for partial correctness but with a
version of precondition strengthening conjoined that takes care of the auxiliary
state z: Vs. (3z. Pzs) — (Fz. P’ z s).

Our rules for total correctness are similar to those by Kleymann [13]. The
difference in the WHILE-rule is that he has a well-founded relation on some ar-
bitrary type a together with a function from state to «, which we have collapsed
to a well-founded relation on state. This is equivalent but avoids the additional
type a. The same holds for the CALL-rule. As a consequence our CALL-rule
is much simpler than the one by Kleymann (and ultimately Sokolowski [25])
because we avoid the additional existential quantifiers over values of type a.
Finally, the side condition in our rule of consequence looks quite different from
the one by Kleymann, although the two are in fact equivalent:

lemma ((Vst. (V2. P'2s — Q' 2zt) — (V2. Pzs — Q2 t)) A
(Vs. (32z. Pzs) — (2. P' zs)))
=Wzs. Pzs— (VtIz. P 2/ sAN(Q'2't — Q 21)))

Kleymann’s version (the proposition to the right of the =) is easier to use because
it is more compact, whereas our new version clearly shows that it is a conjunction
of the side condition for partial correctness with precondition strengthening,
which is not obvious in Kleymann’s formulation. Further equivalent formulations
are explored by Naumann [15].

As usual, soundness is proved by induction on C F; {P} ¢ {Q}:

theorem C +; {P}c{Q} = C k¢ {P}c{Q}

The WHILE and CALIL-cases require well-founded induction along the given
well-founded relation.

The key difference to previous work in the literature (Kleymann, America
and de Boer, Apt, etc) emerges in the completeness proof. For total correctness,
the most general triple used to be turned around: Az t. 2z —c— t becomes the
weakest precondition of Az s. z = s. However, this only works if the programming
language is deterministic. Hence we leave the most general triple as it is and
merely add the termination requirement to the precondition:

MGTic = (Mzs.z=s8Acls, ¢, Azt z —c— t)
The first two lemmas on the way to the completeness proof are unchanged:

lemma {} -y MGT: ¢ = {} ¢ {P}c{Q} = {} k¢ {P}c{Q::state assn}
lemma C +; MGT; CALL — C + MGT; ¢

However, if we now try to continue following the proof at the end of §3 to derive
{} F+ MGT; ¢ we can no longer do so directly because the CALL-rule has
changed. What we would need is the following lemma:

lemma CALL-lemma:
{(Az s. (z=s A bodyls) A (s,s") € reall, CALL, Az 5. z —body— s)} b
{Az 5. (z=s A body|s) A s = s} body {\zs. 2 —body— s}

where rcall is some suitable well-founded relation. From that lemma the CALL-
rule infers {} F, {Azs. 2 = s A CALL | s} CALL {\zs. z —CALL— s} which
is exactly {} F+ MGT; CALL. Completness follows trivially via the two lemmas

further up. However, before we can even start to prove the hypothetical CALL-
lemma, we need to provide the well-founded relation rcall, which turns out to be
the major complicating factor.

Given a terminating WHILE, the iterated executions of the body directly
yield the well-founded relation that proves termination. In contrast, given a
terminating CALL, the big-step semantics does not yield a well-founded relation
on states that decreases between the beginning of the execution of the body and
a recursive call. The reason is that the recursive call is embedded in the body and
thus the big-step semantics is too coarse. Informally what we want is the relation
{(s', s) | starting the body in state s leads to a recursive CALL in state s'}.

4.3 The termination ordering

In order to formalize the above informal description of the termination order-
ing we define a very fine-grained small-step semantics that one can view as an
abstract machine operating on a command stack. Each step (cs, s) — (cs’, s')
(partially) executes the topmost element of the command stack cs, possibly re-
placing it with a list of new commands. Note that z # zs is the list with head
z and tail zs.

tefs= (Dof # cs, s) — (cs, t)

((c1; ¢2) # cs, 8) — (¢l # c2 # cs, s)

bs = ((IF b THEN c1 ELSE c2) # cs, s) — (c1 # cs, s)

-~ bs= ((IF b THEN c1 ELSE c2) # cs, s) — (c2 # cs, s)

—~bs = ((WHILE b DO c) # cs, s) — (cs, s)

bs = ((WHILE b DO ¢) # cs, s) — (¢ # (WHILE b DO ¢) # cs, s)
(CALL # cs, s) — (body # cs, s)

Note that a separate SKIP command would obviate the need for lists: simply
replace [] by SKIP and # by ;.

