
Verification of Closest Pair of Points Algorithms

Martin Rau and Tobias Nipkow[0000−0003−0730−515X]

Fakultät für Informatik, Technische Universität München

Abstract. We verify two related divide-and-conquer algorithms solv-
ing one of the fundamental problems in Computational Geometry, the
Closest Pair of Points problem. Using the interactive theorem prover
Isabelle/HOL, we prove functional correctness and the optimal running
time of O(n logn) of the algorithms. We generate executable code which
is empirically competitive with handwritten reference implementations.

1 Introduction

The Closest Pair of Points or Closest Pair problem is one of the fundamental
problems in Computational Geometry: Given a set P of n ≥ 2 points in Rd, find
the closest pair of P , i.e. two points p0 ∈ P and p1 ∈ P (p0 6= p1) such that the
distance between p0 and p1 is less than or equal to the distance of any distinct
pair of points of P .

Shamos and Hoey [25] are one of the first to mention this problem and intro-
duce an algorithm based on Voronoi diagrams for the planar case, improving the
running time of the best known algorithms at the time from O(n2) to O(n log n).
They also prove that this running time is optimal for a deterministic computa-
tion model. One year later, in 1976, Bentley and Shamos [2] publish a, also
optimal, divide-and-conquer algorithm to solve the Closest Pair problem that
can be non-trivially extended to work in arbitrary dimensions. Since then the
problem has been the focus of extensive research and a multitude of optimal
algorithms have been published. Smid [24] provides a comprehensive overview
over the available algorithms, including randomized approaches which improve
the running time even further to O(n).

The main contribution of this paper is the first verification of two related
functional implementations of the divide-and-conquer algorithm solving the Clos-
est Pair problem for the two-dimensional Euclidean plane with the optimal run-
ning time of O(n log n). We use the interactive theorem prover Isabelle/HOL
[18,17] to prove functional correctness as well as the running time of the algo-
rithms. In contrast to many publications and implementations we do not assume
all points of P to have unique x -coordinates which causes some tricky complica-
tions. Empirical testing shows that our verified algorithms are competitive with
handwritten reference implementations. Our formalizations are available online
[23] in the Archive of Formal Proofs.

This paper is structured as follows: Section 2 familiarizes the reader with the
algorithm by presenting a high-level description that covers both implementa-
tions. Section 3 presents the first implementation and its functional correctness

proof. Section 4 proves the running time of O(n log n) of the implementation
of the previous section. Section 5 describes our second implementation and il-
lustrates how the proofs of Sections 3 and 4 need to be adjusted. We also give
an overview over further implementation approaches. Section 6 describes final
adjustments to obtain executable versions of the algorithms in target languages
such as OCaml and SML and evaluates them against handwritten imperative
and functional implementations. Section 7 concludes.

1.1 Related Verification Work

Computational geometry is a vast area but only a few algorithms and theorems
seem to have been verified formally. We are aware of a number of verifications of
convex hull algorithms [20,14,4] (and a similar algorithm for the intersection of
zonotopes [12]) and algorithms for triangulation [7,3]. Geometric models based
on maps and hypermaps [22,6] are frequently used.

Work on theorem proving in geometry (see [15] for an overview) is also related
but considers fixed geometric constructions rather than algorithms.

1.2 Isabelle/HOL and Notation

The notation t :: τ means that term t has type τ . Basic types include bool, nat,
int and real ; type variables are written ′a, ′b etc; the function space arrow is⇒.
Functions fst and snd return the first and second component of a pair.

We suppress numeric conversion functions, e.g. real :: nat ⇒ real, except
where that would result in ambiguities for the reader.

Most type constructors are written postfix, e.g. ′a set and ′a list. Sets follow
standard mathematical notation. Lists are constructed from the empty list [] via
the infix cons-operator (#). Functions hd and tl return head and tail, function
set converts a list into a set.

2 Closest Pair Algorithm

In this section we provide a high-level overview of the Closest Pair algorithm
and give the reader a first intuition without delving into implementation details,
functional correctness or running time proofs.

Let P denote a set of n ≥ 2 points. If n ≤ 3 we solve the problem naively using
the brute force approach of examining all

(
n
2

)
possible closest pair combinations.

Otherwise we apply the divide-and-conquer tactic.
We divide P into two sets PL and PR along a vertical line l such that

the sizes of PL and PR differ by at most 1 and the x-coordinate of all points
pL ∈ PL (pR ∈ PR) is ≤ l (≥ l).

We then conquer the left and right subproblems by applying the algorithm
recursively, obtaining (pL0, pL1) and (pR0, pR1), the respective closest pairs of
PL and PR. Let δL and δR denote the distance of the left and right closest pairs
and let δ = min δL δR. At this point the closest pair of P is either (pL0, pL1),

2

(pR0, pR1) or a pair of points p0 ∈ PL and p1 ∈ PR with a distance strictly less
than δ. In the first two cases we have already found our closest pair.

Now we assume the third case and have reached the most interesting part
of divide-and-conquer algorithms, the combine step. It is not hard to see that
both points of the closest pair must be within a 2δ wide vertical strip centered
around l. Let ps be a list of all points in P that are contained within this 2δ
wide strip, sorted in ascending order by y-coordinate. We can find our closest
pair by iterating over ps and computing for each point its closest neighbor. But
in the worst case ps contains all points of P , and we might think our only option
is to again check all

(
n
2

)
point combinations. This is not the case. Let p denote

an arbitrary point of ps, depicted as the square point in Figure 1. If p is one of

Fig. 1. The combine step

the points of the closest pair, then the distance to its closest neighbor is strictly
less than δ and we only have to check all points q ∈ set ps that are contained
within the 2δ wide horizontal strip centered around the y-coordinate of p.

In Section 4 we prove that, for each p ∈ set ps, it suffices to check only a
constant number of closest point candidates. This fact allows for an implemen-
tation of the combine step that runs in linear time and ultimately lets us achieve
the familiar recurrence of T (n) = T (dn/2e) + T (bn/2c) +O(n), which results in
the running time of O(n log n).

We glossed over some implementation details to achieve this time complexity.
In Section 3 we refine the algorithm and in Section 4 we prove the O(n log n)
running time.

3

3 Implementation and Functional Correctness Proof

We present the implementation of the divide-and-conquer algorithm and the
corresponding correctness proofs using a bottom-up approach, starting with the
combine step. The basis for both implementation and proof is the version pre-
sented by Cormen et al. [5]. But first we need to define the closest pair problem
formally.

A point in the two-dimensional Euclidean plane is represented as a pair of
(unbounded) integers1. The library HOL-Analysis provides a generic distance
function dist applicable to our point definition. The definition of this specific
dist instance corresponds to the familiar Euclidean distance measure.

The closest pair problem can be stated formally as follows: A set of points P
is δ-sparse iff δ is a lower bound for the distance of all distinct pairs of points
of P .

sparse δ P = (∀ p0 ∈ P . ∀ p1 ∈ P . p0 6= p1 −→ δ ≤ dist p0 p1)

We can now state easily when two points p0 and p1 are a closest pair of P :
p0 ∈ P , p1 ∈ P, p0 6= p1 and (most importantly) sparse (dist p0 p1) P.

In the following we focus on outlining the proof of the sparsity property of
our implementation, without going into the details. The additional set mem-
bership and distinctness properties of a closest pair can be proved relatively
straightforwardly by adhering to a similar proof structure.

3.1 The Combine Step

The essence of the combine step deals with the following scenario: We are given
an initial pair of points with a distance of δ and a list ps of points, sorted in
ascending order by y-coordinate, that are contained in the 2δ wide vertical strip
centered around l (see Figure 1). Our task is to efficiently compute a pair of
points with a distance δ′ ≤ δ such that ps is δ′-sparse. The recursive function
find closest pair achieves this by iterating over ps, computing for each point
its closest neighbor by calling the recursive function find closest that considers
only the points within the shaded square of Figure 1, and updating the current
pair of closest points if the newly found pair is closer together. We omit the
implementation of the trivial base cases.

find closest pair :: point × point ⇒ point list ⇒ point × point

find closest pair (c0, c1) (p0 # ps) =

(let p1 = find closest p0 (dist c0 c1) ps

in if dist c0 c1 ≤ dist p0 p1 then find closest pair (c0, c1) ps

else find closest pair (p0, p1) ps)

1 We choose integers over reals because be we cannot implement mathematical reals.
See Section 6. Alternatively we could have chosen rationals.

4

find closest :: point ⇒ real ⇒ point list ⇒ point
find closest p δ (p0 # ps) =
(if δ ≤ snd p0 − snd p then p0

else let p1 = find closest p (min δ (dist p p0)) ps
in if dist p p0 ≤ dist p p1 then p0 else p1)

There are several noteworthy aspects of this implementation. The recursive
search for the closest neighbor of a given point p of find closest starts at the first
point spatially above p, continues upwards and is stopped early at the first point
whose vertical distance to p is equal to or exceeds the given δ. Thus the function
considers, in contrast to Figure 1, only the upper half of the shaded square during
this search. This is sufficient for the computation of a closest pair because for
each possible point q preceding p in ps we already considered the pair (q, p),
if needed, and do not have to re-check (p, q) due to the commutative property
of our closest pair definition. Note also that δ is updated, if possible, during
the computation and consequently the search space for each point is limited to
a 2δ × δ′ rectangle with δ′ ≤ δ. Lastly we intentionally do not minimize the
number of distance computations. In Section 6 we make this optimization for
the final executable code.

The following lemma captures the desired sparsity property of our implemen-
tation of the combine step so far. It is proved by induction on the computation.

Lemma 1. sorted snd ps ∧ (p0, p1) = find closest pair (c0, c1) ps
=⇒ sparse (dist p0 p1) (set ps)

where sorted snd ps means that ps is sorted in ascending order by y-coordinate.
We wrap up the combine step by limiting our search for the closest pair

to only the points contained within the 2δ wide vertical strip and choosing as
argument for the initial pair of points of find closest pair the closest pair of the
two recursive invocations of our divide-and-conquer algorithm with the smaller
distance δ.

combine :: point × point ⇒ point × point ⇒ int ⇒ point list ⇒ point × point
combine (p0L, p1L) (p0R, p1R) l ps =
(let (c0, c1) =

if dist p0L p1L < dist p0R p1R then (p0L, p1L) else (p0R, p1R)
in find closest pair (c0, c1)

(filter (λp. dist p (l , snd p) < dist c0 c1) ps))

Lemma 2 shows that if there exists a pair (p0, p1) of distinct points with a
distance < δ, then both its points are contained in the mentioned vertical strip,
otherwise we have already found our closest pair (c0, c1), and the pair returned
by find closest pair is its initial argument.