The above semantics is intentionally different from the customary structural
operational semantics. The latter features the following rule:

(c1,8) — (c1',s") = (c1;¢2,s) — (c1';c2,s")

In case cl is a nest of semicolons, it is not flattened as above, and hence one
cannot easily see what the next atomic command is. Which we need to see, to
define rcall, the well-founded ordering required for the application of the CALL
rule in the completeness proof in §4.2 above:

reall = {(t,s). bodyls A (Fcs. ([body], s) =" (CALL # cs, t))}

theorem wf rcall

The amount of work to prove this theorem is significant and should not be un-
derestimated, but for lack of space we cannot discuss the details. The complexity
of the proof is due to the two notions of (non)termination, | and infinite — re-
ductions, which need to be related. However, abolishing | would help very little:

10

the lengthy proofs are those about —, and one would then need to replace a few
slick proofs via | by more involved ones via —.

To finish the completeness proof in §4.2 it remains to prove CALL-lemma. It
cannot be proved directly but needs to be generalized first:

lemma {(Az s. (z=s A bodyl|s) A (s,t) € rcall, CALL, Az s. z —body— s)}
{Az s. (z=s A bodylt) A (es. ([body],t) —* (cH#cs,s))} ¢ {Azs. 2 —c— s}

This lemma is proved by induction on ¢. The WHILFE-case is a little involved
and requires a local reflexive transitive closure induction.
The actual CALL-lemma follows easily, as does completeness:

theorem {} = {P}c{Q} = {} k¢ {P}c{Q::state assn}

4.4 Example

To elucidate the use of our very semantic-looking proof rules we will now verify
the example from §1.1, showing only the key steps and minimizing Isabelle-
specific detail. We start by declaring a type variables and defining state to be
variables = nat — the variables in the example program range only over nat-
ural numbers. The program variable i is represented by a constant i of type
variables. The body of the recursive procedure is defined by translating tests
and assignments into functions on states. Updating a function s at point = with
value e is a predefined operation written s(z := e).

body = IF Xs. s t = 0 THEN Do(\s.{s})
ELSE (Do(Xs. {s(i :=si — 1)}); CALL; Do(As. {s(i :== s i + 1)}))

We will now prove the desired correctness statement:
lemma {} k- {Azs.si=2N} CALL{\zs.si =2z N}

As a first step we apply the CALL-rule where we instantiate r to {(¢, s). t i <
s 1} — well-foundedness of this relation is proved automatically. This leaves us
with the following goal:

1.Vs' {(Azs.si=2NAsi<s'i, CALL,Az2s. si =2 N)} by
{Azs.si=2NAs=3s"} body {A\zs.si=2N}

Isabelle always numbers goals. In this case there is only one. We get rid of the
leading V' s’ via HOL’s V-introduction rule which turns it into As’, the universal
quantifier of Isabelle’s meta-logic. Roughly speaking this means that s’ is now
considered an arbitrary but fixed value.

After unfolding the body we apply the IF-rule and are left with two subgoals:

1.N\s" {(xzs.si=2NAsi<s'i, CALL, Azs.si =2z N)} b
{Azs. (si=2NAs=3s)YANsi=0} Do (Xs. {s}){Azs.si=2N}
2.Ns" {(Mzs.si=2NAsi<s'i, CALL, \zs. si=2zN)}
{M2s. (si=2zNAs=3s)ANsi#0}
Do (As. {s(i :==si — 1)}); CALL; Do (As. {s(i :=si+ 1)})
{Azs.si=2zN}

11

Both are easy to prove. During the proof of the second one we provide the
intermediate assertions Az s. 0 < 2N Asi=2zN — 1 Asi<s'iand \zs.
0 <zN Asi=zN — 1. This leads to the following subgoal for the CALL:

1.N\s" {(dzs.si=2NAsi<s'i, CALL, Azs.si=2zN)}
{M2s.0<zNAsi=2zN—1Asi<s'i} CALL
{Az2s.0<z2zNAsi=2zN — 1}

Applying consequence and assumption rules we are left with

1. N\s" (Vst.(Vz.si=2NAsi<s'i—ti=2zN)—

V2. 0 <zNAsi=zN—-1Asi<s' 1 —
0<zNAti=2zN—1))A
(Vs.(3z.0<z2NAsi=zN—-1ANsi<s"i)—

(Fz.si=2NAsi<s'i))
which is proved automatically. This concludes the sketch of the proof.