Lemma 2. p0 ∈ set ps ∧ p1 ∈ set ps ∧ p0 6= p1 ∧ dist p0 p1 < δ ∧
(∀ p ∈ PL. fst p ≤ l) ∧ sparse δ PL ∧
(∀ p ∈ PR. l ≤ fst p) ∧ sparse δ PR ∧

5

set ps = PL ∪ PR ∧ ps ′ = filter (λp. dist p (l , snd p) < δ) ps
=⇒ p0 ∈ set ps ′ ∧ p1 ∈ set ps ′

We then can prove, additionally using Lemma 1, that combine computes
indeed a pair of points (p0, p1) such that our given list of points ps is (dist p0

p1)-sparse.

Lemma 3. sorted snd ps ∧ set ps = PL ∪ PR ∧
(∀ p ∈ PL. fst p ≤ l) ∧ sparse (dist p0L p1L) PL ∧
(∀ p ∈ PR. l ≤ fst p) ∧ sparse (dist p0R p1R) PR ∧
(p0, p1) = combine (p0L, p1L) (p0R, p1R) l ps
=⇒ sparse (dist p0 p1) (set ps)

One can also show that p0 and p1 are in ps and distinct (and thus a closest
pair of set ps), if p0L (p0R) and p1L (p1R) are in PL (PR) and distinct.

3.2 The Divide & Conquer Algorithm

In Section 2 we glossed over some implementation detail which is necessary to
achieve to running time of O(n log n). In particular we need to partition the given
list2 of points ps along a vertical line l into two lists of nearly equal length during
the divide step and obtain a list ys of the same points, sorted in ascending order
by y-coordinate, for the combine step in linear time at each level of recursion.

Cormen et al. propose the following top-down approach: Their algorithm
takes three arguments: the set of points P and lists xs and ys which contain
the same set of points P but are respectively sorted by x and y-coordinate.
The algorithm first splits xs at length xs div 2 into two still sorted lists xsL
and xsR and chooses l as either the x -coordinate of the last element of xsL
or the x -coordinate of the first element of xsR. It then constructs the sets PL

and PR respectively consisting of the points of xsL and xsR. For the recursive
invocations it needs to obtain in addition lists ysL and ysR that are still sorted
by y-coordinate and again respectively refer to the same points as xsL and xsR.
It achieves this by iterating once through ys and checking for each point if it is
contained in PL or not, constructing ysL and ysR along the way.

But this approach requires an implementation of sets. In fact, if we want to
achieve the overall worst case running time of O(n log n) it requires an implemen-
tation of sets with linear time construction and constant time membership test,
which is nontrivial, in particular in a functional setting. To avoid sets many pub-
lications and implementations either assume all points have unique x -coordinates
or preprocess the points by applying for example a rotation such that the input
fulfills this condition. For distinct x -coordinates one can then compute ysL and
ysR by simply filtering ys depending on the x -coordinate of the points relative
to l and eliminate the usage of sets entirely.

But there exists a third option which we have found only in Cormen et al.
where it is merely hinted at in an exercise left to the reader. The approach

2 Our implementation deals with concrete lists in contrast to the abstract sets used in
Section 2.

6

is the following. Looking at the overall structure of the closest pair algorithm
we recognize that it closely resembles the structure of a standard mergesort
implementation and that we only need ys for the combine step after the two
recursive invocations of the algorithm. Thus we can obtain ys by merging ‘along
the way’ using a bottom-up approach. This is the actual code:

closest pair rec :: point list ⇒ point list × point × point
closest pair rec xs =
(let n = length xs
in if n ≤ 3 then (mergesort snd xs, closest pair bf xs)

else let (xsL, xsR) = split at (n div 2) xs;
(ysL, p0L, p1L) = closest pair rec xsL;
(ysR, p0R, p1R) = closest pair rec xsR;
ys = merge snd ysL ysR

in (ys, combine (p0L, p1L) (p0R, p1R) (fst (hd xsR)) ys))

closest pair :: point list ⇒ point × point
closest pair ps =
(let (ys, c0, c1) = closest pair rec (mergesort fst ps) in (c0, c1))

Function closest pair rec expects a list of points xs sorted by x -coordinate.
The construction of xsL, xsR and l is analogous to Cormen et al. In the base
case we then sort xs by y-coordinate and compute the closest pair using the
brute-force approach (closest pair bf). The recursive call of the algorithm on xsL
returns in addition to the closest pair of xsL the list ysL, containing all points of
xsL but now sorted by y-coordinate. Analogously for xsR and ysR. Furthermore,
we reuse function merge from our mergesort implementation, which we utilize
to presort the points by x -coordinate, to obtain ys from ysL and ysR in linear
time at each level of recursion.

Splitting of xs is performed by the function split at via a simple linear pass
over xs. Our implementation of mergesort sorts a list of points depending on a
given projection function, fst for ‘by x -coordinate’ and snd for ‘by y-coordinate’.

Using Lemma 3, the functional correctness proofs of our mergesort imple-
mentation and several auxiliary lemmas proving that closest pair rec also sorts
the points by y-coordinate, we arrive at the correctness proof of the desired
sparsity property of the algorithm.

Theorem 1. 1 < length xs ∧ sorted fst xs ∧ (ys, p0, p1) = closest pair rec xs
=⇒ sparse (dist p0 p1) xs

Corollary 1 together with Theorems 2 and 3 then show that the pair (p0, p1)
is indeed a closest pair of ps.

Corollary 1. 1 < length ps ∧ (p0, p1) = closest pair ps
=⇒ sparse (dist p0 p1) ps

Theorem 2. 1 < length ps ∧ (p0, p1) = closest pair ps
=⇒ p0 ∈ set ps ∧ p1 ∈ set ps

Theorem 3. 1 < length ps ∧ distinct ps ∧ (p0, p1) = closest pair ps
=⇒ p0 6= p1

7

4 Time Complexity Proof

To formally verify the running time we follow the approach in [16]. For each
function f we define a function t f that takes the same arguments as f but
computes the number of function calls the computation of f needs, the ‘time’.
Function t f follows the same recursion structure as f and can be seen as an
abstract interpretation of f. To ensure the absence of errors we derive f and t f
from a monadic function that computes both the value and the time but for
simplicity of presentation we present only f and t f. We also simplify matters a
bit: we count only expensive operations where the running time increases with
the size of the input; in particular we assume constant time arithmetic and ignore
small additive constants. Due to reasons of space we only show one example of
such a ‘timing’ function, t find closest, which is crucial to our time complexity
proof.

t find closest :: point ⇒ real ⇒ point list ⇒ nat
t find closest p δ [] = 0
t find closest p δ [p0] = 1
t find closest p δ (p0 # ps) = 1 +
(if δ ≤ snd p0 − snd p then 0
else let p1 = find closest p (min δ (dist p p0)) ps

in t find closest p (min δ (dist p p0)) ps +
(if dist p p0 ≤ dist p p1 then 0 else 0))

We set the time to execute dist computations to 0 since it is a combination of
cheap operations. For the base cases of recursive functions we fix the computation
time to be equivalent to the size of the input. This choice of constants is arbitrary
and has no impact on the overall running time analysis but leads in general to
‘cleaner’ arithmetic bounds.

4.1 Time Analysis of the Combine Step

In Section 2 we claimed that the running time of the algorithm is captured by
the recurrence T (n) = T (dn/2e) + T (bn/2c) + O(n), where n is the length
of the given list of points. This claim implies an at most linear overhead at
each level of recursion. Splitting of the list xs, merging ysL and ysR and the
filtering operation of the combine step run in linear time. But it is non-trivial
that the function find closest pair, central to the combine step, also exhibits a
linear time complexity. It is applied to an argument list of, in the worst case,
length n, iterates once through the list and calls find closest for each element.
Consequently our proof obligation is the constant running time of find closest
or, considering our timing function, that there exists some constant c such that
t find closest p δ ps ≤ c holds in the context of the combine step.

Looking at the definition of find closest we see that the function terminates
as soon as it encounters the first point within the given list ps that does not
fulfill the predicate (λq . δ ≤ snd q − snd p), the point p being an argument to

8

find closest, or if ps is a list of length ≤1. The corresponding timing function
t find closest computes the number of recursive function calls, which is, in this
case, synonymous with the number of examined points. For our time complexity
proof it suffices to show the following bound on the result of t find closest. The
proof is by induction on the computation of t find closest. The function count f
is an abbreviation for length ◦ filter f.

Lemma 4. t find closest p δ ps ≤ 1 + count (λq . snd q − snd p ≤ δ) ps

Therefore we need to prove that the term count (λq . snd q − snd p ≤ δ)
ps does not depend on the length of ps. Looking back at Figure 1, the square
point representing p, we can assume that the list p # ps is distinct and sorted in
ascending order by y-coordinate. From the precomputing effort of the combine
step we know that its points are contained within the 2δ wide vertical strip
centered around l and can be split into two sets PL (PR) consisting of all
points which lie to the left (right) of or on the line l. Due to the two recursive
invocations of the algorithm during the conquer step we can additionally assume
that both PL and PR are δ-sparse, suggesting the following lemma which implies
t find closest p δ ps ≤ 8 and thus the constant running time of find closest.

Lemma 5. distinct (p # ps) ∧ sorted snd (p # ps) ∧ 0 ≤ δ ∧
(∀ q ∈ set (p # ps). l − δ < fst q ∧ fst q < l + δ) ∧
set (p # ps) = PL ∪ PR ∧
(∀ q ∈ PL . fst q ≤ l) ∧ sparse δ PL ∧
(∀ q ∈ PR . l ≤ fst q) ∧ sparse δ PR

=⇒ count (λq . snd q − snd p ≤ δ) ps ≤ 7

Proof. The library HOL-Analysis defines some basic geometric building blocks
needed for the proof. A closed box describes points contained within rectangular
shapes in Euclidean space. For our purposes the planar definition is sufficient.

cbox (x 0, y0) (x 1, y1) = {(x , y) | x 0 ≤ x ∧ x ≤ x 1 ∧ y0 ≤ y ∧ y ≤ y1}

The box is ‘closed’ since it includes points located on the border of the box.
We then introduce some useful abbreviations:

– The rectangle R is the upper half of the shaded square of Figure 1:
R = cbox (l − δ, snd p) (l + δ, snd p + δ)

– The set Rps consists of all points of p # ps that are encompassed by R:
Rps = R ∩ set (p # ps)

– The squares SL and SR denote the left and right halves of R:
SL = cbox (l − δ, snd p) (l , snd p + δ)
SR = cbox (l , snd p) (l + δ, snd p + δ)