5 More procedures

We now generalize from a single procedure to a whole set of procedures following
the ideas of von Oheimb [20]. The basic setup of §2 is modified only in a few
places:

— We introduce a new basic type pname of procedure names.

Constant body is now of type pname = com.

The CALL command now has an argument of type pname, the name of the
procedure that is to be called.

The call rule of the operational semantics now says

s —body p— t = s —CALL p— t

Note that this setup assumes that we have a procedure body for each procedure
name. In particular, pname may be infinite.

5.1 Hoare logic for partial correctness

Types assn and and cntzt are defined as in §3, as are = {P} ¢ {Q}, |E C,
En {P} ¢ {Q} and |[=n C. However, we now need an additional notion of valid-
ity C ||= D where D is a set as well. The reason is that we can now have mutually
recursive procedures whose correctness needs to be established by simultaneous
induction. Instead of sets of Hoare triples we may think of conjunctions. We
define both C' ||= D and its relativized version:

ClED=FC— |k D
ClenD=|EnC— |EnD

Our Hoare logic defines judgements of the form C' H D where both C' and
D are (potentially infinite) sets of Hoare triples; C' F {P} ¢ {Q} is simply an
abbreviation for C' - {(P,c,Q)}. With this abbreviation the rules for “”, IF,
WHILFE and consequence are exactly the same as in §3. The remaining rules are

12

Up- {(Pp, CALL p, Q p)} = Up- {(P p, body p, Q p)} =
{} = Up. {(Pp, CALL p, Q p)}

(P, CALL p, Q) € C = C I {P} CALL p {Q}

V(P, ¢, Q€D. CF{P} c{Q} = CH D

[CH D; (P, ¢, Q) € D] = CF {P} c{Q}

Note that [Jp. is the indexed union (J,,.

The CALL and the assumption rule are straightforward generalizations of
their counterparts in §3. The fact that CALL-rule reasons about all procedures
simultaneously merely simplifies notation: arbitrary subsets of procedures work
just as well. The final two rules are structural rules and could be called conjunc-
tion introduction and elimination, because they put together and take apart sets
of triples.

Soundness is proved as before, by induction on C H- D:

theorem CH D = C | D

But first we generalize from C' |= D to Vn. C |[=n D. Now the CALL-case can
be proved by induction on n.

The completeness proof also resembles the one in §3 closely: the most gen-
eral triple MGT is defined exactly as before, and the lemmas leading up to
completness are simple generalizations:

lemma {} F MGT ¢ = | {P}c{Q} = {} F {P}c{Q::state assn}
lemma Vp. C - MGT(CALL p) = CF MGT ¢

lemma {} H |Jp. {MGT(CALL p)}

theorem = {P}c{Q} = {} F {P}c{Q:state assn}

5.2 Hoare logic for total correctness

Hoare logic for total correctness of mutually recursive procedures has not re-
ceived much attention in the literature. Sokolowski’s system [25], the only one
that comes with a completness proof, is seriously incomplete, as it lacks rules of
adaption to deal with the problem described in §1.1.

Our basic setup of termination and validity is as in §4 but extended by one
more notion of validity:

ClEeD = [C— = D

The rules for Do, “;”, IF, WHILE and consequence are exactly the same as in
§4.2. In addition we have the two structural rules called conjunction introduction
and elimination from §5.1 above (but with F; instead of). Only the CALL-rule
changes substantially and becomes

[wfr
Vg pre. (Up. {(Azs. PpzsA((p,s)(a.pre)) € r,CALL p,Q p)})
Fe {Az2s. Pqzs As=pre} body q {Q q}]

This rule appears to be genuinely novel. To understand it, imagine how you would
simulate mutually recursive procedures by a single procedure: you combine all

13

procedure bodies into one procedure and select the correct one dynamically with
the help of a new program variable which holds the name of the currently called
procedure. The well-founded relation in the above rule is of type ((pname x
state) x (pname x state))set thus simulating the additional program variable
by making pname a component of the termination relation.