– The set SPL holds all points of PL that are contained within the square SL.
The definition of SPR is analogous:
SPL = PL ∩ SL, SPR = PR ∩ SR

9

Let additionally psf abbreviate the term filter (λq . snd q − snd p ≤ δ)
ps. First we prove length (p # psf) ≤ |Rps|: Let q denote an arbitrary point
of p # psf . We know snd p ≤ snd q because the list p # ps and therefore
p # psf is sorted in ascending order by y-coordinate and snd q ≤ snd p + δ
due to the filter predicate (λq . snd q − snd p ≤ δ). Using the additional facts
l − δ ≤ fst q and fst q ≤ l + δ (derived from our assumption that all points
of p # ps are contained within the 2δ strip) and the definitions of Rps, R
and cbox we know q ∈ Rps and thus set (p # psf) ⊆ Rps. Since the list
p # psf maintains the distinctness property of p # ps we additionally have
length (p # psf) = |set (p # psf)|. Our intermediate goal immediately follows
because |set (p # psf)| ≤ |Rps| holds for the finite set Rps.

But how many points can there be in Rps? Lets first try to determine an
upper bound for the number of points of SPL. All its points are contained
within the square SL whose side length is δ. Moreover, since PL is δ-sparse and
SPL ⊆ PL, SPL is also δ-sparse, or the distance between each distinct pair of
points of SPL is at least δ. Therefore the cardinality of SPL is bounded by the
number of points we can maximally fit into SL, maintaining a pairwise minimum
distance of δ. As the left-hand side of Figure 2 depicts, we can arrange at most
four points adhering to these restrictions, and consequently have |SPL| ≤ 4. An
analogous argument holds for the number of points of SPR. Furthermore we
know Rps = SPL ∪ SPR due to our assumption set (p # ps) = PL ∪ PR and
the fact R = SL ∪ SR and can conclude |Rps| ≤ 8. Our original statement then
follows from length (p # psf) ≤ |Rps|. ut

Fig. 2. Core Argument.

Note that the intermediate proof for the bound on |Rps| relies on basic human
geometric intuition. Indeed Cormen et al. [5] and most of the proofs in the
literature do. But for a formal proof we have to be rigorous. First we show two
auxiliary lemmas: The maximum distance between two points in a square S with
side length δ is less than or equal to

√
2δ.

Lemma 6. p0 = (x , y) ∧ p1 = (x + δ, y + δ) ∧ 0 ≤ δ ∧
(x 0, y0) ∈ cbox p0 p1 ∧ (x 1, y1) ∈ cbox p0 p1

=⇒ dist (x 0, y0) (x 1, y1) ≤
√

2 ∗ δ

10

The proof is straightforward. Both points are contained within the square S,
the difference between their x and y coordinates is hence bounded by δ and we
finish the proof using the definition of the Euclidean distance. Below we employ
the following variation of the pigeonhole principle:

Lemma 7. finite B ∧ A ⊆
⋃

B ∧ |B | < |A|
=⇒ ∃ x ∈ A. ∃ y ∈ A. ∃S ∈ B . x 6= y ∧ x ∈ S ∧ y ∈ S

Finally we replace human intuition with formal proof:

Lemma 8. (∀ p ∈ P . p ∈ cbox (x , y) (x + δ, y + δ)) ∧ sparse δ P ∧ 0 ≤ δ
=⇒ |P | ≤ 4

Proof. Let S denote the square with a side length of δ and suppose, for the
sake of contradiction, that 4 < |P |. Then S can be split into the four congruent
squares S 1, S 2, S 3, S 4 along the common point (x + δ/2, y + δ/2) as depicted
by the right-hand side of Figure 2. Since all points of P are contained within S
and S =

⋃
{S 1, S 2, S 3, S 4} we have P ⊆

⋃
{S 1, S 2, S 3, S 4}. Using Lemma 7

and our assumption 4 < |P | we know there exists a square S i ∈ {S 1, S 2, S 3, S 4}
and a pair of distinct points p0 ∈ S i and p1 ∈ S i. Lemma 6 and the fact that
all four sub-squares have the same side length δ / 2 shows that the distance
between p0 and p1 must be less than or equal to

√
2 / 2 ∗ δ and hence strictly

less than δ. But we also know that δ is a lower bound for this distance because
p0 ∈ P, p0 ∈ P, p0 6= p1 and our premise that P is δ-sparse, a contradiction. ut

4.2 Time Analysis of the Divide & Conquer Algorithm

In summary, the time to evaluate find closest p δ ps is constant in the context
of the combine step and thus evaluating find closest pair (p0, p1) ps as well as
combine (p0L, p1L) (p0R, p1R) l ps takes time linear in length ps.