We consider an example from [12] which the authors claim is difficult to treat
with previous approaches [25,22].

proc pedal =if n=0 V m=0 then skip
else if n < m then (n:=n-1; m:=m-1; CALL coast)
else (n:=n-1; CALL pedal)

proc coast =if n<m then (m:=m-1; CALL coast) else CALL pedal

One possible termination ordering (which is all we are interested in) is the re-
verse lexicographic product of the relation {(pedal, coast)} on pname with the
lexicographic ordering on (n,m). If coast calls pedal, (n,m) is unchanged and
the relation on pname decreases. In all other cases either n decreases or n is
unchanged and m decreases.

Soundness and completeness are proved almost exactly as for a single pro-
cedure. We do not even need to show the theorems. Previous work on total
correctness of mutually recursive procedures is either incomplete [25] or lacks
completeness proofs [22,12].

6 Expressiveness and relative completeness

In the literature, most completeness results for Hoare logics are qualified with
the word relative, meaning relative to the completeness of the deductive system
for the assertion language, which enters the picture in the consequence rule. This
issue is absent in our formalization for the following reason: both = and + are
specified in the same finite logical system, HOL. Thus they both inherit HOL’s
incompleteness. In particular, there must be valid Hoare triples whose validity
is not provable in HOL. What the completeness theorem tells us is that both |=
and F are equally incomplete. This is important because it means we never need
to resort to the operational semantics to prove some Hoare triple, we can always
do it just as well in the Hoare logic.

The second important issues that we have ignored so far is expressiveness,
i.e. the ability to express the intermediate predicates that may arise in a proof.
In the following discussion we restrict attention to programs where the boolean
expressions and the functions in the Do-commands are definable in the assertion
language.

Clearly HOL is expressive as the completeness proofs can be formalized in it.
We will narrow things down to weaker logical systems, although an analysis of
the precise proof theoretic strength required is beyond the scope of this paper.
For partial correctness the customary result that first-order arithmetic is expres-
sive still holds, essentially because the most general triple can be expressed in it.

14

The details are standard. For total correctness matters change. First-order arith-
metic is still expressive for bounded nondeterminism (as shown by Apt [3] for
Dijkstra’s guarded commands) but fails to be so in the presence of unbounded
nondeterminism [3,4]. The reason is that we now have to formalize assertions
about termination. Apt solves the problem by enriching the assertion language
with a least fixedpoint operator, i.e. moving towards the p-calculus. Essentially
we have used the same trick: termination (]) is defined inductively, which can be
expressed as a least fixedpoint (and this is in fact what Isabelle/HOL translates
inductive definitions into internally). Therefore first-order arithmetic enriched
with least fixedpoints is expressive in our setting, too.

However, there is one more complication: our proof rules for loops and pro-
cedure calls employ arbitrary well-founded orderings on the state space. Fortu-
nately we can dispense with general well-founded orderings. Studying the com-
pleteness proof in §4, we find that two termination orderings suffice, namely the
one in lemma wf-WHILE for loops (§4.1) and rcall for procedures (§4.3). Hence
we could specialize the two rules with these most general termination orderings,
thus removing the well-foundedness premise while retaining completeness. And if
we examine the definition of these orderings, we find that they require the same
ingredients as the most general triple, namely the transition semantics and the
termination predicate (]). Thus the version of the u-calculus used by Apt [3,4],
or any reasonable logic that can express most general triples, is expressive for
procedures as well. In contrast, Apt and Plotkin require (recursive) ordinals on
top of their p-calculus. They are aware that the ordinals are strictly speaking
not necessary (Hitchcock and Park [7] do without them) but leave it as an open
question to find a syntax directed system without ordinals. Our proof system
provides one answer.

Acknowledgments 1 am indebted to Thomas Kleymann and David von Oheimb for
providing the logical foundations, to Krzysztof Apt and Kamal Lodaya for very helpful
comments, and to Markus Wenzel for the Isabelle document preparation system.

References

1. Pierre America and Frank de Boer. Proving total correctness of recursive proce-
dures. Information and Computation, 84:129-162, 1990.