Next we turn our attention to the timing of closest pair rec and derive (but
do not show) the corresponding function t closest pair rec. At this point we
could prove a concrete bound on t closest pair rec. But since we are dealing
with a divide-and-conquer algorithm we should, in theory, be able to determine
its running time using the ‘master theorem’ [5]. This is, in practice, also pos-
sible in Isabelle/HOL. Eberl [8] has formalized the Akra-Bazzi theorem [1], a
generalization of the master theorem. Using this formalization we can derive
the running time of our divide-and-conquer algorithm without a direct proof
for t closest pair rec. First we capture the essence of t closest pair rec as a re-
currence on natural numbers representing the length of the list argument of
(t)closest pair rec:

closest pair recurrence :: nat ⇒ real
closest pair recurrence n =
(if n ≤ 3 then n + mergesort recurrence n + n ∗ n
else 13 ∗ n + closest pair recurrence bn / 2c +

closest pair recurrence dn / 2e)

11

The time complexity of this recurrence is proved completely automatically:

Lemma 9. closest pair recurrence ∈ Θ(λn. n ∗ ln n)

Next we need to connect this bound with our timing function. Lemma 10
below expresses a procedure for deriving complexity properties of the form

t ∈ O [m going to at top within A](f ◦ m)

where t is a timing function on the data domain, in our case lists. The function
m is a measure on that data domain, r is a recurrence or any other function of
type nat ⇒ real and A is the set of valid inputs. The term ‘m going to at top
within A’ should be read as ‘if the measured size of valid inputs is sufficiently
large’ and utilizes Eberls formalization of Landau Notation [9] and the “filter”
machinery of asymptotics in Isabelle/HOL [11]. For readability we omit stating
the filter and m explicitly in the following and just state the conditions required
of the input A. The measure m always corresponds to the length function.

Lemma 10. (∀ x ∈ A. t x ≤ (r ◦ m) x) ∧ r ∈ O(f) ∧ (∀ x ∈ A. 0 ≤ t x)
=⇒ t ∈ O [m going to at top within A](f ◦ m)

Lemma 11. distinct ps ∧ sorted fst ps
=⇒ t closest pair rec ps ≤ (closest pair recurrence ◦ length) ps

Using Lemmas 9, 10 and 11 we arrive at Theorem 4, expressing our main
claim: the running time of the divide-and-conquer algorithm.

Theorem 4. For inputs that are distinct and sorted by x-coordinate:
t closest pair rec ∈ O(λn. n ∗ ln n)

Since the function closest pair only presorts the given list of points using our
mergesort implementation and then calls closest pair rec we obtain Corollary 2
and finish the time complexity proof.

Corollary 2. For distinct inputs: t closest pair ∈ O(λn. n ∗ ln n)

5 Alternative Implementations

In the literature there exist various other algorithmic approaches to solve the
closest pair problem. Most of them are closely related to our implementation of
Section 3, deviating primarily in two aspects: the exact implementation of the
combine step and the approach to sorting the points by y-coordinate we already
discussed in Subsection 3.2. We present a short overview, concentrating on the
combine step and the second implementation we verified.

12

5.1 A Second Verified Implementation

Although the algorithm described by Cormen et al. is the basis for our imple-
mentation of Section 3, we took the liberty to optimize it. During execution of
find closest p δ ps our algorithm searches for the closest neighbor of p within the
rectangle R, the upper half of the shaded square S of Figure 1, and terminates
the search if it examines points on or beyond the upper border of R. Cormen
et al. originally follow a slightly different approach. They search for a closest
neighbor of p by examining a constant number of points of ps, the first 7 to be
exact. This is valid because there are at most 7 points within R, not counting
p, and the 8th point of ps would again lie on or beyond the upper border of
R. This slightly easier implementation comes at the cost of being less efficient
in practice. Cormen et al. are always assuming the worst case by checking all 7
points following p. But it is unlikely that the algorithm needs to examine even
close to 7 points, except for specifically constructed inputs. They furthermore
state that the bound of 7 is an over-approximation and dare the reader to lower
it to 5 as an exercise. We refrain from doing so since a bound of 7 suffices for the
time complexity proof of our, inherently faster, implementation. At this point
we should also mention that the specific optimization of Section 3 is not our idea
but rather an algorithmic detail which is unfortunately rarely mentioned in the
literature.

Nonetheless we can adapt the implementation of Section 3 and the proofs of
Section 4 to verify the original implementation of Cormen et al. as follows: We
replace each call of find closest p δ ps by a call to find closest bf p (take 7 ps)
where find closest bf iterates in brute-force fashion through its argument list to
find the closest neighbor of p. To verify this implementation we then reuse most
of the elementary lemmas and proof structure of Sections 3 and 4, only a slightly
adapted version of Lemma 5 is necessary. Note that this lemma was previously
solely required for the time complexity proof of the algorithm. Now it is already
necessary during the functional correctness proof since we need to argue that
examining only a constant number of points of ps is sufficient. The time analysis
is overall greatly simplified: A call of the form find closest bf p (take 7 ps) runs
in constant time and we again are able to reuse the remaining time analysis proof
structure of Section 4. For the exact differences between both formalizations we
encourage the reader the consult our entry in the Archive of Formal Proofs [23].

5.2 Related Work

Over the years a considerable amount of effort has been made to further op-
timize the combine step. Central to these improvements is the ‘complexity of
computing distances’, abbreviated CCP in the following, a term introduced by
Zhou et al. [26] which measures the number of Euclidean distances computed
by a closest pair algorithm. The core idea being, since computing the Euclidean
distance is more expensive than other primitive operations, it might be possible
to improve overall algorithmic running time by reducing this complexity mea-
sure. In the same paper they introduce an optimized version of the closest pair

13

algorithm with a CCP of 2n log n, in contrast to 7n log n which will be the worst
case CCP of the algorithm of Section 3 after we minimize the number of dis-
tance computations in Section 6. They improve upon the algorithm presented
by Preparata and Shamos [21] which achieves a CCP of 3n log n. Ge et al. [10]
base their, quite sophisticated, algorithm on the version of Zhou et al. and prove
an even lower CCP of 3

2n log n for their implementation. The race for the low-
est number of distance computations culminates so far with the work of Jiang
and Gillespie [13] who present their algorithms ‘Basic-2’ 3 and ‘2-Pass’ with a
respective CCP of 2n log n and (for the first time linear) 7

2n.

6 Executable Code

Before we explore how our algorithm stacks up against Basic-2 (which is sur-
prisingly the fastest of the CCP minimizing algorithms according to Jiang and
Gillespie) we have to make some final adjustments to generate executable code
from our formalization.

In Section 3 we fixed the data representation of a point to be a pair of
mathematical ints rather than mathematical reals. During code export Isabelle
then maps, correctly and automatically, its abstract data type int to a suitable
concrete implementation of (arbitrary-sized) integers; for our target language
OCaml using the library ‘zarith’. For the data type real this is not possible since
we cannot implement mathematical reals. We would instead have to resort to
an approximation (e.g. floats) losing all proved guarantees in the process. But
currently our algorithm still uses the standard Euclidean distance and hence
mathematical reals due to the sqrt function. For the executable code we have to
replace this distance measure by the squared Euclidean distance. To prove that
we preserve the correctness of our implementation several small variations of the
following lemma suffice:

dist p0 p1 ≤ dist p2 p3 ←→ (dist p0 p1)2 ≤ (dist p2 p3)2

We apply two further code transformations. To minimize the number of distance
computations we introduce auxiliary variables which capture and then replace
repeated computations. For all of the shown functions that return a point or a
pair of points this entails returning the corresponding computed distance as well.
Furthermore we replace recursive auxiliary functions such as filter by correspond-
ing tail-recursive implementations to allow the OCaml compiler to optimize the
generated code and prevent stackoverflows. To make sure these transformations
are correct we prove lemmas expressing the equivalence of old and new imple-
mentations for each function. Isabelles code export machinery can then apply
these transformations automatically.

Now it is time to evaluate the performance of our verified code. Figure 3 de-
picts the running time ratios of several implementations of the algorithm of Sec-
tion 3 (called Basic-δ) and Basic-7 (the original approach of Cormen et al.) over

3 Pereira and Lobo [19] later independently developed the same algorithm and addi-
tionally present extensive functional correctness proofs for all Minkowski distances.

14

Basic-2. Basis-δ is tested in three variations: the exported (purely functional)
Isabelle code and equivalent handwritten functional and imperative implemen-
tations to gauge the overhead of the machine generated code. All algorithms
are implemented in OCaml, use our bottom-up approach to sorting (imperative
implementations sort in place) of Subsection 3.2 and for each input of uniformly
distributed points 50 independent executions were performed. Remarkably the
exported code is only about 2.28 4 times slower than Basic-2 and furthermore
most of the difference is caused by the inefficiencies inherent to machine gen-
erated code since its equivalent functional implementation is only 11% slower
than Basic-2. Basic-7 is 2.26 times slower than the imperative Basic-δ which
demonstrates the huge impact the small optimization of Subsection 5.1 can have
in practice.

Fig. 3. Benchmarks.

7 Conclusion

We have presented the first verification (both functional correctness and run-
ning time) of two related closest pair of points algorithms in the plane, without
assuming the x coordinates of all points to be distinct. The executable code
generated from the formalization is competitive with existing reference imple-
mentations. A challenging and rewarding next step would be to formalize and

4 We measure differences between running times as the average over all data points
weighted by the size of the input.

15

verify a closest pair of points algorithm in arbitrary dimensions. This case is
treated rather sketchily in the literature.

Acknowledgements Research supported by DFG grants NI 491/16-1 and 18-1.

References

1. Akra, M., Bazzi, L.: On the solution of linear recurrence equations.
Computational Optimization and Applications 10(2), 195–210 (1998).
https://doi.org/10.1023/A:1018373005182, https://doi.org/10.1023/A:

1018373005182

2. Bentley, J.L., Shamos, M.I.: Divide-and-conquer in multidimensional space. In:
Proc. Eighth Annual ACM Symposium on Theory of Computing. pp. 220–230.
STOC ’76, ACM (1976). https://doi.org/10.1145/800113.803652

3. Bertot, Y.: Formal verification of a geometry algorithm: A quest for abstract views
and symmetry in Coq proofs. In: Fischer, B., Uustalu, T. (eds.) Theoretical As-
pects of Computing - ICTAC 2018. LNCS, vol. 11187, pp. 3–10. Springer (2018).
https://doi.org/10.1007/978-3-030-02508-3 1

4. Brun, C., Dufourd, J., Magaud, N.: Designing and proving correct a convex
hull algorithm with hypermaps in Coq. Comput. Geom. 45(8), 436–457 (2012).
https://doi.org/10.1016/j.comgeo.2010.06.006

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edn. (2009)

6. Dufourd, J.: An intuitionistic proof of a discrete form of the Jordan Curve Theorem
formalized in Coq with combinatorial hypermaps. J. Autom. Reasoning 43(1), 19–
51 (2009). https://doi.org/10.1007/s10817-009-9117-x

7. Dufourd, J., Bertot, Y.: Formal study of plane delaunay triangulation. In: Kauf-
mann, M., Paulson, L.C. (eds.) Interactive Theorem Proving, ITP 2010. LNCS,
vol. 6172, pp. 211–226. Springer (2010). https://doi.org/10.1007/978-3-642-14052-
5 16