2. Krzysztof Apt. Ten Years of Hoare’s Logic: A Survey — Part I. ACM Trans.
Programming Languages and Systems, 3(4):431-483, 1981.

3. Krzysztof Apt. Ten Years of Hoare’s Logic: A Survey — Part II: Nondeterminism.
Theoretical Computer Science, 28:83-109, 1984.

4. Krzysztof Apt and Gordon Plotkin. Countable nondeterminism and random as-
signment. Journal of the ACM, 33:724-767, 1986.

5. Robert Cartwright and Derek Oppen. The logic of aliasing. Acta Informatica,
15:365-384, 1981.

6. Gerald Arthur Gorelick. A complete axiomatic system for proving assertions about
recursive and non-recursive programs. Technical Report 75, Dept. of Computer
Science, Univ. of Toronto, 1975.

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Peter Hitchcock and David Park. Induction rules and termination proofs. In
M. Nivat, editor, Automata, languages, and programming, pages 225-251. North
Holland, 1973.

C.A.R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:567-580,583, 1969.

C.A.R. Hoare. Procedures and parameters: An axiomatic approach. In E. En-
geler, editor, Semantics of algorithmic languages, volume 188 of Lecture Notes in
Mathematics, pages 102—116. Springer-Verlag, 1971.

Martin Hofmann. Semantik und Verifikation. Lecture notes, Universitat Marburg.
In German, 1997.

Peter V. Homeier and David F. Martin. Mechanical verification of mutually recur-
sive procedures. In M.A. McRobbie and J.K. Slaney, editors, Automated Deduction
— CADE-13, volume 1104 of Lect. Notes in Comp. Sci., pages 201-215. Springer-
Verlag, 1996.

Peter V. Homeier and David F. Martin. Mechanical verification of total correctness
through diversion verification conditions. In J. Grundy and M. Newey, editors,
Theorem Proving in Higher Order Logics (TPHOLs’98), volume 1479 of Lect. Notes
in Comp. Sci., pages 189-206. Springer-Verlag, 1998.

Thomas Kleymann. Hoare logic and auxiliary variables. Formal Aspects of Com-
puting, 11:541-566, 1999.

J.H. Morris. Comments on “procedures and parameters”. Undated and unpub-
lished.

David Naumann. Calculating sharp adaptation rules. Information Processing
Letters, 77:201-208, 2000.

Hanne Riis Nielson and Flemming Nielson. Semantics with Applications. Wiley,
1992.

Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics text-
book. In V. Chandru and V. Vinay, editors, Foundations of Software Technology
and Theoretical Computer Science, volume 1180 of Lect. Notes in Comp. Sci., pages
180-192. Springer-Verlag, 1996.

Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics text-
book. Formal Aspects of Computing, 10:171-186, 1998.

Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of Lect. Notes in Comp. Sci.
Springer-Verlag, 2002.

David von Oheimb. Hoare logic for mutual recursion and local variables. In
C. Pandu Rangan, V. Raman, and R. Ramanujam, editors, Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTETCS), volume 1738 of
Lect. Notes in Comp. Sci., pages 168—180. Springer-Verlag, 1999.

Ernst-Riidiger Olderog. On the notion of expressiveness and the rule of adaptation.
Theoretical Computer Science, 24:337-347, 1983.

P. Pandya and M. Joseph. A structure-directed total correctness proof rule for
recursive procedure calls. The Computer Journal, 29:531-537, 1986.

Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus
of Constructions. PhD thesis, University of Edinburgh, 1994.

Thomas Schreiber. Auxiliary variables and recursive procedures. In TAPSOFT’97:
Theory and Practice of Software Development, volume 1214 of Lect. Notes in Comp.
Sci., pages 697-711. Springer-Verlag, 1997.

Stefan Sokotowski. Total correctness for procedures. In Mathematical Foundations
of Computer Science (MFCS), volume 53 of Lect. Notes in Comp. Sci., pages 475~
483. Springer-Verlag, 1977.

16

	Introduction
	The problem with procedures
	The extensional approach
	Isabelle/HOL

	Syntax and operational semantics
	Hoare logic for partial correctness
	Hoare logic for total correctness
	Termination
	Hoare logic
	The termination ordering
	Example

	More procedures
	Hoare logic for partial correctness
	Hoare logic for total correctness

	Expressiveness and relative completeness