8. Eberl, M.: Proving divide and conquer complexities in Isabelle/HOL.
Journal of Automated Reasoning 58(4), 483–508 (Apr 2017).
https://doi.org/10.1007/s10817-016-9378-0

9. Eberl, M.: Verified real asymptotics in Isabelle/HOL. In: Proceedings of the Inter-
national Symposium on Symbolic and Algebraic Computation. ISSAC ’19, ACM,
New York, NY, USA (2019). https://doi.org/10.1145/3326229.3326240

10. Ge, Q., Wang, H.T., Zhu, H.: An improved algorithm for finding the clos-
est pair of points. Journal of Computer Science and Technology 21(1), 27–
31 (Jan 2006). https://doi.org/10.1007/s11390-006-0027-7, https://doi.org/10.
1007/s11390-006-0027-7

11. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical anal-
ysis in isabelle/hol. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Interac-
tive Theorem Proving. pp. 279–294. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013)

12. Immler, F.: A verified algorithm for geometric zonotope/hyperplane intersec-
tion. In: Certified Programs and Proofs. pp. 129–136. CPP ’15, ACM (2015).
https://doi.org/10.1145/2676724.2693164

13. Jiang, M., Gillespie, J.: Engineering the divide-and-conquer closest pair algorithm.
Journal of Computer Science and Technology 22(4), 532–540 (2007)

16

https://doi.org/10.1023/A:1018373005182
https://doi.org/10.1023/A:1018373005182
https://doi.org/10.1023/A:1018373005182
https://doi.org/10.1145/800113.803652
https://doi.org/10.1007/978-3-030-02508-3_1
https://doi.org/10.1016/j.comgeo.2010.06.006
https://doi.org/10.1007/s10817-009-9117-x
https://doi.org/10.1007/978-3-642-14052-5_16
https://doi.org/10.1007/978-3-642-14052-5_16
https://doi.org/10.1007/s10817-016-9378-0
https://doi.org/10.1145/3326229.3326240
https://doi.org/10.1007/s11390-006-0027-7
https://doi.org/10.1007/s11390-006-0027-7
https://doi.org/10.1007/s11390-006-0027-7
https://doi.org/10.1145/2676724.2693164

14. Meikle, L.I., Fleuriot, J.D.: Mechanical theorem proving in computational geome-
try. In: Hong, H., Wang, D. (eds.) Automated Deduction in Geometry, ADG 2004.
LNCS, vol. 3763, pp. 1–18. Springer (2004). https://doi.org/10.1007/11615798 1

15. Narboux, J., Janicic, P., Fleuriot, J.: Computer-assisted Theorem Proving in Syn-
thetic Geometry. In: Sitharam, M., John, A.S., Sidman, J. (eds.) Handbook of
Geometric Constraint Systems Principles. Discrete Mathematics and Its Applica-
tions, Chapman and Hall/CRC (2018)

16. Nipkow, T.: Verified root-balanced trees. In: Chang, B.Y.E. (ed.) Asian Symposium
on Programming Languages and Systems, APLAS 2017. LNCS, vol. 10695, pp.
255–272. Springer (2017)

17. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer (2014),
http://concrete-semantics.org

18. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

19. Pereira, J.C., Lobo, F.G.: An optimized divide-and-conquer algorithm for the
closest-pair problem in the planar case. Journal of Computer Science and Technol-
ogy 27(4), 891–896 (2012)

20. Pichardie, D., Bertot, Y.: Formalizing convex hull algorithms. In: Boulton, R.J.,
Jackson, P.B. (eds.) Theorem Proving in Higher Order Logics, TPHOLs 2001.
LNCS, vol. 2152, pp. 346–361. Springer (2001). https://doi.org/10.1007/3-540-
44755-5 24

21. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer-Verlag, Berlin, Heidelberg (1985)

22. Puitg, F., Dufourd, J.: Formalizing mathematics in higher-order logic: A case
study in geometric modelling. Theor. Comput. Sci. 234(1-2), 1–57 (2000).
https://doi.org/10.1016/S0304-3975(98)00228-X

23. Rau, M., Nipkow, T.: Closest pair of points algorithms. Archive of Formal Proofs
(Jan 2020), http://isa-afp.org/entries/Closest_Pair_Points.html, Formal
proof development

24. Sack, J.R., Urrutia, J. (eds.): Handbook of Computational Geometry. North-
Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands (2000)

25. Shamos, M.I., Hoey, D.: Closest-point problems. In: 16th Annual Symposium
on Foundations of Computer Science (sfcs 1975). pp. 151–162 (Oct 1975).
https://doi.org/10.1109/SFCS.1975.8

26. Zhou, Y., Xiong, P., Zhu, H.: An improved algorithm about the closest pair of
points on plane set. Computer Research and Development 35(10), 957–960 (1998)

17

https://doi.org/10.1007/11615798_1
http://concrete-semantics.org
https://doi.org/10.1007/3-540-44755-5_24
https://doi.org/10.1007/3-540-44755-5_24
https://doi.org/10.1016/S0304-3975(98)00228-X
http://isa-afp.org/entries/Closest_Pair_Points.html
https://doi.org/10.1109/SFCS.1975.8

	Verification of Closest Pair of Points Algorithms

